WO2019184297A1 - 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备 - Google Patents

掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备 Download PDF

Info

Publication number
WO2019184297A1
WO2019184297A1 PCT/CN2018/109785 CN2018109785W WO2019184297A1 WO 2019184297 A1 WO2019184297 A1 WO 2019184297A1 CN 2018109785 W CN2018109785 W CN 2018109785W WO 2019184297 A1 WO2019184297 A1 WO 2019184297A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
frame
groove
grooves
initial
Prior art date
Application number
PCT/CN2018/109785
Other languages
English (en)
French (fr)
Inventor
戚海平
黄俊杰
王震
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/768,582 priority Critical patent/US11205752B2/en
Publication of WO2019184297A1 publication Critical patent/WO2019184297A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a mask frame and a method of fabricating the same, an evaporation mask assembly, and an evaporation apparatus.
  • OLED display technology has gradually replaced liquid crystal display (LCD) display by virtue of its various advantages.
  • LCD liquid crystal display
  • the mask for the OLED evaporation process mainly comprises a fine metal mask (FMM), the fine metal mask FMM is used for vapor-depositing the light-emitting layer material, and the pixel pattern is formed on the evaporated substrate; in the fine metal mask An auxiliary support mask is disposed below, and the auxiliary support mask mainly includes a Howling Sheet and a Cover Sheet which are vertically and horizontally staggered for supporting the fine metal mask FMM and defining the shape of the display area on the vapor-deposited substrate.
  • the fine metal mask FMM and the supporting reticle are four-sidedly soldered on the mask frame.
  • the support strips, the shielding strips and the FMM are generally in the form of a lower curved shape with a lower middle and a higher height on both sides.
  • PPI number of pixels
  • an embodiment of the present disclosure provides a mask frame, including a frame body, the frame body includes a plurality of frames, and the frame body includes a first surface and a second surface disposed opposite each other.
  • a plurality of grooves are formed on the first surface of the frame at intervals along the extending direction of the frame, the grooves being recessed by the first surface toward the direction of the second surface, and perpendicular to the first surface a groove having a groove depth in a direction of the surface; wherein, in the plurality of grooves on each of the frames, the groove depth of the groove at a middle position of the frame is smaller than a position of the both ends of the frame The grooved depth of the groove at the location.
  • the groove depth of the plurality of grooves on each of the frames gradually increases from a central position of the frame to a position of both ends of the frame.
  • the spacing between two adjacent grooves in the extending direction of the frame is equal, and the The difference in slot depth is a predetermined value.
  • a difference in the depth of the groove between two adjacent trenches ranges from 1 to 10 micrometers.
  • a plurality of grooves on each of the frames are symmetrically distributed on the frame with respect to an axis of symmetry, the axis of symmetry passing through a center point between the two ends of the frame, and the first The surface is vertical.
  • one of the pair of the oppositely disposed ones of the frames is disposed in one-to-one correspondence with the plurality of the grooves on the other of the frames, and one of the plurality of the frames
  • the groove on the bezel is the same as the groove depth of another groove on the other of the bezels corresponding to the groove.
  • the difference in the depth of the grooves between any two of the grooves is less than or equal to 100 microns.
  • an evaporation mask assembly including:
  • the first mask includes a plurality of support bars and a plurality of shielding strips arranged in a crisscross manner;
  • the second mask is a fine metal mask FMM
  • the two ends of the support strip are respectively soldered into the grooves of the pair of the frames disposed opposite to each other in the mask frame;
  • the two ends of the shielding strip are respectively soldered into the grooves of the opposite pair of the frame disposed opposite to the mask frame;
  • a peripheral edge of the second mask is soldered to the first surface of the mask frame.
  • the groove bottoms of the pair of the oppositely disposed frames are in the same plane, so that the plurality of the shielding strips are in the same plane, and the plurality of The support bars are in the same plane.
  • Embodiments of the present disclosure provide an evaporation apparatus including an evaporation mask assembly as described above.
  • an embodiment of the present disclosure provides a method for fabricating a mask frame for fabricating a mask frame as described above, the method comprising:
  • Obtaining a groove depth compensation value ⁇ h of each of the grooves wherein the groove depth compensation value ⁇ h is used to compensate a sinking amount h of the mask at a position corresponding to each of the grooves, so as to The plurality of shielding strips in the mask are in the same plane, and the plurality of the supporting strips are in the same plane;
  • a frame body is provided, and the groove is opened on the frame body according to the groove depth value H.
  • the acquiring the slot depth compensation value ⁇ h of each of the trenches includes:
  • a vapor deposition reticle sample comprising an initial reticle frame, an initial auxiliary reticle, and an initial fine reticle FMM, the initial auxiliary reticle including a plurality of initial support bars arranged in a crisscross pattern and Multiple initial occlusion strips;
  • the groove depth value H of the groove is obtained.
  • the detecting the amount of sinking h of each of the initial support strips and each of the initial light-shielding strips in the vapor-deposited reticle sample comprises:
  • the sinking amount h is detected by a laser detector including a laser emitting portion for emitting a horizontal laser beam, and a laser receiving portion for generating an inductive signal when receiving the laser light, wherein the steaming is performed.
  • a laser detector including a laser emitting portion for emitting a horizontal laser beam, and a laser receiving portion for generating an inductive signal when receiving the laser light, wherein the steaming is performed.
  • Figure 1 shows a front view of a reticle frame provided in an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the mask blank frame provided in the embodiment of the present disclosure taken along line A-A of FIG. 1 before welding the support strip and the shielding strip;
  • Figure 3 is a cross-sectional view of the reticle frame provided in the embodiment of the present disclosure taken along line A-A of Figure 1 after welding the support strip and the visor strip;
  • FIG. 4 is a schematic structural view of an evaporation mask assembly provided in an embodiment of the present disclosure.
  • FIG. 5 is a flow chart showing a method of fabricating a reticle frame provided in an embodiment of the present disclosure.
  • the mask frame is deformed due to the tensile force of the support strip and the shielding strip on the mask frame, and the support strip, the shielding strip and the FMM on the mask frame are generally low in the middle and both sides.
  • the high lower bending mode which causes the problem of alignment offset or shadow increase, will greatly cause the product to display mixed colors and other defects, and will affect the product yield of the entire batch.
  • a mask frame and a manufacturing method thereof, an evaporation mask assembly, and an evaporation device are provided in the embodiments of the present disclosure, which can improve the unevenness of the mask due to deformation of the mask frame, and improve color mixing. Poor uniformity, etc., improve product yield.
  • the mask frame provided in the embodiments of the present disclosure can be applied to an evaporation mask assembly, and can also be applied to other types of mask assemblies.
  • the following is an example in which the mask frame is applied to a vapor deposition mask assembly.
  • the groove depth of the plurality of grooves provided on each frame of the mask frame is substantially the same, and the auxiliary mask is welded first when the mask is formed. (including the support strip and the shield strip), and then soldering the fine mask FMM to obtain an evaporation mask assembly.
  • the shielding strip and the fine mask FMM are soldered to the mask frame, since the support strip, the shielding strip and the fine mask FMM generate internal stress on the mask frame, the mask frame is deformed, and the mask is masked after welding.
  • the welding area on the mold frame is in a downward curved state, and each of the support strips, the shielding strips and the fine mask plate FMM welded on the mask frame are in a state of sinking to different degrees.
