WO2019181614A1 - 防音セル、及びこれを用いる防音構造 - Google Patents

防音セル、及びこれを用いる防音構造 Download PDF

Info

Publication number
WO2019181614A1
WO2019181614A1 PCT/JP2019/009746 JP2019009746W WO2019181614A1 WO 2019181614 A1 WO2019181614 A1 WO 2019181614A1 JP 2019009746 W JP2019009746 W JP 2019009746W WO 2019181614 A1 WO2019181614 A1 WO 2019181614A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
soundproof
resonator
frame
membrane
Prior art date
Application number
PCT/JP2019/009746
Other languages
English (en)
French (fr)
Inventor
暁彦 大津
真也 白田
昇吾 山添
美博 菅原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019181614A1 publication Critical patent/WO2019181614A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the present invention relates to a soundproof cell for soundproofing a sound having peaks at a plurality of frequencies, and a soundproof structure suitable for ventilation and soundproofing against noise from inside a housing using the soundproof cell.
  • a structure such as a duct, a muffler, and a ventilation fleece that is premised on ensuring air permeability allows sound to pass through at the same time as gas and / or heat.
  • sound insulation is required by devising the structures of the ducts and mufflers.
  • a resonance type soundproof structure resonator such as a Helmholtz resonator, air column resonance cylinder, membrane vibration type structure, etc.
  • Patent Document 4 discloses that a first sound absorbing structure in which a plurality of Helmholtz resonators are formed of a sound absorbing material and a diaphragm to which the first sound absorbing structure is attached are elastically attached to a surface to be attached via an elastic body.
  • a sound absorbing structure comprising a second sound absorbing structure having a structure that is levitated and supported is disclosed.
  • the resonance frequency is tuned by changing the volume of the resonance cavity of the plurality of Helmholtz resonators and the inner peripheral size of the orifice hole, while the mass of the diaphragm and the sound absorbing material, and the elastic body
  • tuning the resonance frequency to a frequency band lower than that of the Helmholtz resonator by the spring constant of the air spring of the air chamber on the back of the diaphragm, it has effective sound absorption performance for noise in a wide frequency band and It is said that a large sound absorbing structure can be obtained.
  • Patent Document 5 discloses a diaphragm, a first elastic body that supports the diaphragm, a diaphragm, and a first box that forms a first air layer behind the first elastic body.
  • a first sound-absorbing part, a second elastic body that uses the first sound-absorbing part as a diaphragm element, and supports the first sound-absorbing part, the first sound-absorbing part, and the back of the second elastic body Discloses a sound absorbing device including a second sound absorbing portion having a second box forming a second air layer. According to the technique disclosed in Patent Document 5, since the first sound absorbing unit and the second sound absorbing unit have specific resonance frequencies, it is possible to absorb sound in a wide frequency band.
  • a membrane vibration in which a first sound absorbing structure including a Helmholtz resonator, a Helmholtz resonator and a vibration plate to which the Helmholtz resonator is attached is used as a weight, and an elastic body that supports the vibration plate is used as a vibration film.
  • the first and second sound absorbing parts have different resonance frequencies, thereby enabling sound absorption in a wide frequency band.
  • sound absorption can be obtained in a wide band, but it is necessary to install the traveling direction of the sound wave and the surface of the vibration film in parallel.
  • the weight of the weight makes it difficult for the membrane to vibrate, and as a result, there is a problem that high sound absorption characteristics cannot be obtained.
  • the case where the sound wave traveling direction and the vibration film surface need to be installed in parallel is, for example, the case where a soundproof material is installed in the ventilation duct to absorb sound while passing the wind. In this case, the membrane vibration is inhibited by the wind, and as a result, it becomes difficult to absorb sound. Therefore, in such a case, it is necessary that the membrane surface be installed in parallel with the traveling direction of sound and wind so that the wind does not directly hit the membrane.
  • a sound absorbing material may be effective for soundproofing.
