WO2019184179A1 - 控制自主式移动机器移动的方法、装置、机器及存储介质 - Google Patents

控制自主式移动机器移动的方法、装置、机器及存储介质 Download PDF

Info

Publication number
WO2019184179A1
WO2019184179A1 PCT/CN2018/098532 CN2018098532W WO2019184179A1 WO 2019184179 A1 WO2019184179 A1 WO 2019184179A1 CN 2018098532 W CN2018098532 W CN 2018098532W WO 2019184179 A1 WO2019184179 A1 WO 2019184179A1
Authority
WO
WIPO (PCT)
Prior art keywords
preview
control
current
autonomous mobile
parameter
Prior art date
Application number
PCT/CN2018/098532
Other languages
English (en)
French (fr)
Inventor
翁诗晶
王晓波
查鸿山
邱明喆
林小敏
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to US16/336,899 priority Critical patent/US11662736B2/en
Publication of WO2019184179A1 publication Critical patent/WO2019184179A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0026Lookup tables or parameter maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/006Interpolation; Extrapolation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems

Definitions

  • the present invention relates to the field of autonomous mobile technologies, and in particular, to a method, device, machine and storage medium for controlling the movement of an autonomous mobile machine.
  • a method for realizing vehicle unmanned driving is to calculate a turning rate of the automobile, and obtain a corner value of the direction control according to the turning rate; another method is to operate the driver according to different driving conditions, the vehicle Multi-source information such as state and road environment, extracting driver's behavior characteristic data and manipulation rules, using the database to obtain the output steering directly from the input vehicle speed information, or directly obtaining the target vehicle speed information from the input steering.
  • the inventors have found that the first method requires a series of complicated algorithms to calculate the corner value of the direction control, resulting in low computational efficiency.
  • the second method requires collecting a large amount of data for analysis.
  • the control process is a black box that cannot be corrected or debugged, reducing the stability and accuracy of vehicle control.
  • an object of the present invention is to provide a method, device, machine and storage medium for controlling the movement of an autonomous mobile machine.
  • the parameter matching table an appropriate direction control angle parameter corresponding to the current speed can be quickly obtained, which can improve the calculation. Speed and efficiency; and the parameters in the parameter matching table can be adjusted according to the actual situation, making the machine control more stable and accurate.
  • an embodiment of the present invention provides a method for controlling autonomous mobile machine movement, including the following steps:
  • the autonomous mobile machine is controlled to move according to the direction control corner parameter.
  • the method before the obtaining the target path and the current state of the autonomous mobile machine itself, the method further includes:
  • the method before the calculating the at least one preview distance according to the current speed, the method further includes:
  • the target path includes multiple path points; then, according to the target path and the at least one preview distance, a pre-corresponding to each preview distance is obtained.
  • Pointing point specifically:
  • a preview point corresponding to the preview distance is obtained.
  • the preview distance includes a remote preview distance and a short distance preview distance, where the remote preview distance A distance calculated based on the current speed and a preset remote preview time.
  • the obtaining, according to the lateral deviation, the current speed, and a preset parameter matching table, obtaining a directional control rotation angle parameter of the current control period specifically:
  • the direction deviation angle parameter and the speed are calculated according to a preset parameter matching table by using a linear interpolation method to obtain a direction control rotation angle parameter of the current control period.
  • controlling the autonomous mobile device to perform the movement according to the direction control corner parameter is specifically:
  • Controlling according to the direction, a corner parameter, the lateral deviation, and the current speed, calculating a control parameter corresponding to each of the preview points in the current control period;
  • the autonomous mobile machine is controlled to move according to the target direction control corner control amount.
  • the calculating the current control period according to the direction control corner parameter, the lateral deviation, and the current speed are specifically:
  • the pre-pushing point is at least two, and the control parameter according to each of the pre-pick points
  • the lateral deviation is calculated by controlling the target direction control angle control amount, specifically:
  • the method further includes: acquiring, in a non-first control period, a historical lateral deviation corresponding to each of the current control periods in the first N control periods;
  • calculating a control output quantity of each of the preview points is specifically:
  • an embodiment of the present invention further provides an apparatus for controlling movement of an autonomous mobile machine, including:
  • a data acquisition module configured to acquire a target path and a current state of the autonomous mobile machine itself; wherein the current state includes a current speed and a current location;
  • a preview distance calculation module configured to calculate at least one preview distance according to the current speed
  • a preview point acquiring module configured to obtain a preview point corresponding to each preview distance according to the target path and the at least one preview distance
  • a lateral deviation calculation module configured to calculate a lateral deviation of each of the preview points to the current position; wherein the lateral deviation is a vertical of the preview point to a current moving head of the autonomous mobile machine distance;
  • a direction control corner parameter obtaining module configured to obtain a direction control corner parameter of a current control period according to the lateral deviation, the current speed, and a preset parameter matching table; wherein the parameter matching table defines the autonomous The direction control angle value parameter of the mobile machine in the case of a specific lateral deviation at a specific speed;
  • a movement control module configured to control the autonomous mobile machine to move according to the direction control corner parameter.
  • an embodiment of the present invention further provides an autonomous mobile machine autonomous mobile machine, including a machine body and a controller; wherein the controller includes a processor, a memory, and is stored in the memory and configured A computer program executed by the processor, the processor executing the computer program to implement the method of controlling autonomous mobile machine movement as described in any of the above.
  • an embodiment of the present invention further provides a computer readable storage medium, the computer readable storage medium comprising a stored computer program, wherein the computer readable storage medium is controlled when the computer program is running
  • the apparatus performs the method of controlling autonomous mobile machine movement as described in any of the above.
  • One technical solution of the foregoing technical solution has the following advantages: according to the parameter matching table, the appropriate direction control angle parameter corresponding to the current speed can be quickly obtained, and the calculation efficiency is improved; and the parameters in the parameter matching table can be adjusted according to actual conditions.
  • control the rotation angle parameter according to the direction to control the direction control angle control amount to control the autonomous mobile machine (such as driverless car or intelligent mobile robot, etc.) in different cornering, steering and U-turn Smooth and stable motion can be carried out under working conditions;
  • the relationship between the lateral control and the longitudinal control can be coupled by obtaining the relationship between the different vehicle speeds and different lateral deviations and the direction control angle, which improves the accuracy and stability.
  • any of the products of the present invention does not necessarily require all of the advantages described above to be achieved at the same time.
  • FIG. 1 is a schematic flow chart of a method for controlling movement of an autonomous mobile machine according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of selecting a remote preview point for controlling a method of moving an autonomous mobile machine according to a third embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a control system for controlling a method of moving an autonomous mobile machine according to a fourth embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus for controlling movement of an autonomous mobile machine according to a fifth embodiment of the present invention.
  • the invention provides a method, a device, an autonomous mobile machine and a storage medium for controlling the movement of an autonomous mobile machine, which are used for controlling the movement of the autonomous mobile machine, so that the autonomous mobile machine is controlled by no external human beings.
  • a method, a device, an autonomous mobile machine and a storage medium for controlling the movement of an autonomous mobile machine which are used for controlling the movement of the autonomous mobile machine, so that the autonomous mobile machine is controlled by no external human beings.
  • the autonomous mobile machine can be a self-moving or moving machine such as a smart car, a driverless car, an intelligent robot or an autonomous mobile robot.
  • a self-moving or moving machine such as a smart car, a driverless car, an intelligent robot or an autonomous mobile robot.
  • the following embodiments take an unmanned car as an example. It should be noted, however, that other machines having autonomous mobility are also within the scope of the present invention.
  • a first embodiment of the present invention provides a method for controlling autonomous mobile machine movement, which can be performed on an autonomous mobile machine, including the following steps:
  • the specified target path is acquired at the beginning of the current control period (current control period) with 0.1 s as the control period, and the target path includes at least one path point including latitude and longitude information to control vehicle motion.
  • the target path was preset and stored in the control module or industrial computer of the driverless car to quickly obtain the desired target path while controlling the vehicle motion.
  • the current state information includes the current vehicle speed of the vehicle and the current location of the vehicle, and the GPS positioning system can be used to obtain the current position of the vehicle and The current speed, of course, can also capture the current heading of the vehicle (current direction of travel).
  • the number of preview distances that need to be calculated may be determined according to actual conditions, and the preview distance is calculated according to the current speed of the vehicle, for example, a preview time is set for each preview distance, and The preview time is multiplied by the current speed to obtain a preview distance.
  • the preview distance includes a remote preview distance and a short distance preview distance.
  • the remote preview time corresponding to the specified remote preview distance d1 is 2 s, and the current vehicle is used.
  • the speed (for example, the current vehicle speed is 10 m/s) is multiplied by the remote preview time (2 s) to calculate the distance preview distance d1.
  • the upper limit of d1 is 25 m; of course, the proximity pre-designation can also be specified in advance.
  • the aiming time is used to calculate the short-range preview distance.
  • the short-range preview distance d2 is selected as 3 m in front of the vehicle, and the value is a better control effect value obtained through experiments.
  • the preview point is selected according to the calculated preview distance and the target path.
  • a target point path point
  • a target point is sequentially selected according to the target path, where the target point must be in front of the vehicle and it is determined whether the distance between the target point and the vehicle is outside the corresponding preview distance, if The distance between the target point and the vehicle is smaller than the preview distance, and the target point is discarded and the next target point is selected. Otherwise, the target point is used as the pre-target point corresponding to the preview distance, and the pre-target is not used.
