WO2019183856A1 - 一种植保无人机作业的控制方法和控制装置 - Google Patents

一种植保无人机作业的控制方法和控制装置 Download PDF

Info

Publication number
WO2019183856A1
WO2019183856A1 PCT/CN2018/080955 CN2018080955W WO2019183856A1 WO 2019183856 A1 WO2019183856 A1 WO 2019183856A1 CN 2018080955 W CN2018080955 W CN 2018080955W WO 2019183856 A1 WO2019183856 A1 WO 2019183856A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
work
plant protection
coordinates
points
Prior art date
Application number
PCT/CN2018/080955
Other languages
English (en)
French (fr)
Inventor
黄宗继
Original Assignee
深圳市大疆软件科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆软件科技有限公司 filed Critical 深圳市大疆软件科技有限公司
Priority to CN201880014839.7A priority Critical patent/CN110573982B/zh
Priority to PCT/CN2018/080955 priority patent/WO2019183856A1/zh
Publication of WO2019183856A1 publication Critical patent/WO2019183856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present disclosure belongs to the technical field of drones, and particularly relates to a control method and a control device for planting a drone operation.
  • plant protection drones are often used to achieve spraying operations, and drugs, seeds, etc. can be sprayed.
  • the plant protection drone In order to reduce the workload of the operator, the plant protection drone usually uses the AB point operation mode in the actual operation.
  • the so-called AB point operation is to record the takeoff boundary point as point A, straight flight to reach point B, and then make the plant protection drone traverse the set distance. The plant protection drone will automatically follow the straight line distance of the two points of AB. Spraying without manual operation. In this process, manual intervention can also be carried out at any time to ensure the flexibility of the spraying operation.
  • An aspect of the present disclosure provides a control method for planting a drone operation, including:
  • Another aspect of the present disclosure provides a control device for planting a drone, comprising:
  • a memory for storing executable instructions
  • a processor for executing executable instructions stored in the memory to perform the following operations:
  • a further aspect of the present disclosure provides a computer readable storage medium having stored thereon executable instructions that, when executed by one or more processors, cause the one or more processors to perform the following operating:
  • Yet another aspect of the present disclosure provides a plant protection drone including the control device.
  • the embodiments of the present disclosure have at least the following beneficial effects: the user can avoid repeatedly setting the coordinates of points A, B, and E of the AB point job, thereby significantly improving the work efficiency of the plant protection operation.
  • FIG. 1 is a flow chart of a method of controlling a plant protection drone operation in accordance with an embodiment of the present disclosure
  • FIG. 2 schematically illustrates an AB work route in accordance with an embodiment of the present disclosure
  • FIG. 3 schematically illustrates an AB work route in accordance with another embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a control method for planting a drone operation, including:
  • S101 Obtain coordinates of point A and point B of the work start boundary point of the plant protection drone in the work area, and coordinates of the point E of the work end point and the traverse distance of the work.
  • Points A, B, and E are usually located at the boundary of the work area.
  • the plant protection drone can be moved to the designated location by the control device, and set to point A, point B, and point E, respectively, and their coordinates are recorded.
  • the traverse distance of the work can be set according to the type of the spray operation, the flying height, and the like.
  • S201 Generate a work line according to the points A, B, and E coordinates and the traverse distance of the job.
  • the work route can be determined. This step can be automatically completed by the processor in the control device.
  • S301 Control the plant protection drone to perform operations according to the operation line, and when the plant protection drone reaches the E point, the operation ends.
  • parameters such as flight height, flight speed, and spraying speed can be set. If there are high and low undulating terrain in the working area, parameters such as the pitch angle of the plant protection drone can be set to ensure uniform spraying operation. Sex and integrity.
  • the job parameters in the work area are automatically saved for use in the work again.
  • the coordinates of points A, B and E are necessary parameters for plant protection operations and should be used as default data.
  • Other operating parameters such as traverse distance, flight speed, flying height, spray speed, etc., can be selected and saved as needed. For example, when it is possible to perform the same plant protection operation again in the work area, all the parameters can be saved, and when the work is performed again, the plant protection operation can be performed without any setting. If the same plant protection operation is no longer needed, only key data such as coordinates A, B, and E can be saved.
  • Embodiments of the present disclosure provide a control device for planting a maintenance drone, including:
  • a memory for storing executable instructions
  • a processor for executing executable instructions stored in the memory to perform the following operations:
  • the working area is a rectangle. Before the job, the two ends of a boundary of the working area can be used as the starting boundary points A and B respectively, and one end of the other boundary opposite to the boundary is used as the working end point E. .
