WO2019184385A1 - 制备共轭聚合物膜层的方法及发光二极管、显示器件和太阳能电池 - Google Patents

制备共轭聚合物膜层的方法及发光二极管、显示器件和太阳能电池 Download PDF

Info

Publication number
WO2019184385A1
WO2019184385A1 PCT/CN2018/115362 CN2018115362W WO2019184385A1 WO 2019184385 A1 WO2019184385 A1 WO 2019184385A1 CN 2018115362 W CN2018115362 W CN 2018115362W WO 2019184385 A1 WO2019184385 A1 WO 2019184385A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated polymer
fibrous
preparing
layer
film layer
Prior art date
Application number
PCT/CN2018/115362
Other languages
English (en)
French (fr)
Inventor
夏曾强
白清云
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/611,307 priority Critical patent/US20200168802A1/en
Publication of WO2019184385A1 publication Critical patent/WO2019184385A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/20Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • D01F6/22Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain from polystyrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/141Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being without a potential-jump barrier or surface barrier
    • H01L31/143Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being without a potential-jump barrier or surface barrier the light source being a semiconductor device with at least one potential-jump barrier or surface barrier, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/161Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors
    • H01L31/162Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors the light source being a semiconductor device with at least one potential-jump barrier or surface barrier, e.g. a light emitting diode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of display, and in particular to a method of preparing a conjugated polymer film layer, and an organic light emitting diode, a display device, and a solar cell including the conjugated polymer film layer.
  • OLED Organic light-emitting diode
  • OLED has the characteristics of high light-emitting brightness, wide material selection range, low driving voltage, full-curing active light emission, high-definition, wide viewing angle, and fast response speed, which is in line with the information age mobile communication and information display.
  • the development trend and the requirements of green lighting technology are the focus of many researchers.
  • the organic light emitting diode and the display device including the organic light emitting diode generally include a film layer such as an anode, a hole transport layer, a hole injection layer, a light emitting layer, an electron injection layer, an electron transport layer, and a cathode.
  • the solar cell also includes a film layer such as a hole transport layer, a hole injection layer, an electron injection layer, and an electron transport layer.
  • Each of the above film layers is usually formed by a vapor deposition technique or a solution film formation method.
  • the solution film forming method includes a solution spin coating technique or an inkjet printing technique, and has the advantages of simple operation and the like. However, due to the presence of the solvent, the state of accumulation of the film material formed by the solution film formation method is loose. Therefore, the carrier layer has a slow carrier transport rate and a short migration length, thereby reducing the carrier mobility of the device.
  • a method of preparing a conjugated polymer film layer comprising: preparing a fibrous conjugated polymer; and preparing a conjugated polymer film layer from the fibrous conjugated polymer.
  • the step of preparing a conjugated polymer film layer from the fibrous conjugated polymer comprises: preparing a dispersion containing a fibrous conjugated polymer; and preparing a conjugated polymer film layer from the dispersion.
  • the step of preparing the fibrous conjugated polymer comprises:
  • a sub-step of preparing a composite fiber material preparing a composite fiber material having a conjugated polymer as an inner layer and a high molecular polymer as an outer layer by a coaxial electrospinning method;
  • Substep of preparing a fibrous conjugated polymer the outer layer polymer of the composite fiber material is peeled off to obtain the fibrous conjugated polymer.
  • the sub-step of preparing the composite fiber material comprises: forming an inner layer spinning solution by using a conjugated polymer as a solute, forming an outer layer solution by using a high molecular polymer as a solute; and by coaxial electrospinning, A fibrous material having a conjugated polymer as an inner layer and a high molecular polymer as an outer layer was prepared.
  • the conjugated polymer is at least one selected from the group consisting of a conjugated polymer of poly-3-hexylthiophene, naphthalimide, and thiophene, polystyrene, polyquinoxaline, and polyfluorene.
  • the conjugated polymer in the inner layer spinning solution has a mass percentage concentration of about 1 to 15%.
  • the high molecular polymer comprises polyethylene terephthalate and/or polymethyl methacrylate.
  • the outer layer solution has a mass percentage concentration of about 1 to 20%.
  • the operating voltage during coaxial electrospinning is from 1 to 500 kV.
  • the performing the coaxial electrospinning comprises: simultaneously spraying the inner layer spinning solution and the outer layer solution onto the plate electrode by using a needle, the distance between the needle and the plate electrode being greater than 5cm.
  • the pumping speed of the inner layer spinning solution and the outer layer solution is about 0.01 ⁇ l/h to 10 ml/h.
  • the sub-step of preparing the fibrous conjugated polymer comprises: immersing the fibrous material in a treatment liquid, and heating, shaking, and sonicating to peel off the outer layer of the high molecular polymer, This produced the fibrous conjugated polymer.
  • the treatment liquid comprises at least one of methanol and acetonitrile.
  • the fibrous conjugated polymer is a nanofiber material, and the nanofiber material has a diameter of 1 to 200 nm and an aspect ratio of 1000 or more.
  • an organic light emitting diode comprising a conjugated polymer film layer of the fibrous conjugated polymer.
  • the fibrous material is a nano fibrous material, and the nano fibrous material has a diameter of 1 to 200 nm and an aspect ratio of 1000 or more.
  • the conjugated polymer film layer is at least one of an electron injection layer, an electron transport layer, and a light emitting layer in the organic light emitting diode.
  • the conjugated polymer film layer comprises a p-type conjugated polymer and/or an n-type conjugated polymer.
  • a display device comprising the organic light emitting diode of any of the above.
  • a solar cell comprising a conjugated polymer film layer of the fibrous conjugated polymer.
  • the fibrous material is a nano-fibrous material, and the nano-fibrous material has a diameter of 1 to 200 nm and an aspect ratio of 1000 or more.
  • the conjugated polymer film layer is at least one of an electron injection layer, an electron transport layer, and a photoelectric conversion layer in a solar cell.
  • FIG. 1 shows a flow chart of a method of preparing a conjugated polymer film layer in accordance with an embodiment of the present disclosure
  • Figure 2 is a schematic view showing the structure of a coaxial electrospinning device
  • FIG. 3 shows a flow chart of a method of preparing a conjugated polymer film layer according to another embodiment of the present disclosure
  • FIG. 5 shows a scanning electron micrograph of a nanofiber-like conjugated polymer prepared according to Example 2 of the present disclosure.
  • a film layer of electron mobility for example, an electron injecting layer, an electron transporting layer, and a light emitting layer
  • organic semiconductor materials have their inherent disadvantages, that is, low electron mobility; and, in solution film forming methods such as inkjet printing and spin coating techniques, film-forming materials are usually accumulated in a relatively loose state, directly
  • the carrier, especially the electrons have a short transmission length on the same molecular chain, and are easy to transition between molecules, resulting in low carrier mobility. This in turn seriously affects the transport of the material to the carriers and the performance of the device.