  • the target point behind the aiming point is calculated or judged.
  • a remote preview point is calculated according to the distance preview distance
  • a near preview point is calculated according to the near distance preview distance.
  • calculating a lateral deviation of the preview point to the current position of the vehicle that is, calculating a vertical distance of the preview point to the current sporting direction of the vehicle, wherein the current sporting head of the vehicle is the vehicle Current direction of travel (speed direction); here, the lateral deviation of each pre-point to the current position of the vehicle can be calculated by a trigonometric function.
  • the lateral deviation of the remote preview point and the lateral deviation of the near preview point are respectively calculated according to the distance preview point and the near distance preview point.
  • the lateral offset can be calculated by establishing a tracking coordinate system. Specifically, after acquiring the target path and the current state of the vehicle, establishing a tracking coordinate system according to the target path and the current state; obtaining a current of the autonomous mobile machine according to the current position and the tracking coordinate system coordinate.
  • the coordinate origin of the GPS positioning system may be used as an origin, and the x-axis and the y-axis may be determined according to the target path and the current state of the vehicle, and a tracking coordinate system may be established, so that the tracking coordinate system can be calculated according to the current position of the vehicle.
  • the current coordinates of the vehicle (x0, y0).
  • the lateral deviation of each of the preview points to the current position of the vehicle can be quickly calculated.
  • the preview coordinates of each of the preview points are calculated; according to the current coordinates and the The preview coordinates are calculated, and the lateral deviation of each of the preview points to the current position is calculated.
  • the distance preview coordinates (xA, yA) are calculated according to the position of the remote preview point on the tracking coordinate system, and then according to the current coordinates (x0, y0) and the distance preview coordinates (xA, yA).
  • the lateral deviation of the remote preview point is calculated, and the lateral deviation of the near preview point can be calculated in the same way.
  • the directional control angle of the autonomous mobile machine (such as an unmanned vehicle) under different speeds and different lateral deviations is calibrated by an engineering method. Parameters and generate a parameter match table.
  • the above parameter matching table When running online, according to the current speed and lateral deviation, query the above parameter matching table to obtain the corresponding direction control corner parameter at this time.
  • the upper table obtains the direction control angle parameter corresponding to the remote preview point; according to the current speed and the lateral deviation of the near preview point, the upper table is obtained and the near distance is obtained.
  • the directional control angle parameter corresponding to the preview point is understood.
  • the directional control angle parameter is a steering wheel angle parameter.
  • the directional control angle control amount is calculated based on the obtained directional control angle parameters, and the directional control angle control amount (ie, the steering wheel angle control amount of the current control period of the vehicle) is output to the control of the machine.
  • the system is executed such that the execution system can adjust the angle of the direction control rotation of the vehicle according to the direction control corner control amount, so that the vehicle can travel according to the specified target path, and thus does not deviate from the path.
  • the appropriate direction control angle parameter corresponding to the current speed can be quickly obtained, and the calculation efficiency is improved; and the parameters in the parameter matching table can be adjusted according to the actual situation, so that the machine control is more stable and Accurate; control the rotation angle parameter according to the direction to control the direction control angle control to control the autonomous mobile machine (such as driverless car or intelligent mobile robot, etc.) to smooth under different conditions such as cornering, steering and U-turn Exercise steadily.
  • autonomous mobile machine such as driverless car or intelligent mobile robot, etc.
  • the method further includes:
  • the appropriate direction control angle parameter in the case of different lateral deviations at a certain vehicle speed is calibrated by manual calibration or engineering method, and the appropriate direction control angle in the case of different vehicle speeds at a certain lateral deviation is further calibrated.
  • the parameters for example, when the vehicle speed is 15 m/s, record the direction control angle value at different lateral deviations; when the vehicle speed is 20 m/s, record the direction control angle value at different lateral deviations.
  • all the suitable direction control angle parameters obtained under the above conditions are obtained, and coupled to generate a parameter matching table of the vehicle speed-lateral deviation-direction control angle parameter.
  • the direction control corner parameter can be quickly obtained according to the generated parameter matching table. Specifically, it is determined whether there is a lateral deviation and speed matching the horizontal deviation and the current speed in the preset parameter matching table. If yes, extracting the direction control corner parameter in the parameter matching table; if not, calculating the current deviation according to the preset parameter matching table, using the linear interpolation method to calculate the lateral deviation and the speed The direction of the cycle controls the corner parameters.
  • the current vehicle speed of the driverless vehicle is V
  • the lateral deviation of the first preview point is D
  • Matching the vehicle speed and the lateral deviation if yes, extracting the direction control angle parameter corresponding to the vehicle speed V and the lateral deviation D directly from the parameter matching table; if not, calculating the current control period and the vehicle speed V and the lateral direction by linear interpolation method
  • the direction corresponding to the deviation D controls the corner parameter.
  • the lateral control and the longitudinal control are coupled together by obtaining the relationship with the direction control rotation angle under different vehicle speeds and different lateral deviations, and the complete directional control rotation angle covering all working conditions can be obtained by the linear interpolation method.
  • the parameters improve the accuracy and stability of the machine control; and the calibration is based on the physical quantity, and the parameters are adjustable, which is convenient for the staff to debug.
  • the method further includes:
  • the target path includes a plurality of path points; and according to the target path and the at least one preview distance, obtaining a preview point corresponding to each preview distance, specifically: for each preview distance :
  • a preview point corresponding to the preview distance is obtained.
  • the preview distance includes a distance preview distance and a proximity preview distance.
  • the distance preview distance d1 as shown in Fig. 2, wherein the direction of the arrow in the figure is the current direction of travel of the vehicle.
  • the distance s of each path point in the target path to the current position of the vehicle is calculated, and the path point with the smallest distance from the vehicle among all the path points is taken as the closest point P0; according to the sorting relationship of the path points in the target path, The nearest point starts to obtain the distance s calculated above, and judges whether s is greater than or equal to d1.
  • the path point is The acquired path point with s greater than or equal to d1 is used as the remote preview initial path point A1; and in the second step, the upper point A0 of the path point A1 in the target path is selected to perform interpolation of the preset interval (the preset interval) It can be 5 cm), and the interpolation point set X is obtained, and in the interpolation point set X, the method in the first step is performed to obtain the remote preview point A corresponding to the remote preview distance d1. Similarly, the same method is used for the near-pre-pick distance to calculate the close-up preview point.
  • the selected pre-push points are located in front of the vehicle, and the path points located behind the vehicle do not need to be calculated.
  • the corresponding preview point is obtained according to each preview distance, and the calculated position of the predicted point can be ensured in front of the autonomous mobile machine (such as a driverless car), and avoiding The interval between the aiming point and the current position is too large to cause a jump, ensuring that the high-speed motion does not oscillate due to small jitter near the target path.
  • the autonomous mobile machine such as a driverless car
  • control of the autonomous mobile machine according to the direction control corner parameter is performed, specifically:
  • a PID (Proportional-Derivative-Integral) controller is designed to calculate the amount of control, so it is necessary to first determine the control parameters. Specifically, calculating, according to the direction control corner parameter and the lateral deviation, a proportional parameter corresponding to each of the preview points of the current control period; and obtaining, according to the current speed, the current control period and each The integral parameter and the differential parameter corresponding to the preview point.
  • the expression proportional parameter direction control angle parameter/lateral deviation is calculated, and the proportional parameter corresponding to each of the preview points is obtained.
  • the values of the respective control parameters may be appropriately adjusted, for example, when the current speed is not reached. At the predetermined speed, you can set the integration parameters of some specified pre-point points to zero, and so on.
  • FIG. 3 is a flowchart of the control system in the embodiment, and the calculated control parameters (proportional parameters, differential parameters, and integral parameters) and lateral deviation inputs corresponding to the pre-pick points are calculated.
  • the target direction control corner control amount of the current control period is obtained by the PID controller, wherein the PID controller is an automatic controller with feedback.
  • the control of each of the preview points is calculated according to the control parameters and the lateral deviation of each of the preview points.
  • the output quantity is obtained by weighting each of the control output amounts to obtain a direction control angle control quantity; and performing a limit processing on the direction control angle control quantity to obtain a target direction control angle control quantity of the current control period.
  • acquiring a historical lateral deviation corresponding to each of the current control periods in the first N control periods; and the said according to each of the preview points Controlling the parameter and the lateral deviation, and calculating a control output amount of each of the preview points is specifically: calculating each of the control parameters, the lateral deviation, and the historical lateral deviation of each of the preview points The control output of the pre-poke point.
  • the correlation calculation in the current control period is performed based on the lateral deviation of each of the preview points in the previous control period and the direction control angle control amount or the like.
  • the preview points are a remote preview point and a close-range preview point; the proportional parameter Kp1 and the differential parameter Kd1 corresponding to the remote preview point are calculated by the above method, and The proportional parameter Kp2, the differential parameter Kd2, and the integral parameter Ki2 corresponding to the near-predicted point; then the remote preview control output ⁇ 1 and the near-pre-shoot control output ⁇ 2 are respectively calculated by the PID control, wherein:
  • ⁇ d1' is the lateral error of the remote preview point in the previous control period
  • ⁇ d2' is the lateral error of the near preview point in the previous control period
  • a1 is the weight of the remote preview control output of the current control period
  • a2 is the weight of the short-range preview control output of the current control period.
  • is the direction control angle control amount of the current control period
  • ⁇ ' is the direction control angle control amount of the previous control period
  • ⁇ max is the preset maximum control amount
  • ⁇ min is the preset minimum control amount
  • ⁇ max is the preset The maximum amount of error, wherein the ⁇ max is related to the current vehicle speed and the current control period.
  • the direction control corner control amount is output to the control execution system of the machine such that the execution system can adjust the angle of the direction control rotation of the vehicle according to the direction control corner control amount, so that the vehicle can follow The specified target path travels so there is no deviation from the path.
  • the directional control angle control amount required for the current control period can be obtained by the weighting process, and the control amount is subjected to the limit processing to prevent the control amount from being excessively large, thereby preventing the machine from being out of control in the case of a sharp turn at a high speed. Improves the stability of machine movement or movement.
  • a fifth embodiment of the present invention further provides an apparatus for controlling movement of an autonomous mobile machine, including:
  • a data acquisition module 10 configured to acquire a target path and a current state of the autonomous mobile machine itself; wherein the current state includes a current speed and a current location;
  • the preview distance calculation module 20 is configured to calculate at least one preview distance according to the current speed
  • a preview point obtaining module 30 configured to obtain a preview point corresponding to each preview distance according to the target path and the at least one preview distance;
  • a lateral deviation calculating module 40 configured to calculate a lateral deviation of each of the preview points to the current position; wherein the lateral deviation is the current moving head of the autonomous mobile machine vertical distance;
  • the directional control angle parameter obtaining module 50 is configured to obtain a directional control corner parameter of the current control period according to the lateral deviation, the current speed, and a preset parameter matching table, where the parameter matching table defines the autonomous Directional control angle value parameter for a mobile machine with a specific lateral deviation at a particular speed;
  • the mobile control module 60 is configured to control the autonomous mobile machine to move according to the direction control corner parameter.
  • the device for controlling the movement of the autonomous mobile machine further includes:
  • a first data acquiring unit configured to acquire all first direction control corner parameters of the autonomous mobile machine under different lateral deviations at a certain speed
  • a second data acquiring unit configured to acquire all second direction control corner parameters of the autonomous mobile machine at different speeds when a certain lateral deviation occurs
  • a matching table generating unit configured to generate a parameter matching table according to all the first direction control corner parameters and all the second direction control corner parameters.
  • the device for controlling the movement of the autonomous mobile machine further comprises:
  • a coordinate system establishing unit configured to establish a tracking coordinate system according to the target path and the current state
  • a current coordinate calculation unit configured to obtain current coordinates of the autonomous mobile machine according to the current position and the tracking coordinate system
  • the lateral deviation calculation module 40 is specifically:
  • a preview coordinate calculation unit configured to calculate a preview coordinate of each of the preview points according to the tracking coordinate system
  • a lateral deviation calculating unit configured to calculate a lateral deviation of each of the preview points to the current position according to the current coordinates and the preview coordinates; wherein the lateral deviation is the preview point to the location The vertical distance of the current moving head of the autonomous mobile machine.
  • the target path includes a plurality of path points
  • the preview point obtaining module 30 is specifically:
  • a closest point determining unit configured to calculate a distance between the respective path points and the current position, and use the path point with the smallest distance as a closest point
  • a first path point selecting unit configured to acquire a distance from each of the path points to the current position from the closest point according to a sorting relationship of the path points in the target path, until the distance obtained from the current position is greater than the first time Or a first path point equal to the preview distance;
  • a second path point selecting unit configured to select a previous path point of the first path point as the second path point according to the target path
  • An interpolation processing unit configured to perform interpolation processing of a preset interval between the first path point and the second path point to obtain an interpolation point set
  • a preview point acquiring unit configured to obtain a preview point corresponding to the preview distance according to the preview distance and the set of interpolation points.
  • the preview distance includes a distance preview distance and a proximity preview distance, wherein the distance preview distance is a distance calculated based on the current speed and a preset distance preview time.
  • the direction control corner parameter obtaining module 50 is specifically:
  • a determining unit configured to determine whether there is a lateral deviation and a speed that match the horizontal deviation and the current speed in the preset parameter matching table
  • An extracting unit if yes, extracting a direction control corner parameter in the parameter matching table
  • a linear calculation unit if not, according to a preset parameter matching table, calculating the lateral deviation and the velocity by using a linear interpolation method to obtain a directional control rotation angle parameter of the current control period.
  • the mobile control module 60 is specifically:
  • control parameter calculation unit configured to control a corner parameter according to the direction, the lateral deviation and the current speed, and calculate a control parameter corresponding to each of the preview points in the current control period
  • a target control amount calculation unit configured to calculate a target direction control rotation angle control amount of the current control period according to the control parameter and the lateral deviation of each of the preview points;
  • a movement control unit configured to control the autonomous mobile machine to move according to the target direction control corner control amount.
  • control parameter calculation unit is specifically:
  • a first parameter calculation unit configured to control a rotation angle parameter and the lateral deviation according to the direction, and calculate a proportional parameter corresponding to each of the preview points in the current control period
  • a second parameter calculation unit configured to obtain, according to the current speed, an integration parameter and a differentiation parameter corresponding to each of the preview points in the current control period.
  • the target point is at least two, and the target control amount calculation unit is specifically:
  • An output amount calculation unit configured to calculate a control output quantity of each of the preview points according to the control parameter and the lateral deviation of each of the preview points;
  • a weighting calculation unit configured to perform weighting processing on each of the control output amounts to obtain a direction control corner control amount
  • the limiting processing unit is configured to perform a limiting process on the directional control corner control amount to obtain a target directional control corner control amount of the current control period.
  • the device for controlling the movement of the autonomous mobile machine further includes:
  • a historical lateral deviation obtaining unit configured to acquire, in a non-first control period, a historical lateral deviation corresponding to each of the current control periods in the first N control periods;
  • the output calculation unit is specifically:
  • a control output calculation unit configured to calculate a control output amount of each of the preview points according to the control parameter, the lateral deviation, and the historical lateral deviation of each of the preview points.
  • a sixth embodiment of the present invention also provides an autonomous mobile machine.
  • the autonomous mobile machine of this embodiment includes a machine body and a controller; wherein the controller includes: a processor, a display, a memory, and a computer program stored in the memory and executable on the processor, such as A program that controls the movement of autonomous mobile machines.
  • the processor executes the computer program the functions of each unit in the foregoing device embodiments are implemented, such as the data acquisition module 10 shown in FIG.
  • the computer program can be partitioned into one or more modules that are stored in the memory and executed by the processor to perform the present invention.
  • the one or more modules may be a series of computer program instruction segments capable of performing a particular function, the instruction segments being used to describe the execution of the computer program in the autonomous mobile machine.
  • the autonomous mobile machine may be a machine with autonomous movement or motion, such as a smart car, a driverless car, an intelligent robot, or an autonomous mobile robot.
  • the autonomous mobile machine can include, but is not limited to, a processor, a memory, a display. It will be understood by those skilled in the art that the schematic diagram is merely an example of an autonomous mobile machine, does not constitute a limitation to an autonomous mobile machine, may include more or less components than illustrated, or combine some components, or Different components, such as the autonomous mobile machine, may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), ready-made Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like, which is the control center of the autonomous mobile machine, connecting the entire autonomous mobile using various interfaces and lines. Various parts of the machine.
  • the memory can be used to store the computer program and/or module, the processor implementing the autonomy by running or executing a computer program and/or module stored in the memory, and invoking data stored in the memory Various functions of mobile machines.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, a text conversion function, etc.), and the like; the storage data area may be stored. Data created based on the use of the mobile phone (such as audio data, text message data, etc.).
  • the memory may include a high-speed random access memory, and may also include non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a Secure Digital (SD) card.
  • non-volatile memory such as a hard disk, a memory, a plug-in hard disk, a smart memory card (SMC), and a Secure Digital (SD) card.
  • Flash Card at least one disk storage device, flash memory device, or other volatile solid-state storage device.
  • the autonomous mobile machine integrated module can be stored in a computer readable storage medium if it is implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the present invention implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program for instructing related hardware.
  • the computer program may be stored in a computer readable storage medium. The steps of the various method embodiments described above may be implemented when the program is executed by the processor.
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium may include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM). , random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media Does not include electrical carrier signals and telecommunication signals.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical. Units can be located in one place or distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.