  • the amount of sinking of each of the support bars and the shielding strips is detected, and the amount of support of the support strips or the shielding strips welded in the middle portion of each of the frames in the mask frame is the largest, and the support strips welded at both ends of each frame or
  • the amount of sag of the occlusion strip is the smallest (exemplary, the maximum amount of sinking and the minimum amount of sinking may differ by about 50 micrometers), that is, the support strip and the occlusion strip are generally in a lower curved state with a middle lower and a higher end;
  • the amount of sinking of the fine mask FMM soldered on the mask frame at different positions may also be different (exemplary, different positions of the fine mask FMM)
  • the maximum sinking amount differs
  • the reticle frame provided in the embodiment of the present disclosure includes a frame body 100, the frame body 100 includes a plurality of frames 101, and the frame body 100 includes opposite frames.
  • a first surface 100a and a second surface 100b are disposed, and a plurality of trenches 102 are disposed on the first surface 100a of each of the bezels 101 at intervals along an extending direction of the bezel 101, and the trenches 102 are
  • a surface 100a is recessed toward the direction of the second surface 100b and has a grooved depth in a direction perpendicular to the first surface 100a; wherein, among the plurality of grooves 102 on each of the frames 101, The grooved depth of the groove 102 at a central position of the bezel 101 is smaller than the grooved depth of the groove 102 at a position of both ends of the bezel 101.
  • the support strip and the shielding strip at different positions are deformed in the mask frame, if the support strip and the shielding strip at different positions are deformed in the mask frame, they are still substantially at the same horizontal plane.
  • the difference in the amount of sinking of the support strip and the shielding strip at different positions can be compensated, in the above scheme, by differentiating the groove depth of the groove 102 at different positions on the mask frame. Compensate for the difference in the amount of sinking between the support strips and the occlusion strips at different locations.
  • the mask frame is designed such that the middle position of each bezel 101 is located.
  • the groove 102 has a small groove depth, and the groove 102 at the two end positions has a large groove depth, so that each groove 102 on each frame 101 is welded before the support bar and the shield strip are welded.
  • the bottom line of the groove has a substantially curved shape (as shown in FIG. 2, the broken line in FIG.
  • the first surface 100a and the second surface 100b may be substantially horizontal
  • the groove bottom of the groove 102 at different positions on each frame 101 will be substantially in the same plane (as shown in FIG. 3, in FIG. 3).
  • the broken line indicates the groove bottom line of each groove 102.
  • the first surface 100a and the second surface 100b are substantially in a downwardly curved state, and the second surface 100b may be bent to the same extent as the first surface 100a or slightly smaller than the first surface.
  • the specific groove depth of the groove 102 at different positions on the frame body 100 and the specific groove depth difference between the adjacent two grooves 102 may be according to actual conditions and target requirements. Make it.
  • the groove depth of the plurality of grooves 102 on each of the bezels 101 gradually increases from a central position of the bezel 101 to a position of both ends of the bezel 101.
  • the intermediate portion is deformed greatly, the end region is deformed small, and the whole is in a lower curved state with a middle low and two sides high. Therefore, the amount of the support strip and the shielding strip on the mask frame is reduced.
  • the position from the middle of the frame 101 to the ends of the frame 101 will gradually become smaller, so that in order to compensate for the difference in the amount of sinking of the support bar and the cover strip, the groove depth of the groove 102 on each frame 101 is The middle position of the bezel 101 gradually increases toward the both ends of the bezel 101.
  • the structure and manufacturing process of the support strips and the shielding strips may be different for different types of vapor deposition mask assemblies, and therefore, the support strips and the shielding strips at different positions are lower.
  • the sinking state will also be different, and the groove depth of the groove 102 on each of the bezels 101 should be designed according to actual conditions and target requirements.
  • a vapor deposition mask sample of the model under the current fabrication process may be first provided, the vapor deposition mask sample including an initial mask frame, an initial auxiliary mask, and An initial fine mask FMM, the initial auxiliary mask comprising a plurality of initial support strips and a plurality of initial mask strips arranged in a crisscross manner; by detecting the sink amount h of each of the initial support strips and the initial shield strips
  • the groove depth compensation amount ⁇ h at the position corresponding to each initial support bar and the initial shielding bar is designed according to the groove depth compensation amount ⁇ h to the groove depth H of the groove 102 on the mask frame.
  • the first trench has a sinking amount h 1 after soldering the support strip in the vapor deposition mask sample
  • the sinking amount of the second trench adjacent to the first trench after the soldering support strip is h 2
  • the adjacent two grooves are equally spaced in the extending direction of the frame 101 .
  • the difference in the groove depth between two adjacent grooves is a predetermined value.
  • each trench 102 on the mask frame is designed such that the spacing between the trenches is equal, and the difference in slot depth between adjacent trenches is a predetermined value, for example, the groove depth in the middle of the frame is equal to the thickness of the support strip or the shield strip to which it is welded, and then the grooves on both sides of the groove are delivered with the predetermined value difference Deepen.
  • the difference between the groove depths of the grooves 102 on the mask frame may also be different, and should be detected by the vapor deposition mask sample.
  • the support bars and the amount of sinking of each of the shielding strips are designed according to the basis.
  • the difference in the groove depth between two adjacent trenches ranges from 1 to 10 micrometers.
  • the difference in the groove depth between any two of the grooves is less than or equal to 100 microns.
  • the difference between the sinking amounts between two adjacent grooves on the mask frame is usually between 1 and 10 micrometers, and the maximum sinking amount and minimum of each supporting strip or the shielding strip on the same bezel 101
  • the difference in the amount of sinking does not exceed 100 microns. Therefore, when designing, the difference in the groove depth between two adjacent grooves is preferably between 1 and 10 microns, and the groove with the largest groove depth.
  • the difference in groove depth between the groove and the groove having the smallest groove depth is less than or equal to 100 ⁇ m. It can be understood that the difference between the groove depths between two adjacent grooves is not limited thereto.
  • a plurality of grooves on each of the frames 101 are symmetrically distributed on the frame with respect to an axis of symmetry, and the axis of symmetry passes between the two ends of the frame.
  • the center point is perpendicular to the first surface 100a.
  • the grooves 102 on each of the bezels 101 are symmetrically distributed, which facilitates structural design and process fabrication. It can be understood that the above is only an example. In practical applications, the position of each groove 102 on the mask frame is not limited thereto.
  • the plurality of the grooves on one of the frames are disposed in one-to-one correspondence with the plurality of the grooves on the other of the frames, and
  • the groove on one of the bezels is the same as the grooved depth of the other of the grooves on the other of the bezels corresponding to the groove.
  • the grooves in the pair of oppositely disposed frames can be set one-to-one correspondingly, and the corresponding two The grooves have the same groove depth so that the final support bars or visors are on the same level.
  • an embodiment of the present disclosure further provides an evaporation mask assembly, including:
  • the first mask 300 includes a plurality of support bars 301 and a plurality of shielding strips 302 arranged in a crisscross manner;
  • the second mask 400 is a fine metal mask FMM;
  • the two ends of the support strip 301 are respectively soldered into the groove 102 of the pair of the frame 101 which are oppositely disposed in the mask frame; the two ends of the shielding strip 302 are respectively soldered to the cover
  • the other pair of opposite sides of the frame 101 are disposed in the groove 102 of the frame 101; the peripheral edge of the second mask 400 is soldered on the first surface 100a of the mask frame.