  • the present disclosure proposes a pre-treatment of a film-forming material conjugated polymer, that is, a conjugated polymer formed into a fibrous shape. Since the fibrous conjugated polymer has a certain length and orientation, it has a high electron mobility in the dimensional direction thereof, and the carrier mobility can be improved. Further, the performance of the organic light emitting diode, the display device, and the solar cell device including the film layer is improved.
  • the conjugated polymer material is usually a rigid material, and it is difficult to form a fibrous material having a uniform and suitable length.
  • the present disclosure produces a polymer semiconductor fiber having a good degree of uniformity and controllable size by using a coaxial electrospinning method and by controlling the concentration of the spinning dispersion, the voltage, and the pumping speed of the coaxial solution. It should be noted that the method has general versatility and can well handle a series of conjugated semiconductor materials.
  • the technical problem to be solved by the present disclosure is to provide a method for preparing a conjugated polymer film layer having a high carrier mobility.
  • the film layer can be used for an organic light emitting diode, a display device, and a solar cell.
  • the method for preparing a conjugated polymer film layer according to the present disclosure has the advantage that since the fibrous conjugated polymer has a certain length and orientation, it has a high electron mobility in the dimensional direction thereof, and can be excellent. Improve carrier mobility.
  • the conjugated polymer film layer prepared by the method is used for an organic light emitting diode, a display device, and a solar cell, since the conjugated polymer film layer has a high carrier mobility, the performance of the device is improved.
  • a method for preparing a conjugated polymer film layer comprising the following specific steps of: preparing a fibrous conjugated polymer; and from the fibrous form
  • the conjugated polymer prepares a conjugated polymer film layer.
  • the step of preparing a conjugated polymer film layer from the fibrous conjugated polymer comprises: preparing a dispersion containing a fibrous conjugated polymer; and preparing a conjugated polymer film layer from the dispersion.
  • the dispersion is prepared into a conjugated polymer film layer by a solution method.
  • the conjugated polymer film layer according to the present disclosure can be used in a semiconductor device such as an organic light emitting diode, a display device, or a solar cell. Since the fibrous conjugated polymer material in the film layer has a certain length and orientation, it has a high electron mobility in its dimensional direction. Thereby, the carrier mobility can be improved, and the device performance can be improved.
  • the solution film forming method may include any one of, for example, an inkjet printing method, a screen printing method, and a spin coating method.
  • the solution film forming method is specifically: coating a dispersion containing a fibrous conjugated polymer on a support or other film layer by spin coating, screen printing or inkjet printing. Drying gives a conjugated polymer film layer.
  • the fibrous conjugated polymer may be a nano-sized fibrous conjugated polymer.
  • the fibrous conjugated polymer has a diameter of 1 to 200 nm, and further optionally 10 to 150 nm.
  • the fibrous conjugated polymer has an aspect ratio of 1000 or more, and further optionally 2,000 or more.
  • the diameter and length (or aspect ratio) of the fibrous conjugated polymer are within the above preferred ranges, very excellent mobility properties can be obtained.
  • the length and diameter of the fibrous conjugated polymer material are uniform, and the mobility of the prepared conjugated polymer film layer is more excellent.
  • the segment of the conjugated polymer belongs to a semiconductor material and may be a p-type conjugated polymer or an n-type conjugated polymer.
  • the solution may contain a p-type fibrous conjugated polymer or an n-type fibrous conjugated polymer, and may further contain a p-type fibrous conjugated polymer and an n-type fibrous conjugated polymer.
  • the solution contains both a p-type fibrous conjugated polymer and an n-type fibrous conjugated polymer, and can construct a nano-scale interpenetrating network structure, a p-type fibrous conjugated polymer and an n-type fibrous conjugated polymerization. The separation and transport rates of electrons and holes of the conjugated polymer film layer obtained by the solution film formation method are remarkably improved.
  • the conjugated polymer may be an electron injecting layer, an electron transporting layer or a light emitting layer.
  • the conjugated polymer comprises at least one of poly-3-hexylthiophene (P3HT), a conjugated polymer of naphthalimide and thiophene (NDI), polystyrene, polyquinoxaline and polyfluorene.
  • P3HT poly-3-hexylthiophene
  • NDI conjugated polymer of naphthalimide and thiophene
  • polystyrene polyquinoxaline and polyfluorene.
  • the conjugated polymer of the naphthalimide and thiophene may be poly ⁇ 2,7-[9,9'-bis(N,N-dimethylpropyl-3-amino)phosphonium]-alternate-5 , 5'-[2,6-(bis-2-thienyl)-N,N'-diisooctyl-1,4,5,8-naphthylenediimide] (PNDIT-F3N) or Poly ⁇ 2,7-[9,9'-bis(N,N-dimethylpropyl-3-ethylammonium bromide) ⁇ ]-alternative-5,5'-[2,6-(double- 2-Thienyl)-N,N'-diisooctyl-1,4,5,8-naphthylenediimide] (PNDIT-F3N-Br).
  • the segment of the conjugated polymer has rigidity and is difficult to prepare into a fibrous material. While the method of the present disclosure overcomes the difficulties of the related art, a fibrous conjugated polymer is obtained.
  • the method of preparing a fibrous conjugated polymer according to the present disclosure includes preparing a fibrous conjugated polymer, wherein the step of preparing the fibrous conjugated polymer comprises:
  • a sub-step of preparing a composite fiber material preparing a composite fiber material having a conjugated polymer as an inner layer and a high molecular polymer as an outer layer by a coaxial electrospinning method;
  • a substep of preparing a fibrous conjugated polymer exfoliating the outer layer polymer of the composite fiber material to obtain the fibrous conjugated polymer.
  • the step of preparing the fibrous conjugated polymer specifically includes the substep of preparing a composite fiber material and the substep of preparing a fibrous conjugated polymer as follows.
  • the sub-step of preparing the composite fiber material specifically comprises: forming an inner layer spinning solution by using a conjugated polymer as a solute, forming an outer layer solution by using a high molecular polymer as a solute; and performing a coaxial electrospinning method by a coaxial electrospinning method A composite fiber material having a conjugated polymer as an inner layer and a high molecular polymer as an outer layer is prepared.
  • the outer layer is formed into a fibrous shape and the outer layer is formed into a fibrous shape, and the conjugated polymer is encapsulated therein so that the conjugated polymer is also formed into a fibrous state in the inner layer. .
  • the conjugated polymer is dissolved in a solvent to form an inner layer spinning solution having a conjugated polymer as a solute.
  • the solvent is a good solvent for the conjugated polymer, and may be a solvent having good solubility and low boiling point such as chloroform, dichloromethane or chlorobenzene.
