WO2019182009A1 - Die bonding film, dicing die bonding sheet, and semiconductor chip production method - Google Patents

Die bonding film, dicing die bonding sheet, and semiconductor chip production method Download PDF

Info

Publication number
WO2019182009A1
WO2019182009A1 PCT/JP2019/011694 JP2019011694W WO2019182009A1 WO 2019182009 A1 WO2019182009 A1 WO 2019182009A1 JP 2019011694 W JP2019011694 W JP 2019011694W WO 2019182009 A1 WO2019182009 A1 WO 2019182009A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
die bonding
bonding film
dicing
mass
Prior art date
Application number
PCT/JP2019/011694
Other languages
French (fr)
Japanese (ja)
Inventor
啓示 布施
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201980006405.7A priority Critical patent/CN111466015B/en
Priority to JP2020507871A priority patent/JP7155245B2/en
Priority to KR1020207016531A priority patent/KR20200135279A/en
Publication of WO2019182009A1 publication Critical patent/WO2019182009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation

Definitions

  • the semiconductor chip after dicing is picked up by being separated from the dicing sheet while being provided with the die bonding film on the back surface, and die bonded to the circuit forming surface of the substrate by the die bonding film.
  • the adhesive force (adhesive force) between the die bonding film and the semiconductor chip is insufficient, part or all of the die bonding film peels off from the semiconductor chip and remains on the dicing sheet at the time of pickup.
  • an abnormality occurs in the transfer of the die bonding film from the dicing sheet to the semiconductor chip.
  • transfer defect such an abnormality is referred to as “transfer defect”.
  • the present invention includes a first layer, and a second layer on the first layer.
  • the initial detection temperature of the melt viscosity of the first layer is 75 ° C. or lower.
  • the second layer has adhesiveness and energy ray curability, has a thickness of 10 ⁇ m, and has a width larger than 25 mm as a test piece, and the test piece is affixed to a silicon mirror wafer.
  • the test piece after cutting is immersed in pure water for 2 hours together with the silicon mirror wafer, and the test piece after immersion is cured with energy rays to obtain a cured product.
  • the present invention includes the following aspects.
  • [1] including a first layer and a second layer provided on the first layer;
  • the first layer has an initial detection temperature of melt viscosity of 75 ° C. or less,
  • the second layer has adhesiveness and energy ray curability, has a thickness of 10 ⁇ m, and a width of more than 25 mm.
  • the second layer is a test piece, and the test piece is attached to a silicon mirror wafer. Then, the test piece is cut so as to have a width of 25 mm, the cut test piece is immersed in pure water for 2 hours together with the silicon mirror wafer, and the immersed test piece is cured with energy rays.
  • the adhesive strength between the cured product having a width of 25 mm and the silicon mirror wafer (in this specification, sometimes abbreviated as “adhesive strength after immersion”) is 6 N / 25 mm or more.
  • the die bonding film which has as a 2nd layer the layer formed from the same material as the formation material of the 2nd layer which has the said characteristic is included in this invention.
  • the first layer is used for die bonding to a substrate.
  • the second layer is affixed to a semiconductor wafer, cured by irradiation with energy rays, and then picked up together with the semiconductor chip.
  • the bonding surface of the second layer of the semiconductor wafer is a surface opposite to the side on which the circuit of the semiconductor wafer is formed (in this specification, it may be referred to as “back surface”).
  • the first layer has adhesiveness. Further, since the initial detection temperature (T 0 ) of the melt viscosity of the first layer is 75 ° C. or less, generation of a gap is suppressed between the substrate surface and the first layer during die bonding, One layer covers the substrate surface well, and the first layer can well embed the substrate.
  • the second layer has adhesiveness and energy ray curability.
  • the said adhesive force (adhesion force after immersion) measured using the test piece of a 2nd layer is 6 N / 25mm or more, Therefore
  • cured material of a 2nd layer A part or all of the film is not peeled off from the semiconductor chip, and the cured product of the second layer can suppress transfer failure to the semiconductor chip and has good transferability.
  • the die bonding film has both good transferability to a small semiconductor chip and good substrate embedding property.
  • First layer (first film) has adhesiveness as described above.
  • the first layer may further have curable properties (may be curable) or may not have curable properties (may be non-curable) and may have curable properties. In this case, for example, it may have either thermosetting property or energy ray curable property, and may have both thermosetting property and energy ray curable property.
  • T 0 of the first layer is not particularly limited.
  • T 0 of the first layer is preferably 50 ° C. or higher from the viewpoint that the handleability of the die bonding film including the first layer becomes higher.
  • T 0 of the first layer can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • T 0 is preferably 50 to 75 ° C., more preferably 50 to 73 ° C., further preferably 50 to 71 ° C., particularly preferably 50 to 69 ° C., for example, 50 to 66 ° C. and 50 to 62 ° C. It may be either ° C.
  • T 0 may be 50 to 68 ° C. or 50 to 59 ° C. or less. However, these are examples of T 0 of the first layer.
  • T 0 of the first layer can be measured by the following method, for example. That is, using a capillary rheometer, the first film to be measured (the first layer existing alone) is set as a cylindrical test piece having a diameter of 10 mm and a height of 20 mm in the cylinder (capillary). The piston is movable in the longitudinal direction of the cylinder (in other words, in the direction of the central axis) along the inner wall while being in contact with the inner wall of the cylinder, and is constant with respect to the first film (the test piece) in the cylinder.
  • the first film (the test piece) is heated (for example, at a heating rate of 10 ° C./min while maintaining a state where a force of a magnitude (for example, 5.10 N (50 kgf) is applied (a state where a load is applied)).
  • the temperature is raised from 50 ° C. to 120 ° C. and is provided at the tip of the cylinder (the tip in the direction in which force is applied to the first film (the test piece)).
  • melt viscosity means the melt viscosity measured by the above method unless otherwise specified.
  • the first layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same as or different from each other.
  • the combination of the multiple layers is not particularly limited.
  • the first adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, Examples include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the 1st adhesive composition are not specifically limited, When the 1st adhesive composition contains the solvent mentioned later, it is preferable to heat-dry.
  • the first adhesive composition containing the solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes. Next, the first adhesive composition will be described in detail.
  • the type of the first adhesive composition includes the presence or absence of curability of the first layer and, if the first layer is curable, whether it is thermosetting or energy ray curable. Depending on the characteristics, it can be selected.
  • a preferable first adhesive composition includes a thermosetting first adhesive composition.
  • a thermosetting 1st adhesive composition what contains a polymer component (a) and an epoxy-type thermosetting resin (b) is mentioned, for example. Hereinafter, each component will be described.
  • the polymer component (a) contained in the first adhesive composition and the first layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000.
  • Mw weight average molecular weight
  • the weight average molecular weight of the acrylic resin is not less than the lower limit, the shape stability of the first layer (time stability during storage) is improved.
  • substrate of a 1st layer becomes higher because the weight average molecular weight of acrylic resin is below the said upper limit.
  • “weight average molecular weight” is a polystyrene equivalent value measured by gel permeation chromatography (GPC) method unless otherwise specified.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 60 to 70 ° C., and more preferably ⁇ 30 to 50 ° C.
  • Tg of the acrylic resin is equal to or higher than the lower limit, the adhesive force between the first layer and a support sheet or dicing sheet described later is suppressed, and the semiconductor provided with the first layer at the time of pickup The chip can be easily separated from the support sheet or dicing sheet described later.
  • the Tg of the acrylic resin is equal to or less than the upper limit, the adhesive force between the first layer and the second layer is improved.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (me
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth) acrylic acid.
  • the acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like in addition to the (meth) acrylic ester. May be obtained by copolymerization.
  • the monomer constituting the acrylic resin may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin includes an acrylic resin obtained by copolymerizing n-butyl acrylate, methyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate, or n-butyl acrylate, acrylic An acrylic resin obtained by copolymerizing ethyl acid, acrylonitrile and glycidyl methacrylate is preferable.
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a carboxy group, and an isocyanate group in addition to the above-described hydroxyl group.
  • These functional groups including the hydroxyl group of the acrylic resin may be bonded to other compounds via the crosslinking agent (f) described later, or directly bonded to other compounds not via the crosslinking agent (f). You may do it.
  • the acrylic resin is bonded to another compound through the functional group, the reliability of the package obtained using the first layer tends to be improved.
  • thermoplastic resin other than an acrylic resin (hereinafter sometimes simply referred to as “thermoplastic resin”) is used alone without using an acrylic resin. Alternatively, it may be used in combination with an acrylic resin.
  • thermoplastic resin at the time of pickup, the semiconductor chip provided with the first layer can be more easily separated from a support sheet or a dicing sheet, which will be described later, or the embedding property of the substrate of the first layer is May be higher.
  • the weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., and more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
  • thermoplastic resin contained in the first adhesive composition and the first layer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • Epoxy thermosetting resin (b) is composed of an epoxy resin (b1) and a thermosetting agent (b2).
  • the epoxy-based thermosetting resin (b) contained in the first adhesive composition and the first layer may be only one type, two or more types, and when two or more types, the combination and ratio thereof are as follows. Can be arbitrarily selected.
  • Epoxy resin (b1) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (b1).
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the first layer is improved by using an epoxy resin having an unsaturated hydrocarbon group.
  • the epoxy resin having an unsaturated hydrocarbon group examples include a compound obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group.
  • the “derivative” means a compound obtained by substituting at least one group of the original compound with another group (substituent) unless otherwise specified.
  • the “group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
  • the number average molecular weight of the epoxy resin (b1) is not particularly limited, but is preferably 300 to 30000 from the viewpoint of the curability of the first layer and the strength and heat resistance of the cured product of the first layer. It is more preferably 10,000, and particularly preferably 500 to 3,000.
  • the number average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the epoxy equivalent of the epoxy resin (b1) is preferably 100 to 1000 g / eq, and more preferably 150 to 800 g / eq.
  • epoxy equivalent means the number of grams (g / eq) of an epoxy compound containing one equivalent of an epoxy group, and can be measured according to the method of JIS K 7236: 2001.
  • the epoxy resin (b1) may be sufficient as the epoxy resin (b1) which a 1st adhesive composition and a 1st layer contain, and when it is 2 types or more, those combinations and ratios can be selected arbitrarily.
  • the epoxy resin (b1) is selected from the group consisting of a bisphenol A type epoxy resin, a polyfunctional aromatic type (triphenylene type) epoxy resin, a bisphenol F type epoxy resin, and a dicyclopentadiene type epoxy resin. At least one is preferred.
  • thermosetting agent (b2) functions as a curing agent for the epoxy resin (b1).
  • a thermosetting agent (b2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (b2) examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, and aralkyl type phenol resins. .
  • examples of the amine-based curing agent having an amino group include dicyandiamide (may be abbreviated as DICY).
  • thermosetting agent (b2) When a phenolic curing agent is used as the thermosetting agent (b2), the thermosetting agent (b2) has a high softening point or glass transition temperature because it makes it easy to adjust the adhesive force of the die bonding film. Is preferred.
  • thermosetting agent (b2) for example, the number average molecular weight of the resin component such as polyfunctional phenolic resin, novolac type phenolic resin, dicyclopentadiene type phenolic resin, aralkyl type phenolic resin is preferably 300 to 30000. 400 to 10,000 is more preferable, and 500 to 3000 is particularly preferable.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agents (b2) as a phenol resin, for example, an alkyl group or the like with respect to a carbon atom adjacent to a carbon atom to which a phenolic hydroxyl group is bonded (a carbon atom constituting a benzene ring skeleton)
  • a substituent having a steric hindrance in the vicinity of the phenolic hydroxyl group may be abbreviated as “sterically hindered phenol resin”
  • examples of such sterically hindered phenol resins include o-cresol type novolac resins.
  • the content of the thermosetting agent (b2) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin (b1). It is more preferably from 160 to 160 parts by mass, further preferably from 20 to 120 parts by mass, and particularly preferably from 25 to 80 parts by mass.
  • the content of the thermosetting agent (b2) is equal to or greater than the lower limit, the curing of the first layer is more likely to proceed.
  • the content of the thermosetting agent (b2) is equal to or lower than the upper limit value, the moisture absorption rate of the first layer is reduced, and the reliability of the package obtained using the first layer is further improved.
  • the content of the epoxy thermosetting resin (b) (the total content of the epoxy resin (b1) and the thermosetting agent (b2)) is the polymer component (a).
  • the content is preferably 400 to 1200 parts by weight, more preferably 500 to 1100 parts by weight, still more preferably 600 to 1000 parts by weight, for example, 600 to 900 parts per 100 parts by weight. It may be any one of mass parts and 800 to 1000 mass parts.
  • the content of the epoxy thermosetting resin (b) is in such a range, it is easier to adjust the adhesive force between the first layer and a support sheet or a dicing sheet described later. Become.
  • the ratio of the content of the sterically hindered phenol resin to the total content (total mass) of the thermosetting agent (b2) in the first adhesive composition and the first layer is For example, it may be any one of 80 to 100% by mass, 85 to 100% by mass, 90 to 100% by mass, and 95 to 100% by mass.
  • the ratio of the content of the o-cresol type novolac resin to the total content (total mass) of the thermosetting agent (b2) is 80 to 100% by mass, 85 It may be any of ⁇ 100 mass%, 90 ⁇ 100 mass%, and 95 ⁇ 100 mass%.
  • the first layer contains, in addition to the polymer component (a) and the epoxy-based thermosetting resin (b), other components not corresponding to these as necessary. May be.
  • other components contained in the first layer include a curing accelerator (c), a filler (d), a coupling agent (e), a crosslinking agent (f), an energy ray curable resin (g), and light.
  • examples thereof include a polymerization initiator (h) and a general-purpose additive (i).
  • preferable other components include a curing accelerator (c), a filler (d), a coupling agent (e), and a general-purpose additive (i).
  • the curing accelerator (c) is a component for adjusting the curing rate of the first adhesive composition.
  • Preferred curing accelerators (c) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (at least one hydrogen atom is other than a hydrogen atom)
  • the content of the curing accelerator (c) is 100 parts by mass of the epoxy thermosetting resin (b).
  • the content is preferably 0.01 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass.
  • the effect by using a hardening accelerator (c) is acquired more notably because the said content of a hardening accelerator (c) is more than the said lower limit.
  • the content of the curing accelerator (c) is not more than the above upper limit value, for example, the highly polar curing accelerator (c) adheres to the adherend in the first layer under high temperature and high humidity conditions. The effect of suppressing movement to the interface side and segregation is increased, and the reliability of the package obtained using the first layer is further improved.
  • the inclusion compound using the imidazole as a guest compound imidazoles which are active ingredients are included by the host compound. Therefore, it is presumed that the reaction site of imidazoles is not exposed or the degree of exposure is suppressed except during the reaction. As a result, when the inclusion compound is used as the curing accelerator (c), the progress of the reaction other than the intended purpose of the curing accelerator (c) is suppressed during storage of the first layer, whereby the first layer It is presumed that the storage stability of is higher.
  • Examples of the clathrate compound include those having imidazoles as a guest compound and carboxylic acid as a host compound.
  • the carboxylic acid that is a host compound is preferably an aromatic carboxylic acid.
  • the aromatic carboxylic acid may be either a monocyclic aromatic carboxylic acid or a polycyclic aromatic carboxylic acid.
  • the aromatic carboxylic acid includes a carboxylic acid having only an aromatic hydrocarbon ring as a ring skeleton, a carboxylic acid having only an aromatic heterocycle as a ring skeleton, and an aromatic hydrocarbon ring and an aromatic heterocycle as a ring skeleton. Any of the carboxylic acids possessed together may be used.
  • the aromatic carboxylic acid is preferably an aromatic hydroxycarboxylic acid.
  • the aromatic hydroxycarboxylic acid is not particularly limited as long as it is an aromatic carboxylic acid having both a hydroxyl group and a carboxy group in one molecule, but is a carboxyl having a structure in which both a hydroxyl group and a carboxy group are bonded to an aromatic ring skeleton. An acid is preferred.
  • the inclusion compound include, for example, that the imidazole is 2-phenyl-4-methyl-5-hydroxymethylimidazole (in this specification, sometimes abbreviated as “2P4MHZ”), An inclusion compound in which the carboxylic acid is 5-hydroxyisophthalic acid (sometimes abbreviated as “HIPA” in this specification), and 2 molecules of 2P4MHZ and 1 molecule of HIPA More preferably, the clathrate compound is constituted.
  • the ratio of the inclusion compound content to the total content (total mass) of the curing accelerator (c) in the first adhesive composition and the first layer is 80 to 100. Any of mass%, 85 to 100 mass%, 90 to 100 mass%, and 95 to 100 mass% may be used. And in the first adhesive composition and the first layer, the ratio of the content of the inclusion compound composed of the above-mentioned 2P4MHZ and HIPA to the total content (total mass) of the curing accelerator (c) is: It may be any of 80 to 100% by mass, 85 to 100% by mass, 90 to 100% by mass, and 95 to 100% by mass.
  • the first layer contains the filler (d), it is easy to adjust the thermal expansion coefficient. By optimizing the thermal expansion coefficient for the first layer, the first layer The reliability of the package obtained by using is further improved. Moreover, the moisture absorption rate of the 1st layer after hardening can also be reduced or heat dissipation can be improved because a 1st layer contains a filler (d).
  • the average particle diameter of the filler (d) is not particularly limited, but is preferably 1 to 1000 nm, more preferably 5 to 800 nm, still more preferably 10 to 600 nm, for example, 10 to 400 nm. Or any of 10 to 200 nm.
  • the average particle size of the filler (d) may be 50 to 500 nm.
  • “average particle size” means the value of the particle size (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified. .
  • the filler (d) contained in the first adhesive composition and the first layer may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the material (d)) is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 15 to 30% by mass.
  • the average particle diameter is 1 with respect to the total content (total mass) of the filler (d) in the first adhesive composition and the first layer.
  • the content ratio of the filler (d) that is ⁇ 1000 nm is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, and further preferably 90 to 100% by mass. For example, it may be 95 to 100% by mass.
  • the first layer improves the adhesion and adhesion to the adherend. Moreover, when the first layer contains the coupling agent (e), the cured product has improved water resistance without impairing heat resistance.
  • the coupling agent (e) has a functional group capable of reacting with an inorganic compound or an organic compound.
  • the coupling agent (e) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (a), the epoxy thermosetting resin (b), etc., and is a silane coupling agent. It is more preferable.
  • Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3-
  • the coupling agent (e) contained in the first adhesive composition and the first layer may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the coupling agent (e) includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and an oligomeric silane cup having an epoxy group, a methyl group, and a methoxy group. At least one selected from the group consisting of ring agents is preferred.
  • the content of the coupling agent (e) in the first adhesive composition and the first layer is that of the polymer component (a) and the epoxy thermosetting resin (b).
  • the total content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass with respect to 100 parts by mass. .
  • the content of the coupling agent (e) is not less than the lower limit, improvement in dispersibility of the filler (d) in the resin, improvement in adhesion to the adherend of the first layer, etc.
  • the effect by using the coupling agent (e) is more remarkably obtained. Generation
  • production of an outgas is suppressed more because the said content of a coupling agent (e) is below the said upper limit.
  • the oligomer type or polymer type organosiloxane is contained in the first adhesive composition and the first layer with respect to the total content (total mass) of the coupling agent (e).
  • the proportion of the amount may be any of 25 to 100% by mass and 40 to 100% by mass.
  • Crosslinking agent (f) As the polymer component (a), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin.
  • the first adhesive composition and the first layer may contain a cross-linking agent (f) for cross-linking the functional group with another compound. By crosslinking using the crosslinking agent (f), the initial adhesive force and cohesive force of the first layer can be adjusted.
  • crosslinking agent (f) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group).
  • a crosslinking agent examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group).
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • the crosslinking agent (f) When an organic polyvalent isocyanate compound is used as the crosslinking agent (f), it is preferable to use a hydroxyl group-containing polymer as the polymer component (a).
  • a hydroxyl group-containing polymer When the cross-linking agent (f) has an isocyanate group and the polymer component (a) has a hydroxyl group, the cross-linking structure can be easily formed in the first layer by the reaction between the cross-linking agent (f) and the polymer component (a). Can be introduced.
  • the content of the crosslinking agent (f) is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the polymer component (a). Is more preferably 3 parts by mass, further preferably 0-1 part by mass, and 0 parts by mass, that is, the first adhesive composition and the first layer contain the crosslinking agent (f). It is particularly preferred not to do so.
  • the content of the crosslinking agent (f) is equal to or less than the upper limit value, the embeddability of the substrate of the first layer becomes higher.
  • the energy beam curable resin (g) is obtained by polymerizing (curing) an energy beam curable compound.
  • the energy ray curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth) acryloyl group are preferable.
  • acrylate compound examples include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta ( Chain aliphatic skeleton-containing (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cyclic aliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth)
  • the weight average molecular weight of the energy ray curable resin (g) is preferably 100 to 30000, and more preferably 300 to 10000.
  • energy beam curable resin (g) which a 1st adhesive composition contains, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the energy ray curable resin (g) is preferably at least one selected from the group consisting of tricyclodecane dimethylol diacrylate and ⁇ -caprolactone modified tris- (2-acryloxyethyl) isocyanurate. .
  • the content of the energy beam curable resin (g) in the first adhesive composition is 1 to 95 mass with respect to the total mass of the first adhesive composition. %, More preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
  • the first adhesive composition contains the energy ray curable resin (g)
  • the first adhesive composition contains the photopolymerization initiator (h) in order to efficiently advance the polymerization reaction of the energy ray curable resin (g). May be.
  • Examples of the photopolymerization initiator (h) in the first adhesive composition include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin benzoic acid methyl, benzoin dimethyl ketal, and the like.
  • Acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4 , 6-Trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide and other acyl phosphine oxide compounds; benzylphenyl sulfide, tetramethylthiuram mono Sulfide compounds such as rufide; ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketones such as diacetyl Compound; benzyl; dibenzyl; benzophenone; 2,4-diethylthi
  • the photoinitiator (h) which a 1st adhesive composition contains, and when it is 2 or more types and they are 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the photopolymerization initiator (h) is preferably 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
  • the content of the photopolymerization initiator (h) in the first adhesive composition and the first layer is 100 parts by mass of the energy ray curable resin (g). On the other hand, it is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
  • the general-purpose additive (I) may be a known one and can be arbitrarily selected according to the purpose, and is not particularly limited.
  • Preferred general-purpose additives (I) include, for example, plasticizers, antistatic agents, antioxidants, colorants (dyes and pigments), gettering agents and the like.
  • the general-purpose additive (i) contained in the first adhesive composition and the first layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the contents of the first adhesive composition and the general-purpose additive (i) in the first layer are not particularly limited, and may be appropriately selected depending on the purpose.
  • the first adhesive composition preferably further contains a solvent.
  • the first adhesive composition containing the solvent has good handleability.
  • the solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isobutyl alcohol (also referred to as 2-methylpropan-1-ol), 1-butanol and the like. Alcohols; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (that is, compounds having an amide bond). Only 1 type may be sufficient as the solvent which a 1st adhesive composition contains, and when it is 2 or more types, when they are 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the solvent contained in the first adhesive composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the first adhesive composition can be mixed more uniformly.
  • Examples of the preferred first adhesive composition include those containing a polymer component (a), an epoxy thermosetting resin (b), a curing accelerator (c) and a coupling agent (e). In addition to these, those containing one or both of the filler (d) and the general-purpose additive (i) are also included.
  • a 1st adhesive composition is obtained by mix
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • Second layer (second film) As described above, the second layer (second film) has adhesiveness and energy ray curability. Further, the second layer may have thermosetting properties (may be thermosetting) or may not have thermosetting properties (may be non-thermosetting). Especially, it is preferable that a 2nd layer does not have thermosetting, but has energy-beam sclerosis
  • any of the second layer having no curability and the uncured second layer having the curability can be applied by lightly pressing the various adherends.
  • the 2nd layer may be what can be stuck on various adherends by heating and softening irrespective of the presence or absence of hardening. Both the second layer having no curability and the cured product of the second layer having curability can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
  • the test laminate that defines the adhesive strength after immersion to be 6 N / 25 mm or more is prepared as follows. That is, a second layer having a thickness of 10 ⁇ m and a width wider than 25 mm is prepared as a test piece. A 2nd layer is prepared as a laminated body with a peeling film, for example, By using this laminated body, the laminated body for a test can be produced more easily. In this case, the release film may be removed at an appropriate timing.
  • the length of the test piece is not particularly limited as long as a peeling test described later can be performed stably, but is preferably 15 cm or more and 30 cm or less, for example.
  • this test piece is attached to a silicon mirror wafer.
  • the test piece is preferably attached to a silicon mirror wafer while being heated to 35 to 45 ° C.
  • the sticking speed and sticking pressure when sticking a test piece on a silicon mirror wafer are not particularly limited.
  • the sticking speed is preferably 5 to 20 mm / s, and the sticking pressure is preferably 0.1 to 1.0 MPa.
  • a strip-shaped strong adhesive tape having a width of 25 mm is applied to the exposed surface (surface opposite to the silicon mirror wafer side) of the test piece after application (that is, the second layer after application of the silicon mirror wafer).
  • a strip-shaped cut having a width of 25 mm is formed along the outer periphery of the strong adhesive tape on the test piece (second layer) after the strong adhesive tape is applied.
  • This notch is formed in the whole area of the test piece in the thickness direction. That is, the test piece is cut into a strip shape with a width of 25 mm.
  • the cut test piece is immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer (in other words, the silicon mirror wafer provided with the cut test piece).
  • the silicon mirror wafer provided with the cut specimen is submerged in pure water (in other words, the whole specimen after cutting and the entire silicon mirror wafer are both submerged in pure water. So that it is placed in pure water.
  • the silicon mirror wafer provided with the cut specimen is immediately immersed in pure water immediately after its production. By doing in this way, the said adhesive force of the laminated body for a test can be measured with higher precision.
  • the silicon mirror wafer provided with the test piece after cutting is preferably immersed in pure water in a dark place. By doing in this way, the said adhesive force of the laminated body for a test can be measured with higher precision.
  • the silicon mirror wafer provided with the cut test piece is dipped in pure water for 2 hours, and then pulled up from the pure water. If extra water droplets are attached to the surface, the water droplets are removed. Next, the strip-shaped test piece is cured with energy rays by irradiating the cut test piece (second layer) with energy rays.
  • the irradiation conditions of energy rays are not particularly limited as long as the test piece is sufficiently cured with energy rays.
  • the energy ray illuminance during energy ray curing is preferably 4 to 280 mW / cm 2 .
  • the amount of energy rays during energy ray curing is preferably 3 to 1000 mJ / cm 2 .
  • test laminate in which the cured product of the test piece (second layer) is stuck on the silicon mirror wafer and immersed in pure water is obtained.
  • the second layer is used as a laminate with the release film.
  • the second layer may be used in the form of a laminate with the first layer, that is, a die bonding film.
  • the strong adhesive tape is not the exposed surface of the second layer, but the exposed surface of the first layer (on the side opposite to the second layer side). Affixed to the surface).
  • the test piece (second layer) is cut into a strip shape, a cut is formed in the entire thickness direction of the die bonding film (the first layer and the second layer in the thickness direction). What is necessary is just to cut
  • the die bonding film may be used as a laminate with the release film. In this case, the release film may be removed at an appropriate timing.
  • the post-immersion adhesive strength of the test laminate is measured as follows. That is, a strong adhesive tape is pulled at a peeling (tensile) speed of 300 mm / min in this test laminate at normal temperature (for example, at 23 ° C.), and a release surface is generated in the test laminate. At this time, so-called 180 ° peeling is performed by pulling the strong adhesive tape so that the newly generated peeling surfaces form an angle of 180 °. In other words, the strong adhesive tape pulls one end toward the other end. And the peeling force (load, N / 25 mm) measured when interface peeling occurs between the cured product of the second layer and the silicon mirror wafer is used as the adhesive force after immersion (into pure water). Adhesion between the second layer cured product having a width of 25 mm and the silicon mirror wafer in the test laminate after immersion is adopted.
  • the strong adhesive tape can be pulled by using, for example, a known tensile tester.
  • a test laminate that has not been immersed in pure water (may be abbreviated as “non-immersion test laminate” in this specification) is a second layer having a width of 25 mm in the same manner.
  • the adhesive force between the cured product and the silicon mirror wafer (in this specification, sometimes abbreviated as “non-immersion adhesive force”) (N / 25 mm) can be measured.
  • the non-immersion adhesive strength can be measured by the same method as in the case of the above-mentioned post-immersion adhesive strength except that a test laminate that has not been immersed in pure water is used.
  • non-immersion test laminate for example, instead of performing a process of immersing in pure water at 23 ° C. for 2 hours for a silicon mirror wafer provided with a test piece after cutting, in a dark place in an air atmosphere, It can be produced by the same method as in the case of the test laminate except that the step of standing still for 30 minutes under conditions of a temperature of 23 ° C. and a relative humidity of 50% is performed.
  • the interface peeling between the cured product of the second layer and the silicon mirror wafer in this specification, “ In addition to “peeling with a silicon mirror wafer”, there may be interface peeling between the strong adhesive tape and its adjacent layer (for example, a cured product of the second layer, the first layer, etc.) (this specification) In some cases, it may be referred to as “peeling with a strong adhesive tape”), cohesive failure in the cured product of the second layer, or the like.
  • the peeling with the strong adhesive tape (the interfacial peeling between the strong adhesive tape and its adjacent layer). ) Is likely to occur. In this case, if the peeling force when peeling with the strong adhesive tape occurs is 6 N / 25 mm or more, the adhesive force between the cured product of the second layer having a width of 25 mm and the silicon mirror wafer.
  • the post-immersion adhesive strength is 6 N / 25 mm or more, preferably 7 N / 25 mm or more, more preferably 8 N / 25 mm or more, and further preferably 9 N / 25 mm or more.
  • transferability of the cured product of the second layer to the semiconductor chip becomes higher when picking up a semiconductor chip having a small size.
  • the upper limit value of the adhesive strength after immersion is not particularly limited.
  • the cured product of the second layer having an adhesive strength after immersion of 20 N / 25 mm or less it is easier to obtain the constituent materials.
  • the post-immersion adhesive strength can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • the adhesive strength after immersion is preferably 6 to 20 N / 25 mm, more preferably 7 to 20 N / 25 mm, still more preferably 8 to 20 N / 25 mm, and particularly preferably 9 to 20 N / 25 mm.
  • Another aspect may be 10 to 20 N / 25 mm.
  • the non-immersion adhesive strength is not particularly limited, but is preferably equal to or greater than the post-immersion adhesive strength.
  • the non-immersion adhesive strength is any one of 6 N / 25 mm or more, 7 N / 25 mm or more, 8 N / 25 mm or more, and 9 N / 25 mm or more, and equal to or more than the adhesive strength after immersion. Also good.
  • the non-immersion adhesive strength is 20 N / 25 mm or less, and may be equal to or greater than the post-immersion adhesive strength.
  • the non-immersion adhesive strength is any of 6 to 20 N / 25 mm, 7 to 20 N / 25 mm, 8 to 20 N / 25 mm, and 9 to 20 N / 25 mm, and is equivalent to the adhesive strength after immersion. It may be the above. Another aspect may be 10 to 20 N / 25 mm.
  • the second layer may have such characteristics that the post-immersion adhesive strength is 6 to 20 N / 25 mm, and the non-immersion adhesive strength is 6 to 20 N / 25 mm.
  • the second layer may be composed of one layer (single layer), or may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same as or different from each other.
  • the combination of the multiple layers is not particularly limited.
  • the thickness of the second layer is not particularly limited, but is preferably 1 to 40 ⁇ m, more preferably 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the adhesion to the adherend (semiconductor wafer, semiconductor chip) of the second layer becomes higher, and as a result, when picking up a semiconductor chip having a small size.
  • the transferability of the cured product of the second layer to the semiconductor chip becomes higher.
  • the thickness of the second layer is less than or equal to the above upper limit value, the second layer (die bonding film) can be more easily cut in the semiconductor chip manufacturing process described later, and a cut piece derived from the second layer Can be further reduced.
  • the “thickness of the second layer” means the thickness of the entire second layer.
  • the thickness of the second layer composed of a plurality of layers is the sum of all the layers constituting the second layer. Means the thickness.
  • a 2nd layer (2nd film) can be formed from the 2nd adhesive composition containing the constituent material.
  • a 2nd layer can be formed in the target site
  • the ratio of the contents of the components that do not vaporize at room temperature is usually the same as the ratio of the contents of the components of the second layer.
  • the second adhesive composition can be applied in the same manner as in the case of the first adhesive composition, and the drying conditions of the second adhesive composition may be the same as the drying conditions of the first adhesive composition. it can. Next, the second adhesive composition will be described in detail.
  • the kind of 2nd adhesive composition can be selected according to the characteristic of a 2nd layer, such as the presence or absence of the thermosetting of a 2nd layer.
  • the second adhesive composition has energy ray curability and may have both energy ray curability and thermosetting properties.
  • As a content component of a 2nd adhesive composition and a 2nd layer the same thing as the content component of the above-mentioned 1st adhesive composition and a 1st layer is mentioned. And the effect which the containing component show
  • As a 2nd adhesive composition what contains a polymer component (a), a filler (d), energy-beam curable resin (g), and a photoinitiator (h) is mentioned, for example.
  • Polymer component (a) The polymer component (a) in the second adhesive composition and the second layer is the same as the polymer component (a) in the first adhesive composition and the first layer.
  • the polymer component (a) contained in the second adhesive composition and the second layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the ratio of the content of the polymer component (a) to the total content (total mass) of all components other than the solvent (that is, the content of the polymer component (a) in the second layer) ) Is preferably 10 to 45% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass, regardless of the type of the polymer component (a).
  • filler (d) The filler (d) in the second adhesive composition and the second layer is the same as the filler (d) in the first adhesive composition and the first layer.
  • 1 type may be sufficient, and 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily. .
  • the ratio of the content of the filler (d) to the total content (total mass) of all components other than the solvent (that is, the content of the filler (d) in the second layer) is 25 to 70% by mass, more preferably 35 to 67% by mass, and particularly preferably 45 to 64% by mass.
  • the content of the filler (d) is within such a range, it becomes easier to adjust the thermal expansion coefficient, the moisture absorption rate, and the heat dissipation of the second layer.
  • the average particle diameter is 1 with respect to the total content (total mass) of the filler (d) in the second adhesive composition and the second layer.
  • the content ratio of the filler (d) that is ⁇ 1000 nm is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, and further preferably 90 to 100% by mass. For example, it may be 95 to 100% by mass.
  • the energy ray curable resin (g) in the second adhesive composition and the second layer is the same as the energy ray curable resin (g) in the first adhesive composition and the first layer.
  • the energy ray curable resin (g) contained in the second adhesive composition and the second layer may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof are arbitrary. Can be selected.
  • the energy ray curable resin (g) contained in the second adhesive composition and the second layer is composed of tricyclodecane dimethylol diacrylate and ⁇ -caprolactone modified tris- (2-acryloxyethyl) isocyanate. At least one selected from the group consisting of nurate is preferred.
  • the content of the energy ray curable resin (g) is preferably 1 to 95% by mass with respect to the total mass of the second adhesive composition, and 3 to 90% by mass. More preferred is 5 to 85% by mass.
  • Photopolymerization initiator (h) The photopolymerization initiator (h) in the second adhesive composition and the second layer is the same as the photopolymerization initiator (h) in the first adhesive composition and the first layer.
  • the photoinitiator (h) which a 2nd adhesive composition and a 2nd layer contain, and when it is 2 or more types, those combinations and ratios are arbitrary. You can choose.
  • the photopolymerization initiator (h) in the second adhesive composition and the second layer is preferably 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
  • the content of the photopolymerization initiator (h) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the energy beam curable resin (g). It is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass.
  • the second layer in addition to the polymer component (a), the filler (d), the energy ray curable resin (g) and the photopolymerization initiator (h), if desired, Other components not corresponding to these may be contained.
  • other components contained in the second layer include a coupling agent (e), an epoxy thermosetting resin (b), a curing accelerator (c), a crosslinking agent (f), and a general-purpose additive (i). Etc.
  • preferable other components include a coupling agent (e) and a general-purpose additive (i).
  • the coupling agent (e) in the second adhesive composition and the second layer is the same as the coupling agent (e) in the first adhesive composition and the first layer.
  • the coupling agent (e) is preferably an oligomer type or polymer type organosiloxane.
  • the coupling agent (e) contained in the second adhesive composition and the second layer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the content of the coupling agent (e) is 0 with respect to 100 parts by mass of the polymer component (a).
  • the amount is preferably 1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and particularly preferably 1 to 10 parts by mass. Since the content of the coupling agent (e) is not less than the lower limit, improvement in dispersibility of the filler (d) in the resin, improvement in adhesion with the adherend of the second layer, etc. The effect by using the coupling agent (e) is more remarkably obtained. Generation
  • production of an outgas is suppressed more because the said content of a coupling agent (e) is below the said upper limit.
  • the oligomer type or polymer type organosiloxane When the oligomer type or polymer type organosiloxane is used as the coupling agent (e), the oligomer with respect to the total content (total mass) of the coupling agent (e) in the second adhesive composition and the second layer.
  • the content ratio of the mold-type or polymer-type organosiloxane may be any of 25 to 100% by mass and 40 to 100% by mass.
  • Epoxy thermosetting resin (b) (epoxy resin (b1) and thermosetting agent (b2))
  • the epoxy thermosetting resin (b) is composed of an epoxy resin (b1) and a thermosetting agent (b2).
  • the epoxy-based thermosetting resin (b) (epoxy resin (b1), thermosetting agent (b2)) in the second adhesive composition and the second layer is the epoxy-based heat in the first adhesive composition and the first layer. It is the same as curable resin (b) (epoxy resin (b1), thermosetting agent (b2)).
  • Each of the epoxy resin (b1) and the thermosetting agent (b2) contained in the second adhesive composition and the second layer may be only one type, two or more types, or two or more types. These combinations and ratios can be arbitrarily selected.
  • the content of the thermosetting agent (b2) in the second adhesive composition and the second layer is 100 parts by mass of the epoxy resin (b1).
  • the amount is preferably 10 to 200 parts by mass.
  • the content of the thermosetting agent (b2) is equal to or greater than the lower limit, the curing of the second layer is more likely to proceed.
  • the content of the thermosetting agent (b2) is equal to or lower than the upper limit value, the moisture absorption rate of the second layer is reduced, and the reliability of the package obtained using the second layer is further improved.
  • the content of the epoxy thermosetting resin (b) in the second adhesive composition and the second layer is preferably 400 to 1200 parts by mass with respect to 100 parts by mass of the polymer component (a).
  • the content of the epoxy thermosetting resin (b) is within such a range, it becomes easier to adjust the adhesive force of the second layer.
  • a 2nd adhesive composition and a 2nd layer contain an epoxy-type thermosetting resin (b), it is preferable to contain a hardening accelerator (c).
  • the curing accelerator (c) in the second adhesive composition and the second layer is the same as the curing accelerator (c) in the first adhesive composition and the first layer.
  • Only one type of curing accelerator (c) contained in the second adhesive composition and the second layer may be used, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the content of the curing accelerator (c) in the second adhesive composition and the second layer is based on 100 parts by mass of the epoxy thermosetting resin (b).
  • the content is preferably 0.01 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass.
  • the effect by using a hardening accelerator (c) is acquired more notably because the said content of a hardening accelerator (c) is more than the said lower limit.
  • the content of the curing accelerator (c) is not more than the above upper limit value, for example, the highly polar curing accelerator (c) adheres to the adherend in the second layer under high temperature and high humidity conditions. The effect of suppressing movement to the interface side and segregation is enhanced, and the reliability of the package obtained using the second layer is further improved.
  • Crosslinking agent (f) The crosslinking agent (f) in the second adhesive composition and the second layer is the same as the crosslinking agent (f) in the first adhesive composition and the first layer.
  • crosslinking agent (f) contained in the second adhesive composition and the second layer only one type may be used, or two or more types may be used, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the crosslinking agent (f) is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the polymer component (a).
  • the general-purpose additive (i) in the second adhesive composition and the second layer is the same as the general-purpose additive (i) in the first adhesive composition and the first layer.
  • the general-purpose additive (i) contained in the second adhesive composition and the second layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the contents of the second adhesive composition and the general-purpose additive (i) in the second layer are not particularly limited, and may be appropriately selected depending on the purpose.
  • the second adhesive composition further contains a solvent.
  • the second adhesive composition containing the solvent has good handleability.
  • the solvent in the second adhesive composition is the same as the solvent in the first adhesive composition.
  • the solvent contained in the second adhesive composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the second adhesive composition can be mixed more uniformly.
  • a polymer component (a), a filler (d) an energy ray curable resin (g), a photopolymerization initiator (h), and a coupling agent (e) are contained.
  • a filler (d) an energy ray curable resin (g), a photopolymerization initiator (h), and a coupling agent (e) are contained.
  • those containing the general-purpose additive (i) are also included.
  • a 2nd adhesive composition can be manufactured by the same method as the case of the above-mentioned 1st adhesive composition.
  • the thickness of the die bonding film (the total thickness of the first layer and the second layer) is preferably 2 to 80 ⁇ m, more preferably 6 to 60 ⁇ m, and particularly preferably 10 to 40 ⁇ m. .
  • FIG. 1 is a cross-sectional view schematically showing a die bonding film according to an embodiment of the present invention.
  • the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
  • the die bonding film 13 shown here includes a first layer 131, and includes a second layer 132 on the first layer 131.
  • the die bonding film 13 includes a first release film 151 on one surface (sometimes referred to as a “first surface” in this specification) 13a, and the other side opposite to the first surface 13a.
  • the second release film 152 is provided on the surface 13b (may be referred to as “second surface” in this specification).
  • Such a die bonding film 13 is suitable for storing as a roll, for example.
  • the first release film 151 is provided on the surface of the die bonding film 13 opposite to the first layer 131 side of the second layer 132 (which may be referred to as “first surface” in this specification) 132a.
  • the second release film 152 is laminated on the surface 131b of the first layer 131 opposite to the second layer 132 side (in this specification, sometimes referred to as “second surface”) 131b. ing.
  • the second surface 131 b of the first layer 131 is the same as the second surface 13 b of the die bonding film 13
  • the first surface 132 a of the second layer 132 is the same as the first surface 13 a of the die bonding film 13.
  • the initial detection temperature (T 0 ) of the first layer is 75 ° C. or lower.
  • the second layer has adhesiveness and energy ray curability, and the post-immersion adhesive strength of the test laminate produced using the test piece of the second layer is 6 N / It is 25 mm or more.
  • Both the first release film 151 and the second release film 152 may be known ones.
  • the first release film 151 and the second release film 152 may be the same as each other, or may be different from each other, for example, different peeling forces required for peeling from the die bonding film 13 may be used. Good.
  • the first release film 151 is removed, and in other words, the back surface of the semiconductor wafer (not shown) is attached to the generated exposed surface, in other words, the first surface 132 a of the second layer 132.
  • the 2nd peeling film 152 is removed and the exposed surface produced, in other words, the 2nd surface 131b of the 1st layer 131 turns into the sticking surface of the support sheet mentioned later.
  • the die bonding film can be manufactured by separately forming and bonding a first layer (first film) and a second layer (second film).
  • the formation method of the layer and the second layer is as described above.
  • the first layer is previously formed on the release film using the first adhesive composition
  • the second layer is previously formed on the release film using the second adhesive composition.
  • these compositions are preferably applied to the release-treated surface of the release film.
  • a die bonding film in which the first layer and the second layer are laminated is obtained by bonding the exposed surface.
  • the release film that is in contact with the first layer and the release film that is in contact with the second layer may be removed at an appropriate timing when the die bonding film is used.
  • a dicing die bonding sheet includes a support sheet, and the support sheet includes the die bonding film, and the first layer in the die bonding film includes: It arrange
  • the dicing die bonding sheet can be used when dicing a semiconductor wafer.
  • each layer constituting the dicing die bonding sheet will be described in detail.
  • the support sheet may be composed of one layer (single layer) or may be composed of two or more layers.
  • the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
  • Preferred support sheets include, for example, those composed only of a base material; those provided with a base material, and provided with an intermediate layer on the base material.
  • the support sheet made of only the base material is suitable as a carrier sheet or a dicing sheet.
  • a dicing die bonding sheet provided with a support sheet composed only of such a base material has a surface (namely, the first surface) opposite to the side provided with the support sheet (namely, base material) of the die bonding film. Attached to the back side of the wafer and used.
  • the support sheet provided with a base material and provided with an intermediate layer on the base material is suitable as a dicing sheet.
  • a dicing die bonding sheet provided with such a support sheet is also used by attaching a surface (first surface) opposite to the side provided with the support sheet of the die bonding film to the back surface of the semiconductor wafer. .
  • each layer which comprises a support sheet is demonstrated.
  • the base material is in the form of a sheet or film, and examples of the constituent material include various resins.
  • the resin include polyethylene such as low density polyethylene (sometimes abbreviated as LDPE), linear low density polyethylene (sometimes abbreviated as LLDPE), and high density polyethylene (sometimes abbreviated as HDPE).
  • Polyolefins other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin; ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer
  • Ethylene copolymers such as ethylene-norbornene copolymer (copolymers obtained using ethylene as a monomer); vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers (vinyl chloride as a monomer) Resin obtained by using); polystyrene; Olefins; Polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalene dicarboxylate, wholly aromatic polyesters in which all structural units have aromatic cyclic groups; Polyester (poly) methacrylate
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • the resin constituting the substrate may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • the substrate may be composed of one layer (single layer) or may be composed of two or more layers. When the substrate is composed of a plurality of layers, these layers may be the same or different from each other.
  • the combination of layers is not particularly limited.
  • the thickness of the substrate is preferably 50 to 300 ⁇ m, and more preferably 60 to 150 ⁇ m.
  • the thickness of the substrate is in such a range, the flexibility of the dicing die bonding sheet, the sticking property of the dicing die bonding sheet to the semiconductor wafer or semiconductor chip, and the semiconductor with a cured die bonding film described later The pickup property of the chip is further improved.
  • the thickness of the substrate means the thickness of the entire substrate.
  • the thickness of the substrate composed of a plurality of layers means the total thickness of all the layers constituting the substrate. means.
  • the base material is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct such a substrate with high thickness accuracy include polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyurethane acrylate, and ethylene. -Vinyl acetate copolymer and the like.
  • the base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent material such as the resin. May be.
  • the substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the base material is preferably one that transmits energy rays, and more preferably has high energy ray permeability.
  • the substrate is subjected to uneven blasting treatment such as sandblasting treatment, solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment,
  • the surface may be subjected to an oxidation treatment such as ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, or the like.
  • the base material may have a surface subjected to primer treatment.
  • the base material is an antistatic coat layer; a layer that prevents the base material from adhering to other sheets or the base material from adhering to the adsorption table when the dicing die bonding sheet is stored in an overlapping manner. It may have.
  • the base material can be manufactured by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the intermediate layer is not particularly limited as long as it is disposed between the substrate and the die bonding film and exhibits its function. More specifically, examples of the intermediate layer include a peelability improving layer and a pressure-sensitive adhesive layer in which at least one surface is peeled.
  • the peelability improving layer facilitates peeling of the cured die bonding film from the support sheet at the time of picking up a semiconductor chip with a cured die bonding film, which will be described later.
  • the pressure-sensitive adhesive layer stabilizes the fixing of the semiconductor wafer on the support sheet during dicing, and facilitates peeling of the cured die bonding film from the support sheet when picking up a semiconductor chip with a cured die bonding film. And so on.
  • the said peelability improvement layer is a sheet form or a film form.
  • the peelability improving layer for example, a multi-layered structure including a resin layer and a release treatment layer formed on the resin layer; a single layer containing a release agent, etc. Is mentioned.
  • the peelability improving layer is disposed with the peeled surface facing the die bonding film side.
  • the resin layer can be produced by molding or coating a resin composition containing a resin and drying it as necessary.
  • the peelability improvement layer which consists of multiple layers can be manufactured by carrying out the peeling process of one surface of the said resin layer.
  • the release treatment of the resin layer can be performed by various known release agents such as alkyd, silicone, fluorine, unsaturated polyester, polyolefin or wax.
  • the release agent is preferably an alkyd, silicone or fluorine release agent.
  • the resin that is a constituent material of the resin layer may be appropriately selected according to the purpose, and is not particularly limited.
  • Preferred examples of the resin include polyethylene terephthalate (sometimes abbreviated as PET), polyethylene naphthalate (sometimes abbreviated as PEN), polybutylene terephthalate (sometimes abbreviated as PBT), polyethylene ( PE (sometimes abbreviated as PE), polypropylene (sometimes abbreviated as PP), and the like.
  • the resin layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other,
  • the combination of these multiple layers is not particularly limited.
  • the peelability improving layer comprising a single layer can be produced by molding or coating a peelable composition containing a release agent and drying it as necessary.
  • the release agent contained in the release composition include the same ones as the above-described various release agents used during the release treatment of the resin layer.
  • the peelable composition may contain a resin similar to the resin that is a constituent material of the resin layer. That is, the peelability improving layer composed of a single layer may contain a resin in addition to the release agent.
  • the thickness of the peelability improving layer is preferably 10 to 200 ⁇ m, more preferably 15 to 150 ⁇ m, and particularly preferably 25 to 120 ⁇ m.
  • the thickness of the peelability improving layer is equal to or more than the lower limit, the action of the peelability improving layer becomes more remarkable, and further, the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher.
  • the thickness of the peelable improvement layer is not more than the above upper limit value, the pick-up force is easily transmitted to the semiconductor chip with the cured die bonding film when picking up the semiconductor chip with the cured die bonding film, which will be described later. It can be done more easily.
  • the thickness of the peelability improving layer means the total of the resin layer and the release treatment layer when the peelability improvement layer is composed of a plurality of layers including the resin layer and the release treatment layer. Means the thickness. Moreover, when a peelability improvement layer consists of a single layer containing a release agent, the thickness of this single layer is meant.
  • the said adhesive layer is a sheet form or a film form, and contains an adhesive.
  • the adhesive include adhesive resins such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates, ester resins, and acrylic resins are preferable. .
  • the “adhesive resin” is a concept including both an adhesive resin and an adhesive resin.
  • the resin itself is not only adhesive.
  • a resin exhibiting tackiness by using in combination with other components such as additives, a resin exhibiting adhesiveness due to the presence of a trigger such as heat or water, and the like are also included.
  • the pressure-sensitive adhesive layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other.
  • the combination of the multiple layers is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 1 to 100 ⁇ m.
  • the “thickness of the pressure-sensitive adhesive layer” means the thickness of the whole pressure-sensitive adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness.
  • the pressure-sensitive adhesive layer may be transparent, opaque, or colored depending on the purpose. However, the pressure-sensitive adhesive layer preferably transmits energy rays, and more preferably has high energy ray permeability.
  • the pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer formed using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
  • the pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
  • a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive for example, an adhesive layer can be formed in the target site
  • the intermediate layer can be formed by using an intermediate layer composition containing the constituent material.
  • the intermediate layer can be formed at the target site by applying the intermediate layer composition to the surface on which the intermediate layer is to be formed and drying it as necessary.
  • middle layer can also be formed by shape
  • FIG. 2 is a cross-sectional view schematically showing an embodiment of the dicing die bonding sheet of the present invention.
  • the same components as those shown in the already explained figures are given the same reference numerals as those in the already explained figures, and their detailed explanations are omitted.
  • the dicing die bonding sheet 1 ⁇ / b> A shown here includes a support sheet 10, and a die bonding film 13 on the support sheet 10.
  • the support sheet 10 is composed only of the base material 11, and in other words, the dicing die bonding sheet 1 ⁇ / b> A is on one surface (which may be referred to as “first surface” in this specification) 11 a of the base material 11.
  • the die bonding film 13 has a laminated structure.
  • the dicing die bonding sheet 1 ⁇ / b> A further includes a release film 15 on the die bonding film 13.
  • the first layer 131 is laminated on the first surface 11 a of the substrate 11.
  • the second layer 132 is laminated on a surface 131 a (which may be referred to as a “first surface” in this specification) on the opposite side to the substrate 11 side of the first layer 131.
  • the jig adhesive layer 16 is laminated on a part of the first surface 132a of the second layer 132 (in other words, the first surface 13a of the die bonding film 13), that is, in the vicinity of the peripheral portion. .
  • first surface 132 a of the second layer 132 the surface on which the jig adhesive layer 16 is not laminated and the surface 16 a of the jig adhesive layer 16 that is not in contact with the die bonding film 13.
  • a release film 15 is laminated on the upper surface and the side surface.
  • the first surface 11 a of the substrate 11 is also referred to as the first surface 10 a of the support sheet 10.
  • the release film 15 is the same as the first release film 151 or the second release film 152 shown in FIG.
  • the adhesive layer 16 for jigs may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which layers containing an adhesive component are laminated on both surfaces of a core sheet. It may be of a structure.
  • the jig adhesive layer 16 is laminated on the first surface 132a of the second layer 132 (the first surface 13a of the die bonding film 13) with the release film 15 removed.
  • the back surface of the semiconductor wafer (not shown) is attached to the unexposed region, and the upper surface of the surface 16a of the jig adhesive layer 16 is attached to a jig such as a ring frame.
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the dicing die bonding sheet of the present invention.
  • the dicing die bonding sheet 1B shown here is the same as the dicing die bonding sheet 1A shown in FIG. 2 except that the jig adhesive layer 16 is not provided. That is, in the dicing die bonding sheet 1B, the first layer 131 is laminated on the first surface 11a of the base material 11 (the first surface 10a of the support sheet 10), and the first surface 131a of the first layer 131 has the first surface 131a. Two layers 132 are laminated, and the release film 15 is laminated on the entire first surface 132 a of the second layer 132.
  • the dicing die bonding sheet 1B is configured by stacking the base material 11, the first layer 131, the second layer 132, and the release film 15 in this order in the thickness direction.
  • the dicing die bonding sheet 1B shown in FIG. 3 is the center side of the first surface 13a of the die bonding film 13 with the release film 15 removed.
  • the rear surface of the semiconductor wafer (not shown) is attached to a part of the region, and the region near the peripheral edge of the die bonding film 13 is attached to a jig such as a ring frame for use.
  • FIG. 4 is a cross-sectional view schematically showing still another embodiment of the dicing die bonding sheet of the present invention.
  • the dicing die bonding sheet 1C shown here is the dicing die shown in FIG. 2 except that the intermediate layer 12 is further provided between the base material 11 and the die bonding film 13 (first layer 131). It is the same as the bonding sheet 1A.
  • the support sheet 10 is a laminate of the base material 11 and the intermediate layer 12, and the dicing die bonding sheet 1 ⁇ / b> C also has a configuration in which the die bonding film 13 is laminated on the first surface 10 a of the support sheet 10.
  • the intermediate layer 12 is laminated on the first surface 11 a of the substrate 11.
  • the first layer 131 is laminated on a surface 12 a (which may be referred to as a “first surface” in this specification) opposite to the base material 11 side of the intermediate layer 12.
  • the second layer 132 is laminated on the first surface 131 a of the first layer 131.
  • the jig adhesive layer 16 is laminated on a part of the first surface 132a of the second layer 132 (in other words, the first surface 13a of the die bonding film 13), that is, in the vicinity of the peripheral portion. .
  • first surface 132 a of the second layer 132 the surface on which the jig adhesive layer 16 is not laminated and the surface 16 a of the jig adhesive layer 16 that is not in contact with the die bonding film 13.
  • a release film 15 is laminated on the upper surface and the side surface.
  • the intermediate layer 12 is the peelability improving layer composed of a plurality of layers
  • the layer on the substrate 11 side of the intermediate layer 12 becomes the resin layer (not shown)
  • the layer on the die bonding film 13 (first layer 131) side of the layer 12 becomes the release treatment layer (not shown). Therefore, in this case, the first surface 12a of the intermediate layer 12 is a peeling treatment surface.
  • the intermediate layer 12 is the single layer peelable improvement layer
  • the first surface 12a of the intermediate layer 12 is the release treatment surface as described above. Contains a release agent.
  • the intermediate layer 12 is a peelability improving layer
  • the cured die bonding film (the die bonding film 13 in FIG. 4 is cut at the time of picking up a semiconductor chip with a cured die bonding film described later, Further, the second layer 132 in the die bonding film 13 is easily peeled off by energy rays.
  • the dicing die bonding sheet 1C shown in FIG. 4 has a jig adhesive layer out of the first surface 132a of the second layer 132 (the first surface 13a of the die bonding film 13) with the release film 15 removed.
  • the back surface of a semiconductor wafer (not shown) is pasted in a region where 16 is not laminated, and the top surface of the surface 16a of the jig adhesive layer 16 is stuck to a jig such as a ring frame. Is done.
  • FIG. 5 is a cross-sectional view schematically showing still another embodiment of the dicing die bonding sheet of the present invention.
  • the dicing die bonding sheet 1 ⁇ / b> D shown here is the same as the dicing die bonding sheet 1 ⁇ / b> C shown in FIG. 4 except that it does not include the jig adhesive layer 16 and the shape of the die bonding film is different. That is, the dicing die bonding sheet 1 ⁇ / b> D includes the base material 11, the intermediate layer 12 on the base material 11, and the die bonding film 23 on the intermediate layer 12.
  • the support sheet 10 is a laminate of the base material 11 and the intermediate layer 12.
  • the die bonding film 23 is a laminate of a first layer 231 and a second layer 232.
  • the dicing die bonding sheet 1 ⁇ / b> D also has a configuration in which the die bonding film 23 is laminated on the first surface 10 a of the support sheet 10.
  • the intermediate layer 12 is laminated on the first surface 11a of the substrate 11.
  • the first layer 231 is laminated on a part of the first surface 12 a of the intermediate layer 12, that is, in the central region.
  • the second layer 232 is laminated on the first surface 231 a of the first layer 231.
  • a release film 15 is laminated on the top.
  • the die bonding film 23 has a surface area smaller than that of the intermediate layer 12, and has a circular shape or the like, for example.
  • the dicing die bonding sheet 1D shown in FIG. 5 has a semiconductor wafer (not shown) on the first surface 232a (first surface 23a of the die bonding film 23) of the second layer 232 with the release film 15 removed.
  • the back surface is affixed, and the region of the first surface 12a of the intermediate layer 12 where the die bonding film 23 is not laminated is affixed to a jig such as a ring frame and used.
  • a jig similar to that shown in FIGS. 2 and 4 is formed on the first surface 12a of the intermediate layer 12 in the region where the die bonding film 23 is not laminated.
  • An adhesive layer may be laminated (not shown).
  • the dicing die bonding sheet 1 ⁇ / b> D provided with such a jig adhesive layer has an upper surface on the surface of the jig adhesive layer. Used by sticking to a jig such as a frame.
  • the dicing die bonding sheet may be provided with an adhesive layer for jigs, regardless of the form of the support sheet and the die bonding film.
  • the dicing die bonding sheet provided with the jig adhesive layer is preferably provided with the jig adhesive layer on the die bonding film.
  • the dicing die bonding sheet of the present invention is not limited to that shown in FIGS. 2 to 5, and a part of the configuration shown in FIGS. 2 to 5 is changed or deleted within a range not impairing the effects of the present invention.
  • another configuration may be added to what has been described so far.
  • layers other than the base material, the intermediate layer, the die bonding film, and the release film may be provided at any location.
  • a gap may be partially formed between the release film and the layer that is in direct contact with the release film.
  • the size and shape of each layer can be arbitrarily adjusted according to the purpose.
  • a dicing die bonding sheet can be manufactured, for example, by bonding the die bonding film and a support sheet.
  • the support sheet provided with the base material and the intermediate layer can be produced by applying the above-mentioned intermediate layer composition on the base material and drying it as necessary.
  • the intermediate layer is a releasability improving layer
  • the intermediate layer composition for forming the resin layer is applied on a base material to form the resin layer. A peeling process may be performed.
  • the support sheet provided with the base material and the intermediate layer can also be produced by the following method. That is, the intermediate layer is formed on the release film in the same manner as in the above-described intermediate layer formation method except that a release film is used instead of the base material. At this time, the intermediate layer composition is preferably applied to the release-treated surface of the release film. And the said support sheet can be manufactured by bonding together the exposed surface (surface on the opposite side to the peeling film side) of an intermediate
  • a dicing die bonding sheet can be manufactured, for example, without forming the die bonding film and the support sheet in advance.
  • an intermediate layer is formed on the release film by the method described above.
  • the 1st layer (1st film) already formed on the peeling film, the 2nd layer (2nd film) already formed on the peeling film, and the base material, the base material and the intermediate formed The layer, the formed first layer, and the formed second layer are stacked in this order in the thickness direction. At this time, the release film provided in each layer is removed at an appropriate timing as necessary.
  • the die bonding film and the dicing die bonding sheet of the present invention can be used for manufacturing a semiconductor chip, more specifically, a semiconductor chip with a cured die bonding film.
  • a laminated body in which a semiconductor wafer is stuck to the second layer and a dicing sheet is stuck to the first layer of the die bonding film (1-1) Or a step of producing a laminate (1-2) in which a semiconductor wafer is adhered to the second layer in the die bonding film of the dicing die bonding sheet (in the present specification, “laminate (1) And may have been cut by cutting the semiconductor wafer in the laminate (1-1) or laminate (1-2) together with the die bonding film with a dicing blade.
  • a step of producing a laminated body (2) including the first layer, the cut second layer, and the semiconductor chip (cut semiconductor wafer) (this specification) In this case, it may be referred to as “laminated body (2) production process”) and the second layer that has been cut in the laminated body (2) is cured by energy ray to obtain a cured product.
  • a step of producing a laminated body (3) provided with the finished first layer, the cured product, and the semiconductor chip (in this specification, sometimes referred to as “laminated body (3) producing step”); In the laminate (3), the semiconductor chip including the cut first layer and the cured product is separated from the dicing sheet or the support sheet and picked up (in this specification, “pickup And may be referred to as a “process”).
  • the laminated body (1-1) and the laminated body (1-2) may be collectively referred to as “laminated body (1)”.
  • the manufacturing method by using the die bonding film or the dicing die bonding sheet, even if the size of the semiconductor chip is small, the cured product of the second layer that has been cut (cut and cured) in the pickup process.
  • the second layer) is partly or entirely peeled off from the semiconductor chip, and the transferability of the cured product of the second layer to the semiconductor chip is high.
  • FIG. 6 is a cross-sectional view for schematically explaining a method for manufacturing a semiconductor chip according to an embodiment of the present invention.
  • a method for manufacturing a semiconductor chip when the dicing die bonding sheet 1A shown in FIG. 2 is used will be described.
  • Laminated body (1) production process In the laminated body (1) manufacturing process, as shown in FIG. 6A, in the dicing die bonding sheet 1A, the semiconductor wafer 9 is stuck to the second layer 132 in the die bonding film 13.
  • the body (1-2) 101 is produced.
  • the laminated body (1-2) 101 includes the base material 11, the first layer 131, the second layer 132, and the semiconductor wafer 9 (in other words, the base material 11, the die bonding film 13 and the semiconductor wafer 9) in this order. Laminated in the thickness direction.
  • the back surface 9b of the semiconductor wafer 9 is attached to the first surface 132a of the second layer 132.
  • the dicing die bonding sheet 1A is used with the release film 15 removed.
  • the die bonding film 13 is used instead of the dicing die bonding sheet 1A, and the second layer 132 includes a semiconductor.
  • a laminated body (1-1) in which the wafer 9 is affixed and the substrate 11 (support sheet 10) as a dicing sheet is affixed to the first layer 131 may be produced.
  • the base material 11, the first layer 131, the second layer 132, and the semiconductor wafer 9 are arranged in this order. They are stacked in the vertical direction.
  • the obtained laminate (1-2) and laminate (1-1) are apparently the same, and both can be described as laminate (1) 101.
  • the affixing of the semiconductor wafer 9 to the second layer 132 may be performed by softening the second layer 132 by heating.
  • the heating temperature of the second layer 132 is preferably 35 to 45 ° C.
  • the sticking speed and the sticking pressure when the semiconductor wafer 9 is stuck to the second layer 132 are not particularly limited.
  • the sticking speed is preferably 5 to 20 mm / s, and the sticking pressure is preferably 0.1 to 1.0 MPa.
  • the dicing sheet (the base material 11 and the support sheet 10) is attached to the first layer 131, and then the semiconductor wafer 9 is attached to the second layer 132. It is preferable to affix.
  • the dicing sheet may be attached to the first layer 131 by a known method. For example, the same conditions as when the semiconductor wafer 9 is attached may be adopted.
  • Laminated body (2) production process the semiconductor wafer 9 in the laminate (1) 101 is cut together with the die bonding film 13 (that is, the first layer 131 and the second layer 132) using a dicing blade. Thereby, as shown in FIG. 6B, the stacked body (2) 102 including the cut first layer 131 ′, the cut second layer 132 ′, and the semiconductor chip 9 ′ is manufactured. In the laminated body (2) 102, the cut first layer 131 ′, the cut second layer 132 ′, and the semiconductor chip 9 ′ (in other words, the cut die bonding film 13 ′ and the semiconductor chip 9 ′) are provided.
  • dicing is performed while water (cutting water) is allowed to flow through the portion where the dicing blade contacts the semiconductor wafer 9.
  • the first surface 132a of the second layer 132 and the back surface 9b of the semiconductor wafer 9 have high adhesive strength and adhesion, and the first surface 132a ′ of the cut second layer 132 ′ and the semiconductor chip 9 Since the adhesive strength and adhesiveness with the “back surface 9 b” are high, the penetration of water between these contact surfaces is suppressed.
  • the size of the semiconductor chip 9 'produced in this step is not particularly limited, but the length of one side of the semiconductor chip 9' is preferably 0.1 to 2.5 mm. The effect of the present invention can be obtained more remarkably when the semiconductor chip 9 'having such a small size is manufactured.
  • the dicing conditions are not particularly limited, and may be adjusted as appropriate according to the purpose.
  • the rotational speed of the dicing blade is preferably 15000 to 50000 rpm, and the moving speed of the dicing blade is preferably 5 to 75 mm / sec.
  • the substrate 11 may be cut with a dicing blade from the first surface 11a to a depth of, for example, about 30 ⁇ m or less.
  • Laminated body (3) production process In the laminate (3) manufacturing step, the cut second layer 132 ′ in the laminate (2) 102 is cured with energy rays to obtain a cured product 1320 ′, as shown in FIG. 6C. Then, a laminated body (3) 103 including the cut first layer 131 ′, the cured product 1320 ′, and the semiconductor chip 9 ′ is prepared. In the stacked body (3) 103, a plurality of first layers 131 ′ that have been cut, second layers 1320 ′ that have been cut and hardened, and semiconductor chips 9 ′ are stacked in this order in the thickness direction. The laminate is fixed in an aligned state on the substrate 11 by the first layer 131 ′. The layered product (3) 103 is the same as the layered product (2) 102 except that the cut second layer 132 ′ is cured.
  • a reference numeral 130 ′ is attached to a laminate of the cut first layer 131 ′ and the cut and hardened second layer 1320 ′.
  • a laminate derived from the die bonding film 13 may be referred to as a “cured die bonding film”.
  • the cut second layer 132 ′ and the semiconductor chip 9 ′ have high adhesive force and adhesiveness, but the cut second layer 132 ′ becomes a cured product 1320 ′.
  • the cured product 1320 ′ and the semiconductor chip 9 ′ are further improved in adhesive force and adhesion.
  • the irradiation conditions of the energy rays are as long as the second layer 132 ′ is sufficiently cured with energy rays.
  • the energy ray illuminance during energy ray curing is preferably 4 to 280 mW / cm 2 .
  • the amount of energy rays during energy ray curing is preferably 3 to 1000 mJ / cm 2 . It is preferable to irradiate the cut second layer 132 ′ from the base material 11 side through the base material 11 and the cut first layer 131 ′.
  • the adhesiveness and adhesion between the cut second layer 132 ′ and the semiconductor chip 9 ′ are high. Intrusion of water between the surfaces is suppressed.
  • the adhesive strength and adhesion between the cured product 1320 'and the semiconductor chip 9' are further increased. Therefore, in this step, part or all of the cured product 1320 'is prevented from peeling from the semiconductor chip 9', and the transfer property of the cured product 1320 'to the semiconductor chip 9' is high.
  • Examples of the separating means 8 for separating the semiconductor chip 9 ′ from the support sheet 10 together with the cut first layer 131 ′ and the cured product 1320 ′ include a vacuum collet.
  • the separating means 8, which is different from the cured semiconductor chip with a die bonding film, is not shown in cross section.
  • a semiconductor chip can be manufactured by the same method as described above. And the effect which shows in that case is the same as the case where dicing die bonding sheet 1A is used. In the case of using another dicing die bonding sheet, a semiconductor chip can be manufactured by appropriately adding an arbitrary process according to the structure.
  • a semiconductor chip with a cured die-bonding film (a semiconductor chip having a cut first layer and a cut and hardened second layer) obtained by applying the manufacturing method is a semiconductor device. Particularly suitable for use in manufacturing.
  • the semiconductor chip with a cured die bonding film is die bonded to the circuit forming surface of the substrate by the cut first layer.
  • FIG. 7 is a cross-sectional view schematically showing an example of a state in which a semiconductor chip with a cured die bonding film is die-bonded on the circuit forming surface of the substrate.
  • the semiconductor chip 9 provided with the cut first layer 131 ′ and the cured product 1320 ′ which is a target in the manufacturing method described with reference to FIG. The case where 'is used is shown.
  • the semiconductor chip 9 ′ having the cured die bonding film 130 ′ is die-bonded to the circuit forming surface 7a of the substrate 7 by the cut first layer 131 ′ of the film 130 ′.
  • the surface of the cut first layer 131 ′ opposite to the cured product 1320 ′ (referred to as “second surface” in this specification) 131b ′.
  • the circuit formation surface 7a of the substrate 7 is in direct contact, and the semiconductor chip 9 ′ is fixed on the substrate 7. In the substrate 7, the description of the circuit is omitted.
  • the first layer 131 of the die bonding film 13 described above has a good substrate embedding property. Therefore, as shown here, the generation of a gap (void) is suppressed between the circuit forming surface 7a of the substrate 7 and the cut first layer 131 ′, and the cut first layer 131 is cut off. 'Satisfactorily embeds and covers the circuit forming surface 7a of the substrate 7.
  • the die bonding of the semiconductor chip in the case of using the dicing die bonding sheet 1A has been described. Even when a sheet is used or when a die bonding film is used instead of a dicing die bonding sheet in the initial stage, the substrate can be embedded satisfactorily by the first layer as described above.
  • the semiconductor package and the semiconductor device are manufactured by the same method as the conventional method. For example, if necessary, at least one semiconductor chip is further laminated on this die-bonded semiconductor chip, wire bonding is performed, and then the entire product is sealed with a resin, whereby a semiconductor package is obtained. Is produced. Then, a target semiconductor device is manufactured using this semiconductor package.
  • the die bonding film or dicing die bonding sheet of the present invention the embedding property of the substrate by the first layer is good, and as a result, the obtained semiconductor package has high reliability.
  • the die bonding film which is one embodiment of the present invention, A first layer and a second layer provided on the first layer;
  • the first layer has a characteristic that an initial detection temperature of melt viscosity is 50 to 75 ° C. (or may be 50 to 68 ° C. or 50 to 59 ° C.);
  • the second layer has adhesiveness and energy ray curability;
  • a laminate of the first layer and the second layer having a thickness of 10 ⁇ m and a width greater than 25 mm is used as a test piece, and the test piece is affixed to a silicon mirror wafer so that the width is 25 mm.
  • the silicon mirror is obtained by cutting a piece, immersing the cut test piece together with the silicon mirror wafer in pure water for 2 hours, and curing the test piece after the immersion to energy rays.
  • the adhesive force between the cured product having a width of 25 mm and the silicon mirror wafer is 6 to 20 N / 25 mm, or 10 to 10
  • a laminate of the first layer and the second layer having a thickness of 10 ⁇ m and a width greater than 25 mm is used as a test piece, and the test piece is applied to a silicon mirror wafer.
  • the test piece was cut to 5 mm, and the cut test piece was allowed to stand for 30 minutes under the conditions of a temperature of 23 ° C. and a relative humidity of 50% together with the silicon mirror wafer in a dark place under an air atmosphere.
  • the adhesive strength between the cured product of 25 mm and the silicon mirror wafer is 6 to 20 N / 25 mm, or 10 to 20 N / 25 mm; Die bonding film.
  • the die bonding film is The first layer is formed from a first adhesive composition;
  • the second layer is formed from a second adhesive composition;
  • the first adhesive composition comprises a polymer component (a), an epoxy thermosetting resin (b) composed of an epoxy resin (b1) and a thermosetting agent (b2), an effect accelerator (c), a filler ( d) and a coupling agent (e),
  • the polymer component (a) is an acrylic resin obtained by copolymerizing n-butyl acrylate, methyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate, or n-butyl acrylate, ethyl acrylate, An acrylic resin obtained by copolymerizing acrylonitrile and glycidyl methacrylate (the content of the polymer component (a) is 5 to 20% by mass with respect to the total mass of the first adhesive composition (other than the solvent), Preferably 7-12%);
  • the epoxy resin (b1) is a bisphenol A
  • the curing accelerator (c) is an inclusion compound of 1 molecule of 5-hydroxyisophthalic acid (HIPA) and 2 molecules of 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ), or 2-phenyl-4 , 5-dihydroxymethylimidazole (the content of the curing accelerator (c) is preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the epoxy thermosetting resin (b).
  • the filler (d) is spherical silica modified with an epoxy group (the content of the filler (d) is preferably relative to the total mass (other than the solvent) of the first adhesive composition). 15 to 30% by mass);
  • the coupling agent (e) is selected from the group consisting of 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane and an oligomeric silane coupling agent having an epoxy group, a methyl group and a methoxy group.
  • the content of the coupling agent (e) is preferably based on 100 parts by mass of the total content of the polymer component (a) and the epoxy thermosetting resin (b)).
  • the second adhesive composition includes a polymer component (a), a filler (d), a coupling agent (e), an energy ray curable resin (g), and a photopolymerization initiator (h).
  • the polymer component (a) is an acrylic resin obtained by copolymerizing n-butyl acrylate, methyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate, or n-butyl acrylate, ethyl acrylate, It is an acrylic resin obtained by copolymerizing acrylonitrile and glycidyl methacrylate (the content of the polymer component (a) is preferably 20 with respect to the total mass (other than the solvent) of the second adhesive composition).
  • the filler (d) is spherical silica or silica filler modified with an epoxy group (the content of the filler (d) is based on the total mass (other than the solvent) of the second adhesive composition). , Preferably 45 to 64% by weight);
  • the coupling agent (e) is an oligomer type silane coupling agent having an epoxy group, a methyl group and a methoxy group (preferably 0.1 parts per 100 parts by mass of the polymer component (a)).
  • the energy ray curable resin (g) is tricyclodecane dimethylol diacrylate or ⁇ -caprolactone modified tris- (2-acryloxyethyl) isocyanurate (the content of the energy ray curable resin (g) is , Preferably 5 to 85% by mass relative to the total mass of the second adhesive composition (other than the solvent));
  • the photopolymerization initiator (h) is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (the photopolymerization initiator (h) 1 to 10 parts by mass with respect to 100 parts by mass of the resin (g)), It may be a die bonding film.
  • (A) -1 Acrylic resin (weight average molecular weight 500000, glass transition) obtained by copolymerizing BA (10 parts by mass), MA (70 parts by mass), GMA (5 parts by mass) and HEA (15 parts by mass) Temperature-1 ° C).
  • (A) -2 Acrylic resin (weight average molecular weight 700,000, glass transition) obtained by copolymerizing BA (40 parts by mass), EA (25 parts by mass), AN (30 parts by mass) and GMA (5 parts by mass) Temperature 10 ° C.).
  • (A) -3 Acrylic resin obtained by copolymerizing BA (55 parts by mass), MA (10 parts by mass), GMA (20 parts by mass) and HEA (15 parts by mass) (weight average molecular weight 800000, glass transition Temperature-30 ° C).
  • (A) -4 Thermoplastic resin, polyester (Toyobo “Byron 220”, weight average molecular weight 35000, glass transition temperature 53 ° C.) [Epoxy resin (b1)]
  • (B1) -1 Bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of 184 to 194 g / eq)
  • B1) -2 Polyfunctional aromatic type (triphenylene type) epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 167 g / eq, softening point 54 ° C., weight average molecular weight 1200)
  • (B1) -3 Bisphenol F type epoxy resin (“YL983U” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent
  • Second adhesive composition Polymer component (a) -1 (22 parts by mass), filler (d) -2 (50 parts by mass), coupling agent (e) -3 (0.5 parts by mass), energy ray curable resin (g ) -1 (20 parts by mass) and photopolymerization initiator (h) -2 (0.3 parts by mass) are dissolved or dispersed in methyl ethyl ketone and stirred at 23 ° C., so that the solid content concentration is 55% by mass. A second adhesive composition was obtained. In addition, all the compounding quantities of components other than the methyl ethyl ketone shown here are solid content conversion values.
  • the exposed surface of the first layer obtained on the opposite side to the release film side and the exposed surface of the second layer obtained on the opposite side to the release film side are adjusted to a temperature of these two layers of 40.
  • a release film, a first layer, a second layer, and a release film were laminated in this order in the thickness direction to obtain a die bonding film with a release film.
  • ⁇ Manufacture of dicing die bonding sheet By removing the release film on the first layer side from the die bonding film obtained above and bonding the newly-exposed exposed surface of the first layer to the substrate, the substrate, the first layer, the first layer A dicing die bonding sheet in which two layers and a release film (in other words, a substrate, a die bonding film, and a release film) were laminated in this thickness direction in this order was obtained.
  • the base material used here is a polyethylene film (thickness: 100 ⁇ m).
  • the silicon mirror wafer in the laminate (1) is divided, and the first layer and the second layer (die bonding film) are also cut.
  • a silicon chip having a size of 2 mm ⁇ 2 mm was obtained.
  • Dicing at this time is performed by cutting the dicing blade to a depth of 20 ⁇ m from the first layer application surface with a dicing blade moving speed of 30 mm / sec and a dicing blade rotation speed of 40000 rpm. It was.
  • dicing was performed while flowing water (cutting water) through the portion of the dicing blade in contact with the silicon mirror wafer.
  • the cut first layer, the cut second layer, and the silicon chip are arranged in this order in the thickness direction.
  • a laminate (2) was obtained, in which a plurality of laminates laminated in step 1 were fixed in an aligned state on the substrate by the first layer.
  • the cut second layer in the laminate (2) was irradiated with ultraviolet rays to cure the second layer.
  • a plurality of laminates in which the cut first layer, the cut second layer cured product, and the silicon chip are laminated in this order in the thickness direction are formed by the first layer.
  • a laminate (3) was obtained which was fixed in an aligned state on the material.
  • the laminate (3) is the same as the laminate (2) except that the cut second layer is cured.
  • the first layer and the cured second layer (cured) are formed on the back surface from the base material in the laminate (3) obtained above.
  • a silicon chip provided with a die bonding film) ie, a silicon chip with a cured die bonding film
  • was pulled away and picked up thus, a silicon chip with a cured die bonding film was obtained.
  • Table 1 shows the order of steps of dicing (cutting of the die bonding film), curing of the die bonding film (second layer), and pick-up so far. Note that the order in which these three steps are performed is not limited to the time of evaluation of this item (embedding property of the substrate), but is the same when other items described later are evaluated.
  • the abbreviations described in Table 1 have the following meanings.
  • DF Die bonding film
  • DC Dicing PU: Pickup
  • the transparent glass substrate after the die bonding was observed from the side opposite to the cured die bonding film side using an optical microscope (“VHX-1000” manufactured by Keyence Corporation). And the presence or absence of a void (gap part) is confirmed between the cured die bonding film and the glass substrate, and the cured die bonding film is in close contact with the entire surface of the glass substrate on the cured die bonding film side. The ratio of the surface (contact ratio, area%) was determined.
  • the above operation was performed on nine silicon chips with a cured die bonding film, and the embedding property of the substrate of the die bonding film was evaluated according to the following criteria.
  • the results are shown in Table 1.
  • B There was at least one silicon chip with a cured die bonding film in which the adhesion ratio was less than 90 area%.
  • a laminate (3) was manufactured by the same method as that for manufacturing a semiconductor chip with a cured die bonding film as described above.
  • the laminate (3) obtained above was immersed in pure water at 23 ° C. for 2 hours. At this time, the laminate (3) was arranged so that the entire laminate (3) was submerged in pure water. Next, the laminate (3) was pulled up from pure water, and water droplets adhering to the surface were removed. And using the pick-up die bonding apparatus ("BESTEM D02" by Canon Machinery Co., Ltd.), the back surface was provided with the 1st layer and the hardened 2nd layer from the base material in the laminated body (3). An attempt was made to pick up a silicon chip (in other words, a silicon chip with a cured die-bonding film). The steps of dicing, curing of the die bonding film (second layer), and picking up so far are the same as those in the evaluation of the embedding property of the substrate of the die bonding film.
  • the surface (in other words, the first surface) on which the first layer (die bonding film) of the base material was laminated was observed using an optical microscope (“VHX-1000” manufactured by Keyence Corporation).
  • VHX-1000 optical microscope
  • the transferability of the cured die bonding film to the semiconductor chip was evaluated. The results are shown in Table 1.
  • the entire area in the thickness direction of the die bonding film (the thicknesses of the first layer and the second layer). Cuts were formed in the entire area in the vertical direction, and the die bonding film was cut into a strip having a width of 25 mm.
  • the cut die bonding film was immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer. At this time, the silicon mirror wafer with the die bonding film after cutting was placed in pure water so that the entire silicon mirror wafer was submerged in pure water.
  • the silicon mirror wafer with the die bonding film after cutting was pulled up from pure water, and water droplets adhering to the surface were removed.
  • the die bonding film after cutting was irradiated with UV light under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2.
  • the second layer was cured.
  • the strong adhesive tape, the first layer in which the cut is formed, the cured product of the second layer in which the cut is formed, and the silicon mirror wafer are laminated in this order in the thickness direction. A test laminate was obtained.
  • the second layer in the laminate (1) was irradiated with ultraviolet rays to cure the second layer.
  • a laminated body (4) constituted by laminating the first layer, the second layer cured product, and the silicon mirror wafer in this order in the thickness direction was obtained.
  • the laminate (4) is the same as the laminate (1) except that the second layer is cured.
  • the silicon mirror wafer in the laminate (4) is divided by dicing using a dicing apparatus ("DFD6361" manufactured by Disco), and the first layer and the cured second layer (cured die bonding film) ) was also cut to obtain a silicon chip having a size of 2 mm ⁇ 2 mm. Dicing at this time is performed by cutting the dicing blade to a depth of 20 ⁇ m from the first layer application surface with a dicing blade moving speed of 30 mm / sec and a dicing blade rotation speed of 40000 rpm. It was. As described above, a plurality of laminates in which the cut first layer, the cut second layer cured product, and the silicon chip are laminated in this order in the thickness direction are formed by the first layer.
  • a comparative laminate (3 ′) was obtained which was fixed in alignment on the material.
  • the apparent type of each layer and the order of lamination are the same as in the above-described laminate (3), but the order of dicing and second layer curing is the same. This is different from the case of the laminate (3) described above.
  • the first layer and the cured material are formed on the back surface from the base material in the comparative laminate (3 ′) obtained above.
  • a silicon chip provided with the second layer (cured die bonding film) (that is, a silicon chip with a cured die bonding film for comparison) was pulled away and picked up. As a result, a comparative silicon chip with a cured die bonding film was obtained.
  • the comparative laminate (3 ′) obtained above was immersed in pure water at 23 ° C. for 2 hours. At this time, the comparative laminate (3 ′) was arranged so that the entire comparative laminate (3 ′) was submerged in pure water. Next, the comparative laminate (3 ′) was pulled up from the pure water to remove water droplets adhering to the surface. Then, using a pickup die bonding apparatus ("BESTEM D02" manufactured by Canon Machinery Co., Ltd.), the first layer and the cured second layer are formed on the back surface from the base material in the comparative laminate (3 ') after the immersion.
  • a pickup die bonding apparatus (“BESTEM D02" manufactured by Canon Machinery Co., Ltd.
  • Example 2 ⁇ Measurement of non-immersion adhesive strength and post-immersion adhesive strength> (Manufacture of test laminates)
  • a silicon mirror wafer to which a die bonding film after cutting was attached was obtained.
  • the die bonding film after cutting was irradiated with UV light under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2.
  • the second layer was cured.
  • the die bonding film after curing the second layer was immersed in pure water at 23 ° C.
  • the silicon mirror wafer to which the cured die bonding film was attached was placed in pure water so that the entire silicon mirror wafer was submerged in pure water.
  • the silicon mirror wafer on which the cured die bonding film was adhered was pulled up from pure water, and water droplets adhering to the surface were removed.
  • the strong adhesive tape, the first layer in which the cut is formed, the cured product of the second layer in which the cut is formed, and the silicon mirror wafer are laminated in this order in the thickness direction. In addition, a comparative test laminate was obtained.
  • the silicon mirror wafer in the laminated body (5) is divided and the die bonding film is also cut to obtain a silicon having a size of 2 mm ⁇ 2 mm. I got a chip. Dicing at this time is performed by cutting the dicing blade to a depth of 20 ⁇ m from the surface of the die bonding film to the substrate with a moving speed of the dicing blade of 30 mm / sec and a rotating speed of the dicing blade of 40000 rpm. It was. As described above, a laminated structure in which a plurality of laminates in which a cut die bonding film and a silicon chip are laminated in the thickness direction are fixed in an aligned state on the substrate by the die bonding film. Body (6) was obtained.
  • the die bonding film in the laminate (6) was irradiated with ultraviolet rays to cure the die bonding film.
  • a cured product of the cut die bonding film and a plurality of laminates in which the silicon chip is laminated in the thickness direction are fixed in an aligned state on the substrate by the cured product.
  • a laminate (7) was obtained.
  • the laminate (7) is the same as the laminate (6) except that the cut die bonding film is cured.
  • a laminate (7) was produced by the same method as in the case of producing a comparative semiconductor chip with a cured die bonding film as described above.
  • a cut is formed in the entire thickness direction of the die bonding film along the outer periphery of the strong adhesive tape. It was cut into a band shape having a width of 25 mm.
  • the die bonding film after cutting was immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer immediately after the cutting. At this time, the silicon mirror wafer with the die bonding film after cutting was placed in pure water so that the entire silicon mirror wafer was submerged in pure water. Next, the silicon mirror wafer with the die bonding film after cutting was pulled up from pure water, and water droplets adhering to the surface were removed.
  • the die bonding film after cutting was irradiated with UV light under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2.
  • the die bonding film was cured.
  • the comparative test laminate in which the strong adhesive tape, the cured die bonding film on which the cuts are formed, and the silicon mirror wafer are laminated in this order in the thickness direction, is configured. Obtained.
  • a die bonding film was produced in the same manner as in Comparative Example 3 except that the adhesive composition obtained above was used.
  • a dicing die bonding sheet was produced by the same method as in Comparative Example 3 except that the die bonding film obtained above was used, and the die bonding film was evaluated. The results are shown in Table 2.
  • the initial detection temperature T 0 of the first layer of the die bonding film is 68 ° C. or lower (59 to 68 ° C.), and the first layer is a substrate.
  • the embeddability was excellent.
  • the adhesive strength after immersion between the cured product of the second layer and the silicon mirror wafer was 10 N / 25 mm or more (10 N / 25 mm ⁇ ).
  • peeling occurred first between the first layer and the strong adhesive tape, and the peeling force at this time was 10 N / 25 mm.
  • No peeling occurred between the cured product of the second layer and the silicon mirror wafer.
  • the non-immersion adhesive strength between the cured product of the second layer and the silicon mirror wafer is also 10 N / 25 mm or more and the test laminate not immersed (non-immersion), similarly to the post-immersion adhesive strength.
  • no peeling occurred between the cured product of the second layer and the silicon mirror wafer.
  • the die bonding film in which the second layer has been cured was excellent in transferability to the semiconductor chip.
  • the die bonding films of Examples 1 and 2 have a two-layer structure, so that transfer failure to a semiconductor chip can be suppressed when picking up a semiconductor chip having a small size, and At the time of die bonding, the substrate could be satisfactorily embedded.
  • the adhesive strength after immersion between the cured product of the second layer and the silicon mirror wafer is 3.0 N / 25 mm or less (2.3 to 3.0 N / 25 mm).
  • peeling occurred between the cured product of the second layer and the silicon mirror wafer.
  • the non-immersion adhesive force between the cured product of the second layer and the silicon mirror wafer was 10 N / 25 mm or more, as in Examples 1 and 2.
  • the die-bonding film with which the 2nd layer was hardened was inferior to the transferability to a semiconductor chip.
  • Comparative Example 1 is the same as Example 1, and Comparative Example 2 is the same as Example 2.
  • the die bonding film and the dicing die bonding sheet are the same. Nevertheless, the reason for such a result is that, at the time of evaluation, the die bonding film after cutting, which is affixed to the silicon mirror wafer, is immersed in pure water and cured (the second layer). This is because the order of (hardening) is reverse in Examples 1-2 and Comparative Examples 1-2. In the case of Examples 1 and 2, the die bonding film after cutting is cured after being immersed in pure water.
  • the evaluation in Examples 1 and 2 reflects the order of steps in which the die bonding film is cured after dicing.
  • Comparative Examples 1 and 2 the die bonding film after cutting is immersed in pure water after curing. That is, it can be said that the evaluation of Comparative Examples 1 and 2 reflects the order of processes in which dicing is performed after the die bonding film is cured. Therefore, the evaluation results of these Examples and Comparative Examples are the above-described laminate (1) production process, laminate (2) production process, laminate (3) production process and pickup using the die bonding film of the present invention. By performing the steps in this order, it is shown that the semiconductor chip can be manufactured while suppressing transfer failure of the die bonding film to the semiconductor chip when picking up the semiconductor chip having a small size.
  • the initial detection temperature T 0 of the die bonding film having a single layer configuration was as high as 83 ° C., and the die bonding film was inferior in the embedding property of the substrate.
  • the post-immersion adhesive strength and the non-immersion adhesive strength between the cured product of the die bonding film and the silicon mirror wafer are both 10 N / 25 mm or more, as in Examples 1 and 2. there were.
  • the present invention provides a die bonding film capable of suppressing transfer failure to a semiconductor chip when picking up a semiconductor chip having a small size and capable of satisfactorily embedding a substrate at the time of die bonding. Since the dicing die bonding sheet provided and the semiconductor chip manufacturing method using the dicing die bonding sheet can be provided, it is extremely useful in the industry.