  • the amount of sinking at different positions is different after the support strip 301 and the shielding strip 302 are deformed in the mask frame, if the support strip 301 and the shielding strip 302 at different positions are deformed after the mask frame is deformed,
  • the difference in the amount of sinking between the support strip 301 and the shield strip 302 at different positions can be compensated substantially in the same horizontal plane, in the above solution, by the groove depth of the groove 102 at different positions on the mask frame.
  • a differentiated design is performed to compensate for differences in the amount of sinking of the support strips 301 and the shutter strips 302 at different locations.
  • the mask frame is designed as each bezel 101.
  • the groove 102 at the central position has a small groove depth, and the groove 102 at the both end positions has a large groove depth, so that each of the frames 101 is welded before the support bar 301 and the visor 302 are welded.
  • the groove bottom line of the groove 102 is substantially in an upwardly curved shape, and after the support strip 301 and the shielding strip 302 are welded to the mask frame, when the mask frame is deformed, the groove 102 at different positions on each of the frames 101
  • the bottom of the groove will be substantially in the same plane, so that the difference in the amount of sinking at different positions of the support strip and the shielding strip is effectively compensated, so that the support strip and the shielding strip at different positions are substantially in the same plane, thereby enabling steaming
  • the plated reticle assembly is effectively improved in the overall sinking state, and the bonding state of the reticle to the substrate to be vapor-deposited during the vapor deposition process is ensured, and the color mixture and the uniformity due to the unevenness of the reticle are improved. Increase product yield.
  • the specific groove depth of the groove 102 at different positions on the frame body 100 and the specific groove depth difference between two adjacent grooves 102 may be actual according to actual conditions. The situation and objectives require production.
  • the groove bottoms of the grooves on the pair of the opposite frames are disposed in the same plane, so that the plurality of the blocks are blocked.
  • the strips are in the same plane and the plurality of support strips are in the same plane.
  • the vapor deposition mask provided by the embodiment of the present disclosure is provided.
  • the plurality of grooves 102 on each of the bezels 101 have an overall curved shape (as shown in FIG. 2), and the masking frame is after welding the supporting strips and the shielding strips.
  • the groove bottom of the groove 102 on each frame 101 is in the same plane (as shown in FIG. 3) such that the plurality of shielding strips are in the same plane, and the plurality of support bars are in the same plane.
  • an evaporation apparatus is provided in the embodiment of the present disclosure, including the evaporation mask assembly provided in the embodiment of the present disclosure.
  • the method includes:
  • Step S01 Obtain a groove depth compensation value ⁇ h of each of the grooves 102, and the groove depth compensation value ⁇ h is used to compensate a sinking amount of the mask plate at a position corresponding to each of the grooves 102. h, such that a plurality of occlusion strips in the reticle are in the same plane, and a plurality of the support strips are in the same plane;
  • Step S02 determining a groove depth value H of each of the grooves 102 according to the groove depth compensation value ⁇ h;
  • Step S03 providing a frame body 100, and opening the groove 102 on the frame body 100 according to the slot depth value H.
  • the support strip and the shielding strip at different positions are deformed in the mask frame, if the support strip and the shielding strip at different positions are deformed in the mask frame, they are still substantially at the same horizontal plane.
  • the difference in the amount of sinking between the support strip and the shielding strip at different positions can be compensated.
  • the support strip and the shielding strip in the mask frame can be obtained first.
  • the sinking amount h of the support bar or the shielding strip at the corresponding position of each groove 102 is obtained according to the sinking amount, and a groove depth compensation value ⁇ h is obtained, and the groove is designed according to the groove depth compensation value ⁇ h.
  • the grooved depth of the groove 102 thereby compensating for the difference in the amount of sinking of the support strip and the shielding strip at different positions by differentiating the groove depth of the groove 102 at different positions on the mask frame,
  • the overall state of the vapor deposition mask assembly is effectively improved, ensuring the bonding state of the mask to the substrate to be evaporated during the evaporation process, and improving the mixing due to the unevenness of the mask. Poor color, uniformity, etc., improve product yield.
  • step S01 specifically includes:
  • Step S011 providing a vapor deposition mask sample, the vapor deposition mask sample comprising an initial mask frame, an initial auxiliary mask, and an initial fine mask FMM, the initial auxiliary mask comprising a plurality of initials arranged in a crisscross pattern a support strip and a plurality of initial occlusion strips;
  • Step S012 detecting the amount of sinking h of each of the initial support strips and each of the initial shield strips in the vapor deposition mask sample;
  • Step S013 according to the sinking amount h, obtain the slotting depth compensation amount ⁇ h corresponding to each of the initial support strips and each of the initial occlusion strips;
  • Step S014 obtaining a grooved depth value H of the groove 102 according to the groove depth compensation value ⁇ h.
  • a vapor deposition mask sample of the model under the current manufacturing process may be first provided, and the vapor deposition mask sample includes an initial mask frame and an initial auxiliary mask. And an initial fine reticle FMM, the initial auxiliary reticle including a plurality of initial support bars and a plurality of initial occlusion strips arranged in a crisscross manner; by detecting the amount of sinking h of each initial support strip and the initial occlusion strip, The groove depth compensation amount ⁇ h at the position corresponding to each of the initial support strips and the initial shutter strips is obtained, and the groove depth H of the grooves 102 on the mask frame is designed according to the groove depth compensation amount ⁇ h.
  • the first trench has a sinking amount h 1 after soldering the support strip in the vapor deposition mask sample
  • the sinking amount of the second trench adjacent to the first trench after the soldering support strip is h 2
  • step S012 specifically includes:
  • the sinking amount h is detected by a laser detector including a laser emitting portion for emitting a horizontal laser beam, and a laser receiving portion for generating an inductive signal when receiving the laser light, wherein the steaming is performed.
  • a laser detector including a laser emitting portion for emitting a horizontal laser beam, and a laser receiving portion for generating an inductive signal when receiving the laser light, wherein the steaming is performed.
  • a laser detector can be used to detect the amount of sinking h of each initial shielding strip and the initial supporting strip on the vapor deposition mask sample, and the amount of sinking of one of the supporting strips is horizontally placed by depositing the vapor deposition mask sample.
  • a laser emitter is disposed at one end of the support strip, and a laser receiving portion is disposed at the other end, and a horizontal laser is emitted from one end of the support strip to the other end by a laser emitter, if the horizontal laser emitted by the laser emitter is not Blocked by the support strip, the laser receiving portion can receive the laser light and generate a signal.
  • the laser emitter and the laser receiving portion can be placed at an initial height, which is lower than the level of the vapor deposition mask sample.
  • the laser receiving portion can receive the laser light, and synchronously move the laser generator and the laser receiving portion upward in the vertical direction.
  • the height of the laser generator and the laser receiving portion is considered. That is, the height of the support strip is compared with the preset height value of the support strip to obtain the amount of sinking of the support strip; In the step, the amount of sinking of the other support bars and the shielding strips is detected, thereby obtaining the amount of sinking of each of the support bars and the shielding strips.