Abstract

本发明公开了一种控制自主式移动机器移动的方法,包括:获取目标路径和自主式移动机器自身的当前状态;根据所述当前速度,计算得到至少一个预瞄距离;根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点;计算每个所述预瞄点到所述当前位置的横向偏差;根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;根据所述方向控制转角参数控制所述自主式移动机器进行移动。本发明还公开了一种控制自主式移动机器移动的装置、机器及存储介质,能够快速获取合适的方向控制转角参数,提高计算效率,并且可以根据实际情况对参数匹配表中的参数进行调整,使得机器控制更加稳定和精确。

Description

控制自主式移动机器移动的方法、装置、机器及存储介质 技术领域
本发明涉及自主移动技术领域,尤其涉及一种控制自主式移动机器移动的方法、装置、机器及存储介质。
背景技术
随着科学技术的发展,智能汽车、智能移动机器人等智能设备迅速发展,无人驾驶汽车是智能汽车的一种,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标。在现有技术中,一种实现车辆无人驾驶的方法是通过计算汽车的转弯曲率,根据转弯曲率来得到方向控制的转角值;另一种方法为根据不同行驶工况下驾驶员操纵、车辆状态和道路环境等多源信息,提取驾驶员的行为特征数据和操纵规律,利用数据库直接由输入的车速信息获得输出的转向,或由输入的转向直接获得目标车速信息。
然而,发明人在实施本发明的过程中发现,上述第一种方法需要进行一系列复杂的算法对方向控制的转角值进行计算,导致计算效率较低,第二种方法需要采集大量数据进行分析,而且控制过程是黑盒子,无法进行修正或者调试,降低了车辆控制的稳定性和精确性。
发明内容
针对上述问题,本发明的目的在于提供一种控制自主式移动机器移动的方法、装置、机器及存储介质,根据参数匹配表可以快速获取与当前速度对应的合适的方向控制转角参数,可以提高计算速度和效率;并且可以根据实际情况对参数匹配表中的参数进行调整,使得机器控制更加稳定和精确。
第一方面,本发明实施例提供了一种控制自主式移动机器移动的方法,包括以下步骤:
获取目标路径和自主式移动机器自身的当前状态;其中,所述当前状态包括当前速度以及当前位置;
根据所述当前速度,计算得到至少一个预瞄距离;
根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点;
计算每个所述预瞄点到所述当前位置的横向偏差,其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离;
根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;其中,所述参数匹配表定义了所述自主式移动机器在特定速度时特定横向偏差情况下的方向控制转角参数;
根据所述方向控制转角参数控制所述自主式移动机器进行移动。
在第一方面的第一种实现方式中,在所述获取目标路径和自主式移动机器自身的当前状态之前,还包括:
获取所述自主式移动机器在一定速度时不同横向偏差情况下的所有第一方向控制转角参数;
获取所述自主式移动机器在一定横向偏差时不同速度情况下的所有第二方向控制转角参数;
根据所有所述第一方向控制转角参数和所有所述第二方向控制转角参数,生成参数匹配表。
在第一方面的第二种实现方式中,在所述根据所述当前速度,计算得到至少一个预瞄距离之前,还包括:
根据所述目标路径和所述当前状态建立跟踪坐标系;
根据所述当前位置和所述跟踪坐标系,获得所述自主式移动机器的当前坐标;
则所述计算每个所述预瞄点到所述当前位置的横向偏差具体为:
根据所述跟踪坐标系,计算得到每个所述预瞄点的预瞄坐标;
根据所述当前坐标以及所述预瞄坐标,计算每个所述预瞄点到所述当前位置的横向偏差。
在第一方面的第三种实现方式中,所述目标路径中包含多个路径点;则所述根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点,具体为:
对于每一个预瞄距离:
计算所述各个路径点与所述当前位置的距离,并将所述距离最小的路径点作为最近点;
根据所述目标路径中的路径点的排序关系,从所述最近点开始获取各个路径点到所述当前位置的距离,直至首次获取到与当前位置的距离大于或者等于所述预瞄距离的第一路径点;
根据所述目标路径,选取所述第一路径点的上一个路径点作为第二路径点;
在所述第一路径点和所述第二路径点之间进行预设间隔的插值处理,得到插值点集;
根据所述预瞄距离和所述插值点集,获得与所述预瞄距离对应的预瞄点。
根据第一方面的第三种实现方式,在第一方面的第四种实现方式中,所述预瞄距离包括远距预瞄距离和近距预瞄距离,其中,所述远距预瞄距离为基于所述当前速度和预设的远距预瞄时间计算得出的距离。
在第一方面的第五种实现方式中,所述根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数,具体为:
判断预设的参数匹配表中是否存在与所述横向偏差和所述当前速度同时匹配的横向偏差和速度;
若是,则在所述参数匹配表中提取方向控制转角参数;
若否,则根据预设的参数匹配表,对所述横向偏差和所述速度,利用线性插值法进行计算得到所 述当前控制周期的方向控制转角参数。
在第一方面的第六种实现方式中,所述根据所述方向控制转角参数控制自主式移动机器进行移动,具体为:
根据所述方向控制转角参数,所述横向偏差以及所述当前速度,计算所述当前控制周期与每个所述预瞄点对应的控制参数;
根据每个所述预瞄点的所述控制参数和所述横向偏差,计算所述当前控制周期的目标方向控制转角控制量;
根据所述目标方向控制转角控制量控制自主式移动机器进行移动。
根据第一方面的第六种实现方式,在第一方面的第七种实现方式中,所述根据所述方向控制转角参数,所述横向偏差以及所述当前速度,计算所述当前控制周期与每个所述预瞄点对应的控制参数具体为:
根据所述方向控制转角参数和所述横向偏差,计算所述当前控制周期与每个所述预瞄点对应的比例参数;
根据所述当前速度,获得所述当前控制周期与每个所述预瞄点对应的积分参数和微分参数。
根据第一方面的第六种实现方式,在第一方面的第八种实现方式中,所述预瞄点为至少两个;则所述根据每个所述预瞄点的所述控制参数和所述横向偏差,计算目标方向控制转角控制量,具体为:
根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量;
将每个所述控制输出量进行加权处理,得到方向控制转角控制量;
对所述方向控制转角控制量进行限幅处理,得到所述当前控制周期的目标方向控制转角控制量。
在第一方面的第九种实现方式中,还包括:在非首个控制周期中,获取前N个控制周期中与所述当前控制周期中的每个预瞄点对应的历史横向偏差;
则所述根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量具体为:
根据每个所述预瞄点的所述控制参数、所述横向偏差和所述历史横向偏差,计算每个所述预瞄点的控制输出量。
第二方面,本发明实施例还提供了一种控制自主式移动机器移动的装置,包括:
数据获取模块,用于获取目标路径和自主式移动机器自身的当前状态;其中,所述当前状态包括当前速度以及当前位置;
预瞄距离计算模块,用于根据所述当前速度,计算得到至少一个预瞄距离;
预瞄点获取模块,用于根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点;
横向偏差计算模块,用于计算每个所述预瞄点到所述当前位置的横向偏差;其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离;
方向控制转角参数获取模块,用于根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;其中,所述参数匹配表定义了所述自主式移动机器在特定速度时特定横向偏差情况下的方向控制转角值参数;
移动控制模块,用于根据所述方向控制转角参数控制自主式移动机器进行移动。
第三方面,本发明实施例还提供了一种自主式移动机器自主式移动机器,包括机器本体和控制器;其中,所述控制器包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现上述任意一项所述的控制自主式移动机器移动的方法。
第四方面,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行上述任意一项所述的控制自主式移动机器移动的方法。
上述技术方案中的一个技术方案具有如下优点:根据参数匹配表可以快速获取与当前速度对应的合适的方向控制转角参数,提高了计算效率;并且可以根据实际情况对参数匹配表中的参数进行调整,使得机器控制更加稳定和精确;根据所述方向控制转角参数计算方向控制转角控制量从而控制自主式移动机器(例如无人驾驶汽车或智能移动机器人等)在过弯道、转向以及掉头等不同工况下都能进行平滑、稳定地运动;通过获得在不同车速与不同横向偏差的情况下与方向控制转角的关系,从而把横向控制和纵向控制耦合在一起,提高了精确度和稳定性。当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的控制自主式移动机器移动的方法的流程示意图。
图2是本发明第三实施例提供的控制自主式移动机器移动的方法的选取远距预瞄点的示意图。
图3是本发明第四实施例提供的控制自主式移动机器移动的方法的控制系统流程示意图。
图4是本发明第五实施例提供的控制自主式移动机器移动的装置的结构示意图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种控制自主式移动机器移动的方法、装置、自主式移动机器以及存储介质,用于控制所述自主式移动机器进行移动,使得所述自主式移动机器在无外界人为控制的情况下准确地进行运动,以下分别进行详细说明。
其中,所述自主式移动机器可以为智能汽车、无人驾驶汽车、智能机器人或者自主式移动机器人等具有自主移动或运动的机器,为便于理解,下述实施例以无人驾驶汽车为例进行说明,然而应当理解的是,其他具有自主移动能力的机器也在本发明的保护范围之内。
请参阅图1,本发明第一实施例提供了一种控制自主式移动机器移动的方法,其可以在自主式移动机器上执行,包括以下步骤:
S10,获取目标路径和自主式移动机器自身的当前状态;其中,所述当前状态包括当前速度以及当前位置。