  • the inner layer spinning solution has a mass percentage concentration of about 1 to 15% from the viewpoint of obtaining dimensional uniformity and suitable diameter and length of the nanofiber. Further, in order to obtain more uniform nanofibers, the mass percentage concentration may be selected from 2 to 10%, and even optionally from 3 to 8%.
  • the high molecular polymer as the outer layer may be selected from a polymer having a soft segment, that is, a polymer chain having a high degree of chemical bond freedom.
  • the main chain of the polymer having a flexible segment is mainly composed of a C-C single bond, a C-O single bond, and an O-O bond, and the molecular weight may be 10,000 or more. Since the high molecular polymer has a long molecular chain and a chain flexibility, it is possible to spin well and to easily control the size of the spinning. Further, the high molecular weight polymer is a polymer having a soft segment having a relative molecular weight of 10,000 to 300,000.
  • the high molecular polymer includes polyethylene terephthalate (PET) or polymethyl methacrylate (PMMA).
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • the high molecular polymer may be selected from PET having a relative molecular weight of 100,000 to 200,000 or PMMA having a relative molecular weight of 40,000 to 60,000 (or even 50,000). When a specific polymer having the above relative molecular weight is selected, more excellent spinning properties can be obtained.
  • the mass percentage of the high molecular polymer in the outer layer solution is about 1 to 20%.
  • the mass percentage concentration may be selected from 2 to 10%, and even optionally from 2 to 6%.
  • FIG. 2 A schematic of a coaxial electrospinning apparatus used in embodiments of the present disclosure is shown in FIG.
  • 1 is an outer layer solution input channel
  • 2 is an inner layer spinning solution input channel
  • 3 is a needle
  • 4 is a plate electrode.
  • the outer layer solution and the inner layer spinning solution are ejected through the needle 3, and are drawn by an electric field to form a fibrous material.
  • the operating voltage of the coaxial electrospinning can be appropriately selected depending on the kind of the conjugated polymer and the high molecular polymer, the concentration of the outer layer solution and the inner layer spinning solution, and the like, to obtain a fibrous material having a uniform size.
  • the distance between the needle and the plate electrode can be appropriately adjusted, and the further the distance between the needle and the plate electrode, the smaller the diameter of the fibrous material.
  • the pumping speed of the inner spinning solution and the outer layer solution also affects the diameter of the prepared fibrous material.
  • the spinning voltage in the coaxial electrospinning process, the distance between the needle and the plate electrode, and the solution pumping speed are adjusted according to the concentration of the inner spinning solution and the outer layer solution, Nanofiber materials having the best length and diameter and uniform size can be formed.
  • the operating voltage during the coaxial electrospinning may be about 1 to 500 kV, or even 10 to 300 kV, and further optionally 20 to 150 kV.
  • the distance between the needle and the plate electrode may be set to be greater than 5 cm, for example, greater than 10 cm, or even More than 20 cm; and the pumping speed of the inner layer spinning solution and the outer layer solution is about 0.01 ⁇ l / h to 10 ml / h, even 0.05 ⁇ l / h ⁇ 5 ml / h, for example, 0.1 ⁇ l / h, 1 ⁇ l / h, 100 ⁇ l/h, 1 ml/h and 5 ml/h.
  • a volatile solvent may be selected as a solvent in the inner spinning solution during the electrospinning process. Further, it is also possible to improve the spinning effect by heating the inner layer spinning solution to promote the volatilization of the solvent.
  • the method of preparing the fibrous conjugated polymer specifically includes a substep of preparing a composite fiber material and a substep of preparing a fibrous conjugated polymer.
  • the sub-step of preparing the fibrous conjugated polymer is: peeling off the high molecular polymer of the outer layer of the composite fiber material to obtain the fibrous conjugated polymer.
  • the sub-step of preparing the fibrous conjugated polymer specifically comprises: immersing the fibrous material in a treatment liquid, and heating, shaking, and sonicating to peel off the polymer of the outer layer, Thus, the fibrous conjugated polymer was obtained.
  • the treatment liquid serves to remove the polymer of the outer layer. Therefore, the treatment liquid has a good solubility for a high molecular polymer, but it is difficult to dissolve the conjugated polymer of the inner layer.
  • the treatment liquid is directly related to the selection of the conjugated polymer and the high molecular polymer. For example, when the conjugated polymer is poly-3-hexylthiophene and the high molecular polymer is polyethylene terephthalate, the treatment liquid may be selected from methanol. When the conjugated polymer is poly-3-hexylthiophene and the high molecular polymer is polymethyl methacrylate, the treatment liquid may be selected from acetonitrile.
  • the treatment liquid used in the method of the present disclosure is not limited to these specific types, and any solvent that can achieve the above object can be used.
  • heating, shaking and sonication can be selected.
  • the heating, shaking, and sonication can be performed together. Alternatively, such processing can be performed three or more times. Finally, a fibrous conjugated polymer can be obtained.
  • FIG. 3 shows a flow chart of a method of preparing a conjugated polymer film layer in accordance with an alternative embodiment of the present disclosure.
  • the method of preparing a conjugated polymer film layer includes the following specific steps:
  • a composite fiber material having a conjugated polymer as an inner layer and a high molecular polymer as an outer layer is prepared by coaxial electrospinning;
  • a conjugated polymer film layer was prepared from the dispersion.
  • the conjugated polymer film layer prepared according to the present disclosure can be used in an organic light emitting diode, a display device, or a solar cell.
  • an organic light emitting diode comprising the conjugated polymer film layer prepared by the method of any of the above embodiments, wherein the conjugated polymer film layer is mainly composed of a fibrous material .
  • the fibrous material is a nano-fibrous material, and the nano-fibrous material has a diameter of 1 to 200 nm and an aspect ratio of 1000 or more.
  • the electron mobility of the conjugated polymer film layer prepared according to the method of the present disclosure is significantly improved as compared with the electron mobility of the conjugated polymer film layer prepared by the conventional solution film formation method. Therefore, the conjugated polymer film layer prepared according to the method of the present disclosure is mainly used as a layer of electron mobility, including an electron injection layer, an electron transport layer, or a light-emitting layer.
  • the conjugated polymer film layer comprises a p-type conjugated polymer and an n-type conjugated polymer.
  • the p-type conjugated polymer and the n-type conjugated polymer can be constructed into a nano-scale interpenetrating network structure to improve the separation and transport of electrons and holes.
  • a display device including the organic light emitting diode of the above embodiment is also disclosed.
  • a solar cell comprising the conjugated polymer film layer prepared by the method of any of the above embodiments, wherein the conjugated polymer film layer is mainly composed of fibers Composition of materials.
  • the fibrous material is a nano-fibrous material, and the nano-fibrous material has a diameter of 1 to 200 nm and an aspect ratio of 1000 or more.
  • the chloroform solution of poly-3-hexylthiophene with a mass concentration of 8% is an inner layer spinning solution
  • the ethanol solution of polyethylene terephthalate having a mass concentration of 3% is an outer layer solution, and is spun.