  • step S012 is not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种掩模板框架,包括框架主体(100),框架主体(100)包括多个边框(101),且框架主体(100)包括相背设置的第一表面(100a)和第二表面(100b),每一边框(101)的第一表面(100a)上、沿边框(101)的延伸方向间隔设置有多个沟槽(102),沟槽(102)由第一表面(100a)向第二表面(100b)所在方向凹陷形成,并在垂直于第一表面(100a)的方向上具有开槽深度;其中每一边框(101)上的多个沟槽(102)中,位于该边框(101)的中部位置处的沟槽(102)的开槽深度小于位于边框(101)的两端位置处的沟槽(102)的开槽深度。还提供一种蒸镀掩模板组件、蒸镀设备及掩膜板框架的制作方法。

Description

掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备
相关申请的交叉引用
本申请主张在2018年3月28日在中国提交的中国专利申请No.201810266417.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其是涉及一种掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备。
背景技术
有机电致发光二极管(Organic Light Emission Display,OLED)显示技术凭借其各方面优点,而逐渐取代液晶显示器(Liquid Crystal Display,LCD)显示,OLED显示技术的发展迎来了黄金时代,各大OLED显示器制造商不断推出各种颠覆性的产品来吸引人们的眼球。
在OLED制造技术中,真空蒸镀用的掩模板是至关重要的部件,掩模板的质量直接影响着生产制造成本和产品质量。OLED蒸镀过程用的掩模板主要包括精细金属掩模板(Fine Metal Mask,FMM),精细金属掩模板FMM用于蒸镀发光层材料,在蒸镀基板上形成像素图形;在精细金属掩模板的下方设置辅助支撑掩模板,辅助支撑掩模板主要包括纵横交错设置的支撑条(Howling Sheet)和遮挡条(Cover Sheet),用于支撑精细金属掩模板FMM以及限定蒸镀基板上的显示区域的形状,精细金属掩模板FMM和支撑掩模板张四边焊接在掩模板框架上。
由于支撑条和遮挡条对其下方的掩模板框架内拉力等作用,掩模板框架会发生形变,进而导致掩模板框架上的各支撑条、遮挡条及FMM的下沉量不同,掩模板框架上的支撑条、遮挡条及FMM,整体呈中间低、两边高的下弯曲形态。随着像素数目(PPI)的提高,由于掩模板下弯曲,掩模板与蒸镀基板之间,会引起的对位偏移或者阴影(shadow)增大的问题,都会极大地引起产品显示混色等不良,而且将影响整个批次的产品良率。
发明内容
本公开所提供的技术方案如下:
第一方面,本公开实施例提供一种掩模板框架,包括一框架主体,所述框架主体包括多个边框,且所述框架主体包括相背设置的第一表面和第二表面,每一所述边框的第一表面上、沿该边框的延伸方向间隔设置有多个沟槽,所述沟槽由所述第一表面向所述第二表面所在方向凹陷形成,并在垂直于所述第一表面的方向上具有开槽深度;其中每一所述边框上的多个沟槽中,位于该边框的中部位置处的所述沟槽的所述开槽深度小于位于该边框的两端位置处的所述沟槽的所述开槽深度。
可选地,每一所述边框上的多个沟槽的所述开槽深度,从该边框的中部位置向该边框的两端位置逐渐增大。
可选地,每一所述边框上的多个沟槽中,相邻两个所述沟槽在该边框的延伸方向上的间距相等,且相邻两个所述沟槽之间的所述开槽深度的差值为一预定值。
可选地,每一所述边框上的多个沟槽中,相邻两个所述沟槽之间的所述开槽深度的差值的取值范围为1~10微米。
可选地,每一所述边框上的多个沟槽在所述边框上关于一对称轴进行对称分布,所述对称轴经过该边框的两端之间的中心点、且与所述第一表面相垂直。
可选地,相对设置的一对所述边框中,其中一个所述边框上的多个所述沟槽与另一个所述边框上的多个所述沟槽一一对应地设置,且其中一个所述边框上的所述沟槽与另一个所述边框上的、与该沟槽所对应的另一所述沟槽的所述开槽深度相同。
可选地,任意两个所述沟槽之间的所述开槽深度的差值小于或等于100微米。
第二方面,本公开实施例提供一种蒸镀掩模板组件,包括:
第一掩模板,所述第一掩模板包括纵横交错设置的多个支撑条和多个遮挡条;
叠放于所述第一掩模板之上的第二掩模板,所述第二掩模板为精细金属掩模板FMM;
以及,如上所述的掩模板框架;其中,
所述支撑条的两端分别焊接于所述掩模板框架中相对设置的一对所述边框的所述沟槽内;
所述遮挡条的两端分别焊接于所述掩模板框架中相对设置的另一对所述边框的所述沟槽内;
所述第二掩模板的四周边缘焊接在所述掩模板框架的所述第一表面上。
可选地,所述掩模板框架中,相对设置的一对所述边框上的所述沟槽的槽底处于同一平面内,以使多个所述遮挡条处于同一平面内,以及多个所述支撑条处于同一平面内。
第三方面。本公开实施例提供一种蒸镀设备,包括如上所述的蒸镀掩模板组件。
第四方面,本公开实施例提供一种掩模板框架的制作方法,用于制作如上所述的掩模板框架,所述方法包括:
获取每一所述沟槽的开槽深度补偿值△h,所述开槽深度补偿值△h用于补偿掩模板在每一所述沟槽所对应位置处的下沉量h,以使所述掩模板中的多个遮挡条处于同一平面,以及多个所述支撑条处于同一平面;
根据所述开槽深度补偿值△h,确定每一所述沟槽的开槽深度值H;
提供一框架主体,并根据所述开槽深度值H在所述框架主体上开设所述沟槽。
可选地,所述获取每一所述沟槽的开槽深度补偿值△h,具体包括:
提供一蒸镀掩模板样品,所述蒸镀掩模板样品包括一初始掩模板框架、初始辅助掩模板及初始精细掩模板FMM,所述初始辅助掩模板包括纵横交错设置的多个初始支撑条和多个初始遮挡条;
检测所述蒸镀掩模板样品中,每一所述初始支撑条及每一所述初始遮挡条的下沉量h;
根据所述下沉量h,获取每一所述初始支撑条及每一所述初始遮挡条所对应的所述开槽深度补偿量△h;
根据所述开槽深度补偿值△h,得到所述沟槽的开槽深度值H。
可选地,所述检测所述蒸镀掩模板样品中,每一所述初始支撑条及每一初始遮光条的下沉量h,具体包括:
采用激光检测器检测所述下沉量h,所述激光检测器包括用于发射水平激光束的激光发射部、及用于在接收激光时产生感应信号的激光接收部,其中,将所述蒸镀掩模板样品水平放置,
从每一所述初始支撑条的一端向另一端发射水平激光束,并沿竖直方向移动所述激光检测器;根据所述激光接收部的感应信号变化,获取每一所述初始支撑条的当前高度值;将所述初始支撑条的当前高度值与预设高度值比较,得到每一所述初始支撑条的下沉量;
从每一所述初始遮挡条的一端向另一端发射水平激光束,并沿竖直方向移动所述激光检测器;根据所述激光接收部的感应信号变化,获取每一所述初始遮挡条的当前高度值;将所述初始遮挡条的当前高度值与预设高度值比较,得到每一所述初始遮挡条的下沉量。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例中提供的掩模板框架的主视图;
图2表示本公开实施例中提供的掩模板框架在焊接支撑条和遮挡条之前,图1中A-A向的剖视图;
图3表示本公开实施例中提供的掩模板框架在焊接支撑条和遮挡条之后,图1中A-A向的剖视图;
图4表示本公开实施例中提供的蒸镀掩模板组件的结构示意图;
图5表示本公开实施例中提供的掩模板框架的制作方法的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