Abstract

The invention relates to a die bonding film comprising a first layer and a second layer provided on the first layer. The first layer has a property such that the melt viscosity initial detection temperature is 75°C or lower. The second layer is tacky and energy-beam curable. With the second layer having a thickness of 10 μm and a greater width than 25 mm serving as a test piece, the following condition is provided. The test piece is pasted onto a silicon mirror wafer, the test piece is cut to a width of 25 mm, the test piece having been cut and the silicon mirror wafer are immersed together in pure water for two hours, and the test piece after the immersion is cured with an energy beam and made into a cured object so as to produce a test layered body in which the cured object is pasted onto the silicon mirror wafer. In this condition, the die bonding film has a property such that the adhesive force is 6 N/25 mm or stronger between the silicon mirror wafer and the cured object having a width of 25 mm.

Description

ダイボンディングフィルム、ダイシングダイボンディングシート、及び半導体チップの製造方法Die bonding film, dicing die bonding sheet, and semiconductor chip manufacturing method
 本発明は、ダイボンディングフィルム、ダイシングダイボンディングシート、及び半導体チップの製造方法に関する。
 本願は、2018年3月23日に、日本に出願された特願2018-057007号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a die bonding film, a dicing die bonding sheet, and a method for manufacturing a semiconductor chip.
This application claims priority based on Japanese Patent Application No. 2018-057007 filed in Japan on March 23, 2018, the contents of which are incorporated herein by reference.
 半導体チップは、通常、その裏面に貼付されているダイボンディングフィルムによって、基板の回路形成面にダイボンディングされる。その後、必要に応じてこの半導体チップにさらに半導体チップを1個以上積層して、ワイヤボンディングを行った後、得られたもの全体を樹脂により封止することで、半導体パッケージが作製される。そして、この半導体パッケージを用いて、目的とする半導体装置が作製される。 The semiconductor chip is usually die-bonded to the circuit forming surface of the substrate with a die-bonding film attached to the back surface thereof. Thereafter, if necessary, one or more semiconductor chips are further stacked on the semiconductor chip, wire bonding is performed, and the whole is sealed with a resin to manufacture a semiconductor package. Then, a target semiconductor device is manufactured using this semiconductor package.
 裏面にダイボンディングフィルムを備えた半導体チップは、例えば、裏面にダイボンディングフィルムを備えた半導体ウエハを、ダイボンディングフィルムとともに分割(切断)することによって作製される。このように半導体ウエハを半導体チップへと分割する方法としては、例えば、ダイシングブレードを用いて、半導体ウエハをダイボンディングフィルムごとダイシングする方法が広く利用されている。この場合、分割(切断)前のダイボンディングフィルムは、ダイシング時に半導体ウエハを固定するために使用されるダイシングシートに積層されて一体化された、ダイシングダイボンディングシートとして使用される。
 ダイシング終了後、裏面にダイボンディングフィルムを備えた半導体チップ(ダイボンディングフィルム付き半導体チップ)は、ダイシングシートから引き離されてピックアップされる。
A semiconductor chip having a die bonding film on the back surface is produced, for example, by dividing (cutting) a semiconductor wafer having a die bonding film on the back surface together with the die bonding film. As a method for dividing the semiconductor wafer into semiconductor chips in this manner, for example, a method of dicing the semiconductor wafer together with the die bonding film using a dicing blade is widely used. In this case, the die bonding film before division (cutting) is used as a dicing die bonding sheet that is laminated and integrated with a dicing sheet used for fixing the semiconductor wafer during dicing.
After completion of dicing, a semiconductor chip having a die bonding film on the back surface (a semiconductor chip with a die bonding film) is separated from the dicing sheet and picked up.
 一方、ダイボンディングフィルムとしては、これまでに、例えば、120℃における弾性率Gが30000Pa以下であるものが開示されている(特許文献1参照)。特許文献1によれば、このダイボンディングフィルムを用いることにより、ダイボンディングフィルムの半導体チップ側の界面又は基板側の界面において、ボイド(空隙部)の発生を抑制できるとされている。
 また、ワイヤ埋込層と、その上に積層された絶縁層と、の2層構成のダイボンディングフィルムが開示されている(特許文献2参照)。特許文献2によれば、このダイボンディングフィルムは、チップが三次元的に積層された半導体パッケージの製造に好適であるとされている。
On the other hand, as the die bonding film, for example, a film having an elastic modulus G at 120 ° C. of 30000 Pa or less has been disclosed so far (see Patent Document 1). According to Patent Document 1, by using this die bonding film, it is said that generation of voids (voids) can be suppressed at the semiconductor chip side interface or the substrate side interface of the die bonding film.
Further, a die bonding film having a two-layer structure including a wire embedding layer and an insulating layer laminated thereon is disclosed (see Patent Document 2). According to Patent Document 2, this die bonding film is suitable for manufacturing a semiconductor package in which chips are three-dimensionally stacked.
特開2013-77855号公報JP 2013-77855 A 特開2007-53240号公報JP 2007-53240 A
 ダイシング後の半導体チップは、上述のとおり、裏面にダイボンディングフィルムを備えた状態のまま、ダイシングシートから引き離されてピックアップされ、ダイボンディングフィルムによって、基板の回路形成面にダイボンディングされる。しかし、ダイボンディングフィルムと半導体チップとの間の粘着力(接着力)が不十分であると、ピックアップ時において、ダイボンディングフィルムの一部又は全部が、半導体チップから剥離してダイシングシート上に残ってしまい、ダイボンディングフィルムのダイシングシートから半導体チップへの転写に異常が発生してしまう。本明細書においては、このような異常を「転写不良」と称する。 As described above, the semiconductor chip after dicing is picked up by being separated from the dicing sheet while being provided with the die bonding film on the back surface, and die bonded to the circuit forming surface of the substrate by the die bonding film. However, if the adhesive force (adhesive force) between the die bonding film and the semiconductor chip is insufficient, part or all of the die bonding film peels off from the semiconductor chip and remains on the dicing sheet at the time of pickup. As a result, an abnormality occurs in the transfer of the die bonding film from the dicing sheet to the semiconductor chip. In this specification, such an abnormality is referred to as “transfer defect”.
 このようなダイボンディングフィルムの転写不良は、ダイシングブレードを用いたダイシングによって、半導体ウエハをサイズが小さい半導体チップへと分割するときに、特に発生し易い。これは、ダイシングブレードの半導体ウエハへの接触箇所に、水(「切削水」と称することもある)を流しながら、ダイシングを行うためである。ダイシングによって得られた半導体チップのサイズが小さいほど、1個の半導体チップの表面積に対する、水の接触量は増大するため、水の影響を格段に受け易くなる。そして、ダイボンディングフィルムと半導体チップとの間の粘着力(接着力)が不十分である場合には、ダイボンディングフィルムと半導体チップとの界面に水が浸入し易くなる。水が浸入すると、ダイボンディングフィルムは半導体チップから剥離し易くなり、上記の様に転写不良が発生し易くなってしまう。 Such transfer failure of the die bonding film is particularly likely to occur when the semiconductor wafer is divided into small semiconductor chips by dicing using a dicing blade. This is because dicing is performed while water (sometimes referred to as “cutting water”) is allowed to flow through a portion where the dicing blade contacts the semiconductor wafer. The smaller the size of the semiconductor chip obtained by dicing, the greater the amount of contact with water with respect to the surface area of one semiconductor chip, which makes it much more susceptible to water. When the adhesive force (adhesive force) between the die bonding film and the semiconductor chip is insufficient, water easily enters the interface between the die bonding film and the semiconductor chip. When water permeates, the die bonding film is easily peeled from the semiconductor chip, and transfer defects are likely to occur as described above.
 これに対して、特許文献1で開示されているダイボンディングフィルムは、その半導体チップ側の界面において、ボイド(空隙部)の発生を抑制できたとしても、半導体チップのサイズが小さい場合に、ピックアップ時におけるダイボンディングフィルムの転写不良を抑制できるかは定かではない。 On the other hand, the die bonding film disclosed in Patent Document 1 is picked up when the size of the semiconductor chip is small even though the generation of voids (voids) can be suppressed at the interface on the semiconductor chip side. It is not certain whether the transfer failure of the die bonding film at the time can be suppressed.
 通常、ダイボンディングフィルムの転写不良を抑制するためには、ダイボンディングフィルムの粘着力を増大させる等、物性を改善すればよい。しかし、ダイボンディングフィルムは、半導体チップを基板の回路形成面にダイボンディングするのに利用される。ダイボンディングフィルムの物性を、転写不良の抑制に有利になるように改善すると、例えば、ダイボンディング時の基板表面とダイボンディングフィルムとの間で、隙間の発生を抑制して、ダイボンディングフィルムが基板表面を被覆する、所謂基板の埋め込み性が低下してしまうことがある。 Usually, in order to suppress the transfer failure of the die bonding film, the physical properties may be improved by increasing the adhesive force of the die bonding film. However, the die bonding film is used for die bonding a semiconductor chip to a circuit forming surface of a substrate. When the physical properties of the die bonding film are improved so as to be advantageous for suppressing transfer defects, for example, the generation of a gap between the substrate surface and the die bonding film at the time of die bonding is suppressed, and the die bonding film becomes a substrate. The so-called embedding property of the substrate covering the surface may be lowered.
 これに対して、特許文献2で開示されているダイボンディングフィルムは、ワイヤ埋込層及び絶縁層の2層構成を有し、基板の埋め込み性が良好であることを示唆している。しかし、このダイボンディングフィルムの絶縁層は、半導体チップのサイズが小さい場合に、ピックアップ時におけるダイボンディングフィルムの転写不良を抑制できるかは定かではない。 On the other hand, the die bonding film disclosed in Patent Document 2 has a two-layer structure of a wire embedding layer and an insulating layer, suggesting that the embedding property of the substrate is good. However, it is not certain whether the insulating layer of this die bonding film can suppress the transfer failure of the die bonding film during pick-up when the size of the semiconductor chip is small.
 本発明は、サイズが小さい半導体チップのピックアップ時において、半導体チップへの転写不良を抑制可能であり、かつ、ダイボンディング時において、基板を良好に埋め込み可能なダイボンディングフィルムと、このダイボンディングフィルムを備えたダイシングダイボンディングシートと、このダイシングダイボンディングシートを用いた半導体チップの製造方法と、を提供することを目的とする。 The present invention provides a die bonding film capable of suppressing transfer failure to a semiconductor chip when picking up a semiconductor chip having a small size and capable of satisfactorily embedding a substrate at the time of die bonding. An object of the present invention is to provide a dicing die bonding sheet provided and a semiconductor chip manufacturing method using the dicing die bonding sheet.
 上記課題を解決するため、本発明は、第1層を備え、前記第1層上に第2層を備えており、前記第1層の、溶融粘度の初期検出温度が75℃以下であり、前記第2層は、粘着性及びエネルギー線硬化性を有し、厚さが10μmで、かつ幅が25mmよりも広い前記第2層を試験片として用い、前記試験片を、シリコンミラーウエハに貼付し、幅が25mmとなるように切断し、切断後の前記試験片を前記シリコンミラーウエハごと、純水中に2時間浸漬し、浸漬後の前記試験片をエネルギー線硬化させて硬化物とすることにより、シリコンミラーウエハに前記硬化物が貼付されている試験用積層体を作製したときの、幅が25mmの前記硬化物と、前記シリコンミラーウエハと、の間の粘着力が、6N/25mm以上となる、ダイボンディングフィルムを提供する。
 また、本発明は、支持シートを備え、前記支持シート上に、前記ダイボンディングフィルムを備えており、前記ダイボンディングフィルム中の第1層が、前記支持シート側に配置されている、ダイシングダイボンディングシートを提供する。
In order to solve the above problems, the present invention includes a first layer, and a second layer on the first layer. The initial detection temperature of the melt viscosity of the first layer is 75 ° C. or lower. The second layer has adhesiveness and energy ray curability, has a thickness of 10 μm, and has a width larger than 25 mm as a test piece, and the test piece is affixed to a silicon mirror wafer. The test piece after cutting is immersed in pure water for 2 hours together with the silicon mirror wafer, and the test piece after immersion is cured with energy rays to obtain a cured product. As a result, the adhesive strength between the cured product having a width of 25 mm and the silicon mirror wafer when the test laminate in which the cured product was adhered to the silicon mirror wafer was 6 N / 25 mm. That's the dibondin To provide a film.
Further, the present invention includes a support sheet, the die bonding film is provided on the support sheet, and a first layer in the die bonding film is disposed on the support sheet side. Provide a sheet.
 また、本発明は、前記ダイボンディングフィルムのうち、第2層に半導体ウエハが貼付され、第1層にダイシングシートが貼付されている積層体(1-1)、又は前記ダイシングダイボンディングシートのうち、ダイボンディングフィルム中の第2層に半導体ウエハが貼付されている積層体(1-2)を作製する工程と、ダイシングブレードを用いて、前記積層体(1-1)又は積層体(1-2)中の前記半導体ウエハを、前記ダイボンディングフィルムとともに切断することにより、切断済みの前記第1層、切断済みの前記第2層、及び前記半導体チップを備えた積層体(2)を作製する工程と、前記積層体(2)中の切断済みの前記第2層をエネルギー線硬化させて硬化物とすることにより、切断済みの前記第1層、前記硬化物、及び前記半導体チップを備えた積層体(3)を作製する工程と、前記積層体(3)において、切断済みの前記第1層及び前記硬化物を備えた前記半導体チップを、前記ダイシングシート又は支持シートから引き離して、ピックアップする工程と、を有する、半導体チップの製造方法を提供する。 The present invention also provides a laminate (1-1) in which a semiconductor wafer is adhered to the second layer and a dicing sheet is adhered to the first layer of the die bonding film, or the dicing die bonding sheet. A step of producing a laminate (1-2) in which a semiconductor wafer is adhered to the second layer in the die bonding film, and using a dicing blade, the laminate (1-1) or laminate (1- 2) By cutting the semiconductor wafer together with the die bonding film, a laminated body (2) including the cut first layer, the cut second layer, and the semiconductor chip is manufactured. Cutting the second layer that has been cut in the laminate (2) by energy ray curing to obtain a cured product, and the first layer that has been cut, the cured product, and The step of producing the laminate (3) provided with the semiconductor chip, and the dicing sheet or the support sheet for the semiconductor chip provided with the cut first layer and the cured product in the laminate (3). And a step of picking up and picking up the semiconductor chip.
 すなわち、本発明は以下の態様を含む。
[1] 第1層と、前記第1層上に備えられた第2層とを含み、
 前記第1層は、溶融粘度の初期検出温度が75℃以下である特性を有し、
 前記第2層は、粘着性及びエネルギー線硬化性を有し、かつ
 厚さが10μmで、かつ幅が25mmよりも広い前記第2層を試験片とし、前記試験片を、シリコンミラーウエハに貼付し、幅25mmとなるように前記試験片を切断し、切断後の前記試験片を、前記シリコンミラーウエハごと、純水中に2時間浸漬し、浸漬後の前記試験片をエネルギー線硬化させて硬化物とすることにより、前記シリコンミラーウエハに前記硬化物が貼付されている試験用積層体を作製したとき、幅が25mmの前記硬化物と、前記シリコンミラーウエハと、の間の粘着力が、6N/25mm以上となる特性を有する、
ダイボンディングフィルム。
[2] 支持シートと、前記支持シート上に備えられた、[1]に記載のダイボンディングフィルムとを含み、
 前記ダイボンディングフィルム中の前記第1層が、前記支持シート側に配置されている、ダイシングダイボンディングシート。
[3] [1]に記載のダイボンディングフィルムのうち、前記第2層に半導体ウエハが貼付され、前記第1層にダイシングシートが貼付されている積層体(1-1)、又は[2]に記載のダイシングダイボンディングシートのうち、前記ダイボンディングフィルム中の第2層に半導体ウエハが貼付されている積層体(1-2)を作製することと、
 ダイシングブレードにより、前記積層体(1-1)又は前記積層体(1-2)中の前記半導体ウエハを、前記ダイボンディングフィルムとともに切断することにより、切断済みの前記第1層、切断済みの前記第2層、及び前記切断済みの半導体ウエハである半導体チップを備えた積層体(2)を作製することと、
 前記積層体(2)中の切断済みの前記第2層をエネルギー線硬化させて硬化物とすることにより、切断済みの前記第1層、前記硬化物、及び前記半導体チップを備えた積層体(3)を作製することと、
 前記積層体(3)において、切断済みの前記第1層及び前記硬化物を備えた前記半導体チップを、前記支持シート又は前記ダイシングシートから引き離して、ピックアップすることと、
 を含む、半導体チップの製造方法。
That is, the present invention includes the following aspects.
[1] including a first layer and a second layer provided on the first layer;
The first layer has an initial detection temperature of melt viscosity of 75 ° C. or less,
The second layer has adhesiveness and energy ray curability, has a thickness of 10 μm, and a width of more than 25 mm. The second layer is a test piece, and the test piece is attached to a silicon mirror wafer. Then, the test piece is cut so as to have a width of 25 mm, the cut test piece is immersed in pure water for 2 hours together with the silicon mirror wafer, and the immersed test piece is cured with energy rays. When a laminated body for test in which the cured product is adhered to the silicon mirror wafer is produced by using a cured product, the adhesive force between the cured product having a width of 25 mm and the silicon mirror wafer is reduced. , Having a characteristic of 6 N / 25 mm or more,
Die bonding film.
[2] A support sheet and the die bonding film according to [1] provided on the support sheet,
A dicing die bonding sheet, wherein the first layer in the die bonding film is disposed on the support sheet side.
[3] Of the die bonding film according to [1], a laminate (1-1) in which a semiconductor wafer is attached to the second layer and a dicing sheet is attached to the first layer, or [2] A laminated body (1-2) in which a semiconductor wafer is bonded to the second layer in the die bonding film of the dicing die bonding sheet described in the above;
By cutting the semiconductor wafer in the laminate (1-1) or the laminate (1-2) together with the die bonding film with a dicing blade, the cut first layer and the cut Producing a laminate (2) comprising a second layer and a semiconductor chip that is the cut semiconductor wafer;
A laminate (1) including the cut first layer, the cured product, and the semiconductor chip by curing the cut second layer in the laminate (2) by energy ray curing. 3) producing,
In the laminate (3), the semiconductor chip including the cut first layer and the cured product is separated from the support sheet or the dicing sheet and picked up;
A method for manufacturing a semiconductor chip, comprising:
 本発明によれば、サイズが小さい半導体チップのピックアップ時において、半導体チップへの転写不良を抑制可能であり、かつ、ダイボンディング時において、基板を良好に埋め込み可能なダイボンディングフィルムと、このダイボンディングフィルムを備えたダイシングダイボンディングシートと、このダイシングダイボンディングシートを用いた半導体チップの製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the transfer defect to a semiconductor chip can be suppressed at the time of the pick-up of a small semiconductor chip, and the die bonding film which can embed a board | substrate favorably at the time of die bonding, and this die bonding A dicing die bonding sheet provided with a film and a semiconductor chip manufacturing method using the dicing die bonding sheet are provided.
本発明の一実施形態に係るダイボンディングフィルムを模式的に示す断面図である。It is sectional drawing which shows typically the die-bonding film which concerns on one Embodiment of this invention. 本発明の一実施形態に係るダイシングダイボンディングシートを模式的に示す断面図である。It is sectional drawing which shows typically the dicing die-bonding sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係るダイシングダイボンディングシートを模式的に示す断面図である。It is sectional drawing which shows typically the dicing die-bonding sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係るダイシングダイボンディングシートを模式的に示す断面図である。It is sectional drawing which shows typically the dicing die-bonding sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係るダイシングダイボンディングシートを模式的に示す断面図である。It is sectional drawing which shows typically the dicing die-bonding sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体チップの製造方法を模式的に説明するための断面図である。It is sectional drawing for demonstrating typically the manufacturing method of the semiconductor chip which concerns on one Embodiment of this invention. 本発明により得られた硬化済みダイボンディングフィルム付き半導体チップが、基板の回路形成面にダイボンディングされている状態の一例を、模式的に示す断面図である。It is sectional drawing which shows typically an example of the state by which the semiconductor chip with the cured die-bonding film obtained by this invention is die-bonded to the circuit formation surface of a board | substrate.
◇ダイボンディングフィルム
 本発明の一実施形態に係るダイボンディングフィルムは、第1層と、前記第1層上に備えられた第2層とを含み、前記第1層は溶融粘度の初期検出温度(本明細書においては、「T」と略記することがある)が75℃以下である特性を有し、前記第2層は、粘着性及びエネルギー線硬化性を有し、かつ厚さが10μmでかつ幅が25mmよりも広い前記第2層を試験片とし、前記試験片を、シリコンミラーウエハに貼付し、幅25mmとなるように前記試験片を切断し、切断後の前記試験片を前記シリコンミラーウエハごと、純水中に2時間浸漬し、浸漬後の前記試験片をエネルギー線硬化させて硬化物とすることにより、前記シリコンミラーウエハに前記硬化物が貼付されている試験用積層体を作製したとき、幅が25mmの前記硬化物と、前記シリコンミラーウエハと、の間の粘着力(本明細書においては、「浸漬後粘着力」と略記することがある)が、6N/25mm以上となる特性を有する。
 なお、上記特性を有する第2層の形成材料と同じ材料から形成された層を第2層として有するダイボンディングフィルムは本発明に含まれる。
◇ Die Bonding Film A die bonding film according to an embodiment of the present invention includes a first layer and a second layer provided on the first layer, and the first layer has an initial detection temperature of melt viscosity ( In the present specification, “T 0 ” may be abbreviated to 75 ° C. or less, the second layer has adhesiveness and energy ray curability, and has a thickness of 10 μm. The second layer having a width greater than 25 mm is used as a test piece, the test piece is affixed to a silicon mirror wafer, the test piece is cut to a width of 25 mm, and the cut test piece is used as the test piece. The test laminate in which the silicon mirror wafer is affixed to the silicon mirror wafer by immersing the silicon mirror wafer in pure water for 2 hours, and curing the test piece after energy immersion to form a cured product. And made The adhesive strength between the cured product having a width of 25 mm and the silicon mirror wafer (in this specification, sometimes abbreviated as “adhesive strength after immersion”) is 6 N / 25 mm or more. Have
In addition, the die bonding film which has as a 2nd layer the layer formed from the same material as the formation material of the 2nd layer which has the said characteristic is included in this invention.
 前記ダイボンディングフィルムにおいて、第1層は、基板へのダイボンディングに利用される。
 一方、第2層は、半導体ウエハに貼付され、エネルギー線の照射により硬化された後に、半導体チップとともにピックアップされる。半導体ウエハの第2層の貼付面は、半導体ウエハの回路が形成されている側とは反対側の面(本明細書においては、「裏面」と称することがある)である。
In the die bonding film, the first layer is used for die bonding to a substrate.
On the other hand, the second layer is affixed to a semiconductor wafer, cured by irradiation with energy rays, and then picked up together with the semiconductor chip. The bonding surface of the second layer of the semiconductor wafer is a surface opposite to the side on which the circuit of the semiconductor wafer is formed (in this specification, it may be referred to as “back surface”).
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。
 紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
In the present specification, “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet ray source. The electron beam can be emitted by an electron beam accelerator or the like.
In this specification, “energy ray curable” means a property that cures when irradiated with energy rays, and “non-energy ray curable” means a property that does not cure even when irradiated with energy rays. To do.
 前記ダイボンディングフィルムにおいて、第1層は粘着性を有する。そして、第1層の溶融粘度の初期検出温度(T)が、75℃以下であることにより、ダイボンディング時において、基板表面と第1層との間では、隙間の発生が抑制され、第1層が基板表面を良好に被覆し、第1層は基板を良好に埋め込み可能である。 In the die bonding film, the first layer has adhesiveness. Further, since the initial detection temperature (T 0 ) of the melt viscosity of the first layer is 75 ° C. or less, generation of a gap is suppressed between the substrate surface and the first layer during die bonding, One layer covers the substrate surface well, and the first layer can well embed the substrate.
 一方、前記ダイボンディングフィルムにおいて、第2層は粘着性及びエネルギー線硬化性を有する。そして、第2層の試験片を用いて測定された前記粘着力(浸漬後粘着力)が、6N/25mm以上であることにより、サイズが小さい半導体チップのピックアップ時において、第2層の硬化物の一部又は全部が、半導体チップから剥離することがなく、第2層の硬化物は半導体チップへの転写不良を抑制可能であり、良好な転写性を有する。 On the other hand, in the die bonding film, the second layer has adhesiveness and energy ray curability. And the said adhesive force (adhesion force after immersion) measured using the test piece of a 2nd layer is 6 N / 25mm or more, Therefore When picking up a small semiconductor chip, the hardened | cured material of a 2nd layer A part or all of the film is not peeled off from the semiconductor chip, and the cured product of the second layer can suppress transfer failure to the semiconductor chip and has good transferability.
 そして、第1層及び第2層は、第2層のエネルギー線硬化の前後によらず、安定してこれらの積層構造を維持可能である。
 したがって、前記ダイボンディングフィルムは、サイズが小さい半導体チップへの良好な転写性と、良好な基板の埋め込み性と、をともに有している。
And the 1st layer and the 2nd layer can maintain these lamination structures stably irrespective of before and after energy ray hardening of the 2nd layer.
Therefore, the die bonding film has both good transferability to a small semiconductor chip and good substrate embedding property.
 本明細書においては、第1層がこれ以外の層との積層状態ではなく、単独で存在している場合には、このような第1層を「第1フィルム」と称することがある。
 同様に、第2層がこれ以外の層との積層状態ではなく、単独で存在している場合には、このような第2層を「第2フィルム」と称することがある。
In the present specification, when the first layer is not in a laminated state with other layers but exists alone, such a first layer may be referred to as a “first film”.
Similarly, when the second layer is not in a laminated state with other layers but exists alone, such a second layer may be referred to as a “second film”.
◎第1層(第1フィルム)
 前記第1層(第1フィルム)は、上述のとおり、粘着性を有する。
 第1層は、さらに、硬化性を有していても(硬化性であっても)よいし、硬化性を有していなくても(非硬化性であっても)よく、硬化性を有する場合、例えば、熱硬化性及びエネルギー線硬化性のいずれを有していてもよいし、熱硬化性及びエネルギー線硬化性をともに有していてもよい。
◎ First layer (first film)
The first layer (first film) has adhesiveness as described above.
The first layer may further have curable properties (may be curable) or may not have curable properties (may be non-curable) and may have curable properties. In this case, for example, it may have either thermosetting property or energy ray curable property, and may have both thermosetting property and energy ray curable property.
 硬化性を有しない第1層と、硬化性を有する未硬化の第1層と、は、いずれも、各種被着体に軽く押圧することで貼付できる。
 また、第1層は、硬化の有無によらず、加熱して軟化させることで、各種被着体に貼付できるものであってもよい。
 硬化性を有しない第1層と、硬化性を有する第1層の硬化物と、は、いずれも、厳しい高温・高湿度条件下においても十分な接着特性を保持し得る。
Both the first layer having no curability and the uncured first layer having curability can be applied by lightly pressing the various adherends.
Moreover, the 1st layer may be what can be stuck to various to-be-adhered bodies by heating and softening irrespective of the presence or absence of hardening.
Both the first layer having no curability and the cured product of the first layer having curability can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
 第1層のTは、75℃以下であり、73℃以下であることが好ましく、71℃以下であることがより好ましく、69℃以下であることがさらに好ましく、例えば、66℃以下及び62℃以下のいずれかであってもよい。また別の側面として、第1層のTは、68℃以下であってもよく、59℃以下であってもよい。
が前記上限値以下であることで、第1層の基板の埋め込み性が、より高くなる。
T 0 of the first layer is 75 ° C. or lower, preferably 73 ° C. or lower, more preferably 71 ° C. or lower, further preferably 69 ° C. or lower, such as 66 ° C. or lower and 62 Any of the following may be used. As another aspect, T 0 of the first layer may be 68 ° C. or lower, or 59 ° C. or lower.
When T 0 is equal to or less than the upper limit value, the embeddability of the first layer substrate becomes higher.
 第1層のTの下限値は、特に限定されない。
 第1層のTは、第1層を含むダイボンディングフィルムの取り扱い性がより高くなる点では、50℃以上であることが好ましい。
The lower limit value of T 0 of the first layer is not particularly limited.
T 0 of the first layer is preferably 50 ° C. or higher from the viewpoint that the handleability of the die bonding film including the first layer becomes higher.
 第1層のTは、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、Tは、好ましくは50~75℃、より好ましくは50~73℃、さらに好ましくは50~71℃、特に好ましくは50~69℃であり、例えば、50~66℃、及び50~62℃のいずれかであってもよい。また別の側面として、Tは、50~68℃であってもよく、50~59℃以下であってもよい。
ただし、これらは、第1層のTの一例である。
T 0 of the first layer can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, T 0 is preferably 50 to 75 ° C., more preferably 50 to 73 ° C., further preferably 50 to 71 ° C., particularly preferably 50 to 69 ° C., for example, 50 to 66 ° C. and 50 to 62 ° C. It may be either ° C. As another aspect, T 0 may be 50 to 68 ° C. or 50 to 59 ° C. or less.
However, these are examples of T 0 of the first layer.
 本実施形態において、第1層のTは、例えば、以下の方法で測定できる。
 すなわち、キャピラリーレオメーターを用い、そのシリンダー(キャピラリー)内に、測定対象の第1フィルム(単独で存在している第1層)を、例えば直径10mm、高さ20mmの円柱状の試験片としてセットし、シリンダーの内壁に接触しながらこの内壁に沿って、シリンダーの長手方向(換言すると中心軸方向)に移動可能なピストンによって、このシリンダー内の第1フィルム(前記試験片)に対して一定の大きさの力(例えば5.10N(50kgf)を加えた状態(荷重をかけた状態)を維持しながら、第1フィルム(前記試験片)を昇温(例えば、昇温速度10℃/minで50℃から120℃まで昇温)させる。そして、シリンダーの先端部(第1フィルム(前記試験片)に対して力を加えている方向の先端部)に設けられた穴(例えば、直径0.5mm、高さ1.0mmの穴)から、シリンダーの外部へ第1フィルム(前記試験片)の押出しが開始されたとき、すなわち、第1フィルム(前記試験片)の溶融粘度の検出が開始されたときの、第1フィルム(前記試験片)の温度を、第1フィルム(換言すると第1層)の初期検出温度T(℃)として採用する。測定に供する第1フィルムの大きさ及び形状は、シリンダーの大きさ等を考慮して、適宜調節できる。
In the present embodiment, T 0 of the first layer can be measured by the following method, for example.
That is, using a capillary rheometer, the first film to be measured (the first layer existing alone) is set as a cylindrical test piece having a diameter of 10 mm and a height of 20 mm in the cylinder (capillary). The piston is movable in the longitudinal direction of the cylinder (in other words, in the direction of the central axis) along the inner wall while being in contact with the inner wall of the cylinder, and is constant with respect to the first film (the test piece) in the cylinder. The first film (the test piece) is heated (for example, at a heating rate of 10 ° C./min while maintaining a state where a force of a magnitude (for example, 5.10 N (50 kgf) is applied (a state where a load is applied)). The temperature is raised from 50 ° C. to 120 ° C. and is provided at the tip of the cylinder (the tip in the direction in which force is applied to the first film (the test piece)). When the extrusion of the first film (the test piece) is started from the hole (for example, a hole having a diameter of 0.5 mm and a height of 1.0 mm) to the outside of the cylinder, that is, the first film (the test piece) The temperature of the first film (the test piece) when the detection of the melt viscosity of is started is adopted as the initial detection temperature T 0 (° C.) of the first film (in other words, the first layer). The size and shape of the first film can be appropriately adjusted in consideration of the size of the cylinder and the like.
 なお、本明細書において、「溶融粘度」とは、特に断りのない限り、上述の方法で測定された溶融粘度を意味する。 In the present specification, “melt viscosity” means the melt viscosity measured by the above method unless otherwise specified.
 第1層は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The first layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same as or different from each other. The combination of the multiple layers is not particularly limited.
 なお、本明細書においては、第1層の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only the case of the first layer, but “a plurality of layers may be the same or different from each other” means “all layers may be the same or all layers may be the same. It may be different, only some of the layers may be the same '', and “a plurality of layers are different from each other” means that “at least one of the constituent materials and thicknesses of each layer is different from each other” Means that.
 第1層の厚さは、特に限定されないが、1~40μmであることが好ましく、3~30μmであることがより好ましく、5~20μmであることが特に好ましい。第1層の厚さが前記下限値以上であることで、第1層の基板の埋め込み性が、より高くなる。第1層の厚さが前記上限値以下であることで、後述する半導体チップの製造工程において、第1層(ダイボンディングフィルム)をより容易に切断でき、また、第1層に由来する切断片の発生量をより低減できる。
 ここで、「第1層の厚さ」とは、第1層全体の厚さを意味し、例えば、複数層からなる第1層の厚さとは、第1層を構成するすべての層の合計の厚さを意味する。
The thickness of the first layer is not particularly limited, but is preferably 1 to 40 μm, more preferably 3 to 30 μm, and particularly preferably 5 to 20 μm. When the thickness of the first layer is equal to or more than the lower limit value, the embedding property of the substrate of the first layer becomes higher. When the thickness of the first layer is less than or equal to the above upper limit value, the first layer (die bonding film) can be more easily cut in the semiconductor chip manufacturing process described later, and a cut piece derived from the first layer Can be further reduced.
Here, the “thickness of the first layer” means the thickness of the entire first layer. For example, the thickness of the first layer composed of a plurality of layers is the sum of all the layers constituting the first layer. Means the thickness.
 第1層(第1フィルム)は、その構成材料を含有する第1接着剤組成物から形成できる。例えば、第1層の形成対象面に第1接着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に第1層を形成できる。
 第1接着剤組成物中の、常温で気化しない成分同士の含有量の比率は、通常、第1層の前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
A 1st layer (1st film) can be formed from the 1st adhesive composition containing the constituent material. For example, a 1st layer can be formed in the target site | part by apply | coating a 1st adhesive composition to the formation object surface of a 1st layer, and making it dry as needed.
In the first adhesive composition, the content ratio of components that do not vaporize at room temperature is usually the same as the content ratio of the components of the first layer. In the present specification, “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 第1接着剤組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The first adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, Examples include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
 第1接着剤組成物の乾燥条件は、特に限定されないが、第1接着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する第1接着剤組成物は、例えば、70~130℃で10秒間~5分間の条件で乾燥させることが好ましい。
 次に、第1接着剤組成物について、詳細に説明する。
Although the drying conditions of the 1st adhesive composition are not specifically limited, When the 1st adhesive composition contains the solvent mentioned later, it is preferable to heat-dry. The first adhesive composition containing the solvent is preferably dried, for example, at 70 to 130 ° C. for 10 seconds to 5 minutes.
Next, the first adhesive composition will be described in detail.
<<第1接着剤組成物>>
 第1接着剤組成物の種類は、第1層の硬化性の有無と、第1層が硬化性である場合には、熱硬化性及びエネルギー線硬化性のいずれであるか等、第1層の特性に応じて、選択できる。
 好ましい第1接着剤組成物としては、熱硬化性の第1接着剤組成物が挙げられる。
 熱硬化性の第1接着剤組成物としては、例えば、重合体成分(a)及びエポキシ系熱硬化性樹脂(b)を含有するものが挙げられる。以下、各成分について説明する。
<< First Adhesive Composition >>
The type of the first adhesive composition includes the presence or absence of curability of the first layer and, if the first layer is curable, whether it is thermosetting or energy ray curable. Depending on the characteristics, it can be selected.
A preferable first adhesive composition includes a thermosetting first adhesive composition.
As a thermosetting 1st adhesive composition, what contains a polymer component (a) and an epoxy-type thermosetting resin (b) is mentioned, for example. Hereinafter, each component will be described.
(重合体成分(a))
 重合体成分(a)は、重合性化合物が重合反応して形成されたとみなせる成分であり、第1層に造膜性や可撓性等を付与すると共に、半導体チップ等の接着対象への接着性(貼付性)を向上させるための重合体化合物である。また、重合体成分(a)は、後述するエポキシ樹脂(b1)及び熱硬化剤(b2)に該当しない成分でもある。すなわち、重合体成分(a)は、後述するエポキシ樹脂(b1)及び熱硬化剤(b2)に該当する成分を除く。
(Polymer component (a))
The polymer component (a) is a component that can be regarded as formed by a polymerization reaction of a polymerizable compound, and imparts film-forming properties, flexibility, etc. to the first layer and adheres to an adhesion target such as a semiconductor chip. It is a polymer compound for improving the property (sticking property). Moreover, a polymer component (a) is also a component which does not correspond to the epoxy resin (b1) and thermosetting agent (b2) which are mentioned later. That is, the polymer component (a) excludes components corresponding to the epoxy resin (b1) and the thermosetting agent (b2) described later.
 第1接着剤組成物及び第1層が含有する重合体成分(a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer component (a) contained in the first adhesive composition and the first layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
 重合体成分(a)としては、例えば、アクリル系樹脂、ポリエステル、ウレタン系樹脂、アクリルウレタン樹脂、シリコーン系樹脂、ゴム系樹脂、フェノキシ樹脂、熱硬化性ポリイミド等が挙げられ、アクリル系樹脂が好ましい。 Examples of the polymer component (a) include acrylic resins, polyesters, urethane resins, acrylic urethane resins, silicone resins, rubber resins, phenoxy resins, and thermosetting polyimides, and acrylic resins are preferable. .
 重合体成分(a)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量がこのような範囲内であることで、第1層と被着体との間の接着力を好ましい範囲に調節することが容易となる。
 一方、アクリル系樹脂の重量平均分子量が前記下限値以上であることで、第1層の形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、第1層の基板の埋め込み性が、より高くなる。
 なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
As said acrylic resin in a polymer component (a), a well-known acrylic polymer is mentioned.
The weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000. When the weight average molecular weight of the acrylic resin is within such a range, it becomes easy to adjust the adhesive force between the first layer and the adherend to a preferable range.
On the other hand, when the weight average molecular weight of the acrylic resin is not less than the lower limit, the shape stability of the first layer (time stability during storage) is improved. Moreover, the embedding property of the board | substrate of a 1st layer becomes higher because the weight average molecular weight of acrylic resin is below the said upper limit.
In the present specification, “weight average molecular weight” is a polystyrene equivalent value measured by gel permeation chromatography (GPC) method unless otherwise specified.
 アクリル系樹脂のガラス転移温度(Tg)は、-60~70℃であることが好ましく、-30~50℃であることがより好ましい。アクリル系樹脂のTgが前記下限値以上であることで、第1層と、後述する支持シート又はダイシングシートと、の間の接着力が抑制されて、ピックアップ時において、第1層を備えた半導体チップの、後述する支持シート又はダイシングシートからの引き離しが、より容易となる。アクリル系樹脂のTgが前記上限値以下であることで、第1層と第2層との間の接着力が向上する。 The glass transition temperature (Tg) of the acrylic resin is preferably −60 to 70 ° C., and more preferably −30 to 50 ° C. When the Tg of the acrylic resin is equal to or higher than the lower limit, the adhesive force between the first layer and a support sheet or dicing sheet described later is suppressed, and the semiconductor provided with the first layer at the time of pickup The chip can be easily separated from the support sheet or dicing sheet described later. When the Tg of the acrylic resin is equal to or less than the upper limit, the adhesive force between the first layer and the second layer is improved.
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリルともいう)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチルともいう)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチルともいう)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリルともいう)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (meth) acrylate, dodecyl (meth) acrylate ((meth) acrylic acid (Also known as uril), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (also referred to as myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (also known as palmityl (meth) acrylate) The alkyl group constituting the alkyl ester such as heptadecyl (meth) acrylate and octadecyl (meth) acrylate (also referred to as stearyl (meth) acrylate) has a chain structure having 1 to 18 carbon atoms. (Meth) acrylic acid alkyl ester;
(Meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl, (meth) acrylic acid dicyclopentanyl;
(Meth) acrylic acid aralkyl esters such as (meth) acrylic acid benzyl;
(Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester;
(Meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyloxyethyl ester;
(Meth) acrylic imide;
Glycidyl group-containing (meth) acrylic acid ester such as (meth) acrylic acid glycidyl;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meta ) Hydroxyl group-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylate. Here, the “substituted amino group” means a group formed by replacing one or two hydrogen atoms of an amino group with a group other than a hydrogen atom.
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語についても同様である。 In the present specification, “(meth) acrylic acid” is a concept including both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth) acrylic acid.
 アクリル系樹脂は、例えば、前記(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーが共重合してなるものでもよい。 The acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like in addition to the (meth) acrylic ester. May be obtained by copolymerization.
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、前記アクリル系樹脂としては、アクリル酸n-ブチル、アクリル酸メチル、メタクリル酸グリシジル及びアクリル酸2-ヒドロキシエチルを共重合してなるアクリル系樹脂、又はアクリル酸n-ブチル、アクリル酸エチル、アクリロニトリル及びメタクリル酸グリシジルを共重合してなるアクリル系樹脂が好ましい。
The monomer constituting the acrylic resin may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
As one aspect, the acrylic resin includes an acrylic resin obtained by copolymerizing n-butyl acrylate, methyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate, or n-butyl acrylate, acrylic An acrylic resin obtained by copolymerizing ethyl acid, acrylonitrile and glycidyl methacrylate is preferable.
 アクリル系樹脂は、上述の水酸基以外に、ビニル基、(メタ)アクリロイル基、アミノ基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の水酸基をはじめとするこれら官能基は、後述する架橋剤(f)を介して他の化合物と結合してもよいし、架橋剤(f)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、第1層を用いて得られたパッケージの信頼性が向上する傾向がある。 The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a carboxy group, and an isocyanate group in addition to the above-described hydroxyl group. These functional groups including the hydroxyl group of the acrylic resin may be bonded to other compounds via the crosslinking agent (f) described later, or directly bonded to other compounds not via the crosslinking agent (f). You may do it. When the acrylic resin is bonded to another compound through the functional group, the reliability of the package obtained using the first layer tends to be improved.
 本発明においては、重合体成分(a)として、アクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、アクリル系樹脂を用いずに単独で用いてもよいし、アクリル系樹脂と併用してもよい。前記熱可塑性樹脂を用いることで、ピックアップ時において、第1層を備えた半導体チップの、後述する支持シート又はダイシングシートからの引き離しがより容易となったり、第1層の基板の埋め込み性が、より高くなったりすることがある。 In the present invention, as the polymer component (a), a thermoplastic resin other than an acrylic resin (hereinafter sometimes simply referred to as “thermoplastic resin”) is used alone without using an acrylic resin. Alternatively, it may be used in combination with an acrylic resin. By using the thermoplastic resin, at the time of pickup, the semiconductor chip provided with the first layer can be more easily separated from a support sheet or a dicing sheet, which will be described later, or the embedding property of the substrate of the first layer is May be higher.
 前記熱可塑性樹脂の重量平均分子量は1000~100000であることが好ましく、3000~80000であることがより好ましい。 The weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
 前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。 The glass transition temperature (Tg) of the thermoplastic resin is preferably −30 to 150 ° C., and more preferably −20 to 120 ° C.
 前記熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等が挙げられる。 Examples of the thermoplastic resin include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
 第1接着剤組成物及び第1層が含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The thermoplastic resin contained in the first adhesive composition and the first layer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 第1接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する重合体成分(a)の含有量の割合(すなわち、第1層の重合体成分(a)の含有量)は、重合体成分(a)の種類によらず、5~20質量%であることが好ましく、6~16質量%であることがより好ましく、7~12質量%等であってもよい。 In the first adhesive composition, the ratio of the content of the polymer component (a) to the total content (total mass) of all components other than the solvent (that is, the content of the polymer component (a) in the first layer) ) Is preferably from 5 to 20% by mass, more preferably from 6 to 16% by mass, and from 7 to 12% by mass, irrespective of the type of the polymer component (a).
 第1接着剤組成物及び第1層において、重合体成分(a)の総含有量(総質量)に対する、アクリル系樹脂の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。 In the first adhesive composition and the first layer, the ratio of the acrylic resin content to the total content (total mass) of the polymer component (a) is preferably 80 to 100% by mass, 85 It is more preferably from ˜100% by mass, even more preferably from 90 to 100% by mass, for example, from 95 to 100% by mass.
(エポキシ系熱硬化性樹脂(b))
 エポキシ系熱硬化性樹脂(b)は、エポキシ樹脂(b1)及び熱硬化剤(b2)からなる。
 第1接着剤組成物及び第1層が含有するエポキシ系熱硬化性樹脂(b)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Epoxy thermosetting resin (b))
The epoxy thermosetting resin (b) is composed of an epoxy resin (b1) and a thermosetting agent (b2).
The epoxy-based thermosetting resin (b) contained in the first adhesive composition and the first layer may be only one type, two or more types, and when two or more types, the combination and ratio thereof are as follows. Can be arbitrarily selected.
・エポキシ樹脂(b1)
 エポキシ樹脂(b1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (b1)
Examples of the epoxy resin (b1) include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
 エポキシ樹脂(b1)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、第1層を用いて得られたパッケージの信頼性が向上する。 As the epoxy resin (b1), an epoxy resin having an unsaturated hydrocarbon group may be used. An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the first layer is improved by using an epoxy resin having an unsaturated hydrocarbon group.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。なお、本明細書において「誘導体」とは、特に断りのない限り、元の化合物の少なくとも1個の基がそれ以外の基(置換基)で置換されてなるものを意味する。ここで、「基」とは、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含するものとする。 Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. In the present specification, the “derivative” means a compound obtained by substituting at least one group of the original compound with another group (substituent) unless otherwise specified. Here, the “group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基ともいう)、2-プロペニル基(アリル基ともいう)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple | bonded with the aromatic ring etc. which comprise an epoxy resin are mentioned, for example.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (also referred to as a vinyl group), a 2-propenyl group (also referred to as an allyl group), and a (meth) acryloyl group. , (Meth) acrylamide groups and the like, and an acryloyl group is preferred.
