WO2019182117A1 - Busbar, battery pack, and electrical device - Google Patents

Busbar, battery pack, and electrical device Download PDF

Info

Publication number
WO2019182117A1
WO2019182117A1 PCT/JP2019/012110 JP2019012110W WO2019182117A1 WO 2019182117 A1 WO2019182117 A1 WO 2019182117A1 JP 2019012110 W JP2019012110 W JP 2019012110W WO 2019182117 A1 WO2019182117 A1 WO 2019182117A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
layer
bus bar
conductive layer
notch
Prior art date
Application number
PCT/JP2019/012110
Other languages
French (fr)
Japanese (ja)
Inventor
宏和 飯塚
鈴木 潤
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Priority to JP2020507933A priority Critical patent/JP7389019B2/en
Publication of WO2019182117A1 publication Critical patent/WO2019182117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bus bar, an assembled battery, and an electric device.
  • This application claims priority based on Japanese Patent Application No. 2018-056556 for which it applied to Japan on March 23, 2018, and uses the content here.
  • assembled batteries configured by connecting a plurality of single cells (lithium ion batteries or the like) are used to increase the capacity.
  • the plurality of single cells are connected in parallel or in series via a bus bar made of metal or the like, for example. It is desired that the bus bar can be easily connected to the unit cell.
  • An object of one embodiment of the present invention is to provide a bus bar, an assembled battery, and an electric device that can easily connect a plurality of single cells constituting the assembled battery.
  • a first aspect of the present invention is a bus bar that is electrically connected to a battery having a first electrode terminal and a second electrode terminal.
  • the bus bar has a structure in which a first insulating layer, a first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer are stacked in this order.
  • a part of the first conductive layer is exposed as a first current-carrying portion that can be electrically connected to the first electrode terminal.
  • a part of the second conductive layer is exposed as a second current-carrying portion that can be electrically connected to the second electrode terminal.
  • a first notch that exposes the first current-carrying portion is formed in the first insulating layer.
  • a second notch for exposing the second current-carrying portion is formed in the first insulating layer, the first conductive layer, and the second insulating layer.
  • a first notch that exposes the first current-carrying portion is formed in the first insulating layer.
  • the bus bar has a second notch that exposes the second current-carrying portion in the third insulating layer.
  • a fourth aspect of the present invention is an assembled battery including the bus bar according to any one of the first to third aspects and a plurality of the batteries. At least one of the first electrode terminals is electrically connected to the first energization unit. At least one of the second electrode terminals is electrically connected to the second energization unit.
  • the fifth aspect of the present invention has the following configuration.
  • the battery In the assembled battery of the fourth aspect, the battery has a flat shape.
  • the battery in the assembled battery according to the fourth or fifth aspect, includes a battery body and a housing body having an internal space for housing the battery body.
  • the said container is comprised from the laminated body by which the metal layer and the resin layer were laminated
  • the resin layer is directed toward the internal space.
  • the assembled battery according to any one of the fourth to sixth aspects further includes a battery outer package that covers the battery.
  • the battery exterior body includes at least a pair of facing exterior plates. The exterior plates abut on each other at a plurality of abutting portions at intervals in the width direction. Each of the batteries is accommodated in a plurality of cylindrical portions defined by the contact portions.
  • the eighth aspect of the present invention is the assembled battery of the seventh aspect, further comprising a thermal diffusion sheet that contacts two or more of the plurality of batteries via the battery outer package.
  • the thermal diffusion sheet has a thermal conductivity higher than the thermal conductivity at the contacted surface of the battery exterior body.
  • a ninth aspect of the present invention is an electric device including the assembled battery according to any one of the fourth to eighth aspects and a drive mechanism that is driven by the assembled battery.
  • the bus bar has a structure in which a first resin layer, a first conductive layer, a second resin layer, a second conductive layer, and a third resin layer are laminated in this order.
  • a first notch is formed in the first resin layer to expose a first current-carrying portion that is a part of the first conductive layer and can be electrically connected to the first electrode terminal. Yes.
  • the second resin layer, the first conductive layer, and the second resin layer are part of the second conductive layer and can be electrically connected to the second electrode terminal.
  • a second notch that exposes the current-carrying portion is formed.
  • FIG. 1st Embodiment It is a disassembled perspective view which shows the assembled battery using the bus bar of 1st Embodiment. It is a perspective view after the assembly of the assembled battery shown in FIG. It is a perspective view which shows the example of the cell used for the assembled battery shown in FIG. It is a perspective view of a bus bar and a single cell shown in FIG. It is a disassembled perspective view of the bus bar shown in FIG. It is a block diagram of the other example of the assembled battery using the bus bar shown in FIG. It is a schematic diagram which decomposes
  • FIG. 1 It is a block diagram of the further another example of the assembled battery using the bus bar shown in FIG. It is a disassembled perspective view which shows the example of the connection structure of the lead
  • FIG. 1 is an exploded perspective view showing an assembled battery 10 using the bus bar 3 of the embodiment.
  • FIG. 2 is a perspective view of the assembled battery 10 after assembly.
  • FIG. 3 is a perspective view showing an example of the unit cell 1 used in the assembled battery 10.
  • the assembled battery 10 includes a plurality of single cells 1 (batteries), a battery outer package 2, and a bus bar 3.
  • the assembled battery 10 includes one or a plurality of battery exterior bodies 2.
  • the assembled battery 10 shown in FIG. 1 includes one battery outer body 2.
  • the battery exterior body 2 includes a pair of exterior plates 6 and 6 facing each other.
  • the exterior plates 6 and 6 are referred to as a first exterior plate 6A and a second exterior plate 6B in order from the top in FIG.
  • the exterior plate 6 is made of, for example, a metal or a non-metallic material (for example, resin).
  • the metal constituting the exterior plate 6 may be, for example, copper, nickel, iron, stainless steel, aluminum, or an alloy including one or more of these.
  • Non-metallic materials constituting the exterior plate 6 include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT); polyolefin resins such as polypropylene; polyamide resins such as nylon (Ny) Polyimide resin; fluorine resin; acrylic resin; polyurethane resin and the like.
  • the exterior plate 6 may have a single layer structure or a multilayer structure.
  • the exterior plate 6 may be a multilayer structure including a metal layer and a non-metal layer.
  • the exterior plate 6 is formed in a rectangular shape, for example, a rectangular shape in plan view.
  • the X direction is the width direction of the exterior plate 6.
  • the Y direction is an extending direction orthogonal to the X direction in a plane along the exterior plate 6 (for example, the substrate portion 11).
  • the Z direction is a direction orthogonal to the X direction and the Y direction, and is the thickness direction of the exterior plate 6. Plan view means viewing from the Z direction.
  • the facing exterior plates 6 and 6 are in contact with each other at a plurality of contact portions 7.
  • the contact portion 7 is formed in a band shape having a constant width along the Y direction, for example.
  • the plurality of contact portions 7 are formed at intervals in the X direction.
  • a portion of the exterior plate 6 between the contact portions 7 and 7 adjacent to each other in the X direction is referred to as an intermediate portion 8 (non-contact portion).
  • the intermediate portion 8 includes a substrate portion 11 and a pair of side plate portions 12 and 12 that are inclined with respect to the substrate portion 11.
  • the substrate unit 11 is formed along the XY plane, for example.
  • the inner surface of the substrate portion 11 of the first exterior plate 6A is in surface contact with one surface of the unit cell 1.
  • the inner surface of the substrate portion 11 of the second exterior plate 6B is in surface contact with the other surface of the unit cell 1.
  • the side plate portions 12 and 12 extend from both side edges of the substrate portion 11 toward the contact portions 7 and 7, respectively.
  • the side plate portions 12 and 12 are inclined and extended so as to approach the mating exterior plate 6 while being widened from both side edges of the substrate portion 11.
  • the side plate portions 12 and 12 have a flat shape and are inclined with respect to the substrate portion 11 at an angle ⁇ 1 (0 ° ⁇ 1 ⁇ 90 °) (see FIG. 1).
  • the intermediate portion 8 has a bent shape that protrudes in a direction (outward) away from the counterpart exterior plate 6 with respect to the XY plane passing through the contact portions 7 and 7.
  • the intermediate portions 8 and 8 of the facing exterior plates 6 and 6 form a hollow rectangular tubular portion 14.
  • the internal space of the cylindrical portion 14 is a battery housing portion 15.
  • the cylindrical portion 14 is partitioned by the contact portions 7 and 7.
  • the exterior plates 6 and 6 have two or more cylindrical portions 14 arranged in the width direction (X direction).
  • the number of cylindrical portions formed by the pair of facing exterior plates is preferably 2 or more, and can be, for example, 2 to 200.
  • the exterior plates 6 and 6 constituting the battery exterior body 2 are in contact with each other at four contact portions 7 at intervals in the X direction. Therefore, the battery outer package 2 has three cylindrical portions 14. The exterior plates 6 and 6 are all formed continuously over the three cylindrical portions 14.
  • the cylindrical portion 14 has a hexagonal cylindrical shape including the substrate portion 11 and the side plate portion 12.
  • One intermediate portion has a substrate portion and a pair of side plate portions that are inclined so as to approach the counterpart plate while being widened, and the other intermediate portion is the substrate portion and the opposite plate while being widened.
  • substrate parts and a side plate part is a hexagonal cylinder shape. It is preferable that the cylindrical portion is a hexagonal cylindrical shape because the strength of the battery outer body is improved.
  • the contact portions 7 and 7 can also be bonded to each other by an adhesive layer 9 (see FIG. 1) made of an adhesive.
  • adhesives for bonding the contact portions 7 and 7 include polyolefin adhesives, urethane adhesives, epoxy adhesives, acrylic adhesives, urethane adhesives, nylon adhesives, and polyester adhesives. An agent etc. can be mentioned.
  • the adhesive may be an insulating material.
  • the honeycomb in which the plurality of cylindrical portions 14 are regularly arranged is a structure.
  • the number of battery outer bodies 2 may be one or two or more (for example, 2 to 20).
  • the plurality of battery exterior bodies 2 can be stacked in the thickness direction (Z direction).
  • the cell 1 is, for example, a lithium ion battery.
  • the unit cell 1 includes a battery body 50 and a container 51.
  • the container 51 includes a tray-shaped container main body 52 and a lid 53 that closes the opening of the container main body 52.
  • the housing 51 has an internal space for housing the battery main body 50.
  • the container 51 is formed by overlapping the container body 52 and the lid 53 and heat-sealing the peripheral edge 54.
  • Reference numeral 55 denotes a positive electrode lead (first electrode terminal) connected to the electrode (positive electrode) of the battery body 50.
  • Reference numeral 56 denotes a negative electrode lead (second electrode terminal) connected to the electrode (negative electrode) of the battery body 50.
  • the positive electrode lead 55 and the negative electrode lead 56 extend from one end of the container 51.
  • the battery body 50 includes, for example, a positive electrode plate (not shown), a positive electrode active material layer (not shown) in contact with the positive electrode plate, a negative electrode plate (not shown), and a negative electrode active material layer (not shown) in contact with the negative electrode plate. And a separator (not shown) that separates the positive electrode active material layer and the negative electrode active material layer, and an electrolyte (not shown).
  • the positive electrode plate and the negative electrode plate are made of metal, for example.
  • the positive electrode active material layer includes, for example, a positive electrode active material such as a lithium-based material.
  • the negative electrode active material layer includes a negative electrode active material such as a carbon-based material.
  • the battery body 50 is preferably flat and has a constant thickness.
  • the container main body 52 and the lid part 53 that constitute the container 51 may be constituted by, for example, a laminate including a metal layer 57 and a resin layer 58 laminated on the metal layer 57.
  • the metal layer 57 is made of a metal such as aluminum or stainless steel.
  • the resin layer 58 is made of a resin such as polyethylene or polypropylene.
  • the container 51 is configured with the resin layer 58 facing the internal space.
  • the laminate is formed on the metal layer, the first resin layer laminated on the first surface of the metal layer, and the second surface of the metal layer (the surface opposite to the first surface).
  • a structure including a laminated second resin layer that is, a resin layer / metal layer / resin layer structure
  • This structure is preferable from the viewpoint of processability and durability of the laminate.
  • the single cell 1 has a flat shape and is accommodated in the battery accommodating portion 15 (see FIG. 2) of the battery outer package 2 with the thickness direction in the Z direction.
  • the unit cell 1 having a flat shape means that the thickness dimension (Z direction dimension) of the unit cell 1 is smaller than the width direction (X direction) dimension and the extending direction (Y direction) dimension. . Since the unit cell 1 has a flat shape, the assembled battery 10 can be thinned.
  • the single cells 1 are respectively accommodated in a plurality (three in FIG. 2) of cylindrical portions 14. Since the unit cell 1 is accommodated in the cylindrical portion 14, the unit cell 1 is externally mounted on the battery exterior body 2. It is preferable that the unit cell 1 is accommodated in the cylindrical part 14 so that insertion / extraction is possible.
  • FIG. 4 is a perspective view of the bus bar 3 and the cell 1.
  • FIG. 5 is an exploded perspective view of the bus bar 3.
  • the bus bar 3 includes a first resin layer 31, a first conductive layer 32, a second resin layer 33, a second conductive layer 34, and a third resin layer 35 in this order. It has a laminated structure.
  • First resin layer 31 first insulating layer
  • first conductive layer 32 second resin layer 33
  • second conductive layer 34 second insulating layer
  • third resin layer 35 The third insulating layer is laminated in the length direction.
  • the bus bar 3 is a sheet-like laminate including three resin layers 31, 33 and 35 and two conductive layers 32 and 34.
  • the bus bar is configured by laminating a plurality of resin layers and one or a plurality of conductive layers.
  • the bus bar is a laminate including a resin layer and a conductive layer, and the resin layer is disposed on the outermost surface side. For example, the resin layers and the conductive layers are alternately stacked. Since the bus bar is a sheet-like laminate, there is an advantage that it is easy to process when an assembled battery is manufactured.
  • the first conductive layer 32 is laminated on the first surface 31 a of the first resin layer 31.
  • the second resin layer 33 is laminated on the first surface 32a of the first conductive layer 32 (the surface opposite to the surface on the first resin layer 31 side).
  • the second conductive layer 34 is laminated on the first surface 33a of the second resin layer 33 (the surface opposite to the surface on the first conductive layer 32 side).
  • the third resin layer 35 is laminated on the first surface 34a of the second conductive layer 34 (the surface opposite to the surface on the second resin layer 33 side).
  • the bus bar 3 is formed in a strip shape.
  • the bus bar 3 extends in the X direction.
  • the width direction of the bus bar 3 coincides with the Y direction.
  • the bus bar 3 is parallel to the XY plane.
  • the resin layers 31, 33, 35 and the conductive layers 32, 34 can also be formed in a strip shape having the same width.
  • the resin layers 31, 33, and 35 can be wider than the conductive layers 32 and 34. Making the widths of the resin layers 31, 33, 35 wider than the widths of the conductive layers 32, 34 is preferable from the viewpoint of preventing a short circuit between the conductive layers 32, 34.
  • the width of the conductive layer can be 3 to 50 mm, for example, and can be 5 to 20 mm. When the conductive layer has a certain width (for example, 3 mm or more), there is an advantage that current collection is facilitated.
  • the bus bar 3 shown in FIG. 4 and FIG. 5 is a bus bar for an assembled battery that can easily connect a plurality of single cells constituting the assembled battery.
  • an electronic circuit, an electronic device, and an electric device It can be used as a member.
  • the bus bar is strip-like and thin, and has an effect that it can be easily connected to a terminal.
  • the first conductive layer 32 and the second conductive layer 34 are made of, for example, metal.
  • the metal constituting the conductive layers 32 and 34 include copper, aluminum, stainless steel, nickel, and iron.
  • the metal constituting the conductive layers 32 and 34 may be an alloy including two or more of these.
  • the conductive layers 32 and 34 are metal foils containing, for example, one or more of copper, aluminum, stainless steel, nickel, and iron.
  • the conductive layers 32 and 34 may have a structure having a base metal layer and a plating layer formed on the surface thereof. A base metal layer and a plating layer are comprised, for example from the above-mentioned metal.
  • the conductive layers 32 and 34 may have a structure including a base metal layer made of copper and a nickel plating layer.
  • the thickness of the conductive layers 32 and 34 is not particularly limited, but can be, for example, about 20 to 500 ⁇ m, or about 50 to 400 ⁇ m.
  • a metal is preferable at a conductive point.
  • the first resin layer 31, the second resin layer 33, and the third resin layer 35 are made of, for example, a resin film.
  • the resin constituting the resin layers 31, 33, and 35 include polyolefin (polyethylene, polypropylene, etc.), polyester, polyamide, polyimide, polyurethane, fluororesin, acrylic resin, and the like.
  • polyester include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • a resin film having heat fusion properties is preferable, and polyolefin (polyethylene, polypropylene, etc.) is preferable.
  • Resin layers 31, 33, and 35 are insulating layers having insulating properties.
  • the resin film may be an unstretched film, or a uniaxially stretched or biaxially stretched film.
  • the thickness of the resin layers 31, 33, and 35 is not particularly limited, but can be, for example, about 10 to 500 ⁇ m, and can be about 100 to 300 ⁇ m.
  • the material and film thickness of the resin layers 31, 33, and 35 may be different in each layer. The material and thickness of each layer can also be selected individually.
  • the first resin layer 31 has one or more first notches 36 formed therein.
  • the first notch 36 can be rectangular when viewed from the thickness direction (Z direction) of the bus bar 3.
  • a plurality of first notches 36 are formed in the first resin layer 31.
  • the plurality of first notches 36 are formed at intervals in the length direction of the bus bar 3.
  • the first notch 36 may have a shape other than a rectangle, for example, a semicircular shape, but is preferably rectangular from the viewpoint of connection with a lead. As shown in FIG. 5, the first notch 36 is formed at a position including the first side edge 31 b of the first resin layer 31. The first notch 36 is formed in a concave shape starting from the first side edge 31b toward the second side edge 31c. For example, the first cutout 36 is formed by two opposing edges 36a and 36a extending in the Y direction from the first side edge 31b toward the second side edge 31c, and a back edge 36b along the X direction. This is a rectangular cutout. As shown in FIG. 4, the width of the first notch 36 (the dimension in the X direction) is the same as the width of the first lead (for example, the positive electrode lead 55) connected to the first current-carrying part 41, Greater than this width.
  • a part of the first conductive layer 32 is exposed by forming the first notch 36 in the first resin layer 31.
  • This exposed portion is referred to as a first energization unit 41.