在本实施例中,以0.1s为控制周期,在本控制周期(当前控制周期)刚开始时获取指定的目标路径,所述目标路径包括了至少一个包含经纬度信息的路径点,在控制车辆运动之前,预先设定目标路径并存储在无人驾驶汽车的控制模块或工控机中,以便在控制车辆运动时快速获取得到所需要的目标路径。在本控制周期开始时,还需获取车辆自身的当前状态信息,在这里,所述当前状态信息包括了车辆的当前车速以及车辆当前所在的位置,可以利用GPS定位系统来获取车辆的当前位置和当前车速,当然,还可以获取车辆的当前航向(当前行驶方向)。
S20,根据所述当前速度,计算得到至少一个预瞄距离;
S30,根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点。
在本实施例中,可以根据实际情况来确定所需要计算的预瞄距离的个数,并且根据车辆的当前速度来计算预瞄距离,例如给每个预瞄距离设定一个预瞄时间,将所述预瞄时间与所述当前速度相乘得到预瞄距离。在本实施例,优选地,所述预瞄距离包括远距预瞄距离和近距预瞄距离,作为示例,指定远距预瞄距离d1对应的远距预瞄时间为2s,用车辆的当前速度(例如当前车速为10m/s)乘以远距预瞄时间(2s)后计算得出远距预瞄距离d1,在这里优选地,d1上限为25m;当然,也可以预先指定近距预瞄时间来计算近距预瞄距离,在本实施例中,所述近距预瞄距离d2选取为车辆前方3m,该数值为通过实验得出的一个较好的控制效果值。
在本实施例中,根据计算得到的预瞄距离和目标路径来选取预瞄点。作为示例,根据目标路径依次选取目标点(路径点),在这里,所述目标点必须在车辆的前方并且判断所述目标点和车辆的距离 是否在对应的预瞄距离之外,若所述目标点与车辆的距离小于所述预瞄距离,抛弃该目标点并选取下一个目标点,否则,则将该目标点作为与所述预瞄距离对应的预瞄点,并且不用对所述预瞄点后面的目标点进行计算或判断。在本实施例中,根据所述远距预瞄距离计算得到远距预瞄点,根据所述近距预瞄距离计算得到近距预瞄点。
S40,计算每个所述预瞄点到所述当前位置的横向偏差。其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离。
在本实施例中,计算预瞄点到车辆当前位置的横向偏差,即计算所述预瞄点到车辆当前的运动航向上的垂直距离,其中,所述车辆的当前的运动航向为所述车辆当前的行驶方向(速度方向);在这里,可以通过三角函数来计算每个预瞄点到车辆当前位置的横向偏差。在本实施例中,根据所述远距预瞄点和所述近距预瞄点分别计算得到远距预瞄点横向偏差和近距预瞄点横向偏差。
在本实施例的一种实现方式中,可以通过建立跟踪坐标系来计算横向偏差。具体地,当获取到目标路径和车辆当前状态后,根据所述目标路径和所述当前状态建立跟踪坐标系;根据所述当前位置和所述跟踪坐标系,获得所述自主式移动机器的当前坐标。作为示例,可以以GPS定位系统的坐标原点为原点,根据所述目标路径和车辆当前状态确定x轴和y轴,建立跟踪坐标系,从而可以在跟踪坐标系上根据车辆的当前位置来计算得到车辆的当前坐标(x0,y0)。因此,可以快速地计算每个预瞄点到车辆当前位置的横向偏差,具体地,根据所述跟踪坐标系,计算得到每个所述预瞄点的预瞄坐标;根据所述当前坐标以及所述预瞄坐标,计算每个所述预瞄点到所述当前位置的横向偏差。作为示例,根据远距预瞄点在跟踪坐标系上的位置计算得到远距预瞄坐标(xA,yA),进而根据当前坐标(x0,y0)和远距预瞄坐标(xA,yA)进行计算得到远距预瞄点横向偏差,同理可以计算得到近距预瞄点横向偏差。
S50,根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;其中,所述参数匹配表定义了所述自主式移动机器在特定速度时特定横向偏差情况下的方向控制转角参数;
S60,根据所述方向控制转角参数控制所述自主式移动机器进行移动。
在本实施例中,需要预先设定一张参数匹配表,在这里,利用工程方法标定所述自主式移动机器(如无人驾驶汽车)在不同速度和不同横向偏差的情况下的方向控制转角参数,并生成一张参数匹配表。当在线运行时,按照当前速度和横向偏差,查询上述参数匹配表来得出此时对应的方向控制转角参数。例如,按照当前速度和远距预瞄点横向偏差,查询上表得到与远距预瞄点对应的方向控制转角参数;按照当前速度和近距预瞄点横向偏差,查询上表得到与近距预瞄点对应的方向控制转角参数,可以理解的是,在无人驾驶汽车中,所述方向控制转角参数为方向盘转角参数。
在本实施例中,根据所得到的所有方向控制转角参数来计算方向控制转角控制量,并将方向控制转角控制量(即所述车辆的当前控制周期的方向盘转角控制量)输出至机器的控制执行系统,使得所述执行系统能够根据所述方向控制转角控制量来调整车辆的方向控制转动的角度,使得所述车辆能够按照指定的目标路径进行行驶,因此不会偏离路径。
综上所述,根据参数匹配表可以快速获取与当前速度对应的合适的方向控制转角参数,提高了计算效率;并且可以根据实际情况对参数匹配表中的参数进行调整,使得机器控制更加稳定和精确;根据所述方向控制转角参数计算方向控制转角控制量从而控制自主式移动机器(例如无人驾驶汽车或智能移动机器人等)在过弯道、转向以及掉头等不同工况下都能进行平滑、稳定地运动。
本发明第二实施例:
在第一个实施例的基础上,在步骤S10之前,还包括:
获取所述自主式移动机器在一定速度时不同横向偏差情况下的所有第一方向控制转角参数;获取所述自主式移动机器在一定横向偏差时不同速度情况下的所有第二方向控制转角参数;根据所有所述第一方向控制转角参数和所有所述第二方向控制转角参数,生成参数匹配表。
在本实施例中,作为示例,通过人工标定或者工程方法标定在一定车速时不同横向偏差的情况下的合适方向控制转角参数,进一步标定在一定横向偏差时不同车速的情况下的合适方向控制转角参数,例如在车速为15m/s时,记录在不同横向偏差时的方向控制转角值;在车速为20m/s时,记录在不同横向偏差时的方向控制转角值。最后获取在上述工况下标定得到的所有合适方向控制转角参数,并耦合生成一张车速-横向偏差-方向控制转角参数的参数匹配表。
在本实施例中,根据生成的参数匹配表可以快速获得方向控制转角参数,具体地,判断预设的参数匹配表中是否存在与所述横向偏差和所述当前速度同时匹配的横向偏差和速度;若是,则在所述参数匹配表中提取方向控制转角参数;若否,则根据预设的参数匹配表,对所述横向偏差和所述速度,利用线性插值法进行计算得到所述当前控制周期的方向控制转角参数。
在本实施例中,作为示例,假设所述无人驾驶汽车的当前车速为V,第一预瞄点的横向偏差为D,判断所述参数匹配表中是否存在与车速V和横向偏差D同时匹配车速和横向偏差,若是,则直接从所述参数匹配表中提取与车速V和横向偏差D对应的方向控制转角参数;若否,则利用线性插值法计算当前控制周期的与车速V和横向偏差D对应的方向控制转角参数。
通过上述方式,通过获得在不同车速与不同横向偏差的情况下与方向控制转角的关系,从而把横向控制和纵向控制耦合在一起,通过线性插值法可以获得覆盖所有工况的完整的方向控制转角参数,提高了机器控制的精确度和稳定性;并且基于物理量进行标定,参数可调,便于工作人员进行调试。
本发明第三实施例:
在第一个实施例的基础上,还包括:
所述目标路径中包含多个路径点;则所述根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点,具体为:对于每一个预瞄距离:
计算所述各个路径点与所述当前位置的距离,并将所述距离最小的路径点作为最近点;
根据所述目标路径中的路径点的排序关系,从所述最近点开始获取各个路径点到所述当前位置的距离,直至首次获取到与当前位置的距离大于或者等于所述预瞄距离的第一路径点;
根据所述目标路径,选取所述第一路径点的上一个路径点作为第二路径点;
在所述第一路径点和所述第二路径点之间进行预设间隔的插值处理,得到插值点集;
根据所述预瞄距离和所述插值点集,获得与所述预瞄距离对应的预瞄点。
在本实施例中,作为示例,所述预瞄距离包含远距预瞄距离和近距预瞄距离。对于远距预瞄距离d1:如图2所示,其中图中箭头方向为车辆的当前行驶方向。第一步,计算目标路径中的每一个路径点到车辆当前位置的距离s,取所有路径点中与本车距离最小的路径点作为最近点P0;根据目标路径中路径点的排序关系,从最近点开始获取上述计算得到的距离s,判断s是否大于或等于d1,若否,抛弃该点并获取下一路径点进行同样的判断,直至s大于或等于d1,并将该路径点(首次获取的s大于或等于d1的路径点)作为远距预瞄初始路径点A1;第二步,选取在目标路径中路径点A1的上一点A0,做预设间隔的插值(所述预设间隔可以为5cm),得到插值点集X,并在插值点集X中按第一步中的方法进行计算,获得与远距预瞄距离d1对应的远距预瞄点A。同理,对于近距预瞄距离进行相同的方法计算获得近距预瞄点。在这里,可以理解的是,所选取的预瞄点都是位于车辆的前方,而位于车辆后方的路径点不需要进行计算。
通过上述方式,根据每个预瞄距离获取对应的预瞄点,可以保证所述计算得到的预瞄点的位置在自主式移动机器(如无人驾驶汽车)的前方,并且避免因为所述预瞄点与当前位置之前的间隔过大而导致跳变,保证在高速运动时不会因为目标路径近处的小幅抖动而发生震荡。
本发明第四实施例:
在第一个实施例的基础上,所述根据所述方向控制转角参数控制自主式移动机器进行移动,具体为:
S61,根据所述方向控制转角参数,所述横向偏差以及所述当前速度,计算所述当前控制周期与每个所述预瞄点对应的控制参数。
在本实施例中,设计PID(比例-微分-积分)控制器来计算控制量,因此需要先确定控制参数。具体地,根据所述方向控制转角参数和所述横向偏差,计算所述当前控制周期与每个所述预瞄点对应的比例参数;根据所述当前速度,获得所述当前控制周期与每个所述预瞄点对应的积分参数和微分参数。作为示例,当获取得到与某一个预瞄点的横向偏差对应的方向控制转角参数时,计算表达式比例参数=方向控制转角参数/横向偏差,得到与每个该预瞄点对应的比例参数的值,并根据车辆当前状态调整得出与每个该预瞄点对应的积分参数的值和微分参数的值,在这里,可以对上述各个控制参数的值适当进行调整,例如当当前速度没有达到预定的车速时,可以将某些指定的预瞄点的积分参数置零等等。
S62,根据每个所述预瞄点的所述控制参数和所述横向偏差,计算所述当前控制周期的目标方向控制转角控制量。
在本实施例中,请参阅图3,图3为本实施例中的控制系统流程图,将计算得到的与预瞄点对应的控制参数(比例参数、微分参数和积分参数)和横向偏差输入至PID控制器即可得到所述当前控制 周期的目标方向控制转角控制量,其中所述PID控制器是带反馈的自动控制器。