  • the working voltage was 30 KV
  • the distance between the needle and the plate electrode was 20 cm
  • the inner spinning solution and the outer layer solution were pumped at a pumping rate of 0.1 ⁇ l/h to obtain a nanofiber material.
  • the diameter of the nanofiber material is uniformly stabilized at about 100 nm, and the aspect ratio is more than 2000.
  • nanofiber material is immersed in methanol, heated, shaken, and sonicated. The treatment was repeated three times, and the outer layer of polyethylene terephthalate was completely peeled off to obtain nanofiber-like poly-3-hexylthiophene.
  • 4 is a scanning electron micrograph of the nanofiber-like conjugated polymer prepared in the present example.
  • the nanofiber-like poly-3-hexylthiophene was formed into a solution, and a poly-3-hexylthiophene film layer was obtained by an inkjet printing method.
  • a poly-3-hexylthiophene film layer prepared by a conventional solution method (e.g., spin coating method) in the related art was used as a comparative example.
  • the comparison results show that the charge-mobility of the organic light-emitting diode of the poly-3-hexylthiophene film layer prepared in this embodiment is significantly higher than that of the organic light-emitting diode of the poly-3-hexylthiophene film layer prepared by the conventional solution method. .
  • a chloroform solution of a conjugated polymer of naphthalimide and thiophene at a concentration of 5% by weight is an inner layer spinning solution, and a polyethylene terephthalate solution having a mass concentration of 3% is external.
  • the layer solution had a spinning working voltage of 45 kV, a distance between the needle and the plate electrode of 20 cm, and both the inner spinning solution and the outer layer solution were pumped at a pumping rate of 0.1 ⁇ l/h to obtain a nanofiber material.
  • the diameter of the nanofiber material is uniformly stable at about 150 nm, and the aspect ratio is more than 2000.
  • Fig. 5 is a scanning electron micrograph of the nanofiber-like conjugated polymer prepared in the present example.
  • the conjugated polymer of the nanofibrous naphthalimide and thiophene was formed into a solution, and a conjugated polymer film layer of naphthalimide and thiophene was obtained by an inkjet printing method.
  • a conjugated polymer film layer of naphthalimide and thiophene prepared by a conventional solution method (e.g., spin coating method) in the related art was used as a comparative example.
  • the comparison results show that the organic light-emitting diodes of the conjugated polymer film layers of naphthalimide and thiophene prepared in this example are organic with the conjugated polymer film layers of naphthalimide and thiophene prepared by a conventional solution method. Compared to light-emitting diodes, charge mobility is significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本公开涉及一种共轭聚合物膜层的制备方法以及包含该共轭聚合物膜层的发光二极管、显示器件和太阳能能电池。根据本公开的共轭聚合物膜层的制备方法包括:制备纤维状的共轭聚合物;以及由该纤维状的共轭聚合物制备共轭聚合物膜层。由于纤维状的共轭聚合物具有一定的长度和取向,在其维度方向上具有改进的电子迁移率,能够提高共轭聚合物膜层的载流子迁移率。

Description

制备共轭聚合物膜层的方法及发光二极管、显示器件和太阳能电池
相关申请的交叉引用
本申请主张在2018年3月29日在中国提交的中国专利申请号No.201810270635.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示领域,特别涉及一种制备共轭聚合物膜层的方法,以及包含该共轭聚合物膜层的有机发光二极管、显示器件和太阳能电池。
背景技术