  • the first energization part 41 is a partial region of the second surface 32 b (the surface opposite to the first surface 32 a) of the first conductive layer 32.
  • the tip of the first lead (for example, the positive electrode lead 55) is in contact with the first energization unit 41. It is preferable that the front end portion of the first lead is overlapped with the first energization portion 41 and is in surface contact.
  • one or a plurality of second notches 37 are formed in the first resin layer 31, the first conductive layer 32, and the second resin layer 33.
  • the second notch 37 is formed by a notch 31 d of the first resin layer 31, a notch 32 b of the first conductive layer 32, and a notch 33 b of the second resin layer 33.
  • the notches 31d, 32b, and 33b have the same shape when viewed from the thickness direction (Z direction) of the bus bar 3, and are in positions that overlap each other.
  • the second notch 37 is a general term for the notches 31d, 32b, and 33b.
  • a plurality of second notches 37 are formed in the first resin layer 31, the first conductive layer 32, and the second resin layer 33.
  • the plurality of second notches 37 are formed at intervals in the length direction of the bus bar 3.
  • the second notch 37 can be rectangular when viewed from the thickness direction (Z direction) of the bus bar 3.
  • the second notch 37 may have a shape other than a rectangle, for example, a semicircular shape, but is preferably rectangular from the viewpoint of connection with a lead.
  • the second notch 37 is formed at a position including the resin layers 31 and 33 and the first side edge of the conductive layer 32.
  • the second notch 37 is formed in a concave shape from the first side edge as a starting point toward the second side edge.
  • the notch 31d of the first resin layer 31 includes two opposing edges 31d1 and 31d1 extending in the Y direction from the first side edge 31b toward the second side edge 31c, and a back edge 31d2 along the X direction.
  • the notch 32b and the notch 33b have the same rectangular shape as the notch 31d.
  • the width (dimension in the X direction) of the second notch 37 is the same as or larger than the width of the second lead (for example, the negative electrode lead 56 shown in FIG. 4) connected to the second current-carrying portion 42. large.
  • a part of the second conductive layer 34 is exposed by forming the second notch 37 in the resin layers 31 and 33 and the conductive layer 32. As shown in FIG. 4, this exposed portion is referred to as a second energization unit 42.
  • the second energization portion 42 is a partial region of the second surface 34 b (the surface opposite to the first surface 34 a) of the second conductive layer 34.
  • the tip of the second lead (for example, the negative electrode lead 56) is in contact with the second energization unit 42. It is preferable that the tip of the second lead is overlapped with the second energization part 42 to make a surface contact.
  • the second conductive layer 34 and the second lead are electrically connected when the second lead comes into contact with the second energization portion 42.
  • the first notch 36 and the second notch 37 are different from each other in the position in the length direction of the bus bar 3.
  • the bus bar 3 is formed with a plurality of notch groups 40 each having one first notch 36 and one second notch 37.
  • the first notch 36 and the second notch 37 constituting the notch group 40 are formed at intervals in the length direction of the bus bar 3.
  • the arrangement order of the first notch 36 and the second notch 37 is preferably common to the plurality of notch groups 40.
  • three first notches 36 and three second notches 37 are alternately formed in the length direction of the bus bar 3.
  • the bus bar 3 is preferably fixed by being sandwiched between the contact portions 7 and 7 of the exterior plates 6 and 6.
  • the bus bar 3 or the leads 55 and 56 can be arranged in a planar shape without being bent. It can also be stacked on the plate 6.
  • the first leads for example, positive electrode leads 55
  • Second leads for example, negative electrode leads 56
  • the plurality of single cells 1 are connected in parallel by the bus bar 3.
  • FIG. 6 is a configuration diagram of an assembled battery 110 which is another example of the assembled battery using the bus bar 3.
  • FIG. 7 is an exploded view showing a part of the battery pack 110 (part indicated by I in FIG. 6).
  • FIG. 8 is a schematic diagram showing a part of the battery 110 (part indicated by II in FIG. 7) in an expanded manner.
  • FIG. 9 is a schematic diagram of the assembled battery 110.
  • symbol is attached
  • the assembled battery 110 is configured by stacking a plurality of battery units 11 (11A to 11G).
  • the battery unit 11 includes a plurality of single cells 1, a battery outer package 2, and a bus bar 3 (see FIGS. 1 and 2).
  • the battery unit 11 has substantially the same configuration as the assembled battery 10 shown in FIGS. 1 and 2.
  • the positive electrode lead 55 of the cell 1 (cell 1A) is connected to the bus bar 3 (first layer bus bar 3A).
  • the negative electrode lead 56 of the unit cell 1 (unit cell 1A) is electrically connected to the second conductive layer 34 of the bus bar 3 (first layer bus bar 3A).
  • One end portion of the second conductive layer 34 of the first layer bus bar 3A is connected to one end portion of the second conductive layer 34 of the second layer bus bar 3B and the connection portion 38 (first connection portion 38A). Is electrically connected.
  • the positive electrode lead 55 of the unit cell 1 (unit cell 1B) is electrically connected to the second conductive layer 34 of the bus bar 3 (second layer bus bar 3B).
  • the negative electrode lead 56 of the unit cell 1 (unit cell 1B) is electrically connected to the first conductive layer 32 of the bus bar 3 (second layer bus bar 3B).
  • the other end portion of the first conductive layer 32 of the second layer bus bar 3B is connected to the other end portion of the first conductive layer 32 of the third layer bus bar 3C and the connection portion 38 (second connection portion 38B). Is electrically connected.
  • the positive electrode lead 55 of the unit cell 1 (unit cell 1C) is electrically connected to the first conductive layer 32 of the bus bar 3 (third layer bus bar 3C). ing.
  • the negative electrode lead 56 of the unit cell 1 (unit cell 1C) is electrically connected to the second conductive layer 34 of the bus bar 3 (third layer bus bar 3C).
  • One end portion of the second conductive layer 34 of the third layer bus bar 3C is connected to one end portion of the second conductive layer 34 of the fourth layer bus bar 3D and the connection portion 38 (third connection portion 38C). Is electrically connected.
  • the positive electrode lead 55 of the unit cell 1 (unit cell 1D) is electrically connected to the second conductive layer 34 of the bus bar 3 (fourth layer bus bar 3D). ing.
  • the negative electrode lead 56 of the unit cell 1 (unit cell 1D) is electrically connected to the first conductive layer 32 of the bus bar 3 (fourth layer bus bar 3D).
  • the assembled battery 110 can expand a plurality of stacked battery units 11.
  • the assembled battery 110 can have a structure in which a plurality of battery units 11 including a plurality of single cells 1 arranged in parallel are prepared and the plurality of battery units 11 are arranged in series.
  • a plurality of battery units 11 including a plurality of single cells 1 arranged in parallel are prepared and the plurality of battery units 11 are arranged in series.
  • three unit cells 1 (battery group) constituting the battery unit 11 are connected in parallel by the bus bar 3.
  • the seven battery units 11 are connected in series.
  • a plurality of single cells 1 are connected in parallel by a bus bar 3.
  • the bus bar 3 can correspond to a plurality of connection forms. Further, since the bus bar 3 has a simple structure, the work of connecting the plurality of single cells 1 is facilitated.
  • the bus bar 3 can be easily assembled because the leads 55 and 56 of the unit cell 1 can be connected from the same surface side (upper surface side in FIG. 1).
  • FIG. 10 is a configuration diagram of an assembled battery 210 which is still another example of the assembled battery using the bus bar 3.
  • the assembled battery 210 includes a plurality of battery units 11 and a heat diffusion sheet 12.
  • the thermal diffusion sheet 12 is provided between the battery units 11 and 11 adjacent to each other in the thickness direction (Z direction).
  • the thermal diffusion sheet 12 includes, for example, a carbon-based material such as graphite.
  • the thermal diffusion sheet 12 is preferably a graphite sheet.
  • the thickness of the graphite sheet is preferably 10 to 1000 ⁇ m per monolayer, for example.
  • Examples of the characteristics of the graphite sheet include a thermal conductivity in the plane direction of 100 to 3000 W / (m ⁇ K) and a thermal conductivity in the thickness direction of 1 to 30 W / (m ⁇ K).
  • Examples of methods for measuring thermal conductivity include ASTM D5470, ASTM E1530, JIS R2616, ASTM D5930, and JIS R1611.
  • the thermal diffusion sheet 12 has a thermal conductivity higher than that of the exterior plate 6 (specifically, the substrate portion 11). Therefore, the heat diffusion sheet 12 can diffuse the heat generated in the unit cell 1 in the in-plane direction. Therefore, the temperature rise of the single cell 1 at the time of electricity supply can be suppressed, and the temperature difference between the several single cells 1 can be made small.
  • FIG. 11 is an exploded perspective view showing an example of a connection structure between the leads 55 and 56 of the unit cell 1 and the bus bar 3.
  • FIG. 12 is an exploded plan view showing the connection structure. As shown in FIG. 11 and FIG. 12, this connection structure includes a bus bar 3, a pair of adhesive resin films 21 (adhesive resin layer), leads 55 and 56, a lead sealing layer 22, and a cover film 23. And comprising.
  • the adhesive resin film 21 is attached to the upper surface of the bus bar 3.
  • the adhesive resin film 21 is made of an adhesive resin such as polyolefin (polypropylene, polyethylene, etc.), polyurethane, or polyether.
  • the adhesive resin film 21 is formed in a rectangular frame shape, for example.
  • Reference numeral 24 denotes an opening of the adhesive resin film 21.
  • the opening 24 has a rectangular shape, for example.
  • the adhesive resin film 21 surrounds at least a part of a connection portion between the leads 55 and 56 and the energization portions 41 and 42 in a plan view.
  • the two adhesive resin films 21 and 21 shown in FIGS. 11 and 12 are provided so as to surround the tip portions 55a and 56a of the leads 55 and 56, respectively.
  • the outer shape of the adhesive resin film 21 is preferably a rectangular shape that is slightly larger than the energizing portions 41 and 42 in plan view. Most of the area of the adhesive resin film 21 is overlaid on the energizing portions 41 and 42.
  • the adhesive resin film 21 is preferably fixed to the upper surface of the bus bar 3 by heat fusion or the like.
  • the leads 55 and 56 are installed on the upper surfaces of the current-carrying portions 41 and 42 and the adhesive resin film 21.
  • the tip portions 55 a and 56 a of the leads 55 and 56 are located in the opening 24 and contact the first energization portion 41.
  • Proximal end portions 55c and 56c of the extended portions 55b and 56b of the leads 55 and 56 are in contact with the upper surface of the adhesive resin film 21.
  • the lead sealing layer 22 is formed in, for example, a rectangular shape whose length direction is along the X direction. As shown in FIG. 12, the lead sealing layer 22 is formed on both sides of the base end portions 55c and 56c of the leads 55 and 56 and the partial region 21a of the adhesive resin film 21 (base end portions 55c and 56c). The adjacent adhesive resin film 21 part) is covered.
  • the base end portions 55c and 56c of the leads 55 and 56 are portions of a certain length range including the base ends 55b1 and 56b1 of the extended portions 55b and 56b.
  • the lead sealing layer 22 is made of, for example, a polyolefin resin (polypropylene, polyethylene, or the like) or a polyester resin.
  • the cover film 23 is made of, for example, an adhesive resin such as polyolefin (polypropylene, polyethylene, etc.), polyurethane, or polyether.
  • the cover film 23 is, for example, a rectangular shape whose length direction is along the X direction, and has a length that can cover the two current-carrying portions 41 and 42 at once.
  • the cover film 23 covers the extended portions 55 b and 56 b of the leads 55 and 56, the energizing portions 41 and 42, the adhesive resin film 21, and the front portion 22 a of the lead sealing layer 22.
  • the front portion 22 a is a portion including the side edge 22 b on the lead tip direction side in the lead sealing layer 22, and is a belt-like portion along the length direction of the lead sealing layer 22.
  • the front portion 22 a overlaps the adhesive resin film 21.
  • the cover film 23 is preferably joined to the extended portions 55b and 56b, the energizing portions 41 and 42, the adhesive resin film 21, and the front portion 22a by heat fusion, adhesion, or the like.
  • the cover film 23 is made of, for example, a polyester resin or a polyolefin resin (polypropylene, polyethylene, etc.).
  • connection structure has the following effects. As shown in FIGS. 4 and 5, the first conductive layer 32 and the second conductive layer 34 of the bus bar 3 are not necessarily made of the same material as that of the leads 55 and 56 to be connected. It is known that the contact location of dissimilar metals is likely to corrode when exposed to water. As shown in FIGS. 11 and 12, in the connection structure, the extended portions 55b and 56b of the leads 55 and 56, the energizing portions 41 and 42, the adhesive resin film 21, and the front portion 22a of the lead sealing layer 22 are used. Since the cover film 23 is provided, the water or the outside air can be prevented from entering the connecting portions between the leads 55 and 56 and the energizing portions 41 and 42. Therefore, even when the leads 55 and 56 and the conductive layers 32 and 34 are made of different metal materials, it is possible to prevent the occurrence of corrosion at the connection points.
  • connection structure since the adhesive resin film 21 surrounding at least a part of the connection portion between the leads 55 and 56 and the energization portions 41 and 42 is provided, the cover film 23 surrounding the connection portion is attached to the adhesive resin film. 21 can reliably adhere to the energizing portions 41 and 42. Therefore, it is possible to prevent water or outside air from entering the connection portion between the leads 55 and 56 and the energization units 41 and 42. Therefore, generation
  • the base end portions 55 c and 56 c of the leads 55 and 56 are covered with the lead sealing layer 22.
  • a front portion 22 a of the lead sealing layer 22 is covered with a cover film 23. Therefore, the extended portions 55 b and 56 b of the leads 55 and 56 are almost entirely covered with the cover film 23 and the lead sealing layer 22. Therefore, the leads 55 and 56 can be prevented from coming into contact with water or the outside air, and the corrosion of the leads 55 and 56 can be prevented.
  • the cover film 23 shown in FIGS. 11 and 12 is formed so as to collectively cover the two energization parts 41 and 42, but the cover film is configured to individually cover the two energization parts 41 and 42. It may be.
  • the adhesive resin film only needs to have a shape that can surround at least a part of the connection portion between the lead and the current-carrying portion, and may be, for example, an annular shape.
  • FIG. 13 is a diagram schematically illustrating an example of an electric device using the assembled battery 10.
  • Electric device 400 is a vehicle that can be moved by drive mechanism 401.
  • Electric device 400 includes a vehicle body 402 and wheels 403.
  • the drive mechanism 401 is a motor or the like that is operated by power supply from the assembled battery 10 and drives the wheels 403.
  • the vehicle body 402 carries the drive mechanism 401 and the assembled battery 10.
  • the electric device may be an electric motorcycle, an electric bicycle, a robot, an electric wheelchair, an agricultural machine, an escalator, a washing machine, a refrigerator, or the like.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
  • the exterior plates 6 and 6 are all formed continuously in the width direction across the plurality of cylindrical portions 14, but only one of the facing exterior plates is the exterior plate.
  • the plurality of cylindrical portions may be formed continuously in the width direction, and the other exterior plate may be configured independently for each cylindrical portion.
  • the shape of the cylindrical part of the battery outer body is not limited to a hexagonal cylindrical shape.
  • the cylindrical portion has a square shape. It becomes cylindrical.
  • the bus bar can be disposed in contact with the second exterior plate. This battery exterior body is preferable from the viewpoint of ease of processing of the exterior plate because the second exterior plate has a flat plate shape.
  • FIG. 14 is a perspective view of an assembled battery 10 ⁇ / b> A that is a modification of the assembled battery 10.
  • the first exterior plate 106 ⁇ / b> A is the same as the first exterior plate 6 ⁇ / b> A shown in FIG. 1, and the side plate inclined to the substrate unit 11. Parts 12 and 12.
  • the second exterior plate 106B is formed in a flat plate shape.
  • the bus bar 3 is overlaid on the second exterior plate 106B.
  • the cylindrical portion 114 of the battery exterior body 102 has a trapezoidal cylindrical shape.
  • FIG. 15 is an exploded perspective view of the bus bar 103 according to the second embodiment.
  • the bus bar 103 is different from the bus bar 3 shown in FIG. 5 in that a second notch 137 is formed instead of the second notch 37.
  • the second notch 137 is formed in the third resin layer 35.
  • a plurality of second notches 137 are formed in the third resin layer 35.
  • the plurality of second notches 137 are formed at intervals in the length direction of the bus bar 103.
  • the second notch 137 can have a rectangular shape when viewed from the thickness direction (Z direction) of the bus bar 103.
  • the second notch 137 starts from the first side edge of the third resin layer 35 (the side edge overlapping the first side edge 31b of the first resin layer 31) toward the second side edge. It is formed in a concave shape.
  • the second notch 137 exposes the second energization part 142 that is a part of the second conductive layer 34.
  • the second energization part 142 is a partial region of the first surface 34 a of the second conductive layer 34.
  • the bus bar 103 has an advantage that it is easy to manufacture because the structure of the second notch 137 is simple.
  • the first notch 36 is formed in the first resin layer 31 and the second notch 37 is formed in the resin layers 31, 32 and the resin layer 33.
  • the bus bar is not limited to this structure.
  • the first notch may be formed in the second resin layer 33, the second conductive layer 34, and the third resin layer 35.
  • the first current-carrying part exposed by the first notch is a part of the first surface 32 a of the first conductive layer 32.
  • the second notch may be formed in the third resin layer 35.
  • the second current-carrying part exposed by the second notch is a part of the first surface 34 a of the second conductive layer 34.
  • the bus bar of the embodiment includes a first and second conductive layers (conductive layers 32 and 34 in the first embodiment), a main insulating layer (resin layer 33 in the first embodiment), and two covering insulating layers (first In one embodiment, the resin layers 31 and 35) have a basic configuration.
  • the main insulating layer separates the first and second conductive layers.
  • the main insulating layer is sandwiched between the inner surface of the first conductive layer and the inner surface of the second conductive layer.
  • the covering insulating layer covers the outer surfaces of the first and second conductive layers (the surface opposite to the surface on the main insulating layer side).
  • the first energization part may be a part of the inner surface of the first conductive layer or a part of the outer surface.
  • the first notch includes a main insulating layer, a second conductive layer, and a covering insulating layer covering the second conductive layer. Formed.
  • the first notch is formed in the covering insulating layer covering the first conductive layer.
  • the second energization part may be a part of the inner surface of the second conductive layer or a part of the outer surface.
  • the second notch When the second energization part is a part of the inner surface of the second conductive layer, the second notch includes a main insulating layer, a second conductive layer, and a covering insulating layer covering the second conductive layer. Formed. When the second energization part is a part of the outer surface of the second conductive layer, the second notch is formed in the covering insulating layer covering the second conductive layer.
  • the first notch 36 is formed in the first resin layer 31 and the second notch 37 is formed in the resin layers 31, 32 and the resin layer 33.
  • the bus bar is not limited to this structure.
  • the main insulating layer (second resin layer 33 in the first embodiment) is not limited to a single layer structure, and may have a multilayer structure.
  • the conductive layers (the first conductive layer 32 and the second conductive layer 34) and the covering insulating layers (the first resin layer 31 and the third resin layer 35) may each have a multilayer structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