  • the traverse distance is determined according to the flying height of the plant protection drone, the spray width of the medicament, and the like.
  • the plant protection drone traverses at point B in a direction perpendicular to the starting edge AB.
  • the work route can be determined. This step can be automatically completed by the processor in the control device.
  • the plant protection drone After starting the operation, the plant protection drone performs the spraying operation along the working line according to the preset flight height, flight speed, spraying speed and other parameters. When the plant protection drone reaches the E point, the operation ends. All job parameters in the job area are automatically saved at this time. When the medicine spraying operation is performed again in this area, the saved job parameters are directly read, and the medicine spraying operation can be performed without any setting.
  • the working line is first generated according to the coordinates of point A and point B of the starting point of the job, and the coordinate of the point E of the working point and the traverse distance of the seeding operation, and then the plant protection drone is controlled to perform the seeding operation according to the working line.
  • the drone reaches the E point, the job ends and the coordinates of points A, B, and E are automatically saved.
  • the spraying operation is performed in the working area, the coordinates of points A, B, and E are read, and then the working line is regenerated according to the traverse distance of the spraying operation of the medicine, and then the plant protection drone is controlled according to the new working line.
  • the plant protection drone reaches the point E and ends the operation.
  • the working area 4 is a route of another plant protection operation of an embodiment of the present disclosure.
  • the working area is a parallelogram. Before the operation, the two ends of a boundary of the working area can be used as the starting boundary points A and B respectively, and one end of the other boundary opposite to the boundary is used as the working end point E. point.
  • the traverse distance is determined based on the actual plant protection operation.
  • the plant protection drone is traversed at point B at a predetermined angle ⁇ from the starting edge AB, which is an acute angle ⁇ formed by the adjacent sides of the parallelogram.
  • the positions of points A and B can be interchanged. That is, when the plant protection operation is performed again in the same work area, the plant protection drone can start work from point B and traverse at point A.
  • the plant protection drone after reading the coordinates of point A, point B, and point E, first obtain the current position of the plant protection drone, and calculate the current position of the plant protection drone and the starting boundary point A respectively.
  • the relative distance from the point B, the starting point is the point closer to the current position of the plant protection drone in points A and B, and the starting point is AB and the ending point is E.
  • Work line Then, the plant protection drone performs the operation according to the generated work line, and when the plant protection drone reaches the E point, the operation ends.
  • the traverse distance can be adjusted according to the direction of the starting edge AB to end at point E.
  • the user can avoid repeatedly setting the coordinates of points A, B, and E of the AB point operation, thereby significantly improving the work efficiency of the plant protection operation, and the plant protection is not
  • the flight parameters of the man-machine can read the saved data, or reset according to needs, and have better flexibility, so the scope of application of the present disclosure is relatively wide.
  • Another embodiment of the present disclosure provides a computer readable storage medium having stored thereon executable instructions that, when executed by one or more processors, cause the one or more processors to execute the following operating:
  • embodiments of the present disclosure can be implemented in the form of hardware and/or software (including firmware, microcode, etc.). Additionally, embodiments of the present disclosure can take the form of a computer readable storage medium storing executable instructions for use by or in connection with an instruction execution system (eg, one or more processors) .
  • an instruction execution system eg, one or more processors
  • a computer readable storage medium may be any medium that can contain, store, communicate, propagate or transport the instructions.
  • a computer readable storage medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium.
  • the computer readable storage medium include: a magnetic storage device such as a magnetic tape or a hard disk (HDD); an optical storage device such as a compact disk (CD-ROM); a memory such as a random access memory (RAM) or a flash memory; and/or Wired/wireless communication link.
  • a magnetic storage device such as a magnetic tape or a hard disk (HDD)
  • an optical storage device such as a compact disk (CD-ROM)
  • a memory such as a random access memory (RAM) or a flash memory
  • Wired/wireless communication link such as Wired/wireless communication link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种植保无人机作业的控制方法和控制装置,所述控制方法包括:获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离(S101);根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路(S201);控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业(S301);保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业(S401)。上述控制方法和控制装置避免重复设置A点、B点和E点坐标,从而显著提高植保作业的作业效率。