有机发光二极管(OLED)具有发光亮度高、材料选择范围广、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角、以及响应速度快等优势,符合信息时代移动通信和信息显示的发展趋势、以及绿色照明技术的要求,是目前众多研究者的关注重点。
有机发光二极管以及包含该有机发光二极管的显示器件通常包括阳极、空穴传输层、空穴注入层、发光层、电子注入层、电子传输层、阴极等膜层。太阳能电池也包括空穴传输层、空穴注入层、电子注入层、电子传输层等膜层。上述各膜层通常以蒸镀技术或者通过溶液成膜法而形成。溶液成膜法包括溶液旋涂技术或者喷墨打印技术等,具有操作简便等优点。但是,由于溶剂的存在,所以溶液成膜法形成的膜层材料积聚状态疏松。因此,导致该膜层的载流子传输速率慢、迁移长度短,进而降低了元器件的载流子迁移率。
发明内容
根据本公开的一个方面,提供了一种制备共轭聚合物膜层的方法,包括:制备纤维状的共轭聚合物;以及由该纤维状的共轭聚合物制备共轭聚合物膜层。
可选地,由该纤维状的共轭聚合物制备共轭聚合物膜层的步骤包括:制备含有纤维状共轭聚合物的分散液;以及由该分散液制备共轭聚合物膜层。
可选地,制备纤维状的共轭聚合物的步骤包括:
制备复合纤维材料的子步骤:通过同轴静电纺丝法制备以共轭聚合物为内层且以高分子聚合物为外层的复合纤维材料;
制备纤维状的共轭聚合物的子步骤:剥离所述复合纤维材料的外层高分子聚合物,以制得所述纤维状的共轭聚合物。
可选地,所述制备复合纤维材料的子步骤包括:以共轭聚合物为溶质形成内层纺丝溶液,以高分子聚合物为溶质形成外层溶液;以及通过同轴静电纺丝法,制备以共轭聚合物为内层且以高分子聚合物为外层的纤维材料。
可选地,所述共轭聚合物为选择聚3-己基噻吩、萘酰亚胺和噻吩的共轭聚合物、聚苯乙烯、聚喹喔啉和聚芴中的至少一种。
可选地,所述内层纺丝溶液中的共轭聚合物的质量百分比浓度约为1~15%。
可选地,所述高分子聚合物包括聚对苯二甲酸乙二醇酯和/或者聚甲基丙烯酸甲酯。
可选地,所述外层溶液的质量百分比浓度约为1~20%。
可选地,进行同轴静电纺丝时的工作电压为1~500kv。
可选地,所述进行同轴静电纺丝包括:利用针头将所述内层纺丝溶液和所述外层溶液同时喷射在平板电极上,所述针头与所述平板电极之间的距离大于5cm。
可选地,所述内层纺丝溶液和外层溶液的泵送速度约为0.01μl/h~10ml/h。
可选地,所述制备纤维状的共轭聚合物的子步骤包括:将所述纤维材料浸泡于处理液中,并且经过加热、震荡以及超声处理,以剥离外层的高分子聚合物,由此制得所述纤维状的共轭聚合物。
可选地,所述处理液包括甲醇和乙腈中的至少一种。
可选地,所述纤维状的共轭聚合物为纳米纤维材料,且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
根据本公开的另一个方面,提供了一种有机发光二极管,包括所述纤维状共轭聚合物的共轭聚合物膜层。
可选地,所述纤维状材料为纳米纤维状材料,并且纳米纤维状材料的直 径为1~200nm、长径比为1000以上。
可选地,所述共轭聚合物膜层为有机发光二极管中的电子注入层、电子传输层和发光层中的至少一层。
可选地,所述共轭聚合物膜层包括p型共轭聚合物和/或n型共轭聚合物。
根据本公开的再一个方面,提供了一种显示器件,包括上述任一项所述的有机发光二极管。
根据本公开的再一个方面,提供了一种太阳能电池,包括所述纤维状共轭聚合物的共轭聚合物膜层。
可选地,所述纤维状材料为纳米纤维状材料,并且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
可选地,所述共轭聚合物膜层为太阳能电池中的电子注入层、电子传输层和光电转换层中的至少一层。
附图说明
图1表示根据本公开的实施方式的共轭聚合物膜层的制备方法的流程图;
图2表示同轴静电纺丝装置的结构示意图;
图3表示根据本公开的另一实施方式的共轭聚合物膜层的制备方法的流程图;
图4表示根据本公开的实施例1所制备的纳米纤维状的共轭聚合物的扫描电镜图;
图5表示根据本公开的实施例2所制备的纳米纤维状的共轭聚合物的扫描电镜图。
具体实施方式
为了进一步理解本公开,下面结合具体的实施方式和实施例对本公开进行详细描述,但是应当理解的是,这些描述只是用于进一步说明本公开的特征和优点,而不是对本公开的范围限制。
本公开涉及的“约”指与端点数值存在一定偏差,例如,上下偏差2%。
在相关技术中,电子迁移率的膜层,例如,电子注入层、电子传输层、 发光层,多采用共轭聚合物有机半导体材料。但是,有机半导体材料有其固有的劣势,即电子迁移率低;并且,在溶液成膜法例如喷墨打印和旋涂技术中,成膜用材料通常以比较疏松的状态积聚在一起,则直接导致载流子尤其是电子在同一分子链上的传输长度短,容易在分子间跃迁,造成载流子迁移效率低。进而严重影响了材料对于载流子的运输和器件的性能。因此,本公开提出了对成膜用材料共轭聚合物进行预先处理,即形成为纤维状的共轭聚合物。由于纤维状的共轭聚合物具有一定的长度和取向,在其维度方向上具有很高的电子迁移率,能够很好的提高载流子迁移率。进而,提高了包含该膜层的有机发光二极管、显示装置和太阳能电池器件的性能。
此外,作为常用的有机半导体材料,共轭聚合物材料通常为刚性材料,难以形成均匀且长度合适的纤维状材料。本公开通过使用同轴静电纺丝法且通过对纺丝分散液的浓度、电压和同轴溶液的泵送速度的控制,生产出均匀程度良好且尺寸可控的聚合物半导体纤维。需要说明的是,该方法具有一般通用性,能够很好地处理一系列共轭半导体材料。
因此,本公开要解决的技术问题是:提供一种载流子迁移率高的共轭聚合物膜层的制备方法。所述膜层可用于有机发光二极管、显示装置和太阳能电池。
根据本公开的用于制备共轭聚合物膜层的方法具有以下优点:由于纤维状共轭聚合物具有一定的长度和取向,在其维度方向上具有很高的电子迁移率,能够很好的提高载流子迁移率。将所述方法制备的共轭聚合物膜层用于有机发光二极管、显示装置和太阳能电池时,由于共轭聚合物膜层具有较高载流子迁移率,因此提高了器件的性能。
根据本公开的一个实施方式,提供了一种用于制备共轭聚合物膜层的方法,参见图1,所述方法包括以下具体步骤:制备纤维状的共轭聚合物;以及由该纤维状的共轭聚合物制备共轭聚合物膜层。可选地,由该纤维状的共轭聚合物制备共轭聚合物膜层的步骤包括:制备含有纤维状共轭聚合物的分散液;以及由该分散液制备共轭聚合物膜层。例如,通过溶液法将该分散液制备成共轭聚合物膜层。
根据本公开的共轭聚合物膜层可以用于有机发光二极管、显示装置或者 太阳能电池等半导体装置中。由于膜层中的纤维状共轭聚合物材料具有一定的长度和取向,所以在其维度方向上具有很高的电子迁移率。由此,能够很好的提高载流子迁移率,进而提高器件性能。
在可选的实施方式中,所述溶液成膜法可以包括例如喷墨打印法、丝网印刷法以及旋涂法中的任一种。可选地,所述溶液成膜法具体为:将含有纤维状共轭聚合物的分散液通过旋涂、丝网印刷法或者喷墨打印的方式涂覆于支撑物或者其他膜层上,经过干燥,即可得到共轭聚合物膜层。
由于纤维状的共轭聚合物用于制备的膜层厚度较小,因此所述纤维状的共轭聚合物可以为纳米级纤维状的共轭聚合物。可选地,所述纤维状共轭聚合物的直径为1~200nm,进一步可选为10-150nm。可选地,所述纤维状共轭聚合物的长径比为1000以上,进一步可选为2000以上。当所述纤维状共轭聚合物的直径和长度(或长径比)在上述优选的范围内,可以得到非常优异的迁移率性能。进一步可选地,所述纤维状共轭聚合物材料长度和直径是均匀的,则所制备的共轭聚合物膜层的迁移率更为优异。
