WO2019181792A1 - インサート及びこれを備えた切削工具 - Google Patents

インサート及びこれを備えた切削工具 Download PDF

Info

Publication number
WO2019181792A1
WO2019181792A1 PCT/JP2019/010877 JP2019010877W WO2019181792A1 WO 2019181792 A1 WO2019181792 A1 WO 2019181792A1 JP 2019010877 W JP2019010877 W JP 2019010877W WO 2019181792 A1 WO2019181792 A1 WO 2019181792A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
insert
thickness
insert according
Prior art date
Application number
PCT/JP2019/010877
Other languages
English (en)
French (fr)
Inventor
綾乃 田中
涼馬 野見山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020507759A priority Critical patent/JP7057418B2/ja
Priority to EP19770367.1A priority patent/EP3769873A4/en
Priority to CN201980020721.XA priority patent/CN111886098B/zh
Publication of WO2019181792A1 publication Critical patent/WO2019181792A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the present disclosure relates to an insert used in cutting and a cutting tool including the same.
  • cermets mainly composed of titanium (Ti) are widely used as the base material for members that require wear resistance, slidability, and chipping resistance, such as cutting tools, wear-resistant members, and sliding members. Yes.
  • Patent Document 1 an elution alloy phase containing a binder component composed mainly of cobalt (Co) and nickel (Ni) and having a metal binder phase component is formed on the surface, and diffusion prevention is further formed thereon.
  • a surface-coated titanium carbonitride-based cermet cutting tool that suppresses the occurrence of chipping and chipping by providing a TiN layer having an action is disclosed.
  • the insert of the present disclosure includes a base and a coating layer that covers the surface of the base.
  • the base has a hard phase containing a carbonitride containing Ti and a binder phase containing Co.
  • a CTiW compound containing C, Ti, and W and satisfying a relationship of C> Ti> W is located between the substrate and the coating layer.
  • the cutting tool of the present disclosure includes a holder that extends from a first end toward the second end and has a pocket on the first end side, and the above-described insert that is located in the pocket located in the pocket.
  • FIG. 1 is a perspective view illustrating an example of the insert of the present disclosure.
  • FIG. 2 is an enlarged schematic view of a cross section near the surface of the insert of the present disclosure.
  • FIG. 3 is a plan view illustrating an example of the cutting tool of the present disclosure.
  • the insert 1 of the present disclosure has a base 3 as shown in FIGS.
  • the insert 1 of the present disclosure includes a coating layer 5 that covers at least a part of the base 3.
  • the shape of the insert 1 of the present disclosure is, for example, a square plate shape, and the upper surface in FIG. 1 is a so-called rake surface. Moreover, it has a lower surface opposite to the upper surface, and has side surfaces connected to each between the upper surface and the lower surface. At least a part of the side surface is a so-called flank.
  • the insert 1 of the present disclosure has a cutting edge 7 positioned at at least a part of a ridge line where the upper surface and the side surface intersect. In other words, it has the cutting edge 7 located in at least one part of the ridgeline where a rake face and a flank face cross.
  • the entire outer periphery of the rake face may be the cutting edge 7, but the insert 1 is not limited to such a configuration, for example, only one side of the square rake face, or You may have the cutting edge 7 partially.
  • the size of the insert 1 is not particularly limited.
  • the length of one side of the rake face is set to about 3 to 20 mm.
  • the thickness of the insert 1 is set to about 1 to 20 mm, for example.
  • the base 3 of the insert 1 of the present disclosure is composed of a cermet containing a hard phase containing a carbonitride containing Ti and a binder phase containing Co.
  • the cermet is a so-called TiCN-based cermet.
  • the cermet includes one containing TiC or TiN in addition to TiCN.
  • the insert 1 of the present disclosure has a coating layer 5 on the substrate 3 as shown in FIG.
  • the wear resistance of the insert 1 is high.
  • the covering layer 5 may be formed by a CVD method or a PVD method.
  • the coating layer 5 includes, for example, a first layer 5a including a plurality of TiN particles, a second layer 5b including a plurality of TiCN particles, and a third layer 5c including a plurality of Al 2 O 3 particles from the side close to the base 3. You may arrange in order.
  • the insert 1 of the present disclosure contains C, Ti, and W between the base 3 and the coating layer 5, and the content at atm% is such that C> Ti> W.
  • the filling CTiW compound 25 is located.
  • the CTiW compound 25 may contain C, Ti and W in a total of 80 atm% or more, 58 to 80 atm% C, 7 to 25 atm% Ti, and 1 to 15 atm% W.
  • the insert 1 of the present disclosure having the CTiW compound 25 described above is excellent in wear resistance and chipping resistance.
  • the substrate may contain Co 0.93 W 0.07 . Thereby, it becomes the insert 1 excellent in abrasion resistance and fracture resistance.
  • Co 0.93 W 0.07 is a crystal represented by PDF: 01-071-7509 of the JCPDS card.
  • the ratio of Co 0.93 W 0.07 to the total crystal in the crystal phase analysis by X-ray diffraction may be 5 to 10. Also, it may be 8-10. With such high content of Co 0.93 W 0.07, the wear resistance of the base body 3, a high fracture resistance.
  • the ratio of the above Co 0.93 W 0.07 is the ratio of all detected crystals by the X-ray apparatus: X'Pert Pro 2 ⁇ : 10-100, manufactured by PANalytical, and the lead belt method using analysis software Rietan-FP. The ratio of 0.93 W 0.07 is calculated.
  • the Co content in the total amount of the binder phase may be 99.0% by mass or more. Moreover, it is good also as 99.5 mass% or more.
  • the binder phase in addition to Co, Fe, Ni and the like can be included.
  • the Co content is obtained by measuring the mass of Co, Fe, and Ni contained in the insert, and dividing the mass of Co by the total amount to 100. It is a doubled value.
  • the total amount of Fe and Ni in the binder phase included in the insert 1 of the present disclosure may be less than 1% by mass.
  • the metal functioning as the binder phase is almost only Co
  • Co 0.93 W 0.07 is moderately dispersed in the base 3 and the base 3 having high wear resistance and chipping resistance can be easily obtained.
  • the binder phase is only Co
  • the average particle size of the hard phase raw material powder may be 1 ⁇ m or less, and further 0.6 ⁇ m or less.
  • the Co content in the substrate 3 may be 16% by mass or more.