 エポキシ樹脂(b1)の数平均分子量は、特に限定されないが、第1層の硬化性、並びに第1層の硬化物の強度及び耐熱性の点から、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。 The number average molecular weight of the epoxy resin (b1) is not particularly limited, but is preferably 300 to 30000 from the viewpoint of the curability of the first layer and the strength and heat resistance of the cured product of the first layer. It is more preferably 10,000, and particularly preferably 500 to 3,000.
 本明細書において、数平均分子量とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。 In the present specification, the number average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
 エポキシ樹脂(b1)のエポキシ当量は、100~1000g/eqであることが好ましく、150~800g/eqであることがより好ましい。
 本明細書において、「エポキシ当量」とは1当量のエポキシ基を含むエポキシ化合物のグラム数(g/eq)を意味し、JIS K 7236:2001の方法に従って測定することができる。
The epoxy equivalent of the epoxy resin (b1) is preferably 100 to 1000 g / eq, and more preferably 150 to 800 g / eq.
In the present specification, “epoxy equivalent” means the number of grams (g / eq) of an epoxy compound containing one equivalent of an epoxy group, and can be measured according to the method of JIS K 7236: 2001.
 第1接着剤組成物及び第1層が含有するエポキシ樹脂(b1)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、前記エポキシ樹脂(b1)は、ビスフェノールA型エポキシ樹脂、多官能芳香族型(トリフェニレン型)エポキシ樹脂、ビスフェノールF型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選択される少なくとも1つが好ましい。
1 type may be sufficient as the epoxy resin (b1) which a 1st adhesive composition and a 1st layer contain, and when it is 2 types or more, those combinations and ratios can be selected arbitrarily. .
As one aspect, the epoxy resin (b1) is selected from the group consisting of a bisphenol A type epoxy resin, a polyfunctional aromatic type (triphenylene type) epoxy resin, a bisphenol F type epoxy resin, and a dicyclopentadiene type epoxy resin. At least one is preferred.
・熱硬化剤(b2)
 熱硬化剤(b2)は、エポキシ樹脂(b1)に対する硬化剤として機能する。
 熱硬化剤(b2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Thermosetting agent (b2)
The thermosetting agent (b2) functions as a curing agent for the epoxy resin (b1).
As a thermosetting agent (b2), the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(b2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
 熱硬化剤(b2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(DICYと略すことがある)等が挙げられる。
Among the thermosetting agents (b2), examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, and aralkyl type phenol resins. .
Among the thermosetting agents (b2), examples of the amine-based curing agent having an amino group include dicyandiamide (may be abbreviated as DICY).
 熱硬化剤(b2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(b2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(b2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様である。
The thermosetting agent (b2) may have an unsaturated hydrocarbon group.
As the thermosetting agent (b2) having an unsaturated hydrocarbon group, for example, a compound in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (b2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
 熱硬化剤(b2)としてフェノール系硬化剤を用いる場合には、ダイボンディングフィルムの接着力を調節することが容易となる点から、熱硬化剤(b2)は軟化点又はガラス転移温度が高いものが好ましい。 When a phenolic curing agent is used as the thermosetting agent (b2), the thermosetting agent (b2) has a high softening point or glass transition temperature because it makes it easy to adjust the adhesive force of the die bonding film. Is preferred.
 熱硬化剤(b2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(b2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Of the thermosetting agent (b2), for example, the number average molecular weight of the resin component such as polyfunctional phenolic resin, novolac type phenolic resin, dicyclopentadiene type phenolic resin, aralkyl type phenolic resin is preferably 300 to 30000. 400 to 10,000 is more preferable, and 500 to 3000 is particularly preferable.
Among the thermosetting agents (b2), for example, the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
 第1接着剤組成物及び第1層が含有する熱硬化剤(b2)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Only 1 type may be sufficient as the thermosetting agent (b2) which a 1st adhesive composition and a 1st layer contain, and when it is 2 or more types, those combinations and ratios are selected arbitrarily. it can.
 熱硬化剤(b2)のうち、フェノール樹脂としては、例えば、フェノール性水酸基が結合している炭素原子と隣り合う炭素原子(ベンゼン環骨格を構成している炭素原子)に対して、アルキル基等の置換基が結合して、前記フェノール性水酸基の近傍に立体障害を有するもの(本明細書においては、「立体障害型フェノール樹脂」と略記することがある)を用いてもよい。このような立体障害型フェノール樹脂としては、例えば、o-クレゾール型ノボラック樹脂等が挙げられる。 Among the thermosetting agents (b2), as a phenol resin, for example, an alkyl group or the like with respect to a carbon atom adjacent to a carbon atom to which a phenolic hydroxyl group is bonded (a carbon atom constituting a benzene ring skeleton) In the present specification, a substituent having a steric hindrance in the vicinity of the phenolic hydroxyl group (may be abbreviated as “sterically hindered phenol resin”) may be used. Examples of such sterically hindered phenol resins include o-cresol type novolac resins.
 第1接着剤組成物及び第1層において、熱硬化剤(b2)の含有量は、エポキシ樹脂(b1)の含有量100質量部に対して、10~200質量部であることが好ましく、15~160質量部であることがより好ましく、20~120質量部であることがさらに好ましく、25~80質量部であることが特に好ましい。熱硬化剤(b2)の前記含有量が前記下限値以上であることで、第1層の硬化がより進行し易くなる。熱硬化剤(b2)の前記含有量が前記上限値以下であることで、第1層の吸湿率が低減されて、第1層を用いて得られたパッケージの信頼性がより向上する。 In the first adhesive composition and the first layer, the content of the thermosetting agent (b2) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin (b1). It is more preferably from 160 to 160 parts by mass, further preferably from 20 to 120 parts by mass, and particularly preferably from 25 to 80 parts by mass. When the content of the thermosetting agent (b2) is equal to or greater than the lower limit, the curing of the first layer is more likely to proceed. When the content of the thermosetting agent (b2) is equal to or lower than the upper limit value, the moisture absorption rate of the first layer is reduced, and the reliability of the package obtained using the first layer is further improved.
 第1接着剤組成物及び第1層において、エポキシ系熱硬化性樹脂(b)の含有量(エポキシ樹脂(b1)及び熱硬化剤(b2)の総含有量)は、重合体成分(a)の含有量100質量部に対して、400~1200質量部であることが好ましく、500~1100質量部であることがより好ましく、600~1000質量部であることがさらに好ましく、例えば、600~900質量部、及び800~1000質量部のいずれかであってもよい。エポキシ系熱硬化性樹脂(b)の前記含有量がこのような範囲であることで、第1層と、後述する支持シート又はダイシングシートと、の間の接着力を調節することがより容易となる。 In the first adhesive composition and the first layer, the content of the epoxy thermosetting resin (b) (the total content of the epoxy resin (b1) and the thermosetting agent (b2)) is the polymer component (a). The content is preferably 400 to 1200 parts by weight, more preferably 500 to 1100 parts by weight, still more preferably 600 to 1000 parts by weight, for example, 600 to 900 parts per 100 parts by weight. It may be any one of mass parts and 800 to 1000 mass parts. When the content of the epoxy thermosetting resin (b) is in such a range, it is easier to adjust the adhesive force between the first layer and a support sheet or a dicing sheet described later. Become.
 前記立体障害型フェノール樹脂を用いる場合、第1接着剤組成物及び第1層において、熱硬化剤(b2)の総含有量(総質量)に対する、前記立体障害型フェノール樹脂の含有量の割合は、例えば、80~100質量%、85~100質量%、90~100質量%、及び95~100質量%のいずれかであってもよい。
 そして、第1接着剤組成物及び第1層において、熱硬化剤(b2)の総含有量(総質量)に対する、o-クレゾール型ノボラック樹脂の含有量の割合は、80~100質量%、85~100質量%、90~100質量%、及び95~100質量%のいずれかであってもよい。
When using the sterically hindered phenol resin, the ratio of the content of the sterically hindered phenol resin to the total content (total mass) of the thermosetting agent (b2) in the first adhesive composition and the first layer is For example, it may be any one of 80 to 100% by mass, 85 to 100% by mass, 90 to 100% by mass, and 95 to 100% by mass.
In the first adhesive composition and the first layer, the ratio of the content of the o-cresol type novolac resin to the total content (total mass) of the thermosetting agent (b2) is 80 to 100% by mass, 85 It may be any of ˜100 mass%, 90˜100 mass%, and 95˜100 mass%.
 第1層は、その各種物性を改良するために、重合体成分(a)及びエポキシ系熱硬化性樹脂(b)以外に、さらに必要に応じて、これらに該当しない他の成分を含有していてもよい。
 第1層が含有する他の成分としては、例えば、硬化促進剤(c)、充填材(d)、カップリング剤(e)、架橋剤(f)、エネルギー線硬化性樹脂(g)、光重合開始剤(h)、汎用添加剤(i)等が挙げられる。これらの中でも、好ましい前記他の成分としては、硬化促進剤(c)、充填材(d)、カップリング剤(e)、汎用添加剤(i)が挙げられる。
In order to improve the various physical properties, the first layer contains, in addition to the polymer component (a) and the epoxy-based thermosetting resin (b), other components not corresponding to these as necessary. May be.
Examples of other components contained in the first layer include a curing accelerator (c), a filler (d), a coupling agent (e), a crosslinking agent (f), an energy ray curable resin (g), and light. Examples thereof include a polymerization initiator (h) and a general-purpose additive (i). Among these, preferable other components include a curing accelerator (c), a filler (d), a coupling agent (e), and a general-purpose additive (i).
(硬化促進剤(c))
 硬化促進剤(c)は、第1接着剤組成物の硬化速度を調節するための成分である。
 好ましい硬化促進剤(c)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(少なくとも1個の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(少なくとも1個の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩;前記イミダゾール類をゲスト化合物とする包接化合物等が挙げられる。
(Curing accelerator (c))
The curing accelerator (c) is a component for adjusting the curing rate of the first adhesive composition.
Preferred curing accelerators (c) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (at least one hydrogen atom is other than a hydrogen atom) An imidazole substituted with a group of; an organic phosphine such as tributylphosphine, diphenylphosphine, triphenylphosphine (a phosphine having at least one hydrogen atom substituted with an organic group); tetraphenylphosphonium tetraphenyl Ruboreto, tetraphenyl boron salts such as triphenyl phosphine tetraphenyl borate; clathrate compounds to the imidazoles guest compound.
 第1接着剤組成物及び第1層が含有する硬化促進剤(c)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Only 1 type may be sufficient as the hardening accelerator (c) which a 1st adhesive composition and 1st layer contain, and when it is 2 or more types, those combinations and ratios are selected arbitrarily. it can.
 硬化促進剤(c)を用いる場合、第1接着剤組成物及び第1層において、硬化促進剤(c)の含有量は、エポキシ系熱硬化性樹脂(b)の含有量100質量部に対して、0.01~5質量部であることが好ましく、0.1~2質量部であることがより好ましい。硬化促進剤(c)の前記含有量が前記下限値以上であることで、硬化促進剤(c)を用いたことによる効果がより顕著に得られる。硬化促進剤(c)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(c)が、高温・高湿度条件下で第1層中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、第1層を用いて得られたパッケージの信頼性がより向上する。 When the curing accelerator (c) is used, in the first adhesive composition and the first layer, the content of the curing accelerator (c) is 100 parts by mass of the epoxy thermosetting resin (b). The content is preferably 0.01 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass. The effect by using a hardening accelerator (c) is acquired more notably because the said content of a hardening accelerator (c) is more than the said lower limit. When the content of the curing accelerator (c) is not more than the above upper limit value, for example, the highly polar curing accelerator (c) adheres to the adherend in the first layer under high temperature and high humidity conditions. The effect of suppressing movement to the interface side and segregation is increased, and the reliability of the package obtained using the first layer is further improved.
 上記の中でも、前記イミダゾール類をゲスト化合物とする包接化合物においては、活性成分であるイミダゾール類がホスト化合物によって包接されている。そのため、反応時以外は、イミダゾール類の反応部位が露出していないか、又は、露出の程度が抑制されていると推測される。その結果、硬化促進剤(c)として前記包接化合物を用いた場合、第1層の保存中に、硬化促進剤(c)の目的外の反応の進行が抑制されることによって、第1層の保存安定性が、より高くなると推測される。 Among the above, in the inclusion compound using the imidazole as a guest compound, imidazoles which are active ingredients are included by the host compound. Therefore, it is presumed that the reaction site of imidazoles is not exposed or the degree of exposure is suppressed except during the reaction. As a result, when the inclusion compound is used as the curing accelerator (c), the progress of the reaction other than the intended purpose of the curing accelerator (c) is suppressed during storage of the first layer, whereby the first layer It is presumed that the storage stability of is higher.
 前記包接化合物としては、例えば、イミダゾール類をゲスト化合物とし、カルボン酸をホスト化合物とするものが挙げられる。 Examples of the clathrate compound include those having imidazoles as a guest compound and carboxylic acid as a host compound.
 ホスト化合物である前記カルボン酸は、芳香族カルボン酸であることが好ましい。
 前記芳香族カルボン酸は、単環芳香族カルボン酸及び多環芳香族カルボン酸のいずれであってもよい。
 前記芳香族カルボン酸は、環骨格として芳香族炭化水素環のみを有するカルボン酸、環骨格として芳香族複素環のみを有するカルボン酸、及び、環骨格として芳香族炭化水素環及び芳香族複素環をともに有するカルボン酸のいずれであってもよい。
The carboxylic acid that is a host compound is preferably an aromatic carboxylic acid.
The aromatic carboxylic acid may be either a monocyclic aromatic carboxylic acid or a polycyclic aromatic carboxylic acid.
The aromatic carboxylic acid includes a carboxylic acid having only an aromatic hydrocarbon ring as a ring skeleton, a carboxylic acid having only an aromatic heterocycle as a ring skeleton, and an aromatic hydrocarbon ring and an aromatic heterocycle as a ring skeleton. Any of the carboxylic acids possessed together may be used.
 前記芳香族カルボン酸は、芳香族ヒドロキシカルボン酸であることが好ましい。
 前記芳香族ヒドロキシカルボン酸は、1分子中に水酸基及びカルボキシ基をともに有する芳香族カルボン酸であれば、特に限定されないが、芳香族環骨格に、水酸基及びカルボキシ基がともに結合した構造を有するカルボン酸であることが好ましい。
The aromatic carboxylic acid is preferably an aromatic hydroxycarboxylic acid.
The aromatic hydroxycarboxylic acid is not particularly limited as long as it is an aromatic carboxylic acid having both a hydroxyl group and a carboxy group in one molecule, but is a carboxyl having a structure in which both a hydroxyl group and a carboxy group are bonded to an aromatic ring skeleton. An acid is preferred.
 前記包接化合物で好ましいものとしては、例えば、前記イミダゾール類が2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(本明細書においては、「2P4MHZ」と略記することがある)であり、前記カルボン酸が5-ヒドロキシイソフタル酸(本明細書においては、「HIPA」と略記することがある)である包接化合物が挙げられ、2分子の2P4MHZと、1分子のHIPAと、で1分子が構成されている包接化合物であることがより好ましい。 Preferable examples of the inclusion compound include, for example, that the imidazole is 2-phenyl-4-methyl-5-hydroxymethylimidazole (in this specification, sometimes abbreviated as “2P4MHZ”), An inclusion compound in which the carboxylic acid is 5-hydroxyisophthalic acid (sometimes abbreviated as “HIPA” in this specification), and 2 molecules of 2P4MHZ and 1 molecule of HIPA More preferably, the clathrate compound is constituted.
 前記包接化合物を用いる場合、第1接着剤組成物及び第1層において、硬化促進剤(c)の総含有量(総質量)に対する、前記包接化合物の含有量の割合は、80~100質量%、85~100質量%、90~100質量%、及び95~100質量%のいずれであってもよい。
 そして、第1接着剤組成物及び第1層において、硬化促進剤(c)の総含有量(総質量)に対する、上述の2P4MHZ及びHIPAで構成されている包接化合物の含有量の割合は、80~100質量%、85~100質量%、90~100質量%、及び95~100質量%のいずれであってもよい。
When the inclusion compound is used, the ratio of the inclusion compound content to the total content (total mass) of the curing accelerator (c) in the first adhesive composition and the first layer is 80 to 100. Any of mass%, 85 to 100 mass%, 90 to 100 mass%, and 95 to 100 mass% may be used.
And in the first adhesive composition and the first layer, the ratio of the content of the inclusion compound composed of the above-mentioned 2P4MHZ and HIPA to the total content (total mass) of the curing accelerator (c) is: It may be any of 80 to 100% by mass, 85 to 100% by mass, 90 to 100% by mass, and 95 to 100% by mass.
(充填材(d))
 第1層は、充填材(d)を含有することにより、その熱膨張係数の調整が容易となり、この熱膨張係数を第1層の貼付対象物に対して最適化することで、第1層を用いて得られたパッケージの信頼性がより向上する。また、第1層が充填材(d)を含有することにより、硬化後の第1層の吸湿率を低減したり、放熱性を向上させたりすることもできる。
(Filler (d))
Since the first layer contains the filler (d), it is easy to adjust the thermal expansion coefficient. By optimizing the thermal expansion coefficient for the first layer, the first layer The reliability of the package obtained by using is further improved. Moreover, the moisture absorption rate of the 1st layer after hardening can also be reduced or heat dissipation can be improved because a 1st layer contains a filler (d).
 充填材(d)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
The filler (d) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina.
 充填材(d)の平均粒子径は、特に限定されないが、1~1000nmであることが好ましく、5~800nmであることがより好ましく、10~600nmであることがさらに好ましく、例えば、10~400nm、及び10~200nmのいずれかであってもよい。また別の側面として、充填材(d)の平均粒子径は、50~500nmであってもよい。充填材(d)の平均粒子径がこのような範囲であることで、上記の熱膨張係数、吸湿率及び放熱性の調整がより容易となる。
 なお、本明細書において「平均粒子径」とは、特に断りのない限り、レーザー回折散乱法によって求められた粒度分布曲線における、積算値50%での粒子径(D50)の値を意味する。
The average particle diameter of the filler (d) is not particularly limited, but is preferably 1 to 1000 nm, more preferably 5 to 800 nm, still more preferably 10 to 600 nm, for example, 10 to 400 nm. Or any of 10 to 200 nm. As another aspect, the average particle size of the filler (d) may be 50 to 500 nm. When the average particle diameter of the filler (d) is in such a range, the adjustment of the thermal expansion coefficient, the moisture absorption rate, and the heat dissipation becomes easier.
In the present specification, “average particle size” means the value of the particle size (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified. .
 第1接着剤組成物及び第1層が含有する充填材(d)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler (d) contained in the first adhesive composition and the first layer may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected. .
 充填材(d)を用いる場合、第1接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する充填材(d)の含有量の割合(すなわち、第1層の充填材(d)の含有量)は、5~40質量%であることが好ましく、10~35質量%であることがより好ましく、15~30質量%であることが特に好ましい。充填材(d)の含有量がこのような範囲であることで、上記の熱膨張係数、吸湿率及び放熱性の調整がより容易となる。 In the case of using the filler (d), in the first adhesive composition, the ratio of the content of the filler (d) to the total content (total mass) of all components other than the solvent (that is, the filling of the first layer) The content of the material (d)) is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 15 to 30% by mass. When the content of the filler (d) is in such a range, the adjustment of the thermal expansion coefficient, the moisture absorption rate, and the heat dissipation becomes easier.
 平均粒子径が1~1000nmである充填材(d)を用いる場合、第1接着剤組成物及び第1層において、充填材(d)の総含有量(総質量)に対する、平均粒子径が1~1000nmである充填材(d)の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。 When the filler (d) having an average particle diameter of 1 to 1000 nm is used, the average particle diameter is 1 with respect to the total content (total mass) of the filler (d) in the first adhesive composition and the first layer. The content ratio of the filler (d) that is ˜1000 nm is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, and further preferably 90 to 100% by mass. For example, it may be 95 to 100% by mass.
(カップリング剤(e))
 第1層は、カップリング剤(e)を含有することにより、被着体に対する接着性及び密着性が向上する。また、第1層がカップリング剤(e)を含有することにより、その硬化物は耐熱性を損なうことなく、耐水性が向上する。カップリング剤(e)は、無機化合物又は有機化合物と反応可能な官能基を有する。
(Coupling agent (e))
By including the coupling agent (e), the first layer improves the adhesion and adhesion to the adherend. Moreover, when the first layer contains the coupling agent (e), the cured product has improved water resistance without impairing heat resistance. The coupling agent (e) has a functional group capable of reacting with an inorganic compound or an organic compound.
 カップリング剤(e)は、重合体成分(a)、エポキシ系熱硬化性樹脂(b)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン、オリゴマー型又はポリマー型オルガノシロキサン等が挙げられる。
 前記オリゴマー型又はポリマー型オルガノシロキサンは、重合性化合物が重合反応して形成されたとみなすことができる、オリゴマー構造又はポリマー構造を有するオルガノシロキサンである。
The coupling agent (e) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (a), the epoxy thermosetting resin (b), etc., and is a silane coupling agent. It is more preferable.
Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropi Trimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazolesilane, oligomer type Or a polymer type organosiloxane etc. are mentioned.
The oligomer type or polymer type organosiloxane is an organosiloxane having an oligomer structure or a polymer structure, which can be regarded as formed by polymerization reaction of a polymerizable compound.
 第1接着剤組成物及び第1層が含有するカップリング剤(e)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、前記カップリング剤(e)としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、及びエポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤からなる群から選択される少なくとも1つが好ましい。
The coupling agent (e) contained in the first adhesive composition and the first layer may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
In one aspect, the coupling agent (e) includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and an oligomeric silane cup having an epoxy group, a methyl group, and a methoxy group. At least one selected from the group consisting of ring agents is preferred.
 カップリング剤(e)を用いる場合、第1接着剤組成物及び第1層において、カップリング剤(e)の含有量は、重合体成分(a)及びエポキシ系熱硬化性樹脂(b)の合計含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(e)の前記含有量が前記下限値以上であることで、充填材(d)の樹脂への分散性の向上や、第1層の被着体との接着性の向上等、カップリング剤(e)を用いたことによる効果がより顕著に得られる。カップリング剤(e)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。 When the coupling agent (e) is used, the content of the coupling agent (e) in the first adhesive composition and the first layer is that of the polymer component (a) and the epoxy thermosetting resin (b). The total content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass with respect to 100 parts by mass. . When the content of the coupling agent (e) is not less than the lower limit, improvement in dispersibility of the filler (d) in the resin, improvement in adhesion to the adherend of the first layer, etc. The effect by using the coupling agent (e) is more remarkably obtained. Generation | occurrence | production of an outgas is suppressed more because the said content of a coupling agent (e) is below the said upper limit.
 前記オリゴマー型又はポリマー型オルガノシロキサンを用いる場合、第1接着剤組成物及び第1層において、カップリング剤(e)の総含有量(総質量)に対する、前記オリゴマー型又はポリマー型オルガノシロキサンの含有量の割合は、25~100質量%、及び40~100質量%のいずれかであってもよい。 When the oligomer type or polymer type organosiloxane is used, the oligomer type or polymer type organosiloxane is contained in the first adhesive composition and the first layer with respect to the total content (total mass) of the coupling agent (e). The proportion of the amount may be any of 25 to 100% by mass and 40 to 100% by mass.
(架橋剤(f))
 重合体成分(a)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、第1接着剤組成物及び第1層は、前記官能基を他の化合物と結合させて架橋するための架橋剤(f)を含有していてもよい。架橋剤(f)を用いて架橋することにより、第1層の初期接着力及び凝集力を調節できる。
(Crosslinking agent (f))
As the polymer component (a), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin. When used, the first adhesive composition and the first layer may contain a cross-linking agent (f) for cross-linking the functional group with another compound. By crosslinking using the crosslinking agent (f), the initial adhesive force and cohesive force of the first layer can be adjusted.
 架橋剤(f)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(すなわち、金属キレート構造を有する架橋剤)、アジリジン系架橋剤(すなわち、アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the crosslinking agent (f) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group). A crosslinking agent).
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。 Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”). A trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc. The “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later. The “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate, and tetramethylolmethane. -Tri-β-aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
 架橋剤(f)として有機多価イソシアネート化合物を用いる場合、重合体成分(a)としては、水酸基含有重合体を用いることが好ましい。架橋剤(f)がイソシアネート基を有し、重合体成分(a)が水酸基を有する場合、架橋剤(f)と重合体成分(a)との反応によって、第1層に架橋構造を簡便に導入できる。 When an organic polyvalent isocyanate compound is used as the crosslinking agent (f), it is preferable to use a hydroxyl group-containing polymer as the polymer component (a). When the cross-linking agent (f) has an isocyanate group and the polymer component (a) has a hydroxyl group, the cross-linking structure can be easily formed in the first layer by the reaction between the cross-linking agent (f) and the polymer component (a). Can be introduced.
 第1接着剤組成物及び第1層が含有する架橋剤(f)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Only 1 type may be sufficient as the crosslinking agent (f) which a 1st adhesive composition and a 1st layer contain, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily. .
 第1接着剤組成物及び第1層において、架橋剤(f)の含有量は、重合体成分(a)の含有量100質量部に対して、0~5質量部であることが好ましく、0~3質量部であることがより好ましく、0~1質量部であることがさらに好ましく、0質量部であること、すなわち、第1接着剤組成物及び第1層が架橋剤(f)を含有していないことが特に好ましい。架橋剤(f)の前記含有量が前記上限値以下であることで、第1層の基板の埋め込み性が、より高くなる。 In the first adhesive composition and the first layer, the content of the crosslinking agent (f) is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the polymer component (a). Is more preferably 3 parts by mass, further preferably 0-1 part by mass, and 0 parts by mass, that is, the first adhesive composition and the first layer contain the crosslinking agent (f). It is particularly preferred not to do so. When the content of the crosslinking agent (f) is equal to or less than the upper limit value, the embeddability of the substrate of the first layer becomes higher.
(エネルギー線硬化性樹脂(g))
 第1層は、エネルギー線硬化性樹脂(g)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
(Energy ray curable resin (g))
Since the first layer contains the energy beam curable resin (g), the characteristics can be changed by irradiation with the energy beam.
 エネルギー線硬化性樹脂(g)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。
 前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
The energy beam curable resin (g) is obtained by polymerizing (curing) an energy beam curable compound.
Examples of the energy ray curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth) acryloyl group are preferable.
 前記アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。 Examples of the acrylate compound include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta ( Chain aliphatic skeleton-containing (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cyclic aliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth) acrylate; urethane (meth) acrylate oligomer, epoxy-modified (meth) acrylate; the polyalkylene glycol (meth) Polyether (meth) acrylates other than the acrylates; itaconic acid oligomer, and the like.
 エネルギー線硬化性樹脂(g)の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。 The weight average molecular weight of the energy ray curable resin (g) is preferably 100 to 30000, and more preferably 300 to 10000.
 第1接着剤組成物が含有するエネルギー線硬化性樹脂(g)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、前記エネルギー線硬化性樹脂(g)としてはトリシクロデカンジメチロールジアクリレート及びε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートからなる群から選択される少なくとも1つが好ましい。
Only 1 type may be sufficient as energy beam curable resin (g) which a 1st adhesive composition contains, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
As one aspect, the energy ray curable resin (g) is preferably at least one selected from the group consisting of tricyclodecane dimethylol diacrylate and ε-caprolactone modified tris- (2-acryloxyethyl) isocyanurate. .
 エネルギー線硬化性樹脂(g)を用いる場合、第1接着剤組成物において、エネルギー線硬化性樹脂(g)の含有量は、第1接着剤組成物の総質量に対して、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。 When the energy beam curable resin (g) is used, the content of the energy beam curable resin (g) in the first adhesive composition is 1 to 95 mass with respect to the total mass of the first adhesive composition. %, More preferably 5 to 90% by mass, and particularly preferably 10 to 85% by mass.
(光重合開始剤(h))
 第1接着剤組成物は、エネルギー線硬化性樹脂(g)を含有する場合、エネルギー線硬化性樹脂(g)の重合反応を効率よく進めるために、光重合開始剤(h)を含有していてもよい。
(Photopolymerization initiator (h))
When the first adhesive composition contains the energy ray curable resin (g), the first adhesive composition contains the photopolymerization initiator (h) in order to efficiently advance the polymerization reaction of the energy ray curable resin (g). May be.
 第1接着剤組成物における光重合開始剤(h)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;1-クロロアントラキノン、2-クロロアントラキノン等のキノン化合物等が挙げられる。
 また、光重合開始剤(h)としては、例えば、アミン等の光増感剤等も挙げられる。
Examples of the photopolymerization initiator (h) in the first adhesive composition include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin benzoic acid methyl, benzoin dimethyl ketal, and the like. Acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4 , 6-Trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide and other acyl phosphine oxide compounds; benzylphenyl sulfide, tetramethylthiuram mono Sulfide compounds such as rufide; α-ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketones such as diacetyl Compound; benzyl; dibenzyl; benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone; 1-chloroanthraquinone, 2 -Quinone compounds such as chloroanthraquinone.
Moreover, as a photoinitiator (h), photosensitizers, such as an amine, etc. are mentioned, for example.
 第1接着剤組成物が含有する光重合開始剤(h)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、前記光重合開始剤(h)としては、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1が好ましい。
1 type may be sufficient as the photoinitiator (h) which a 1st adhesive composition contains, and when it is 2 or more types and they are 2 or more types, those combinations and ratios can be selected arbitrarily.
As one aspect, the photopolymerization initiator (h) is preferably 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
 光重合開始剤(h)を用いる場合、第1接着剤組成物及び第1層において、光重合開始剤(h)の含有量は、エネルギー線硬化性樹脂(g)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。 When the photopolymerization initiator (h) is used, the content of the photopolymerization initiator (h) in the first adhesive composition and the first layer is 100 parts by mass of the energy ray curable resin (g). On the other hand, it is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
(汎用添加剤(i))
 汎用添加剤(I)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されない。好ましい汎用添加剤(I)としては、例えば、可塑剤、帯電防止剤、酸化防止剤、着色剤(染料、顔料)、ゲッタリング剤等が挙げられる。
(General-purpose additive (i))
The general-purpose additive (I) may be a known one and can be arbitrarily selected according to the purpose, and is not particularly limited. Preferred general-purpose additives (I) include, for example, plasticizers, antistatic agents, antioxidants, colorants (dyes and pigments), gettering agents and the like.
 第1接着剤組成物及び第1層が含有する汎用添加剤(i)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第1接着剤組成物及び第1層の汎用添加剤(i)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The general-purpose additive (i) contained in the first adhesive composition and the first layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
The contents of the first adhesive composition and the general-purpose additive (i) in the first layer are not particularly limited, and may be appropriately selected depending on the purpose.
(溶媒)
 第1接着剤組成物は、さらに溶媒を含有することが好ましい。溶媒を含有する第1接着剤組成物は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オールともいう)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(すなわち、アミド結合を有する化合物)等が挙げられる。
 第1接着剤組成物が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(solvent)
The first adhesive composition preferably further contains a solvent. The first adhesive composition containing the solvent has good handleability.
The solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isobutyl alcohol (also referred to as 2-methylpropan-1-ol), 1-butanol and the like. Alcohols; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (that is, compounds having an amide bond).
Only 1 type may be sufficient as the solvent which a 1st adhesive composition contains, and when it is 2 or more types, when they are 2 or more types, those combinations and ratios can be selected arbitrarily.
 第1接着剤組成物が含有する溶媒は、第1接着剤組成物中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。 The solvent contained in the first adhesive composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the first adhesive composition can be mixed more uniformly.
 好ましい第1接着剤組成物の一例としては、重合体成分(a)、エポキシ系熱硬化性樹脂(b)、硬化促進剤(c)及びカップリング剤(e)を含有するものが挙げられ、これら以外に、さらに、充填材(d)及び汎用添加剤(i)のいずれか一方又は両方を含有するものも挙げられる。 Examples of the preferred first adhesive composition include those containing a polymer component (a), an epoxy thermosetting resin (b), a curing accelerator (c) and a coupling agent (e). In addition to these, those containing one or both of the filler (d) and the general-purpose additive (i) are also included.
<<第1接着剤組成物の製造方法>>
 第1接着剤組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
<< Method for Producing First Adhesive Composition >>
A 1st adhesive composition is obtained by mix | blending each component for comprising this.
The order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
The method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
The temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
◎第2層(第2フィルム)
 前記第2層(第2フィルム)は、上述のとおり、粘着性及びエネルギー線硬化性を有する。
 第2層は、さらに、熱硬化性を有していても(熱硬化性であっても)よいし、熱硬化性を有していなくても(非熱硬化性であっても)よい。
 なかでも第2層は、熱硬化性を有さず、エネルギー線硬化性を有することが好ましい。
◎ Second layer (second film)
As described above, the second layer (second film) has adhesiveness and energy ray curability.
Further, the second layer may have thermosetting properties (may be thermosetting) or may not have thermosetting properties (may be non-thermosetting).
Especially, it is preferable that a 2nd layer does not have thermosetting, but has energy-beam sclerosis | hardenability.
 硬化性を有しない第2層と、硬化性を有する未硬化の第2層と、は、いずれも、各種被着体に軽く押圧することで貼付できる。
 また、第2層は、硬化の有無によらず、加熱して軟化させることで、各種被着体に貼付できるものであってもよい。
 硬化性を有しない第2層と、硬化性を有する第2層の硬化物と、は、いずれも、厳しい高温・高湿度条件下においても十分な接着特性を保持し得る。
Any of the second layer having no curability and the uncured second layer having the curability can be applied by lightly pressing the various adherends.
Moreover, the 2nd layer may be what can be stuck on various adherends by heating and softening irrespective of the presence or absence of hardening.
Both the second layer having no curability and the cured product of the second layer having curability can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
 浸漬後粘着力を6N/25mm以上に規定する前記試験用積層体は、以下のように作製する。
 すなわち、試験片として、厚さが10μmで、かつ幅が25mmよりも広い第2層を用意する。
 第2層は、例えば、剥離フィルムとの積層物として用意し、この積層物を用いることで、より容易に試験用積層体を作製できる。この場合、前記剥離フィルムは、適切なタイミングで取り除けばよい。
The test laminate that defines the adhesive strength after immersion to be 6 N / 25 mm or more is prepared as follows.
That is, a second layer having a thickness of 10 μm and a width wider than 25 mm is prepared as a test piece.
A 2nd layer is prepared as a laminated body with a peeling film, for example, By using this laminated body, the laminated body for a test can be produced more easily. In this case, the release film may be removed at an appropriate timing.
 試験片の長さは、後述する剥離試験を安定して行うことができる限り、特に限定されないが、例えば、15cm以上30cm以下であることが好ましい。 The length of the test piece is not particularly limited as long as a peeling test described later can be performed stably, but is preferably 15 cm or more and 30 cm or less, for example.
 次いで、この試験片をシリコンミラーウエハに貼付する。
 前記試験片は、35~45℃に加熱した状態でシリコンミラーウエハに貼付することが好ましい。
 また、試験片をシリコンミラーウエハに貼付するときの、貼付速度及び貼付圧力は、特に限定されない。例えば、貼付速度は5~20mm/sであることが好ましく、貼付圧力は0.1~1.0MPaであることが好ましい。
Next, this test piece is attached to a silicon mirror wafer.
The test piece is preferably attached to a silicon mirror wafer while being heated to 35 to 45 ° C.
Moreover, the sticking speed and sticking pressure when sticking a test piece on a silicon mirror wafer are not particularly limited. For example, the sticking speed is preferably 5 to 20 mm / s, and the sticking pressure is preferably 0.1 to 1.0 MPa.
 次いで、この貼付後の試験片(すなわち、シリコンミラーウエハ貼付後の第2層)の露出面(シリコンミラーウエハ側とは反対側の面)に、幅が25mmの帯状の強粘着テープを貼付する。 Next, a strip-shaped strong adhesive tape having a width of 25 mm is applied to the exposed surface (surface opposite to the silicon mirror wafer side) of the test piece after application (that is, the second layer after application of the silicon mirror wafer). .
 次いで、この強粘着テープを貼付後の試験片(第2層)に対して、強粘着テープの外周に沿って、幅が25mmの帯状の切り込みを形成する。この切り込みは、試験片の厚さ方向の全域に形成する。すなわち、試験片を幅が25mmとなるように帯状に切断する。 Next, a strip-shaped cut having a width of 25 mm is formed along the outer periphery of the strong adhesive tape on the test piece (second layer) after the strong adhesive tape is applied. This notch is formed in the whole area of the test piece in the thickness direction. That is, the test piece is cut into a strip shape with a width of 25 mm.
 次いで、この切断後の試験片をシリコンミラーウエハごと(換言すると、切断後の試験片を備えたシリコンミラーウエハを)、23℃の純水中に2時間浸漬する。このとき、切断後の試験片を備えたシリコンミラーウエハは、その全体が純水中に水没するように(換言すると、切断後の試験片全体とシリコンミラーウエハ全体がともに純水中に水没するように)、純水中に配置する。
 切断後の試験片を備えたシリコンミラーウエハは、その作製直後直ちに、純水中へ浸漬することが好ましい。このようにすることで、試験用積層体の前記粘着力を、より高精度に測定できる。
 切断後の試験片を備えたシリコンミラーウエハは、暗所において、純水中へ浸漬することが好ましい。このようにすることで、試験用積層体の前記粘着力を、より高精度に測定できる。
Next, the cut test piece is immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer (in other words, the silicon mirror wafer provided with the cut test piece). At this time, the silicon mirror wafer provided with the cut specimen is submerged in pure water (in other words, the whole specimen after cutting and the entire silicon mirror wafer are both submerged in pure water. So that it is placed in pure water.
It is preferable that the silicon mirror wafer provided with the cut specimen is immediately immersed in pure water immediately after its production. By doing in this way, the said adhesive force of the laminated body for a test can be measured with higher precision.
The silicon mirror wafer provided with the test piece after cutting is preferably immersed in pure water in a dark place. By doing in this way, the said adhesive force of the laminated body for a test can be measured with higher precision.
 切断後の試験片を備えたシリコンミラーウエハは、純水中に2時間浸漬した後、純水中から引き上げ、表面に余分の水滴が付着している場合には、この水滴を取り除く。
 次いで、切断後の試験片(第2層)に、エネルギー線を照射することにより、この帯状の試験片をエネルギー線硬化させる。
The silicon mirror wafer provided with the cut test piece is dipped in pure water for 2 hours, and then pulled up from the pure water. If extra water droplets are attached to the surface, the water droplets are removed.
Next, the strip-shaped test piece is cured with energy rays by irradiating the cut test piece (second layer) with energy rays.
 エネルギー線の照射条件は、試験片が十分にエネルギー線硬化する限り、特に限定されない。例えば、エネルギー線硬化時における、エネルギー線の照度は、4~280mW/cmであることが好ましい。エネルギー線硬化時における、エネルギー線の光量は、3~1000mJ/cmであることが好ましい。 The irradiation conditions of energy rays are not particularly limited as long as the test piece is sufficiently cured with energy rays. For example, the energy ray illuminance during energy ray curing is preferably 4 to 280 mW / cm 2 . The amount of energy rays during energy ray curing is preferably 3 to 1000 mJ / cm 2 .
 以上により、シリコンミラーウエハに前記試験片(第2層)の硬化物が貼付されている、純水中への浸漬を経た試験用積層体が得られる。 As described above, a test laminate in which the cured product of the test piece (second layer) is stuck on the silicon mirror wafer and immersed in pure water is obtained.
 ここまでは、第2層を剥離フィルムとの積層物として用いる場合について説明したが、第2層を第1層との積層物、すなわち、ダイボンディングフィルムの形態で、用いてもよい。このように、ダイボンディングフィルムを前記粘着力の測定に供する場合には、前記強粘着テープを、第2層の露出面ではなく、第1層の露出面(第2層側とは反対側の面)に貼付する。また、試験片(第2層)を帯状に切断するときには、ダイボンディングフィルムの厚さ方向の全域(第1層及び第2層の、これらの厚さ方向の全域)に切り込みを形成し、ダイボンディングフィルム全体を帯状に切断すればよい。また、第2層単独の場合と同様に、ダイボンディングフィルムを、剥離フィルムとの積層物として用いてもよく、この場合も、適切なタイミングで剥離フィルムを取り除けばよい。 So far, the case where the second layer is used as a laminate with the release film has been described, but the second layer may be used in the form of a laminate with the first layer, that is, a die bonding film. Thus, when the die bonding film is used for the measurement of the adhesive force, the strong adhesive tape is not the exposed surface of the second layer, but the exposed surface of the first layer (on the side opposite to the second layer side). Affixed to the surface). Further, when the test piece (second layer) is cut into a strip shape, a cut is formed in the entire thickness direction of the die bonding film (the first layer and the second layer in the thickness direction). What is necessary is just to cut | disconnect the whole bonding film in strip shape. Further, as in the case of the second layer alone, the die bonding film may be used as a laminate with the release film. In this case, the release film may be removed at an appropriate timing.
 前記試験用積層体の浸漬後粘着力は、以下のように測定する。
 すなわち、常温下(例えば、23℃の条件下)で、この試験用積層体において、剥離(引張)速度300mm/minで、強粘着テープを引っ張り、試験用積層体において、剥離面を生じさせる。このとき、新たに生じた前記剥離面同士が180°の角度を為すように、強粘着テープを引っ張る、いわゆる180°剥離を行う。換言すると、強粘着テープは、一端を他端方向へ引っ張る。そして、第2層の硬化物と、シリコンミラーウエハと、の間で界面剥離が生じたときに測定された剥離力(荷重、N/25mm)を、前記浸漬後粘着力(純水中への浸漬を経た試験用積層体における、幅が25mmの第2層の硬化物と、シリコンミラーウエハと、の間の粘着力)として採用する。
 強粘着テープは、例えば、公知の引張試験機を用いることで、引っ張ることができる。
The post-immersion adhesive strength of the test laminate is measured as follows.
That is, a strong adhesive tape is pulled at a peeling (tensile) speed of 300 mm / min in this test laminate at normal temperature (for example, at 23 ° C.), and a release surface is generated in the test laminate. At this time, so-called 180 ° peeling is performed by pulling the strong adhesive tape so that the newly generated peeling surfaces form an angle of 180 °. In other words, the strong adhesive tape pulls one end toward the other end. And the peeling force (load, N / 25 mm) measured when interface peeling occurs between the cured product of the second layer and the silicon mirror wafer is used as the adhesive force after immersion (into pure water). Adhesion between the second layer cured product having a width of 25 mm and the silicon mirror wafer in the test laminate after immersion is adopted.
The strong adhesive tape can be pulled by using, for example, a known tensile tester.
 ここまでは、純水中への浸漬を経た試験用積層体の、第2層の硬化物と、シリコンミラーウエハと、の間の粘着力(浸漬後粘着力)の測定方法について説明したが、純水中への浸漬を経ていない試験用積層体(本明細書においては、「非浸漬試験用積層体」と略記することがある)についても、同様の方法で、幅が25mmの第2層の硬化物と、シリコンミラーウエハと、の間の粘着力(本明細書においては、「非浸漬粘着力」と略記することがある)(N/25mm)を測定できる。非浸漬粘着力は、純水中への浸漬を経ていない試験用積層体を用いる点以外は、上述の浸漬後粘着力の場合と同じ方法で、測定できる。 Up to here, the measurement method of the adhesive strength (adhesive strength after immersion) between the cured product of the second layer and the silicon mirror wafer of the test laminate that has been immersed in pure water has been described. A test laminate that has not been immersed in pure water (may be abbreviated as “non-immersion test laminate” in this specification) is a second layer having a width of 25 mm in the same manner. The adhesive force between the cured product and the silicon mirror wafer (in this specification, sometimes abbreviated as “non-immersion adhesive force”) (N / 25 mm) can be measured. The non-immersion adhesive strength can be measured by the same method as in the case of the above-mentioned post-immersion adhesive strength except that a test laminate that has not been immersed in pure water is used.
 非浸漬試験用積層体は、例えば、切断後の試験片を備えたシリコンミラーウエハについて、23℃の純水中に2時間浸漬する工程を行うのに代えて、空気雰囲気下の暗所において、温度23℃、相対湿度50%の条件下で30分間静置保存する工程を行う点以外は、前記試験用積層体の場合と同じ方法で作製できる。 In the non-immersion test laminate, for example, instead of performing a process of immersing in pure water at 23 ° C. for 2 hours for a silicon mirror wafer provided with a test piece after cutting, in a dark place in an air atmosphere, It can be produced by the same method as in the case of the test laminate except that the step of standing still for 30 minutes under conditions of a temperature of 23 ° C. and a relative humidity of 50% is performed.