在本实施例中,当所述预瞄点为至少两个时,具体地,根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量;将每个所述控制输出量进行加权处理,得到方向控制转角控制量;对所述方向控制转角控制量进行限幅处理,得到所述当前控制周期的目标方向控制转角控制量。并且,在非首个控制周期中,获取前N个控制周期中与所述当前控制周期中的每个预瞄点对应的历史横向偏差;则所述根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量具体为:根据每个所述预瞄点的所述控制参数、所述横向偏差和所述历史横向偏差,计算每个所述预瞄点的控制输出量。
在本实施例中,优选地,根据前一个控制周期中每个预瞄点的横向偏差和方向控制转角控制量等来进行当前控制周期中的相关计算。作为示例,如图3所述,所述预瞄点为远距预瞄点和近距预瞄点;通过上述方法计算得到与远距预瞄点对应的比例参数Kp1和微分参数Kd1,还有与近距预瞄点对应的比例参数Kp2、微分参数Kd2和积分参数Ki2;接着通过PID控制分别计算远距预瞄控制输出量δ1和近距预瞄控制输出量δ2,其中:
δ1=Kp1·Δd1+Kd1·(Δd1-Δd1’)
δ2=Kp2·Δd2+∫Ki2·Δd2+Kd2·(Δd2-Δd2’)
其中,Δd1’为前一个控制周期中的远距预瞄点横向误差,Δd2’为前一个控制周期中的近距预瞄点横向误差。
接着,对计算得出的两个控制输出量做加权求和得到未限幅的方向控制转角控制量δ,其中:
δ=a1·δ1+a2·δ2
其中,a1为当前控制周期的远距预瞄控制输出量的权重,a2为当前控制周期的近距预瞄控制输出量的权重,一般地,a1=a2=1。
最后,为了防止方向控制转角控制量过大或者过小,需要根据车辆的当前速度等对目标方向控制转角控制量做限幅处理,最终得到目标方向控制转角控制量,其中:
Figure PCTCN2018098532-appb-000001
并且还需满足:
Figure PCTCN2018098532-appb-000002
其中,δ为当前控制周期的方向控制转角控制量,δ’为前一个控制周期的方向控制转角控制量,δmax为预设的最大控制量,δmin为预设的最小控制量,Δδmax为预设的最大误差量,其中,所述Δδmax与车辆当前速度及当前控制周期有关。
S63,根据所述目标方向控制转角控制量控制自主式移动机器进行移动。
在本实施例中,将方向控制转角控制量输出至机器的控制执行系统,使得所述执行系统能够根据所述方向控制转角控制量来调整车辆的方向控制转动的角度,使得所述车辆能够按照指定的目标路径进行行驶,因此不会偏离路径。
通过上述方式,通过加权处理可以得到当前控制周期所需要的方向控制转角控制量,并且将控制量进行限幅处理,防止控制量过大,从而避免了机器在高速时急转弯等情况下引发失控,提高了机器移动或运动的稳定性。
请参阅图4,本发明第五实施例还提供了一种控制自主式移动机器移动的装置,包括:
数据获取模块10,用于获取目标路径和自主式移动机器自身的当前状态;其中,所述当前状态包括当前速度以及当前位置;
预瞄距离计算模块20,用于根据所述当前速度,计算得到至少一个预瞄距离;
预瞄点获取模块30,用于根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点;
横向偏差计算模块40,用于计算每个所述预瞄点到所述当前位置的横向偏差;其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离;
方向控制转角参数获取模块50,用于根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;其中,所述参数匹配表定义了所述自主式移动机器在特定速度时特定横向偏差情况下的方向控制转角值参数;
移动控制模块60,用于根据所述方向控制转角参数控制自主式移动机器进行移动。
进一步地,所述控制自主式移动机器移动的装置还包括:
第一数据获取单元,用于获取所述自主式移动机器在一定速度时不同横向偏差情况下的所有第一方向控制转角参数;
第二数据获取单元,用于获取所述自主式移动机器在一定横向偏差时不同速度情况下的所有第二方向控制转角参数;
匹配表生成单元,用于根据所有所述第一方向控制转角参数和所有所述第二方向控制转角参数,生成参数匹配表。
优选地,所述控制自主式移动机器移动的装置还包括:
坐标系建立单元,用于根据所述目标路径和所述当前状态建立跟踪坐标系;
当前坐标计算单元,用于根据所述当前位置和所述跟踪坐标系,获得所述自主式移动机器的当前坐标;
则所述横向偏差计算模块40,具体为:
预瞄坐标计算单元,用于根据所述跟踪坐标系,计算得到每个所述预瞄点的预瞄坐标;
横向偏差计算单元,用于根据所述当前坐标以及所述预瞄坐标,计算每个所述预瞄点到所述当前位置的横向偏差;其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离。
优选地,所述目标路径中包含多个路径点,则所述预瞄点获取模块30,具体为:
对于每一个预瞄距离:
最近点确定单元,用于计算所述各个路径点与所述当前位置的距离,并将所述距离最小的路径点作为最近点;
第一路径点选取单元,用于根据所述目标路径中的路径点的排序关系,从所述最近点开始获取各个路径点到所述当前位置的距离,直至首次获取到与当前位置的距离大于或者等于所述预瞄距离的第一路径点;
第二路径点选取单元,用于根据所述目标路径,选取所述第一路径点的上一个路径点作为第二路径点;
插值处理单元,用于在所述第一路径点和所述第二路径点之间进行预设间隔的插值处理,得到插值点集;
预瞄点获取单元,用于根据所述预瞄距离和所述插值点集,获得与所述预瞄距离对应的预瞄点。
进一步地,所述预瞄距离包括远距预瞄距离和近距预瞄距离,其中,所述远距预瞄距离为基于所述当前速度和预设的远距预瞄时间计算得出的距离。
优选地,所述方向控制转角参数获取模块50,具体为:
判断单元,用于判断预设的参数匹配表中是否存在与所述横向偏差和所述当前速度同时匹配的横向偏差和速度;
提取单元,用于若是,则在所述参数匹配表中提取方向控制转角参数;
线性计算单元,用于若否,则根据预设的参数匹配表,对所述横向偏差和所述速度,利用线性插值法进行计算得到所述当前控制周期的方向控制转角参数。
优选地,所述移动控制模块60,具体为:
控制参数计算单元,用于根据所述方向控制转角参数,所述横向偏差以及所述当前速度,计算所述当前控制周期与每个所述预瞄点对应的控制参数;
目标控制量计算单元,用于根据每个所述预瞄点的所述控制参数和所述横向偏差,计算所述当前控制周期的目标方向控制转角控制量;
移动控制单元,用于根据所述目标方向控制转角控制量控制自主式移动机器进行移动。
进一步地,所述控制参数计算单元,具体为:
第一参数计算单元,用于根据所述方向控制转角参数和所述横向偏差,计算所述当前控制周期与每个所述预瞄点对应的比例参数;
第二参数计算单元,用于根据所述当前速度,获得所述当前控制周期与每个所述预瞄点对应的积分参数和微分参数。
优选地,所述预瞄点为至少两个,则所述目标控制量计算单元,具体为:
输出量计算单元,用于根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量;
加权计算单元,用于将每个所述控制输出量进行加权处理,得到方向控制转角控制量;
限幅处理单元,用于对所述方向控制转角控制量进行限幅处理,得到所述当前控制周期的目标方向控制转角控制量。
进一步地,所述控制自主式移动机器移动的装置,还包括:
历史横向偏差获取单元,用于在非首个控制周期中,获取前N个控制周期中与所述当前控制周期中的每个预瞄点对应的历史横向偏差;
则所述输出量计算单元,具体为:
根据每个所述预瞄点的所述控制参数、所述横向偏差和所述历史横向偏差,计算每个所述预瞄点的控制输出量。
控制输出量计算单元,用于根据每个所述预瞄点的所述控制参数、所述横向偏差和所述历史横向偏差,计算每个所述预瞄点的控制输出量。
本发明第六实施例还提供了一种自主式移动机器。该实施例的自主式移动机器包括机器本体和控制器;其中,所述控制器包括:处理器、显示器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,例如控制自主式移动机器移动的程序。所述处理器执行所述计算机程序时实现上述各个控制自主式移动机器移动的方法的实施例中的步骤,例如图1所示的步骤S10。或者,所述处理器执行所述计算机程序时实现上述各装置实施例中各单元的功能,例如图4所示的数据获取模块10。
示例性的,所述计算机程序可以被分割成一个或多个模块,所述一个或者多个模块被存储在所述存储器中,并由所述处理器执行,以完成本发明。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述自主式移动机器中的执行过程。
所述自主式移动机器可以为智能汽车、无人驾驶汽车、智能机器人或者自主式移动机器人等具有自主移动或运动的机器。所述自主式移动机器可包括,但不仅限于,处理器、存储器、显示器。本领域技术人员可以理解,所述示意图仅仅是自主式移动机器的示例,并不构成对自主式移动机器的限定, 可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述自主式移动机器还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述自主式移动机器的控制中心,利用各种接口和线路连接整个所述自主式移动机器的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述自主式移动机器的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、文字转换功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、文字消息数据等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中,所述自主式移动机器集成的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一个计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (13)