  • the first layer 5a may have a width in the direction parallel to the surface of the substrate 3 of TiN particles (hereinafter also referred to as the width of the TiN particles) of 25 nm in a cross section perpendicular to the surface of the substrate 3.
  • the width of the TiN particles the width of the TiN particles
  • the adhesion between the first layer 5a and the substrate 3 is excellent.
  • the adhesion between the first layer 5a and the CTiW compound 25 is excellent.
  • the coating film 5 is excellent in wear resistance.
  • the width of the TiN particles may be measured at a position of 0.05 ⁇ m from the surface of the substrate 3. Further, when the substrate 3 is covered with the first compound 21, the measurement may be performed at a position of 0.05 ⁇ m from the surface of the first compound 21. When the thickness of the first layer 5a is 0.05 ⁇ m or less, the width of the TiN particles may be measured at a position half the thickness of the first layer 5a. The width of the TiN particles is an average value of the widths of the 20 TiN particles measured at the above positions.
  • the ratio of the height of the TiN particles in the direction perpendicular to the surface of the substrate to the width of the TiN particles in the direction parallel to the surface of the substrate 3 in the cross section perpendicular to the surface of the substrate 3 (hereinafter also referred to as aspect ratio). However, it may be in the range of 1.0 to 1.7. With such a configuration, the adhesion between the first layer 5a and the substrate 3 is excellent.
  • the aspect ratio of TiN particles may be measured with TiN particles present at a position of 0.05 ⁇ m from the surface of the substrate 3.
  • the aspect ratio is an average value of 20 TiN particles.
  • the thickness of the first layer 5a may be 0.1 to 1.0 ⁇ m.
  • the thickness of the first layer 5a is 0.1 ⁇ m or more, the binder phase component contained in the substrate 3 is prevented from diffusing into the film, and the chipping resistance is excellent.
  • the thickness of the first layer 5a is 1.0 ⁇ m or less, the TiCN particles contained in the upper second layer 5b become fine and have excellent wear resistance.
  • the thickness of the first layer 5a may be 0.3 to 0.7 ⁇ m.
  • the insert 1 has a first layer 5 a on the base 3. Further, the second layer 5b is provided on the first layer 5a.
  • the TiCN layer 5b contains TiCN particles that are TiCN crystals.
  • the substrate 3 may have a coefficient of thermal expansion at 25 to 1000 ° C. of 9.0 ⁇ 10 ⁇ 6 / ° C. or more.
  • the thermal expansion coefficient of the TiCN crystal is about 8 ⁇ 10 ⁇ 6 / ° C., and if the thermal expansion coefficient of the base 3 is 9.0 ⁇ 10 ⁇ 6 / ° C. or more, the thermal expansion coefficient of the second layer 5 b is the base 3. Is smaller than the coefficient of thermal expansion.
  • the second layer 5b is located between the base 3 and the first layer 5c, and prevents the first layer 5c from peeling off and suppresses abrasive wear.
  • the third layer 5c contains Al 2 O 3 particles that are Al 2 O 3 crystals.
  • the thermal expansion coefficient of the Al 2 O 3 crystal is about 7.2 ⁇ 10 ⁇ 6 / ° C., which is smaller than the thermal expansion coefficients of the substrate 3 and the second layer 5b.
  • the base body 3 and the second layer 5b may be in direct contact with each other, and the first layer 5a may be positioned between them, for example, as in the example of FIG.
  • the first layer 5a does not need to be composed of pure TiN particles alone, and may contain, for example, O or C.
  • the second layer 5b and the third layer 5c may be in direct contact with each other, and for example, a TiN layer (not shown) may be located between them.
  • an appropriate compressive stress can be applied to the second layer 5b and the third layer 5c by adjusting the thermal expansion coefficient of the base 3 and the thickness of the third layer 5c.
  • the thickness of the third layer 5c is 2 ⁇ m or more.
  • the compressive stress applied to the second layer 5b is 250 to 500 MPa
  • the compressive stress applied to the third layer 5c is set to 450 MPa or more
  • the value of the compressive stress applied to the third layer 5c is higher than the compressive stress applied to the second layer 5b. You may enlarge it. With such a configuration, the insert 1 is excellent in wear resistance and durability.
  • the residual stress when the residual stress is a negative value, the residual stress is a compressive stress.
  • the value of the compressive stress is indicated, it is expressed as an absolute value without adding a minus.
  • the third layer 5c When comparing the second layer 5b and the third layer 5c constituting the coating layer 5, the third layer 5c is located farther from the substrate 3. Therefore, when the workpiece is machined using the cutting tool 1 having such a configuration, the third layer 5c comes into contact with the workpiece before the second layer 5b.
  • the third layer 5c contains Al 2 O 3 particles and has a thickness of 2 ⁇ m or more, the wear resistance and oxidation resistance are high.
  • the thickness of the third layer 5c may be 2.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the insert 1 having such a configuration is further excellent in wear resistance and oxidation resistance.
  • the sum of the thickness of the second layer 5b and the thickness of the third layer 5c may be 7 ⁇ m or more and 18 ⁇ m or less. Moreover, it is good also as 8 micrometers or more and 16 micrometers or less.
  • the second layer 5b may have a thickness of 5 ⁇ m or more and 10 ⁇ m or less. In such a range, the insert 1 is excellent in wear resistance and chipping resistance.
  • the thickness of the third layer 5c may be 0.2 to 0.4 times the sum of the thickness of the second layer 5b and the thickness of the third layer 5c.
  • the insert 1 having such a configuration is excellent in wear resistance and chipping resistance.
  • the third layer 5 c may have the C axis of the Al 2 O 3 crystal oriented along a direction perpendicular to the main surface of the substrate 3.
  • ⁇ -Al 2 O 3 crystals may be contained, and the ⁇ -Al 2 O 3 crystals may be columnar extending in the direction perpendicular to the main surface of the substrate 3.
  • the base 3 in the insert 1 of the present disclosure may have a binder phase-enriched layer having a higher binder phase ratio than the inside of the base 3 on the surface.
  • the thickness of the binder phase enriched layer may be 1 ⁇ m or more and 10 ⁇ m or less.
  • Table 1 shows the ratio of the raw material powder that becomes the base of the insert used in the examples described later.