Description

一种植保无人机作业的控制方法和控制装置 技术领域
本公开属于无人机技术领域,具体涉及一种植保无人机作业的控制方法和控制装置。
背景技术
在农林植物保护作业中,经常会使用植保无人机来实现喷洒作业,可以喷洒药剂、种子等。为了减少操作者的工作量,植保无人机在实际作业中通常采用AB点作业的模式进行作业。所谓AB点作业,就是将起飞边界点记录为A点,直线飞行一定距离到达B点,然后使植保无人机横移已设定的距离,植保无人机将根据AB两点的直线距离自动喷洒作业,无需人工操作。在此过程中,还可以随时进行人工干预,从而保证喷洒作业的灵活性。
在实际工作中,设置AB点的操作比较繁琐,需要用户用肉眼准确设置AB点后,才能准确作业。目前,在同一块区域多次执行AB点作业时,还要重复进行这些繁琐操作,严重影响了作业效率。
公开内容
本公开的一方面提供了一种植保无人机作业的控制方法,包括:
获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
本公开的另一方面提供了一种植保无人机的控制装置,包括:
存储器,用于存储可执行指令;
处理器,用于执行存储器中存储的可执行指令,以执行如下操作:
获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
本公开的又一方面提供了一种计算机可读存储介质,其上存储有可执行指令,所述指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行以下操作:
获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
本公开的又一方面提供了一种植保无人机,其中包括所述控制装置。
从上述技术方案可以看出,本公开实施例至少具有以下有益效果:用户可以避免重复设置AB点作业的A点、B点和E点坐标,从而显著提高植保作业的作业效率。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为根据本公开实施例植保无人机作业的控制方法的流程图;
图2示意性示出了根据本公开一实施例的AB作业路线;
图3示意性示出了根据本公开另一实施例的AB作业路线。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
如图1所示,本公开实施例提供了一种植保无人机作业的控制方法,包括:
S101:获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离。
A点、B点和E点通常位于作业区域的边界,可以通过控制装置使植保无人机飞行到指定地点,分别将其设置为A点、B点和E点,并分别记录其坐标。
作业的横移距离可以根据喷洒作业的种类、飞行高度等进行设置。
S201:根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路。
A点、B点、E点坐标以及作业的横移距离确定以后,即可确定其作业路线,该步骤可由控制装置中的处理器自动完成。
S301:控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业。
在进行喷洒作业时,可以对飞行高度、飞行速度、喷洒速度等参数进行设置,如果作业区域中有高低起伏的地形,还可以设置植保无人机的俯仰角等参数,以确保喷洒作业的均匀性和完整性。
S401:保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
植保作业结束后,对该作业区域内的作业参数自动进行保存,以备再次作业时使用。其中A点、B点和E点的坐标是植保作业的必要参数,应当作为默认保存的数据。其它的作业参数,例如横移距离、飞行速度、飞行高度、喷洒速度等可根据需要选择保存。例如,当可能在该作业区域内再次进行相同的植保作业时,可以将所有的参数进行保存,当再次作业时,则无需进行任何设置即可进行植保作业。如果不再需要相同的植保作业时,则可只保存A点、B点和E点坐标等关键数据。
本公开实施例提供了一种植保无人机的控制装置,包括:
存储器,用于存储可执行指令;
处理器,用于执行存储器中存储的可执行指令,以执行如下操作:
获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
图3是本公开实施例的一个药剂喷洒作业的路线。该作业区域为矩形,作业前可将该作业区域某条边界的两端分别作为起始边界点A点和B点,并将与该条边界相对的另一条边界的一端点作为作业终点E点。根据植保无人机的飞行高度、药剂喷洒宽度等确定横移距离。植保无人机在B点在与起始边AB垂直的方向上横移。