 浸漬後粘着力及び非浸漬粘着力のいずれの測定時においても、上述の剥離試験時には、第2層の硬化物と、シリコンミラーウエハと、の間での界面剥離(本明細書においては、「シリコンミラーウエハでの剥離」と称することがある)以外に、強粘着テープと、その隣接層(例えば、第2層の硬化物、第1層等)と、の間での界面剥離(本明細書においては、「強粘着テープでの剥離」と称することがある)や、第2層の硬化物での凝集破壊等が生じ得る。
 第2層の硬化物と、シリコンミラーウエハと、の間の粘着力が十分に大きい場合には、剥離試験時には、例えば、シリコンミラーウエハでの剥離(第2層の硬化物と、シリコンミラーウエハと、の間での界面剥離)以外に、第2層の硬化物での凝集破壊が生じる前に、強粘着テープでの剥離(強粘着テープと、その隣接層と、の間での界面剥離)が生じ易い。
 この場合には、強粘着テープでの剥離が生じたときの剥離力が、6N/25mm以上であれば、幅が25mmの第2層の硬化物と、シリコンミラーウエハと、の間の粘着力が、6N/25mm以上であると判断できる。
 一方、第2層の硬化物と、シリコンミラーウエハと、の間の粘着力が小さい場合には、剥離試験時には、例えば、強粘着テープでの剥離が生じる前に、シリコンミラーウエハでの剥離が生じ易い。
In both the measurement of the post-immersion adhesive strength and the non-immersion adhesive strength, the interface peeling between the cured product of the second layer and the silicon mirror wafer (in this specification, “ In addition to “peeling with a silicon mirror wafer”, there may be interface peeling between the strong adhesive tape and its adjacent layer (for example, a cured product of the second layer, the first layer, etc.) (this specification) In some cases, it may be referred to as “peeling with a strong adhesive tape”), cohesive failure in the cured product of the second layer, or the like.
When the adhesive force between the cured product of the second layer and the silicon mirror wafer is sufficiently large, during the peeling test, for example, peeling with a silicon mirror wafer (the cured product of the second layer and the silicon mirror wafer) In addition to the interfacial peeling between the two and the second layer, before the cohesive failure occurs in the cured product of the second layer, the peeling with the strong adhesive tape (the interfacial peeling between the strong adhesive tape and its adjacent layer). ) Is likely to occur.
In this case, if the peeling force when peeling with the strong adhesive tape occurs is 6 N / 25 mm or more, the adhesive force between the cured product of the second layer having a width of 25 mm and the silicon mirror wafer. However, it can be judged that it is 6 N / 25 mm or more.
On the other hand, when the adhesive force between the cured product of the second layer and the silicon mirror wafer is small, during the peeling test, for example, the peeling on the silicon mirror wafer is performed before peeling with the strong adhesive tape occurs. It is likely to occur.
 前記浸漬後粘着力は、6N/25mm以上であり、7N/25mm以上であることが好ましく、8N/25mm以上であることがより好ましく、9N/25mm以上であることがさらに好ましい。浸漬後粘着力が前記下限値以上であることで、サイズが小さい半導体チップのピックアップ時において、第2層の硬化物の半導体チップへの転写性がより高くなる。 The post-immersion adhesive strength is 6 N / 25 mm or more, preferably 7 N / 25 mm or more, more preferably 8 N / 25 mm or more, and further preferably 9 N / 25 mm or more. When the post-immersion adhesive strength is equal to or more than the lower limit value, transferability of the cured product of the second layer to the semiconductor chip becomes higher when picking up a semiconductor chip having a small size.
 前記浸漬後粘着力の上限値は、特に限定されない。
 例えば、前記浸漬後粘着力が20N/25mm以下である第2層の硬化物の場合、その構成原料の入手がより容易である。
The upper limit value of the adhesive strength after immersion is not particularly limited.
For example, in the case of the cured product of the second layer having an adhesive strength after immersion of 20 N / 25 mm or less, it is easier to obtain the constituent materials.
 前記浸漬後粘着力は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、前記浸漬後粘着力は、好ましくは6~20N/25mm、より好ましくは7~20N/25mm、さらに好ましくは8~20N/25mm、特に好ましくは9~20N/25mmである。また、別の側面として、10~20N/25mmであってもよい。ただし、これらは、前記浸漬後粘着力の一例である。 The post-immersion adhesive strength can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, the adhesive strength after immersion is preferably 6 to 20 N / 25 mm, more preferably 7 to 20 N / 25 mm, still more preferably 8 to 20 N / 25 mm, and particularly preferably 9 to 20 N / 25 mm. Another aspect may be 10 to 20 N / 25 mm. However, these are examples of the adhesive strength after immersion.
 前記非浸漬粘着力は、特に限定されないが、前記浸漬後粘着力に対して同等以上であることが好ましい。
 例えば、前記非浸漬粘着力は、6N/25mm以上、7N/25mm以上、8N/25mm以上、及び9N/25mm以上のいずれかであり、かつ、前記浸漬後粘着力に対して同等以上であってもよい。
 また、前記非浸漬粘着力は、20N/25mm以下であり、かつ、前記浸漬後粘着力に対して同等以上であってもよい。
 そして、前記非浸漬粘着力は、6~20N/25mm、7~20N/25mm、8~20N/25mm、及び9~20N/25mmのいずれかであり、かつ、前記浸漬後粘着力に対して同等以上であってもよい。また、別の側面として、10~20N/25mmであってもよい。
The non-immersion adhesive strength is not particularly limited, but is preferably equal to or greater than the post-immersion adhesive strength.
For example, the non-immersion adhesive strength is any one of 6 N / 25 mm or more, 7 N / 25 mm or more, 8 N / 25 mm or more, and 9 N / 25 mm or more, and equal to or more than the adhesive strength after immersion. Also good.
Further, the non-immersion adhesive strength is 20 N / 25 mm or less, and may be equal to or greater than the post-immersion adhesive strength.
The non-immersion adhesive strength is any of 6 to 20 N / 25 mm, 7 to 20 N / 25 mm, 8 to 20 N / 25 mm, and 9 to 20 N / 25 mm, and is equivalent to the adhesive strength after immersion. It may be the above. Another aspect may be 10 to 20 N / 25 mm.
 1つの側面として、本発明の一実施形態であるダイボンディングフィルムは、
 第2層が、前記浸漬後粘着力が6~20N/25mmであり、かつ前記非浸漬粘着力が6~20N/25mmである特性を有していてもよい。
As one aspect, the die bonding film which is one embodiment of the present invention,
The second layer may have such characteristics that the post-immersion adhesive strength is 6 to 20 N / 25 mm, and the non-immersion adhesive strength is 6 to 20 N / 25 mm.
 第2層は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The second layer may be composed of one layer (single layer), or may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same as or different from each other. The combination of the multiple layers is not particularly limited.
 第2層の厚さは、特に限定されないが、1~40μmであることが好ましく、3~30μmであることがより好ましく、5~20μmであることが特に好ましい。第2層の厚さが前記下限値以上であることで、第2層の被着体(半導体ウエハ、半導体チップ)に対する粘着力が、より高くなり、その結果、サイズが小さい半導体チップのピックアップ時において、第2層の硬化物の半導体チップへの転写性がより高くなる。第2層の厚さが前記上限値以下であることで、後述する半導体チップの製造工程において、第2層(ダイボンディングフィルム)をより容易に切断でき、また、第2層に由来する切断片の発生量をより低減できる。
 ここで、「第2層の厚さ」とは、第2層全体の厚さを意味し、例えば、複数層からなる第2層の厚さとは、第2層を構成するすべての層の合計の厚さを意味する。
The thickness of the second layer is not particularly limited, but is preferably 1 to 40 μm, more preferably 3 to 30 μm, and particularly preferably 5 to 20 μm. When the thickness of the second layer is equal to or more than the lower limit value, the adhesion to the adherend (semiconductor wafer, semiconductor chip) of the second layer becomes higher, and as a result, when picking up a semiconductor chip having a small size. The transferability of the cured product of the second layer to the semiconductor chip becomes higher. When the thickness of the second layer is less than or equal to the above upper limit value, the second layer (die bonding film) can be more easily cut in the semiconductor chip manufacturing process described later, and a cut piece derived from the second layer Can be further reduced.
Here, the “thickness of the second layer” means the thickness of the entire second layer. For example, the thickness of the second layer composed of a plurality of layers is the sum of all the layers constituting the second layer. Means the thickness.
 第2層(第2フィルム)は、その構成材料を含有する第2接着剤組成物から形成できる。例えば、第2層の形成対象面に第2接着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に第2層を形成できる。
 第2接着剤組成物中の、常温で気化しない成分同士の含有量の比率は、通常、第2層の前記成分同士の含有量の比率と同じとなる。
A 2nd layer (2nd film) can be formed from the 2nd adhesive composition containing the constituent material. For example, a 2nd layer can be formed in the target site | part by applying a 2nd adhesive composition to the formation object surface of a 2nd layer, and making it dry as needed.
In the second adhesive composition, the ratio of the contents of the components that do not vaporize at room temperature is usually the same as the ratio of the contents of the components of the second layer.
 第2接着剤組成物は、第1接着剤組成物の場合と同じ方法で塗工でき、第2接着剤組成物の乾燥条件は、第1接着剤組成物の乾燥条件と同じとすることができる。
 次に、第2接着剤組成物について、詳細に説明する。
The second adhesive composition can be applied in the same manner as in the case of the first adhesive composition, and the drying conditions of the second adhesive composition may be the same as the drying conditions of the first adhesive composition. it can.
Next, the second adhesive composition will be described in detail.
<<第2接着剤組成物>>
 第2接着剤組成物の種類は、第2層の熱硬化性の有無等、第2層の特性に応じて、選択できる。
 第2接着剤組成物は、エネルギー線硬化性を有し、エネルギー線硬化性及び熱硬化性をともに有していてもよい。
 第2接着剤組成物及び第2層の含有成分としては、上述の第1接着剤組成物及び第1層の含有成分と同じものが挙げられる。そして、その含有成分の奏する効果も、第1接着剤組成物及び第1層の場合と同じである。
 第2接着剤組成物としては、例えば、重合体成分(a)、充填材(d)、エネルギー線硬化性樹脂(g)及び光重合開始剤(h)を含有するものが挙げられる。
<< Second Adhesive Composition >>
The kind of 2nd adhesive composition can be selected according to the characteristic of a 2nd layer, such as the presence or absence of the thermosetting of a 2nd layer.
The second adhesive composition has energy ray curability and may have both energy ray curability and thermosetting properties.
As a content component of a 2nd adhesive composition and a 2nd layer, the same thing as the content component of the above-mentioned 1st adhesive composition and a 1st layer is mentioned. And the effect which the containing component show | plays is the same as the case of a 1st adhesive composition and a 1st layer.
As a 2nd adhesive composition, what contains a polymer component (a), a filler (d), energy-beam curable resin (g), and a photoinitiator (h) is mentioned, for example.
(重合体成分(a))
 第2接着剤組成物及び第2層における重合体成分(a)は、第1接着剤組成物及び第1層における重合体成分(a)と同じである。
(Polymer component (a))
The polymer component (a) in the second adhesive composition and the second layer is the same as the polymer component (a) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有する重合体成分(a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer component (a) contained in the second adhesive composition and the second layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
 第2接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する重合体成分(a)の含有量の割合(すなわち、第2層の重合体成分(a)の含有量)は、重合体成分(a)の種類によらず、10~45質量%であることが好ましく、15~40質量%であることがより好ましく、20~35質量%であることが特に好ましい。 In the second adhesive composition, the ratio of the content of the polymer component (a) to the total content (total mass) of all components other than the solvent (that is, the content of the polymer component (a) in the second layer) ) Is preferably 10 to 45% by mass, more preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass, regardless of the type of the polymer component (a).
 第2接着剤組成物及び第2層において、重合体成分(a)の総含有量(総質量)に対する、アクリル系樹脂の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。 In the second adhesive composition and the second layer, the ratio of the acrylic resin content to the total content (total mass) of the polymer component (a) is preferably 80 to 100% by mass, 85 It is more preferably from ˜100% by mass, even more preferably from 90 to 100% by mass, for example, from 95 to 100% by mass.
(充填材(d))
 第2接着剤組成物及び第2層における充填材(d)は、第1接着剤組成物及び第1層における充填材(d)と同じである。
(Filler (d))
The filler (d) in the second adhesive composition and the second layer is the same as the filler (d) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有する充填材(d)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As for the filler (d) which a 2nd adhesive composition and a 2nd layer contain, 1 type may be sufficient, and 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily. .
 第2接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する充填材(d)の含有量の割合(すなわち、第2層の充填材(d)の含有量)は、25~70質量%であることが好ましく、35~67質量%であることがより好ましく、45~64質量%であることが特に好ましい。充填材(d)の含有量がこのような範囲であることで、第2層の熱膨張係数、吸湿率及び放熱性の調整がより容易となる。 In the second adhesive composition, the ratio of the content of the filler (d) to the total content (total mass) of all components other than the solvent (that is, the content of the filler (d) in the second layer) is 25 to 70% by mass, more preferably 35 to 67% by mass, and particularly preferably 45 to 64% by mass. When the content of the filler (d) is within such a range, it becomes easier to adjust the thermal expansion coefficient, the moisture absorption rate, and the heat dissipation of the second layer.
 平均粒子径が1~1000nmである充填材(d)を用いる場合、第2接着剤組成物及び第2層において、充填材(d)の総含有量(総質量)に対する、平均粒子径が1~1000nmである充填材(d)の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。 When the filler (d) having an average particle diameter of 1 to 1000 nm is used, the average particle diameter is 1 with respect to the total content (total mass) of the filler (d) in the second adhesive composition and the second layer. The content ratio of the filler (d) that is ˜1000 nm is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, and further preferably 90 to 100% by mass. For example, it may be 95 to 100% by mass.
(エネルギー線硬化性樹脂(g))
 第2接着剤組成物及び第2層におけるエネルギー線硬化性樹脂(g)は、第1接着剤組成物及び第1層におけるエネルギー線硬化性樹脂(g)と同じである。
(Energy ray curable resin (g))
The energy ray curable resin (g) in the second adhesive composition and the second layer is the same as the energy ray curable resin (g) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有するエネルギー線硬化性樹脂(g)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、第2接着剤組成物及び第2層が含有するエネルギー線硬化性樹脂(g)は、トリシクロデカンジメチロールジアクリレート及びε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートからなる群から選択される少なくとも1つが好ましい。
The energy ray curable resin (g) contained in the second adhesive composition and the second layer may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof are arbitrary. Can be selected.
In one aspect, the energy ray curable resin (g) contained in the second adhesive composition and the second layer is composed of tricyclodecane dimethylol diacrylate and ε-caprolactone modified tris- (2-acryloxyethyl) isocyanate. At least one selected from the group consisting of nurate is preferred.
 第2接着剤組成物において、エネルギー線硬化性樹脂(g)の含有量は、第2接着剤組成物の総質量に対して、1~95質量%であることが好ましく、3~90質量%であることがより好ましく、5~85質量%であることが特に好ましい。 In the second adhesive composition, the content of the energy ray curable resin (g) is preferably 1 to 95% by mass with respect to the total mass of the second adhesive composition, and 3 to 90% by mass. More preferred is 5 to 85% by mass.
(光重合開始剤(h))
 第2接着剤組成物及び第2層における光重合開始剤(h)は、第1接着剤組成物及び第1層における光重合開始剤(h)と同じである。
(Photopolymerization initiator (h))
The photopolymerization initiator (h) in the second adhesive composition and the second layer is the same as the photopolymerization initiator (h) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有する光重合開始剤(h)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、第2接着剤組成物及び第2層における光重合開始剤(h)は2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1が好ましい。
1 type may be sufficient as the photoinitiator (h) which a 2nd adhesive composition and a 2nd layer contain, and when it is 2 or more types, those combinations and ratios are arbitrary. You can choose.
As one aspect, the photopolymerization initiator (h) in the second adhesive composition and the second layer is preferably 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
 第2接着剤組成物及び第2層において、光重合開始剤(h)の含有量は、エネルギー線硬化性樹脂(g)の含有量100質量部に対して、0.1~20質量部であることが好ましく、0.5~15質量部であることがより好ましく、1~10質量部であることが特に好ましい。 In the second adhesive composition and the second layer, the content of the photopolymerization initiator (h) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the energy beam curable resin (g). It is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass.
 第2層は、その各種物性を改良するために、重合体成分(a)、充填材(d)、エネルギー線硬化性樹脂(g)及び光重合開始剤(h)以外に、さらに所望により、これらに該当しない他の成分を含有していてもよい。
 第2層が含有する他の成分としては、例えば、カップリング剤(e)、エポキシ系熱硬化性樹脂(b)、硬化促進剤(c)、架橋剤(f)、汎用添加剤(i)等が挙げられる。
 これらの中でも、好ましい前記他の成分としては、カップリング剤(e)、汎用添加剤(i)が挙げられる。
In order to improve the various physical properties of the second layer, in addition to the polymer component (a), the filler (d), the energy ray curable resin (g) and the photopolymerization initiator (h), if desired, Other components not corresponding to these may be contained.
Examples of other components contained in the second layer include a coupling agent (e), an epoxy thermosetting resin (b), a curing accelerator (c), a crosslinking agent (f), and a general-purpose additive (i). Etc.
Among these, preferable other components include a coupling agent (e) and a general-purpose additive (i).
(カップリング剤(e))
 第2接着剤組成物及び第2層におけるカップリング剤(e)は、第1接着剤組成物及び第1層におけるカップリング剤(e)と同じである。
 なかでも、カップリング剤(e)は、オリゴマー型又はポリマー型オルガノシロキサンであることが好ましい。
(Coupling agent (e))
The coupling agent (e) in the second adhesive composition and the second layer is the same as the coupling agent (e) in the first adhesive composition and the first layer.
Among these, the coupling agent (e) is preferably an oligomer type or polymer type organosiloxane.
 第2接着剤組成物及び第2層が含有するカップリング剤(e)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The coupling agent (e) contained in the second adhesive composition and the second layer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
 カップリング剤(e)を用いる場合、第2接着剤組成物及び第2層において、カップリング剤(e)の含有量は、重合体成分(a)の含有量100質量部に対して、0.1~20質量部であることが好ましく、0.5~15質量部であることがより好ましく、1~10質量部であることが特に好ましい。カップリング剤(e)の前記含有量が前記下限値以上であることで、充填材(d)の樹脂への分散性の向上や、第2層の被着体との接着性の向上等、カップリング剤(e)を用いたことによる効果がより顕著に得られる。カップリング剤(e)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。 When the coupling agent (e) is used, in the second adhesive composition and the second layer, the content of the coupling agent (e) is 0 with respect to 100 parts by mass of the polymer component (a). The amount is preferably 1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, and particularly preferably 1 to 10 parts by mass. Since the content of the coupling agent (e) is not less than the lower limit, improvement in dispersibility of the filler (d) in the resin, improvement in adhesion with the adherend of the second layer, etc. The effect by using the coupling agent (e) is more remarkably obtained. Generation | occurrence | production of an outgas is suppressed more because the said content of a coupling agent (e) is below the said upper limit.
 カップリング剤(e)として、前記オリゴマー型又はポリマー型オルガノシロキサンを用いる場合、第2接着剤組成物及び第2層において、カップリング剤(e)の総含有量(総質量)に対する、前記オリゴマー型又はポリマー型オルガノシロキサンの含有量の割合は、25~100質量%、及び40~100質量%のいずれかであってもよい。 When the oligomer type or polymer type organosiloxane is used as the coupling agent (e), the oligomer with respect to the total content (total mass) of the coupling agent (e) in the second adhesive composition and the second layer. The content ratio of the mold-type or polymer-type organosiloxane may be any of 25 to 100% by mass and 40 to 100% by mass.
(エポキシ系熱硬化性樹脂(b)(エポキシ樹脂(b1)及び熱硬化剤(b2))
 エポキシ系熱硬化性樹脂(b)は、エポキシ樹脂(b1)及び熱硬化剤(b2)からなる。
 第2接着剤組成物及び第2層におけるエポキシ系熱硬化性樹脂(b)(エポキシ樹脂(b1)、熱硬化剤(b2))は、第1接着剤組成物及び第1層におけるエポキシ系熱硬化性樹脂(b)(エポキシ樹脂(b1)、熱硬化剤(b2))と同じである。
(Epoxy thermosetting resin (b) (epoxy resin (b1) and thermosetting agent (b2))
The epoxy thermosetting resin (b) is composed of an epoxy resin (b1) and a thermosetting agent (b2).
The epoxy-based thermosetting resin (b) (epoxy resin (b1), thermosetting agent (b2)) in the second adhesive composition and the second layer is the epoxy-based heat in the first adhesive composition and the first layer. It is the same as curable resin (b) (epoxy resin (b1), thermosetting agent (b2)).
 第2接着剤組成物及び第2層が含有する、エポキシ樹脂(b1)及び熱硬化剤(b2)は、それぞれ1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Each of the epoxy resin (b1) and the thermosetting agent (b2) contained in the second adhesive composition and the second layer may be only one type, two or more types, or two or more types. These combinations and ratios can be arbitrarily selected.
 エポキシ樹脂(b1)及び熱硬化剤(b2)を用いる場合、第2接着剤組成物及び第2層において、熱硬化剤(b2)の含有量は、エポキシ樹脂(b1)の含有量100質量部に対して、10~200質量部であることが好ましい。熱硬化剤(b2)の前記含有量が前記下限値以上であることで、第2層の硬化がより進行し易くなる。熱硬化剤(b2)の前記含有量が前記上限値以下であることで、第2層の吸湿率が低減されて、第2層を用いて得られたパッケージの信頼性がより向上する。 When using the epoxy resin (b1) and the thermosetting agent (b2), the content of the thermosetting agent (b2) in the second adhesive composition and the second layer is 100 parts by mass of the epoxy resin (b1). The amount is preferably 10 to 200 parts by mass. When the content of the thermosetting agent (b2) is equal to or greater than the lower limit, the curing of the second layer is more likely to proceed. When the content of the thermosetting agent (b2) is equal to or lower than the upper limit value, the moisture absorption rate of the second layer is reduced, and the reliability of the package obtained using the second layer is further improved.
 エポキシ樹脂(b1)及び熱硬化剤(b2)を用いる場合、第2接着剤組成物及び第2層において、エポキシ系熱硬化性樹脂(b)の含有量(エポキシ樹脂(b1)及び熱硬化剤(b2)の総含有量)は、重合体成分(a)の含有量100質量部に対して、400~1200質量部であることが好ましい。エポキシ系熱硬化性樹脂(b)の前記含有量がこのような範囲であることで、第2層の接着力を調節することがより容易となる。 When the epoxy resin (b1) and the thermosetting agent (b2) are used, the content of the epoxy thermosetting resin (b) in the second adhesive composition and the second layer (the epoxy resin (b1) and the thermosetting agent The total content of (b2) is preferably 400 to 1200 parts by mass with respect to 100 parts by mass of the polymer component (a). When the content of the epoxy thermosetting resin (b) is within such a range, it becomes easier to adjust the adhesive force of the second layer.
(硬化促進剤(c))
 第2接着剤組成物及び第2層は、エポキシ系熱硬化性樹脂(b)を含有する場合、硬化促進剤(c)を含有することが好ましい。
 第2接着剤組成物及び第2層における硬化促進剤(c)は、第1接着剤組成物及び第1層における硬化促進剤(c)と同じである。
(Curing accelerator (c))
When a 2nd adhesive composition and a 2nd layer contain an epoxy-type thermosetting resin (b), it is preferable to contain a hardening accelerator (c).
The curing accelerator (c) in the second adhesive composition and the second layer is the same as the curing accelerator (c) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有する硬化促進剤(c)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Only one type of curing accelerator (c) contained in the second adhesive composition and the second layer may be used, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
 硬化促進剤(c)を用いる場合、第2接着剤組成物及び第2層において、硬化促進剤(c)の含有量は、エポキシ系熱硬化性樹脂(b)の含有量100質量部に対して、0.01~5質量部であることが好ましく、0.1~2質量部であることがより好ましい。硬化促進剤(c)の前記含有量が前記下限値以上であることで、硬化促進剤(c)を用いたことによる効果がより顕著に得られる。硬化促進剤(c)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(c)が、高温・高湿度条件下で第2層中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、第2層を用いて得られたパッケージの信頼性がより向上する。 When the curing accelerator (c) is used, the content of the curing accelerator (c) in the second adhesive composition and the second layer is based on 100 parts by mass of the epoxy thermosetting resin (b). The content is preferably 0.01 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass. The effect by using a hardening accelerator (c) is acquired more notably because the said content of a hardening accelerator (c) is more than the said lower limit. When the content of the curing accelerator (c) is not more than the above upper limit value, for example, the highly polar curing accelerator (c) adheres to the adherend in the second layer under high temperature and high humidity conditions. The effect of suppressing movement to the interface side and segregation is enhanced, and the reliability of the package obtained using the second layer is further improved.
(架橋剤(f))
 第2接着剤組成物及び第2層における架橋剤(f)は、第1接着剤組成物及び第1層における架橋剤(f)と同じである。
(Crosslinking agent (f))
The crosslinking agent (f) in the second adhesive composition and the second layer is the same as the crosslinking agent (f) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有する架橋剤(f)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As for the crosslinking agent (f) contained in the second adhesive composition and the second layer, only one type may be used, or two or more types may be used, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. .
 第2接着剤組成物及び第2層において、架橋剤(f)の含有量は、重合体成分(a)の含有量100質量部に対して、0~5質量部であることが好ましい。 In the second adhesive composition and the second layer, the content of the crosslinking agent (f) is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the polymer component (a).
(汎用添加剤(i))
 第2接着剤組成物及び第2層における汎用添加剤(i)は、第1接着剤組成物及び第1層における汎用添加剤(i)と同じである。
(General-purpose additive (i))
The general-purpose additive (i) in the second adhesive composition and the second layer is the same as the general-purpose additive (i) in the first adhesive composition and the first layer.
 第2接着剤組成物及び第2層が含有する汎用添加剤(i)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 第2接着剤組成物及び第2層の汎用添加剤(i)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The general-purpose additive (i) contained in the second adhesive composition and the second layer may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrarily selected. it can.
The contents of the second adhesive composition and the general-purpose additive (i) in the second layer are not particularly limited, and may be appropriately selected depending on the purpose.
(溶媒)
 第2接着剤組成物は、さらに溶媒を含有することが好ましい。溶媒を含有する第2接着剤組成物は、取り扱い性が良好となる。
 第2接着剤組成物における溶媒は、第1接着剤組成物における溶媒と同じである。
(solvent)
It is preferable that the second adhesive composition further contains a solvent. The second adhesive composition containing the solvent has good handleability.
The solvent in the second adhesive composition is the same as the solvent in the first adhesive composition.
 第2接着剤組成物が含有する溶媒は、第2接着剤組成物中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。 The solvent contained in the second adhesive composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the second adhesive composition can be mixed more uniformly.
 好ましい第2接着剤組成物の一例としては、重合体成分(a)、充填材(d)エネルギー線硬化性樹脂(g)、光重合開始剤(h)、及びカップリング剤(e)を含有するものが挙げられ、これら以外に、さらに、汎用添加剤(i)を含有するものも挙げられる。 As an example of a preferable second adhesive composition, a polymer component (a), a filler (d) an energy ray curable resin (g), a photopolymerization initiator (h), and a coupling agent (e) are contained. In addition to these, those containing the general-purpose additive (i) are also included.
<<第2接着剤組成物の製造方法>>
 第2接着剤組成物は、上述の第1接着剤組成物の場合と同じ方法で製造できる。
<< Method for Producing Second Adhesive Composition >>
A 2nd adhesive composition can be manufactured by the same method as the case of the above-mentioned 1st adhesive composition.
 ダイボンディングフィルムの厚さ(第1層及び第2層の合計の厚さ)は、2~80μmであることが好ましく、6~60μmであることがより好ましく、10~40μmであることが特に好ましい。 The thickness of the die bonding film (the total thickness of the first layer and the second layer) is preferably 2 to 80 μm, more preferably 6 to 60 μm, and particularly preferably 10 to 40 μm. .
 図1は、本発明の一実施形態に係るダイボンディングフィルムを模式的に示す断面図である。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。 FIG. 1 is a cross-sectional view schematically showing a die bonding film according to an embodiment of the present invention. In addition, in order to make the features of the present invention easier to understand, the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
 ここに示すダイボンディングフィルム13は、第1層131を備え、第1層131上に第2層132を備えて、構成されている。
 ダイボンディングフィルム13は、その一方の面(本明細書においては、「第1面」と称することがある)13a上に第1剥離フィルム151を備え、前記第1面13aとは反対側の他方の面(本明細書においては、「第2面」と称することがある)13b上に第2剥離フィルム152を備えている。
 このようなダイボンディングフィルム13は、例えば、ロール状として保管するのに好適である。
The die bonding film 13 shown here includes a first layer 131, and includes a second layer 132 on the first layer 131.
The die bonding film 13 includes a first release film 151 on one surface (sometimes referred to as a “first surface” in this specification) 13a, and the other side opposite to the first surface 13a. The second release film 152 is provided on the surface 13b (may be referred to as “second surface” in this specification).
Such a die bonding film 13 is suitable for storing as a roll, for example.
 ダイボンディングフィルム13のうち、第2層132の第1層131側とは反対側の面(本明細書においては、「第1面」と称することがある)132aには、第1剥離フィルム151が積層され、第1層131の第2層132側とは反対側の面(本明細書においては、「第2面」と称することがある)131bには、第2剥離フィルム152が積層されている。
 第1層131の第2面131bは、ダイボンディングフィルム13の第2面13bと同じであり、第2層132の第1面132aは、ダイボンディングフィルム13の第1面13aと同じである。
On the surface of the die bonding film 13 opposite to the first layer 131 side of the second layer 132 (which may be referred to as “first surface” in this specification) 132a, the first release film 151 is provided. The second release film 152 is laminated on the surface 131b of the first layer 131 opposite to the second layer 132 side (in this specification, sometimes referred to as “second surface”) 131b. ing.
The second surface 131 b of the first layer 131 is the same as the second surface 13 b of the die bonding film 13, and the first surface 132 a of the second layer 132 is the same as the first surface 13 a of the die bonding film 13.
 ダイボンディングフィルム13のうち、第1層の初期検出温度(T)は、75℃以下である。
 ダイボンディングフィルム13のうち、第2層は、粘着性及びエネルギー線硬化性を有し、第2層の試験片を用いて作製された前記試験用積層体の前記浸漬後粘着力は、6N/25mm以上である。
In the die bonding film 13, the initial detection temperature (T 0 ) of the first layer is 75 ° C. or lower.
Of the die bonding film 13, the second layer has adhesiveness and energy ray curability, and the post-immersion adhesive strength of the test laminate produced using the test piece of the second layer is 6 N / It is 25 mm or more.
 第1剥離フィルム151及び第2剥離フィルム152は、いずれも公知のものでよい。
 第1剥離フィルム151及び第2剥離フィルム152は、互いに同じものであってもよいし、例えば、ダイボンディングフィルム13から剥離させるときに必要な剥離力が互いに異なる等、互いに異なるものであってもよい。
Both the first release film 151 and the second release film 152 may be known ones.
The first release film 151 and the second release film 152 may be the same as each other, or may be different from each other, for example, different peeling forces required for peeling from the die bonding film 13 may be used. Good.
 図1に示すダイボンディングフィルム13は、第1剥離フィルム151が取り除かれ、生じた露出面、換言すると、第2層132の第1面132aに、半導体ウエハ(図示略)の裏面が貼付される。そして、第2剥離フィルム152が取り除かれ、生じた露出面、換言すると、第1層131の第2面131bが、後述する支持シートの貼付面となる。 In the die bonding film 13 shown in FIG. 1, the first release film 151 is removed, and in other words, the back surface of the semiconductor wafer (not shown) is attached to the generated exposed surface, in other words, the first surface 132 a of the second layer 132. . And the 2nd peeling film 152 is removed and the exposed surface produced, in other words, the 2nd surface 131b of the 1st layer 131 turns into the sticking surface of the support sheet mentioned later.
◇ダイボンディングフィルムの製造方法
 ダイボンディングフィルムは、例えば、第1層(第1フィルム)及び第2層(第2フィルム)を、それぞれ別途形成しておき、貼り合わせることで、製造できる、第1層及び第2層の形成方法は、先に説明したとおりである。
◇ Die Bonding Film Manufacturing Method For example, the die bonding film can be manufactured by separately forming and bonding a first layer (first film) and a second layer (second film). The formation method of the layer and the second layer is as described above.
 例えば、剥離フィルム上に、第1接着剤組成物を用いて、あらかじめ第1層を形成し、同様に、別途、剥離フィルム上に、第2接着剤組成物を用いて、あらかじめ第2層を形成しておく。このとき、これら組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。そして、この形成済みの第1層の前記剥離フィルムと接触している側とは反対側の露出面と、この形成済みの第2層の前記剥離フィルムと接触している側とは反対側の露出面と、を貼り合わせることで、第1層及び第2層が積層されたダイボンディングフィルムが得られる。
 第1層に接触している剥離フィルムと、第2層に接触している剥離フィルムは、いずれも、ダイボンディングフィルムの使用時に、適したタイミングで取り除けばよい。
For example, the first layer is previously formed on the release film using the first adhesive composition, and similarly, the second layer is previously formed on the release film using the second adhesive composition. Form it. At this time, these compositions are preferably applied to the release-treated surface of the release film. And, the exposed surface of the formed first layer opposite to the side in contact with the release film, and the opposite side of the formed second layer in contact with the release film. A die bonding film in which the first layer and the second layer are laminated is obtained by bonding the exposed surface.
The release film that is in contact with the first layer and the release film that is in contact with the second layer may be removed at an appropriate timing when the die bonding film is used.
◇ダイシングダイボンディングシート
 本発明の一実施形態に係るダイシングダイボンディングシートは、支持シートを備え、前記支持シート上に、前記ダイボンディングフィルムを備えており、前記ダイボンディングフィルム中の第1層が、前記支持シート側に配置されている。
 前記ダイシングダイボンディングシートは、半導体ウエハのダイシング時に利用可能である。
 以下、前記ダイシングダイボンディングシートを構成する各層について、詳細に説明する。
◇ Dicing die bonding sheet A dicing die bonding sheet according to an embodiment of the present invention includes a support sheet, and the support sheet includes the die bonding film, and the first layer in the die bonding film includes: It arrange | positions at the said support sheet side.
The dicing die bonding sheet can be used when dicing a semiconductor wafer.
Hereinafter, each layer constituting the dicing die bonding sheet will be described in detail.
◎支持シート
 前記支持シートは、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。
Support sheet The support sheet may be composed of one layer (single layer) or may be composed of two or more layers. When the support sheet is composed of a plurality of layers, the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
 好ましい支持シートとしては、例えば、基材のみからなるもの;基材を備え、前記基材上に中間層を備えたもの等が挙げられる。 Preferred support sheets include, for example, those composed only of a base material; those provided with a base material, and provided with an intermediate layer on the base material.
 基材のみからなる前記支持シートは、キャリアシート又はダイシングシートとして好適である。このような基材のみからなる支持シートを備えたダイシングダイボンディングシートは、ダイボンディングフィルムの支持シート(すなわち基材)を備えている側とは反対側の面(すなわち第1面)が、半導体ウエハの裏面に貼付されて、使用される。 The support sheet made of only the base material is suitable as a carrier sheet or a dicing sheet. A dicing die bonding sheet provided with a support sheet composed only of such a base material has a surface (namely, the first surface) opposite to the side provided with the support sheet (namely, base material) of the die bonding film. Attached to the back side of the wafer and used.
 一方、基材を備え、前記基材上に中間層を備えた前記支持シートは、ダイシングシートとして好適である。このような支持シートを備えたダイシングダイボンディングシートも、ダイボンディングフィルムの支持シートを備えている側とは反対側の面(第1面)が、半導体ウエハの裏面に貼付されて、使用される。 On the other hand, the support sheet provided with a base material and provided with an intermediate layer on the base material is suitable as a dicing sheet. A dicing die bonding sheet provided with such a support sheet is also used by attaching a surface (first surface) opposite to the side provided with the support sheet of the die bonding film to the back surface of the semiconductor wafer. .
 ダイシングダイボンディングシートの使用方法は、後ほど詳しく説明する。
 以下、支持シートを構成する各層について、説明する。
The method of using the dicing die bonding sheet will be described in detail later.
Hereinafter, each layer which comprises a support sheet is demonstrated.
○基材
 前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPEと略記することがある)、直鎖低密度ポリエチレン(LLDPEと略記することがある)、高密度ポリエチレン(HDPEと略記することがある)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
-Base material The base material is in the form of a sheet or film, and examples of the constituent material include various resins.
Examples of the resin include polyethylene such as low density polyethylene (sometimes abbreviated as LDPE), linear low density polyethylene (sometimes abbreviated as LLDPE), and high density polyethylene (sometimes abbreviated as HDPE). Polyolefins other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin; ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer Ethylene copolymers such as ethylene-norbornene copolymer (copolymers obtained using ethylene as a monomer); vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers (vinyl chloride as a monomer) Resin obtained by using); polystyrene; Olefins; Polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalene dicarboxylate, wholly aromatic polyesters in which all structural units have aromatic cyclic groups; Polyester (poly) methacrylate; Polyurethane; Polyurethane acrylate; Polyimide; Polyamide; Polycarbonate; Fluororesin; Polyacetal; Modified polyphenylene oxide; Polyphenylene sulfide; Polysulfone;
Moreover, as said resin, polymer alloys, such as a mixture of the said polyester and other resin, are mentioned, for example. The polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
Examples of the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
 基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The resin constituting the substrate may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The substrate may be composed of one layer (single layer) or may be composed of two or more layers. When the substrate is composed of a plurality of layers, these layers may be the same or different from each other. The combination of layers is not particularly limited.
 基材の厚さは、50~300μmであることが好ましく、60~150μmであることがより好ましい。基材の厚さがこのような範囲であることで、ダイシングダイボンディングシートの可撓性と、ダイシングダイボンディングシートの半導体ウエハ又は半導体チップへの貼付性と、後述する硬化済みダイボンディングフィルム付き半導体チップのピックアップ性と、がより向上する。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the substrate is preferably 50 to 300 μm, and more preferably 60 to 150 μm. When the thickness of the substrate is in such a range, the flexibility of the dicing die bonding sheet, the sticking property of the dicing die bonding sheet to the semiconductor wafer or semiconductor chip, and the semiconductor with a cured die bonding film described later The pickup property of the chip is further improved.
Here, “the thickness of the substrate” means the thickness of the entire substrate. For example, the thickness of the substrate composed of a plurality of layers means the total thickness of all the layers constituting the substrate. means.
 基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリウレタンアクリレート、エチレン-酢酸ビニル共重合体等が挙げられる。 The base material is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part. Among the above-mentioned constituent materials, examples of materials that can be used to construct such a substrate with high thickness accuracy include polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyurethane acrylate, and ethylene. -Vinyl acetate copolymer and the like.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 The base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent material such as the resin. May be.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。ただし、基材は、エネルギー線を透過させるものが好ましく、エネルギー線の透過性が高いものがより好ましい。 The substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited. However, the base material is preferably one that transmits energy rays, and more preferably has high energy ray permeability.
 基材は、その上に設けられる中間層等の他の層との密着性を向上させるために、サンドブラスト処理、溶剤処理等による凹凸化処理や、コロナ放電処理、電子線照射処理、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理等の酸化処理等が表面に施されたものであってもよい。
 また、基材は、表面がプライマー処理を施されたものであってもよい。
 また、基材は、帯電防止コート層;ダイシングダイボンディングシートを重ね合わせて保存する際に、基材が他のシートに接着することや、基材が吸着テーブルに接着することを防止する層等を有するものであってもよい。
In order to improve the adhesion with other layers such as an intermediate layer provided on the substrate, the substrate is subjected to uneven blasting treatment such as sandblasting treatment, solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment, The surface may be subjected to an oxidation treatment such as ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, or the like.
The base material may have a surface subjected to primer treatment.
In addition, the base material is an antistatic coat layer; a layer that prevents the base material from adhering to other sheets or the base material from adhering to the adsorption table when the dicing die bonding sheet is stored in an overlapping manner. It may have.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be manufactured by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
○中間層
 前記中間層は、基材とダイボンディングフィルムとの間に配置され、その機能を発揮するものであれば、特に限定されない。
 中間層として、より具体的には、例えば、少なくとも一方の面が剥離処理されている剥離性改善層、粘着剤層等が挙げられる。
○ Intermediate layer The intermediate layer is not particularly limited as long as it is disposed between the substrate and the die bonding film and exhibits its function.
More specifically, examples of the intermediate layer include a peelability improving layer and a pressure-sensitive adhesive layer in which at least one surface is peeled.
 前記剥離性改善層は、後述する硬化済みダイボンディングフィルム付き半導体チップのピックアップ時において、硬化済みダイボンディングフィルムの支持シートからの剥離を容易とする。
 前記粘着剤層は、ダイシング時において、支持シート上での半導体ウエハの固定を安定化したり、硬化済みダイボンディングフィルム付き半導体チップのピックアップ時において、硬化済みダイボンディングフィルムの支持シートからの剥離を容易としたりする。
The peelability improving layer facilitates peeling of the cured die bonding film from the support sheet at the time of picking up a semiconductor chip with a cured die bonding film, which will be described later.
The pressure-sensitive adhesive layer stabilizes the fixing of the semiconductor wafer on the support sheet during dicing, and facilitates peeling of the cured die bonding film from the support sheet when picking up a semiconductor chip with a cured die bonding film. And so on.
・剥離性改善層
 前記剥離性改善層は、シート状又はフィルム状である。
 剥離性改善層としては、例えば、樹脂層と、前記樹脂層上に形成された剥離処理層と、を備えて構成された、複数層からなるもの;剥離剤を含有する単層からなるもの等が挙げられる。ダイシングダイボンディングシートにおいて、剥離性改善層は、その剥離処理されている面をダイボンディングフィルム側に向けて、配置されている。
-Peelability improvement layer The said peelability improvement layer is a sheet form or a film form.
As the peelability improving layer, for example, a multi-layered structure including a resin layer and a release treatment layer formed on the resin layer; a single layer containing a release agent, etc. Is mentioned. In the dicing die bonding sheet, the peelability improving layer is disposed with the peeled surface facing the die bonding film side.
 複数層からなる剥離性改善層のうち、前記樹脂層は、樹脂を含有する樹脂組成物を成形又は塗工し、必要に応じて乾燥させることで作製できる。
 そして、複数層からなる剥離性改善層は、前記樹脂層の一方の面を剥離処理することで製造できる。
Among the peelable improvement layers comprising a plurality of layers, the resin layer can be produced by molding or coating a resin composition containing a resin and drying it as necessary.
And the peelability improvement layer which consists of multiple layers can be manufactured by carrying out the peeling process of one surface of the said resin layer.
 前記樹脂層の剥離処理は、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系又はワックス系等の、公知の各種剥離剤によって行うことができる。
 前記剥離剤は、耐熱性を有する点では、アルキッド系、シリコーン系又はフッ素系の剥離剤であることが好ましい。
The release treatment of the resin layer can be performed by various known release agents such as alkyd, silicone, fluorine, unsaturated polyester, polyolefin or wax.
In terms of heat resistance, the release agent is preferably an alkyd, silicone or fluorine release agent.
 前記樹脂層の構成材料である樹脂は、目的に応じて適宜選択すればよく、特に限定されない。
 前記樹脂で好ましいものとしては、例えば、ポリエチレンテレフタレート(PETと略記することがある)、ポリエチレンナフタレート(PENと略記することがある)、ポリブチレンテレフタレート(PBTと略記することがある)、ポリエチレン(PEと略記することがある)、ポリプロピレン(PPと略記することがある)等が挙げられる。
The resin that is a constituent material of the resin layer may be appropriately selected according to the purpose, and is not particularly limited.
Preferred examples of the resin include polyethylene terephthalate (sometimes abbreviated as PET), polyethylene naphthalate (sometimes abbreviated as PEN), polybutylene terephthalate (sometimes abbreviated as PBT), polyethylene ( PE (sometimes abbreviated as PE), polypropylene (sometimes abbreviated as PP), and the like.
 前記樹脂層は、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The resin layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other, The combination of these multiple layers is not particularly limited.
 単層からなる剥離性改善層は、剥離剤を含有する剥離性組成物を成形又は塗工し、必要に応じて乾燥させることで作製できる。
 前記剥離性組成物が含有する剥離剤としては、前記樹脂層の剥離処理時に用いる上述の各種剥離剤と同じものが挙げられる。
 前記剥離性組成物は、前記樹脂層の構成材料である樹脂と同様の樹脂を含有していてもよい。すなわち、単層からなる剥離性改善層は、剥離剤以外に、樹脂を含有していてもよい。
The peelability improving layer comprising a single layer can be produced by molding or coating a peelable composition containing a release agent and drying it as necessary.
Examples of the release agent contained in the release composition include the same ones as the above-described various release agents used during the release treatment of the resin layer.
The peelable composition may contain a resin similar to the resin that is a constituent material of the resin layer. That is, the peelability improving layer composed of a single layer may contain a resin in addition to the release agent.
 剥離性改善層の厚さは、10~200μmであることが好ましく、15~150μmであることがより好ましく、25~120μmであることが特に好ましい。剥離性改善層の厚さが前記下限値以上であることで、剥離性改善層の作用がより顕著となり、さらに、剥離性改善層の切断等の破損を抑制する効果がより高くなる。剥離性改善層の厚さが前記上限値以下であることで、後述する硬化済みダイボンディングフィルム付き半導体チップのピックアップ時に、突き上げる力が硬化済みダイボンディングフィルム付き半導体チップに伝達され易くなり、ピックアップをより容易に行うことができる。