  • the average particle diameter of each raw material was 1 ⁇ m or less. These raw material powders are generally used in the production of cermets.
  • the insert of the present disclosure can be obtained by devising the composition of the substrate and the conditions for forming the coating layer.
  • the coating film is preferably formed by a CVD method.
  • a substrate containing Co 0.93 W 0.07 can be obtained by adjusting the amount of C contained during preparation of the raw material of the substrate.
  • C / (hard phase) is 9.1 or less, a substrate containing Co 0.93 W 0.07 can be obtained.
  • C / (hard phase) is 8.0 or more, an increase in the ⁇ phase can be suppressed, so that a relative decrease in Co 0.93 W 0.07 can be suppressed.
  • the amount of C in the raw material includes, for example, C contained in each raw material powder in addition to C added as carbon.
  • a hard phase refers to what can exist as a hard phase in an insert, for example, the metal, oxide, and carbonate of Fe, Ni, Co, Mn, Mo are not contained.
  • a dense substrate can be obtained by baking in the temperature range.
  • each is held at 200 ° C. and 300 ° C. for 1 hour in a vacuum, and then heated to 450 ° C. and held for 1 hour.
  • CO 2 gas is introduced into the degreasing furnace so as to have a pressure of 1 to 5 kPa in order to suppress a decrease in C added as a raw material in the process at 450 ° C. By doing in this way, C amount can be controlled precisely.
  • the substrate preferably has a thermal expansion coefficient of 9.0 ⁇ 10 ⁇ 6 or more at 25 to 1000 ° C.
  • a coating layer is provided.
  • the first layer is formed on the surface of the substrate.
  • a second layer is formed on the first layer.
  • a third layer is formed thereon.
  • the first layer, the second layer, and the third layer may be formed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the Co ratio in the binder phase component contained in the substrate is 99.0% by mass or more. Good.
  • the TiCl 4 concentration is preferably 1.0 mol% under the film forming conditions for forming the first layer on the substrate.
  • the composition may be such that the proportion of Co is 97.0% by mass or more and the amount of Co contained in the substrate is 10% by mass or more.
  • the first layer has, for example, temperature: 800 to 900 ° C., pressure 8 to 20 kPa, TiCl 4 concentration: 1.0 to 2.5 mol%, N 2 concentration: 25.0 to 49.9 mol%, H 2 concentration 40.
  • the film may be formed under the condition of 0 to 74.8 mol%.
  • the insert of the present disclosure can be obtained by attaching a previously prepared CTiW compound to the surface of the substrate as desired, and then forming a coating film.
  • the cutting tool 101 of the present disclosure is, for example, a rod-shaped body that extends from a first end (upper end in FIG. 3) to a second end (lower end in FIG. 3), as shown in FIG.
  • the cutting tool 101 includes a holder 105 having a pocket 103 on the first end side (front end side) and the insert 1 positioned in the pocket 103. Since the cutting tool 101 includes the insert 1, it can perform stable cutting over a long period of time.
  • the pocket 103 is a portion to which the insert 1 is mounted, and has a seating surface parallel to the lower surface of the holder 105 and a restraining side surface inclined with respect to the seating surface. Further, the pocket 103 is opened on the first end side of the holder 105.
  • the insert 1 is located in the pocket 103. At this time, the lower surface of the insert 1 may be in direct contact with the pocket 103, and a sheet (not shown) may be sandwiched between the insert 1 and the pocket 103.
  • the insert 1 is mounted on the holder 105 so that at least a part of the portion used as the cutting edge 7 on the ridge line where the rake face and the flank face intersect protrudes outward from the holder 105.
  • the insert 1 is attached to the holder 105 with a fixing screw 107. That is, by inserting the fixing screw 107 into the through hole 17 of the insert 1 and inserting the tip of the fixing screw 107 into a screw hole (not shown) formed in the pocket 103 and screwing the screw portions together, 1 is attached to the holder 105.
  • steel cast iron or the like
  • steel having high toughness may be used.
  • a cutting tool 101 used for so-called turning is illustrated.
  • the turning process include an inner diameter process, an outer diameter process, a grooving process, and an end face process.
  • the cutting tool 101 is not limited to that used for turning. For example, you may use the insert 1 of said embodiment for the cutting tool 101 used for a rolling process.
  • the substrate was produced as follows. A tool-shaped compact was prepared using the raw material powder in the ratio shown in Table 1, the binder component was removed, and then fired to prepare a substrate. Of these samples, Sample No. The substrates 1 to 14 are so-called cermets. Sample No. The substrate 15 is a so-called cemented carbide. In the degreasing step, each was held at 200 ° C. and 300 ° C. for 1 hour in a vacuum, then heated to 450 ° C. and held for 1 hour. At this time, CO 2 gas was introduced into the degreasing furnace at a pressure of 3 kPa at a process of 450 ° C.
  • the substrate had a binder phase enriched layer.
  • a first layer was formed on the surface of these substrates by CVD deposition under the film formation conditions shown in Table 2. Further, a second layer was formed on the first layer. Furthermore, a third layer was formed on the second layer.
  • CTiW between the substrate and the coating layer was observed by magnifying the cross section of the obtained insert to 80,000 times to 200,000 times using a transmission analytical electron microscope JEM-2010F (UHR) manufactured by JOEL. The presence or absence of the compound was confirmed. Further, the shape of the TiN particles in the first layer was measured. Further, it was confirmed by X-ray diffraction whether or not the substrate contained Co 0.93 W 0.07 . The composition of each compound was confirmed by thin film quantification using the same apparatus. Table 2 shows the presence or absence of the CTiW compound in each sample.
  • the sample No. 1 whose TiCl 4 concentration is 1.0 mol% or more. Nos. 4 to 5 and 8 had a CTiW compound between the substrate and the coating film.
  • the CTiW compound contained C, Ti, and W in a total of 80 atm% or more, C contained 58 to 80 atm%, Ti contained 7 to 25 atm%, and W contained 1 to 15 atm%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本開示のインサートは、基体と、該基体の表面を被覆する被覆層とを具備する。前記基体は、Tiを含む炭窒化物を含有する硬質相と、Coを含有する結合相と、を有する。前記基体と前記被覆層との間に、CとTiとWとを含有し、C>Ti>Wの関係を満たすCTiW化合物が位置している。また、本開示の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置するポケットに位置する上述のインサートとを備える。