A点、B点、E点坐标以及作业的横移距离确定以后,即可确定其作业路线,该步骤可由控制装置中的处理器自动完成。
在开始作业后,植保无人机按照预先设置的飞行高度、飞行速度、喷洒速度等参数沿着作业线路进行喷洒作业,当植保无人机到达E点时,结束作业。此时对该作业区域内的所有作业参数自动进行保存。当在该区域内再次进行药剂喷洒作业时,直接读取已保存的作业参数,无需进行任何设置即可进行药剂喷洒作业。
在本公开的另一个实施例中,需要在一作业区域内先后进行播种作业、药剂喷洒作业等。
在播种作业时,首先根据作业起始边界点A点、B点坐标,以及作业终点E点坐标和播种作业的横移距离生成作业线路,然后控制植保无人机按照作业线路进行播种作业,植保无人机到达E点时,结束作业,自动保存A点、B点和E点的坐标。
当在该作业区域内进行药剂喷洒作业,读取A点、B点和E点的坐标,然后根据药剂喷洒作业的横移距离重新生成作业线路,然后控制植保无人机按照新的作业线路进行药剂喷洒作业,植保无人机到达E点时,结束作业。
图4是本公开实施例的另一个植保作业的路线。该作业区域为平行四边形,作业前可将该作业区域某条边界的两端分别作为起始边界点A点和B点,并将与该条边界相对的另一条边界的一端点作为作业终点E点。根据实际的植保作业确定横移距离。植保无人机在B点在与起始边AB成预设角度α的方向上横移,所述预设角度为平行四边形相邻两边形成的锐角α。
在实际操作中,A点和B点的位置可以互换,即在同一作业区域再次进行植保作业时,植保无人机可以从B点开始作业,在A点处进行横移。
在本公开另一实施例中,在读取A点、B点和E点的坐标后,首先获取植保无人机的当前位置,计算植保无人机的当前位置分别与起始边界点A点和B点的相对距离,将起始边界点A点和B点中距所述植保无人机的当前位置较近的点作为起始点,并生成以AB为起始边,以E 为结束点的作业线路。然后,植保无人机按照生成的作业线路进行作业,植保无人机到达E点时,结束作业。
此时,可根据起始边AB的走向调节横移距离以便在E点结束。
通过采用本公开实施例所述的控制方法和控制装置进行植保作业时,用户可以避免重复设置AB点作业的A点、B点和E点坐标,从而显著提高植保作业的作业效率,并且植保无人机的飞行参数可以读取已保存的数据,或者根据需要重新设定,具有较好的灵活性,因此本公开的适用范围比较广泛。
本公开另一实施例提供了一种计算机可读存储介质,其上存储有可执行指令,所述指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行以下操作:
获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
应当理解,本公开实施例中的方法可以由可执行指令来实现。这些可执行程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器。
因此,本公开实施例的方法可以硬件和/或软件(包括固件、微代码等)的形式来实现。另外,本公开实施例可以采取存储有可执行指令的计算机可读存储介质的形式,该计算机可读存储介质可供指令执行系统(例如,一个或多个处理器)使用或者结合指令执行系统使用。在本公开实施例的上下文中,计算机可读存储介质可以是能够包含、存储、传送、传播或传输指令的任意介质。例如,计算机可读存储介质可以包括但不限于电、磁、光、电磁、红外或半导体系统、装置、器件或传播介 质。计算机可读存储介质的具体示例包括:磁存储装置,如磁带或硬盘(HDD);光存储装置,如光盘(CD-ROM);存储器,如随机存取存储器(RAM)或闪存;和/或有线/无线通信链路。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种植保无人机作业的控制方法,包括:
    获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
    根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
    控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
    保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
  2. 根据权利要求1所述的控制方法,其中,所述控制方法还包括保存作业线路供再次植保作业时选用。
  3. 根据权利要求1所述的控制方法,其中,再次进行植保作业时,读取A点、B点和E点的坐标后,还包括:获取重新设定的作业的横移距离,生成新的飞行路线。