所述共轭聚合物的链段属于半导体材料,可以为p型共轭聚合物,也可以是n型共轭聚合物。所述溶液中可以含有p型纤维状共轭聚合物或者n型纤维状共轭聚合物,还可以同时含有p型纤维状共轭聚合物和n型纤维状共轭聚合物。所述溶液中同时含有p型纤维状共轭聚合物和n型纤维状共轭聚合物,可以构建纳米级别的互穿网络结构,p型纤维状共轭聚合物和n型纤维状共轭聚合物通过溶液法成膜法得到的共轭聚合物膜层的电子和空穴的分离和传输速率均显著改善。
可选地,所述共轭聚合物可以是形成电子注入层、电子传输层或者发光层。可选地,所述共轭聚合物包括聚3-己基噻吩(P3HT)、萘酰亚胺和噻吩的共轭聚合物(NDI)、聚苯乙烯、聚喹喔啉和聚芴中的至少一种。所述萘酰亚胺和噻吩的共轭聚合物可以为聚{2,7-[9,9’-双(N,N-二甲基丙基-3-胺基)芴]-交替-5,5’-[2,6-(双-2-噻吩基)-N,N’-二异辛基-1,4,5,8-萘并二酰亚胺]}(PNDIT-F3N)或聚{2,7-[9,9’-双(N,N-二甲基丙基-3-乙基溴化铵)芴]-交替-5,5’-[2,6-(双-2-噻吩基)-N,N’-二异辛基-1,4,5,8-萘并二酰亚胺]} (PNDIT-F3N-Br)。
在相关技术中,所述共轭聚合物的链段具有刚性,难以制备成纤维状材料。而本公开的方法克服了该相关技术的难点,制得了纤维状的共轭聚合物。可选地,根据本公开的制备纤维状的共轭聚合物的方法包括制备纤维状的共轭聚合物,其中制备纤维状的共轭聚合物的步骤包括:
制备复合纤维材料的子步骤:通过同轴静电纺丝法制备以共轭聚合物为内层且以高分子聚合物为外层的复合纤维材料;
制备纤维状的共轭聚合物的子步骤:剥离所述复合纤维材料的外层高分子聚合物,制得所述纤维状的共轭聚合物。
在本公开的可选实施方式中,制备所述纤维状的共轭聚合物的步骤具体包括如下制备复合纤维材料的子步骤和制备纤维状的共轭聚合物的子步骤。可选地,所述制备复合纤维材料的子步骤具体包括:以共轭聚合物为溶质形成内层纺丝溶液,以高分子聚合物为溶质形成外层溶液;以及通过同轴静电纺丝法,制备以共轭聚合物为内层且以高分子聚合物为外层的复合纤维材料。由于高分子聚合物通过纺丝法容易形成纤维状,所以以其外层形成纤维状且在外层形成纤维状后将共轭聚合物包裹在其中,使得共轭聚合物在内层也形成纤维状。
所述共轭聚合物溶于溶剂中,形成以共轭聚合物为溶质的内层纺丝溶液。所述溶剂为共轭聚合物的良溶剂,可选为氯仿、二氯甲烷、氯苯等溶解性好、沸点低的溶剂。从获得尺寸均匀性以及纳米纤维直径和长度合适方面来考虑,所述内层纺丝溶液的质量百分比浓度约为1~15%。进一步地,为了获得更均匀的纳米纤维,所述质量百分比浓度可选为2-10%,甚至可选为3-8%。
从获得尺寸均匀性以及纳米纤维直径和长度合适方面来考虑,作为外层的所述高分子聚合物可选为具有柔性链段,即分子链的化学键自由度高的高分子聚合物。所述具有柔性链段的高分子聚合物的主链以C-C单键、C-O单键、O-O键为主,分子量可选为大于等于10000。由于所述高分子聚合物具有长分子链以及链柔性,因此能较好的纺丝且容易控制纺丝的尺寸。进一步,所述高分子量聚合物为相对分子量可选为10000-300000的具有柔性链段的聚 合物。具体地,所述高分子聚合物包括聚对苯二甲酸乙二醇酯(PET)或者聚甲基丙烯酸甲酯(PMMA)。在一种可选的实施方式中,所述高分子聚合物可选为相对分子量为100000~200000的PET或者相对分子量为40000~60000(甚至可选为50000)的PMMA。当选用具有上述相对分子量的具体聚合物时,可以获得更为优异的纺丝性能。
可选地,所述外层溶液中高分子聚合物的质量百分比浓度为约1~20%。进一步地,为了获得更佳的纺丝性能以及获得更均匀的纳米纤维,所述质量百分比浓度可选为2-10%,甚至可选为2-6%。
在本公开的实施方式中使用的同轴静电纺丝的设备的示意图如图2所示。图2中,1为外层溶液输入通道,2为内层纺丝溶液输入通道,3为针头,4为平板电极。外层溶液和内层纺丝溶液通过针头3喷出,经过电场作用进行拉丝,从而形成纤维状材料。
根据共轭聚合物和高分子聚合物的种类、外层溶液和内层纺丝溶液的浓度等,可以适当选择同轴静电纺丝的工作电压,以获得尺寸均匀的纤维状材料。
根据对纤维材料的直径的要求,针头与平板电极之间的距离可以适当调节,针头与平板电极之间的距离越远,纤维状材料的直径越小。
所述内层纺丝溶液和外层溶液的泵送速度也会影响所制备的纤维状材料的直径。当外层溶液的泵送速率越高,纤维材料的直径越小;反之亦然。
在本公开的可选实施方式中,根据内层纺丝溶液和外层溶液的浓度,调节同轴静电纺丝过程中的纺丝电压、针头与平板电极之间的距离以及溶液泵送速度,可以形成长度及直径最佳、且尺寸均匀的纳米纤维材料。例如,所述同轴静电纺丝时的工作电压可以为约1~500kv,甚至可选为10-300kv,进一步可选为20-150kv。可选地,当所述内层纺丝溶液和所述外层溶液的浓度在上述的可选范围内时,则可以将针头与平板电极之间的距离设置为大于5cm,例如大于10cm,甚至大于20cm;并且所述内层纺丝溶液和外层溶液的泵送速度为约0.01μl/h~10ml/h,甚至为0.05μl/h~5ml/h,例如为0.1μl/h、1μl/h、100μl/h、1ml/h以及5ml/h。通过上述工艺参数的适当设置,可以获得尺寸均 匀且长度和长径比最佳的纳米纤维状材料。
此外,在静电纺丝的过程中,可以选用挥发性溶剂作为内层纺丝溶液中的溶剂。进一步地,还可以通过加热内层纺丝溶液以促进溶剂的挥发,从而达到改进纺丝的效果。
制备所述纤维状的共轭聚合物的方法具体包括制备复合纤维材料的子步骤和制备纤维状的共轭聚合物的子步骤。可选地,所述制备纤维状的共轭聚合物的子步骤为:剥离所述复合纤维材料外层的高分子聚合物,以制得所述纤维状的共轭聚合物。可选地,所述制备纤维状的共轭聚合物的子步骤具体包括:将所述纤维材料浸泡于处理液中,并且经过加热、震荡以及超声处理,以剥离外层的高分子聚合物,由此得到所述纤维状的共轭聚合物。
所述处理液的作用是清除外层的高分子聚合物。因此,所述处理液对于高分子聚合物具有较好的溶解性,但是难以溶解内层的共轭聚合物。所述处理液与共轭聚合物以及高分子聚合物的选择直接相关。例如,当共轭聚合物为聚3-己基噻吩、且高分子聚合物为聚对苯二甲酸乙二醇酯时,所述处理液可选为甲醇。当共轭聚合物为聚3-己基噻吩、高分子聚合物为聚甲基丙烯酸甲酯时,所述处理液可选为乙腈。本公开的方法中所使用的处理液并不限于这些特定的种类,只要满足可实现上述目的的溶剂都可以使用。
为了实现彻底剥离外层的高分子聚合物,可以选择加热、震荡以及超声处理。所述加热、震荡以及超声处理可以共同进行。可选地,可以进行这样的处理三次以上。最终可以制得纤维状的共轭聚合物。
图3示出了根据本公开的可选实施方式的制备共轭聚合物膜层的方法的流程图。所述制备共轭聚合物膜层的方法包括以下具体步骤:
通过同轴静电纺丝制备以共轭聚合物为内层且以高分子聚合物为外层的复合纤维材料;
剥离所述复合纤维材料的外层的高分子聚合物,以制得纤维状的共轭聚合物;
制备含有纤维状共轭聚合物的分散液;以及
由该分散液制备共轭聚合物膜层。
根据本公开制备的共轭聚合物膜层可用于有机发光二极管、显示装置或者太阳能电池中。
根据本公开的一个方面,提供了一种有机发光二极管,包括上述任一实施方式所述的方法制备的共轭聚合物膜层,其中,所述共轭聚合物膜层主要由纤维状材料构成。可选地,所述纤维状材料为纳米纤维状材料,并且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
与传统的溶液成膜法所制备的共轭聚合物膜层的电子迁移率相比,根据本公开的方法所制备的共轭聚合物膜层的电子迁移率得到显著提高。因此,根据本公开的方法所制备的共轭聚合物膜层主要用作电子迁移率的层,包括电子注入层、电子传输层或者发光层。
可选地,所述共轭聚合物膜层包括p型共轭聚合物和n型共轭聚合物。p型共轭聚合物和n型共轭聚合物可以构建成纳米级别的互穿网络结构,从而提高电子和空穴的分离和传输。