相关技术中蒸镀掩模板组件,由于支撑条和遮挡条对掩模板框架内拉力等作用,掩模板框架会发生形变,导致掩模板框架上的支撑条、遮挡条及FMM整体呈中间低、两边高的下弯曲形态,会引起对位偏移或者阴影(shadow)增大的问题,都会极大地引起产品显示混色等不良,而且将影响整个批次的产品良率。
针对上述问题,本公开实施例中提供了一种掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备,能够改善由于掩模板框架变形而导致的掩模板不平坦现象,改善混色、均一性差等不良,提升产品良率。
需要说明的是,本公开实施例中提供的掩模板框架可应用于蒸镀掩模板组件中,也可应用于其他类型掩模板组件中。
以下为该掩模板框架应用于蒸镀掩模板组件中为例来进行说明。
此外,在对本公开实施例所提供的掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备进行说明之前,有必要对相关技术中蒸镀掩模板导致其存在上述问题的原因进行详细说明。
相关技术中,掩模板框架在焊接支撑条和遮挡条之前,掩模板框架的每一边框上所设置的多个沟槽的开槽深度大致相同,在进行掩模板制作时,先焊接辅助掩模板(包括支撑条和遮挡条),再焊接精细掩模板FMM,得到蒸镀掩模板组件。在将支撑条、遮挡条及精细掩模板FMM焊接于该掩模板框架之后,由于支撑条、遮挡条及精细掩模板FMM对掩模板框架会产生内应力,导致掩模板框架发生变形,焊接后掩模框架上的焊接区域呈下弯曲形态,焊接于掩模板框架上的各支撑条、遮挡条及精细掩模板FMM呈不同程度的下沉状态。对各支撑条和遮挡条的下沉量进行检测,掩模板框架中每一边框的中间区域焊接的支撑条或遮挡条的下沉量最大,每一边框的两端位置所焊接的支撑条或遮挡条的下沉量最小(示例性的,最大下沉量与最小下沉量可相差50微米左右),也就是说,支撑条和遮挡条整体呈中间低、两端高的下 弯曲状态;并且,受支撑条、遮挡条的下沉状态影响,焊接于该掩模板框架上的精细掩模板FMM在不同位置处的下沉量也会产生差异(示例性的,精细掩模板FMM不同位置处的最大下沉量与最小下沉量的相差可达100微米左右)。
基于以上,如图1和图2所示,本公开实施例中所提供的掩模板框架,包括一框架主体100,所述框架主体100包括多个边框101,且所述框架主体100包括相背设置的第一表面100a和第二表面100b,每一所述边框101的第一表面100a上、沿该边框101的延伸方向间隔设置有多个沟槽102,所述沟槽102由所述第一表面100a向所述第二表面100b所在方向凹陷形成,并在垂直于所述第一表面100a的方向上具有开槽深度;其中,每一所述边框101上的多个沟槽102中,位于该边框101的中部位置处的所述沟槽102的所述开槽深度小于位于该边框101的两端位置处的所述沟槽102的所述开槽深度。
采用上述方案,由于支撑条和遮挡条在掩模板框架变形之后,不同位置处的下沉量不同,若想使不同位置处的支撑条和遮挡条在掩模板框架变形之后,仍大致处于同一水平面内,可对支撑条和遮挡条在不同位置处的下沉量差异进行补偿,上述方案中,即是通过对掩模板框架上不同位置处的沟槽102的开槽深度进行差异化设计,来对不同位置处的支撑条和遮挡条的下沉量差异进行补偿。
其中,由于支撑条和遮挡条在边框101的中部位置处的下沉量大,而边框101两端位置处的下沉量小,因此,将掩模板框架设计为,每一边框101的中部位置处的沟槽102的开槽深度小,而位于两端位置处的沟槽102的开槽深度大,这样,使得在焊接支撑条和遮挡条之前,每一边框101上的各沟槽102的槽底连线大致呈上弯曲形状(如图2所示,图2中虚线表示各沟槽102的槽底连线,此时,第一表面100a和第二表面100b可大致为水平面),而在支撑条和遮挡条焊接于掩模板框架上之后,掩模板框架发生变形时,每一边框101上不同位置处沟槽102的槽底会大致处于同一平面(如图3所示,图3中虚线表示各沟槽102的槽底连线,此时,第一表面100a和第二表面100b大致呈下弯曲状态,第二表面100b的弯曲程度可与第一表面100a相同或者略小于第一表面100a),从而,对支撑条和遮挡条不同位置处的下沉量差异进 行了有效补偿,使得不同位置处的支撑条和遮挡条大致处于同一平面内,从而,可使得蒸镀掩模板组件整体下沉状态有效改善,确保在蒸镀过程中掩模板与待蒸镀基板的贴合状况,改善由于掩模板不平坦而导致的混色、均一性差等不良,提升产品良率。
需要说明的是,对于所述框架主体100上不同位置处的沟槽102的具体开槽深度及相邻的两个沟槽102之间的具体开槽深度差值,可根据实际情况及目标要求进行制作。
示例性地,如图2所示,每一所述边框101上的多个沟槽102的所述开槽深度,从该边框101的中部位置向该边框101的两端位置逐渐增大。
采用上述方案,掩模板框架发生变形时,中间区域变形大,端部区域变形小,整体呈中间低、两边高的下弯曲状态,因此,掩模板框架上的支撑条和遮挡条的下沉量,会从边框101的中部位置向边框101的两端位置会逐渐变小,从而,为了补偿支撑条和遮挡条的下沉量差异,将每一边框101上的沟槽102的开槽深度从边框101的中部位置向该边框101的两端位置逐渐增大。
当然可以理解的是,在实际应用中,针对不同型号的蒸镀掩模板组件,其支撑条和遮挡条的结构及制作工艺等会有不同,因此,不同位置处的支撑条和遮挡条的下沉状态也会不同,每一边框101上的沟槽102的开槽深度应根据实际情况及目标要求进行设计。
具体地,针对某一型号的蒸镀掩模板组件,可首先提供一当前制作工艺下的该型号的蒸镀掩模板样品,该蒸镀掩模板样品包括一初始掩模板框架、初始辅助掩模板及初始精细掩模板FMM,所述初始辅助掩模板包括纵横交错设置的多个初始支撑条和多个初始遮挡条;通过对每一初始支撑条和初始遮挡条的下沉量h进行检测,来获得每一初始支撑条及初始遮挡条所对应位置处的开槽深度补偿量△h,根据该开槽深度补偿量△h来对掩模板框架上的沟槽102的开槽深度H进行设计。
例如:假设蒸镀掩模板样品中,第一沟槽在焊接支撑条之后下沉量为h 1,其第一沟槽相邻的第二沟槽在焊接支撑条之后的下沉量为h 2,那么,根据该蒸镀掩模板样品所设计的掩模板框架上的第一沟槽的开槽深度H 1应比第二 沟槽的开槽深度H 2小,且H 2-H 1=h 1-h 2
此外,示例性的,如图1和图2所示,每一所述边框101上的多个沟槽102中,相邻两个所述沟槽在该边框101的延伸方向上的间距相等,且相邻两个所述沟槽之间的所述开槽深度的差值为一预定值。
采用上述方案,在一种示例性的实施例中,掩模板框架上的各个沟槽102设计为各沟槽之间的间距相等,且相邻两个沟槽之间的开槽深度差值为一预定值,例如,设边框中间的沟槽的开槽深度等于其所焊接的支撑条或遮挡条的厚度,那么,位于该沟槽两侧的各沟槽以该预定值为差值进行递进加深。
当然可以理解的是,以上仅是一种示例,在实际应用中,掩模板框架上的各沟槽102的开槽深度之间的差值也可以不相同,应以蒸镀掩模板样品所检测的各支撑条和各遮挡条的下沉量为依据进行设计。
此外,示例性的,每一所述边框101上的多个沟槽102中,相邻两个所述沟槽之间的所述开槽深度的差值的取值范围为1~10微米,任意两个所述沟槽之间的所述开槽深度的差值小于或等于100微米。
采用上述方案,由于通常掩模板框架上相邻两个沟槽之间的下沉量差值在1~10微米之间,且同一边框101上各支撑条或遮挡条的最大下沉量和最小下沉量的差值不会超过100微米,因此,在进行设计时,相邻两个所述沟槽之间的开槽深度差值优选在1~10微米之间,开槽深度最大的沟槽与开槽深度最小的沟槽之间的开槽深度差值小于或等于100微米。当然可以理解的是,对于相邻两个所述沟槽之间的开槽深度的差值并不以此为限。