 ここで、「剥離性改善層の厚さ」とは、剥離性改善層が、前記樹脂層及び剥離処理層を備えた複数層からなるものである場合には、樹脂層及び剥離処理層の合計の厚さを意味する。また、剥離性改善層が、剥離剤を含有する単層からなるものである場合には、この単層の厚さを意味する。
The thickness of the peelability improving layer is preferably 10 to 200 μm, more preferably 15 to 150 μm, and particularly preferably 25 to 120 μm. When the thickness of the peelability improving layer is equal to or more than the lower limit, the action of the peelability improving layer becomes more remarkable, and further, the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher. When the thickness of the peelable improvement layer is not more than the above upper limit value, the pick-up force is easily transmitted to the semiconductor chip with the cured die bonding film when picking up the semiconductor chip with the cured die bonding film, which will be described later. It can be done more easily.
Here, “the thickness of the peelability improving layer” means the total of the resin layer and the release treatment layer when the peelability improvement layer is composed of a plurality of layers including the resin layer and the release treatment layer. Means the thickness. Moreover, when a peelability improvement layer consists of a single layer containing a release agent, the thickness of this single layer is meant.
・粘着剤層
 前記粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
 前記粘着剤としては、例えば、アクリル系樹脂、ウレタン系樹脂、ゴム系樹脂、シリコーン系樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の粘着性樹脂が挙げられ、アクリル系樹脂が好ましい。
-Adhesive layer The said adhesive layer is a sheet form or a film form, and contains an adhesive.
Examples of the adhesive include adhesive resins such as acrylic resins, urethane resins, rubber resins, silicone resins, epoxy resins, polyvinyl ethers, polycarbonates, ester resins, and acrylic resins are preferable. .
 なお、本明細書において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。 In the present specification, the “adhesive resin” is a concept including both an adhesive resin and an adhesive resin. For example, the resin itself is not only adhesive. In addition, a resin exhibiting tackiness by using in combination with other components such as additives, a resin exhibiting adhesiveness due to the presence of a trigger such as heat or water, and the like are also included.
 粘着剤層は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The pressure-sensitive adhesive layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other. The combination of the multiple layers is not particularly limited.
 粘着剤層の厚さは、特に限定されないが、1~100μmであることが好ましい。
 ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。
The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 1 to 100 μm.
Here, the “thickness of the pressure-sensitive adhesive layer” means the thickness of the whole pressure-sensitive adhesive layer. For example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the total of all layers constituting the pressure-sensitive adhesive layer. Means the thickness.
 粘着剤層は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよい。ただし、粘着剤層は、エネルギー線を透過させるものが好ましく、エネルギー線の透過性が高いものがより好ましい。 The pressure-sensitive adhesive layer may be transparent, opaque, or colored depending on the purpose. However, the pressure-sensitive adhesive layer preferably transmits energy rays, and more preferably has high energy ray permeability.
 粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものであってもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものであってもよい。エネルギー線硬化性の粘着剤を用いて形成された粘着剤層は、硬化前及び硬化後での物性を、容易に調節できる。 The pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive. The pressure-sensitive adhesive layer formed using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
 粘着剤層は、粘着剤を含有する粘着剤組成物を用いて形成できる。例えば、粘着剤層の形成対象面に粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に粘着剤層を形成できる。 The pressure-sensitive adhesive layer can be formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. For example, an adhesive layer can be formed in the target site | part by applying an adhesive composition to the formation object surface of an adhesive layer, and making it dry as needed.
 ここまでに、剥離性改善層及び粘着剤層の形成方法について説明したが、これらに限らず、中間層は、その構成材料を含有する中間層用組成物を用いて形成できる。例えば、中間層の形成対象面に中間層用組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に中間層を形成できる。また、中間層用組成物の種類に応じて、これを成形することでも中間層を形成できる。 So far, the method for forming the peelability improving layer and the pressure-sensitive adhesive layer has been described. However, the present invention is not limited thereto, and the intermediate layer can be formed by using an intermediate layer composition containing the constituent material. For example, the intermediate layer can be formed at the target site by applying the intermediate layer composition to the surface on which the intermediate layer is to be formed and drying it as necessary. Moreover, according to the kind of composition for intermediate | middle layers, an intermediate | middle layer can also be formed by shape | molding this.
 次に、本発明のダイシングダイボンディングシートの例を、支持シートの種類ごとに、以下、図面を参照しながら説明する。 Next, an example of the dicing die bonding sheet of the present invention will be described below for each type of support sheet with reference to the drawings.
 図2は、本発明のダイシングダイボンディングシートの一実施形態を模式的に示す断面図である。
 なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
FIG. 2 is a cross-sectional view schematically showing an embodiment of the dicing die bonding sheet of the present invention.
In FIG. 2 and subsequent figures, the same components as those shown in the already explained figures are given the same reference numerals as those in the already explained figures, and their detailed explanations are omitted.
 ここに示すダイシングダイボンディングシート1Aは、支持シート10を備え、支持シート10上にダイボンディングフィルム13を備えている。支持シート10は、基材11のみからなり、ダイシングダイボンディングシート1Aは、換言すると、基材11の一方の面(本明細書においては、「第1面」と称することがある)11a上にダイボンディングフィルム13が積層された構成を有する。また、ダイシングダイボンディングシート1Aは、さらにダイボンディングフィルム13上に剥離フィルム15を備えている。 The dicing die bonding sheet 1 </ b> A shown here includes a support sheet 10, and a die bonding film 13 on the support sheet 10. The support sheet 10 is composed only of the base material 11, and in other words, the dicing die bonding sheet 1 </ b> A is on one surface (which may be referred to as “first surface” in this specification) 11 a of the base material 11. The die bonding film 13 has a laminated structure. The dicing die bonding sheet 1 </ b> A further includes a release film 15 on the die bonding film 13.
 ダイシングダイボンディングシート1Aにおいては、基材11の第1面11aに、第1層131が積層されている。また、第1層131の基材11側とは反対側の面(本明細書においては、「第1面」と称することがある)131aに、第2層132が積層されている。また、第2層132の第1面132a(換言すると、ダイボンディングフィルム13の第1面13a)の一部、すなわち、周縁部近傍の領域に、治具用接着剤層16が積層されている。また、第2層132の第1面132aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16のうち、ダイボンディングフィルム13と接触していない面16a(上面及び側面)に、剥離フィルム15が積層されている。
 ここで、基材11の第1面11aは、支持シート10の第1面10aとも称する。
In the dicing die bonding sheet 1 </ b> A, the first layer 131 is laminated on the first surface 11 a of the substrate 11. In addition, the second layer 132 is laminated on a surface 131 a (which may be referred to as a “first surface” in this specification) on the opposite side to the substrate 11 side of the first layer 131. Further, the jig adhesive layer 16 is laminated on a part of the first surface 132a of the second layer 132 (in other words, the first surface 13a of the die bonding film 13), that is, in the vicinity of the peripheral portion. . Of the first surface 132 a of the second layer 132, the surface on which the jig adhesive layer 16 is not laminated and the surface 16 a of the jig adhesive layer 16 that is not in contact with the die bonding film 13. A release film 15 is laminated on the upper surface and the side surface.
Here, the first surface 11 a of the substrate 11 is also referred to as the first surface 10 a of the support sheet 10.
 剥離フィルム15は、図1に示す第1剥離フィルム151又は第2剥離フィルム152と同様のものである。 The release film 15 is the same as the first release film 151 or the second release film 152 shown in FIG.
 治具用接着剤層16は、例えば、接着剤成分を含有する単層構造のものであってもよいし、芯材となるシートの両面に接着剤成分を含有する層が積層された複数層構造のものであってもよい。 The adhesive layer 16 for jigs may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which layers containing an adhesive component are laminated on both surfaces of a core sheet. It may be of a structure.
 ダイシングダイボンディングシート1Aは、剥離フィルム15が取り除かれた状態で、第2層132の第1面132a(ダイボンディングフィルム13の第1面13a)のうち、治具用接着剤層16が積層されていない領域に、半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の面16aのうち上面が、リングフレーム等の治具に貼付されて、使用される。 In the dicing die bonding sheet 1A, the jig adhesive layer 16 is laminated on the first surface 132a of the second layer 132 (the first surface 13a of the die bonding film 13) with the release film 15 removed. The back surface of the semiconductor wafer (not shown) is attached to the unexposed region, and the upper surface of the surface 16a of the jig adhesive layer 16 is attached to a jig such as a ring frame.
 図3は、本発明のダイシングダイボンディングシートの他の実施形態を模式的に示す断面図である。
 ここに示すダイシングダイボンディングシート1Bは、治具用接着剤層16を備えていない点以外は、図2に示すダイシングダイボンディングシート1Aと同じである。すなわち、ダイシングダイボンディングシート1Bにおいては、基材11の第1面11a(支持シート10の第1面10a)に、第1層131が積層され、第1層131の第1面131aに、第2層132が積層され、第2層132の第1面132aの全面に、剥離フィルム15が積層されている。
 換言すると、ダイシングダイボンディングシート1Bは、基材11、第1層131、第2層132及び剥離フィルム15がこの順に、これらの厚さ方向において積層されて、構成されている。
FIG. 3 is a cross-sectional view schematically showing another embodiment of the dicing die bonding sheet of the present invention.
The dicing die bonding sheet 1B shown here is the same as the dicing die bonding sheet 1A shown in FIG. 2 except that the jig adhesive layer 16 is not provided. That is, in the dicing die bonding sheet 1B, the first layer 131 is laminated on the first surface 11a of the base material 11 (the first surface 10a of the support sheet 10), and the first surface 131a of the first layer 131 has the first surface 131a. Two layers 132 are laminated, and the release film 15 is laminated on the entire first surface 132 a of the second layer 132.
In other words, the dicing die bonding sheet 1B is configured by stacking the base material 11, the first layer 131, the second layer 132, and the release film 15 in this order in the thickness direction.
 図3に示すダイシングダイボンディングシート1Bは、図2に示すダイシングダイボンディングシート1Aの場合と同様に、剥離フィルム15が取り除かれた状態で、ダイボンディングフィルム13の第1面13aのうち、中央側の一部の領域に、半導体ウエハ(図示略)の裏面が貼付され、さらに、ダイボンディングフィルム13の周縁部近傍の領域が、リングフレーム等の治具に貼付されて、使用される。 As in the case of the dicing die bonding sheet 1A shown in FIG. 2, the dicing die bonding sheet 1B shown in FIG. 3 is the center side of the first surface 13a of the die bonding film 13 with the release film 15 removed. The rear surface of the semiconductor wafer (not shown) is attached to a part of the region, and the region near the peripheral edge of the die bonding film 13 is attached to a jig such as a ring frame for use.
 図4は、本発明のダイシングダイボンディングシートのさらに他の実施形態を模式的に示す断面図である。
 ここに示すダイシングダイボンディングシート1Cは、基材11と、ダイボンディングフィルム13(第1層131)と、の間に、さらに、中間層12を備えている点以外は、図2に示すダイシングダイボンディングシート1Aと同じである。支持シート10は、基材11及び中間層12の積層体であり、ダイシングダイボンディングシート1Cも、支持シート10の第1面10a上にダイボンディングフィルム13が積層された構成を有する。
FIG. 4 is a cross-sectional view schematically showing still another embodiment of the dicing die bonding sheet of the present invention.
The dicing die bonding sheet 1C shown here is the dicing die shown in FIG. 2 except that the intermediate layer 12 is further provided between the base material 11 and the die bonding film 13 (first layer 131). It is the same as the bonding sheet 1A. The support sheet 10 is a laminate of the base material 11 and the intermediate layer 12, and the dicing die bonding sheet 1 </ b> C also has a configuration in which the die bonding film 13 is laminated on the first surface 10 a of the support sheet 10.
 ダイシングダイボンディングシート1Cにおいては、基材11の第1面11aに、中間層12が積層されている。また、中間層12の基材11側とは反対側の面(本明細書においては、「第1面」と称することがある)12aに、第1層131が積層されている。また、第1層131の第1面131aに、第2層132が積層されている。また、第2層132の第1面132a(換言すると、ダイボンディングフィルム13の第1面13a)の一部、すなわち、周縁部近傍の領域に、治具用接着剤層16が積層されている。また、第2層132の第1面132aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16のうち、ダイボンディングフィルム13と接触していない面16a(上面及び側面)に、剥離フィルム15が積層されている。 In the dicing die bonding sheet 1 </ b> C, the intermediate layer 12 is laminated on the first surface 11 a of the substrate 11. In addition, the first layer 131 is laminated on a surface 12 a (which may be referred to as a “first surface” in this specification) opposite to the base material 11 side of the intermediate layer 12. Further, the second layer 132 is laminated on the first surface 131 a of the first layer 131. Further, the jig adhesive layer 16 is laminated on a part of the first surface 132a of the second layer 132 (in other words, the first surface 13a of the die bonding film 13), that is, in the vicinity of the peripheral portion. . Of the first surface 132 a of the second layer 132, the surface on which the jig adhesive layer 16 is not laminated and the surface 16 a of the jig adhesive layer 16 that is not in contact with the die bonding film 13. A release film 15 is laminated on the upper surface and the side surface.
 ダイシングダイボンディングシート1Cにおいては、中間層12が複数層からなる前記剥離性改善層である場合には、例えば、中間層12の基材11側の層が前記樹脂層(図示略)となり、中間層12のダイボンディングフィルム13(第1層131)側の層が前記剥離処理層(図示略)となる。したがって、この場合、中間層12の第1面12aは、剥離処理面となる。一方、中間層12が単層からなる前記剥離性改善層である場合には、中間層12の第1面12aが剥離処理面となるのは、上記と同様であるが、中間層12全体が剥離剤を含有する。このように中間層12が剥離性改善層である場合には、後述する硬化済みダイボンディングフィルム付き半導体チップのピックアップ時において、硬化済みダイボンディングフィルム(図4中のダイボンディングフィルム13が切断され、さらに、ダイボンディングフィルム13中の第2層132がエネルギー線硬化されたもの)の剥離が容易である。 In the dicing die bonding sheet 1C, in the case where the intermediate layer 12 is the peelability improving layer composed of a plurality of layers, for example, the layer on the substrate 11 side of the intermediate layer 12 becomes the resin layer (not shown), The layer on the die bonding film 13 (first layer 131) side of the layer 12 becomes the release treatment layer (not shown). Therefore, in this case, the first surface 12a of the intermediate layer 12 is a peeling treatment surface. On the other hand, when the intermediate layer 12 is the single layer peelable improvement layer, the first surface 12a of the intermediate layer 12 is the release treatment surface as described above. Contains a release agent. Thus, when the intermediate layer 12 is a peelability improving layer, the cured die bonding film (the die bonding film 13 in FIG. 4 is cut at the time of picking up a semiconductor chip with a cured die bonding film described later, Further, the second layer 132 in the die bonding film 13 is easily peeled off by energy rays.
 図4に示すダイシングダイボンディングシート1Cは、剥離フィルム15が取り除かれた状態で、第2層132の第1面132a(ダイボンディングフィルム13の第1面13a)のうち、治具用接着剤層16が積層されていない領域に、半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の面16aのうち上面が、リングフレーム等の治具に貼付されて、使用される。 The dicing die bonding sheet 1C shown in FIG. 4 has a jig adhesive layer out of the first surface 132a of the second layer 132 (the first surface 13a of the die bonding film 13) with the release film 15 removed. The back surface of a semiconductor wafer (not shown) is pasted in a region where 16 is not laminated, and the top surface of the surface 16a of the jig adhesive layer 16 is stuck to a jig such as a ring frame. Is done.
 図5は、本発明のダイシングダイボンディングシートのさらに他の実施形態を模式的に示す断面図である。
 ここに示すダイシングダイボンディングシート1Dは、治具用接着剤層16を備えておらず、かつダイボンディングフィルムの形状が異なる点以外は、図4に示すダイシングダイボンディングシート1Cと同じである。すなわち、ダイシングダイボンディングシート1Dは、基材11を備え、基材11上に中間層12を備え、中間層12上にダイボンディングフィルム23を備えている。支持シート10は、基材11及び中間層12の積層体である。ダイボンディングフィルム23は、第1層231及び第2層232の積層体である。ダイシングダイボンディングシート1Dも、支持シート10の第1面10a上にダイボンディングフィルム23が積層された構成を有する。
FIG. 5 is a cross-sectional view schematically showing still another embodiment of the dicing die bonding sheet of the present invention.
The dicing die bonding sheet 1 </ b> D shown here is the same as the dicing die bonding sheet 1 </ b> C shown in FIG. 4 except that it does not include the jig adhesive layer 16 and the shape of the die bonding film is different. That is, the dicing die bonding sheet 1 </ b> D includes the base material 11, the intermediate layer 12 on the base material 11, and the die bonding film 23 on the intermediate layer 12. The support sheet 10 is a laminate of the base material 11 and the intermediate layer 12. The die bonding film 23 is a laminate of a first layer 231 and a second layer 232. The dicing die bonding sheet 1 </ b> D also has a configuration in which the die bonding film 23 is laminated on the first surface 10 a of the support sheet 10.
 ダイシングダイボンディングシート1Dにおいては、基材11の第1面11aに、中間層12が積層されている。また、中間層12の第1面12aの一部、すなわち、中央側の領域に、第1層231が積層されている。また、第1層231の第1面231aに、第2層232が積層されている。そして、中間層12の第1面12aのうち、ダイボンディングフィルム23が積層されていない領域と、ダイボンディングフィルム23のうち、中間層12と接触していない面(第1面23a及び側面)の上に、剥離フィルム15が積層されている。 In the dicing die bonding sheet 1D, the intermediate layer 12 is laminated on the first surface 11a of the substrate 11. The first layer 231 is laminated on a part of the first surface 12 a of the intermediate layer 12, that is, in the central region. Further, the second layer 232 is laminated on the first surface 231 a of the first layer 231. And the area | region (the 1st surface 23a and side surface) which is not contacting the intermediate | middle layer 12 among the area | regions where the die bonding film 23 is not laminated | stacked among the 1st surface 12a of the intermediate | middle layer 12, and the die bonding film 23. A release film 15 is laminated on the top.
 ダイシングダイボンディングシート1Dを上方から見下ろして平面視したときに、ダイボンディングフィルム23は中間層12よりも表面積が小さく、例えば、円形状等の形状を有する。 When the dicing die bonding sheet 1D is viewed from above and viewed in plan, the die bonding film 23 has a surface area smaller than that of the intermediate layer 12, and has a circular shape or the like, for example.
 図5に示すダイシングダイボンディングシート1Dは、剥離フィルム15が取り除かれた状態で、第2層232の第1面232a(ダイボンディングフィルム23の第1面23a)に、半導体ウエハ(図示略)の裏面が貼付され、さらに、中間層12の第1面12aのうち、ダイボンディングフィルム23が積層されていない領域が、リングフレーム等の治具に貼付されて、使用される。 The dicing die bonding sheet 1D shown in FIG. 5 has a semiconductor wafer (not shown) on the first surface 232a (first surface 23a of the die bonding film 23) of the second layer 232 with the release film 15 removed. The back surface is affixed, and the region of the first surface 12a of the intermediate layer 12 where the die bonding film 23 is not laminated is affixed to a jig such as a ring frame and used.
 なお、図5に示すダイシングダイボンディングシート1Dにおいては、中間層12の第1面12aのうち、ダイボンディングフィルム23が積層されていない領域に、図2及び図4に示すものと同様に治具用接着剤層が積層されていてもよい(図示略)。このような治具用接着剤層を備えたダイシングダイボンディングシート1Dは、図2及び図4に示すダイシングダイボンディングシートの場合と同様に、治具用接着剤層の面のうち上面が、リングフレーム等の治具に貼付されて、使用される。 In the dicing die bonding sheet 1D shown in FIG. 5, a jig similar to that shown in FIGS. 2 and 4 is formed on the first surface 12a of the intermediate layer 12 in the region where the die bonding film 23 is not laminated. An adhesive layer may be laminated (not shown). As in the case of the dicing die bonding sheet shown in FIGS. 2 and 4, the dicing die bonding sheet 1 </ b> D provided with such a jig adhesive layer has an upper surface on the surface of the jig adhesive layer. Used by sticking to a jig such as a frame.
 このように、ダイシングダイボンディングシートは、支持シート及びダイボンディングフィルムがどのような形態であっても、治具用接着剤層を備えたものであってもよい。ただし、通常は、図2及び図4に示すように、治具用接着剤層を備えたダイシングダイボンディングシートとしては、ダイボンディングフィルム上に治具用接着剤層を備えたものが好ましい。 Thus, the dicing die bonding sheet may be provided with an adhesive layer for jigs, regardless of the form of the support sheet and the die bonding film. However, normally, as shown in FIGS. 2 and 4, the dicing die bonding sheet provided with the jig adhesive layer is preferably provided with the jig adhesive layer on the die bonding film.
 本発明のダイシングダイボンディングシートは、図2~図5に示すものに限定されず、本発明の効果を損なわない範囲内において、図2~図5に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。 The dicing die bonding sheet of the present invention is not limited to that shown in FIGS. 2 to 5, and a part of the configuration shown in FIGS. 2 to 5 is changed or deleted within a range not impairing the effects of the present invention. In addition, another configuration may be added to what has been described so far.
 例えば、図2~図5に示すダイシングダイボンディングシートは、基材、中間層、ダイボンディングフィルム及び剥離フィルム以外の層が、任意の箇所に設けられていてもよい。
 また、ダイシングダイボンディングシートにおいては、剥離フィルムと、この剥離フィルムと直接接触している層との間に、一部隙間が生じていてもよい。
 また、ダイシングダイボンディングシートにおいては、各層の大きさや形状は、目的に応じて任意に調節できる。
For example, in the dicing die bonding sheet shown in FIGS. 2 to 5, layers other than the base material, the intermediate layer, the die bonding film, and the release film may be provided at any location.
In the dicing die bonding sheet, a gap may be partially formed between the release film and the layer that is in direct contact with the release film.
In the dicing die bonding sheet, the size and shape of each layer can be arbitrarily adjusted according to the purpose.
◇ダイシングダイボンディングシートの製造方法
 ダイシングダイボンディングシートは、例えば、前記ダイボンディングフィルムと、支持シートと、を貼り合わせることで、製造できる。
◇ Manufacturing Method of Dicing Die Bonding Sheet A dicing die bonding sheet can be manufactured, for example, by bonding the die bonding film and a support sheet.
 基材及び中間層を備えた支持シートは、基材上に上述の中間層用組成物を塗工し、必要に応じて乾燥させることで、製造できる。例えば、中間層が剥離性改善層である場合には、基材上に前記樹脂層を形成するための中間層用組成物を塗工して、前記樹脂層を形成した後、その露出面を剥離処理すればよい。 The support sheet provided with the base material and the intermediate layer can be produced by applying the above-mentioned intermediate layer composition on the base material and drying it as necessary. For example, when the intermediate layer is a releasability improving layer, the intermediate layer composition for forming the resin layer is applied on a base material to form the resin layer. A peeling process may be performed.
 基材及び中間層を備えた支持シートは、以下の方法でも製造できる。
 すなわち、基材に代えて剥離フィルムを用いた点以外は、上述の中間層の形成方法の場合と同じ方法で、剥離フィルム上に中間層を形成しておく。このとき、中間層用組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。
 そして、中間層の露出面(剥離フィルム側とは反対側の面)と、基材の一方の面(第1面)と、を貼り合わせることで、前記支持シートを製造できる。
The support sheet provided with the base material and the intermediate layer can also be produced by the following method.
That is, the intermediate layer is formed on the release film in the same manner as in the above-described intermediate layer formation method except that a release film is used instead of the base material. At this time, the intermediate layer composition is preferably applied to the release-treated surface of the release film.
And the said support sheet can be manufactured by bonding together the exposed surface (surface on the opposite side to the peeling film side) of an intermediate | middle layer, and one surface (1st surface) of a base material.
 また、ダイシングダイボンディングシートは、例えば、前記ダイボンディングフィルム及び支持シートをあらかじめ形成しておかなくても、製造できる。
 例えば、上述の方法で、剥離フィルム上に中間層を形成しておく。さらに、剥離フィルム上に形成済みの第1層(第1フィルム)と、剥離フィルム上に形成済みの第2層(第2フィルム)と、基材と、を用い、基材、形成済みの中間層、形成済みの第1層、及び形成済みの第2層をこの順に、これらの厚さ方向において積層する。このとき、必要に応じて適切なタイミングで、各層に設けられている前記剥離フィルムを取り除く。以上により、中間層を備えたダイシングダイボンディングシートが得られる。
Moreover, a dicing die bonding sheet can be manufactured, for example, without forming the die bonding film and the support sheet in advance.
For example, an intermediate layer is formed on the release film by the method described above. Furthermore, using the 1st layer (1st film) already formed on the peeling film, the 2nd layer (2nd film) already formed on the peeling film, and the base material, the base material and the intermediate formed The layer, the formed first layer, and the formed second layer are stacked in this order in the thickness direction. At this time, the release film provided in each layer is removed at an appropriate timing as necessary. By the above, a dicing die bonding sheet provided with an intermediate layer is obtained.
◇半導体チップの製造方法
 本発明のダイボンディングフィルム及びダイシングダイボンディングシートは、半導体チップ、より具体的には、硬化済みダイボンディングフィルム付き半導体チップ、の製造に利用可能である。
◇ Method for Manufacturing Semiconductor Chip The die bonding film and the dicing die bonding sheet of the present invention can be used for manufacturing a semiconductor chip, more specifically, a semiconductor chip with a cured die bonding film.
 本発明の一実施形態に係る半導体チップの製造方法は、前記ダイボンディングフィルムのうち、第2層に半導体ウエハが貼付され、第1層にダイシングシートが貼付されている積層体(1-1)、又は前記ダイシングダイボンディングシートのうち、ダイボンディングフィルム中の第2層に半導体ウエハが貼付されている積層体(1-2)を作製する工程(本明細書においては、「積層体(1)作製工程」と称することがある)と、ダイシングブレードにより、前記積層体(1-1)又は積層体(1-2)中の前記半導体ウエハを、前記ダイボンディングフィルムとともに切断することにより、切断済みの前記第1層、切断済みの前記第2層、及び前記半導体チップ(切断済み半導体ウエハ)を備えた積層体(2)を作製する工程(本明細書においては、「積層体(2)作製工程」と称することがある)と、前記積層体(2)中の切断済みの前記第2層をエネルギー線硬化させて硬化物とすることにより、切断済みの前記第1層、前記硬化物、及び前記半導体チップを備えた積層体(3)を作製する工程(本明細書においては、「積層体(3)作製工程」と称することがある)と、前記積層体(3)において、切断済みの前記第1層及び前記硬化物を備えた前記半導体チップを、前記ダイシングシート又は支持シートから引き離して、ピックアップする工程(本明細書においては、「ピックアップ工程」と称することがある)と、を含む。
 なお、本明細書においては、積層体(1-1)及び積層体(1-2)を包括して、「積層体(1)」と称することがある。
In the method for manufacturing a semiconductor chip according to an embodiment of the present invention, a laminated body in which a semiconductor wafer is stuck to the second layer and a dicing sheet is stuck to the first layer of the die bonding film (1-1) Or a step of producing a laminate (1-2) in which a semiconductor wafer is adhered to the second layer in the die bonding film of the dicing die bonding sheet (in the present specification, “laminate (1) And may have been cut by cutting the semiconductor wafer in the laminate (1-1) or laminate (1-2) together with the die bonding film with a dicing blade. A step of producing a laminated body (2) including the first layer, the cut second layer, and the semiconductor chip (cut semiconductor wafer) (this specification) In this case, it may be referred to as “laminated body (2) production process”) and the second layer that has been cut in the laminated body (2) is cured by energy ray to obtain a cured product. A step of producing a laminated body (3) provided with the finished first layer, the cured product, and the semiconductor chip (in this specification, sometimes referred to as “laminated body (3) producing step”); In the laminate (3), the semiconductor chip including the cut first layer and the cured product is separated from the dicing sheet or the support sheet and picked up (in this specification, “pickup And may be referred to as a “process”).
In this specification, the laminated body (1-1) and the laminated body (1-2) may be collectively referred to as “laminated body (1)”.
 前記製造方法においては、前記ダイボンディングフィルム又はダイシングダイボンディングシートを用いていることにより、半導体チップのサイズが小さくても、前記ピックアップ工程において、切断済みの第2層の硬化物(切断済み及び硬化済み第2層)の一部又は全部が、半導体チップから剥離することが抑制され、半導体チップへの第2層の硬化物の転写性が高い。 In the manufacturing method, by using the die bonding film or the dicing die bonding sheet, even if the size of the semiconductor chip is small, the cured product of the second layer that has been cut (cut and cured) in the pickup process. The second layer) is partly or entirely peeled off from the semiconductor chip, and the transferability of the cured product of the second layer to the semiconductor chip is high.
 以下、図面を参照しながら、前記製造方法について詳細に説明する。
 図6は、本発明の一実施形態に係る半導体チップの製造方法を模式的に説明するための断面図である。ここでは、図2に示すダイシングダイボンディングシート1Aを用いた場合の半導体チップの製造方法について、説明する。
Hereinafter, the manufacturing method will be described in detail with reference to the drawings.
FIG. 6 is a cross-sectional view for schematically explaining a method for manufacturing a semiconductor chip according to an embodiment of the present invention. Here, a method for manufacturing a semiconductor chip when the dicing die bonding sheet 1A shown in FIG. 2 is used will be described.
<<積層体(1)作製工程>>
 前記積層体(1)作製工程においては、図6(a)に示すような、ダイシングダイボンディングシート1Aのうち、ダイボンディングフィルム13中の第2層132に、半導体ウエハ9が貼付されている積層体(1-2)101を作製する。
 積層体(1-2)101は、基材11、第1層131、第2層132及び半導体ウエハ9(換言すると、基材11、ダイボンディングフィルム13及び半導体ウエハ9)がこの順に、これらの厚さ方向において積層されて構成されている。
<< Laminated body (1) production process >>
In the laminated body (1) manufacturing process, as shown in FIG. 6A, in the dicing die bonding sheet 1A, the semiconductor wafer 9 is stuck to the second layer 132 in the die bonding film 13. The body (1-2) 101 is produced.
The laminated body (1-2) 101 includes the base material 11, the first layer 131, the second layer 132, and the semiconductor wafer 9 (in other words, the base material 11, the die bonding film 13 and the semiconductor wafer 9) in this order. Laminated in the thickness direction.
 積層体(1-2)101においては、第2層132の第1面132aに、半導体ウエハ9の裏面9bが貼付されている。
 ダイシングダイボンディングシート1Aは、剥離フィルム15を取り除いて用いる。
In the laminated body (1-2) 101, the back surface 9b of the semiconductor wafer 9 is attached to the first surface 132a of the second layer 132.
The dicing die bonding sheet 1A is used with the release film 15 removed.
 なお、ここでは、ダイシングダイボンディングシート1Aを用いた場合について説明しているが、本工程においては、ダイシングダイボンディングシート1Aではなく、ダイボンディングフィルム13を用い、そのうち、第2層132には半導体ウエハ9が貼付され、第1層131には、ダイシングシートとして基材11(支持シート10)が貼付されている積層体(1-1)を作製してもよい。
 積層体(1-1)は、基材11、第1層131、第2層132及び半導体ウエハ9(換言すると、基材11、ダイボンディングフィルム13及び半導体ウエハ9)がこの順に、これらの厚さ方向において積層されて構成されている。
 このように、得られる積層体(1-2)及び積層体(1-1)は、見かけ上、同じであり、いずれも積層体(1)101として記載可能である。
Here, although the case where the dicing die bonding sheet 1A is used is described, in this step, the die bonding film 13 is used instead of the dicing die bonding sheet 1A, and the second layer 132 includes a semiconductor. A laminated body (1-1) in which the wafer 9 is affixed and the substrate 11 (support sheet 10) as a dicing sheet is affixed to the first layer 131 may be produced.
In the laminate (1-1), the base material 11, the first layer 131, the second layer 132, and the semiconductor wafer 9 (in other words, the base material 11, the die bonding film 13, and the semiconductor wafer 9) are arranged in this order. They are stacked in the vertical direction.
Thus, the obtained laminate (1-2) and laminate (1-1) are apparently the same, and both can be described as laminate (1) 101.
 第2層132への半導体ウエハ9の貼付は、第2層132を加熱により軟化させて行ってもよい。その場合の第2層132の加熱温度は、35~45℃であることが好ましい。
 また、第2層132へ半導体ウエハ9を貼付するときの、貼付速度及び貼付圧力は、特に限定されない。例えば、貼付速度は5~20mm/sであることが好ましく、貼付圧力は0.1~1.0MPaであることが好ましい。
The affixing of the semiconductor wafer 9 to the second layer 132 may be performed by softening the second layer 132 by heating. In this case, the heating temperature of the second layer 132 is preferably 35 to 45 ° C.
Moreover, the sticking speed and the sticking pressure when the semiconductor wafer 9 is stuck to the second layer 132 are not particularly limited. For example, the sticking speed is preferably 5 to 20 mm / s, and the sticking pressure is preferably 0.1 to 1.0 MPa.
 ダイシングダイボンディングシート1Aではなく、ダイボンディングフィルム13を用いる場合には、その第1層131にダイシングシート(基材11、支持シート10)を貼付してから、第2層132に半導体ウエハ9を貼付することが好ましい。第1層131へのダイシングシートの貼付は、公知の方法で行えばよく、例えば、半導体ウエハ9を貼付するときと同様の条件を採用してもよい。 When the die bonding film 13 is used instead of the dicing die bonding sheet 1A, the dicing sheet (the base material 11 and the support sheet 10) is attached to the first layer 131, and then the semiconductor wafer 9 is attached to the second layer 132. It is preferable to affix. The dicing sheet may be attached to the first layer 131 by a known method. For example, the same conditions as when the semiconductor wafer 9 is attached may be adopted.
<<積層体(2)作製工程>>
 前記積層体(2)作製工程においては、ダイシングブレードを用いて、積層体(1)101中の半導体ウエハ9を、ダイボンディングフィルム13(すなわち、第1層131及び第2層132)とともに切断することにより、図6(b)に示すように、切断済みの第1層131’、切断済みの第2層132’、及び半導体チップ9’を備えた積層体(2)102を作製する。
 積層体(2)102においては、切断済みの第1層131’、切断済みの第2層132’及び半導体チップ9’(換言すると、切断済みのダイボンディングフィルム13’及び半導体チップ9’)がこの順に、これらの厚さ方向において積層された複数個の積層物が、前記第1層131’によって、基材11上で整列した状態で固定されている。
 図6(b)においては、ダイボンディングフィルム13を切断済みのダイシングダイボンディングシート1Aを、新たに符号1A’を付して示している。
<< Laminated body (2) production process >>
In the laminate (2) manufacturing step, the semiconductor wafer 9 in the laminate (1) 101 is cut together with the die bonding film 13 (that is, the first layer 131 and the second layer 132) using a dicing blade. Thereby, as shown in FIG. 6B, the stacked body (2) 102 including the cut first layer 131 ′, the cut second layer 132 ′, and the semiconductor chip 9 ′ is manufactured.
In the laminated body (2) 102, the cut first layer 131 ′, the cut second layer 132 ′, and the semiconductor chip 9 ′ (in other words, the cut die bonding film 13 ′ and the semiconductor chip 9 ′) are provided. In this order, a plurality of laminates laminated in the thickness direction are fixed in an aligned state on the substrate 11 by the first layer 131 ′.
In FIG. 6 (b), the dicing die bonding sheet 1A from which the die bonding film 13 has been cut is newly indicated by reference numeral 1A ′.
 本工程においては、通常、ダイシングブレードの半導体ウエハ9への接触箇所に、水(切削水)を流しながら、ダイシングを行う。このとき、第2層132の第1面132aと、半導体ウエハ9の裏面9bと、の粘着力及び密着性が高く、切断済みの第2層132’の第1面132a’と、半導体チップ9’の裏面9b’と、の粘着力及び密着性も高いため、これらの接触面同士の間への水の侵入が抑制される。 In this step, usually, dicing is performed while water (cutting water) is allowed to flow through the portion where the dicing blade contacts the semiconductor wafer 9. At this time, the first surface 132a of the second layer 132 and the back surface 9b of the semiconductor wafer 9 have high adhesive strength and adhesion, and the first surface 132a ′ of the cut second layer 132 ′ and the semiconductor chip 9 Since the adhesive strength and adhesiveness with the “back surface 9 b” are high, the penetration of water between these contact surfaces is suppressed.
 本工程で作製する半導体チップ9’のサイズは、特に限定されないが、半導体チップ9’の1辺の長さは0.1~2.5mmであることが好ましい。このようなサイズが小さい半導体チップ9’の作製時に、本発明の効果がより顕著に得られる。 The size of the semiconductor chip 9 'produced in this step is not particularly limited, but the length of one side of the semiconductor chip 9' is preferably 0.1 to 2.5 mm. The effect of the present invention can be obtained more remarkably when the semiconductor chip 9 'having such a small size is manufactured.
 ダイシングの条件は、目的に応じて適宜調節すればよく、特に限定されない。
 通常、ダイシングブレードの回転数は、15000~50000rpmであることが好ましく、ダイシングブレードの移動速度は、5~75mm/secであることが好ましい。
The dicing conditions are not particularly limited, and may be adjusted as appropriate according to the purpose.
Usually, the rotational speed of the dicing blade is preferably 15000 to 50000 rpm, and the moving speed of the dicing blade is preferably 5 to 75 mm / sec.
 ダイシング時には、基材11を、その第1面11aから、例えば、30μm以下程度の深さまで、ダイシングブレードで切り込んでもよい。 During dicing, the substrate 11 may be cut with a dicing blade from the first surface 11a to a depth of, for example, about 30 μm or less.
<<積層体(3)作製工程>>
 前記積層体(3)作製工程においては、積層体(2)102中の切断済みの第2層132’をエネルギー線硬化させて硬化物1320’とすることにより、図6(c)に示すように、切断済みの第1層131’、前記硬化物1320’、及び半導体チップ9’を備えた積層体(3)103を作製する。
 積層体(3)103においては、切断済みの第1層131’、切断済み及び硬化済みの第2層1320’及び半導体チップ9’がこの順に、これらの厚さ方向において積層された複数個の積層物が、前記第1層131’によって、基材11上で整列した状態で固定されている。積層体(3)103は、切断済みの第2層132’が硬化されている点以外は、積層体(2)102と同じである。
<< Laminated body (3) production process >>
In the laminate (3) manufacturing step, the cut second layer 132 ′ in the laminate (2) 102 is cured with energy rays to obtain a cured product 1320 ′, as shown in FIG. 6C. Then, a laminated body (3) 103 including the cut first layer 131 ′, the cured product 1320 ′, and the semiconductor chip 9 ′ is prepared.
In the stacked body (3) 103, a plurality of first layers 131 ′ that have been cut, second layers 1320 ′ that have been cut and hardened, and semiconductor chips 9 ′ are stacked in this order in the thickness direction. The laminate is fixed in an aligned state on the substrate 11 by the first layer 131 ′. The layered product (3) 103 is the same as the layered product (2) 102 except that the cut second layer 132 ′ is cured.
 ここでは、切断済みの第1層131’と、切断済み及び硬化済みの第2層1320’と、の積層物に符号130’を付している。本明細書においては、このようなダイボンディングフィルム13由来の積層物を「硬化済みダイボンディングフィルム」と称することがある。 Here, a reference numeral 130 ′ is attached to a laminate of the cut first layer 131 ′ and the cut and hardened second layer 1320 ′. In the present specification, such a laminate derived from the die bonding film 13 may be referred to as a “cured die bonding film”.
 先の説明のとおり、切断済みの第2層132’と、半導体チップ9’と、は粘着力及び密着性が高いが、切断済みの第2層132’が硬化物1320’となることで、この硬化物1320’と、半導体チップ9’と、は粘着力及び密着性がさらに高くなる。 As described above, the cut second layer 132 ′ and the semiconductor chip 9 ′ have high adhesive force and adhesiveness, but the cut second layer 132 ′ becomes a cured product 1320 ′. The cured product 1320 ′ and the semiconductor chip 9 ′ are further improved in adhesive force and adhesion.
 切断済みの第2層132’にエネルギー線を照射して、第2層132’をエネルギー線硬化させるときの、エネルギー線の照射条件は、第2層132’が十分にエネルギー線硬化する限り、特に限定されない。例えば、エネルギー線硬化時における、エネルギー線の照度は、4~280mW/cmであることが好ましい。エネルギー線硬化時における、エネルギー線の光量は、3~1000mJ/cmであることが好ましい。
 エネルギー線は、基材11側から、基材11と、切断済みの第1層131’と、を介して、切断済みの第2層132’に照射することが好ましい。
When the second layer 132 ′ that has been cut is irradiated with energy rays and the second layer 132 ′ is cured with energy rays, the irradiation conditions of the energy rays are as long as the second layer 132 ′ is sufficiently cured with energy rays. There is no particular limitation. For example, the energy ray illuminance during energy ray curing is preferably 4 to 280 mW / cm 2 . The amount of energy rays during energy ray curing is preferably 3 to 1000 mJ / cm 2 .
It is preferable to irradiate the cut second layer 132 ′ from the base material 11 side through the base material 11 and the cut first layer 131 ′.
<<ピックアップ工程>>
 前記ピックアップ工程においては、図6(d)に示すように、積層体(3)103において、切断済みの第1層131’及び前記硬化物1320’を備えた半導体チップ9’を、支持シート10(基材11)から引き離して、ピックアップする。本明細書においては、このような半導体チップを「硬化済みダイボンディングフィルム付き半導体チップ」と称することがある。
<< Pickup process >>
In the pick-up step, as shown in FIG. 6 (d), in the laminate (3) 103, the semiconductor chip 9 ′ having the cut first layer 131 ′ and the cured product 1320 ′ is attached to the support sheet 10. Pull away from (base material 11). In this specification, such a semiconductor chip may be referred to as a “semiconductor chip with a cured die bonding film”.
 先の説明のとおり、半導体チップ9’のサイズが小さくても、切断済みの第2層132’と、半導体チップ9’と、の粘着力及び密着性が高いため、ダイシング時において、これらの接触面同士の間への水の侵入が抑制されている。加えて、前記硬化物1320’と、半導体チップ9’と、の粘着力及び密着性がさらに高くなっている。したがって、本工程においては、前記硬化物1320’の一部又は全部が、半導体チップ9’から剥離することが抑制され、半導体チップ9’への前記硬化物1320’の転写性が高い。 As described above, even if the size of the semiconductor chip 9 ′ is small, the adhesiveness and adhesion between the cut second layer 132 ′ and the semiconductor chip 9 ′ are high. Intrusion of water between the surfaces is suppressed. In addition, the adhesive strength and adhesion between the cured product 1320 'and the semiconductor chip 9' are further increased. Therefore, in this step, part or all of the cured product 1320 'is prevented from peeling from the semiconductor chip 9', and the transfer property of the cured product 1320 'to the semiconductor chip 9' is high.
 ここでは、ピックアップの方向を矢印Iで示している。
 半導体チップ9’を、切断済みの第1層131’及び前記硬化物1320’とともに、支持シート10から引き離すための引き離し手段8としては、真空コレット等が挙げられる。なお、図6においては、硬化済みダイボンディングフィルム付き半導体チップとは異なる、引き離し手段8については、断面表示していない。
Here, the direction of pickup is indicated by an arrow I.
Examples of the separating means 8 for separating the semiconductor chip 9 ′ from the support sheet 10 together with the cut first layer 131 ′ and the cured product 1320 ′ include a vacuum collet. In FIG. 6, the separating means 8, which is different from the cured semiconductor chip with a die bonding film, is not shown in cross section.
 ここまでは、ダイシングダイボンディングシート1Aを用いた場合の半導体チップの製造方法について説明したが、ダイシングダイボンディングシート1B、1C又は1D等、ダイシングダイボンディングシート1A以外の本発明の他のダイシングダイボンディングシートを用いた場合や、最初の段階でダイシングダイボンディングシートではなく、ダイボンディングフィルムを用いた場合にも、上記と同様の方法で、半導体チップを製造できる。そして、その場合の奏する効果も、ダイシングダイボンディングシート1Aを用いた場合と同様である。他のダイシングダイボンディングシートを用いる場合には、その構造に応じて、適宜、任意の工程を追加して、半導体チップを製造できる。 So far, the manufacturing method of the semiconductor chip when the dicing die bonding sheet 1A is used has been described. However, other dicing die bondings of the present invention other than the dicing die bonding sheet 1A, such as the dicing die bonding sheet 1B, 1C or 1D. Even when a sheet is used or when a die bonding film is used instead of a dicing die bonding sheet in the initial stage, a semiconductor chip can be manufactured by the same method as described above. And the effect which shows in that case is the same as the case where dicing die bonding sheet 1A is used. In the case of using another dicing die bonding sheet, a semiconductor chip can be manufactured by appropriately adding an arbitrary process according to the structure.
<<半導体装置及びその製造方法>>
 前記製造方法を適用して得られた、硬化済みダイボンディングフィルム付き半導体チップ(切断済みの第1層と、切断済み及び硬化済みの第2層と、を備えた半導体チップ)は、半導体装置の製造に用いるのに、特に適している。
 例えば、前記硬化済みダイボンディングフィルム付き半導体チップは、その切断済みの第1層によって、基板の回路形成面にダイボンディングされる。
 図7は、このように基板の回路形成面に、硬化済みダイボンディングフィルム付き半導体チップがダイボンディングされている状態の一例を、模式的に示す断面図である。ここでは、硬化済みダイボンディングフィルム付き半導体チップとして、図6を参照して説明した製造方法での目的物である、切断済みの第1層131’及び前記硬化物1320’を備えた半導体チップ9’を用いた場合について、示している。
<< Semiconductor Device and Method for Manufacturing the Same >>
A semiconductor chip with a cured die-bonding film (a semiconductor chip having a cut first layer and a cut and hardened second layer) obtained by applying the manufacturing method is a semiconductor device. Particularly suitable for use in manufacturing.
For example, the semiconductor chip with a cured die bonding film is die bonded to the circuit forming surface of the substrate by the cut first layer.
FIG. 7 is a cross-sectional view schematically showing an example of a state in which a semiconductor chip with a cured die bonding film is die-bonded on the circuit forming surface of the substrate. Here, the semiconductor chip 9 provided with the cut first layer 131 ′ and the cured product 1320 ′, which is a target in the manufacturing method described with reference to FIG. The case where 'is used is shown.
 図7に示すように、硬化済みダイボンディングフィルム130’を備えた半導体チップ9’は、前記フィルム130’のうち、切断済みの第1層131’によって、基板7の回路形成面7aにダイボンディングされている。
 より具体的には、切断済みの第1層131’の、前記硬化物1320’側とは反対側の面(本明細書においては、「第2面」と称することがある。)131b’と、基板7の回路形成面7aと、が直接接触して、半導体チップ9’が基板7上で固定されている。なお、基板7において、回路の記載は省略している。
As shown in FIG. 7, the semiconductor chip 9 ′ having the cured die bonding film 130 ′ is die-bonded to the circuit forming surface 7a of the substrate 7 by the cut first layer 131 ′ of the film 130 ′. Has been.
More specifically, the surface of the cut first layer 131 ′ opposite to the cured product 1320 ′ (referred to as “second surface” in this specification) 131b ′. The circuit formation surface 7a of the substrate 7 is in direct contact, and the semiconductor chip 9 ′ is fixed on the substrate 7. In the substrate 7, the description of the circuit is omitted.
 先に説明した、ダイボンディングフィルム13の第1層131は、基板の埋め込み性が良好である。したがって、ここに示すように、基板7の回路形成面7aと、切断済みの第1層131’と、の間では、隙間(ボイド)の発生が抑制されており、切断済みの第1層131’が基板7の回路形成面7aを良好に埋め込み、被覆している。 The first layer 131 of the die bonding film 13 described above has a good substrate embedding property. Therefore, as shown here, the generation of a gap (void) is suppressed between the circuit forming surface 7a of the substrate 7 and the cut first layer 131 ′, and the cut first layer 131 is cut off. 'Satisfactorily embeds and covers the circuit forming surface 7a of the substrate 7.
 ここでは、ダイシングダイボンディングシート1Aを用いた場合の、半導体チップのダイボンディングについて説明したが、ダイシングダイボンディングシート1B、1C又は1D等、ダイシングダイボンディングシート1A以外の本発明の他のダイシングダイボンディングシートを用いた場合や、最初の段階でダイシングダイボンディングシートではなく、ダイボンディングフィルムを用いた場合にも、上記と同様に、第1層によって、基板を良好に埋め込める。 Here, the die bonding of the semiconductor chip in the case of using the dicing die bonding sheet 1A has been described. Even when a sheet is used or when a die bonding film is used instead of a dicing die bonding sheet in the initial stage, the substrate can be embedded satisfactorily by the first layer as described above.
 上記のとおり、硬化済みダイボンディングフィルム付き半導体チップを用いて、半導体チップをダイボンディングした後は、従来法と同様の方法で、半導体パッケージ及び半導体装置が製造される。例えば、必要に応じて、このダイボンディングされた半導体チップに、さらに半導体チップを少なくとも1個積層して、ワイヤボンディングを行った後、得られたもの全体を樹脂により封止することで、半導体パッケージが作製される。そして、この半導体パッケージを用いて、目的とする半導体装置が作製される。
 本発明のダイボンディングフィルム又はダイシングダイボンディングシートを用いていることで、第1層による基板の埋め込み性が良好であり、その結果、得られる半導体パッケージは、信頼性が高いものとなる。
 