根据本公开的另一实施方式,还公开一种显示器件,包括上述实施方式所述的有机发光二极管。
根据本公开的另一实施方式,还公开了一种太阳能电池,包括由上述任一实施方式所述的方法制备的共轭聚合物膜层,其中,所述共轭聚合物膜层主要由纤维状材料构成。可选地,所述纤维状材料为纳米纤维状材料,并且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
为了进一步理解本公开的技术方案,下面结合具体实施例对本公开提供的共轭聚合物膜层的制备方法及其应用进行详细说明。本公开的保护范围不受以下实施例的限制。
实施例
实施例1
以质量百分比浓度为8%的聚3-己基噻吩的氯仿溶液为内层纺丝溶液,质量百分比浓度为3%的聚对苯二甲酸乙二醇酯的乙醇溶液为外层溶液,在纺丝工作电压为30KV,针头与平板电极之间的距离为20cm以及内层纺丝溶液和外层溶液均以0.1μl/h的泵送速率泵送,得到纳米纤维材料。纳米纤维材料的 直径均匀稳定在100nm左右,长径比达到2000以上。
将所述纳米纤维材料浸泡于甲醇中,经过加热、震荡以及超声处理。进行反复处理三次,完全剥离外层的聚对苯二甲酸乙二醇酯,制得纳米纤维状的聚3-己基噻吩。图4为本实施例所制备的纳米纤维状的共轭聚合物的扫描电镜图。
将所述纳米纤维状的聚3-己基噻吩形成溶液,通过喷墨打印法,制得聚3-己基噻吩膜层。
作为比较,以相关技术中通过传统的溶液法(如旋涂法)制备的聚3-己基噻吩膜层作为对比例。比较结果表明:以本实施例所制备的聚3-己基噻吩膜层的有机发光二极管与以传统的溶液法制备的聚3-己基噻吩膜层的有机发光二极管相比,电荷迁移率有显著提高。
实施例2
以质量百分比浓度为5%的萘酰亚胺和噻吩的共轭聚合物的氯仿溶液为内层纺丝溶液,质量百分比浓度为3%的聚对苯二甲酸乙二醇酯的乙醇溶液为外层溶液,在纺丝工作电压为45KV,针头与平板电极之间的距离为20cm以及内层纺丝溶液和外层溶液均以0.1μl/h的泵送速率泵送,得到纳米纤维材料。纳米纤维材料的直径均匀稳定在150nm左右,长径比达到2000以上。
将所述纳米纤维材料浸泡于甲醇中,经过加热、震荡以及超声处理。进行反复处理三次,完全剥离外层的聚对苯二甲酸乙二醇酯,制得纳米纤维状的萘酰亚胺和噻吩的共轭聚合物。图5为本实施例所制备的纳米纤维状的共轭聚合物的扫描电镜图。
将所述纳米纤维状的萘酰亚胺和噻吩的共轭聚合物形成溶液,通过喷墨打印法,制得萘酰亚胺和噻吩的共轭聚合物膜层。
作为比较,以相关技术中通过传统的溶液法(如旋涂法)制备的萘酰亚胺和噻吩的共轭聚合物膜层作为对比例。比较结果表明:以本实施例所制备的萘酰亚胺和噻吩的共轭聚合物膜层的有机发光二极管与传统的溶液法制作的萘酰亚胺和噻吩的共轭聚合物膜层的有机发光二极管相比,电荷迁移率有显著提高。
以上实施例只是用于帮助理解本公开的方法及其发明构思。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (22)

  1. 一种制备共轭聚合物膜层的方法,包括:制备纤维状的共轭聚合物;以及由该纤维状的共轭聚合物制备共轭聚合物膜层。
  2. 根据权利要求1所述的方法,其中,由该纤维状的共轭聚合物制备共轭聚合物膜层的步骤包括:制备含有纤维状共轭聚合物的分散液;以及由该分散液制备共轭聚合物膜层。
  3. 根据权利要求1或2所述的方法,其中,制备纤维状的共轭聚合物的步骤包括:
    制备复合纤维材料的子步骤:通过同轴静电纺丝法制备以共轭聚合物为内层且以高分子聚合物为外层的复合纤维材料;以及
    制备纤维状的共轭聚合物的子步骤:剥离所述复合纤维材料的外层的高分子聚合物,以制得所述纤维状的共轭聚合物。
  4. 根据权利要求3所述的方法,其中,所述制备复合纤维材料的子步骤包括:
    以共轭聚合物为溶质形成内层纺丝溶液,以高分子聚合物为溶质形成外层溶液;以及
    通过同轴静电纺丝法,制备以共轭聚合物为内层且以高分子聚合物为外层的纤维材料。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述共轭聚合物为选自聚3-己基噻吩、萘酰亚胺和噻吩的共轭聚合物、聚苯乙烯、聚喹喔啉和聚芴中的至少一种。
  6. 根据权利要求4或5所述的方法,其中,所述内层纺丝溶液的质量百分比浓度为约1~15%。
  7. 根据权利要求3-6中任一项所述的方法,其中,所述高分子聚合物包括聚对苯二甲酸乙二醇酯和/或聚甲基丙烯酸甲酯。
  8. 根据权利要求4-7中任一项所述的方法,其中,所述外层溶液的质量百分比浓度为约1~20%。
  9. 根据权利要求3-8中任一项所述的方法,其中,进行同轴静电纺丝时 的工作电压为约1~500KV。
  10. 根据权利要求4-9中任一项所述的方法,其中,进行同轴静电纺丝包括:利用针头将所述内层纺丝溶液和所述外层溶液同时喷射在平板电极上,所述针头与所述平板电极之间的距离大于5cm。
  11. 根据权利要求4-10中任一项所述的方法,其中,所述内层纺丝溶液和外层溶液的泵送速度约为0.01μl/h~10ml/h。
  12. 根据权利要求2-10中任一项所述的方法,其中,所述制备纤维状的共轭聚合物的子步骤包括:
    将所述纤维材料浸泡于处理液中,并且经过加热、震荡和超声处理,以剥离所述纤维材料的外层高分子聚合物,由此制得所述纤维状的共轭聚合物。
  13. 根据权利要求12所述的方法,其中,所述处理液包括甲醇和乙腈中的至少一种。
  14. 根据权利要求1-13中任一项所述的方法,其中,纤维状的共轭聚合物为纳米纤维材料,且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
  15. 一种有机发光二极管,包括纤维状共轭聚合物的共轭聚合物膜层。
  16. 根据权利要求15所述的有机发光二极管,其中,所述纤维状材料为纳米纤维状材料,并且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
  17. 根据权利要求15或16所述的有机发光二极管,其中,所述共轭聚合物膜层是有机发光二极管中的电子注入层、电子传输层和发光层中的至少一层。
  18. 根据权利要求15-17中任一项所述的有机发光二极管,其中,所述共轭聚合物膜层包括p型共轭聚合物和/或n型共轭聚合物。
  19. 一种显示器件,包括权利要求15~18中任一项所述的有机发光二极管。
  20. 一种太阳能电池,包括纤维状共轭聚合物的共轭聚合物膜层。
  21. 根据权利要求20所述的太阳能电池,其中,所述纤维状材料为纳米纤维状材料,并且纳米纤维状材料的直径为1~200nm、长径比为1000以上。
  22. 根据权利要求20或21所述的太阳能电池,其中,所述共轭聚合物膜层为电子注入层、电子传输层和光电转换层中的至少一层。
PCT/CN2018/115362 2018-03-29 2018-11-14 制备共轭聚合物膜层的方法及发光二极管、显示器件和太阳能电池 WO2019184385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/611,307 US20200168802A1 (en) 2018-03-29 2018-11-14 Method for preparing conjugated polymer film, light-emitting diode, display device and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810270635.1 2018-03-29