示例性地,如图1和图2所示,每一所述边框101上的多个沟槽在该边框上关于一对称轴进行对称分布,所述对称轴经过该边框的两端之间的中心点、且与所述第一表面100a相垂直。
采用上述方案,在一种示例性的实施例中,各边框101上的沟槽102进行对称分布,这样可便于结构设计及工艺制作。当然可以理解的是,以上仅是一种示例,在实际应用中,掩模板框架上的各沟槽102的分布位置并不以此为限。
此外,示例性的,相对设置的一对所述边框中,其中一个所述边框上的多个所述沟槽与另一个所述边框上的多个所述沟槽一一对应地设置,且其中 一个所述边框上的所述沟槽与另一个所述边框上的、与该沟槽所对应的另一所述沟槽的所述开槽深度相同。
采用上述方案,由于支撑条或遮挡条的两端会分别设置在相对设置的一对边框上,因此,可将相对设置的一对边框中的各沟槽进行一一对应设置,且对应的两个沟槽的开槽深度相同,以使最终各支撑条或遮挡条处于同一水平面上。
此外,如图4所示,本公开实施例还提供一种蒸镀掩模板组件,包括:
第一掩模板300,所述第一掩模板300包括纵横交错设置的多个支撑条301和多个遮挡条302;
叠放于所述第一掩模板300之上的第二掩模板400,所述第二掩模板400为精细金属掩模板FMM;
以及,本公开实施例中所提供的掩模板框架;
其中,所述支撑条301的两端分别焊接于所述掩模板框架中相对设置的一对所述边框101的所述沟槽102内;所述遮挡条302的两端分别焊接于所述掩模板框架中相对设置的另一对所述边框101的所述沟槽102内;所述第二掩模板400的四周边缘焊接在所述掩模板框架的所述第一表面100a上。
采用上述方案,由于支撑条301和遮挡条302在掩模板框架变形之后,不同位置处的下沉量不同,若想使不同位置处的支撑条301和遮挡条302在掩模板框架变形之后,仍大致处于同一水平面内,可对支撑条301和遮挡条302在不同位置处的下沉量差异进行补偿,上述方案中,即是通过对掩模板框架上不同位置处的沟槽102的开槽深度进行差异化设计,来对不同位置处的支撑条301和遮挡条302的下沉量差异进行补偿。
其中,由于支撑条301和遮挡条302在边框101的中部位置处的下沉量大,而边框101两端位置处的下沉量小,因此,将掩模板框架设计为,每一边框101的中部位置处的沟槽102的开槽深度小,而位于两端位置处的沟槽102的开槽深度大,这样,使得在焊接支撑条301和遮挡条302之前,每一边框101上的各沟槽102的槽底连线大致呈上弯曲形状,而在支撑条301和遮挡条302焊接于掩模板框架上之后,掩模板框架发生变形时,每一边框101上不同位置处沟槽102的槽底会大致处于同一平面,从而,对支撑条和遮挡 条不同位置处的下沉量差异进行了有效补偿,使得不同位置处的支撑条和遮挡条大致处于同一平面内,从而,可使得蒸镀掩模板组件整体下沉状态有效改善,确保在蒸镀过程中掩模板与待蒸镀基板的贴合状况,改善由于掩模板不平坦而导致的混色、均一性差等不良,提升产品良率。
需要说明的是,对于所述框架主体100上不同位置处的所述沟槽102的具体开槽深度及相邻的两个所述沟槽102之间的具体开槽深度差值,可根据实际情况及目标要求进行制作。
本公开实施例所提供的蒸镀掩模板组件中,所述掩模板框架中,相对设置的一对所述边框上的所述沟槽的槽底处于同一平面内,以使多个所述遮挡条处于同一平面内,以及多个所述支撑条处于同一平面内。
在上述方案中,由于掩模板框架上的各沟槽102的开槽深度进行差异化设计,来补偿支撑条和遮挡条的下沉量差异,因此,本公开实施例所提供的蒸镀掩模板组件中,掩模板框架在焊接支撑条和遮挡条之前,每一边框101上的多个沟槽102整体呈上弯曲形状(如图2所示),掩模板框架在焊接支撑条和遮挡条之后,每一边框101上的沟槽102的槽底处于同一平面内(如图3所示),以使多个遮挡条处于同一平面内,以及多个支撑条处于同一平面内。
此外,本公开实施例中还提供了一种蒸镀设备,包括本公开实施例中所提供的蒸镀掩模板组件。
此外,本公开实施例中还提供了一种掩模板框架的制作方法,用于制作本公开实施例中的掩模板框架,如图5所示,所述方法包括:
步骤S01、获取每一所述沟槽102的开槽深度补偿值△h,所述开槽深度补偿值△h用于补偿掩模板在每一所述沟槽102所对应位置处的下沉量h,以使所述掩模板中的多个遮挡条处于同一平面,以及多个所述支撑条处于同一平面;
步骤S02、根据所述开槽深度补偿值△h,确定每一所述沟槽102的开槽深度值H;
步骤S03、提供一框架主体100,并根据所述开槽深度值H在所述框架主体100上开设所述沟槽102。
采用上述方案,由于支撑条和遮挡条在掩模板框架变形之后,不同位置 处的下沉量不同,若想使不同位置处的支撑条和遮挡条在掩模板框架变形之后,仍大致处于同一水平面内,可对支撑条和遮挡条在不同位置处的下沉量差异进行补偿,上述方案中,在进行掩模板框架的沟槽102设计时,可以先获取在掩模板框架焊接支撑条和遮挡条之后,每一沟槽102所对应位置的支撑条或遮挡条的下沉量h,根据该下沉量来获得一开槽深度补偿值△h,根据该开槽深度补偿值△h来设计沟槽102的开槽深度,从而,通过对掩模板框架上不同位置处的沟槽102的开槽深度进行差异化设计,来对不同位置处的支撑条和遮挡条的下沉量差异进行补偿,使得蒸镀掩模板组件整体下沉状态有效改善,确保在蒸镀过程中掩模板与待蒸镀基板的贴合状况,改善由于掩模板不平坦而导致的混色、均一性差等不良,提升产品良率。
可选地,上述步骤S01具体包括:
步骤S011、提供一蒸镀掩模板样品,所述蒸镀掩模板样品包括一初始掩模板框架、初始辅助掩模板及初始精细掩模板FMM,所述初始辅助掩模板包括纵横交错设置的多个初始支撑条和多个初始遮挡条;
步骤S012、检测所述蒸镀掩模板样品中,每一所述初始支撑条及每一所述初始遮挡条的下沉量h;
步骤S013、根据所述下沉量h,获取每一所述初始支撑条及每一所述初始遮挡条所对应的所述开槽深度补偿量△h;
步骤S014、根据所述开槽深度补偿值△h,得到所述沟槽102的开槽深度值H。
采用上述方案,针对某一型号的蒸镀掩模板组件,可首先提供一当前制作工艺下的该型号的蒸镀掩模板样品,该蒸镀掩模板样品包括一初始掩模板框架、初始辅助掩模板及初始精细掩模板FMM,所述初始辅助掩模板包括纵横交错设置的多个初始支撑条和多个初始遮挡条;通过对每一初始支撑条和初始遮挡条的下沉量h进行检测,来获得每一初始支撑条及初始遮挡条所对应位置处的开槽深度补偿量△h,根据该开槽深度补偿量△h来对掩模板框架上的沟槽102的开槽深度H进行设计。
例如:假设蒸镀掩模板样品中,第一沟槽在焊接支撑条之后下沉量为h 1,其第一沟槽相邻的第二沟槽在焊接支撑条之后的下沉量为h 2,那么,根据该 蒸镀掩模板样品所设计的掩模板框架上的第一沟槽的开槽深度H 1应比第二沟槽的开槽深度H 2小,且H 2-H 1=h 1-h 2
此外,可选地,上述步骤S012具体包括:
采用激光检测器检测所述下沉量h,所述激光检测器包括用于发射水平激光束的激光发射部、及用于在接收激光时产生感应信号的激光接收部,其中,将所述蒸镀掩模板样品水平放置,
从每一所述初始支撑条的一端向另一端发射水平激光束,并沿竖直方向移动所述激光检测器;根据所述激光接收部的感应信号变化,获取每一所述初始支撑条的当前高度值;将所述初始支撑条的当前高度值与预设高度值比较,得到每一所述初始支撑条的下沉量;
从每一所述初始遮挡条的一端向另一端发射水平激光束,并沿竖直方向移动所述激光检测器;根据所述激光接收部的感应信号变化,获取每一所述初始遮挡条的当前高度值;将所述初始遮挡条的当前高度值与预设高度值比较,得到每一所述初始遮挡条的下沉量。