  4. 根据权利要求1所述的控制方法,其中,所述控制方法还包括保存飞行速度、飞行高度和喷洒速度中的一个或多个参数供再次植保作业时选用。
  5. 根据权利要求1所述的控制方法,其中,在作业时,重新获取飞行速度、飞行高度和喷洒速度中的一个或多个参数。
  6. 根据权利要求1所述的控制方法,其中,所述作业区域为矩形时,控制植保无人机在B点在与起始边AB垂直的方向上横移。
  7. 根据权利要求1所述的控制方法,其中,所述作业区域为平行四边形时,控制植保无人机在B点在与起始边AB成预设角度的方向上横移,所述预设角度为平行四边形相邻两边形成的锐角。
  8. 根据权利要求1所述的控制方法,其中,在同一作业区域再次进行植保作业时,获取所述植保无人机的当前位置,将起始边界点A点 和B点中距所述植保无人机的当前位置较近的点作为起始点,生成以AB为起始边,以E为结束点的作业线路。
  9. 一种植保无人机的控制装置,包括:
    存储器,用于存储可执行指令;
    处理器,用于执行存储器中存储的可执行指令,以执行如下操作:
    获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
    根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
    控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
    保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
  10. 根据权利要求9所述的控制装置,其中,所述处理器还保存作业线路供再次植保作业时选用。
  11. 根据权利要求9所述的控制装置,其中,再次进行植保作业时,所述处理器读取A点、B点和E点的坐标后,获取重新设定的作业的横移距离,生成新的飞行路线。
  12. 根据权利要求9所述的控制装置,其中,所述处理器还保存飞行速度、飞行高度和喷洒速度中的一个或多个参数供再次植保作业时选用。
  13. 根据权利要求9所述的控制装置,其中,在作业时,所述处理器重新获取飞行速度、飞行高度和喷洒速度中的一个或多个参数。
  14. 根据权利要求9所述的控制装置,其中,所述作业区域为矩形时,所述控制装置控制植保无人机在B点在与起始边AB垂直的方向上横移。
  15. 根据权利要求9所述的控制装置,其中,所述作业区域为平行四边形时,所述控制装置控制植保无人机在B点在与起始边AB成预设角度的方向上横移,所述预设角度为平行四边形相邻两边形成的锐角。
  16. 根据权利要求9所述的控制装置,其中,在同一作业区域再次进行植保作业时,所述处理器获取所述植保无人机的当前位置,将起始边界点A点和B点中距所述植保无人机的当前位置较近的点作为起始点,生成以AB为起始边,以E为结束点的作业线路。
  17. 一种计算机可读存储介质,其上存储有可执行指令,所述指令在由一个或多个处理器执行时,可以使所述一个或多个处理器执行以下操作:
    获取植保无人机在作业区域中的作业起始边界点A点、B点坐标,以及作业终点E点坐标和作业的横移距离;
    根据所述A点、B点、E点坐标以及作业的横移距离生成作业线路;
    控制植保无人机按照所述作业线路进行作业,植保无人机到达E点时,结束作业;
    保存A点、B点和E点的坐标,在同一作业区域再次进行植保作业时,读取A点、B点和E点的坐标以生成作业线路,根据生成的作业线路进行作业,并于作业到达E点时结束作业。
  18. 一种植保无人机,包括权利要求9-16中任一项所述的控制装置。
PCT/CN2018/080955 2018-03-28 2018-03-28 一种植保无人机作业的控制方法和控制装置 WO2019183856A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880014839.7A CN110573982B (zh) 2018-03-28 2018-03-28 一种植保无人机作业的控制方法和控制装置
PCT/CN2018/080955 WO2019183856A1 (zh) 2018-03-28 2018-03-28 一种植保无人机作业的控制方法和控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080955 WO2019183856A1 (zh) 2018-03-28 2018-03-28 一种植保无人机作业的控制方法和控制装置