Description

インサート及びこれを備えた切削工具
 本開示は、切削加工において用いられるインサート及びこれを備えた切削工具に関する。
 現在、切削工具や耐摩耗性部材、摺動部材等の耐摩耗性や摺動性、耐チッピング性を必要とする部材の基体として、チタン(Ti)を主成分とするサーメットが広く使われている。
 例えば、特許文献1では、コバルト(Co)およびニッケル(Ni)を主体とする結合相成分を含有し、表面部に金属結合相構成成分からなる溶出合金相を形成し、さらにその上に拡散防止作用を有するTiN層を設けることで、欠けやチッピングの発生を抑制した表面被覆炭窒化チタン基サーメット製切削工具が開示されている。
特許第5989930号
 本開示のインサートは、基体と、該基体の表面を被覆する被覆層とを具備する。前記基体は、Tiを含む炭窒化物を含有する硬質相と、Coを含有する結合相と、を有する。前記基体と前記被覆層との間に、CとTiとWとを含有し、C>Ti>Wの関係を満たすCTiW化合物が位置している。また、本開示の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置するポケットに位置する上述のインサートとを備える。
図1は、本開示のインサートの一例を示す斜視図である。 図2は、本開示のインサートの表面付近の断面の拡大概要図である。 図3は、本開示の切削工具の一例を示す平面図である。
 <インサート>
 以下、本開示のインサートについて、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、実施形態を説明する上で必要な主要部材のみを簡略化して示したものである。したがって、本開示のインサートは、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率などを忠実に表したものではない。これらの点は、後述する切削工具においても同様である。
 本開示のインサート1は、図1、2に示すように基体3を有する。本開示のインサート1は基体3の少なくとも一部を覆う被覆層5を具備している。
 本開示のインサート1の形状は、例えば、四角板形状であって、図1における上面は、いわゆるすくい面である。また、上面の反対に下面を有し、上面と下面との間にそれぞれに繋がる側面を有する。側面において少なくても一部は、いわゆる逃げ面である。
 本開示のインサート1は、上面と側面とが交わる稜線の少なくとも一部に位置する切刃7を有している。言い換えれば、すくい面と逃げ面とが交わる稜線の少なくとも一部に位置する切刃7を有している。
 インサート1においては、すくい面の外周の全体が切刃7となっていてもよいが、インサート1はこのような構成に限定されるものではなく、例えば、四角形のすくい面における一辺のみ、若しくは、部分的に切刃7を有するものであってもよい。
 インサート1の大きさは特に限定されるものではないが、例えば、すくい面の一辺の長さが3~20mm程度に設定される。また、インサート1の厚みは、例えば1~20mm程度に設定される。
 本開示のインサート1の基体3は、Tiを含む炭窒化物を含有する硬質相と、Coを含有する結合相と、を含有するサーメットからなる。サーメットは、いわゆるTiCN基サーメットである。具体的には、サーメットとして、TiCNに加え、TiC又はTiN等を含有するものが挙げられる。
 また、本開示のインサート1は、図2に示すように基体3の上に被覆層5を有している。このようにインサート1が被覆層5を有するため、インサート1の耐摩耗性が高い。
 被覆層5は、CVD法やPVD法によって形成されるものであってもよい。被覆層5は、基体3に近い側から、例えば、複数のTiN粒子を含む第1層5a、複数のTiCN粒子を含む第2層5b、複数のAl23粒子を含む第3層5cの順番で配置してもよい。
 本開示のインサート1は、図2に示すように、基体3と被覆層5との間に、CとTiとWとを含有し、atm%における含有量が、C>Ti>Wの関係を満たすCTiW化合物25が位置している。
 CTiW化合物25は、CとTiとWとを総和で80atm%以上含有し、Cを58~80atm%、Tiを7~25atm%、Wを1~15atm%含有していてもよい。
 以上説明したCTiW化合物25を有する本開示のインサート1は、耐摩耗性及び耐チッピング性に優れる。
 また、基体は、Co0.930.07を含有していてもよい。これにより、耐摩耗性、耐欠損性に優れたインサート1となる。なお、Co0.930.07は、JCPDSカードのPDF:01-071-7509で示される結晶である。
 本開示のインサート1は、X線回折による結晶相解析において、総結晶に占める、前記Co0.930.07の割合が、5~10であってもよい。また、8~10であってもよい。このようにCo0.930.07の含有量が多いと、基体3の耐摩耗性、耐欠損性が高い。
 上記のCo0.930.07の割合は、X線装置:PANalytical社製 X’Pert Pro 2θ:10~100、解析ソフトRIETAN-FPを用いたリードベルト法により、検出された全ての結晶の割合にしめるCo0.930.07の割合を計算したものである。
 また、本開示のインサート1は、結合相の総量に占めるCoの含有量を99.0質量%以上としてもよい。また、さらに99.5質量%以上としてもよい。結合相としては、Co以外に、Fe、Ni等を含むことができる。結合相が、Co、Fe、Niを含むものである場合、このCoの含有量(質量%)は、インサートに含まれるCo、Fe、Niの質量を測定し、その総量でCoの質量を割って100倍した値である。言い換えると、本開示のインサート1に含まれる結合相中のFeおよびNiの総量は1質量%未満としてもよい。このように結合相として機能する金属をほぼCoのみとすると、Co0.930.07が基体3に適度に分散し、耐摩耗性、耐欠損性が高い基体3が得られやすい。結合相がCoのみである場合、例えば、硬質相の原料粉末として平均粒径は、1μm以下、さらには、0.6μm以下であってもよい。なお、基体3に占めるCoの含有量は、16質量%以上であってもよい。
 また、結合相として、FeおよびNiを含むときには、硬質相と結合相の濡れ性が向上する。 また、第1層5aは、基体3の表面に垂直な断面において、TiN粒子の基体3の表面に平行な方向の幅(以下、TiN粒子の幅ともいう)を25nmとしてもよい。このような構成を有すると第1層5aと基体3との密着性が優れる。また、第1層5aとCTiW化合物25との密着性が優れる。また、被覆膜5は、耐摩耗性に優れる。
 なお、TiN粒子の幅の測定は、基体3の表面から、0.05μmの位置で測定するとよい。また、基体3が第1化合物21で覆われている場合には、第1化合物21の表面から0.05μmの位置で測定するとよい。第1層5aの厚みが、0.05μm以下の場合には、第1層5aの厚みの半分の位置でTiN粒子の幅を測定するとよい。また、TiN粒子の幅は、上記の位置で測定した20個のTiN粒子の幅の平均値である。