采用上述方案,可以采用激光检测器来检测蒸镀掩模板样品上各初始遮挡条和初始支撑条的下沉量h,通过将蒸镀掩模板样品水平放置,以其中一个支撑条的下沉量检测为例,在该支撑条的一端设置激光发射器,另一端设置激光接收部,通过激光发射器从该支撑条的一端向另一端发射水平激光,若该激光发射器所发射的水平激光未被支撑条阻挡,则激光接收部可接收到激光并产生信号,因此,可将该激光发射器和激光接收部置于一初始高度上,该初始高度低于蒸镀掩模板样品的水平高度,此时,激光接收部能接收到激光,沿竖直方向向上同步移动激光发生器和激光接收部,当激光接收部开设不能接收到激光时,则认为此时激光发生器和激光接收部的高度即为该支撑条的高度,与该支撑条的预设高度值进行比较,即可得到该支撑条的下沉量;重复上述步骤,对其他支撑条和遮挡条的下沉量进行检测,从而得到各支撑条和遮挡条的下沉量。
应当理解的是,在实际应用中,上述步骤S012的具体可实现方式并不仅局限于此。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种掩模板框架,包括一框架主体,所述框架主体包括多个边框,且所述框架主体包括相背设置的第一表面和第二表面,每一所述边框的第一表面上、沿该边框的延伸方向间隔设置有多个沟槽,所述沟槽由所述第一表面向所述第二表面所在方向凹陷形成,并在垂直于所述第一表面的方向上具有开槽深度;其中每一所述边框上的多个沟槽中,位于该边框的中部位置处的所述沟槽的所述开槽深度小于位于该边框的两端位置处的所述沟槽的所述开槽深度。
  2. 根据权利要求1所述的掩模板框架,其中,每一所述边框上的多个沟槽的所述开槽深度,从该边框的中部位置向该边框的两端位置逐渐增大。
  3. 根据权利要求2所述的掩模板框架,其中,每一所述边框上的多个沟槽中,相邻两个所述沟槽在该边框的延伸方向上的间距相等,且相邻两个所述沟槽之间的所述开槽深度的差值为一预定值。
  4. 根据权利要求1所述的掩模板框架,其中,每一所述边框上的多个沟槽中,相邻两个所述沟槽之间的所述开槽深度的差值的取值范围为1~10微米。
  5. 根据权利要求1所述的掩模板框架,其中,每一所述边框上的多个沟槽在所述边框上关于一对称轴进行对称分布,所述对称轴经过该边框的两端之间的中心点、且与所述第一表面相垂直。
  6. 根据权利要求1所述的掩模板框架,其中,相对设置的一对所述边框中,其中一个所述边框上的多个所述沟槽与另一个所述边框上的多个所述沟槽一一对应地设置,且其中一个所述边框上的所述沟槽与另一个所述边框上的、与该沟槽所对应的另一所述沟槽的所述开槽深度相同。
  7. 根据权利要求1所述的掩模板框架,其中,任意两个所述沟槽之间的所述开槽深度的差值小于或等于100微米。
  8. 一种蒸镀掩模板组件,包括:
    第一掩模板,所述第一掩模板包括纵横交错设置的多个支撑条和多个遮挡条;
    叠放于所述第一掩模板之上的第二掩模板,所述第二掩模板为精细金属 掩模板FMM;
    以及,如权利要求1至7任一项所述的掩模板框架;其中,
    所述支撑条的两端分别焊接于所述掩模板框架中相对设置的一对所述边框的所述沟槽内;
    所述遮挡条的两端分别焊接于所述掩模板框架中相对设置的另一对所述边框的所述沟槽内;
    所述第二掩模板的四周边缘焊接在所述掩模板框架的所述第一表面上。
  9. 根据权利要求8所述的蒸镀掩模板组件,其中,所述掩模板框架中,相对设置的一对所述边框上的所述沟槽的槽底处于同一平面内,以使多个所述遮挡条处于同一平面内,以及多个所述支撑条处于同一平面内。
  10. 一种蒸镀设备,包括如权利要求8或9所述的蒸镀掩模板组件。
  11. 一种掩模板框架的制作方法,用于制作如权利要求1至7任一项所述的掩模板框架,所述方法包括:
    获取每一所述沟槽的开槽深度补偿值△h,所述开槽深度补偿值△h用于补偿掩模板在每一所述沟槽所对应位置处的下沉量h,以使所述掩模板中的多个遮挡条处于同一平面,以及多个所述支撑条处于同一平面;
    根据所述开槽深度补偿值△h,确定每一所述沟槽的开槽深度值H;
    提供一框架主体,并根据所述开槽深度值H在所述框架主体上开设所述沟槽。
  12. 根据权利要求11所述的方法,其中,所述获取每一所述沟槽的开槽深度补偿值△h,具体包括:
    提供一蒸镀掩模板样品,所述蒸镀掩模板样品包括一初始掩模板框架、初始辅助掩模板及初始精细掩模板FMM,所述初始辅助掩模板包括纵横交错设置的多个初始支撑条和多个初始遮挡条;
    检测所述蒸镀掩模板样品中,每一所述初始支撑条及每一所述初始遮挡条的下沉量h;
    根据所述下沉量h,获取每一所述初始支撑条及每一所述初始遮挡条所对应的所述开槽深度补偿量△h;
    根据所述开槽深度补偿值△h,得到所述沟槽的开槽深度值H。
  13. 根据权利要求12所述的方法,其中,所述检测所述蒸镀掩模板样品中,每一所述初始支撑条及每一初始遮光条的下沉量h,具体包括:
    采用激光检测器检测所述下沉量h,所述激光检测器包括用于发射水平激光束的激光发射部、及用于在接收激光时产生感应信号的激光接收部,其中,将所述蒸镀掩模板样品水平放置,
    从每一所述初始支撑条的一端向另一端发射水平激光束,并沿竖直方向移动所述激光检测器;根据所述激光接收部的感应信号变化,获取每一所述初始支撑条的当前高度值;将所述初始支撑条的当前高度值与预设高度值比较,得到每一所述初始支撑条的下沉量;
    从每一所述初始遮挡条的一端向另一端发射水平激光束,并沿竖直方向移动所述激光检测器;根据所述激光接收部的感应信号变化,获取每一所述初始遮挡条的当前高度值;将所述初始遮挡条的当前高度值与预设高度值比较,得到每一所述初始遮挡条的下沉量。
PCT/CN2018/109785 2018-03-28 2018-10-11 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备 WO2019184297A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,582 US11205752B2 (en) 2018-03-28 2018-10-11 Mask frame and method for manufacturing the same, mask assembly for evaporation and evaporation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810266417.0A CN108468018B (zh) 2018-03-28 2018-03-28 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备
CN201810266417.0 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019184297A1 true WO2019184297A1 (zh) 2019-10-03

Family

ID=63262101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109785 WO2019184297A1 (zh) 2018-03-28 2018-10-11 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备

Country Status (3)

Country Link
US (1) US11205752B2 (zh)
CN (1) CN108468018B (zh)