This busbar is electrically connected to a battery having a first electrode terminal and a second electrode terminal. The busbar has a structure in which a first resin layer, a first conductive layer, a second resin layer, a second conductive layer, and a third resin layer are stacked in this order. A part of the first conductive layer is exposed as a first part that can be electrically connected to the first electrode terminal. A part of the second conductive layer is exposed as a second energized part that can be electrically connected to the second electrode terminal.

Description

ブスバー、組電池、および電動装置Busbar, battery pack, and electric device
 本発明は、ブスバー、組電池、および電動装置に関する。
 本願は、2018年3月23日に日本に出願された特願2018-056556号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a bus bar, an assembled battery, and an electric device.
This application claims priority based on Japanese Patent Application No. 2018-056556 for which it applied to Japan on March 23, 2018, and uses the content here.
 環境に対する意識が高まる中、電気エネルギーを貯蔵するための蓄電池として、リチウムイオン電池等の二次電池などが注目を集めている(例えば、特許文献1を参照)。 As environmental awareness increases, secondary batteries such as lithium ion batteries are attracting attention as storage batteries for storing electrical energy (see, for example, Patent Document 1).
日本国特開2000-357494号公報Japanese Unexamined Patent Publication No. 2000-357494
 電気自動車用の蓄電池などにおいては、大容量化のため、複数の単電池(リチウムイオン電池等)を接続して構成した組電池が用いられている。複数の単電池は、例えば、金属等から構成されるブスバーを介して、並列または直列に接続される。前記ブスバーは、前記単電池に対して容易に接続できることが要望されている。 In storage batteries for electric vehicles and the like, assembled batteries configured by connecting a plurality of single cells (lithium ion batteries or the like) are used to increase the capacity. The plurality of single cells are connected in parallel or in series via a bus bar made of metal or the like, for example. It is desired that the bus bar can be easily connected to the unit cell.
 本発明の一態様は、組電池を構成する複数の単電池を容易に接続することができるブスバー、組電池、および電動装置を提供することを目的とする。 An object of one embodiment of the present invention is to provide a bus bar, an assembled battery, and an electric device that can easily connect a plurality of single cells constituting the assembled battery.
 本発明の第1の態様は、第1の電極端子および第2の電極端子を有する電池に電気的に接続されるブスバーである。前記ブスバーは、第1の絶縁層、第1の導電層、第2の絶縁層、第2の導電層、および第3の絶縁層がこの順で積層された構造を有する。前記第1の導電層の一部は、前記第1の電極端子と電気的に接続可能な第1の通電部として露出する。前記第2の導電層の一部は、前記第2の電極端子と電気的に接続可能な第2の通電部として露出する。 A first aspect of the present invention is a bus bar that is electrically connected to a battery having a first electrode terminal and a second electrode terminal. The bus bar has a structure in which a first insulating layer, a first conductive layer, a second insulating layer, a second conductive layer, and a third insulating layer are stacked in this order. A part of the first conductive layer is exposed as a first current-carrying portion that can be electrically connected to the first electrode terminal. A part of the second conductive layer is exposed as a second current-carrying portion that can be electrically connected to the second electrode terminal.
 本発明の第2の態様は、前記第1の態様のブスバーにおいて、前記第1の絶縁層に、前記第1の通電部を露出させる第1の切欠きが形成されている。前記ブスバーは、前記第1の絶縁層、前記第1の導電層、および前記第2の絶縁層に、前記第2の通電部を露出させる第2の切欠きが形成されている。 According to a second aspect of the present invention, in the bus bar of the first aspect, a first notch that exposes the first current-carrying portion is formed in the first insulating layer. In the bus bar, a second notch for exposing the second current-carrying portion is formed in the first insulating layer, the first conductive layer, and the second insulating layer.
 本発明の第3の態様は、前記第1の態様のブスバーにおいて、前記第1の絶縁層に、前記第1の通電部を露出させる第1の切欠きが形成されている。前記ブスバーは、前記第3の絶縁層に、前記第2の通電部を露出させる第2の切欠きが形成されている。 According to a third aspect of the present invention, in the bus bar of the first aspect, a first notch that exposes the first current-carrying portion is formed in the first insulating layer. The bus bar has a second notch that exposes the second current-carrying portion in the third insulating layer.
 本発明の第4の態様は、前記第1から第3のうちいずれか1つの態様のブスバーと、複数の前記電池とを備える組電池である。前記第1の電極端子のうち少なくとも1つは、前記第1の通電部と電気的に接続されている。前記第2の電極端子のうち少なくとも1つは、前記第2の通電部と電気的に接続されている。 A fourth aspect of the present invention is an assembled battery including the bus bar according to any one of the first to third aspects and a plurality of the batteries. At least one of the first electrode terminals is electrically connected to the first energization unit. At least one of the second electrode terminals is electrically connected to the second energization unit.
 本発明の第5の態様は次の構成を有する。前記第4の態様の組電池において、前記電池は、扁平形状である。 The fifth aspect of the present invention has the following configuration. In the assembled battery of the fourth aspect, the battery has a flat shape.
 本発明の第6の態様は次の構成を有する。前記第4または第5の態様の組電池において、前記電池は、電池本体と、前記電池本体を収容する内部空間を有する収容体とを備える。前記収容体は、金属層と樹脂層とが積層された積層体から構成されている。前記樹脂層は、前記内部空間の側に向けられている。 The sixth aspect of the present invention has the following configuration. In the assembled battery according to the fourth or fifth aspect, the battery includes a battery body and a housing body having an internal space for housing the battery body. The said container is comprised from the laminated body by which the metal layer and the resin layer were laminated | stacked. The resin layer is directed toward the internal space.
 本発明の第7の態様は、前記第4から第6のうちいずれか1つの態様の組電池において、前記電池を外装する電池外装体をさらに備える。前記電池外装体は、少なくとも一対の向かい合う外装板を備える。前記外装板は、幅方向に間隔をおいて複数の当接部で互いに当接する。前記当接部によって区画された複数の筒状部に、それぞれ前記電池が収容されている。 According to a seventh aspect of the present invention, the assembled battery according to any one of the fourth to sixth aspects further includes a battery outer package that covers the battery. The battery exterior body includes at least a pair of facing exterior plates. The exterior plates abut on each other at a plurality of abutting portions at intervals in the width direction. Each of the batteries is accommodated in a plurality of cylindrical portions defined by the contact portions.
 本発明の第8の態様は、前記第7の態様の組電池において、前記電池外装体を介して前記複数の電池のうち2以上と接触する熱拡散シートをさらに備える。前記熱拡散シートは、前記電池外装体の被接触面における熱伝導率よりも高い熱伝導率を有する。 The eighth aspect of the present invention is the assembled battery of the seventh aspect, further comprising a thermal diffusion sheet that contacts two or more of the plurality of batteries via the battery outer package. The thermal diffusion sheet has a thermal conductivity higher than the thermal conductivity at the contacted surface of the battery exterior body.
 本発明の第9の態様は、前記第4から第8のうちいずれか1つの態様の組電池と、前記組電池によって駆動する駆動機構と、を備えた電動装置である。 A ninth aspect of the present invention is an electric device including the assembled battery according to any one of the fourth to eighth aspects and a drive mechanism that is driven by the assembled battery.
 本発明の他の態様は、第1の電極端子および第2の電極端子を有する電池に電気的に接続されるブスバーである。前記ブスバーは、第1の樹脂層、第1の導電層、第2の樹脂層、第2の導電層、および第3の樹脂層がこの順で積層された構造を有する。前記第1の樹脂層に、前記第1の導電層の一部であって前記第1の電極端子と電気的に接続可能な第1の通電部を露出させる第1の切欠きが形成されている。前記第1の樹脂層、前記第1の導電層、および前記第2の樹脂層に、前記第2の導電層の一部であって前記第2の電極端子と電気的に接続可能な第2の通電部を露出させる第2の切欠きが形成されている。 Another aspect of the present invention is a bus bar that is electrically connected to a battery having a first electrode terminal and a second electrode terminal. The bus bar has a structure in which a first resin layer, a first conductive layer, a second resin layer, a second conductive layer, and a third resin layer are laminated in this order. A first notch is formed in the first resin layer to expose a first current-carrying portion that is a part of the first conductive layer and can be electrically connected to the first electrode terminal. Yes. The second resin layer, the first conductive layer, and the second resin layer are part of the second conductive layer and can be electrically connected to the second electrode terminal. A second notch that exposes the current-carrying portion is formed.
 本発明の一態様によれば、組電池を構成する複数の単電池を容易に接続することができる。 According to one embodiment of the present invention, it is possible to easily connect a plurality of single cells constituting an assembled battery.
第1実施形態のブスバーを用いた組電池を示す分解斜視図である。It is a disassembled perspective view which shows the assembled battery using the bus bar of 1st Embodiment. 図1に示す組電池の組み立て後の斜視図である。It is a perspective view after the assembly of the assembled battery shown in FIG. 図1に示す組電池に使用される単電池の例を示す斜視図である。It is a perspective view which shows the example of the cell used for the assembled battery shown in FIG. 図1に示すブスバーおよび単電池の斜視図である。It is a perspective view of a bus bar and a single cell shown in FIG. 図1に示すブスバーの分解斜視図である。It is a disassembled perspective view of the bus bar shown in FIG. 図1に示すブスバーを用いた組電池の他の例の構成図である。It is a block diagram of the other example of the assembled battery using the bus bar shown in FIG. 図6に示す組電池の一部を分解して示す模式図である。It is a schematic diagram which decomposes | disassembles and shows a part of assembled battery shown in FIG. 図6に示す組電池の一部を展開して示す模式図である。It is a schematic diagram which expands and shows a part of assembled battery shown in FIG. 図6に示す組電池の模式図である。It is a schematic diagram of the assembled battery shown in FIG. 図1に示すブスバーを用いた組電池のさらに他の例の構成図である。It is a block diagram of the further another example of the assembled battery using the bus bar shown in FIG. 単電池のリードとブスバーとの接続構造の例を示す分解斜視図である。It is a disassembled perspective view which shows the example of the connection structure of the lead | read | reed and bus bar of a cell. 図11の接続構造を分解して示す平面図である。It is a top view which decomposes | disassembles and shows the connection structure of FIG. 一実施形態の電動装置を模式的に示す図である。It is a figure showing typically the electric device of one embodiment. 図2に示す組電池の変形例の斜視図である。It is a perspective view of the modification of the assembled battery shown in FIG. 第2実施形態のブスバーの分解斜視図である。It is a disassembled perspective view of the bus bar of 2nd Embodiment.
 図1は、実施形態のブスバー3を用いた組電池10を示す分解斜視図である。図2は、組み立て後の組電池10の斜視図である。図3は、組電池10に使用される単電池1の例を示す斜視図である。
 図1および図2に示すように、組電池10は、複数の単電池1(電池)と、電池外装体2と、ブスバー3とを備える。
FIG. 1 is an exploded perspective view showing an assembled battery 10 using the bus bar 3 of the embodiment. FIG. 2 is a perspective view of the assembled battery 10 after assembly. FIG. 3 is a perspective view showing an example of the unit cell 1 used in the assembled battery 10.
As shown in FIGS. 1 and 2, the assembled battery 10 includes a plurality of single cells 1 (batteries), a battery outer package 2, and a bus bar 3.
 組電池10は、1または複数の電池外装体2を備える。図1に示す組電池10は、1つの電池外装体2を備える。電池外装体2は、向かい合う一対の外装板6,6を備えている。外装板6,6を、図1における上から順に、第1外装板6Aおよび第2外装板6Bという。 The assembled battery 10 includes one or a plurality of battery exterior bodies 2. The assembled battery 10 shown in FIG. 1 includes one battery outer body 2. The battery exterior body 2 includes a pair of exterior plates 6 and 6 facing each other. The exterior plates 6 and 6 are referred to as a first exterior plate 6A and a second exterior plate 6B in order from the top in FIG.
 外装板6は、例えば、金属、非金属材料(例えば樹脂)などから構成される。外装板6を構成する金属は、例えば、銅、ニッケル、鉄、ステンレス鋼、アルミニウムなどでもよいし、これらのうち1以上を含む合金でもよい。外装板6を構成する非金属材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂;ポリプロピレン等のポリオレフィン樹脂;ナイロン(Ny)等のポリアミド樹脂;ポリイミド樹脂;フッ素樹脂;アクリル樹脂;ポリウレタン樹脂などが挙げられる。 The exterior plate 6 is made of, for example, a metal or a non-metallic material (for example, resin). The metal constituting the exterior plate 6 may be, for example, copper, nickel, iron, stainless steel, aluminum, or an alloy including one or more of these. Non-metallic materials constituting the exterior plate 6 include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT); polyolefin resins such as polypropylene; polyamide resins such as nylon (Ny) Polyimide resin; fluorine resin; acrylic resin; polyurethane resin and the like.
 外装板6は、単層構造であってもよいし、多層構造であってもよい。外装板6は、金属層と非金属層とを含む多層構造体であってもよい。外装板6は、平面視において矩形状、例えば長方形状に形成されている。 The exterior plate 6 may have a single layer structure or a multilayer structure. The exterior plate 6 may be a multilayer structure including a metal layer and a non-metal layer. The exterior plate 6 is formed in a rectangular shape, for example, a rectangular shape in plan view.
 図1および図2において、X方向は外装板6の幅方向である。Y方向は外装板6(例えば基板部11)に沿う面内においてX方向と直交する延在方向である。Z方向はX方向およびY方向に直交する方向であり、外装板6の厚さ方向である。平面視とはZ方向から見ることをいう。 1 and 2, the X direction is the width direction of the exterior plate 6. The Y direction is an extending direction orthogonal to the X direction in a plane along the exterior plate 6 (for example, the substrate portion 11). The Z direction is a direction orthogonal to the X direction and the Y direction, and is the thickness direction of the exterior plate 6. Plan view means viewing from the Z direction.
 向かい合う外装板6,6は、複数の当接部7において互いに当接している。当接部7は、例えばY方向に沿う一定幅の帯状に形成されている。複数の当接部7はX方向に間隔をおいて形成されている。外装板6の、X方向に隣り合う当接部7,7の間の部分を中間部8(非当接部)という。中間部8は、基板部11と、基板部11に対して傾斜した一対の側板部12,12とを有する。 The facing exterior plates 6 and 6 are in contact with each other at a plurality of contact portions 7. The contact portion 7 is formed in a band shape having a constant width along the Y direction, for example. The plurality of contact portions 7 are formed at intervals in the X direction. A portion of the exterior plate 6 between the contact portions 7 and 7 adjacent to each other in the X direction is referred to as an intermediate portion 8 (non-contact portion). The intermediate portion 8 includes a substrate portion 11 and a pair of side plate portions 12 and 12 that are inclined with respect to the substrate portion 11.
 基板部11は、例えばXY平面に沿って形成されている。第1外装板6Aの基板部11の内面は、単電池1の一方の面に面的に当接する。第2外装板6Bの基板部11の内面は、単電池1の他方の面に面的に当接する。 The substrate unit 11 is formed along the XY plane, for example. The inner surface of the substrate portion 11 of the first exterior plate 6A is in surface contact with one surface of the unit cell 1. The inner surface of the substrate portion 11 of the second exterior plate 6B is in surface contact with the other surface of the unit cell 1.
 側板部12,12は、基板部11の両側縁からそれぞれ当接部7,7に向けて延出する。側板部12,12は、基板部11の両側縁から拡幅しつつ相手側の外装板6に近づくように傾斜して延出している。側板部12,12は平坦な形状であり、基板部11に対して角度θ1(0°<θ1<90°)(図1参照)で傾斜している。
 中間部8は、当接部7,7を通るXY平面に対して、相手側の外装板6から離れる方向(外方)に凸となる曲げ形状となっている。
The side plate portions 12 and 12 extend from both side edges of the substrate portion 11 toward the contact portions 7 and 7, respectively. The side plate portions 12 and 12 are inclined and extended so as to approach the mating exterior plate 6 while being widened from both side edges of the substrate portion 11. The side plate portions 12 and 12 have a flat shape and are inclined with respect to the substrate portion 11 at an angle θ1 (0 ° <θ1 <90 °) (see FIG. 1).
The intermediate portion 8 has a bent shape that protrudes in a direction (outward) away from the counterpart exterior plate 6 with respect to the XY plane passing through the contact portions 7 and 7.
 図2に示すように、向かい合う外装板6,6の中間部8,8は、中空の角筒状の筒状部14を形成する。筒状部14の内部空間は電池収容部15である。筒状部14は、当接部7,7によって区画されている。外装板6,6は、幅方向(X方向)に並ぶ2以上の筒状部14を有する。一対の向かい合う外装板が形成する筒状部の数は2以上が好ましく、例えば2~200とすることができる。 As shown in FIG. 2, the intermediate portions 8 and 8 of the facing exterior plates 6 and 6 form a hollow rectangular tubular portion 14. The internal space of the cylindrical portion 14 is a battery housing portion 15. The cylindrical portion 14 is partitioned by the contact portions 7 and 7. The exterior plates 6 and 6 have two or more cylindrical portions 14 arranged in the width direction (X direction). The number of cylindrical portions formed by the pair of facing exterior plates is preferably 2 or more, and can be, for example, 2 to 200.
 図2に示す組電池10では、電池外装体2を構成する外装板6,6は、X方向に間隔をおいて4つの当接部7で互いに当接している。そのため、電池外装体2は3つの筒状部14を有する。外装板6,6は、いずれも3つの筒状部14にわたって連続して形成されている。 In the assembled battery 10 shown in FIG. 2, the exterior plates 6 and 6 constituting the battery exterior body 2 are in contact with each other at four contact portions 7 at intervals in the X direction. Therefore, the battery outer package 2 has three cylindrical portions 14. The exterior plates 6 and 6 are all formed continuously over the three cylindrical portions 14.
 図2に示す組電池10では、側板部12,12が傾斜しているため、筒状部14は、基板部11と側板部12とを備えた六角筒状となっている。一方の中間部が、基板部と、拡幅しつつ相手側の板体に近づくように傾斜した一対の側板部とを有し、他方の中間部が、基板部と、拡幅しつつ相手側の板体に近づくように傾斜した一対の側板部とを有するとき、これら基板部および側板部から構成される筒状部の形状は六角筒状である。筒状部が六角筒状であると、電池外装体の強度が向上するため好ましい。 In the battery pack 10 shown in FIG. 2, since the side plate portions 12 and 12 are inclined, the cylindrical portion 14 has a hexagonal cylindrical shape including the substrate portion 11 and the side plate portion 12. One intermediate portion has a substrate portion and a pair of side plate portions that are inclined so as to approach the counterpart plate while being widened, and the other intermediate portion is the substrate portion and the opposite plate while being widened. When it has a pair of side plate part inclined so that it may approach a body, the shape of the cylindrical part comprised from these board | substrate parts and a side plate part is a hexagonal cylinder shape. It is preferable that the cylindrical portion is a hexagonal cylindrical shape because the strength of the battery outer body is improved.