 また、基体3の表面に垂直な断面における、基体3の表面に平行な方向のTiN粒子の幅に対する、基体の表面に垂直な方向のTiN粒子の高さの比(以下、アスペクト比ともいう)が、1.0~1.7の範囲であってもよい。このような構成を有すると、第1層5aと基体3との密着力が優れる。
 なお、TiN粒子のアスペクト比は、基体3の表面から、0.05μmまでの位置に存在するTiN粒子で測定するとよい。アスペクト比は、TiN粒子の20個の平均値である。
 また、第1層5aの厚みは、0.1~1.0μmであってもよい。第1層5aの厚みが、0.1μm以上であると、基体3に含まれる結合相成分が被膜へ拡散することを抑制し、耐チッピング性に優れる。第1層5aの厚みが、1.0μm以下であると、上層の第2層5bに含まれるTiCN粒子が微細になり耐摩耗性に優れる。特に、第1層5aの厚みは、0.3~0.7μmとしてもよい。
 図2に示す例では、インサート1は、基体3の上に第1層5aを有している。また、第1層5aの上に第2層5bを有している。TiCN層5bにはTiCN結晶であるTiCN粒子が含まれている。基体3は、25~1000℃における熱膨張係数が9.0×10-6/℃以上であってもよい。TiCN結晶の熱膨張係数は、8×10-6/℃程度であり、基体3の熱膨張係数を9.0×10-6/℃以上とすると、第2層5bの熱膨張係数は基体3の熱膨張係数よりも小さい。第2層5bは、基体3と第1層5cとの間にあって、第1層5cが剥がれてしまうことを抑制するとともに、アブレシブ摩耗を抑制する。
 第3層5cにはAl23結晶であるAl23粒子が含まれている。Al23結晶の熱膨張係数は、7.2×10-6/℃程度であり、基体3及び第2層5bの熱膨張係数よりも小さい。基体3と第2層5bとは、直接接触していてもよく、両者の間に、例えば、図2の例のように第1層5aが位置していてもよい。この第1層5aは、純粋なTiN粒子のみから構成される必要はなく、例えば、OやCを含有していてもよい。また、第2層5bと第3層5cとは直接接触していてもよく、両者の間に、例えば、TiN層(図示しない)が位置していてもよい。
 このような構成を有するインサート1では、基体3の熱膨張係数と、第3層5cの厚みを調整することで、第2層5b及び第3層5cに適度な圧縮応力を掛けることができる。例えば、第3層5cの厚みは、2μm以上である。
 そして、第2層5bに掛かる圧縮応力を250~500MPaとし、第3層5cに掛かる圧縮応力を450MPa以上とし、第2層5bに掛かる圧縮応力よりも第3層5cに掛かる圧縮応力の値を大きくしてもよい。このような構成を有すると、インサート1は、耐摩耗性及び耐久性に優れる。
 なお、第2層5b及び第3層5cに掛かる圧縮応力は、例えば、2D法を用いた測定に基づき判断すればよい。具体的には、逃げ面における切刃7から1mm以上離れた部分を測定位置とし、X線回折ピークを測定する。測定結果から特定された結晶構造に関して、測定結果における2θの値が、JCPDSカードに記載された基準となる2θの値に対してどのようにずれているかを確認して求めることができる。
 ここで、残留応力がマイナスの値である場合、残留応力は、圧縮応力である。圧縮応力の値を示す場合には、マイナスを付けず、絶対値で表現する。
 基体3の熱膨張係数が大きくなると、第2層5b及び第3層5cに掛かる圧縮応力の値は大きくなる傾向にある。
 被覆層5を構成する第2層5bと第3層5cとを比較すると、第3層5cの方が基体3から離れた位置にある。したがって、このような構成を有する切削工具1を用いて被加工物を加工するとき、第2層5bよりも先に第3層5cが被加工物と接触することになる。第3層5cが、Al23粒子を含むものであり、2μm以上の厚みを有するときに、耐摩耗性、耐酸化性が高い。また、第3層5cの厚みは、2.5μm以上、8.0μm以下としてもよい。このような構成を有するインサート1は、さらに耐摩耗性及び耐酸化性に優れる。
 第2層5bと第3層5cの機能を考慮すると、第2層5bの厚みと第3層5cの厚みの和は、7μm以上、18μm以下としてもよい。また、8μm以上、16μm以下としてもよい。
 第2層5bは、厚みが5μm以上、10μm以下としてもよい。このような範囲とすると、インサート1は、耐摩耗性と耐チッピング性に優れる。
 また、第3層5cの厚みは、第2層5bの厚みと第3層5cの厚みの和に対して、0.2~0.4倍としてもよい。このような構成のインサート1は、耐摩耗性及び耐チッピング性に優れる。
 また、第3層5cは、基体3の主面に垂直な方向に沿うように、Al23結晶のC軸が配向していてもよい。他の言い方をすると、α-Al23結晶を含有しており、そのα-Al23結晶が基体3の主面に対して、垂直方向に延びる柱状になっていてもよい。また、本開示のインサート1における基体3には、表面において、基体3の内部よりも結合相の割合が多い結合相富化層が存在していてもよい。この結合相富化層の厚みは、1μm以上、10μm以下であってもよい。
 以下に本開示のインサートの製造方法を説明する。
 表1に、後述する実施例で用いたインサートの基体となる原料粉末の割合を示す。各原料の平均粒径は、全て1μm以下のものを用いた。これらの原料粉末は、一般的に、サーメットの製造で用いられるものである。
 本開示のインサートは、基体の組成及び被覆層の生成条件を工夫することで得ることができる。また、被覆膜はCVD法によって形成するとよい。
 基体の原料の調合の際に、含有するCの量を調整することで、Co0.930.07を含有する基体を得ることができる。原料中のCの量は、調合組成比でC/(硬質相)=8.0~9.1とするとよい。C/(硬質相)を9.1以下とすると、Co0.930.07を含有する基体を得ることができる。C/(硬質相)を8.0以上とすると、η相が増加することを抑制できるため、相対的にCo0.930.07が減少することを抑制できる。
 なお、原料中のCの量とは、炭素として加えるCのほかに、例えば、各原料粉末に含まれるCも含まれる。また、硬質相とは、インサート中に硬質相として存在しうるものを指し、例えば、Fe、Ni、CoやMn、Moの金属や酸化物、炭酸化物は含まれない。
 このような組成範囲の原料粉末にバインダーを添加した後、例えば、プレス成型によって、所望の形状に整え、バインダー成分を除去する脱脂工程の後、例えば、窒素や真空雰囲気で、1500~1550℃の温度域で焼成することで、緻密質の基体が得られる。
 なお、脱脂工程では、真空中で200℃、300℃でそれぞれ1時間保持し、その後、450℃まで昇温し、1時間保持する。このとき、450℃の工程で、原料として加えたCが減少するのを抑制するため、CO2ガスを1~5kPaの圧力となるように脱脂炉に導入する。このようにすることで、C量を精密に制御することができる。