As described above, after the semiconductor chip is die-bonded using the cured semiconductor chip with a die-bonding film, the semiconductor package and the semiconductor device are manufactured by the same method as the conventional method. For example, if necessary, at least one semiconductor chip is further laminated on this die-bonded semiconductor chip, wire bonding is performed, and then the entire product is sealed with a resin, whereby a semiconductor package is obtained. Is produced. Then, a target semiconductor device is manufactured using this semiconductor package.
By using the die bonding film or dicing die bonding sheet of the present invention, the embedding property of the substrate by the first layer is good, and as a result, the obtained semiconductor package has high reliability.
 1つの側面として、本発明の一実施形態であるダイボンディングフィルムは、
 第1層と、前記第1層上に備えられた第2層とを含み、
 前記第1層は、溶融粘度の初期検出温度が50~75℃(又は50~68℃若しくは50~59℃であってもよい)である特性を有し;
 前記第2層は、粘着性及びエネルギー線硬化性を有し;
 厚さが10μmで、かつ幅が25mmよりも広い前記第1層と第2層との積層体を試験片とし、前記試験片を、シリコンミラーウエハに貼付し、幅25mmとなるように前記試験片を切断し、切断後の前記試験片を、前記シリコンミラーウエハごと、純水中に2時間浸漬し、浸漬後の前記試験片をエネルギー線硬化させて硬化物とすることにより、前記シリコンミラーウエハに前記硬化物が貼付されている試験用積層体を作製したとき、幅が25mmの前記硬化物と、前記シリコンミラーウエハと、の間の粘着力が、6~20N/25mm、又は10~20N/25mmとなる特性を有し;かつ
 厚さが10μmで、かつ幅が25mmよりも広い前記第1層と第2層との積層体を試験片とし、前記試験片を、シリコンミラーウエハに貼付し、幅25mmとなるように前記試験片を切断し、切断後の前記試験片を、前記シリコンミラーウエハごと、空気雰囲気下の暗所において、温度23℃、相対湿度50%の条件下で30分間静置保存し、静置保存後の前記試験片をエネルギー線硬化させて硬化物とすることにより、前記シリコンミラーウエハに前記硬化物が貼付されている非浸漬試験用積層体を作製したとき、幅が25mmの前記硬化物と、前記シリコンミラーウエハと、の間の粘着力が、6~20N/25mm、又は10~20N/25mmとなる特性を有する;
ダイボンディングフィルム。
As one aspect, the die bonding film which is one embodiment of the present invention,
A first layer and a second layer provided on the first layer;
The first layer has a characteristic that an initial detection temperature of melt viscosity is 50 to 75 ° C. (or may be 50 to 68 ° C. or 50 to 59 ° C.);
The second layer has adhesiveness and energy ray curability;
A laminate of the first layer and the second layer having a thickness of 10 μm and a width greater than 25 mm is used as a test piece, and the test piece is affixed to a silicon mirror wafer so that the width is 25 mm. The silicon mirror is obtained by cutting a piece, immersing the cut test piece together with the silicon mirror wafer in pure water for 2 hours, and curing the test piece after the immersion to energy rays. When a test laminate in which the cured product is affixed to a wafer is produced, the adhesive force between the cured product having a width of 25 mm and the silicon mirror wafer is 6 to 20 N / 25 mm, or 10 to 10 A laminate of the first layer and the second layer having a thickness of 10 μm and a width greater than 25 mm is used as a test piece, and the test piece is applied to a silicon mirror wafer. Affixed, width The test piece was cut to 5 mm, and the cut test piece was allowed to stand for 30 minutes under the conditions of a temperature of 23 ° C. and a relative humidity of 50% together with the silicon mirror wafer in a dark place under an air atmosphere. When the laminated body for non-immersion test in which the cured product is pasted on the silicon mirror wafer is prepared by curing the test piece after storage and standing to be cured by energy ray curing. The adhesive strength between the cured product of 25 mm and the silicon mirror wafer is 6 to 20 N / 25 mm, or 10 to 20 N / 25 mm;
Die bonding film.
 さらに、前記ダイボンディングフィルムは、
 前記第1層が第1接着剤組成物から形成されており、
 前記第2層が第2接着剤組成物から形成されており、
 前記第1接着剤組成物は、重合体成分(a)、エポキシ樹脂(b1)と熱硬化剤(b2)からなるエポキシ系熱硬化性樹脂(b)、効果促進剤(c)、充填材(d)及びカップリング剤(e)を含み、
 前記重合体成分(a)は、アクリル酸n-ブチル、アクリル酸メチル、メタクリル酸グリシジル及びアクリル酸2-ヒドロキシエチルを共重合してなるアクリル系樹脂、又はアクリル酸n-ブチル、アクリル酸エチル、アクリロニトリル及びメタクリル酸グリシジルを共重合してなるアクリル系樹脂(前記重合体成分(a)の含有量は、前記第1接着剤組成物の総質量(溶媒以外)に対して5~20質量%、好ましくは7~12%である)であり;
 前記エポキシ樹脂(b1)は、ビスフェノールA型エポキシ樹脂と多官能芳香族型(トリフェニレン型)エポキシ樹脂、又はビスフェノールF型エポキシ樹脂とジシクロペンタジエン型エポキシ樹脂であり;
 前記熱硬化剤(b2)は、o-クレゾール型ノボラック樹脂であり
(前記エポキシ系熱硬化性樹脂(b)の含有量は、前記重合体成分(a)の含有量100質量部に対して、800~1000質量部であり、前記熱硬化剤(b2)の含有量は、前記エポキシ樹脂(b1)の含有量100質量部に対して、好ましくは25~80質量部である);
 前記硬化促進剤(c)は、5-ヒドロキシイソフタル酸(HIPA)1分子と2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)2分子との包接化合物、又は2-フェニル-4,5-ジヒドロキシメチルイミダゾールであり(前記硬化促進剤(c)の含有量は、前記エポキシ系熱硬化性樹脂(b)の含有量100質量部に対して、好ましくは0.1~2質量部である);
 前記充填材(d)は、エポキシ基で修飾された球状シリカであり(前記充填材(d)の含有量は、前記第1接着剤組成物の総質量(溶媒以外)に対して、好ましくは15~30質量%である);
 前記カップリング剤(e)は、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン及びエポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤からなる群から選択される少なくとも1つであり(前記カップリング剤(e)の含有量は、前記重合体成分(a)及び前記エポキシ系熱硬化性樹脂(b)の合計含有量100質量部に対して、好ましくは0.1~5質量部である);
 前記第2接着剤組成物は、重合体成分(a)、充填材(d)、カップリング剤(e)、エネルギー線硬化性樹脂(g)及び光重合開始剤(h)を含み、
 前記重合体成分(a)は、アクリル酸n-ブチル、アクリル酸メチル、メタクリル酸グリシジル及びアクリル酸2-ヒドロキシエチルを共重合してなるアクリル系樹脂、又はアクリル酸n-ブチル、アクリル酸エチル、アクリロニトリル及びメタクリル酸グリシジルを共重合してなるアクリル系樹脂であり(前記重合体成分(a)の含有量は、前記第2接着剤組成物の総質量(溶媒以外)に対して、好ましくは20~35質量%である);
 前記充填材(d)は、エポキシ基で修飾された球状シリカ又はシリカフィラーであり(前記充填材(d)の含有量は、前記第2接着剤組成物の総質量(溶媒以外)に対して、好ましくは45~64質量%である);
 前記カップリング剤(e)は、エポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤であり(前記重合体成分(a)の含有量100質量部に対して、好ましくは0.1~5質量部である);
 前記エネルギー線硬化性樹脂(g)は、トリシクロデカンジメチロールジアクリレート又はε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレートであり(前記エネルギー線硬化性樹脂(g)の含有量は、第2接着剤組成物の総質量(溶媒以外)に対して、好ましくは5~85質量%である);
 前記光重合開始剤(h)は、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1である(前記光重合開始剤(h)は、前記エネルギー線硬化性樹脂(g)の含有量100質量部に対して、1~10質量部である)、
 ダイボンディングフィルムであってもよい。
Furthermore, the die bonding film is
The first layer is formed from a first adhesive composition;
The second layer is formed from a second adhesive composition;
The first adhesive composition comprises a polymer component (a), an epoxy thermosetting resin (b) composed of an epoxy resin (b1) and a thermosetting agent (b2), an effect accelerator (c), a filler ( d) and a coupling agent (e),
The polymer component (a) is an acrylic resin obtained by copolymerizing n-butyl acrylate, methyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate, or n-butyl acrylate, ethyl acrylate, An acrylic resin obtained by copolymerizing acrylonitrile and glycidyl methacrylate (the content of the polymer component (a) is 5 to 20% by mass with respect to the total mass of the first adhesive composition (other than the solvent), Preferably 7-12%);
The epoxy resin (b1) is a bisphenol A type epoxy resin and a polyfunctional aromatic type (triphenylene type) epoxy resin, or a bisphenol F type epoxy resin and a dicyclopentadiene type epoxy resin;
The thermosetting agent (b2) is an o-cresol type novolak resin (the content of the epoxy thermosetting resin (b) is 100 parts by mass of the polymer component (a)). 800 to 1000 parts by mass, and the content of the thermosetting agent (b2) is preferably 25 to 80 parts by mass with respect to 100 parts by mass of the epoxy resin (b1));
The curing accelerator (c) is an inclusion compound of 1 molecule of 5-hydroxyisophthalic acid (HIPA) and 2 molecules of 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ), or 2-phenyl-4 , 5-dihydroxymethylimidazole (the content of the curing accelerator (c) is preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the epoxy thermosetting resin (b). );
The filler (d) is spherical silica modified with an epoxy group (the content of the filler (d) is preferably relative to the total mass (other than the solvent) of the first adhesive composition). 15 to 30% by mass);
The coupling agent (e) is selected from the group consisting of 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane and an oligomeric silane coupling agent having an epoxy group, a methyl group and a methoxy group. (The content of the coupling agent (e) is preferably based on 100 parts by mass of the total content of the polymer component (a) and the epoxy thermosetting resin (b)). Is 0.1 to 5 parts by mass);
The second adhesive composition includes a polymer component (a), a filler (d), a coupling agent (e), an energy ray curable resin (g), and a photopolymerization initiator (h).
The polymer component (a) is an acrylic resin obtained by copolymerizing n-butyl acrylate, methyl acrylate, glycidyl methacrylate and 2-hydroxyethyl acrylate, or n-butyl acrylate, ethyl acrylate, It is an acrylic resin obtained by copolymerizing acrylonitrile and glycidyl methacrylate (the content of the polymer component (a) is preferably 20 with respect to the total mass (other than the solvent) of the second adhesive composition). ~ 35% by weight);
The filler (d) is spherical silica or silica filler modified with an epoxy group (the content of the filler (d) is based on the total mass (other than the solvent) of the second adhesive composition). , Preferably 45 to 64% by weight);
The coupling agent (e) is an oligomer type silane coupling agent having an epoxy group, a methyl group and a methoxy group (preferably 0.1 parts per 100 parts by mass of the polymer component (a)). ~ 5 parts by mass);
The energy ray curable resin (g) is tricyclodecane dimethylol diacrylate or ε-caprolactone modified tris- (2-acryloxyethyl) isocyanurate (the content of the energy ray curable resin (g) is , Preferably 5 to 85% by mass relative to the total mass of the second adhesive composition (other than the solvent));
The photopolymerization initiator (h) is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (the photopolymerization initiator (h) 1 to 10 parts by mass with respect to 100 parts by mass of the resin (g)),
It may be a die bonding film.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
<モノマー>
 本実施例及び比較例において、略記しているモノマーの正式名称を、以下に示す。
 BA:アクリル酸n-ブチル
 MA:アクリル酸メチル
 HEA:アクリル酸2-ヒドロキシエチル
 GMA:メタクリル酸グリシジル
 EA:アクリル酸エチル
 AN:アクリロニトリル
<Monomer>
In the examples and comparative examples, the formal names of the monomers abbreviated are shown below.
BA: n-butyl acrylate MA: methyl acrylate HEA: 2-hydroxyethyl acrylate GMA: glycidyl methacrylate EA: ethyl acrylate AN: acrylonitrile
<接着剤組成物の製造原料>
 本実施例及び比較例において、接着剤組成物の製造に用いた原料を以下に示す。
<Production raw material of adhesive composition>
In the examples and comparative examples, the raw materials used for the production of the adhesive composition are shown below.
[重合体成分(a)]
 (a)-1:BA(10質量部)、MA(70質量部)、GMA(5質量部)及びHEA(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量500000、ガラス転移温度-1℃)。
 (a)-2:BA(40質量部)、EA(25質量部)、AN(30質量部)及びGMA(5質量部)を共重合してなるアクリル系樹脂(重量平均分子量700000、ガラス転移温度10℃)。
 (a)-3:BA(55質量部)、MA(10質量部)、GMA(20質量部)及びHEA(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量800000、ガラス転移温度-30℃)。
 (a)-4:熱可塑性樹脂、ポリエステル(東洋紡社製「バイロン220」、重量平均分子量35000、ガラス転移温度53℃)
[エポキシ樹脂(b1)]
 (b1)-1:ビスフェノールA型エポキシ樹脂(三菱化学社製「JER828」、エポキシ当量184~194g/eq)
 (b1)-2:多官能芳香族型(トリフェニレン型)エポキシ樹脂(日本化薬社製「EPPN-502H」、エポキシ当量167g/eq、軟化点54℃、重量平均分子量1200)
 (b1)-3:ビスフェノールF型エポキシ樹脂(三菱化学社製「YL983U」、エポキシ当量170g/eq)
 (b1)-4:ジシクロペンタジエン型エポキシ樹脂(日本化薬社製「XD-1000-L」、エポキシ当量248g/eq)
 (b1)-5:液状ビスフェノールA型エポキシ樹脂及びアクリルゴム微粒子の混合物(日本化薬社製「BPA328」、エポキシ当量235g/eq)
 (b1)-6:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量255~260g/eq)
[熱硬化剤(b2)]
 (b2)-1:o-クレゾール型ノボラック樹脂(DIC社製「フェノライトKA-1160」)
 (b2)-2:ノボラック型フェノール樹脂(o-クレゾール型以外のノボラック樹脂、昭和電工社製「BRG-556」)
 (b2)-3:ジシアンジアミド(ADEKA社製「アデカハードナーEH-3636AS」、固体分散型潜在性硬化剤、活性水素量21g/eq)
[硬化促進剤(c)]
 (c)-1:5-ヒドロキシイソフタル酸(HIPA)1分子と2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)2分子との包接化合物(日本曹達社製「HIPA-2P4MHZ」)
 (c)-2:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
[充填材(d)]
 (d)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノ YA050C-MKK」、平均粒子径50nm)
 (d)-2:シリカフィラー(アドマテックス社製「SC2050MA」、エポキシ系化合物で表面修飾されたシリカフィラー、平均粒子径500nm)
[カップリング剤(e)]
 (e)-1:3-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製「KBM-403」、シランカップリング剤、メトキシ当量12.7mmol/g、分子量236.3)
 (e)-2:3-グリシドキシプロピルトリエトキシシラン(信越シリコーン社製「KBE-403」、シランカップリング剤、メトキシ当量8.1mmol/g、分子量278.4)
 (e)-3:エポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤(信越シリコーン社製「X-41-1056」、エポキシ当量280g/eq)
 (e)-4:トリメトキシ[3-(フェニルアミノ)プロピル]シラン(東レ・ダウ社製「SZ6083」、シランカップリング剤)
 (e)-5:3-グリシドキシプロピルトリメトキシシランを付加させたシリケート化合物(三菱化学社製「MKCシリケートMSEP2」)
[架橋剤(f)]
 (f)-1:トリメチロールプロパンのトリレンジイソシアネート三量体付加物(トーヨーケム社製「BHS8515」)
[エネルギー線硬化性樹脂(g)]
 (g)-1:トリシクロデカンジメチロールジアクリレート(日本化薬社製「KAYARAD R-684」、紫外線硬化性樹脂、分子量304)
 (g)-2:ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(新中村化学工業社製「A-9300-1CL」、3官能紫外線硬化性化合物)
[光重合開始剤(h)]
 (h)-1:1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製「IRGACURE(登録商標)184」)
 (h)-2:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製「IRGACURE(登録商標)369」)
[Polymer component (a)]
(A) -1: Acrylic resin (weight average molecular weight 500000, glass transition) obtained by copolymerizing BA (10 parts by mass), MA (70 parts by mass), GMA (5 parts by mass) and HEA (15 parts by mass) Temperature-1 ° C).
(A) -2: Acrylic resin (weight average molecular weight 700,000, glass transition) obtained by copolymerizing BA (40 parts by mass), EA (25 parts by mass), AN (30 parts by mass) and GMA (5 parts by mass) Temperature 10 ° C.).
(A) -3: Acrylic resin obtained by copolymerizing BA (55 parts by mass), MA (10 parts by mass), GMA (20 parts by mass) and HEA (15 parts by mass) (weight average molecular weight 800000, glass transition Temperature-30 ° C).
(A) -4: Thermoplastic resin, polyester (Toyobo “Byron 220”, weight average molecular weight 35000, glass transition temperature 53 ° C.)
[Epoxy resin (b1)]
(B1) -1: Bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of 184 to 194 g / eq)
(B1) -2: Polyfunctional aromatic type (triphenylene type) epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 167 g / eq, softening point 54 ° C., weight average molecular weight 1200)
(B1) -3: Bisphenol F type epoxy resin (“YL983U” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 170 g / eq)
(B1) -4: Dicyclopentadiene type epoxy resin (“XD-1000-L” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 248 g / eq)
(B1) -5: Mixture of liquid bisphenol A type epoxy resin and acrylic rubber fine particles (“BPA328” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 235 g / eq)
(B1) -6: Dicyclopentadiene type epoxy resin (“Epiclon HP-7200HH” manufactured by DIC, epoxy equivalent of 255 to 260 g / eq)
[Thermosetting agent (b2)]
(B2) -1: o-cresol type novolak resin (“Phenolite KA-1160” manufactured by DIC)
(B2) -2: Novolac type phenolic resin (novolak resin other than o-cresol type, “BRG-556” manufactured by Showa Denko KK)
(B2) -3: Dicyandiamide (“ADEKA HARDNER EH-3636AS” manufactured by ADEKA, solid dispersion type latent curing agent, active hydrogen amount 21 g / eq)
[Curing accelerator (c)]
(C) -1: an inclusion compound of one molecule of 5-hydroxyisophthalic acid (HIPA) and two molecules of 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ) (“HIPA-2P4MHZ” manufactured by Nippon Soda Co., Ltd.) )
(C) -2: 2-phenyl-4,5-dihydroxymethylimidazole (“Cureazole 2PHZ-PW” manufactured by Shikoku Chemicals)
[Filler (d)]
(D) -1: Spherical silica modified with an epoxy group (“Admanano YA050C-MKK” manufactured by Admatechs, average particle size 50 nm)
(D) -2: Silica filler (“SC2050MA” manufactured by Admatechs, silica filler surface-modified with an epoxy compound, average particle diameter of 500 nm)
[Coupling agent (e)]
(E) -1: 3-Glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Silicone Co., Ltd., silane coupling agent, methoxy equivalent 12.7 mmol / g, molecular weight 236.3)
(E) -2: 3-Glycidoxypropyltriethoxysilane (“KBE-403” manufactured by Shin-Etsu Silicone Co., Ltd., silane coupling agent, methoxy equivalent 8.1 mmol / g, molecular weight 278.4)
(E) -3: Oligomer type silane coupling agent having an epoxy group, a methyl group and a methoxy group (“X-41-1056” manufactured by Shin-Etsu Silicone Co., Ltd., epoxy equivalent: 280 g / eq)
(E) -4: Trimethoxy [3- (phenylamino) propyl] silane (“SZ6083” manufactured by Toray Dow Co., silane coupling agent)
(E) -5: A silicate compound to which 3-glycidoxypropyltrimethoxysilane is added (“MKC silicate MSEP2” manufactured by Mitsubishi Chemical Corporation)
[Crosslinking agent (f)]
(F) -1: Tolylene diisocyanate trimer adduct of trimethylolpropane (“BHS8515” manufactured by Toyochem)
[Energy ray curable resin (g)]
(G) -1: Tricyclodecane dimethylol diacrylate (“KAYARAD R-684” manufactured by Nippon Kayaku Co., Ltd., UV curable resin, molecular weight 304)
(G) -2: ε-caprolactone-modified tris- (2-acryloxyethyl) isocyanurate (“A-9300-1CL”, trifunctional ultraviolet curable compound manufactured by Shin-Nakamura Chemical Co., Ltd.)
[Photoinitiator (h)]
(H) -1: 1-hydroxycyclohexyl phenyl ketone (“IRGACURE (registered trademark) 184” manufactured by BASF)
(H) -2: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (“IRGACURE® 369” manufactured by BASF)
[実施例1]
<<ダイボンディングフィルムの製造>>
<第1接着剤組成物の製造>
 重合体成分(a)-1(10質量部)、エポキシ樹脂(b1)-1(20質量部)、エポキシ樹脂(b1)-2(25質量部)、熱硬化剤(b2)-1(25質量部)、硬化促進剤(c)-1(0.3質量部)、充填材(d)-1(20質量部)、カップリング剤(e)-1(0.3質量部)、カップリング剤(e)-2(0.4質量部)及びカップリング剤(e)-3(0.5質量部)をメチルエチルケトンに溶解又は分散させて、23℃で撹拌することにより、固形分濃度が55質量%である第1接着剤組成物を得た。なお、ここに示すメチルエチルケトン以外の成分の配合量は、すべて固形分換算値である。
[Example 1]
<< Manufacture of die bonding film >>
<Manufacture of 1st adhesive composition>
Polymer component (a) -1 (10 parts by mass), epoxy resin (b1) -1 (20 parts by mass), epoxy resin (b1) -2 (25 parts by mass), thermosetting agent (b2) -1 (25 Parts by weight), curing accelerator (c) -1 (0.3 parts by weight), filler (d) -1 (20 parts by weight), coupling agent (e) -1 (0.3 parts by weight), cup The solid component concentration is obtained by dissolving or dispersing the ring agent (e) -2 (0.4 parts by mass) and the coupling agent (e) -3 (0.5 parts by mass) in methyl ethyl ketone and stirring at 23 ° C. The 1st adhesive composition which is 55 mass% was obtained. In addition, all the compounding quantities of components other than the methyl ethyl ketone shown here are solid content conversion values.
<第2接着剤組成物の製造>
 重合体成分(a)-1(22質量部)、充填材(d)-2(50質量部)、カップリング剤(e)-3(0.5質量部)、エネルギー線硬化性樹脂(g)-1(20質量部)及び光重合開始剤(h)-2(0.3質量部)をメチルエチルケトンに溶解又は分散させて、23℃で撹拌することにより、固形分濃度が55質量%である第2接着剤組成物を得た。なお、ここに示すメチルエチルケトン以外の成分の配合量は、すべて固形分換算値である。
<Production of second adhesive composition>
Polymer component (a) -1 (22 parts by mass), filler (d) -2 (50 parts by mass), coupling agent (e) -3 (0.5 parts by mass), energy ray curable resin (g ) -1 (20 parts by mass) and photopolymerization initiator (h) -2 (0.3 parts by mass) are dissolved or dispersed in methyl ethyl ketone and stirred at 23 ° C., so that the solid content concentration is 55% by mass. A second adhesive composition was obtained. In addition, all the compounding quantities of components other than the methyl ethyl ketone shown here are solid content conversion values.
<第1層の形成>
 ポリエチレンテレフタレート(PET)製フィルムの片面がシリコーン処理により剥離処理されている剥離フィルム(リンテック社製「SP-PET381031H」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた第1接着剤組成物を塗工し、100℃で2分間加熱乾燥させることにより、厚さ10μmの第1層を形成した。
<Formation of the first layer>
Using a release film (“SP-PET381031H” manufactured by Lintec Co., Ltd., thickness: 38 μm) in which one side of a polyethylene terephthalate (PET) film is subjected to release treatment by silicone treatment, the release-treated surface obtained above is used. 1 adhesive composition was applied, and dried at 100 ° C. for 2 minutes to form a first layer having a thickness of 10 μm.
<第2層の形成>
 ポリエチレンテレフタレート(PET)製フィルムの片面がシリコーン処理により剥離処理されている剥離フィルム(リンテック社製「SP-PET381031H」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた第2接着剤組成物を塗工し、100℃で2分間加熱乾燥させることにより、厚さ10μmの第2層を形成した。
<Formation of second layer>
Using a release film (“SP-PET381031H” manufactured by Lintec Co., Ltd., thickness: 38 μm) in which one side of a polyethylene terephthalate (PET) film is subjected to release treatment by silicone treatment, the release-treated surface obtained above is used. 2 Adhesive composition was applied and dried at 100 ° C. for 2 minutes to form a second layer having a thickness of 10 μm.
<ダイボンディングフィルムの製造>
 上記で得られた第1層の剥離フィルム側とは反対側の露出面と、上記で得られた第2層の剥離フィルム側とは反対側の露出面とを、これら2層の温度を40℃として貼り合わせることにより、剥離フィルム、第1層、第2層及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、剥離フィルム付きのダイボンディングフィルムを得た。
<Manufacture of die bonding film>
The exposed surface of the first layer obtained on the opposite side to the release film side and the exposed surface of the second layer obtained on the opposite side to the release film side are adjusted to a temperature of these two layers of 40. By sticking together as ° C., a release film, a first layer, a second layer, and a release film were laminated in this order in the thickness direction to obtain a die bonding film with a release film.
<<ダイシングダイボンディングシートの製造>>
 上記で得られたダイボンディングフィルムから、第1層側の剥離フィルムを取り除き、これにより新たに生じた第1層の露出面を、基材と貼り合せることにより、基材、第1層、第2層及び剥離フィルム(換言すると、基材、ダイボンディングフィルム及び剥離フィルム)がこの順に、これらの厚さ方向において積層されて構成された、ダイシングダイボンディングシートを得た。ここで用いた基材は、ポリエチレン製フィルム(厚さ100μm)である。
<< Manufacture of dicing die bonding sheet >>
By removing the release film on the first layer side from the die bonding film obtained above and bonding the newly-exposed exposed surface of the first layer to the substrate, the substrate, the first layer, the first layer A dicing die bonding sheet in which two layers and a release film (in other words, a substrate, a die bonding film, and a release film) were laminated in this thickness direction in this order was obtained. The base material used here is a polyethylene film (thickness: 100 μm).
<<ダイボンディングフィルムの評価>>
<溶融粘度の初期検出温度Tの算出>
 上記で得られたダイボンディングフィルムの第1層を積層し、直ちに、直径10mm、高さ20mmの円柱状の試験片を作製した。
 キャピラリーレオメーター(島津製作所社製「CFT-100D」)の測定箇所に、この作製直後の試験片をセットし、試験片に5.10N(50kgf)の力を加えながら、試験片を昇温速度10℃/minで50℃から120℃まで昇温させた。そして、ダイに設けられた直径0.5mm、高さ1.0mmの穴からの、試験片の押出しが開始されたとき、すなわち、試験片の溶融粘度の検出が開始された温度(初期検出温度T)(℃)を求めた。結果を表1に示す。
<< Evaluation of die bonding film >>
<Calculation of initial detection temperature T 0 of the melt viscosity>
The first layer of the die bonding film obtained above was laminated, and a cylindrical test piece having a diameter of 10 mm and a height of 20 mm was immediately produced.
Place the test piece immediately after the preparation at the measurement point of the capillary rheometer (“CFT-100D” manufactured by Shimadzu Corporation), and apply the force of 5.10 N (50 kgf) to the test piece. The temperature was raised from 50 ° C. to 120 ° C. at 10 ° C./min. Then, when the extrusion of the test piece from the hole of 0.5 mm in diameter and 1.0 mm in height provided in the die is started, that is, the temperature at which the detection of the melt viscosity of the test piece is started (initial detection temperature). T 0 ) (° C.) was determined. The results are shown in Table 1.
<基板の埋め込み性の評価>
(硬化済みダイボンディングフィルム付き半導体チップの製造)
 上記で得られたダイシングダイボンディングシートから剥離フィルムを取り除き、これにより新たに生じた第2層(ダイボンディングフィルム)の露出面を、8インチシリコンミラーウエハ(厚さ350μm)のミラー面(裏面)に貼付した。このとき、ダイシングダイボンディングシートは、40℃に加熱して、貼付速度20mm/s、貼付圧力0.5MPaの条件で貼付した。
 以上により、基材、第1層、第2層及びシリコンミラーウエハ(換言すると、基材、ダイボンディングフィルム及びシリコンミラーウエハ)がこの順に、これらの厚さ方向において積層されて構成された、積層体(1)を得た。
<Evaluation of embeddability of substrate>
(Manufacture of semiconductor chip with cured die-bonding film)
The peeling film is removed from the dicing die bonding sheet obtained above, and the exposed surface of the second layer (die bonding film) newly generated thereby is used as the mirror surface (back surface) of an 8-inch silicon mirror wafer (thickness 350 μm). Affixed to. At this time, the dicing die bonding sheet was heated to 40 ° C. and pasted under conditions of a pasting speed of 20 mm / s and a pasting pressure of 0.5 MPa.
By the above, the base material, the first layer, the second layer, and the silicon mirror wafer (in other words, the base material, the die bonding film, and the silicon mirror wafer) are laminated in this order in the thickness direction. Body (1) was obtained.
 次いで、ダイシング装置(Disco社製「DFD6361」)を用いてダイシングすることにより、積層体(1)中のシリコンミラーウエハを分割するとともに、第1層及び第2層(ダイボンディングフィルム)も切断し、大きさが2mm×2mmのシリコンチップを得た。このときのダイシングは、ダイシングブレードの移動速度を30mm/sec、ダイシングブレードの回転数を40000rpmとし、基材に対して、その第1層の貼付面から20μmの深さまでダイシングブレードで切り込むことにより行った。また、ダイシングブレードのシリコンミラーウエハへの接触箇所に、水(切削水)を流しながら、ダイシングを行った。
 以上により、切断済みの第1層、切断済みの第2層及びシリコンチップ(切断済みのシリコンミラーウエハ)(換言すると、切断済みのダイボンディングフィルム及びシリコンチップ)がこの順に、これらの厚さ方向において積層された複数個の積層物が、前記第1層によって、基材上で整列した状態で固定されている、積層体(2)を得た。
Next, by dicing using a dicing apparatus (“DFD6361” manufactured by Disco), the silicon mirror wafer in the laminate (1) is divided, and the first layer and the second layer (die bonding film) are also cut. A silicon chip having a size of 2 mm × 2 mm was obtained. Dicing at this time is performed by cutting the dicing blade to a depth of 20 μm from the first layer application surface with a dicing blade moving speed of 30 mm / sec and a dicing blade rotation speed of 40000 rpm. It was. In addition, dicing was performed while flowing water (cutting water) through the portion of the dicing blade in contact with the silicon mirror wafer.
Thus, the cut first layer, the cut second layer, and the silicon chip (cut silicon mirror wafer) (in other words, the cut die bonding film and silicon chip) are arranged in this order in the thickness direction. A laminate (2) was obtained, in which a plurality of laminates laminated in step 1 were fixed in an aligned state on the substrate by the first layer.
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、積層体(2)の基材側の外部から、積層体(2)中の切断済みの第2層に対して紫外線を照射し、第2層を硬化させた。
 以上により、切断済みの第1層、切断済みの第2層の硬化物、及びシリコンチップがこの順に、これらの厚さ方向において積層された複数個の積層物が、前記第1層によって、基材上で整列した状態で固定されている、積層体(3)を得た。積層体(3)は、切断済みの第2層が硬化されている点以外は、積層体(2)と同じである。
Next, using an ultraviolet irradiation device (“RAD-2000 m / 12” manufactured by Lintec Corporation) under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2 from the outside on the base material side of the laminate (2), The cut second layer in the laminate (2) was irradiated with ultraviolet rays to cure the second layer.
As described above, a plurality of laminates in which the cut first layer, the cut second layer cured product, and the silicon chip are laminated in this order in the thickness direction are formed by the first layer. A laminate (3) was obtained which was fixed in an aligned state on the material. The laminate (3) is the same as the laminate (2) except that the cut second layer is cured.
 次いで、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、上記で得られた積層体(3)中の基材から、裏面に第1層及び硬化済み第2層(硬化済みダイボンディングフィルム)を備えたシリコンチップ(すなわち、硬化済みダイボンディングフィルム付きシリコンチップ)を引き離して、ピックアップした。
 以上により、硬化済みダイボンディングフィルム付きシリコンチップを得た。
Next, using a pickup and die bonding apparatus ("BESTEM D02" manufactured by Canon Machinery Co., Ltd.), the first layer and the cured second layer (cured) are formed on the back surface from the base material in the laminate (3) obtained above. A silicon chip provided with a die bonding film) (ie, a silicon chip with a cured die bonding film) was pulled away and picked up.
Thus, a silicon chip with a cured die bonding film was obtained.
 ここまでのダイシング(ダイボンディングフィルムの切断)、ダイボンディングフィルム(第2層)の硬化、及びピックアップの工程順を表1に示す。なお、これら3工程を行う順序は、本項目(基板の埋め込み性)の評価時に限らず、後述する他の項目の評価時でも同じとなる。
 表1中に記載の略号は、以下の意味である。
 DF:ダイボンディングフィルム
 DC:ダイシング
 PU:ピックアップ
Table 1 shows the order of steps of dicing (cutting of the die bonding film), curing of the die bonding film (second layer), and pick-up so far. Note that the order in which these three steps are performed is not limited to the time of evaluation of this item (embedding property of the substrate), but is the same when other items described later are evaluated.
The abbreviations described in Table 1 have the following meanings.
DF: Die bonding film DC: Dicing PU: Pickup
(ダイボンディングフィルムの基板の埋め込み性の評価)
 円板状の透明ガラス基板(エヌ・エスジー・プレシジョン社製、直径8インチ、厚さ100μm)を、8mm×8mmの大きさに分割して、個片化した。
 次いで、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、上記で得られた、硬化済みダイボンディングフィルム付きシリコンチップを、上記で得られた個片化後の透明ガラス基板にダイボンディングした。このとき、20℃の温度条件下で、個片化後の透明ガラス基板に、硬化済みダイボンディングフィルムを接触させることにより、硬化済みダイボンディングフィルム付きシリコンチップをこの基板上に配置し、1個の硬化済みダイボンディングフィルム付きシリコンチップに対して、5Nの力を0.5秒間加えて押圧することにより、ダイボンディングを行った。
(Evaluation of embedding property of die bonding film substrate)
A disc-shaped transparent glass substrate (manufactured by NSG Precision Co., Ltd., diameter 8 inches, thickness 100 μm) was divided into 8 mm × 8 mm and separated into individual pieces.
Next, using the pickup die bonding apparatus ("BESTEM D02" manufactured by Canon Machinery Co., Ltd.), the above-obtained silicon chip with a cured die bonding film obtained above was separated into individual transparent glass substrates obtained above. Die bonded. At this time, the cured die bonding film is placed on this substrate by bringing the cured die bonding film into contact with the transparent glass substrate after separation under a temperature condition of 20 ° C. Die bonding was performed by applying a force of 5N to the cured silicon chip with a die-bonding film and pressing it for 0.5 seconds.
 次いで、光学顕微鏡(キーエンス社製「VHX-1000」)を用いて、このダイボンディング後の透明ガラス基板を、その硬化済みダイボンディングフィルム側とは反対側から観察した。そして、硬化済みダイボンディングフィルムとガラス基板との間における、ボイド(空隙部)の有無を確認し、ガラス基板の、硬化済みダイボンディングフィルム側の面の全面のうち、硬化済みダイボンディングフィルムと密着している面の割合(密着割合、面積%)を求めた。 Subsequently, the transparent glass substrate after the die bonding was observed from the side opposite to the cured die bonding film side using an optical microscope (“VHX-1000” manufactured by Keyence Corporation). And the presence or absence of a void (gap part) is confirmed between the cured die bonding film and the glass substrate, and the cured die bonding film is in close contact with the entire surface of the glass substrate on the cured die bonding film side. The ratio of the surface (contact ratio, area%) was determined.
 以上の操作を、9個の硬化済みダイボンディングフィルム付きシリコンチップについて行い、下記基準に従って、ダイボンディングフィルムの基板の埋め込み性を評価した。結果を表1に示す。
 A:9個の硬化済みダイボンディングフィルム付きシリコンチップすべてで、前記密着割合が90面積%以上であった。
 B:前記密着割合が90面積%未満である硬化済みダイボンディングフィルム付きシリコンチップが、少なくとも1個存在した。
The above operation was performed on nine silicon chips with a cured die bonding film, and the embedding property of the substrate of the die bonding film was evaluated according to the following criteria. The results are shown in Table 1.
A: The adhesion ratio was 90 area% or more in all nine silicon chips with a cured die bonding film.
B: There was at least one silicon chip with a cured die bonding film in which the adhesion ratio was less than 90 area%.
<半導体チップへの転写性の評価>
(積層体(3)の製造)
 上述の、硬化済みダイボンディングフィルム付き半導体チップの製造時の場合と同じ方法で、積層体(3)を製造した。
<Evaluation of transferability to semiconductor chip>
(Manufacture of laminate (3))
A laminate (3) was manufactured by the same method as that for manufacturing a semiconductor chip with a cured die bonding film as described above.
(半導体チップへの転写性の評価)
 次いで、上記で得られた積層体(3)を、23℃の純水中に2時間浸漬した。このとき、積層体(3)全体が純水中に水没するように、積層体(3)を配置した。
 次いで、積層体(3)を純水中から引き上げ、表面に付着している水滴を取り除いた。
 そして、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、この浸漬後の積層体(3)中の基材から、裏面に第1層及び硬化済み第2層を備えたシリコンチップ(換言すると、硬化済みダイボンディングフィルム付きシリコンチップ)を引き離してピックアップすることを試みた。
 ここまでの、ダイシング、ダイボンディングフィルム(第2層)の硬化、及びピックアップの工程順は、上述の、ダイボンディングフィルムの基板の埋め込み性の評価時と同じである。
(Evaluation of transferability to semiconductor chip)
Next, the laminate (3) obtained above was immersed in pure water at 23 ° C. for 2 hours. At this time, the laminate (3) was arranged so that the entire laminate (3) was submerged in pure water.
Next, the laminate (3) was pulled up from pure water, and water droplets adhering to the surface were removed.
And using the pick-up die bonding apparatus ("BESTEM D02" by Canon Machinery Co., Ltd.), the back surface was provided with the 1st layer and the hardened 2nd layer from the base material in the laminated body (3). An attempt was made to pick up a silicon chip (in other words, a silicon chip with a cured die-bonding film).
The steps of dicing, curing of the die bonding film (second layer), and picking up so far are the same as those in the evaluation of the embedding property of the substrate of the die bonding film.
 次いで、光学顕微鏡(キーエンス社製「VHX-1000」)を用いて、基材の第1層(ダイボンディングフィルム)が積層されていた面(換言すると第1面)を観察し、下記基準に従って、硬化済みダイボンディングフィルムの半導体チップへの転写性を評価した。結果を表1に示す。
 A:硬化済みダイボンディングフィルムが基材に残存していない。
 B:硬化済みダイボンディングフィルム(少なくとも第1層)が基材に残存している。
Next, the surface (in other words, the first surface) on which the first layer (die bonding film) of the base material was laminated was observed using an optical microscope (“VHX-1000” manufactured by Keyence Corporation). The transferability of the cured die bonding film to the semiconductor chip was evaluated. The results are shown in Table 1.
A: The cured die bonding film does not remain on the substrate.
B: The cured die bonding film (at least the first layer) remains on the substrate.
<非浸漬粘着力及び浸漬後粘着力の測定>
(試験用積層体の製造)
 上記で得られたダイボンディングフィルムから、第2層側の剥離フィルムを取り除き、これにより新たに生じた第2層の露出面を、6インチシリコンミラーウエハ(厚さ350μm)のミラー面(裏面)に貼付した。このとき、ダイボンディングフィルムは、40℃に加熱して、貼付速度20mm/s、貼付圧力0.5MPaの条件で貼付した。
 次いで、この貼付後のダイボンディングフィルムから、第1層側の剥離フィルムを取り除き、これにより新たに生じた第1層の露出面に、幅が25mmである強粘着テープ(リンテック社製「PET50PLシン」)を貼付した。
<Measurement of non-immersion adhesive strength and post-immersion adhesive strength>
(Manufacture of test laminates)
The release film on the second layer side is removed from the die bonding film obtained above, and the exposed surface of the second layer newly generated thereby is used as a mirror surface (back surface) of a 6-inch silicon mirror wafer (thickness 350 μm). Affixed to. At this time, the die bonding film was heated to 40 ° C. and pasted under the conditions of a pasting speed of 20 mm / s and a pasting pressure of 0.5 MPa.
Next, the peel-off film on the first layer side is removed from the die-bonding film after the application, and a strong adhesive tape having a width of 25 mm ("PET50PL Thin" manufactured by Lintec Co., Ltd.) is newly formed on the exposed surface of the first layer. ") Was affixed.
 次いで、前記6インチシリコンミラーウエハに貼付されたダイボンディングフィルムについて、この強粘着テープの外周に沿って、前記ダイボンディングフィルムの厚さ方向の全域(第1層及び第2層の、これらの厚さ方向の全域)に切り込みを形成し、前記ダイボンディングフィルムを幅が25mmの帯状に切断した。
 次いで、前記切断直後から、暗所において、この切断後のダイボンディングフィルムを前記シリコンミラーウエハごと、23℃の純水中に2時間浸漬した。このとき、切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハは、その全体が純水中に水没するように、純水中に配置した。
 次いで、切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハを純水中から引き上げ、その表面に付着している水滴を取り除いた。
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、切断後のダイボンディングフィルムに対して紫外線を照射し、第2層を硬化させた。
 以上により、強粘着テープ、切り込みが形成されている第1層、切り込みが形成されている第2層の硬化物、及びシリコンミラーウエハがこの順に、これらの厚さ方向において積層されて、構成された試験用積層体を得た。
Next, for the die bonding film affixed to the 6-inch silicon mirror wafer, along the outer periphery of the strong adhesive tape, the entire area in the thickness direction of the die bonding film (the thicknesses of the first layer and the second layer). Cuts were formed in the entire area in the vertical direction, and the die bonding film was cut into a strip having a width of 25 mm.
Next, immediately after the cutting, in the dark place, the cut die bonding film was immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer. At this time, the silicon mirror wafer with the die bonding film after cutting was placed in pure water so that the entire silicon mirror wafer was submerged in pure water.
Next, the silicon mirror wafer with the die bonding film after cutting was pulled up from pure water, and water droplets adhering to the surface were removed.
Next, using a UV irradiation device (“RAD-2000 m / 12” manufactured by Lintec Corporation), the die bonding film after cutting was irradiated with UV light under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2. The second layer was cured.
As described above, the strong adhesive tape, the first layer in which the cut is formed, the cured product of the second layer in which the cut is formed, and the silicon mirror wafer are laminated in this order in the thickness direction. A test laminate was obtained.
(試験用積層体の浸漬後粘着力の測定)
 23℃の条件下で、万能引張試験機(島津製作所製「オートグラフAG-IS」)を用いて、上記で得られた試験用積層体において、前記強粘着テープを引っ張った。このとき、強粘着テープの引っ張りによって、試験用積層体において生じた剥離面同士が、180°の角度を為すように、剥離(引張)速度300mm/minで、強粘着テープを引っ張る、いわゆる180°剥離を行った。そして、このときの剥離力(荷重、N/25mm)を測定するとともに、試験用積層体において生じた剥離箇所と、剥離形態を確認した。そして、前記剥離力を、試験用積層体における、幅が25mmの第2層の硬化物と、シリコンミラーウエハと、の間の粘着力(N/25mm)とした。結果を表1中の「浸漬後粘着力」の欄に示す。
(Measurement of adhesive strength after immersion of test laminate)
Under the condition of 23 ° C., using the universal tensile tester (“Autograph AG-IS” manufactured by Shimadzu Corporation), the strong adhesive tape was pulled in the test laminate obtained above. At this time, the strong adhesive tape is pulled at a peeling (tensile) speed of 300 mm / min so that the peeled surfaces generated in the test laminate form an angle of 180 ° by pulling the strong adhesive tape, so-called 180 °. Peeling was performed. And while peeling force (load, N / 25mm) at this time was measured, the peeling location which arose in the laminated body for a test, and the peeling form were confirmed. And the said peeling force was made into the adhesive force (N / 25mm) between the hardened | cured material of the 2nd layer whose width | variety is 25 mm in a laminated body for a test, and a silicon mirror wafer. The results are shown in the column “Adhesive strength after immersion” in Table 1.
(非浸漬試験用積層体の製造)
 切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハを、暗所において、23℃の純水中に2時間浸漬するのに代えて、空気雰囲気下の暗所において、温度23℃、相対湿度50%の条件下で30分間静置保存した点以外は、上述の試験用積層体の場合と同じ方法で、非浸漬試験用積層体を製造した。
(Manufacture of non-immersion laminates)
Instead of immersing the cut silicon bonding wafer with the die bonding film in pure water at 23 ° C. for 2 hours in a dark place, the temperature is 23 ° C. and the relative humidity is 50 ° in a dark place under an air atmosphere. A laminate for non-immersion test was produced in the same manner as in the case of the test laminate described above, except that the sample was allowed to stand for 30 minutes.
(非浸漬試験用積層体の非浸漬粘着力の測定)
 上記で得られた非浸漬試験用積層体について、上記の試験用積層体の場合と同じ方法で、剥離力(荷重、N/25mm)を測定するとともに、非浸漬試験用積層体において生じた剥離箇所と、剥離形態を確認し、前記剥離力を、幅が25mmの第2層の硬化物と、シリコンミラーウエハと、の間の粘着力(N/25mm)とした。結果を表1中の「非浸漬粘着力」の欄に示す。
(Measurement of non-immersion adhesive strength of laminate for non-immersion test)
For the non-immersion test laminate obtained above, the peel force (load, N / 25 mm) was measured in the same manner as in the case of the test laminate, and the peel occurred in the non-immersion test laminate. The location and the peeling form were confirmed, and the peeling force was defined as the adhesive strength (N / 25 mm) between the cured product of the second layer having a width of 25 mm and the silicon mirror wafer. The results are shown in the column of “Non-immersion adhesive strength” in Table 1.
<<ダイボンディングフィルムの製造、ダイシングダイボンディングシートの製造、及びダイボンディングフィルムの評価>>
[実施例2]
 第1接着剤組成物及び第2接着剤組成物について、これらの含有成分の種類及び含有量が、表1に示すとおりとなるように、これら組成物の製造時における、配合成分の種類及び配合量を変更した点以外は、実施例1の場合と同じ方法で、ダイボンディングフィルム及びダイシングダイボンディングシートを製造し、ダイボンディングフィルムを評価した。結果を表1に示す。
<< Manufacture of die bonding film, manufacture of dicing die bonding sheet, and evaluation of die bonding film >>
[Example 2]
About the 1st adhesive composition and the 2nd adhesive composition, the kind and combination of a compounding ingredient at the time of manufacture of these compositions so that the kind and content of these ingredients may become as shown in Table 1. A die bonding film and a dicing die bonding sheet were produced by the same method as in Example 1 except that the amount was changed, and the die bonding film was evaluated. The results are shown in Table 1.
[比較例1]
<<ダイボンディングフィルムの製造、ダイシングダイボンディングシートの製造>>
 実施例1の場合と同じ方法で、ダイボンディングフィルム及びダイシングダイボンディングシートを製造した。
[Comparative Example 1]
<< Manufacture of die bonding film, manufacture of dicing die bonding sheet >>
A die bonding film and a dicing die bonding sheet were produced in the same manner as in Example 1.
<<ダイボンディングフィルムの評価>>
<溶融粘度の初期検出温度Tの算出>
 実施例1の場合と同じ方法で、初期検出温度T(℃)を求めた。結果を表2に示す。
<< Evaluation of die bonding film >>
<Calculation of initial detection temperature T 0 of the melt viscosity>
The initial detection temperature T 0 (° C.) was determined by the same method as in Example 1. The results are shown in Table 2.
<基板の埋め込み性の評価>
(比較用の硬化済みダイボンディングフィルム付き半導体チップの製造)
 実施例1の場合と同じ方法で、積層体(1)を製造した。
<Evaluation of embeddability of substrate>
(Manufacture of semiconductor chip with cured die bonding film for comparison)
A laminate (1) was produced in the same manner as in Example 1.
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、積層体(1)の基材側の外部から、積層体(1)中の第2層に対して紫外線を照射し、第2層を硬化させた。
 以上により、第1層、第2層の硬化物、及びシリコンミラーウエハがこの順に、これらの厚さ方向において積層されて構成された、積層体(4)を得た。積層体(4)は、第2層が硬化されている点以外は、積層体(1)と同じである。
Next, using an ultraviolet irradiation device (“RAD-2000 m / 12” manufactured by Lintec Corporation) under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2 , from the outside on the substrate side of the laminate (1), The second layer in the laminate (1) was irradiated with ultraviolet rays to cure the second layer.
As described above, a laminated body (4) constituted by laminating the first layer, the second layer cured product, and the silicon mirror wafer in this order in the thickness direction was obtained. The laminate (4) is the same as the laminate (1) except that the second layer is cured.
 次いで、ダイシング装置(Disco社製「DFD6361」)を用いてダイシングすることにより、積層体(4)中のシリコンミラーウエハを分割するとともに、第1層及び硬化済み第2層(硬化済みダイボンディングフィルム)も切断し、大きさが2mm×2mmのシリコンチップを得た。このときのダイシングは、ダイシングブレードの移動速度を30mm/sec、ダイシングブレードの回転数を40000rpmとし、基材に対して、その第1層の貼付面から20μmの深さまでダイシングブレードで切り込むことにより行った。
 以上により、切断済みの第1層、切断済みの第2層の硬化物、及びシリコンチップがこの順に、これらの厚さ方向において積層された複数個の積層物が、前記第1層によって、基材上で整列した状態で固定されている、比較用の積層体(3’)を得た。比較用の積層体(3’)において、各層の見かけ上の種類と積層順は、上述の積層体(3)の場合と同じであるが、ダイシングと、第2層の硬化と、の順序が、上述の積層体(3)の場合とは異なる。
Next, the silicon mirror wafer in the laminate (4) is divided by dicing using a dicing apparatus ("DFD6361" manufactured by Disco), and the first layer and the cured second layer (cured die bonding film) ) Was also cut to obtain a silicon chip having a size of 2 mm × 2 mm. Dicing at this time is performed by cutting the dicing blade to a depth of 20 μm from the first layer application surface with a dicing blade moving speed of 30 mm / sec and a dicing blade rotation speed of 40000 rpm. It was.
As described above, a plurality of laminates in which the cut first layer, the cut second layer cured product, and the silicon chip are laminated in this order in the thickness direction are formed by the first layer. A comparative laminate (3 ′) was obtained which was fixed in alignment on the material. In the comparative laminate (3 ′), the apparent type of each layer and the order of lamination are the same as in the above-described laminate (3), but the order of dicing and second layer curing is the same. This is different from the case of the laminate (3) described above.
 次いで、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、上記で得られた、比較用の積層体(3’)中の基材から、裏面に第1層及び硬化済み第2層(硬化済みダイボンディングフィルム)を備えたシリコンチップ(すなわち、比較用の硬化済みダイボンディングフィルム付きシリコンチップ)を引き離して、ピックアップした。
 以上により、比較用の硬化済みダイボンディングフィルム付きシリコンチップを得た。
Next, using the pickup / die bonding apparatus (“BESTEM D02” manufactured by Canon Machinery Co., Ltd.), the first layer and the cured material are formed on the back surface from the base material in the comparative laminate (3 ′) obtained above. A silicon chip provided with the second layer (cured die bonding film) (that is, a silicon chip with a cured die bonding film for comparison) was pulled away and picked up.
As a result, a comparative silicon chip with a cured die bonding film was obtained.
(ダイボンディングフィルムの基板の埋め込み性の評価)
 上記で得られた、比較用の硬化済みダイボンディングフィルム付きシリコンチップを用いた点以外は、実施例1の場合と同じ方法で、硬化済みのダイボンディングフィルムの基板の埋め込み性を評価した。結果を表2に示す。
(Evaluation of embedding property of die bonding film substrate)
Except for the use of the comparative silicon chip with a cured die bonding film obtained above, the embedding property of the cured die bonding film on the substrate was evaluated in the same manner as in Example 1. The results are shown in Table 2.
<半導体チップへの転写性の評価>
(比較用の積層体(3’)の製造)
 上述の、比較用の硬化済みダイボンディングフィルム付き半導体チップの製造時の場合と同じ方法で、比較用の積層体(3’)を製造した。
<Evaluation of transferability to semiconductor chip>
(Manufacture of comparative laminate (3 '))
A comparative laminate (3 ′) was produced in the same manner as in the case of producing a comparative semiconductor chip with a cured die bonding film as described above.
(半導体チップへの転写性の評価)
 次いで、上記で得られた比較用の積層体(3’)を、23℃の純水中に2時間浸漬した。
 このとき、比較用の積層体(3’)全体が純水中に水没するように、比較用の積層体(3’)を配置した。
 次いで、比較用の積層体(3’)を純水中から引き上げ、表面に付着している水滴を取り除いた。そして、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、この浸漬後の比較用の積層体(3’)中の基材から、裏面に第1層及び硬化済み第2層を備えたシリコンチップ(換言すると、比較用の硬化済みダイボンディングフィルム付きシリコンチップ)を引き離してピックアップすることを試みた。
 次いで、上記で得られた、比較用の硬化済みダイボンディングフィルム付きシリコンチップを用いた点以外は、実施例1の場合と同じ方法で、硬化済みダイボンディングフィルムの半導体チップへの転写性を評価した。結果を表2に示す。
(Evaluation of transferability to semiconductor chip)
Next, the comparative laminate (3 ′) obtained above was immersed in pure water at 23 ° C. for 2 hours.
At this time, the comparative laminate (3 ′) was arranged so that the entire comparative laminate (3 ′) was submerged in pure water.
Next, the comparative laminate (3 ′) was pulled up from the pure water to remove water droplets adhering to the surface. Then, using a pickup die bonding apparatus ("BESTEM D02" manufactured by Canon Machinery Co., Ltd.), the first layer and the cured second layer are formed on the back surface from the base material in the comparative laminate (3 ') after the immersion. Attempts were made to pull apart and pick up a silicon chip with a layer (in other words, a silicon chip with a cured die bonding film for comparison).
Next, the transferability of the cured die bonding film to the semiconductor chip was evaluated in the same manner as in Example 1 except that the comparative silicon chip with a cured die bonding film obtained above was used. did. The results are shown in Table 2.
<非浸漬粘着力及び浸漬後粘着力の測定>
(試験用積層体の製造)
 実施例1の場合と同じ方法で、切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハを得た。
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、切断後のダイボンディングフィルムに対して紫外線を照射し、第2層を硬化させた。
 次いで、暗所において、この第2層を硬化後のダイボンディングフィルムを、第2層の硬化直後から、前記シリコンミラーウエハごと、23℃の純水中に2時間浸漬した。このとき、硬化後のダイボンディングフィルムが貼付されたシリコンミラーウエハは、その全体が純水中に水没するように、純水中に配置した。
 次いで、硬化後のダイボンディングフィルムが貼付されたシリコンミラーウエハを純水中から引き上げ、その表面に付着している水滴を取り除いた。
 以上により、強粘着テープ、切り込みが形成されている第1層、切り込みが形成されている第2層の硬化物、及びシリコンミラーウエハがこの順に、これらの厚さ方向において積層されて、構成された、比較用の試験用積層体を得た。
<Measurement of non-immersion adhesive strength and post-immersion adhesive strength>
(Manufacture of test laminates)
In the same manner as in Example 1, a silicon mirror wafer to which a die bonding film after cutting was attached was obtained.
Next, using a UV irradiation device (“RAD-2000 m / 12” manufactured by Lintec Corporation), the die bonding film after cutting was irradiated with UV light under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2. The second layer was cured.
Next, in a dark place, the die bonding film after curing the second layer was immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer immediately after curing the second layer. At this time, the silicon mirror wafer to which the cured die bonding film was attached was placed in pure water so that the entire silicon mirror wafer was submerged in pure water.
Next, the silicon mirror wafer on which the cured die bonding film was adhered was pulled up from pure water, and water droplets adhering to the surface were removed.
As described above, the strong adhesive tape, the first layer in which the cut is formed, the cured product of the second layer in which the cut is formed, and the silicon mirror wafer are laminated in this order in the thickness direction. In addition, a comparative test laminate was obtained.
(非浸漬試験用積層体の製造)
 第2層を硬化後のダイボンディングフィルムが貼付されたシリコンミラーウエハを、暗所において、23℃の純水中に2時間浸漬するのに代えて、空気雰囲気下の暗所において、温度23℃、相対湿度50%の条件下で30分間静置保存した点以外は、上述の比較用の試験用積層体の場合と同じ方法で、比較用の非浸漬試験用積層体を製造した。
(Manufacture of non-immersion laminates)
Instead of immersing the silicon mirror wafer with the die-bonding film after curing the second layer in pure water at 23 ° C. for 2 hours in the dark, the temperature is 23 ° C. in the dark under an air atmosphere. A comparative non-immersion test laminate was produced in the same manner as in the comparative test laminate described above, except that the sample was stored at a relative humidity of 50% for 30 minutes.
(試験用積層体の非浸漬粘着力及び浸漬後粘着力の測定)
 上記で得られた比較用の試験用積層体を用い、実施例1の場合と同じ方法で、その浸漬後粘着力を測定した。また、上記で得られた比較用の非浸漬試験用積層体を用い、実施例1の場合と同じ方法で、その非浸漬粘着力を測定した。結果を表2に示す。
(Measurement of non-immersion adhesive strength and post-immersion adhesive strength of test laminate)
Using the comparative test laminate obtained above, the post-immersion adhesive strength was measured in the same manner as in Example 1. Moreover, the non-immersion adhesive force was measured by the same method as in Example 1 using the comparative non-immersion test laminate obtained above. The results are shown in Table 2.
<<ダイボンディングフィルムの製造、ダイシングダイボンディングシートの製造、及びダイボンディングフィルムの評価>>
[比較例2]
<<ダイボンディングフィルムの製造、ダイシングダイボンディングシートの製造、ダイボンディングフィルムの評価>>
 実施例1の場合と同じ方法で製造したダイボンディングフィルム及びダイシングダイボンディングシートに代えて、実施例2の場合と同じ方法で製造したダイボンディングフィルム及びダイシングダイボンディングシートを用いた点以外は、比較例1の場合と同じ方法で、ダイボンディングフィルムを評価した。結果を表2に示す。
<< Manufacture of die bonding film, manufacture of dicing die bonding sheet, and evaluation of die bonding film >>
[Comparative Example 2]
<< Manufacture of die bonding film, manufacture of dicing die bonding sheet, evaluation of die bonding film >>
Except for using a die bonding film and a dicing die bonding sheet manufactured by the same method as in Example 2 in place of the die bonding film and the dicing die bonding sheet manufactured by the same method as in Example 1, a comparison was made. The die bonding film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
[比較例3]
<<ダイボンディングフィルムの製造>>
<接着剤組成物の製造>
 重合体成分(a)-3(10質量部)、重合体成分(a)-4(20質量部)、エポキシ樹脂(b1)-2(20質量部)、エポキシ樹脂(b1)-5(20質量部)、熱硬化剤(b2)-2(20質量部)、硬化促進剤(c)-2(0.3質量部)、充填材(d)-2(10質量部)、カップリング剤(e)-4(0.3質量部)、カップリング剤(e)-5(0.5質量部)、エネルギー線硬化性樹脂(g)-1(5質量部)及び光重合開始剤(h)-1(0.15質量部)をメチルエチルケトンに溶解又は分散させて、23℃で撹拌することにより、固形分濃度が55質量%である接着剤組成物を得た。なお、ここに示すメチルエチルケトン以外の成分の配合量は、すべて固形分換算値である。
[Comparative Example 3]
<< Manufacture of die bonding film >>
<Manufacture of adhesive composition>
Polymer component (a) -3 (10 parts by mass), Polymer component (a) -4 (20 parts by mass), Epoxy resin (b1) -2 (20 parts by mass), Epoxy resin (b1) -5 (20 Parts by mass), thermosetting agent (b2) -2 (20 parts by mass), curing accelerator (c) -2 (0.3 parts by mass), filler (d) -2 (10 parts by mass), coupling agent (E) -4 (0.3 parts by mass), coupling agent (e) -5 (0.5 parts by mass), energy beam curable resin (g) -1 (5 parts by mass) and photopolymerization initiator ( h) -1 (0.15 parts by mass) was dissolved or dispersed in methyl ethyl ketone and stirred at 23 ° C. to obtain an adhesive composition having a solid content concentration of 55% by mass. In addition, all the compounding quantities of components other than the methyl ethyl ketone shown here are solid content conversion values.
<ダイボンディングフィルムの製造>
 ポリエチレンテレフタレート(PET)製フィルムの片面がシリコーン処理により剥離処理されている剥離フィルム(リンテック社製「SP-PET381031H」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた接着剤組成物を塗工し、100℃で2分間加熱乾燥させることにより、厚さ20μmのダイボンディングフィルムを形成した。
<Manufacture of die bonding film>
Using a release film (“SP-PET381031H” manufactured by Lintec Co., Ltd., thickness 38 μm) on which one side of a polyethylene terephthalate (PET) film has been subjected to a release treatment by silicone treatment, the adhesion obtained above is applied to the release treatment surface. The agent composition was applied and dried by heating at 100 ° C. for 2 minutes to form a die bonding film having a thickness of 20 μm.
<<ダイシングダイボンディングシートの製造>>
 上記で得られたダイボンディングフィルムの露出面を、基材と貼り合せることにより、基材、ダイボンディングフィルム及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、ダイシングダイボンディングシートを得た。ここで用いた基材は、実施例1で用いたものと同じである。
<< Manufacture of dicing die bonding sheet >>
Dicing die bonding in which the base material, the die bonding film and the release film are laminated in this order in the thickness direction by bonding the exposed surface of the die bonding film obtained above to the base material. A sheet was obtained. The base material used here is the same as that used in Example 1.
<<ダイボンディングフィルムの評価>>
<溶融粘度の初期検出温度Tの算出>
 上記で得られたダイボンディングフィルムについて、実施例1の場合と同じ方法で、初期検出温度T(℃)を求めた。結果を表2に示す。
<< Evaluation of die bonding film >>
<Calculation of initial detection temperature T 0 of the melt viscosity>
About the die bonding film obtained above, the initial detection temperature T 0 (° C.) was determined by the same method as in Example 1. The results are shown in Table 2.
<基板の埋め込み性の評価>
(比較用の硬化済みダイボンディングフィルム付き半導体チップの製造)
 上記で得られたダイシングダイボンディングシートから剥離フィルムを取り除き、これにより新たに生じたダイボンディングフィルムの露出面を、8インチシリコンミラーウエハ(厚さ350μm)のミラー面(裏面)に貼付した。このとき、ダイシングダイボンディングシートは、40℃に加熱して、貼付速度20mm/s、貼付圧力0.5MPaの条件で貼付した。
 以上により、基材、ダイボンディングフィルム及びシリコンミラーウエハがこの順に、これらの厚さ方向において積層されて構成された、積層体(5)を得た。
<Evaluation of embeddability of substrate>
(Manufacture of semiconductor chip with cured die bonding film for comparison)
The release film was removed from the dicing die bonding sheet obtained above, and the newly-exposed surface of the die bonding film thus formed was affixed to the mirror surface (back surface) of an 8-inch silicon mirror wafer (thickness 350 μm). At this time, the dicing die bonding sheet was heated to 40 ° C. and pasted under conditions of a pasting speed of 20 mm / s and a pasting pressure of 0.5 MPa.
As described above, a laminate (5) was obtained in which the substrate, the die bonding film, and the silicon mirror wafer were laminated in this order in the thickness direction.
 次いで、ダイシング装置(Disco社製「DFD6361」)を用いてダイシングすることにより、積層体(5)中のシリコンミラーウエハを分割するとともに、ダイボンディングフィルムも切断し、大きさが2mm×2mmのシリコンチップを得た。このときのダイシングは、ダイシングブレードの移動速度を30mm/sec、ダイシングブレードの回転数を40000rpmとし、基材に対して、そのダイボンディングフィルムの貼付面から20μmの深さまでダイシングブレードで切り込むことにより行った。
 以上により、切断済みのダイボンディングフィルム及びシリコンチップが、これらの厚さ方向において積層された複数個の積層物が、前記ダイボンディングフィルムによって、基材上で整列した状態で固定されている、積層体(6)を得た。
Next, by dicing using a dicing apparatus (“DFD6361” manufactured by Disco), the silicon mirror wafer in the laminated body (5) is divided and the die bonding film is also cut to obtain a silicon having a size of 2 mm × 2 mm. I got a chip. Dicing at this time is performed by cutting the dicing blade to a depth of 20 μm from the surface of the die bonding film to the substrate with a moving speed of the dicing blade of 30 mm / sec and a rotating speed of the dicing blade of 40000 rpm. It was.
As described above, a laminated structure in which a plurality of laminates in which a cut die bonding film and a silicon chip are laminated in the thickness direction are fixed in an aligned state on the substrate by the die bonding film. Body (6) was obtained.
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、積層体(6)の基材側の外部から、積層体(6)中の切断済みのダイボンディングフィルムに対して紫外線を照射し、ダイボンディングフィルムを硬化させた。
 以上により、切断済みのダイボンディングフィルムの硬化物、及びシリコンチップが、これらの厚さ方向において積層された複数個の積層物が、前記硬化物によって、基材上で整列した状態で固定されている、積層体(7)を得た。積層体(7)は、切断済みのダイボンディングフィルムが硬化されている点以外は、積層体(6)と同じである。
Next, using an ultraviolet irradiation device (“RAD-2000 m / 12” manufactured by Lintec Corporation) under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2 , from the outside on the substrate side of the laminate (6), The die bonding film in the laminate (6) was irradiated with ultraviolet rays to cure the die bonding film.
As described above, a cured product of the cut die bonding film and a plurality of laminates in which the silicon chip is laminated in the thickness direction are fixed in an aligned state on the substrate by the cured product. A laminate (7) was obtained. The laminate (7) is the same as the laminate (6) except that the cut die bonding film is cured.
 次いで、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、上記で得られた積層体(7)中の基材から、裏面に硬化済みダイボンディングフィルムを備えたシリコンチップ(すなわち、比較用の硬化済みダイボンディングフィルム付きシリコンチップ)を引き離して、ピックアップした。
 以上により、比較用の硬化済みダイボンディングフィルム付きシリコンチップを得た。
Next, using a pick-up die bonding apparatus ("BESTEM D02" manufactured by Canon Machinery Co., Ltd.), a silicon chip having a cured die bonding film on the back surface from the base material in the laminate (7) obtained above ( That is, the comparative cured silicon chip with a die bonding film was pulled apart and picked up.
As a result, a comparative silicon chip with a cured die bonding film was obtained.
(ダイボンディングフィルムの基板の埋め込み性の評価)
 上記で得られた、比較用の硬化済みダイボンディングフィルム付きシリコンチップを用いた点以外は、実施例1の場合と同じ方法で、硬化済みのダイボンディングフィルムの基板の埋め込み性を評価した。結果を表2に示す。
(Evaluation of embedding property of die bonding film substrate)
Except for the use of the comparative silicon chip with a cured die bonding film obtained above, the embedding property of the cured die bonding film on the substrate was evaluated in the same manner as in Example 1. The results are shown in Table 2.
<半導体チップへの転写性の評価>
(積層体(7)の製造)
 上述の、比較用の硬化済みダイボンディングフィルム付き半導体チップの製造時の場合と同じ方法で、積層体(7)を製造した。
<Evaluation of transferability to semiconductor chip>
(Manufacture of laminate (7))
A laminate (7) was produced by the same method as in the case of producing a comparative semiconductor chip with a cured die bonding film as described above.
(半導体チップへの転写性の評価)
 次いで、上記で得られた積層体(7)を、23℃の純水中に2時間浸漬した。このとき、積層体(7)全体が純水中に水没するように、積層体(7)を配置した。
 次いで、積層体(7)を純水中から引き上げ、表面に付着している水滴を取り除いた。
 そして、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)を用いて、この浸漬後の積層体(7)中の基材から、裏面に硬化済みダイボンディングフィルムを備えたシリコンチップ(換言すると、比較用の硬化済みダイボンディングフィルム付きシリコンチップ)を引き離してピックアップすることを試みた。
 次いで、上記で得られた、比較用の硬化済みダイボンディングフィルム付きシリコンチップを用いた点以外は、実施例1の場合と同じ方法で、硬化済みダイボンディングフィルムの半導体チップへの転写性を評価した。結果を表2に示す。
(Evaluation of transferability to semiconductor chip)
Next, the laminate (7) obtained above was immersed in pure water at 23 ° C. for 2 hours. At this time, the laminate (7) was arranged so that the entire laminate (7) was submerged in pure water.
Next, the laminate (7) was pulled up from the pure water to remove water droplets adhering to the surface.
Then, using a pick-up die bonding apparatus (“BESTEM D02” manufactured by Canon Machinery Co., Ltd.), a silicon chip (in other words, a cured die bonding film on the back surface from the base material in the laminated body (7) after the immersion) Then, an attempt was made to separate and pick up a comparatively hardened die bonding film-attached silicon chip.
Next, the transferability of the cured die bonding film to the semiconductor chip was evaluated in the same manner as in Example 1 except that the comparative silicon chip with a cured die bonding film obtained above was used. did. The results are shown in Table 2.
<非浸漬粘着力及び浸漬後粘着力の測定>
(試験用積層体の製造)
 上記で得られたダイボンディングフィルムの露出面を、6インチシリコンミラーウエハ(厚さ350μm)のミラー面(裏面)に貼付した。このとき、ダイボンディングフィルムは、40℃に加熱して、貼付速度20mm/s、貼付圧力0.5MPaの条件で貼付した。
 次いで、この貼付後のダイボンディングフィルムから剥離フィルムを取り除き、これにより新たに生じたダイボンディングフィルムの露出面に、幅が25mmである強粘着テープ(リンテック社製「PET50PLシン」)を貼付した。
<Measurement of non-immersion adhesive strength and post-immersion adhesive strength>
(Manufacture of test laminates)
The exposed surface of the die bonding film obtained above was attached to the mirror surface (back surface) of a 6 inch silicon mirror wafer (thickness 350 μm). At this time, the die bonding film was heated to 40 ° C. and pasted under the conditions of a pasting speed of 20 mm / s and a pasting pressure of 0.5 MPa.
Next, the release film was removed from the die bonding film after the application, and a strong adhesive tape (“PET50PL Thin” manufactured by Lintec Co., Ltd.) having a width of 25 mm was applied to the exposed surface of the die bonding film newly generated thereby.
 次いで、前記6インチシリコンミラーウエハが貼付されたダイボンディングフィルムに対して、この強粘着テープの外周に沿って、前記ダイボンディングフィルムの厚さ方向の全域に切り込みを形成し、前記ダイボンディングフィルムを幅が25mmの帯状に切断した。
 次いで、暗所において、この切断後のダイボンディングフィルムを、その切断直後から、前記シリコンミラーウエハごと、23℃の純水中に2時間浸漬した。このとき、切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハは、その全体が純水中に水没するように、純水中に配置した。
 次いで、切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハを純水中から引き上げ、その表面に付着している水滴を取り除いた。
 次いで、紫外線照射装置(リンテック社製「RAD-2000 m/12」)を用いて、照度220mW/cm、光量120mJ/cmの条件で、切断後のダイボンディングフィルムに対して紫外線を照射し、ダイボンディングフィルムを硬化させた。
 以上により、強粘着テープ、切り込みが形成されているダイボンディングフィルムの硬化物、及びシリコンミラーウエハがこの順に、これらの厚さ方向において積層されて、構成された、比較用の試験用積層体を得た。
Next, on the die bonding film to which the 6-inch silicon mirror wafer is attached, a cut is formed in the entire thickness direction of the die bonding film along the outer periphery of the strong adhesive tape. It was cut into a band shape having a width of 25 mm.
Next, in the dark place, the die bonding film after cutting was immersed in pure water at 23 ° C. for 2 hours together with the silicon mirror wafer immediately after the cutting. At this time, the silicon mirror wafer with the die bonding film after cutting was placed in pure water so that the entire silicon mirror wafer was submerged in pure water.
Next, the silicon mirror wafer with the die bonding film after cutting was pulled up from pure water, and water droplets adhering to the surface were removed.
Next, using a UV irradiation device (“RAD-2000 m / 12” manufactured by Lintec Corporation), the die bonding film after cutting was irradiated with UV light under the conditions of an illuminance of 220 mW / cm 2 and a light amount of 120 mJ / cm 2. The die bonding film was cured.
As described above, the comparative test laminate, in which the strong adhesive tape, the cured die bonding film on which the cuts are formed, and the silicon mirror wafer are laminated in this order in the thickness direction, is configured. Obtained.
(試験用積層体の浸漬後粘着力の測定)
 23℃の条件下で、万能引張試験機(島津製作所製「オートグラフAG-IS」)を用いて、前記試験用積層体において、前記強粘着テープを引っ張った。このとき、強粘着テープの引っ張りによって、前記試験用積層体において生じた剥離面同士が、180°の角度を為すように、剥離(引張)速度300mm/minで、粘着テープを引っ張る、いわゆる180°剥離を行った。そして、このときの剥離力(荷重、N/25mm)を測定するとともに、前記試験用積層体において生じた剥離箇所と、剥離形態を確認した。そして、前記剥離力を、前記試験用積層体における、幅が25mmのダイボンディングフィルムの硬化物と、シリコンミラーウエハと、の間の粘着力(N/25mm)とした。結果を表2中の「浸漬後粘着力」の欄に示す。
(Measurement of adhesive strength after immersion of test laminate)
Under the condition of 23 ° C., the strong adhesive tape was pulled in the test laminate using a universal tensile tester (“Autograph AG-IS” manufactured by Shimadzu Corporation). At this time, the adhesive tape is pulled at a peeling (tensile) speed of 300 mm / min so that the peeled surfaces generated in the test laminate make an angle of 180 ° by pulling the strong adhesive tape, so-called 180 °. Peeling was performed. And while peeling force (load, N / 25mm) at this time was measured, the peeling location which arose in the said test laminated body, and the peeling form were confirmed. And the said peeling force was made into the adhesive force (N / 25mm) between the hardened | cured material of the die bonding film whose width | variety is 25 mm in the said test laminated body, and a silicon mirror wafer. The results are shown in the column of “Adhesive strength after immersion” in Table 2.
(非浸漬試験用積層体の製造)
 切断後のダイボンディングフィルムが貼付されたシリコンミラーウエハを、暗所において、23℃の純水中に2時間浸漬するのに代えて、空気雰囲気下の暗所において、温度23℃、相対湿度50%の条件下で30分間静置保存した点以外は、上述の比較用の試験用積層体の場合と同じ方法で、比較用の非浸漬試験用積層体を製造した。
(Manufacture of non-immersion laminates)
Instead of immersing the cut silicon bonding wafer with the die bonding film in pure water at 23 ° C. for 2 hours in a dark place, the temperature is 23 ° C. and the relative humidity is 50 ° in a dark place under an air atmosphere. A comparative non-immersed test laminate was produced in the same manner as in the comparative test laminate described above except that the sample was stored at 30% for 30 minutes.
(非浸漬試験用積層体の非浸漬粘着力の測定)
 上記で得られた非浸漬試験用積層体について、上記の試験用積層体の場合と同じ方法で、剥離力(荷重、N/25mm)を測定するとともに、非浸漬試験用積層体において生じた剥離箇所と、剥離形態を確認し、前記剥離力を、幅が25mmの第2層の硬化物と、シリコンミラーウエハと、の間の粘着力(N/25mm)とした。結果を表2中の「非浸漬粘着力」の欄に示す。
(Measurement of non-immersion adhesive strength of laminate for non-immersion test)
For the non-immersion test laminate obtained above, the peel force (load, N / 25 mm) was measured in the same manner as in the case of the test laminate, and the peel occurred in the non-immersion test laminate. The location and the peeling form were confirmed, and the peeling force was defined as the adhesive strength (N / 25 mm) between the cured product of the second layer having a width of 25 mm and the silicon mirror wafer. The results are shown in the column of “Non-immersion adhesive strength” in Table 2.
[比較例4]
<<ダイボンディングフィルムの製造>>
<接着剤組成物の製造>
 重合体成分(a)-3(10質量部)、エポキシ樹脂(b1)-4(10質量部)、エポキシ樹脂(b1)-5(10質量部)、エポキシ樹脂(b1)-6(20質量部)、熱硬化剤(b2)-3(1質量部)、硬化促進剤(c)-2(1質量部)、充填材(d)-2(50質量部)、カップリング剤(e)-5(0.5質量部)、架橋剤(f)-1(0.3質量部)、エネルギー線硬化性樹脂(g)-1(5質量部)及び光重合開始剤(h)-1(0.15質量部)をメチルエチルケトンに溶解又は分散させて、23℃で撹拌することにより、固形分濃度が(55)質量%である接着剤組成物を得た。なお、ここに示すメチルエチルケトン以外の成分の配合量は、すべて固形分換算値である。
[Comparative Example 4]
<< Manufacture of die bonding film >>
<Manufacture of adhesive composition>
Polymer component (a) -3 (10 parts by mass), epoxy resin (b1) -4 (10 parts by mass), epoxy resin (b1) -5 (10 parts by mass), epoxy resin (b1) -6 (20 parts by mass) Part), thermosetting agent (b2) -3 (1 part by mass), curing accelerator (c) -2 (1 part by mass), filler (d) -2 (50 parts by mass), coupling agent (e) -5 (0.5 part by mass), crosslinking agent (f) -1 (0.3 part by mass), energy beam curable resin (g) -1 (5 parts by mass), and photopolymerization initiator (h) -1 (0.15 parts by mass) was dissolved or dispersed in methyl ethyl ketone and stirred at 23 ° C. to obtain an adhesive composition having a solid content concentration of (55)% by mass. In addition, all the compounding quantities of components other than the methyl ethyl ketone shown here are solid content conversion values.
<ダイボンディングフィルムの製造>
 上記で得られた接着剤組成物を用いた点以外は、比較例3の場合と同じ方法で、ダイボンディングフィルムを製造した。
<Manufacture of die bonding film>
A die bonding film was produced in the same manner as in Comparative Example 3 except that the adhesive composition obtained above was used.
<<ダイシングダイボンディングシートの製造、及びダイボンディングフィルムの評価>>
 上記で得られたダイボンディングフィルムを用いた点以外は、比較例3の場合と同じ方法で、ダイシングダイボンディングシートを製造し、ダイボンディングフィルムを評価した。結果を表2に示す。
<< Manufacture of dicing die bonding sheet and evaluation of die bonding film >>
A dicing die bonding sheet was produced by the same method as in Comparative Example 3 except that the die bonding film obtained above was used, and the die bonding film was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記結果から明らかなように、実施例1~2においては、ダイボンディングフィルムのうち、第1層の初期検出温度Tが68℃以下(59~68℃)であり、第1層は、基板の埋め込み性に優れていた。 As is clear from the above results, in Examples 1 and 2, the initial detection temperature T 0 of the first layer of the die bonding film is 68 ° C. or lower (59 to 68 ° C.), and the first layer is a substrate. The embeddability was excellent.
 また、実施例1~2においては、第2層の硬化物と、シリコンミラーウエハと、の間の浸漬後粘着力は、10N/25mm以上(10N/25mm≦)であった。この浸漬後粘着力の測定時には、試験用積層体において、第1層と強粘着テープとの間で、先に剥離(界面剥離)が生じており、このときの剥離力が10N/25mmであって、第2層の硬化物と、シリコンミラーウエハと、の間で剥離は生じなかった。なお、第2層の硬化物と、シリコンミラーウエハと、の間の非浸漬粘着力も、浸漬後粘着力と同様に、10N/25mm以上であって、浸漬していない試験用積層体(非浸漬試験用積層体)においても、第2層の硬化物と、シリコンミラーウエハと、の間で剥離は生じなかった。
 そして、第2層が硬化済みのダイボンディングフィルムは、半導体チップへの転写性に優れていた。
In Examples 1 and 2, the adhesive strength after immersion between the cured product of the second layer and the silicon mirror wafer was 10 N / 25 mm or more (10 N / 25 mm ≦). At the time of measuring the adhesive strength after immersion, in the test laminate, peeling (interfacial peeling) occurred first between the first layer and the strong adhesive tape, and the peeling force at this time was 10 N / 25 mm. No peeling occurred between the cured product of the second layer and the silicon mirror wafer. The non-immersion adhesive strength between the cured product of the second layer and the silicon mirror wafer is also 10 N / 25 mm or more and the test laminate not immersed (non-immersion), similarly to the post-immersion adhesive strength. Also in the test laminate, no peeling occurred between the cured product of the second layer and the silicon mirror wafer.
The die bonding film in which the second layer has been cured was excellent in transferability to the semiconductor chip.
 このように、実施例1~2のダイボンディングフィルムは、2層構造を有していることにより、サイズが小さい半導体チップのピックアップ時において、半導体チップへの転写不良を抑制可能であり、かつ、ダイボンディング時において、基板を良好に埋め込み可能であった。 As described above, the die bonding films of Examples 1 and 2 have a two-layer structure, so that transfer failure to a semiconductor chip can be suppressed when picking up a semiconductor chip having a small size, and At the time of die bonding, the substrate could be satisfactorily embedded.
 これに対して、比較例1~2においては、第2層の硬化物と、シリコンミラーウエハと、の間の浸漬後粘着力は、3.0N/25mm以下(2.3~3.0N/25mm)と小さかった。このとき、比較用の試験用積層体においては、第2層の硬化物と、シリコンミラーウエハと、の間で、剥離(界面剥離)が生じていた。なお、第2層の硬化物と、シリコンミラーウエハと、の間の非浸漬粘着力は、実施例1~2の場合と同様に、10N/25mm以上であった。
 そして、第2層が硬化済みのダイボンディングフィルムは、半導体チップへの転写性に劣っていた。
On the other hand, in Comparative Examples 1 and 2, the adhesive strength after immersion between the cured product of the second layer and the silicon mirror wafer is 3.0 N / 25 mm or less (2.3 to 3.0 N / 25 mm). At this time, in the comparative test laminate, peeling (interfacial peeling) occurred between the cured product of the second layer and the silicon mirror wafer. Note that the non-immersion adhesive force between the cured product of the second layer and the silicon mirror wafer was 10 N / 25 mm or more, as in Examples 1 and 2.
And the die-bonding film with which the 2nd layer was hardened was inferior to the transferability to a semiconductor chip.
 比較例1は実施例1と、比較例2は実施例2と、それぞれ、ダイボンディングフィルム及びダイシングダイボンディングシートが同じである。それにも関わらず、このような結果になった理由は、評価時において、シリコンミラーウエハに貼付されている、切断後のダイボンディングフィルムの、純水中への浸漬と、硬化(第2層の硬化)と、の順序が、実施例1~2と比較例1~2とでは、逆であることが原因であった。実施例1~2の場合には、切断後のダイボンディングフィルムを、純水中への浸漬後に硬化させている。ダイシングブレードを用いたダイシングは、水(切削水)を流しながら行うことを考慮すると、実施例1~2での評価は、ダイシング後にダイボンディングフィルムを硬化させるという工程順を反映させているといえる。これに対して、比較例1~2の場合には、切断後のダイボンディングフィルムを、硬化後に純水中へ浸漬させている。すなわち、比較例1~2の評価では、ダイボンディングフィルムの硬化後にダイシングを行うという工程順を反映させているといえる。したがって、これら実施例及び比較例の評価結果は、本発明のダイボンディングフィルムを用いて、上述の積層体(1)作製工程、積層体(2)作製工程、積層体(3)作製工程及びピックアップ工程を、この順で行うことにより、サイズが小さい半導体チップのピックアップ時において、ダイボンディングフィルムの半導体チップへの転写不良を抑制しつつ、半導体チップが製造可能であることを示している。 Comparative Example 1 is the same as Example 1, and Comparative Example 2 is the same as Example 2. The die bonding film and the dicing die bonding sheet are the same. Nevertheless, the reason for such a result is that, at the time of evaluation, the die bonding film after cutting, which is affixed to the silicon mirror wafer, is immersed in pure water and cured (the second layer). This is because the order of (hardening) is reverse in Examples 1-2 and Comparative Examples 1-2. In the case of Examples 1 and 2, the die bonding film after cutting is cured after being immersed in pure water. Considering that dicing using a dicing blade is performed while flowing water (cutting water), it can be said that the evaluation in Examples 1 and 2 reflects the order of steps in which the die bonding film is cured after dicing. . On the other hand, in Comparative Examples 1 and 2, the die bonding film after cutting is immersed in pure water after curing. That is, it can be said that the evaluation of Comparative Examples 1 and 2 reflects the order of processes in which dicing is performed after the die bonding film is cured. Therefore, the evaluation results of these Examples and Comparative Examples are the above-described laminate (1) production process, laminate (2) production process, laminate (3) production process and pickup using the die bonding film of the present invention. By performing the steps in this order, it is shown that the semiconductor chip can be manufactured while suppressing transfer failure of the die bonding film to the semiconductor chip when picking up the semiconductor chip having a small size.
 また、比較例3においては、ダイボンディングフィルムが単層構成であり、ダイボンディングフィルムの硬化物と、シリコンミラーウエハと、の間の浸漬後粘着力は、3.1N/25mmと小さかった。このとき、試験用積層体においては、ダイボンディングフィルムの硬化物と、シリコンミラーウエハと、の間で、剥離(界面剥離)が生じていた。なお、ダイボンディングフィルムの硬化物と、シリコンミラーウエハと、の間の非浸漬粘着力は、実施例1~2の場合と同様に、10N/25mm以上であった。
 そして、ダイボンディングフィルムの硬化物は、半導体チップへの転写性に劣っていた。
In Comparative Example 3, the die bonding film had a single-layer structure, and the post-immersion adhesive force between the cured product of the die bonding film and the silicon mirror wafer was as small as 3.1 N / 25 mm. At this time, in the test laminate, peeling (interfacial peeling) occurred between the cured product of the die bonding film and the silicon mirror wafer. The non-immersion adhesive force between the cured die bonding film and the silicon mirror wafer was 10 N / 25 mm or more, as in Examples 1-2.
And the hardened | cured material of the die bonding film was inferior to the transferability to a semiconductor chip.
 一方、比較例4においては、単層構成のダイボンディングフィルムの初期検出温度Tが83℃と高く、ダイボンディングフィルムは、基板の埋め込み性に劣っていた。その一方で、ダイボンディングフィルムの硬化物と、シリコンミラーウエハと、の間の、浸漬後粘着力と非浸漬粘着力は、いずれも実施例1~2の場合と同様に、10N/25mm以上であった。 On the other hand, in Comparative Example 4, the initial detection temperature T 0 of the die bonding film having a single layer configuration was as high as 83 ° C., and the die bonding film was inferior in the embedding property of the substrate. On the other hand, the post-immersion adhesive strength and the non-immersion adhesive strength between the cured product of the die bonding film and the silicon mirror wafer are both 10 N / 25 mm or more, as in Examples 1 and 2. there were.
 本発明は、サイズが小さい半導体チップのピックアップ時において、半導体チップへの転写不良を抑制可能であり、かつ、ダイボンディング時において、基板を良好に埋め込み可能なダイボンディングフィルムと、このダイボンディングフィルムを備えたダイシングダイボンディングシートと、このダイシングダイボンディングシートを用いた半導体チップの製造方法が提供できるので、産業上極めて有用である。 The present invention provides a die bonding film capable of suppressing transfer failure to a semiconductor chip when picking up a semiconductor chip having a small size and capable of satisfactorily embedding a substrate at the time of die bonding. Since the dicing die bonding sheet provided and the semiconductor chip manufacturing method using the dicing die bonding sheet can be provided, it is extremely useful in the industry.
 1A,1B,1C,1D・・・ダイシングダイボンディングシート、
10・・・支持シート(ダイシングシート)、
12・・・中間層、
13,23・・・ダイボンディングフィルム、
131,231・・・第1層、
131’・・・切断済みの第1層、
132,232・・・第2層、
132’・・・切断済みの第2層、
1320’・・・切断済み及び硬化済みの第2層、
9・・・半導体ウエハ、
9’・・・半導体チップ、
101・・・積層体(1-2)(積層体(1)、積層体(1-1))、
102・・・積層体(2)、
103・・・積層体(3)
1A, 1B, 1C, 1D ... dicing die bonding sheet,
10 ... Support sheet (dicing sheet),
12 ... intermediate layer,
13, 23 ... Die bonding film,
131, 231 ... the first layer,
131 ′ ・ ・ ・ cut first layer,
132,232 ... the second layer,
132 '... the cut second layer,
1320 '... a cut and hardened second layer,
9: Semiconductor wafer,
9 '... semiconductor chip,
101 ... Laminated body (1-2) (laminated body (1), laminated body (1-1)),
102 ... Laminated body (2),
103 ... Laminated body (3)