 当接部7,7は、接着剤から構成された接着層9(図1参照)によって互いに接着することもできる。当接部7,7を接着するための接着剤としては、例えばポリオレフィン系接着剤、ウレタン系接着剤、エポキシ系接着剤、アクリル系接着剤、ウレタン系接着剤、ナイロン系接着剤、ポリエステル系接着剤などを挙げることができる。接着剤は絶縁材料であってもよい。 The contact portions 7 and 7 can also be bonded to each other by an adhesive layer 9 (see FIG. 1) made of an adhesive. Examples of adhesives for bonding the contact portions 7 and 7 include polyolefin adhesives, urethane adhesives, epoxy adhesives, acrylic adhesives, urethane adhesives, nylon adhesives, and polyester adhesives. An agent etc. can be mentioned. The adhesive may be an insulating material.
 図2に示す電池外装体2では、複数の筒状部14が外装板6の幅方向(X方向)に並んで配列されているため、複数の筒状部14が規則的に配列されたハニカム状構造体である。電池外装体2(一対の外装板6,6)の数は、1でもよいし、2以上(例えば2~20)であってもよい。電池外装体2が複数ある場合、複数の電池外装体2は、厚さ方向(Z方向)に重ねることができる。 In the battery exterior body 2 shown in FIG. 2, since the plurality of cylindrical portions 14 are arranged side by side in the width direction (X direction) of the exterior plate 6, the honeycomb in which the plurality of cylindrical portions 14 are regularly arranged It is a structure. The number of battery outer bodies 2 (a pair of outer plates 6 and 6) may be one or two or more (for example, 2 to 20). When there are a plurality of battery exterior bodies 2, the plurality of battery exterior bodies 2 can be stacked in the thickness direction (Z direction).
 図3に示すように、単電池1は、例えばリチウムイオン電池である。単電池1は、電池本体50と、収容体51とを備える。収容体51は、トレイ状の容器本体52と、容器本体52の開口を閉止する蓋部53とを有する。収容体51は、電池本体50を収容する内部空間を有する。収容体51は、容器本体52と蓋部53とを重ね、周縁部54をヒートシールすることにより形成されている。符号55は、電池本体50の電極(正極)に接続された正極リード(第1の電極端子)である。符号56は、電池本体50の電極(負極)に接続された負極リード(第2の電極端子)である。正極リード55および負極リード56は収容体51の一端部から延出している。 As shown in FIG. 3, the cell 1 is, for example, a lithium ion battery. The unit cell 1 includes a battery body 50 and a container 51. The container 51 includes a tray-shaped container main body 52 and a lid 53 that closes the opening of the container main body 52. The housing 51 has an internal space for housing the battery main body 50. The container 51 is formed by overlapping the container body 52 and the lid 53 and heat-sealing the peripheral edge 54. Reference numeral 55 denotes a positive electrode lead (first electrode terminal) connected to the electrode (positive electrode) of the battery body 50. Reference numeral 56 denotes a negative electrode lead (second electrode terminal) connected to the electrode (negative electrode) of the battery body 50. The positive electrode lead 55 and the negative electrode lead 56 extend from one end of the container 51.
 電池本体50は、例えば、正極板(図示略)と、正極板に接する正極活物質層(図示略)と、負極板(図示略)と、負極板に接する負極活物質層(図示略)と、正極活物質層と負極活物質層とを隔てるセパレータ(図示略)と、電解質(図示略)とを有する。正極板および負極板は、例えば金属から構成される。正極活物質層は、例えばリチウム系材料などの正極活物質を含む。負極活物質層は、例えばカーボン系材料などの負極活物質を含む。電池本体50は、扁平な形状であって、厚さが一定であることが好ましい。 The battery body 50 includes, for example, a positive electrode plate (not shown), a positive electrode active material layer (not shown) in contact with the positive electrode plate, a negative electrode plate (not shown), and a negative electrode active material layer (not shown) in contact with the negative electrode plate. And a separator (not shown) that separates the positive electrode active material layer and the negative electrode active material layer, and an electrolyte (not shown). The positive electrode plate and the negative electrode plate are made of metal, for example. The positive electrode active material layer includes, for example, a positive electrode active material such as a lithium-based material. The negative electrode active material layer includes a negative electrode active material such as a carbon-based material. The battery body 50 is preferably flat and has a constant thickness.
 収容体51を構成する容器本体52および蓋部53は、例えば、金属層57と、金属層57に積層された樹脂層58とを備えた積層体で構成されていてもよい。金属層57は、アルミニウム、ステンレスなどの金属から構成される。樹脂層58は、ポリエチレン、ポリプロピレンなどの樹脂から構成される。収容体51は、樹脂層58を内部空間側に向けて構成されている。
 図示はしないが、積層体は、金属層と、金属層の第1の面に積層された第1樹脂層と、前記金属層の第2の面(第1の面とは反対の面)に積層された第2樹脂層とを備えた構造(すなわち、樹脂層/金属層/樹脂層の構造)であってもよい。この構造は、積層体の加工性、耐久性の観点から好ましい。
The container main body 52 and the lid part 53 that constitute the container 51 may be constituted by, for example, a laminate including a metal layer 57 and a resin layer 58 laminated on the metal layer 57. The metal layer 57 is made of a metal such as aluminum or stainless steel. The resin layer 58 is made of a resin such as polyethylene or polypropylene. The container 51 is configured with the resin layer 58 facing the internal space.
Although not shown, the laminate is formed on the metal layer, the first resin layer laminated on the first surface of the metal layer, and the second surface of the metal layer (the surface opposite to the first surface). A structure including a laminated second resin layer (that is, a resin layer / metal layer / resin layer structure) may be used. This structure is preferable from the viewpoint of processability and durability of the laminate.
 単電池1は扁平な形状であり、厚さ方向をZ方向に向けて電池外装体2の電池収容部15(図2参照)に収容されている。単電池1が扁平な形状であるとは、単電池1の厚さ寸法(Z方向の寸法)が、幅方向(X方向)の寸法および延在方向(Y方向)の寸法より小さいことをいう。単電池1は扁平な形状であるため、組電池10を薄型化できる。 The single cell 1 has a flat shape and is accommodated in the battery accommodating portion 15 (see FIG. 2) of the battery outer package 2 with the thickness direction in the Z direction. The unit cell 1 having a flat shape means that the thickness dimension (Z direction dimension) of the unit cell 1 is smaller than the width direction (X direction) dimension and the extending direction (Y direction) dimension. . Since the unit cell 1 has a flat shape, the assembled battery 10 can be thinned.
 図2に示すように、単電池1は、複数(図2では3つ)の筒状部14にそれぞれ収容されている。単電池1は、筒状部14に収容されているため、電池外装体2に外装されている。単電池1は、筒状部14に、出し入れ自在に収容されることが好ましい。 As shown in FIG. 2, the single cells 1 are respectively accommodated in a plurality (three in FIG. 2) of cylindrical portions 14. Since the unit cell 1 is accommodated in the cylindrical portion 14, the unit cell 1 is externally mounted on the battery exterior body 2. It is preferable that the unit cell 1 is accommodated in the cylindrical part 14 so that insertion / extraction is possible.
 図4は、ブスバー3および単電池1の斜視図である。図5は、ブスバー3の分解斜視図である。図5に示すように、ブスバー3は、第1の樹脂層31、第1の導電層32、第2の樹脂層33、第2の導電層34、および第3の樹脂層35がこの順で積層された構造を有する。第1の樹脂層31(第1の絶縁層)、第1の導電層32、第2の樹脂層33(第2の絶縁層)、第2の導電層34、および第3の樹脂層35(第3の絶縁層)は、長さ方向をそろえて積層されている。 FIG. 4 is a perspective view of the bus bar 3 and the cell 1. FIG. 5 is an exploded perspective view of the bus bar 3. As shown in FIG. 5, the bus bar 3 includes a first resin layer 31, a first conductive layer 32, a second resin layer 33, a second conductive layer 34, and a third resin layer 35 in this order. It has a laminated structure. First resin layer 31 (first insulating layer), first conductive layer 32, second resin layer 33 (second insulating layer), second conductive layer 34, and third resin layer 35 ( The third insulating layer is laminated in the length direction.
 ブスバー3は、3つの樹脂層31,33,35と、2つの導電層32,34とを備えたシート状の積層体である。ブスバーは、複数の樹脂層と、1または複数の導電層とが積層されて構成されている。ブスバーは、樹脂層と、導電層とを備えた積層体であって、最表面側に樹脂層が配置されている。樹脂層と、導電層とは、例えば交互に積層される。ブスバーは、シート状の積層体であるため、組電池を作製する際に、加工がしやすいという利点がある。 The bus bar 3 is a sheet-like laminate including three resin layers 31, 33 and 35 and two conductive layers 32 and 34. The bus bar is configured by laminating a plurality of resin layers and one or a plurality of conductive layers. The bus bar is a laminate including a resin layer and a conductive layer, and the resin layer is disposed on the outermost surface side. For example, the resin layers and the conductive layers are alternately stacked. Since the bus bar is a sheet-like laminate, there is an advantage that it is easy to process when an assembled battery is manufactured.
 第1の導電層32は、第1の樹脂層31の第1面31aに積層されている。第2の樹脂層33は、第1の導電層32の第1面32a(第1の樹脂層31側の面とは反対の面)に積層されている。第2の導電層34は、第2の樹脂層33の第1面33a(第1の導電層32側の面とは反対の面)に積層されている。第3の樹脂層35は、第2の導電層34の第1面34a(第2の樹脂層33側の面とは反対の面)に積層されている。 The first conductive layer 32 is laminated on the first surface 31 a of the first resin layer 31. The second resin layer 33 is laminated on the first surface 32a of the first conductive layer 32 (the surface opposite to the surface on the first resin layer 31 side). The second conductive layer 34 is laminated on the first surface 33a of the second resin layer 33 (the surface opposite to the surface on the first conductive layer 32 side). The third resin layer 35 is laminated on the first surface 34a of the second conductive layer 34 (the surface opposite to the surface on the second resin layer 33 side).
 図4に示すように、ブスバー3は、帯状に形成されている。図4では、ブスバー3はX方向に延在している。ブスバー3の幅方向はY方向と一致する。ブスバー3はXY平面に平行とされている。樹脂層31,33,35および導電層32,34は、互いに同じ幅の帯状に形成することもできる。 As shown in FIG. 4, the bus bar 3 is formed in a strip shape. In FIG. 4, the bus bar 3 extends in the X direction. The width direction of the bus bar 3 coincides with the Y direction. The bus bar 3 is parallel to the XY plane. The resin layers 31, 33, 35 and the conductive layers 32, 34 can also be formed in a strip shape having the same width.
 樹脂層31,33,35は、導電層32,34より幅を広くすることもできる。樹脂層31,33,35の幅を導電層32,34の幅より広くすることは、導電層32,34の間の短絡防止の観点からは好ましい。導電層の幅は、例えば3~50mmとすることができ、5~20mmとすることができる。導電層がある程度の幅(例えば3mm以上)を有することにより、集電をしやすくなるという利点がある。 The resin layers 31, 33, and 35 can be wider than the conductive layers 32 and 34. Making the widths of the resin layers 31, 33, 35 wider than the widths of the conductive layers 32, 34 is preferable from the viewpoint of preventing a short circuit between the conductive layers 32, 34. The width of the conductive layer can be 3 to 50 mm, for example, and can be 5 to 20 mm. When the conductive layer has a certain width (for example, 3 mm or more), there is an advantage that current collection is facilitated.
 図4および図5に示すブスバー3は、組電池を構成する複数の単電池を容易に接続することができる組電池用のブスバーであるが、組電池以外にも電子回路、電子装置、電動装置の部材として用いることができる。ブスバーを電子回路、電子装置、電動装置の部材として用いる場合、ブスバーは帯状で薄く、端子との接続がしやすいという効果がある。 The bus bar 3 shown in FIG. 4 and FIG. 5 is a bus bar for an assembled battery that can easily connect a plurality of single cells constituting the assembled battery. In addition to the assembled battery, an electronic circuit, an electronic device, and an electric device It can be used as a member. When the bus bar is used as a member of an electronic circuit, an electronic device, or an electric device, the bus bar is strip-like and thin, and has an effect that it can be easily connected to a terminal.
 図5に示すように、第1の導電層32および第2の導電層34は、例えば金属から構成される。導電層32,34を構成する金属としては、例えば銅、アルミニウム、ステンレス鋼、ニッケル、鉄を挙げることができる。導電層32,34を構成する金属は、これらのうち2以上を含む合金であってもよい。導電層32,34は、例えば、銅、アルミニウム、ステンレス鋼、ニッケル、鉄のうち1以上を含む金属箔である。導電層32,34は、基材金属層と、その表面に形成されたメッキ層とを有する構造であってもよい。基材金属層およびメッキ層は、例えば前述の金属から構成される。例えば、導電層32,34は、銅から構成される基材金属層とニッケルメッキ層とを備えた構造であってよい。導電層32,34の厚みは、特に限定はないが、例えば、20~500μm程度とすることができ、50~400μm程度とすることもできる。なお、第1の導電層32および第2の導電層34の構成材料としては、金属だけでなく炭素材料、導電性樹脂なども考えられるが、導電性の点で金属が好ましい。 As shown in FIG. 5, the first conductive layer 32 and the second conductive layer 34 are made of, for example, metal. Examples of the metal constituting the conductive layers 32 and 34 include copper, aluminum, stainless steel, nickel, and iron. The metal constituting the conductive layers 32 and 34 may be an alloy including two or more of these. The conductive layers 32 and 34 are metal foils containing, for example, one or more of copper, aluminum, stainless steel, nickel, and iron. The conductive layers 32 and 34 may have a structure having a base metal layer and a plating layer formed on the surface thereof. A base metal layer and a plating layer are comprised, for example from the above-mentioned metal. For example, the conductive layers 32 and 34 may have a structure including a base metal layer made of copper and a nickel plating layer. The thickness of the conductive layers 32 and 34 is not particularly limited, but can be, for example, about 20 to 500 μm, or about 50 to 400 μm. In addition, as a constituent material of the 1st conductive layer 32 and the 2nd conductive layer 34, although not only a metal but a carbon material, a conductive resin, etc. can be considered, a metal is preferable at a conductive point.
 第1の樹脂層31、第2の樹脂層33および第3の樹脂層35は、例えば樹脂フィルムから構成される。樹脂層31,33,35を構成する樹脂としては、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、フッ素樹脂、アクリル樹脂などが挙げられる。ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等がある。なかでも熱融着性のある樹脂フィルムであることが好ましく、ポリオレフィン(ポリエチレン、ポリプロピレン等)が好ましい。 The first resin layer 31, the second resin layer 33, and the third resin layer 35 are made of, for example, a resin film. Examples of the resin constituting the resin layers 31, 33, and 35 include polyolefin (polyethylene, polypropylene, etc.), polyester, polyamide, polyimide, polyurethane, fluororesin, acrylic resin, and the like. Examples of polyester include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT). Among these, a resin film having heat fusion properties is preferable, and polyolefin (polyethylene, polypropylene, etc.) is preferable.
 樹脂層31,33,35は、絶縁性を有する絶縁層である。前記樹脂フィルムは、無延伸フィルムであってもよいし、一軸延伸または二軸延伸されたフィルムであってもよい。樹脂層31,33,35の厚みは、特に限定はないが、例えば、10~500μm程度とすることができ、100~300μm程度とすることもできる。樹脂層31,33,35の素材、膜厚はそれぞれの層で相違があってもよい。各層の素材および厚さは個別に選択することもできる。 Resin layers 31, 33, and 35 are insulating layers having insulating properties. The resin film may be an unstretched film, or a uniaxially stretched or biaxially stretched film. The thickness of the resin layers 31, 33, and 35 is not particularly limited, but can be, for example, about 10 to 500 μm, and can be about 100 to 300 μm. The material and film thickness of the resin layers 31, 33, and 35 may be different in each layer. The material and thickness of each layer can also be selected individually.
 図4および図5に示すように、第1の樹脂層31には、1または複数の第1の切欠き36が形成されている。第1の切欠き36は、ブスバー3の厚さ方向(Z方向)から見て矩形状とすることができる。この実施形態では、第1の樹脂層31に、複数の第1の切欠き36が形成されている。複数の第1の切欠き36は、ブスバー3の長さ方向に間隔をおいて形成されている。 As shown in FIGS. 4 and 5, the first resin layer 31 has one or more first notches 36 formed therein. The first notch 36 can be rectangular when viewed from the thickness direction (Z direction) of the bus bar 3. In this embodiment, a plurality of first notches 36 are formed in the first resin layer 31. The plurality of first notches 36 are formed at intervals in the length direction of the bus bar 3.
 第1の切欠き36は矩形以外の形状、例えば半円状等とすることもできるが、リードとの接続の観点から矩形状とすることが好ましい。図5に示すように、第1の切欠き36は、第1の樹脂層31の第1の側縁31bを含む位置に形成されている。第1の切欠き36は、第1の側縁31bを起点として第2の側縁31cに向かって凹状に形成されている。例えば、第1の切欠き36は、第1の側縁31bから第2の側縁31cに向かってY方向に延びる2つの対向縁36a,36aと、X方向に沿う奥縁36bとによって形成される矩形状の切欠きである。図4に示すように、第1の切欠き36の幅(X方向の寸法)は、第1の通電部41に接続される第1のリード(例えば、正極リード55)の幅と同じ、またはこの幅より大きい。 The first notch 36 may have a shape other than a rectangle, for example, a semicircular shape, but is preferably rectangular from the viewpoint of connection with a lead. As shown in FIG. 5, the first notch 36 is formed at a position including the first side edge 31 b of the first resin layer 31. The first notch 36 is formed in a concave shape starting from the first side edge 31b toward the second side edge 31c. For example, the first cutout 36 is formed by two opposing edges 36a and 36a extending in the Y direction from the first side edge 31b toward the second side edge 31c, and a back edge 36b along the X direction. This is a rectangular cutout. As shown in FIG. 4, the width of the first notch 36 (the dimension in the X direction) is the same as the width of the first lead (for example, the positive electrode lead 55) connected to the first current-carrying part 41, Greater than this width.
 第1の樹脂層31に第1の切欠き36が形成されることによって、第1の導電層32の一部は露出している。この露出部分を第1の通電部41という。第1の通電部41は、第1の導電層32の第2面32b(第1面32aとは反対の面)の一部領域である。第1の通電部41には、単電池1のリード55,56のうち第1のリード(例えば、正極リード55)の先端部が接触する。第1の通電部41には、第1のリードの先端部が重ねられて面的に接触するのが好ましい。第1の通電部41に第1のリードが接触することによって、第1の導電層32と第1のリードとは電気的に接続される。 A part of the first conductive layer 32 is exposed by forming the first notch 36 in the first resin layer 31. This exposed portion is referred to as a first energization unit 41. The first energization part 41 is a partial region of the second surface 32 b (the surface opposite to the first surface 32 a) of the first conductive layer 32. Of the leads 55 and 56 of the unit cell 1, the tip of the first lead (for example, the positive electrode lead 55) is in contact with the first energization unit 41. It is preferable that the front end portion of the first lead is overlapped with the first energization portion 41 and is in surface contact. When the first lead comes into contact with the first energization portion 41, the first conductive layer 32 and the first lead are electrically connected.