Publications (1)

Publication Number Publication Date
WO2019183856A1 true WO2019183856A1 (zh) 2019-10-03

Family

ID=68059449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080955 WO2019183856A1 (zh) 2018-03-28 2018-03-28 一种植保无人机作业的控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN110573982B (zh)
WO (1) WO2019183856A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325873A (zh) * 2021-06-11 2021-08-31 武汉华武合胜网络科技有限公司 一种无人机植保作业数据采集分析方法、系统及计算机存储介质
CN113589841A (zh) * 2021-07-21 2021-11-02 杭州启飞智能科技有限公司 无人机航线生成方法、无人机及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932526A (zh) * 2015-05-29 2015-09-23 深圳市大疆创新科技有限公司 一种飞行设备的控制方法及飞行设备
CN105929846A (zh) * 2016-06-08 2016-09-07 深圳高科新农技术有限公司 基于无人机的喷药方法及装置
CN106020233A (zh) * 2016-07-08 2016-10-12 聂浩然 无人机植保作业系统、用于植保作业的无人机及控制方法
CN106598070A (zh) * 2016-12-14 2017-04-26 东北农业大学 一种农用植保无人机喷施过程中多障碍、小障碍下的避障方法及无人机
CN107037827A (zh) * 2017-04-14 2017-08-11 合肥工业大学 无人机航空作业任务分配与航迹规划联合优化方法及装置
US9734397B1 (en) * 2016-11-04 2017-08-15 Loveland Innovations, LLC Systems and methods for autonomous imaging and structural analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160054737A1 (en) * 2014-08-22 2016-02-25 Cape Productions Inc. Methods and Apparatus for Unmanned Aerial Vehicle Autonomous Aviation
CN107021225B (zh) * 2016-01-29 2023-06-20 广东飞翔达科技有限公司 一种农业无人机自动喷洒方法及农业无人机
WO2017185359A1 (zh) * 2016-04-29 2017-11-02 深圳市大疆创新科技有限公司 无人机的喷洒控制方法和无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932526A (zh) * 2015-05-29 2015-09-23 深圳市大疆创新科技有限公司 一种飞行设备的控制方法及飞行设备
CN105929846A (zh) * 2016-06-08 2016-09-07 深圳高科新农技术有限公司 基于无人机的喷药方法及装置
CN106020233A (zh) * 2016-07-08 2016-10-12 聂浩然 无人机植保作业系统、用于植保作业的无人机及控制方法
US9734397B1 (en) * 2016-11-04 2017-08-15 Loveland Innovations, LLC Systems and methods for autonomous imaging and structural analysis
CN106598070A (zh) * 2016-12-14 2017-04-26 东北农业大学 一种农用植保无人机喷施过程中多障碍、小障碍下的避障方法及无人机
CN107037827A (zh) * 2017-04-14 2017-08-11 合肥工业大学 无人机航空作业任务分配与航迹规划联合优化方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325873A (zh) * 2021-06-11 2021-08-31 武汉华武合胜网络科技有限公司 一种无人机植保作业数据采集分析方法、系统及计算机存储介质
CN113589841A (zh) * 2021-07-21 2021-11-02 杭州启飞智能科技有限公司 无人机航线生成方法、无人机及计算机可读存储介质
CN113589841B (zh) * 2021-07-21 2024-04-02 杭州启飞智能科技有限公司 无人机航线生成方法、无人机及计算机可读存储介质

Also Published As

Publication number Publication date
CN110573982A (zh) 2019-12-13
CN110573982B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
US11514671B2 (en) Semantic segmentation to identify and treat plants in a field and verify the plant treatments
WO2019183856A1 (zh) 一种植保无人机作业的控制方法和控制装置
KR102263095B1 (ko) 식물보호용 무인기의 작업방법과 장치
KR102650088B1 (ko) 살포 작업의 표시 방법, 장치 및 시스템
CN109144100A (zh) 喷洒控制方法、装置、地面站及存储介质
WO2019084767A1 (zh) 可移动设备作业控制方法及装置、路径规划方法及装置
JP2018111429A (ja) ドローンを使用した農薬散布方法
CN106774394B (zh) 农用植保无人机喷施过程中单障碍、小障碍下的避障方法及无人机
CN108052562A (zh) 一种微型处方图生成方法及装置
WO2021056789A1 (zh) 自主机器人及其行走路径规划方法、装置和存储介质
CN113064407B (zh) 全区域覆盖的清扫方法、装置、清扫机器人及存储装置
CN109945868B (zh) 一种无人机目标照射航线自动规划方法
WO2020133242A1 (zh) 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
US20230276754A1 (en) Crop irrigation method and apparatus based on salt leaching fraction, device and storage medium
CN109062171A (zh) 无人机植保作业控制方法、系统、装置及存储介质
CN107656536A (zh) 一种用于植保无人机的自动喷洒方法
KR102495540B1 (ko) 지적도 기반 방제 장치 및 방제 방법
KR102089423B1 (ko) 시비 및 방제를 위한 실시간 드론 제어 방법 및 실시간 드론 제어 시스템
WO2020078259A1 (zh) 作业参数配置方法及装置
WO2021081896A1 (zh) 喷洒无人机的作业规划方法、系统和设备
JP6654597B2 (ja) 情報処理装置、プログラム、情報処理方法、設計情報を生産する方法及びデータ構造
CN112056291B (zh) 植保无人机精准变量作业方法及装置
CN112799416A (zh) 航线生成方法、设备和系统、无人作业系统及存储介质
KR20200067638A (ko) 농업용 드론을 이용한 살포 시스템
CN111488016A (zh) 植保无人机精准定量作业方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18912509

Country of ref document: EP

Kind code of ref document: A1