Claims (3)

  1.  第1層と、前記第1層上に備えらえた第2層とを含み、
     前記第1層は、溶融粘度の初期検出温度が75℃以下である特性を有し、
     前記第2層は、粘着性及びエネルギー線硬化性を有し、かつ
     厚さが10μmで、かつ幅が25mmよりも広い前記第2層を試験片として、前記試験片を、シリコンミラーウエハに貼付し、幅25mmとなるように前記試験片を切断し、切断後の前記試験片を、前記シリコンミラーウエハごと、純水中に2時間浸漬し、浸漬後の前記試験片をエネルギー線硬化させて硬化物とすることにより、前記シリコンミラーウエハに前記硬化物が貼付されている試験用積層体を作製したときの、幅が25mmの前記硬化物と、前記シリコンミラーウエハと、の間の粘着力が、6N/25mm以上となる特性を有する、
     ダイボンディングフィルム。
    Including a first layer and a second layer provided on the first layer;
    The first layer has an initial detection temperature of melt viscosity of 75 ° C. or less,
    The second layer has adhesiveness and energy ray curability, has a thickness of 10 μm, and a width of more than 25 mm. The second layer is a test piece, and the test piece is affixed to a silicon mirror wafer. Then, the test piece is cut so as to have a width of 25 mm, the cut test piece is immersed in pure water for 2 hours together with the silicon mirror wafer, and the immersed test piece is cured with energy rays. Adhesive force between the cured product having a width of 25 mm and the silicon mirror wafer when a laminated body for test in which the cured product is affixed to the silicon mirror wafer is prepared by using a cured product. Has a characteristic of 6N / 25mm or more,
    Die bonding film.
  2.  支持シートと、前記支持シート上に備えらえた、請求項1に記載のダイボンディングフィルムとを含み、
     前記ダイボンディングフィルム中の前記第1層が、前記支持シート側に配置されている、ダイシングダイボンディングシート。
    Comprising a support sheet and the die bonding film according to claim 1 provided on the support sheet;
    A dicing die bonding sheet, wherein the first layer in the die bonding film is disposed on the support sheet side.
  3.  請求項1に記載のダイボンディングフィルムのうち、前記第2層に半導体ウエハが貼付され、前記第1層にダイシングシートが貼付されている積層体(1-1)、又は請求項2に記載のダイシングダイボンディングシートのうち、前記ダイボンディングフィルム中の前記第2層に半導体ウエハが貼付されている積層体(1-2)を作製することと、
     ダイシングブレードにより、前記積層体(1-1)又は積層体(1-2)中の前記半導体ウエハを、前記ダイボンディングフィルムとともに切断することにより、切断済みの前記第1層、切断済みの前記第2層、及び前記切断済みの半導体ウエハである半導体チップを備えた積層体(2)を作製することと、
     前記積層体(2)中の切断済みの前記第2層をエネルギー線硬化させて硬化物とすることにより、切断済みの前記第1層、前記硬化物、及び前記半導体チップを備えた積層体(3)を作製することと、
     前記積層体(3)において、切断済みの前記第1層及び前記硬化物を備えた前記半導体チップを、前記ダイシングシート又は前記支持シートから引き離して、ピックアップすることと、
     を含む、半導体チップの製造方法。
    The laminated body (1-1) in which a semiconductor wafer is stuck to the second layer and a dicing sheet is stuck to the first layer of the die bonding film according to claim 1, or the die bonding film according to claim 2. Producing a laminated body (1-2) in which a semiconductor wafer is bonded to the second layer in the die bonding film of the dicing die bonding sheet;
    By cutting the semiconductor wafer in the laminated body (1-1) or the laminated body (1-2) together with the die bonding film with a dicing blade, the cut first layer and the cut first layer Producing a laminate (2) comprising two layers and a semiconductor chip which is the cut semiconductor wafer;
    A laminate (1) including the cut first layer, the cured product, and the semiconductor chip by curing the cut second layer in the laminate (2) by energy ray curing. 3) producing,
    In the laminate (3), the semiconductor chip including the cut first layer and the cured product is pulled away from the dicing sheet or the support sheet and picked up;
    A method for manufacturing a semiconductor chip, comprising:
PCT/JP2019/011694 2018-03-23 2019-03-20 Die bonding film, dicing die bonding sheet, and semiconductor chip production method WO2019182009A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980006405.7A CN111466015B (en) 2018-03-23 2019-03-20 Die bonding film, dicing die bonding sheet, and method for manufacturing semiconductor chip
JP2020507871A JP7155245B2 (en) 2018-03-23 2019-03-20 Die bonding film, dicing die bonding sheet, and method for manufacturing semiconductor chip
KR1020207016531A KR20200135279A (en) 2018-03-23 2019-03-20 Die bonding film, dicing die bonding sheet, and manufacturing method of semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057007 2018-03-23
JP2018-057007 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182009A1 true WO2019182009A1 (en) 2019-09-26