 図5に示すように、第1の樹脂層31、第1の導電層32、および第2の樹脂層33には、1または複数の第2の切欠き37が形成されている。第2の切欠き37は、第1の樹脂層31の切欠き31dと、第1の導電層32の切欠き32bと、第2の樹脂層33の切欠き33bとによって形成される。切欠き31d,32b,33bは、ブスバー3の厚さ方向(Z方向)から見て同じ形状であって、互いに重なる位置にある。第2の切欠き37は、切欠き31d,32b,33bの総称である。この実施形態では、第1の樹脂層31、第1の導電層32、および第2の樹脂層33に、複数の第2の切欠き37が形成されている。複数の第2の切欠き37は、ブスバー3の長さ方向に間隔をおいて形成されている。 As shown in FIG. 5, one or a plurality of second notches 37 are formed in the first resin layer 31, the first conductive layer 32, and the second resin layer 33. The second notch 37 is formed by a notch 31 d of the first resin layer 31, a notch 32 b of the first conductive layer 32, and a notch 33 b of the second resin layer 33. The notches 31d, 32b, and 33b have the same shape when viewed from the thickness direction (Z direction) of the bus bar 3, and are in positions that overlap each other. The second notch 37 is a general term for the notches 31d, 32b, and 33b. In this embodiment, a plurality of second notches 37 are formed in the first resin layer 31, the first conductive layer 32, and the second resin layer 33. The plurality of second notches 37 are formed at intervals in the length direction of the bus bar 3.
 第2の切欠き37は、ブスバー3の厚さ方向(Z方向)から見て矩形状とすることができる。第2の切欠き37は矩形以外の形状、例えば半円状等とすることもできるが、リードとの接続の観点から矩形状とすることが好ましい。第2の切欠き37は、樹脂層31,33および導電層32の第1の側縁を含む位置に形成されている。第2の切欠き37は、前記第1の側縁を起点として第2の側縁に向かって凹状に形成されている。例えば、第1の樹脂層31の切欠き31dは、第1の側縁31bから第2の側縁31cに向かってY方向に延びる2つの対向縁31d1,31d1と、X方向に沿う奥縁31d2とによって形成される矩形状の切欠きである。切欠き32bおよび切欠き33bは、切欠き31dと同様の矩形状である。第2の切欠き37の幅(X方向の寸法)は、第2の通電部42に接続される第2のリード(例えば、図4に示す負極リード56)の幅と同じ、またはこの幅より大きい。 The second notch 37 can be rectangular when viewed from the thickness direction (Z direction) of the bus bar 3. The second notch 37 may have a shape other than a rectangle, for example, a semicircular shape, but is preferably rectangular from the viewpoint of connection with a lead. The second notch 37 is formed at a position including the resin layers 31 and 33 and the first side edge of the conductive layer 32. The second notch 37 is formed in a concave shape from the first side edge as a starting point toward the second side edge. For example, the notch 31d of the first resin layer 31 includes two opposing edges 31d1 and 31d1 extending in the Y direction from the first side edge 31b toward the second side edge 31c, and a back edge 31d2 along the X direction. Is a rectangular cutout formed by The notch 32b and the notch 33b have the same rectangular shape as the notch 31d. The width (dimension in the X direction) of the second notch 37 is the same as or larger than the width of the second lead (for example, the negative electrode lead 56 shown in FIG. 4) connected to the second current-carrying portion 42. large.
 樹脂層31,33および導電層32に第2の切欠き37が形成されることによって、第2の導電層34の一部は露出している。図4に示すように、この露出部分を第2の通電部42という。第2の通電部42は、第2の導電層34の第2面34b(第1面34aとは反対の面)の一部領域である。第2の通電部42には、単電池1のリード55,56のうち第2のリード(例えば、負極リード56)の先端部が接触する。第2の通電部42には、第2のリードの先端部が重ねられて面的に接触するのが好ましい。第2の通電部42に第2のリードが接触することによって、第2の導電層34と第2のリードとは電気的に接続される。 A part of the second conductive layer 34 is exposed by forming the second notch 37 in the resin layers 31 and 33 and the conductive layer 32. As shown in FIG. 4, this exposed portion is referred to as a second energization unit 42. The second energization portion 42 is a partial region of the second surface 34 b (the surface opposite to the first surface 34 a) of the second conductive layer 34. Of the leads 55 and 56 of the unit cell 1, the tip of the second lead (for example, the negative electrode lead 56) is in contact with the second energization unit 42. It is preferable that the tip of the second lead is overlapped with the second energization part 42 to make a surface contact. The second conductive layer 34 and the second lead are electrically connected when the second lead comes into contact with the second energization portion 42.
 第1の切欠き36と第2の切欠き37とは、ブスバー3の長さ方向の位置が互いに異なる。図1に示すように、ブスバー3には、1つの第1の切欠き36と1つの第2の切欠き37とを有する切欠き群40が複数形成されている。切欠き群40を構成する第1の切欠き36と第2の切欠き37とは、ブスバー3の長さ方向に間隔をおいて形成されている。第1の切欠き36と第2の切欠き37の並び順は、複数の切欠き群40について共通であることが好ましい。図1では、3つの第1の切欠き36と3つの第2の切欠き37とがブスバー3の長さ方向に交互に形成されている。 The first notch 36 and the second notch 37 are different from each other in the position in the length direction of the bus bar 3. As shown in FIG. 1, the bus bar 3 is formed with a plurality of notch groups 40 each having one first notch 36 and one second notch 37. The first notch 36 and the second notch 37 constituting the notch group 40 are formed at intervals in the length direction of the bus bar 3. The arrangement order of the first notch 36 and the second notch 37 is preferably common to the plurality of notch groups 40. In FIG. 1, three first notches 36 and three second notches 37 are alternately formed in the length direction of the bus bar 3.
 図2に示すように、ブスバー3は、外装板6,6の当接部7,7に挟み込まれることよって固定されることが好ましい。また、図2に示すように、ブスバー3またはリード55,56を折り曲げずに平面状に配置をすることもできるが、ブスバー3またはリード55,56を折り曲げて、ブスバー3の少なくとも一部を外装板6に重ねることもできる。 As shown in FIG. 2, the bus bar 3 is preferably fixed by being sandwiched between the contact portions 7 and 7 of the exterior plates 6 and 6. In addition, as shown in FIG. 2, the bus bar 3 or the leads 55 and 56 can be arranged in a planar shape without being bent. It can also be stacked on the plate 6.
 図1および図2に示すように、複数の単電池1の第1のリード(例えば、正極リード55)は第1の導電層32に接続される。複数の単電池1の第2のリード(例えば、負極リード56)は第2の導電層34に接続される。そのため、複数の単電池1は、ブスバー3によって並列に接続される。 As shown in FIGS. 1 and 2, the first leads (for example, positive electrode leads 55) of the plurality of single cells 1 are connected to the first conductive layer 32. Second leads (for example, negative electrode leads 56) of the plurality of unit cells 1 are connected to the second conductive layer 34. Therefore, the plurality of single cells 1 are connected in parallel by the bus bar 3.
 図6は、ブスバー3を用いた組電池の他の例である組電池110の構成図である。図7は、組電池110の一部(図6にIで示す部分)を示す分解図である。図8は、電池110の一部(図7にIIで示す部分)を展開して示す模式図である。図9は、組電池110の模式図である。なお、図1および図2に示す組電池10との共通構成については同じ符号を付して説明を省略する。 FIG. 6 is a configuration diagram of an assembled battery 110 which is another example of the assembled battery using the bus bar 3. FIG. 7 is an exploded view showing a part of the battery pack 110 (part indicated by I in FIG. 6). FIG. 8 is a schematic diagram showing a part of the battery 110 (part indicated by II in FIG. 7) in an expanded manner. FIG. 9 is a schematic diagram of the assembled battery 110. In addition, about the common structure with the assembled battery 10 shown in FIG. 1 and FIG. 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図6および図7に示すように、組電池110は、複数の電池ユニット11(11A~11G)が積層されて構成されている。電池ユニット11は、複数の単電池1と、電池外装体2と、ブスバー3とを備える(図1および図2参照)。電池ユニット11は、図1および図2に示す組電池10とほぼ同じ構成である。 As shown in FIGS. 6 and 7, the assembled battery 110 is configured by stacking a plurality of battery units 11 (11A to 11G). The battery unit 11 includes a plurality of single cells 1, a battery outer package 2, and a bus bar 3 (see FIGS. 1 and 2). The battery unit 11 has substantially the same configuration as the assembled battery 10 shown in FIGS. 1 and 2.
 図7および図9に示すように、第1層(最上層)の電池ユニット11(電池ユニット11A)では、単電池1(単電池1A)の正極リード55は、ブスバー3(第1層ブスバー3A)の第1の導電層32に電気的に接続されている。単電池1(単電池1A)の負極リード56は、ブスバー3(第1層ブスバー3A)の第2の導電層34に電気的に接続されている。
 第1層ブスバー3Aの第2の導電層34の一方の端部は、第2層ブスバー3Bの第2の導電層34の一方の端部と、接続部38(第1の接続部38A)を介して電気的に接続されている。
As shown in FIGS. 7 and 9, in the battery unit 11 (battery unit 11A) of the first layer (uppermost layer), the positive electrode lead 55 of the cell 1 (cell 1A) is connected to the bus bar 3 (first layer bus bar 3A). ) Of the first conductive layer 32. The negative electrode lead 56 of the unit cell 1 (unit cell 1A) is electrically connected to the second conductive layer 34 of the bus bar 3 (first layer bus bar 3A).
One end portion of the second conductive layer 34 of the first layer bus bar 3A is connected to one end portion of the second conductive layer 34 of the second layer bus bar 3B and the connection portion 38 (first connection portion 38A). Is electrically connected.
 第2層の電池ユニット11(電池ユニット11B)では、単電池1(単電池1B)の正極リード55は、ブスバー3(第2層ブスバー3B)の第2の導電層34に電気的に接続されている。単電池1(単電池1B)の負極リード56は、ブスバー3(第2層ブスバー3B)の第1の導電層32に電気的に接続されている。
 第2層ブスバー3Bの第1の導電層32の他方の端部は、第3層ブスバー3Cの第1の導電層32の他方の端部と、接続部38(第2の接続部38B)を介して電気的に接続されている。
In the second layer battery unit 11 (battery unit 11B), the positive electrode lead 55 of the unit cell 1 (unit cell 1B) is electrically connected to the second conductive layer 34 of the bus bar 3 (second layer bus bar 3B). ing. The negative electrode lead 56 of the unit cell 1 (unit cell 1B) is electrically connected to the first conductive layer 32 of the bus bar 3 (second layer bus bar 3B).
The other end portion of the first conductive layer 32 of the second layer bus bar 3B is connected to the other end portion of the first conductive layer 32 of the third layer bus bar 3C and the connection portion 38 (second connection portion 38B). Is electrically connected.
 第3層の電池ユニット11(電池ユニット11C)では、単電池1(単電池1C)の正極リード55は、ブスバー3(第3層ブスバー3C)の第1の導電層32に電気的に接続されている。単電池1(単電池1C)の負極リード56は、ブスバー3(第3層ブスバー3C)の第2の導電層34に電気的に接続されている。
 第3層ブスバー3Cの第2の導電層34の一方の端部は、第4層ブスバー3Dの第2の導電層34の一方の端部と、接続部38(第3の接続部38C)を介して電気的に接続されている。
In the third layer battery unit 11 (battery unit 11C), the positive electrode lead 55 of the unit cell 1 (unit cell 1C) is electrically connected to the first conductive layer 32 of the bus bar 3 (third layer bus bar 3C). ing. The negative electrode lead 56 of the unit cell 1 (unit cell 1C) is electrically connected to the second conductive layer 34 of the bus bar 3 (third layer bus bar 3C).
One end portion of the second conductive layer 34 of the third layer bus bar 3C is connected to one end portion of the second conductive layer 34 of the fourth layer bus bar 3D and the connection portion 38 (third connection portion 38C). Is electrically connected.
 第4層の電池ユニット11(電池ユニット11D)では、単電池1(単電池1D)の正極リード55は、ブスバー3(第4層ブスバー3D)の第2の導電層34に電気的に接続されている。単電池1(単電池1D)の負極リード56は、ブスバー3(第4層ブスバー3D)の第1の導電層32に電気的に接続されている。 In the battery unit 11 (battery unit 11D) of the fourth layer, the positive electrode lead 55 of the unit cell 1 (unit cell 1D) is electrically connected to the second conductive layer 34 of the bus bar 3 (fourth layer bus bar 3D). ing. The negative electrode lead 56 of the unit cell 1 (unit cell 1D) is electrically connected to the first conductive layer 32 of the bus bar 3 (fourth layer bus bar 3D).
 図8に示すように、組電池110は、積層された複数の電池ユニット11を展開することもできる。 As shown in FIG. 8, the assembled battery 110 can expand a plurality of stacked battery units 11.
 組電池110は、並列配置された複数の単電池1を備えた電池ユニット11を複数用意し、これら複数の電池ユニット11を直列に配置した構造とすることができる。例えば、組電池110では、図6および図9に示すように、電池ユニット11を構成する3つの単電池1(電池群)はブスバー3によって並列に接続される。7つの電池ユニット11は、直列に接続されている。 The assembled battery 110 can have a structure in which a plurality of battery units 11 including a plurality of single cells 1 arranged in parallel are prepared and the plurality of battery units 11 are arranged in series. For example, in the assembled battery 110, as shown in FIGS. 6 and 9, three unit cells 1 (battery group) constituting the battery unit 11 are connected in parallel by the bus bar 3. The seven battery units 11 are connected in series.
 図1および図2に示す組電池10では、複数の単電池1はブスバー3によって並列に接続される。図6および図9に示す組電池110では、複数の単電池1はブスバー3によって並列および直列に接続される。このように、ブスバー3は複数の接続形態に対応できる。また、ブスバー3は、構造が簡略であるため複数の単電池1を接続する作業が容易となる。ブスバー3は、単電池1のリード55,56を同じ面側(図1において上面側)から接続できるため、組み立てが容易である。 1 and 2, a plurality of single cells 1 are connected in parallel by a bus bar 3. In the assembled battery 110 shown in FIGS. 6 and 9, the plurality of single cells 1 are connected in parallel and in series by the bus bars 3. Thus, the bus bar 3 can correspond to a plurality of connection forms. Further, since the bus bar 3 has a simple structure, the work of connecting the plurality of single cells 1 is facilitated. The bus bar 3 can be easily assembled because the leads 55 and 56 of the unit cell 1 can be connected from the same surface side (upper surface side in FIG. 1).
 図10は、ブスバー3を用いた組電池のさらに他の例である組電池210の構成図である。なお、既出の組電池との共通構成については同じ符号を付して説明を省略する。
 図10に示すように、組電池210は、複数の電池ユニット11と、熱拡散シート12とを備える。熱拡散シート12は、厚さ方向(Z方向)に隣り合う電池ユニット11,11の間に設けられる。熱拡散シート12は、例えば、グラファイトなどの炭素系材料を含む。熱拡散シート12は、グラファイトシートであることが好ましい。グラファイトシートの厚さは、例えば単層当たり10~1000μmが好ましい。
FIG. 10 is a configuration diagram of an assembled battery 210 which is still another example of the assembled battery using the bus bar 3. In addition, about the common structure with the already assembled battery, the same code | symbol is attached | subjected and description is abbreviate | omitted.
As shown in FIG. 10, the assembled battery 210 includes a plurality of battery units 11 and a heat diffusion sheet 12. The thermal diffusion sheet 12 is provided between the battery units 11 and 11 adjacent to each other in the thickness direction (Z direction). The thermal diffusion sheet 12 includes, for example, a carbon-based material such as graphite. The thermal diffusion sheet 12 is preferably a graphite sheet. The thickness of the graphite sheet is preferably 10 to 1000 μm per monolayer, for example.
 グラファイトシートの特性としては、例えば、平面方向の熱伝導率が100~3000W/(m・K)、厚さ方向の熱伝導率が1~30W/(m・K)等が挙げられる。熱伝導率の測定法としては、例えばASTM D5470、ASTM E1530、JIS R2616、ASTM D5930、JIS R1611などがある。 Examples of the characteristics of the graphite sheet include a thermal conductivity in the plane direction of 100 to 3000 W / (m · K) and a thermal conductivity in the thickness direction of 1 to 30 W / (m · K). Examples of methods for measuring thermal conductivity include ASTM D5470, ASTM E1530, JIS R2616, ASTM D5930, and JIS R1611.
 熱拡散シート12は、外装板6(詳しくは基板部11)における熱伝導率よりも高い熱伝導率を有する。そのため、熱拡散シート12は、単電池1で発生した熱を面内方向に拡散させることができる。よって、通電時の単電池1の温度上昇を抑制し、複数の単電池1の間の温度差を小さくできる。 The thermal diffusion sheet 12 has a thermal conductivity higher than that of the exterior plate 6 (specifically, the substrate portion 11). Therefore, the heat diffusion sheet 12 can diffuse the heat generated in the unit cell 1 in the in-plane direction. Therefore, the temperature rise of the single cell 1 at the time of electricity supply can be suppressed, and the temperature difference between the several single cells 1 can be made small.
 図11は、単電池1のリード55,56とブスバー3との接続構造の例を示す分解斜視図である。図12は、前記接続構造を分解して示す平面図である。図11および図12に示すように、この接続構造は、ブスバー3と、一対の接着性樹脂フィルム21(接着性樹脂層)と、リード55,56と、リード封止層22と、カバーフィルム23と、を備える。 FIG. 11 is an exploded perspective view showing an example of a connection structure between the leads 55 and 56 of the unit cell 1 and the bus bar 3. FIG. 12 is an exploded plan view showing the connection structure. As shown in FIG. 11 and FIG. 12, this connection structure includes a bus bar 3, a pair of adhesive resin films 21 (adhesive resin layer), leads 55 and 56, a lead sealing layer 22, and a cover film 23. And comprising.
 接着性樹脂フィルム21は、ブスバー3の上面に貼り付けられる。接着性樹脂フィルム21は、ポリオレフィン系(ポリプロピレン、ポリエチレンなど)、ポリウレタン系、ポリエーテル系などの接着性樹脂で構成される。接着性樹脂フィルム21は、例えば、矩形枠状に形成されている。符号24は接着性樹脂フィルム21の開口である。開口24は、例えば矩形状である。接着性樹脂フィルム21は、平面視においてリード55,56と通電部41,42との接続箇所の少なくとも一部を囲む。図11および図12に示す2つの接着性樹脂フィルム21,21は、それぞれリード55,56の先端部分55a,56aを囲んで設けられている。接着性樹脂フィルム21の外形は、平面視において通電部41,42よりやや大きい矩形状が好ましい。接着性樹脂フィルム21の大部分の領域は通電部41,42に重ねられる。接着性樹脂フィルム21は、ブスバー3の上面に熱融着等により固定されるのが好ましい。 The adhesive resin film 21 is attached to the upper surface of the bus bar 3. The adhesive resin film 21 is made of an adhesive resin such as polyolefin (polypropylene, polyethylene, etc.), polyurethane, or polyether. The adhesive resin film 21 is formed in a rectangular frame shape, for example. Reference numeral 24 denotes an opening of the adhesive resin film 21. The opening 24 has a rectangular shape, for example. The adhesive resin film 21 surrounds at least a part of a connection portion between the leads 55 and 56 and the energization portions 41 and 42 in a plan view. The two adhesive resin films 21 and 21 shown in FIGS. 11 and 12 are provided so as to surround the tip portions 55a and 56a of the leads 55 and 56, respectively. The outer shape of the adhesive resin film 21 is preferably a rectangular shape that is slightly larger than the energizing portions 41 and 42 in plan view. Most of the area of the adhesive resin film 21 is overlaid on the energizing portions 41 and 42. The adhesive resin film 21 is preferably fixed to the upper surface of the bus bar 3 by heat fusion or the like.
 図12に示すように、リード55,56は、通電部41,42および接着性樹脂フィルム21の上面に重ねて設置される。平面視において、リード55,56の先端部分55a,56aは開口24内に位置し、第1の通電部41に接触する。リード55,56の延出部分55b,56b(収容体51から延出した部分)の基端部分55c,56cは、接着性樹脂フィルム21の上面に当接する。 As shown in FIG. 12, the leads 55 and 56 are installed on the upper surfaces of the current-carrying portions 41 and 42 and the adhesive resin film 21. In a plan view, the tip portions 55 a and 56 a of the leads 55 and 56 are located in the opening 24 and contact the first energization portion 41. Proximal end portions 55c and 56c of the extended portions 55b and 56b of the leads 55 and 56 (portions extending from the container 51) are in contact with the upper surface of the adhesive resin film 21.