 基体は、25~1000℃における熱膨張係数が9.0×10-6以上とするとよい。
 次に、被覆層を設ける。被覆層を設ける場合には、例えば、基体の表面に第1層を形成する。さらに第1層の上に、第2層を形成する。さらに、その上に第3層を形成する。第1層、第2層及び第3層は、化学蒸着(CVD)法によって形成するとよい。このCVD蒸着法によって、成膜する際の成膜温度が高いほど、成膜された膜に掛かる圧縮応力は大きくなる。そこで、必要に応じて成膜温度を調整するとよい。
 また、基体の表面に平行な方向の幅が25nm未満の微細なTiN粒子を有する第1層を得るには、基体に含まれる結合相成分のうち、Coの比率を99.0質量%以上とするとよい。
 CTiW化合物を基体と被覆層の間に生成させるには、基体の上に第1層を形成する成膜条件でTiCl4濃度を1.0mol%とするとよい。また、基体に含まれる結合相において、Coの割合が97.0質量%以上となる組成とし、基体に含まれるCoの量を10質量%以上とするとよい。
 第1層は、例えば、温度:800~900℃、圧力8~20kPa、TiCl4濃度:1.0~2.5mol%、N2濃度:25.0~49.9mol%、H2濃度40.0~74.8mol%の条件で製膜するとよい。
 また、あるいは、予め、作製しておいたCTiW化合物を所望に応じて基体の表面に付着させ、その後、被覆膜を形成することで本開示のインサートを得ることもできる。
 <切削工具>
 次に、本開示の切削工具について図面を用いて説明する。
 本開示の切削工具101は、図3に示すように、例えば、第1端(図3における上端)から第2端(図3における下端)に向かって延びる棒状体である。切削工具101は、図3に示すように、第1端側(先端側)にポケット103を有するホルダ105と、ポケット103に位置する上記のインサート1とを備えている。切削工具101は、インサート1を備えているため、長期に渡り安定した切削加工を行うことができる。
 ポケット103は、インサート1が装着される部分であり、ホルダ105の下面に対して平行な着座面と、着座面に対して傾斜する拘束側面とを有している。また、ポケット103は、ホルダ105の第1端側において開口している。
 ポケット103にはインサート1が位置している。このとき、インサート1の下面がポケット103に直接に接していてもよく、また、インサート1とポケット103との間にシート(不図示)が挟まれていてもよい。
 インサート1は、すくい面及び逃げ面が交わる稜線における切刃7として用いられる部分の少なくとも一部がホルダ105から外方に突出するようにホルダ105に装着される。本実施形態においては、インサート1は、固定ネジ107によって、ホルダ105に装着されている。すなわち、インサート1の貫通孔17に固定ネジ107を挿入し、この固定ネジ107の先端をポケット103に形成されたネジ孔(不図示)に挿入してネジ部同士を螺合させることによって、インサート1がホルダ105に装着されている。
 ホルダ105の材質としては、鋼、鋳鉄などを用いることができる。これらの部材の中で靱性の高い鋼を用いてもよい。
 本実施形態においては、いわゆる旋削加工に用いられる切削工具101を例示している。旋削加工としては、例えば、内径加工、外径加工、溝入れ加工及び端面加工などが挙げられる。なお、切削工具101としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具101に上記の実施形態のインサート1を用いてもよい。
 以下に、本開示のインサートについて、説明する。
 基体は、以下のように作製した。表1に示す割合の原料粉末を用いて工具形状の成形体を作製し、バインダー成分を除去した後、焼成して、基体を作製した。これらの試料のうち、試料No.1~14の基体は、いわゆるサーメットである。試料No.15の基体は、いわゆる超硬合金である。なお、脱脂工程では、真空中で200℃、300℃でそれぞれ1時間保持し、その後、450℃まで昇温し、1時間保持した。このとき、450℃の工程で、CO2ガスを3kPaの圧力で脱脂炉に導入した。
 焼成工程を経て得られた、これらの基体の表面について、観察したところ、いずれの基体についてもCTiW化合物は確認されなかった。基体は、結合相富化層を有していた。
Figure JPOXMLDOC01-appb-T000001
 これらの基体の表面に、CVD蒸着法にて、表2に示す成膜条件で第1層を形成した。さらに第1層の上に第2層を形成した。さらに、第2層の上に第3層を形成した。
 得られたインサートの断面をJOEL社製透過型分析電子顕微鏡JEM-2010F(UHR)を用いて、80,000倍~200,000倍に拡大して観察することで基体と被覆層の間のCTiW化合物の有無を確認した。また、第1層のTiN粒子の形状を測定した。また、X線回折により、基体がCo0.930.07を含有するか否かを確認した。なお、各化合物の組成は、同装置を用いた薄膜定量法で確認した。表2に各試料におけるCTiW化合物の有無を示す。
Figure JPOXMLDOC01-appb-T000002
 第1層の成膜条件において、TiCl4濃度が、1.0mol%以上である試料No.4~5、8は、基体と被覆膜の間にCTiW化合物を有していた。
 CTiW化合物は、CとTiとWとを総和で80atm%以上含有し、Cを58~80atm%、Tiを7~25atm%、Wを1~15atm%含有していた。
 なお、基体として、超硬合金を用いた試料No.15では、CTiW化合物は確認されなかった。
 得られたインサートは、以下の条件で、切削試験を行った。
(耐摩耗性試験)
被削材:SAPH440
切削速度:1000m/min
送り:0.15mm/rev
切込み:0.25mm
切削状態:湿式
評価方法:切削長5.0km切削した時点での逃げ面摩耗幅(μm)
(耐チッピング性試験)
被削材:SAPH440 12本溝(10mm幅)付き
切削速度:1000m/min
送り:0.15mm/rev
切込み:0.25mm
切削状態:湿式
評価方法:欠損するまでの衝撃回数(回)
 CTiW化合物を有する試料は優れた耐摩耗性、耐チッピング性を示した。また、TiN粒子の幅が、25nm以下の試料も優れた耐摩耗性、耐チッピング性を示した。
 以上説明した、本開示のインサート及びこれを備えた切削工具は、一例であり、本願の要旨を逸脱しない限り、異なる構成を有していてもよい。
  1・・・インサート
  3・・・基体
  5・・・被覆膜
  5a・・第1層
  5b・・第2層
  5c・・第3層
  7・・・切刃
  17・・貫通孔
  25・・CTiW化合物
101・・・切削工具
103・・・ポケット
105・・・ホルダ
107・・・固定ネジ