  • a sound absorbing material such as urethane and glass wool is effective for broadband sound absorption, but is not effective for eliminating the peak sound.
  • the sound absorbing material has a problem that the absorptance decreases as the frequency decreases.
  • the object of the present invention is to overcome the above-mentioned problems of the prior art, have a plurality of absorption peaks that can be controlled to arbitrary frequencies, respectively, and selectively and strongly shield the sound of a plurality of target frequencies.
  • An object of the present invention is to provide a small soundproof cell.
  • another object of the present invention is to provide a soundproof structure that can achieve both air permeability and soundproofing using the soundproof cell.
  • a soundproof cell is used for soundproofing by arranging a film surface within a predetermined angle range from a position parallel to the traveling direction of sound waves. And a frame having a hole, a film fixed to the frame so as to cover the hole, and a resonator for sound waves, and the resonator has a hollow space inside.
  • the resonator that is fixed only to the membrane and functions as a weight with respect to the vibration of the membrane, and functions as a weight, is the lowest order defined by the opening surface of the hole when all the ends of the membrane are fixed ends.
  • Back surface air formed by the film, the frame and the film is arranged at least at a position where the amplitude is maximum in the vibration mode, and the area of the portion that can vibrate as the film is larger than the area where the resonator vibrates as a weight.
  • the structure consisting of layers is when the film and the traveling direction of sound waves are parallel
  • the hollow space of the resonator is one that is independent spaces from the back space of the film formed by the frame and the membrane.
  • what functions as a resonance structure with respect to sound waves is a structure including a film with a weight as a resonance body and a back air layer.
  • the lowest order resonance frequency is preferably included in the range of 10 to 10,000 Hz.
  • the lowest-order resonance frequency is adjusted to be lower than the frequency of the primary resonance of the soundproof cell configured only by the frame and the film configured to cover the frame.
  • the resonator is preferably a Helmholtz resonator.
  • the resonator is preferably a membrane resonator.
  • the membrane-type resonator is preferably provided on the membrane and has a resonator for sound waves.
  • it is preferable that at least a part of the resonator is present inside the resonance cell.
  • the predetermined angle range is preferably ⁇ 45 ° to + 45 °, with 0 ° when the film surface is parallel to the traveling direction of the sound wave.
  • a soundproof structure is a soundproof structure having at least one soundproof cell according to the first aspect, and is provided in an opening member having an opening. A state in which the membrane surface of the membrane is disposed within a predetermined angle range from a position parallel to the traveling direction of the sound wave traveling through the opening section of the opening member, and a region serving as a vent hole through which the gas passes is provided in the opening member A soundproof cell is arranged.
  • the soundproof cell is installed at the maximum value of the sound pressure distribution formed in the opening member at at least one resonance frequency of the soundproof cell. Moreover, it is preferable that the soundproof cell is disposed at an antinode of the sound pressure distribution of the standing wave formed by the sound wave of the lowest order resonance frequency of the soundproof cell on the opening member.
  • the soundproof structure preferably has a plurality of soundproof cells. Also, among the plurality of soundproof cells, there are two or more types of soundproof cells having different lowest order resonance frequencies, and two or more types of soundproof cells having different lowest order resonance frequencies correspond to each soundproof cell. It is preferable to arrange at a position where the sound pressure formed in the aperture member by the sound wave of the lowest order resonance frequency is high.
  • the sound wave is disposed at the position of the antinode of the sound pressure distribution of the standing wave formed in the opening member by the sound wave having the lowest resonance frequency.
  • the soundproof cell is preferably a member that can be detached from the opening member.
  • an opening member is a cylindrical body and a soundproof cell is arrange
  • the soundproof cell is disposed within the opening end correction distance from the opening end of the opening member.
  • a sound absorbing material is disposed in the hole of the frame.
  • an opening member has an opening formed in the area
  • a small soundproof cell that has a plurality of absorption peaks that can be controlled to arbitrary frequencies, respectively, and selectively and strongly shields a plurality of target frequencies. Can do. According to the present invention, it is possible to further provide a soundproof structure that can achieve both air permeability and soundproofing using the soundproof cell.