 図11および図12に示すように、リード封止層22は、例えば、長さ方向がX方向に沿う長方形状に形成されている。図12に示すように、リード封止層22は、リード55,56の基端部分55c,56c、および、接着性樹脂フィルム21の部分領域21a(基端部分55c,56cに対して両側方に隣接する接着性樹脂フィルム21の部分)を覆う。リード55,56の基端部分55c,56cは、延出部分55b,56bの基端55b1,56b1を含む一定の長さ範囲の部分である。リード封止層22は、例えば、ポリオレフィン系(ポリプロピレン、ポリエチレン等)、ポリエステル系などの樹脂で構成される。 As shown in FIGS. 11 and 12, the lead sealing layer 22 is formed in, for example, a rectangular shape whose length direction is along the X direction. As shown in FIG. 12, the lead sealing layer 22 is formed on both sides of the base end portions 55c and 56c of the leads 55 and 56 and the partial region 21a of the adhesive resin film 21 ( base end portions 55c and 56c). The adjacent adhesive resin film 21 part) is covered. The base end portions 55c and 56c of the leads 55 and 56 are portions of a certain length range including the base ends 55b1 and 56b1 of the extended portions 55b and 56b. The lead sealing layer 22 is made of, for example, a polyolefin resin (polypropylene, polyethylene, or the like) or a polyester resin.
 カバーフィルム23は、例えば、ポリオレフィン系(ポリプロピレン、ポリエチレンなど)、ポリウレタン系、ポリエーテル系などの接着性樹脂で構成される。カバーフィルム23は、例えば、長さ方向がX方向に沿う長方形状であって、2つの通電部41,42を一括して覆うことができる長さを有する。カバーフィルム23は、リード55,56の延出部分55b,56b、通電部41,42、接着性樹脂フィルム21、および、リード封止層22の前部分22aを覆う。前部分22aは、リード封止層22のうちリード先端方向側の側縁22bを含む部分であって、リード封止層22の長さ方向に沿う帯状部分である。前部分22aは接着性樹脂フィルム21に重なっている。カバーフィルム23は、延出部分55b,56b、通電部41,42、接着性樹脂フィルム21、および前部分22aに、熱融着、接着等により接合されるのが好ましい。カバーフィルム23は、例えば、ポリエステル系、ポリオレフィン系(ポリプロピレン、ポリエチレンなど)などの樹脂で構成される。 The cover film 23 is made of, for example, an adhesive resin such as polyolefin (polypropylene, polyethylene, etc.), polyurethane, or polyether. The cover film 23 is, for example, a rectangular shape whose length direction is along the X direction, and has a length that can cover the two current-carrying portions 41 and 42 at once. The cover film 23 covers the extended portions 55 b and 56 b of the leads 55 and 56, the energizing portions 41 and 42, the adhesive resin film 21, and the front portion 22 a of the lead sealing layer 22. The front portion 22 a is a portion including the side edge 22 b on the lead tip direction side in the lead sealing layer 22, and is a belt-like portion along the length direction of the lead sealing layer 22. The front portion 22 a overlaps the adhesive resin film 21. The cover film 23 is preferably joined to the extended portions 55b and 56b, the energizing portions 41 and 42, the adhesive resin film 21, and the front portion 22a by heat fusion, adhesion, or the like. The cover film 23 is made of, for example, a polyester resin or a polyolefin resin (polypropylene, polyethylene, etc.).
 前記接続構造は、次に示す効果を奏する。図4および図5に示すように、ブスバー3の第1の導電層32および第2の導電層34には、接続されるリード55,56の材料と同じ材料が用いられるとは限らない。異種金属の接続箇所は、水に触れると腐食が生じやすいことが知られている。
 図11および図12に示すように、前記接続構造では、リード55,56の延出部分55b,56b、通電部41,42、接着性樹脂フィルム21、および、リード封止層22の前部分22aを覆うカバーフィルム23が設けられるため、リード55,56と通電部41,42との接続箇所に水または外気が浸入するのを防ぐことができる。よって、リード55,56と導電層32,34とが異なる金属材料で構成されている場合でも、前記接続箇所における腐食の発生を防ぐことができる。
The connection structure has the following effects. As shown in FIGS. 4 and 5, the first conductive layer 32 and the second conductive layer 34 of the bus bar 3 are not necessarily made of the same material as that of the leads 55 and 56 to be connected. It is known that the contact location of dissimilar metals is likely to corrode when exposed to water.
As shown in FIGS. 11 and 12, in the connection structure, the extended portions 55b and 56b of the leads 55 and 56, the energizing portions 41 and 42, the adhesive resin film 21, and the front portion 22a of the lead sealing layer 22 are used. Since the cover film 23 is provided, the water or the outside air can be prevented from entering the connecting portions between the leads 55 and 56 and the energizing portions 41 and 42. Therefore, even when the leads 55 and 56 and the conductive layers 32 and 34 are made of different metal materials, it is possible to prevent the occurrence of corrosion at the connection points.
 前記接続構造は、リード55,56と通電部41,42との接続箇所の少なくとも一部を囲む接着性樹脂フィルム21が設けられているため、前記接続箇所を囲むカバーフィルム23を接着性樹脂フィルム21により確実に通電部41,42に接着できる。そのため、リード55,56と通電部41,42との接続箇所に水または外気が浸入するのを防ぐことができる。よって、前記接続箇所における腐食の発生を防ぐことができる。 In the connection structure, since the adhesive resin film 21 surrounding at least a part of the connection portion between the leads 55 and 56 and the energization portions 41 and 42 is provided, the cover film 23 surrounding the connection portion is attached to the adhesive resin film. 21 can reliably adhere to the energizing portions 41 and 42. Therefore, it is possible to prevent water or outside air from entering the connection portion between the leads 55 and 56 and the energization units 41 and 42. Therefore, generation | occurrence | production of the corrosion in the said connection location can be prevented.
 リード55,56の基端部分55c,56cはリード封止層22によって覆われている。リード封止層22の前部分22aはカバーフィルム23によって覆われている。そのため、リード55,56の延出部分55b,56bはほぼ全面がカバーフィルム23およびリード封止層22によって覆われる。よって、リード55,56が水または外気に触れるのを防ぎ、リード55,56の腐食を防ぐことができる。 The base end portions 55 c and 56 c of the leads 55 and 56 are covered with the lead sealing layer 22. A front portion 22 a of the lead sealing layer 22 is covered with a cover film 23. Therefore, the extended portions 55 b and 56 b of the leads 55 and 56 are almost entirely covered with the cover film 23 and the lead sealing layer 22. Therefore, the leads 55 and 56 can be prevented from coming into contact with water or the outside air, and the corrosion of the leads 55 and 56 can be prevented.
 なお、図11および図12に示すカバーフィルム23は、2つの通電部41,42を一括して覆うように形成されているが、カバーフィルムは、2つの通電部41,42を個別に覆う構成であってもよい。接着性樹脂フィルムは、リードと通電部との接続箇所の少なくとも一部を囲むことができる形状であればよく、例えば円環状等であってもよい。 The cover film 23 shown in FIGS. 11 and 12 is formed so as to collectively cover the two energization parts 41 and 42, but the cover film is configured to individually cover the two energization parts 41 and 42. It may be. The adhesive resin film only needs to have a shape that can surround at least a part of the connection portion between the lead and the current-carrying portion, and may be, for example, an annular shape.
 図13は、組電池10を用いた電動装置の例を模式的に示す図である。
 電動装置400は、駆動機構401によって移動可能な車両である。電動装置400は、車体402と、車輪403とを備える。駆動機構401は、組電池10からの給電によって稼働するモータ等であり、車輪403を駆動させる。車体402は、駆動機構401および組電池10を搭載する。
 電動装置としては、電動バイク、電動自転車、ロボット、電動車いす、農業機械、エスカレータ、洗濯機、冷蔵庫などでもよい。
FIG. 13 is a diagram schematically illustrating an example of an electric device using the assembled battery 10.
Electric device 400 is a vehicle that can be moved by drive mechanism 401. Electric device 400 includes a vehicle body 402 and wheels 403. The drive mechanism 401 is a motor or the like that is operated by power supply from the assembled battery 10 and drives the wheels 403. The vehicle body 402 carries the drive mechanism 401 and the assembled battery 10.
The electric device may be an electric motorcycle, an electric bicycle, a robot, an electric wheelchair, an agricultural machine, an escalator, a washing machine, a refrigerator, or the like.
 本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 図2に示す組電池では、外装板6,6は、いずれも複数の筒状部14にわたって幅方向に連続して形成されているが、外装板は、向かい合う外装板のうちいずれか一方のみが複数の筒状部にわたって幅方向に連続して形成され、他方の外装板は筒状部ごとにそれぞれ独立した構成であってもよい。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
In the assembled battery shown in FIG. 2, the exterior plates 6 and 6 are all formed continuously in the width direction across the plurality of cylindrical portions 14, but only one of the facing exterior plates is the exterior plate. The plurality of cylindrical portions may be formed continuously in the width direction, and the other exterior plate may be configured independently for each cylindrical portion.
 電池外装体の筒状部の形状は、六角筒状に限定されない。例えば、電池外装体を構成する第1の外装板が基板部と一対の側板部を有し、かつ、第2の外装板が傾斜や凹凸がなく平面板状であると、筒状部は四角筒状となる。第1の外装板の一対の側板部が、拡幅しつつ第2の外装板に近づくように傾斜していると、筒状部は台形筒状となる。この電池外装体では、ブスバーは第2の外装板に接して配置することができる。この電池外装体は、第2の外装板が平面板状であるため、外装板の加工の容易さの観点で好ましい。 The shape of the cylindrical part of the battery outer body is not limited to a hexagonal cylindrical shape. For example, if the first exterior plate constituting the battery exterior body has a substrate portion and a pair of side plate portions, and the second exterior plate has a flat plate shape with no inclination or unevenness, the cylindrical portion has a square shape. It becomes cylindrical. When the pair of side plate portions of the first exterior plate is inclined so as to approach the second exterior plate while being widened, the tubular portion becomes a trapezoidal tubular shape. In this battery exterior body, the bus bar can be disposed in contact with the second exterior plate. This battery exterior body is preferable from the viewpoint of ease of processing of the exterior plate because the second exterior plate has a flat plate shape.
 図14は、組電池10の変形例である組電池10Aの斜視図である。電池外装体102を構成する一対の外装板106,106のうち第1外装板106Aは、図1に示す第1外装板6Aと同様に、基板部11と、基板部11に対して傾斜した側板部12,12とを有する。第2外装板106Bは、平面板状に形成されている。ブスバー3は、第2外装板106Bに重ねられる。電池外装体102の筒状部114は台形筒状となっている。 FIG. 14 is a perspective view of an assembled battery 10 </ b> A that is a modification of the assembled battery 10. Of the pair of exterior plates 106 and 106 constituting the battery exterior body 102, the first exterior plate 106 </ b> A is the same as the first exterior plate 6 </ b> A shown in FIG. 1, and the side plate inclined to the substrate unit 11. Parts 12 and 12. The second exterior plate 106B is formed in a flat plate shape. The bus bar 3 is overlaid on the second exterior plate 106B. The cylindrical portion 114 of the battery exterior body 102 has a trapezoidal cylindrical shape.
 図5に示すブスバー3では、第2の通電部42を露出させる第2の切欠き37は、樹脂層31,33および導電層32に形成されているが、実施形態のブスバーはこの構造に限定されない。
 図15は、第2実施形態のブスバー103の分解斜視図である。ブスバー103は、第2の切欠き37に代えて第2の切欠き137が形成されている点で、図5に示すブスバー3と異なる。第2の切欠き137は、第3の樹脂層35に形成されている。この実施形態では、第3の樹脂層35に、複数の第2の切欠き137が形成されている。複数の第2の切欠き137は、ブスバー103の長さ方向に間隔をおいて形成されている。
 第2の切欠き137は、ブスバー103の厚さ方向(Z方向)から見て矩形状とすることができる。第2の切欠き137は、第3の樹脂層35の第1の側縁(第1の樹脂層31の第1の側縁31bと重なる側縁)を起点として第2の側縁に向かって凹状に形成されている。第2の切欠き137は、第2の導電層34の一部である第2の通電部142を露出させる。第2の通電部142は、第2の導電層34の第1面34aの一部領域である。
 ブスバー103は、第2の切欠き137の構造が簡略であるため、製造が容易であるという利点がある。
In the bus bar 3 shown in FIG. 5, the second notch 37 exposing the second energizing portion 42 is formed in the resin layers 31 and 33 and the conductive layer 32, but the bus bar of the embodiment is limited to this structure. Not.
FIG. 15 is an exploded perspective view of the bus bar 103 according to the second embodiment. The bus bar 103 is different from the bus bar 3 shown in FIG. 5 in that a second notch 137 is formed instead of the second notch 37. The second notch 137 is formed in the third resin layer 35. In this embodiment, a plurality of second notches 137 are formed in the third resin layer 35. The plurality of second notches 137 are formed at intervals in the length direction of the bus bar 103.
The second notch 137 can have a rectangular shape when viewed from the thickness direction (Z direction) of the bus bar 103. The second notch 137 starts from the first side edge of the third resin layer 35 (the side edge overlapping the first side edge 31b of the first resin layer 31) toward the second side edge. It is formed in a concave shape. The second notch 137 exposes the second energization part 142 that is a part of the second conductive layer 34. The second energization part 142 is a partial region of the first surface 34 a of the second conductive layer 34.
The bus bar 103 has an advantage that it is easy to manufacture because the structure of the second notch 137 is simple.
 図5に示すブスバー3では、第1の切欠き36が第1の樹脂層31に形成され、第2の切欠き37が樹脂層31,32および樹脂層33に形成されているが、実施形態のブスバーはこの構造に限定されない。例えば、第1の切欠きは第2の樹脂層33、第2の導電層34および第3の樹脂層35に形成されていてもよい。この場合、第1の切欠きによって露出する第1の通電部は、第1の導電層32の第1面32aの一部である。第2の切欠きは、第3の樹脂層35に形成されていてもよい。この場合、第2の切欠きによって露出する第2の通電部は、第2の導電層34の第1面34aの一部である。 In the bus bar 3 shown in FIG. 5, the first notch 36 is formed in the first resin layer 31 and the second notch 37 is formed in the resin layers 31, 32 and the resin layer 33. The bus bar is not limited to this structure. For example, the first notch may be formed in the second resin layer 33, the second conductive layer 34, and the third resin layer 35. In this case, the first current-carrying part exposed by the first notch is a part of the first surface 32 a of the first conductive layer 32. The second notch may be formed in the third resin layer 35. In this case, the second current-carrying part exposed by the second notch is a part of the first surface 34 a of the second conductive layer 34.
 実施形態のブスバーは、第1および第2の導電層(第1実施形態では導電層32,34)と、主絶縁層(第1実施形態では樹脂層33)と、2つの被覆絶縁層(第1実施形態では樹脂層31,35)とを基本構成とする。主絶縁層は、第1および第2の導電層を隔てる。主絶縁層は、第1の導電層の内面と第2の導電層の内面とに挟まれている。被覆絶縁層は、第1および第2の導電層の外面(主絶縁層側の面とは反対の面)をそれぞれ覆う。 The bus bar of the embodiment includes a first and second conductive layers ( conductive layers 32 and 34 in the first embodiment), a main insulating layer (resin layer 33 in the first embodiment), and two covering insulating layers (first In one embodiment, the resin layers 31 and 35) have a basic configuration. The main insulating layer separates the first and second conductive layers. The main insulating layer is sandwiched between the inner surface of the first conductive layer and the inner surface of the second conductive layer. The covering insulating layer covers the outer surfaces of the first and second conductive layers (the surface opposite to the surface on the main insulating layer side).
 第1の通電部は、第1の導電層の内面の一部でもよいし、外面の一部でもよい。第1の通電部が第1の導電層の内面の一部である場合、第1の切欠きは、主絶縁層と、第2の導電層と、第2の導電層を覆う被覆絶縁層とに形成される。第1の通電部が第1の導電層の外面の一部である場合、第1の切欠きは、第1の導電層を覆う被覆絶縁層に形成される。
 第2の通電部は、第2の導電層の内面の一部でもよいし、外面の一部でもよい。第2の通電部が第2の導電層の内面の一部である場合、第2の切欠きは、主絶縁層と、第2の導電層と、第2の導電層を覆う被覆絶縁層とに形成される。第2の通電部が第2の導電層の外面の一部である場合、第2の切欠きは、第2の導電層を覆う被覆絶縁層に形成される。
The first energization part may be a part of the inner surface of the first conductive layer or a part of the outer surface. When the first energization part is a part of the inner surface of the first conductive layer, the first notch includes a main insulating layer, a second conductive layer, and a covering insulating layer covering the second conductive layer. Formed. When the first energization part is a part of the outer surface of the first conductive layer, the first notch is formed in the covering insulating layer covering the first conductive layer.
The second energization part may be a part of the inner surface of the second conductive layer or a part of the outer surface. When the second energization part is a part of the inner surface of the second conductive layer, the second notch includes a main insulating layer, a second conductive layer, and a covering insulating layer covering the second conductive layer. Formed. When the second energization part is a part of the outer surface of the second conductive layer, the second notch is formed in the covering insulating layer covering the second conductive layer.
 図5に示すブスバー3では、第1の切欠き36が第1の樹脂層31に形成され、第2の切欠き37が樹脂層31,32および樹脂層33に形成されているが、実施形態のブスバーはこの構造に限定されない。例えば、主絶縁層(第1実施形態では第2の樹脂層33)は、単層構造に限らず多層構造であってもよい。導電層(第1の導電層32および第2の導電層34)、および被覆絶縁層(第1の樹脂層31および第3の樹脂層35)も、それぞれ多層構造であってもよい。 In the bus bar 3 shown in FIG. 5, the first notch 36 is formed in the first resin layer 31 and the second notch 37 is formed in the resin layers 31, 32 and the resin layer 33. The bus bar is not limited to this structure. For example, the main insulating layer (second resin layer 33 in the first embodiment) is not limited to a single layer structure, and may have a multilayer structure. The conductive layers (the first conductive layer 32 and the second conductive layer 34) and the covering insulating layers (the first resin layer 31 and the third resin layer 35) may each have a multilayer structure.
1,1A,1B,1C,1D 単電池(電池)
2,102 電池外装体
3,3A,3B,3C,3D ブスバー
6,6A,6B,106A,106B 外装板
7 当接部
10,10A,110,210 組電池
14,114 筒状部
31 第1の樹脂層(第1の絶縁層)
32 第1の導電層
33 第2の樹脂層(第2の絶縁層)
34 第2の導電層
35 第3の樹脂層(第3の絶縁層)
36 第1の切欠き
37,137 第2の切欠き
41 第1の通電部
42,142 第2の通電部
55 正極リード(第1の電極端子)
56 負極リード(第2の電極端子)
400 電動装置
401 駆動機構
1,1A, 1B, 1C, 1D cell (battery)
2,102 Battery outer body 3, 3A, 3B, 3C, 3D Busbar 6, 6A, 6B, 106A, 106B Outer plate 7 Abutting part 10, 10A, 110, 210 Battery pack 14, 114 Cylindrical part 31 First Resin layer (first insulating layer)
32 1st conductive layer 33 2nd resin layer (2nd insulating layer)
34 Second conductive layer 35 Third resin layer (third insulating layer)
36 1st notch 37,137 2nd notch 41 1st electricity supply part 42,142 2nd electricity supply part 55 Positive electrode lead (1st electrode terminal)
56 Negative lead (second electrode terminal)
400 Electric Device 401 Drive Mechanism