Claims (10)

  1.  基体と、該基体の表面を被覆する被覆層とを具備するインサートであって、
     前記基体は、
      Tiを含む炭窒化物を含有する硬質相と、
      Coを含有する結合相と、
      を有し、
     前記基体と前記被覆層との間に、CとTiとWとを含有し、C>Ti>Wの関係を満たすCTiW化合物が位置している、インサート。
  2.  前記CTiW化合物は、前記Cと前記Tiと前記Wとを総和で80atm%以上含有し、前記Cを58~80atm%、前記Tiを7~25atm%、前記Wを1~15atm%含有する請求項3に記載のインサート。
  3.  前記基体は、Co0.930.07を含有する、請求項1または2に記載のインサート。
  4.  前記被覆層は、基体側にTiN粒子を有する第1層層を有し、該TiN粒子は、前記基体の表面に垂直な断面における前記基体の表面に平行な方向の幅が25nm以下である請求項1~3のいずれかに記載のインサート。
  5.  前記TiN粒子は、前記基体の表面に垂直な断面における、前記基体の表面に平行な方向の前記TiN粒子の幅に対する、前記基体の表面に垂直な方向のTiN粒子の高さの比が、1.0~1.7である、請求項1~4のいずれかに記載のインサート。
  6.  前記基体は、
      25~1000℃における熱膨張係数が9.0×10-6/℃以上であり、
     前記被覆層は、
      前記第1層と、
      該第1層の上に位置し、TiCNを含有する第2層と、
      該第2層の上に位置し、Al23を含有する第3層と、を有し、
     前記2層は、
      圧縮応力が250~500MPaであり、
     前記3層は、
      2μm以上の厚みを有し、圧縮応力が450MPa以上であり、前記第2層よりも圧縮応力の値が大きい、請求項4または5に記載のインサート。
  7.  前記第3層は、厚みが2.5μm以上、8.0μm以下である、請求項6に記載のインサート。
  8.  前記第2層は、厚みが5μm以上、10μm以下である、請求項6または7に記載のインサート。
  9.  前記第3層の厚みは、前記第2層の厚みと前記第3層の厚みの和の0.2~0.4倍の範囲である、請求項6~8のいずれかに記載のインサート。
  10.  第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、
     前記ポケットに位置する請求項1~9のいずれかに記載のインサートと、を備えた切削工具。
PCT/JP2019/010877 2018-03-20 2019-03-15 インサート及びこれを備えた切削工具 WO2019181792A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020507759A JP7057418B2 (ja) 2018-03-20 2019-03-15 インサート及びこれを備えた切削工具
EP19770367.1A EP3769873A4 (en) 2018-03-20 2019-03-15 INSERT AND ITS CUTTING TOOLS
CN201980020721.XA CN111886098B (zh) 2018-03-20 2019-03-15 切削刀片和具备它的切削刀具