  • FIG. 19 is a cross-sectional view taken along line AA of the soundproof cell shown in FIG. It is sectional drawing which shows typically the soundproof cell of another example (reference example 1) of a prior art. It is sectional drawing which shows typically the soundproof cell of another example (reference example 2) of a prior art. It is a graph which shows the relationship between the absorption factor of the soundproof cell of Comparative Examples 5 and 6, and Reference Examples 1 and 2, and frequency. It is sectional drawing which shows typically the soundproof cell of another example (comparative example 7) of a prior art.
  • FIG. 1 It is a graph which shows the relationship between the absorption factor of the soundproof cell of Example 1, and the comparative example 7, and a frequency. It is a figure which shows the amplitude distribution of the vibration distortion in the resonant frequency of the soundproof cell of Example 1.
  • FIG. It is a figure which shows the amplitude distribution of the vibration distortion in the frequency close
  • a soundproof cell according to the present invention and a soundproof structure using the same will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
  • the description of the constituent elements described below is made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the soundproof cell of the first embodiment of the present invention is a soundproof cell used for soundproofing by placing a film surface within a predetermined angle range from a position parallel to the traveling direction of sound waves.
  • the soundproof cell includes a frame having a hole, a membrane fixed to the frame so as to cover the hole, and a resonator for sound waves, and the resonator has a hollow resonance space inside.
  • a resonator that is fixed only to the membrane and functions as a weight with respect to the vibration of the membrane and functions as a weight is defined by the opening surface of the hole when at least the end of the membrane is a fixed end. In the lowest vibration mode, the area where the amplitude can be maximized is larger than the area where the resonator can vibrate as a weight.
  • a resonance body for sound waves is a structure having a maximum value of absorption at a certain frequency when measured by the 4-microphone method in the frequency dependence of the absorption rate.
  • the resonator for sound waves include a Helmholtz resonator, a membrane resonator, and an air column resonator.
  • the resonance body functioning as a weight functions as a resonance body for sound waves when the film of the soundproof cell and the traveling direction of the sound waves are parallel to each other. When measured, it means having a resonance peak of absorption.
  • the soundproof cell of the present invention has a frame, a film fixed to the frame, and a resonator installed on the film, and is small in size, and can selectively and strongly shield sound of a plurality of frequencies as a target. it can.
  • the soundproof cell of the present invention is a soundproof structure that is small and has a plurality of absorption peaks, each of which can be controlled to an arbitrary frequency. Moreover, it is preferable that the soundproof cell of this invention can also cover a low frequency peak.
  • the soundproof structure of the second embodiment of the present invention is a soundproof structure having at least one soundproof cell of the first embodiment, and the opening cross section of the opening member is advanced in the opening member having the opening.
  • the soundproof cell is disposed in a state where the film surface of the film is disposed within a predetermined angle range from a position parallel to the traveling direction of the sound wave to be provided, and a region serving as a vent hole through which gas passes is provided in the opening member. is there.
  • the soundproof structure of the present invention has one or a plurality of such soundproof cells, and can selectively and strongly shield sounds having a plurality of frequencies that pass through the opening member while ensuring the air permeability of the opening member. it can.
  • the soundproof structure of the present invention is a soundproof structure for absorbing a plurality of peak sounds while maintaining air permeability in a breathable tube structure such as a duct, a muffler, or a ventilation sleeve.
  • the soundproof structure of the present invention can exhibit a large soundproofing effect even if the film surface of the soundproof cell is inclined with respect to the sound incident direction and is attached to the opening member or has a high aperture ratio. When mounting, noise can be removed and high air permeability can be maintained without additional processing of ducts or tubes.
  • FIG. 1 is a cross-sectional view schematically showing an example of a soundproof cell according to Embodiment 1 of the present invention.