CN201810270635.1A CN108486685A (zh) 2018-03-29 2018-03-29 一种共轭聚合物膜层的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2019184385A1 true WO2019184385A1 (zh) 2019-10-03

Family

ID=63316884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115362 WO2019184385A1 (zh) 2018-03-29 2018-11-14 制备共轭聚合物膜层的方法及发光二极管、显示器件和太阳能电池

Country Status (3)

Country Link
US (1) US20200168802A1 (zh)
CN (1) CN108486685A (zh)
WO (1) WO2019184385A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486685A (zh) * 2018-03-29 2018-09-04 京东方科技集团股份有限公司 一种共轭聚合物膜层的制备方法及其应用
CN113882034B (zh) * 2021-11-03 2022-10-14 东华大学 一种纳米纤维光解水制氢催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2200103A1 (en) * 2008-12-18 2010-06-23 Universiteit Hasselt Methods for controlling the crystalline nanofibre content of organic layers used in organic electronic devices
CN108486685A (zh) * 2018-03-29 2018-09-04 京东方科技集团股份有限公司 一种共轭聚合物膜层的制备方法及其应用
CN108511609A (zh) * 2018-03-15 2018-09-07 南京工业大学 一种纳米纤维、应用该纳米纤维的太阳能电池及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2200103A1 (en) * 2008-12-18 2010-06-23 Universiteit Hasselt Methods for controlling the crystalline nanofibre content of organic layers used in organic electronic devices
CN108511609A (zh) * 2018-03-15 2018-09-07 南京工业大学 一种纳米纤维、应用该纳米纤维的太阳能电池及制备方法
CN108486685A (zh) * 2018-03-29 2018-09-04 京东方科技集团股份有限公司 一种共轭聚合物膜层的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEDFORD, N.M. ET AL.: "Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning", ADVANCED ENERGY MATERIALS, vol. 2, no. 9, 9 May 2012 (2012-05-09), pages 1136 - 1144, XP055639713 *
SHI YANG: "A Study on Preparation of P3HT Nanofibers by Electrospinning and Their Optoelectric Properties", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 15 January 2014 (2014-01-15) *

Also Published As

Publication number Publication date
CN108486685A (zh) 2018-09-04
US20200168802A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
Cho et al. Electrospun organic nanofiber electronics and photonics
JP5859729B2 (ja) 有機発光ダイオードまたは有機太陽電池の製造方法、およびその方法で製造された有機発光ダイオードまたは有機太陽電池
US7960037B2 (en) Carbon nanotube polymer composition and devices
KR101739517B1 (ko) 산화니켈 나노입자를 포함하는 박막의 제조방법 및 이를 이용한 태양전지
CN105280829B (zh) Qled及其制备方法
CN108428719B (zh) 像素界定层的制作方法、显示基板及制作方法、显示装置
WO2019184385A1 (zh) 制备共轭聚合物膜层的方法及发光二极管、显示器件和太阳能电池
CN107275499A (zh) 一种量子点发光二极管及其制备方法
JPWO2011001613A1 (ja) 有機el素子、有機el素子の製造方法、および有機el表示装置
CN112186117B (zh) 一种交流驱动型量子点发光二极管及其制备方法
JP2017022063A (ja) 有機薄膜積層体の製造方法及び有機エレクトロルミネッセンス素子の製造方法
KR20130062143A (ko) 전기 분무법을 이용한 유기 다층 박막의 제조방법
CN104882554A (zh) 一种无机有机杂化电致发光元件及其制造方法
US11329243B2 (en) Quantum dot light-emitting diode device and manufacturing method thereof
US20220416185A1 (en) Display panel and method of manufacturing thereof
CN102130301A (zh) 基于色转换的白光有机电致发光器件及其制备方法
JP2011003442A (ja) 有機薄膜素子の製造方法
CN112054125A (zh) 一种喷墨离心制备柔性薄膜光电器件的方法
KR101126751B1 (ko) 전기 방사를 이용한 공액 고분자 나노 섬유와 이를 이용한 1차원 섬유 구조를 갖는 유기 태양전지의 제조 방법
CN106206973B (zh) 四足量子点、基于四足量子点的发光二极管及其制备方法
CN111048674A (zh) 发光器件的制备方法
Jayathilaka et al. Electrospinning of luminescence nanofibers: Current and future trends in wearable light-emitting devices
Wang et al. High-quality perovskite quantum dot light emitting diode
CN110416423B (zh) Qled器件及其制备方法
WO2023125074A1 (zh) 薄膜及其制备方法及光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18912472

Country of ref document: EP

Kind code of ref document: A1