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-052842 2018-03-20
JP2018052842 2018-03-20
JP2018-223530 2018-11-29
JP2018223530 2018-11-29

Publications (1)

Publication Number Publication Date
WO2019181792A1 true WO2019181792A1 (ja) 2019-09-26

Family

ID=67987310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010877 WO2019181792A1 (ja) 2018-03-20 2019-03-15 インサート及びこれを備えた切削工具

Country Status (4)

Country Link
EP (1) EP3769873A4 (ja)
JP (1) JP7057418B2 (ja)
CN (1) CN111886098B (ja)
WO (1) WO2019181792A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224346A (ja) * 1994-02-10 1995-08-22 Mitsubishi Materials Corp 靭性のすぐれた炭窒化チタン系サーメット
JP2004223666A (ja) * 2003-01-24 2004-08-12 Kyocera Corp 荒加工用切削工具
JP2006272515A (ja) * 2005-03-30 2006-10-12 Kyocera Corp 表面被覆切削工具
JP2009166218A (ja) * 2008-01-21 2009-07-30 Ngk Spark Plug Co Ltd ダイヤモンド被覆切削インサート及び切削工具
JP2010105099A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 切削工具
JP5989930B1 (ja) 2014-11-27 2016-09-07 京セラ株式会社 サーメットおよび切削工具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413628B1 (en) * 1994-05-12 2002-07-02 Valenite Inc. Titanium carbonitride coated cemented carbide and cutting inserts made from the same
US5920760A (en) * 1994-05-31 1999-07-06 Mitsubishi Materials Corporation Coated hard alloy blade member
SE9502687D0 (sv) * 1995-07-24 1995-07-24 Sandvik Ab CVD coated titanium based carbonitride cutting tool insert
WO2006064724A1 (ja) * 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具
JP5111379B2 (ja) * 2006-08-31 2013-01-09 京セラ株式会社 切削工具及びその製造方法並びに切削方法
US7811683B2 (en) 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JP2009107059A (ja) * 2007-10-30 2009-05-21 Kyocera Corp 切削工具および切削インサート並びに切削インサートの製造方法
JPWO2010010648A1 (ja) * 2008-07-22 2012-01-05 日本特殊陶業株式会社 切削インサート及び切削工具
JP6198137B2 (ja) * 2013-12-24 2017-09-20 三菱マテリアル株式会社 表面被覆切削工具
JP6612864B2 (ja) * 2015-05-28 2019-11-27 京セラ株式会社 切削工具
US9879350B2 (en) * 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224346A (ja) * 1994-02-10 1995-08-22 Mitsubishi Materials Corp 靭性のすぐれた炭窒化チタン系サーメット
JP2004223666A (ja) * 2003-01-24 2004-08-12 Kyocera Corp 荒加工用切削工具
JP2006272515A (ja) * 2005-03-30 2006-10-12 Kyocera Corp 表面被覆切削工具
JP2009166218A (ja) * 2008-01-21 2009-07-30 Ngk Spark Plug Co Ltd ダイヤモンド被覆切削インサート及び切削工具
JP2010105099A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 切削工具
JP5989930B1 (ja) 2014-11-27 2016-09-07 京セラ株式会社 サーメットおよび切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3769873A4

Also Published As

Publication number Publication date
CN111886098A (zh) 2020-11-03
EP3769873A1 (en) 2021-01-27
CN111886098B (zh) 2023-05-09
JPWO2019181792A1 (ja) 2021-04-08
EP3769873A4 (en) 2021-12-01
JP7057418B2 (ja) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2017146200A1 (ja) 被覆工具
JP4854359B2 (ja) 表面被覆切削工具
US10744568B2 (en) Coated tool
US20150343535A1 (en) Cutting tool
JP7105299B2 (ja) 被覆工具及びこれを備えた切削工具
WO2019181793A1 (ja) インサート及びこれを備えた切削工具
WO2019181792A1 (ja) インサート及びこれを備えた切削工具
WO2019181794A1 (ja) インサート及びこれを備えた切削工具
WO2019181790A1 (ja) インサート及びこれを備えた切削工具
JP7092867B2 (ja) 工具及びこれを備えた切削工具
WO2024018889A1 (ja) 被覆工具および切削工具
EP3747577B1 (en) Coated tool and cutting tool comprising said coated tool
WO2020111122A1 (ja) 被覆工具およびそれを備えた切削工具
WO2019146786A1 (ja) 被覆工具およびこれを備えた切削工具
KR20220136411A (ko) 피복 공구
CN114144272A (zh) 涂层刀具和具备它的切削刀具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019770367

Country of ref document: EP

Effective date: 20201020