  • a soundproof cell 10 according to the first embodiment shown in FIG. 1 includes a frame 14 having a hole 12, a vibrating film 16 fixed to the frame 14 so as to cover one opening of the hole 12, and a film 16. And a Helmholtz resonator 18a which is a resonator 18 for sound waves.
  • the frame 14 and the film 16 constitute the film-type resonator 11.
  • the soundproof cell 10 is disposed and used so that the film surface of the film 16 is disposed substantially parallel to the traveling direction of the sound wave, that is, within a predetermined angle range from the parallel position.
  • the predetermined angle range is preferably ⁇ 45 ° to + 45 °, with 0 ° when the film surface is parallel to the traveling direction of the sound wave.
  • the soundproof cell 10 it is most preferable to arrange and use the soundproof cell 10 so that the film surface of the film 16 is arranged at a position parallel to the traveling direction of the sound wave. This is because, in the case of soundproofing while ensuring ventilation, if the wind directly hits the film surface, the vibration mode of the film 16 is disturbed, and as a result, a desired sound absorption peak cannot be obtained. In such a situation where the film surface of the film 16 and the sound traveling direction are parallel, the absorption peak of the film sound absorption and the absorption peak of the Helmholtz can be compatible. However, as will be described later, at least the absorption peak of the configuration of Patent Document 3 is present. This is because the result of being unable to achieve both is obtained.
  • the frame 14 is a bottomed frame configured by a surrounding portion 15 a surrounding the hole portion 12 and a bottom portion 15 b facing one opening of the hole portion 12.
  • the frame 14 is for fixing and supporting the film 16 so as to cover the hole portion 12, and serves as a node of membrane vibration of the film 16 fixed to the frame 14. Therefore, the frame 14 is higher in rigidity than the film 16. Specifically, it is preferable that both the mass and the rigidity per unit area are high.
  • the frame 14 is preferably a closed and continuous shape that can fix the film 16 so that the entire circumference of the film 16 can be suppressed.
  • the present invention is not limited to this, and the frame 14 is not limited to this.
  • the role of the frame 14 is to fix and support the membrane 16 to control the membrane vibration. Therefore, even if the frame 14 has a small cut or an unbonded portion, the effect can be obtained. Demonstrate.
  • the shape of the hole 12 of the frame 14 is preferably a planar shape and is square, but in the present invention, it is not particularly limited, and for example, other rectangles such as a rectangle, a diamond, or a parallelogram.
  • a regular triangle such as a regular triangle, an isosceles triangle, or a right triangle, a regular pentagon, a regular polygon such as a regular hexagon, a circle, an ellipse, etc. Also good.
  • the edge part of the hole part 12 of the frame 14 is not obstruct
  • the film 16 is fixed to the frame 14 so as to cover the hole 12 at the end of the opened hole 12. In FIG. 1, the end portion of the hole portion 12 of the frame 14 is not closed and is opened to the outside as it is, but both end portions of the hole portion 12 are opened to the outside and one end portion is opened. May be closed by a member such as a back plate.
  • the size L of the frame 14 is a size in plan view and can be defined as the size of the hole 12. Therefore, in the following, the size L of the hole 12 will be referred to as a regular polygon such as a circle or a square. Can be defined as the distance between opposing sides passing through the center or the equivalent circle diameter, and in the case of a polygon, ellipse, or indefinite shape, it can be defined as the equivalent circle diameter. In the present invention, the equivalent circle diameter and the radius are a diameter and a radius when converted into a circle having the same area.
  • the size L of the hole 12 of the frame 14 is not particularly limited, and the soundproofing object to which the soundproof cell 10 of the present invention is applied for soundproofing, for example, a copying machine, a blower, an air conditioner, a ventilation fan, Pumps, generators, or ducts, as well as industrial equipment such as various types of manufacturing equipment that emits sound, such as coating machines, rotating machines, and conveyors, or transportation equipment such as automobiles, trains, and aircraft, refrigerators What is necessary is just to set according to general household devices, such as a washing machine, a dryer, a television, a copy machine, a microwave oven, a game machine, an air conditioner, a fan, PC, a vacuum cleaner, or an air cleaner.