  1. 一种控制自主式移动机器移动的方法,其特征在于,包括:
    获取目标路径和自主式移动机器自身的当前状态;其中,所述当前状态包括当前速度以及当前位置;
    根据所述当前速度,计算得到至少一个预瞄距离;
    根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点;
    计算每个所述预瞄点到所述当前位置的横向偏差;其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离;
    根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;其中,所述参数匹配表定义了所述自主式移动机器在特定速度时特定横向偏差情况下的方向控制转角参数;
    根据所述方向控制转角参数控制所述自主式移动机器进行移动。
  2. 根据权利要求1所述的控制自主式移动机器移动的方法,其特征在于,在所述获取目标路径和自主式移动机器自身的当前状态之前,还包括:
    获取所述自主式移动机器在一定速度时不同横向偏差情况下的所有第一方向控制转角参数;
    获取所述自主式移动机器在一定横向偏差时不同速度情况下的所有第二方向控制转角参数;
    根据所有所述第一方向控制转角参数和所有所述第二方向控制转角参数,生成参数匹配表。
  3. 根据权利要求1所述的控制自主式移动机器移动的方法,其特征在于,在所述根据所述当前速度,计算得到至少一个预瞄距离之前,还包括:
    根据所述目标路径和所述当前状态建立跟踪坐标系;
    根据所述当前位置和所述跟踪坐标系,获得所述自主式移动机器的当前坐标;
    则所述计算每个所述预瞄点到所述当前位置的横向偏差具体为:
    根据所述跟踪坐标系,计算得到每个所述预瞄点的预瞄坐标;
    根据所述当前坐标以及所述预瞄坐标,计算每个所述预瞄点到所述当前位置的横向偏差。
  4. 根据权利要求1所述的控制自主式移动机器移动的方法,其特征在于,所述目标路径中包含多个路径点;则所述根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点,具体为:
    对于每一个预瞄距离:
    计算所述各个路径点与所述当前位置的距离,并将所述距离最小的路径点作为最近点;
    根据所述目标路径中的路径点的排序关系,从所述最近点开始获取各个路径点到所述当前位置的距离,直至首次获取到与当前位置的距离大于或者等于所述预瞄距离的第一路径点;
    根据所述目标路径,选取所述第一路径点的上一个路径点作为第二路径点;
    在所述第一路径点和所述第二路径点之间进行预设间隔的插值处理,得到插值点集;
    根据所述预瞄距离和所述插值点集,获得与所述预瞄距离对应的预瞄点。
  5. 根据权利要求4所述的控制自主式移动机器移动的方法,其特征在于,所述预瞄距离包括远距预瞄距离和近距预瞄距离,其中,所述远距预瞄距离为基于所述当前速度和预设的远距预瞄时间计算得出的距离。
  6. 根据权利要求1所述的控制自主式移动机器移动的方法,其特征在于,所述根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数,具体为:
    判断预设的参数匹配表中是否存在与所述横向偏差和所述当前速度同时匹配的横向偏差和速度;
    若是,则在所述参数匹配表中提取方向控制转角参数;
    若否,则根据预设的参数匹配表,对所述横向偏差和所述速度,利用线性插值法进行计算得到所述当前控制周期的方向控制转角参数。
  7. 根据权利要求1至6中任一项所述的控制自主式移动机器移动的方法,其特征在于,所述根据所述方向控制转角参数控制自主式移动机器进行移动,具体为:
    根据所述方向控制转角参数,所述横向偏差以及所述当前速度,计算所述当前控制周期与每个所述预瞄点对应的控制参数;
    根据每个所述预瞄点的所述控制参数和所述横向偏差,计算所述当前控制周期的目标方向控制转角控制量;
    根据所述目标方向控制转角控制量控制自主式移动机器进行移动。
  8. 根据权利要求7所述的控制自主式移动机器移动的方法,其特征在于,所述根据所述方向控制转角参数,所述横向偏差以及所述当前速度,计算所述当前控制周期与每个所述预瞄点对应的控制参数具体为:
    根据所述方向控制转角参数和所述横向偏差,计算所述当前控制周期与每个所述预瞄点对应的比例参数;
    根据所述当前速度,获得所述当前控制周期与每个所述预瞄点对应的积分参数和微分参数。
  9. 根据权利要求7所述的控制自主式移动机器移动的方法,其特征在于,所述预瞄点为至少两个;则所述根据每个所述预瞄点的所述控制参数和所述横向偏差,计算目标方向控制转角控制量,具体为:
    根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量;
    将每个所述控制输出量进行加权处理,得到方向控制转角控制量;
    对所述方向控制转角控制量进行限幅处理,得到所述当前控制周期的目标方向控制转角控制量。
  10. 根据权利要求9所述的控制自主式移动机器移动的方法,其特征在于,还包括:在非首个控制周期中,获取前N个控制周期中与所述当前控制周期中的每个预瞄点对应的历史横向偏差;
    则所述根据每个所述预瞄点的所述控制参数和所述横向偏差,计算每个所述预瞄点的控制输出量具体为:
    根据每个所述预瞄点的所述控制参数、所述横向偏差和所述历史横向偏差,计算每个所述预瞄点的控制输出量。
  11. 一种控制自主式移动机器移动的装置,其特征在于,包括:
    数据获取模块,用于获取目标路径和自主式移动机器自身的当前状态;其中,所述当前状态包括当前速度以及当前位置;
    预瞄距离计算模块,用于根据所述当前速度,计算得到至少一个预瞄距离;
    预瞄点获取模块,用于根据所述目标路径和所述至少一个预瞄距离,获得相应于每个预瞄距离的预瞄点;
    横向偏差计算模块,用于计算每个所述预瞄点到所述当前位置的横向偏差;其中,所述横向偏差为所述预瞄点到所述自主式移动机器当前的运动航向上的垂直距离;
    方向控制转角参数获取模块,用于根据所述横向偏差、所述当前速度以及预设的参数匹配表,获得当前控制周期的方向控制转角参数;其中,所述参数匹配表定义了所述自主式移动机器在特定速度时特定横向偏差情况下的方向控制转角值参数;
    移动控制模块,用于根据所述方向控制转角参数控制自主式移动机器进行移动。
  12. 一种自主式移动自主式移动机器,其特征在于,包括机器本体和控制器;其中,所述控制器包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至10中任意一项所述的控制自主式移动机器移动的方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如权利要求1至10中任意一项所述的控制自主式移动机器移动的方法。
PCT/CN2018/098532 2018-03-27 2018-08-03 控制自主式移动机器移动的方法、装置、机器及存储介质 WO2019184179A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/336,899 US11662736B2 (en) 2018-03-27 2018-08-03 Method and apparatus for controlling movement of autonomous mobile machine, machine, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810263018.9A CN110308717B (zh) 2018-03-27 2018-03-27 控制自主式移动机器移动的方法、装置、机器及存储介质
CN201810263018.9 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184179A1 true WO2019184179A1 (zh) 2019-10-03