WO (1) WO2019184297A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480404B (zh) * 2016-12-28 2019-05-03 京东方科技集团股份有限公司 一种掩膜集成框架及蒸镀装置
CN108468018B (zh) * 2018-03-28 2019-10-15 京东方科技集团股份有限公司 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备
CN112011757A (zh) * 2020-08-26 2020-12-01 昆山国显光电有限公司 掩膜版和蒸镀装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249544A (ja) * 2005-03-14 2006-09-21 Dainippon Printing Co Ltd 基準位置指示装置及びメタルマスク位置アラインメント装置
US20150299840A1 (en) * 2012-06-26 2015-10-22 Sharp Kabushiki Kaisha Mask frame
CN106480404A (zh) * 2016-12-28 2017-03-08 京东方科技集团股份有限公司 一种掩膜集成框架及蒸镀装置
CN206266700U (zh) * 2016-11-25 2017-06-20 信利(惠州)智能显示有限公司 掩膜板支撑组件及掩膜装置
CN107099769A (zh) * 2017-05-26 2017-08-29 京东方科技集团股份有限公司 可调节平坦度的框架
CN108468018A (zh) * 2018-03-28 2018-08-31 京东方科技集团股份有限公司 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773834B2 (ja) * 2006-02-03 2011-09-14 キヤノン株式会社 マスク成膜方法およびマスク成膜装置
JP5297046B2 (ja) * 2008-01-16 2013-09-25 キヤノントッキ株式会社 成膜装置
KR102322764B1 (ko) * 2015-03-03 2021-11-08 삼성디스플레이 주식회사 마스크 프레임 조립체, 그 제조 방법 및 표시 장치의 제조 방법
CN105839051A (zh) * 2016-05-09 2016-08-10 京东方科技集团股份有限公司 掩模板及其制作方法、oled显示基板和显示装置
CN106048520B (zh) 2016-05-27 2017-11-17 京东方科技集团股份有限公司 掩膜版框架及主体、掩膜版及制作方法、基板和显示面板
CN106086781B (zh) 2016-06-15 2018-09-11 京东方科技集团股份有限公司 掩膜组件及其制造方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249544A (ja) * 2005-03-14 2006-09-21 Dainippon Printing Co Ltd 基準位置指示装置及びメタルマスク位置アラインメント装置
US20150299840A1 (en) * 2012-06-26 2015-10-22 Sharp Kabushiki Kaisha Mask frame
CN206266700U (zh) * 2016-11-25 2017-06-20 信利(惠州)智能显示有限公司 掩膜板支撑组件及掩膜装置
CN106480404A (zh) * 2016-12-28 2017-03-08 京东方科技集团股份有限公司 一种掩膜集成框架及蒸镀装置
CN107099769A (zh) * 2017-05-26 2017-08-29 京东方科技集团股份有限公司 可调节平坦度的框架
CN108468018A (zh) * 2018-03-28 2018-08-31 京东方科技集团股份有限公司 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备

Also Published As

Publication number Publication date
CN108468018B (zh) 2019-10-15
US20210175424A1 (en) 2021-06-10
CN108468018A (zh) 2018-08-31
US11205752B2 (en) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2017117999A1 (zh) 金属掩模板及其制作方法
WO2019184297A1 (zh) 掩模板框架及其制作方法、蒸镀掩模板组件及蒸镀设备
US20210108304A1 (en) Full-size mask assembly and manufacturing method thereof
CN111057997B (zh) 薄膜工序用开放掩膜片及其制造方法
JP2021508763A (ja) マスク
US9780341B2 (en) Shadow mask, method of manufacturing a shadow mask and method of manufacturing a display device using a shadow mask
KR102616578B1 (ko) 박막 증착용 마스크 어셈블리와, 이의 제조 방법
US11149341B2 (en) Mask plate and manufacture method thereof, mask assembly and vapor deposition apparatus
WO2021258891A1 (zh) 掩膜板、掩膜板结构和掩膜板制作方法
JPWO2019038861A1 (ja) 蒸着マスク、表示パネルの製造方法、及び表示パネル
US20220056573A1 (en) Mask
JP2020521872A (ja) マスクプレート及びその準備方法と使用方法
WO2019030801A1 (ja) 蒸着用マスク及び蒸着用マスクの製造方法
CN113403576A (zh) 掩模板结构及掩模板结构的制备方法
CN110824596B (zh) 扩散板、直下式背光模块及显示装置
KR102138800B1 (ko) 마스크 및 프레임 일체형 마스크
KR101986526B1 (ko) 마스크의 제조 방법
CN108866479B (zh) 掩模板及掩模组件
TW202028857A (zh) 一種掩模元件以及一種顯示裝置
US7652421B2 (en) Organic EL display
US10923687B2 (en) Manufacturing method of display panel and display panel
CN113416923B (zh) 金属遮罩
US20170250343A1 (en) Shadow mask and method of manufacturing a display device
CN109560196B (zh) 显示面板的制备方法及显示面板
KR102313965B1 (ko) 마스크의 제조 방법과 마스크 및 이를 포함하는 프레임 일체형 마스크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18912191

Country of ref document: EP

Kind code of ref document: A1