  • a washing machine such as a washing machine, a dryer, a television, a copy machine, a microwave oven, a game machine, an air conditioner, a fan, PC, a vacuum cleaner, or an air cleaner.
  • the soundproof cell 10 including the frame 14 and the film 16 is preferably smaller than the wavelength of the lowest-order resonance frequency (first resonance frequency) of the film 16, that is, the soundproof cell 10 is made to have the lowest-order resonance. In order to make it smaller than the wavelength of the frequency, it is preferable to reduce the size of the frame 14. Since it is necessary to downsize the soundproofing cell 10 for installation in an opening member having a soundproofing structure, which will be described later, the soundproofing cell 10 has the lowest resonance of the membrane 16 in order to reduce the size of the soundproofing cell 10. It is more preferable to make it smaller than 1/4 of the wavelength of the frequency.
  • the size L of the hole 12 is not particularly limited, but is preferably 0.5 mm to 300 mm, more preferably 1 mm to 100 mm, and most preferably 10 mm to 50 mm.
  • the thickness of the frame 14 can be referred to as the thickness of the surrounding portion 15 a and can be defined as the depth d of the hole 12 of the frame 14.
  • the thickness d of the frame 14, that is, the depth d of the hole 12 is not particularly limited, but affects the resonance frequency of the vibration of the film 16, and may be set according to the resonance frequency. Alternatively, it may be set according to the size of the hole 12.
  • the depth d of the hole 12 is preferably 0.5 mm to 200 mm, more preferably 0.7 mm to 100 mm, and most preferably 1 mm to 50 mm.
  • the width w of the frame 14 can be referred to as the thickness of the members constituting the frame 14, but is not particularly limited as long as the film 16 can be fixed and the film 16 can be reliably supported.
  • the width w of the frame 14 can be set according to the size L of the hole 12, for example.
  • the thickness of the bottom 15 b of the frame 14 can also be defined as the width w of the frame 14.
  • the width w of the frame 14 is preferably 0.5 mm to 20 mm, more preferably 0.7 mm to 10 mm when the size L of the hole 12 is 0.5 mm to 50 mm. Most preferably, it is 1 mm to 5 mm.
  • the width w of the frame 14 is preferably 1 mm to 100 mm, more preferably 3 mm to 50 mm, and more preferably 5 mm to 20 mm when the size L of the hole 12 is more than 50 mm and 300 mm or less. Most preferably it is. Note that if the ratio of the width w of the frame 14 to the size L of the frame 14 becomes too large, the area ratio of the portion of the frame 14 that occupies the whole increases, and the device (soundproof cell 10) may become heavy. . On the other hand, if the ratio becomes too small, it becomes difficult to strongly fix the film 16 with an adhesive or the like at the frame 14 portion.
  • the size L of the frame 14 (hole 12) is the lowest order of the film 16 fixed to the soundproof cell 10.
  • the size is equal to or smaller than the wavelength of the resonance frequency. If the size L of the frame 14 (hole 12) of the soundproof cell 10 is equal to or smaller than the wavelength of the lowest-order resonance frequency of the film 16, a sound pressure with small intensity unevenness is applied to the film surface of the film 16. Therefore, it is difficult to induce a vibration mode of the film, which is difficult to control the sound. That is, the soundproof cell 10 can acquire high acoustic controllability.
  • the size L of the frame 14 (hole 12) is:
  • the wavelength of the lowest-order resonance frequency of the film 16 fixed to the soundproof cell 10 is ⁇ , it is preferably ⁇ / 2 or less, more preferably ⁇ / 4 or less, and more preferably ⁇ / 8 or less. Most preferred.
  • the soundproof cell 10 is preferably smaller than 1 ⁇ 4 of the wavelength of the lowest resonance frequency of the film 16.