Family

ID=68062371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098532 WO2019184179A1 (zh) 2018-03-27 2018-08-03 控制自主式移动机器移动的方法、装置、机器及存储介质

Country Status (3)

Country Link
US (1) US11662736B2 (zh)
CN (1) CN110308717B (zh)
WO (1) WO2019184179A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632933A (zh) * 2019-10-18 2019-12-31 鱼越号机器人科技(上海)有限公司 一种路径移动方法、机器人、计算机可读存储介质
CN111552297A (zh) * 2020-05-21 2020-08-18 深圳市海柔创新科技有限公司 导航方法及导航装置
CN112068570A (zh) * 2020-09-18 2020-12-11 拉扎斯网络科技(上海)有限公司 机器人的移动控制方法、装置及机器人

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110789530B (zh) * 2019-11-19 2021-04-09 中国科学院深圳先进技术研究院 一种四轮独立转向-独立驱动车辆轨迹跟踪方法和系统
CN112937580B (zh) * 2019-11-25 2023-04-14 宇通客车股份有限公司 一种目标路径跟踪方法与装置
CN111158368B (zh) * 2019-12-31 2024-02-02 深圳市优必选科技股份有限公司 一种双足机器人及其轨迹跟随方法和装置
CN111123951B (zh) * 2019-12-31 2024-02-06 深圳市优必选科技股份有限公司 一种双足机器人及其轨迹跟随方法和装置
CN114281066A (zh) * 2020-09-17 2022-04-05 顺丰科技有限公司 控制机器人运行的方法及其相关设备
CN114384902B (zh) * 2020-10-19 2024-04-12 中车株洲电力机车研究所有限公司 一种自动循迹控制方法及其系统
CN112678726B (zh) * 2020-12-18 2022-07-29 江苏智库智能科技有限公司 基于叉车式agv运动学模型的取货定位方法及系统
CN113552888B (zh) * 2021-07-29 2022-07-19 中国第一汽车股份有限公司 应用于无人车的行驶轨迹控制方法、装置、设备及介质
CN113844535B (zh) * 2021-09-29 2022-11-01 安徽江淮汽车集团股份有限公司 基于方向盘转矩的主动转向控制方法
CN114637296B (zh) * 2022-03-16 2023-05-16 中铁二院工程集团有限责任公司 一种prt车辆的循迹控制系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240334A1 (en) * 2004-04-23 2005-10-27 Nissan Motor Co., Ltd. Adaptive cruise control system for automotive vehicle
CN107153420A (zh) * 2017-05-25 2017-09-12 广州汽车集团股份有限公司 路径跟踪控制方法、装置及智能汽车
CN107292048A (zh) * 2017-07-05 2017-10-24 合肥工业大学 一种基于veDYNA车道保持方法及系统
CN107428337A (zh) * 2015-04-10 2017-12-01 日立汽车系统株式会社 车辆的行驶控制装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529037B2 (ja) * 1999-08-02 2004-05-24 日産自動車株式会社 車線追従装置
WO2006121087A1 (ja) * 2005-05-10 2006-11-16 Olympus Corporation 画像処理装置、画像処理方法および画像処理プログラム
CN100504694C (zh) * 2007-07-04 2009-06-24 华南农业大学 一种农业机械的导航控制方法
US8676466B2 (en) * 2009-04-06 2014-03-18 GM Global Technology Operations LLC Fail-safe speed profiles for cooperative autonomous vehicles
US20110098922A1 (en) * 2009-10-27 2011-04-28 Visteon Global Technologies, Inc. Path Predictive System And Method For Vehicles
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
JP5810843B2 (ja) * 2011-11-02 2015-11-11 アイシン・エィ・ダブリュ株式会社 レーン案内表示システム、方法およびプログラム
JP6128608B2 (ja) * 2014-08-19 2017-05-17 株式会社Soken 車両制御装置
CN104571112B (zh) * 2015-01-14 2017-02-22 中国科学院合肥物质科学研究院 基于转弯曲率估计的无人车横向控制方法
US20170057545A1 (en) * 2015-08-26 2017-03-02 Delphi Technologies, Inc. Gps data correction for automated vehicle
JP6259797B2 (ja) * 2015-10-22 2018-01-10 本田技研工業株式会社 車両走行制御装置
US9731755B1 (en) * 2016-02-16 2017-08-15 GM Global Technology Operations LLC Preview lateral control for automated driving
CN105676643B (zh) * 2016-03-02 2018-06-26 厦门大学 一种智能汽车转向和制动自适应协调控制方法
JP6808992B2 (ja) * 2016-06-17 2021-01-06 株式会社デンソー 走行支援装置
IT201600109633A1 (it) * 2016-10-31 2018-05-01 Magneti Marelli Spa Procedimento e sistema di controllo adattivo in un veicolo terrestre per l'inseguimento di un percorso, particolarmente in uno scenario di guida autonoma.
US10139830B2 (en) * 2016-12-29 2018-11-27 Automotive Research & Testing Center Automatic lane following control system and method for vehicles
JP6757273B2 (ja) * 2017-02-16 2020-09-16 日立オートモティブシステムズ株式会社 車載制御装置
CN110366513B (zh) * 2017-03-01 2022-09-13 本田技研工业株式会社 车辆控制系统、车辆控制方法及存储介质
US10379538B1 (en) * 2017-03-20 2019-08-13 Zoox, Inc. Trajectory generation using motion primitives
JP6589941B2 (ja) * 2017-06-06 2019-10-16 トヨタ自動車株式会社 操舵支援装置
US10427678B2 (en) * 2017-06-13 2019-10-01 Gm Global Technology Operations Llc. System and method for low speed lateral control of a vehicle
JP7084124B2 (ja) * 2017-11-06 2022-06-14 トヨタ自動車株式会社 運転支援制御システム
JP6970008B2 (ja) * 2017-12-25 2021-11-24 トヨタ自動車株式会社 車両制御システム
US10836395B2 (en) * 2018-11-16 2020-11-17 Great Wall Motor Company Limited Efficient optimal control with dynamic model for autonomous vehicle
EP3730384B1 (en) * 2019-04-24 2022-10-26 Aptiv Technologies Limited System and method for trajectory estimation
KR20220065955A (ko) * 2020-11-13 2022-05-23 현대자동차주식회사 횡방향 움직임의 자율 제어장치 및 그 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240334A1 (en) * 2004-04-23 2005-10-27 Nissan Motor Co., Ltd. Adaptive cruise control system for automotive vehicle
CN107428337A (zh) * 2015-04-10 2017-12-01 日立汽车系统株式会社 车辆的行驶控制装置
CN107153420A (zh) * 2017-05-25 2017-09-12 广州汽车集团股份有限公司 路径跟踪控制方法、装置及智能汽车
CN107292048A (zh) * 2017-07-05 2017-10-24 合肥工业大学 一种基于veDYNA车道保持方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632933A (zh) * 2019-10-18 2019-12-31 鱼越号机器人科技(上海)有限公司 一种路径移动方法、机器人、计算机可读存储介质
CN110632933B (zh) * 2019-10-18 2022-05-20 鱼越号机器人科技(上海)有限公司 一种路径移动方法、机器人、计算机可读存储介质
CN111552297A (zh) * 2020-05-21 2020-08-18 深圳市海柔创新科技有限公司 导航方法及导航装置
CN111552297B (zh) * 2020-05-21 2021-08-17 深圳市海柔创新科技有限公司 导航方法及导航装置
CN112068570A (zh) * 2020-09-18 2020-12-11 拉扎斯网络科技(上海)有限公司 机器人的移动控制方法、装置及机器人

Also Published As

Publication number Publication date
CN110308717A (zh) 2019-10-08
US20210341936A1 (en) 2021-11-04
US11662736B2 (en) 2023-05-30
CN110308717B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2019184179A1 (zh) 控制自主式移动机器移动的方法、装置、机器及存储介质
CN105867377B (zh) 一种农业机械自动导航控制方法
CN110673115B (zh) 雷达与组合导航系统的联合标定方法、装置、设备及介质
WO2018076725A1 (zh) 一种农机自动驾驶控制系统角度传感器自动标定方法
CN111703436B (zh) 一种自动驾驶车辆的控制方法及装置
CN110398963A (zh) 无轨导航纠偏控制方法、装置、存储介质及控制器
CN110286672A (zh) 机器人及其导航控制方法、导航控制装置以及存储介质
CN109189060B (zh) 移动机器人的点镇定控制方法及装置
CN111857152A (zh) 用于生成车辆控制信息的方法和装置
Wang et al. Autonomous maneuvers of a robotic tractor for farming
CN113126607B (zh) 一种机器人及其运动控制方法和装置
CN115752507A (zh) 基于二维码导航的在线单舵轮agv参数标定方法及系统
Yin Xiang et al. Development and evaluation of a general-purpose electric off-road robot based on agricultural navigation.
WO2022252390A1 (zh) 误差补偿方法、装置、计算机设备及存储介质
CN111189466A (zh) 机器人定位位置优化方法、电子设备及存储介质
CN113665591A (zh) 无人驾驶控制方法、装置、设备及介质
CN114115274A (zh) 一种农用轮式拖拉机路径跟踪输出反馈控制策略
CN114074674B (zh) 一种引导车辆历史轨迹曲线的获取方法及相关装置
CN113442854A (zh) 数据处理方法、装置、电子设备和存储介质
CN115655311A (zh) 一种基于扫描匹配的阿克曼型机器人里程计标定方法
CN113960921B (zh) 果园履带车辆视觉导航控制方法与系统
CN111221338B (zh) 一种路径跟踪的方法、装置、设备及存储介质
Zhang et al. Adaptive path tracking for unmanned ground vehicle
CN110231823B (zh) 一种双轮机器人的直接控制方法
Tormagov et al. Motion Control of Autonomous Wheeled Robots in Precision Agriculture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912128

Country of ref document: EP

Kind code of ref document: A1