Family

ID=67987841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011694 WO2019182009A1 (en) 2018-03-23 2019-03-20 Die bonding film, dicing die bonding sheet, and semiconductor chip production method

Country Status (5)

Country Link
JP (1) JP7155245B2 (en)
KR (1) KR20200135279A (en)
CN (1) CN111466015B (en)
TW (1) TWI770371B (en)
WO (1) WO2019182009A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079955A1 (en) * 2019-10-23 2021-04-29 リンテック株式会社 Film for forming protective film, composite sheet for forming protective film, and production method of small piece with protective film
JP2021155680A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive
WO2022210894A1 (en) * 2021-03-31 2022-10-06 大日本印刷株式会社 Transfer film, hardcoat film, hardcoat molded article and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120945A (en) * 2006-11-14 2008-05-29 Sumitomo Bakelite Co Ltd Liquid-like resin composition, semiconductor wafer with adhesive layer, semiconductor element with adhesive layer and semiconductor package
JP2009245989A (en) * 2008-03-28 2009-10-22 Lintec Corp Adhesive sheet for processing semiconductor wafer and utilization method therefor
JP2011258636A (en) * 2010-06-07 2011-12-22 Furukawa Electric Co Ltd:The Adhesive tape for wafer dicing process
JP2012069586A (en) * 2010-09-21 2012-04-05 Nitto Denko Corp Dicing die-bonding film, manufacturing method of dicing die-bonding film, and manufacturing method of semiconductor device
JP2015126217A (en) * 2013-12-27 2015-07-06 日立化成株式会社 Dicing tape for integrated dicing and die-bonding tape

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668001B2 (en) 2005-08-18 2011-04-13 リンテック株式会社 Dicing / die-bonding sheet and method for manufacturing semiconductor device using the same
KR101763458B1 (en) * 2010-03-12 2017-07-31 히타치가세이가부시끼가이샤 Adhesive reel
JP5406995B2 (en) 2013-01-31 2014-02-05 リンテック株式会社 Adhesive used in semiconductor device manufacturing method
US10253222B2 (en) * 2014-01-21 2019-04-09 Lintec Corporation Adhesive sheet for wafer protection
JP6374199B2 (en) * 2014-03-31 2018-08-15 日東電工株式会社 Die bond film, dicing die bond film and laminated film
CN105199616A (en) * 2014-06-20 2015-12-30 日东电工株式会社 Heat-curable adhesive sheet and flexible printed circuit substrate
JP6623210B2 (en) * 2015-03-02 2019-12-18 リンテック株式会社 Dicing sheet and semiconductor chip manufacturing method
CN107533964B (en) * 2015-11-09 2021-06-15 古河电气工业株式会社 Mask-integrated surface protection film
TWI731964B (en) * 2016-04-28 2021-07-01 日商琳得科股份有限公司 Complex sheet for forming protective film
CN109287125B (en) * 2016-04-28 2023-07-18 琳得科株式会社 Method for manufacturing semiconductor chip with protective film and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120945A (en) * 2006-11-14 2008-05-29 Sumitomo Bakelite Co Ltd Liquid-like resin composition, semiconductor wafer with adhesive layer, semiconductor element with adhesive layer and semiconductor package
JP2009245989A (en) * 2008-03-28 2009-10-22 Lintec Corp Adhesive sheet for processing semiconductor wafer and utilization method therefor
JP2011258636A (en) * 2010-06-07 2011-12-22 Furukawa Electric Co Ltd:The Adhesive tape for wafer dicing process
JP2012069586A (en) * 2010-09-21 2012-04-05 Nitto Denko Corp Dicing die-bonding film, manufacturing method of dicing die-bonding film, and manufacturing method of semiconductor device
JP2015126217A (en) * 2013-12-27 2015-07-06 日立化成株式会社 Dicing tape for integrated dicing and die-bonding tape

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079955A1 (en) * 2019-10-23 2021-04-29 リンテック株式会社 Film for forming protective film, composite sheet for forming protective film, and production method of small piece with protective film
CN114599517A (en) * 2019-10-23 2022-06-07 琳得科株式会社 Film for forming protective film, composite sheet for forming protective film, and method for producing small piece with protective film
JP2021155680A (en) * 2020-03-30 2021-10-07 リンテック株式会社 Film adhesive
JP7446887B2 (en) 2020-03-30 2024-03-11 リンテック株式会社 film adhesive
WO2022210894A1 (en) * 2021-03-31 2022-10-06 大日本印刷株式会社 Transfer film, hardcoat film, hardcoat molded article and method for producing same
JPWO2022210894A1 (en) * 2021-03-31 2022-10-06
JP7276730B2 (en) 2021-03-31 2023-05-18 大日本印刷株式会社 Transfer film, hard coat film, hard coat molding and method for producing the same

Also Published As

Publication number Publication date
JP7155245B2 (en) 2022-10-18
JPWO2019182009A1 (en) 2021-03-25
CN111466015A (en) 2020-07-28
TW202004873A (en) 2020-01-16
KR20200135279A (en) 2020-12-02
CN111466015B (en) 2023-08-29
TWI770371B (en) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2019182001A1 (en) Film-like adhesive and sheet for semiconductor processing
WO2017145979A1 (en) Film-shaped adhesive composite sheet and method for producing semiconductor device
TWI758445B (en) Film-type adhesive composite sheet and method for producing semiconductor device
JP6885966B2 (en) Manufacturing method of dicing die bonding sheet and semiconductor chip
JPWO2014155756A1 (en) Adhesive sheet, composite sheet for forming protective film, and method for producing chip with protective film
WO2019182009A1 (en) Die bonding film, dicing die bonding sheet, and semiconductor chip production method
WO2018212171A1 (en) Semiconductor device and mehtod for producing same
WO2017078053A1 (en) Kit for thermosetting resin film and second protective film forming film, thermosetting resin film, first protective film forming sheet, and method for forming first protective film for semiconductor wafer
JP7413356B2 (en) Film adhesives and sheets for semiconductor processing
JP7291310B1 (en) Thermosetting film, composite sheet, and method for manufacturing semiconductor device
WO2023058303A1 (en) Thermosetting film, composite sheet, and method for manufacturing semiconductor device
JP7471880B2 (en) Film-like adhesive and dicing die bonding sheet
JP7471879B2 (en) Film-like adhesive and dicing die bonding sheet
TWI836931B (en) Film adhesive and semiconductor processing sheet
WO2022210087A1 (en) Filmy adhesive, dicing/die bonding sheet, method for producing semiconductor device, use of filmy adhesive, use of dicing/die bonding sheet, and method for reworking semiconductor wafer
TWI837327B (en) Film adhesives and sheets for semiconductor processing
WO2020137934A1 (en) Film-like adhesive agent, layered sheet, composite sheet, and method for producing layered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771274

Country of ref document: EP

Kind code of ref document: A1