  • the material of the frame 14 is not particularly limited as long as the material can support the film 16, has strength suitable for application to the above-described soundproofing object, and is resistant to the soundproofing environment of the soundproofing object. It can be selected according to the object and its soundproof environment.
  • metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, or alloys thereof, acrylic resin, polymethyl methacrylate, polycarbonate, polyamideimide Resin materials such as polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, or triacetyl cellulose, carbon fiber reinforced plastic (CFRP), carbon fiber Or glass fiber reinforced plastic (GFRP). Further, these materials may be used in combination as the material of the frame 14.
  • CFRP carbon fiber reinforced plastic
  • GFRP carbon fiber Or glass fiber reinforced plastic
  • a conventionally known sound absorbing material may be disposed in the hole 12 of the frame 14. By arranging the sound absorbing material, the sound insulation property can be further improved by the sound absorbing effect of the sound absorbing material.
  • the sound absorbing material is not particularly limited, and various known sound absorbing materials such as urethane plates and nonwoven fabrics can be used. As described above, by using a known sound absorbing material in combination with or together with the soundproofing cell of the present invention, both the soundproofing effect by the soundproofing cell of the present invention and the sound absorbing effect by the known sound absorbing material are obtained. An effect can be obtained.
  • the film 16 covers the hole 12 inside the frame 14 and is fixed so as to be restrained by the frame 14, and is used for installing the resonator 18 (Helmholtz resonator 18a).
  • the resonator 18 Helmholtz resonator 18a
  • the frame 14 and the film 16 constitute the film type resonator 11.
  • the film 16 needs to vibrate with the frame 14 as a node and the resonator 18 (Helmholtz resonator 18a) as a weight.
  • a container 18a) as an antinode of membrane vibration to absorb sound wave energy or to reflect and reflect the sound.
  • the membrane 16 is preferably made of a flexible elastic material.
  • the film 16 has an outer shape obtained by adding the width of the frame 14 outside the hole 12 (the width of the surrounding portion 15a) w to the shape of the hole 12 of the frame 14, and the Helmholtz resonator 18a (described later).
  • the size of the membrane 16 (outside shape) needs to be fixed to the frame 14 and function as a vibrating membrane, and therefore needs to be larger than the size L of the frame 14 (hole 12).
  • the size of the membrane 16 (outside shape) may be larger than the size (L + 2w) of the size L of the hole 12 plus the width w of the surrounding portion 15a of the frame 14 on both sides of the hole 12.
  • the large portion does not have a function as a vibration film and does not have a function to fix the film 16, so that the size is preferably equal to or smaller than size (L + 2w).
  • the area of the portion that can vibrate as the film 16 needs to be larger than the area where the resonator 18 vibrates as a weight. The reason for this is that, as can be seen in Patent Documents 4 and 5, if the area of the portion that can vibrate as the film 16 is equal to or less than the area where the resonator 18 vibrates as a weight, the film 16 can move relative to the sound traveling direction. This is because the membrane 16 does not sufficiently function as a vibrating membrane when the membrane surfaces are installed in parallel, and the absorption rate becomes small.
  • the thickness t of the film 16 is not particularly limited as long as the film can vibrate in order to absorb sound wave energy to prevent sound, but is thick in order to obtain a vibration mode with the largest vibration on the high frequency side. In order to obtain on the low frequency side, it is preferable to make it thin.
  • the thickness t of the membrane 16 shown in FIG. 1 can be set according to the size L of the hole 12, that is, the size of the membrane 16 in the present invention.
  • the thickness t of the membrane 16 is preferably 0.001 mm (1 ⁇ m) to 5 mm, preferably 0.005 mm (5 ⁇ m) to 2 mm when the size L of the hole 12 is 0.5 mm to 50 mm.
  • the thickness is 0.01 mm (10 ⁇ m) to 1 mm.