Claims (9)

  1.  第1の電極端子および第2の電極端子を有する電池に電気的に接続されるブスバーであって、
     第1の絶縁層、第1の導電層、第2の絶縁層、第2の導電層、および第3の絶縁層がこの順で積層された構造を有し、
     前記第1の導電層の一部は、前記第1の電極端子と電気的に接続可能な第1の通電部として露出し、
     前記第2の導電層の一部は、前記第2の電極端子と電気的に接続可能な第2の通電部として露出する、ブスバー。
    A bus bar electrically connected to a battery having a first electrode terminal and a second electrode terminal,
    The first insulating layer, the first conductive layer, the second insulating layer, the second conductive layer, and the third insulating layer are stacked in this order;
    A part of the first conductive layer is exposed as a first current-carrying portion that can be electrically connected to the first electrode terminal,
    A part of said 2nd conductive layer is a bus bar exposed as a 2nd electricity supply part which can be electrically connected with the said 2nd electrode terminal.
  2.  前記第1の絶縁層に、前記第1の通電部を露出させる第1の切欠きが形成され、
     前記第1の絶縁層、前記第1の導電層、および前記第2の絶縁層に、前記第2の通電部を露出させる第2の切欠きが形成されている、請求項1記載のブスバー。
    A first notch that exposes the first energization portion is formed in the first insulating layer;
    The bus bar according to claim 1, wherein a second notch for exposing the second current-carrying portion is formed in the first insulating layer, the first conductive layer, and the second insulating layer.
  3.  前記第1の絶縁層に、前記第1の通電部を露出させる第1の切欠きが形成され、
     前記第3の絶縁層に、前記第2の通電部を露出させる第2の切欠きが形成されている、請求項1記載のブスバー。
    A first notch that exposes the first energization portion is formed in the first insulating layer;
    2. The bus bar according to claim 1, wherein a second notch for exposing the second energization portion is formed in the third insulating layer.
  4.  請求項1~3のうちいずれか1項に記載のブスバーと、複数の前記電池とを備え、
     前記第1の電極端子のうち少なくとも1つは、前記第1の通電部と電気的に接続され、
     前記第2の電極端子のうち少なくとも1つは、前記第2の通電部と電気的に接続されている、組電池。
    A bus bar according to any one of claims 1 to 3, and a plurality of the batteries,
    At least one of the first electrode terminals is electrically connected to the first energization unit,
    An assembled battery in which at least one of the second electrode terminals is electrically connected to the second energization unit.
  5.  前記電池は、扁平形状である、請求項4記載の組電池。 The assembled battery according to claim 4, wherein the battery has a flat shape.
  6.  前記電池は、電池本体と、前記電池本体を収容する内部空間を有する収容体と、を備え、
     前記収容体は、金属層と樹脂層とが積層された積層体から構成され、前記樹脂層が前記内部空間の側に向けられている、請求項4または5に記載の組電池。
    The battery includes a battery body, and a container having an internal space for housing the battery body,
    6. The assembled battery according to claim 4, wherein the container is constituted by a laminated body in which a metal layer and a resin layer are laminated, and the resin layer is directed toward the internal space.
  7.  前記電池を外装する電池外装体をさらに備え、
     前記電池外装体は、少なくとも一対の向かい合う外装板を備え、
     前記外装板は、幅方向に間隔をおいて複数の当接部で互いに当接し、
     前記当接部によって区画された複数の筒状部に、それぞれ前記電池が収容されている、請求項4~6のうちいずれか1項に記載の組電池。
    The battery further includes a battery outer body that covers the battery,
    The battery exterior body includes at least a pair of facing exterior plates,
    The exterior plates abut each other at a plurality of abutting portions at intervals in the width direction,
    The assembled battery according to any one of claims 4 to 6, wherein the battery is accommodated in each of a plurality of cylindrical portions partitioned by the contact portion.
  8.  前記電池外装体を介して前記複数の電池のうち2以上と接触する熱拡散シート、をさらに備え、
     前記熱拡散シートは、前記電池外装体の被接触面における熱伝導率よりも高い熱伝導率を有する、請求項7記載の組電池。
    A thermal diffusion sheet in contact with two or more of the plurality of batteries via the battery outer package,
    The assembled battery according to claim 7, wherein the thermal diffusion sheet has a thermal conductivity higher than a thermal conductivity of a contacted surface of the battery exterior body.
  9.  請求項4~8のうちいずれか1項に記載の組電池と、
     前記組電池によって駆動する駆動機構と、を備えた電動装置。
    The assembled battery according to any one of claims 4 to 8,
    And a driving mechanism driven by the assembled battery.
PCT/JP2019/012110 2018-03-23 2019-03-22 Busbar, battery pack, and electrical device WO2019182117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507933A JP7389019B2 (en) 2018-03-23 2019-03-22 connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-056556 2018-03-23
JP2018056556 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182117A1 true WO2019182117A1 (en) 2019-09-26