  • the thickness t of the membrane 16 is preferably 0.01 mm (10 ⁇ m) to 20 mm, and preferably 0.02 mm (20 ⁇ m) to 10 mm when the size L of the hole 12 is more than 50 mm and 300 mm or less. More preferably, the thickness is 0.05 mm (50 ⁇ m) to 5 mm.
  • the thickness of the film 16 is preferably expressed as an average thickness when the thickness of one film 16 is different.
  • the film 16 fixed to the frame 14 of the soundproof cell 10 has the lowest resonance frequency (first resonance) which is the frequency of the lowest (first) vibration mode that can be induced in the structure of the soundproof cell 10. Frequency). Further, in the soundproof cell 10 having the structure including the frame 14 and the film 16, that is, when the sound wave is incident on the film 16 fixed so as to be restrained by the frame 14, the sound wave is the film.
  • the frequency at which vibration is most shaken is the frequency at which the sound is drawn to the soundproof cell side and the largest absorption peak is expressed (that is, the absorption rate is maximized).
  • the lowest-order resonance frequency is a first resonance frequency that is determined by the soundproof cell 10 including the frame 14 and the film 16 and in which the membrane vibration exhibits the lowest-order vibration mode.
  • the lowest resonance frequency of the film 16 fixed to the frame 14 (for example, the boundary between the frequency region following the rigidity law and the frequency region following the mass side is the lowest first resonance (resonance) frequency) It is preferably 10 Hz to 100000 Hz corresponding to the sound wave detection range, more preferably 20 Hz to 20000 Hz, which is the audible range of human sound waves, still more preferably 40 Hz to 16000 Hz, and 100 Hz to 12000 Hz. Most preferred.
  • the resonance frequency of the film 16 in the structure composed of the frame 14 and the film 16, for example, the lowest order resonance frequency is the geometric form of the frame 14 of the soundproof cell 10, for example, the frame 14.
  • the rigidity of the membrane 16 of the soundproof cell 10 for example, the thickness and flexibility of the membrane 16 and the volume of the back space 13 of the membrane 16.
  • the ratio of the thickness (t) of the film 16 to the square of the size (L) of the hole 12, for example, a regular square In this case, the ratio [L 2 / t] to the size of one side can be used.
  • the vibration modes have the same frequency, that is, the same resonance frequency. That is, by setting the ratio [L 2 / t] to a constant value, the scaling rule is established, and an appropriate size can be selected.
  • the Young's modulus of the film 16 is not particularly limited as long as the film 16 has elasticity capable of vibrating the film to absorb or reflect sound wave energy to prevent sound. In order to obtain the vibration mode on the high frequency side, it is preferable to make it large, and to obtain the vibration mode on the low frequency side, it is preferable to make it small.
  • the Young's modulus of the film 16 can be set according to the size of the frame 14 (hole 12), that is, the size of the film.
  • the Young's modulus of the film 16 is preferably 1000 Pa to 3000 GPa, more preferably 10,000 Pa to 2000 GPa, and most preferably 1 MPa to 1000 GPa.
  • the density of the film 16 is not particularly limited as long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, and for example, 5 kg / m 3 to 30000 kg / m 3. is preferably, more preferably 10kg / m 3 ⁇ 20000kg / m 3, most preferably 100kg / m 3 ⁇ 10000kg / m 3.
  • the film 16 When the material of the film 16 is a film-like material or a foil-like material, the film 16 has strength suitable for application to the above-described soundproofing object, and is resistant to the soundproofing environment of the soundproofing object. As long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, it is not particularly limited and can be selected according to the soundproof object and its soundproof environment.
  • the material of the film 16 includes polyethylene terephthalate (PET), polyimide, polymethyl methacrylate, polycarbonate, acrylic (PMMA), polyamideide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone.
  • the film 16 is fixed to the frame 14 so as to cover the opening of the hole 12 of the frame 14.
  • the method of fixing the film 16 to the frame 14 is not particularly limited, and any method may be used as long as the film 16 can be fixed to the frame 14 so as to be a node of membrane vibration.