Family

ID=67987399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012110 WO2019182117A1 (en) 2018-03-23 2019-03-22 Busbar, battery pack, and electrical device

Country Status (2)

Country Link
JP (1) JP7389019B2 (en)
WO (1) WO2019182117A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167346A1 (en) * 2019-11-29 2021-06-03 Samsung Sdi Co., Ltd. Battery pack
SE2050631A1 (en) * 2020-06-02 2021-12-03 Scania Cv Ab A chassis and a vehicle provided with such a chassis
WO2022204709A1 (en) * 2021-03-24 2022-09-29 Cellink Corporation Multilayered flexible battery interconnects and methods of fabricating thereof
WO2022220067A1 (en) * 2021-04-15 2022-10-20 パナソニックIpマネジメント株式会社 Battery pack, electronic device, and battery pack production method
WO2023008445A1 (en) * 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 Electric power storage module
US11616266B2 (en) 2019-11-29 2023-03-28 Samsung Sdi Co., Ltd. Battery pack including exhaust pipe
US11652256B2 (en) 2019-11-29 2023-05-16 Samsung Sdi Co., Ltd. Battery pack
US11721864B2 (en) 2019-11-29 2023-08-08 Samsung Sdi Co., Ltd. Battery pack with separated cooling channels and discharge path
US11837738B2 (en) 2019-11-29 2023-12-05 Samsung Sdi Co., Ltd. Battery pack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728609Y1 (en) * 1971-09-03 1972-08-29
JP2002117828A (en) * 2000-10-04 2002-04-19 Sanyo Electric Co Ltd Battery block, battery pack and fixing structure of battery pack
JP2002198016A (en) * 2000-12-26 2002-07-12 Sharp Corp Thin secondary cell
JP2007042453A (en) * 2005-08-03 2007-02-15 Fuji Heavy Ind Ltd Aligned structure of storage body cell
JP2007095599A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Thin battery module
JP2008041292A (en) * 2006-08-02 2008-02-21 Sony Corp Battery pack

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702290B2 (en) 2001-06-28 2011-06-15 パナソニック株式会社 battery
JP2015170454A (en) 2014-03-06 2015-09-28 住友電気工業株式会社 secondary battery device
KR20180010470A (en) * 2016-07-21 2018-01-31 에스케이모바일에너지주식회사 Battery pack and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728609Y1 (en) * 1971-09-03 1972-08-29
JP2002117828A (en) * 2000-10-04 2002-04-19 Sanyo Electric Co Ltd Battery block, battery pack and fixing structure of battery pack
JP2002198016A (en) * 2000-12-26 2002-07-12 Sharp Corp Thin secondary cell
JP2007042453A (en) * 2005-08-03 2007-02-15 Fuji Heavy Ind Ltd Aligned structure of storage body cell
JP2007095599A (en) * 2005-09-30 2007-04-12 Dainippon Printing Co Ltd Thin battery module
JP2008041292A (en) * 2006-08-02 2008-02-21 Sony Corp Battery pack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210167346A1 (en) * 2019-11-29 2021-06-03 Samsung Sdi Co., Ltd. Battery pack
US11616266B2 (en) 2019-11-29 2023-03-28 Samsung Sdi Co., Ltd. Battery pack including exhaust pipe
US11652256B2 (en) 2019-11-29 2023-05-16 Samsung Sdi Co., Ltd. Battery pack
US11721864B2 (en) 2019-11-29 2023-08-08 Samsung Sdi Co., Ltd. Battery pack with separated cooling channels and discharge path
US11837738B2 (en) 2019-11-29 2023-12-05 Samsung Sdi Co., Ltd. Battery pack
SE2050631A1 (en) * 2020-06-02 2021-12-03 Scania Cv Ab A chassis and a vehicle provided with such a chassis
SE545626C2 (en) * 2020-06-02 2023-11-14 Scania Cv Ab A chassis and a vehicle provided with such a chassis
WO2022204709A1 (en) * 2021-03-24 2022-09-29 Cellink Corporation Multilayered flexible battery interconnects and methods of fabricating thereof
WO2022220067A1 (en) * 2021-04-15 2022-10-20 パナソニックIpマネジメント株式会社 Battery pack, electronic device, and battery pack production method
WO2023008445A1 (en) * 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 Electric power storage module

Also Published As

Publication number Publication date
JPWO2019182117A1 (en) 2021-03-18
JP7389019B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2019182117A1 (en) Busbar, battery pack, and electrical device
JP5374979B2 (en) Batteries and batteries
US10811721B2 (en) Accumulator device
JP5974622B2 (en) Battery assembly
JP4237452B2 (en) Battery pack and manufacturing method thereof
JP2005142148A (en) Battery module and battery pack
JP2011108612A (en) Secondary battery
US20180301686A1 (en) Terminal arrangement for an energy storage device
JP5879550B2 (en) Thin secondary battery
JP3606278B2 (en) Battery terminal connection structure
JP2007066647A (en) Battery cooling structure and battery module
JP2010010145A (en) Flat type battery and battery pack using the same
JP2007066612A (en) Battery structure and battery module
JP7265844B2 (en) LAMINATE BUS BAR, MANUFACTURING METHOD THEREOF, AND BATTERY
JP2018073794A (en) Battery exterior body and battery pack
JP7308923B2 (en) electrochemical cell module
JP4977356B2 (en) Electrical device assembly
JP2020017395A (en) Laminated busbar, manufacturing method thereof, and battery pack
JP2007095599A (en) Thin battery module
JP7225193B2 (en) Battery module and manufacturing method thereof
KR20190046172A (en) Pouch case and secondary battery including the same
JP5741692B2 (en) battery
JP7177791B2 (en) Batteries and electric devices
JP2006164863A (en) Flat battery pack and method for manufacturing it
US9142361B2 (en) Electric storage cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771381

Country of ref document: EP

Kind code of ref document: A1