  • a method using an adhesive or a physical And a method using a typical fixture.
  • the adhesive is applied on the surface surrounding the hole 12 of the frame 14, the film 16 is placed thereon, and the film 16 is fixed to the frame 14 with the adhesive.
  • the adhesive examples include an epoxy adhesive (Araldite (registered trademark) (manufactured by Nichiban Co., Ltd.)), a cyanoacrylate adhesive (Aron Alpha (registered trademark) (manufactured by Toa Gosei Co., Ltd.)), or an acrylic adhesive.
  • Etc As a method of using a physical fixing tool, a film 16 disposed so as to cover the hole 12 of the frame 14 is sandwiched between the frame 14 and a fixing member such as a rod, and the fixing member is screwed or screwed. The method etc. which are fixed to the frame 14 using a fixing tool can be mentioned.
  • the soundproof cell 10 of the first embodiment has a structure in which the frame 14 and the film 16 are configured as separate bodies and the film 16 is fixed to the frame 14.
  • the present invention is not limited to this, and the film 16 made of the same material.
  • the frame 14 may be integrated.
  • the resonator 18 is fixed only to the film 16, functions as a weight with respect to the vibration of the film 16, lowers the lowest-order resonance frequency of the film 16, and has a resonance frequency different from the resonance frequency of the film 16. It is what you have. Therefore, the resonator 18 is preferably installed at the center of the film 16.
  • the resonator 18 that functions as a weight functions as a resonator for sound waves when the film 16 of the soundproof cell 10 and the traveling direction of the sound waves are parallel.
  • the resonator 18 is a Helmholtz resonator 18 a, and a part thereof exists inside the soundproof cell 10.
  • the first embodiment 1 includes a casing 20 fixed to the film 16, a resonance hole 22 that communicates the hollow space 21 inside the casing 20 and the outside, and a cylindrical body 24 that protrudes from the casing 20.
  • a resonator having a Helmholtz resonance structure The cylindrical body 24 protruding from the housing 20 protrudes from the through hole 17 formed in the film 16.
  • the through hole 20 a of the housing 20 and the through hole 24 a of the cylindrical body 24 constitute a resonance hole 22.
  • the Helmholtz resonator 18 a (resonator 18) has a hollow space 21 serving as a resonance space in the housing 20.
  • the hollow space 21 of the resonator 18 needs to be a space that contains gas and is independent of the back space 13 of the membrane 16 of the membrane resonator 11.
  • the reason why the hollow space 21 of the resonator 18 is an independent space from the back space 13 of the membrane 16 is that it is difficult to achieve both the absorption peak of the film sound absorption by the membrane 16 and the absorption peak of the Helmholtz by the Helmholtz resonator 18a. Because.
  • the casing 20 is fixed to the film 16 by fixing the upper surface of the casing 20 outside the protruding cylindrical body 24 in FIG. 1 to the back surface of the film 16.
  • a fixing method similar to the method for fixing the film 16 to the frame 14 can be used. That is, the housing 20 is housed so as to exist in the back space 13 of the film 16 formed by the frame 14 and the film 16.
  • the casing 20 is preferably the same as the planar shape of the frame 14 in a planar shape, but is not limited to this, and is smaller than the size of the membrane 16 (size L of the hole 12) and is fixed only to the membrane 16. As long as it can be done, it may have any shape like the frame 14. In the example shown in FIG.
  • the casing 20 has a rectangular parallelepiped shape in plan view, and the hollow space 21 that is a resonance space similarly has a rectangular parallelepiped shape in plan view.
  • the casing 20 has a through hole 20a that forms a resonance hole 22 in the center.
  • the material of the casing 20 is preferably harder than the material of the film 16, but is not particularly limited.
  • the material of the casing 20 can be the same material as the material of the frame 14, but the material of the film 16 may be used.
  • the size (plan view) of the housing 20 can be defined as the size between the outer surfaces of the housing 20, but is not particularly limited.
  • the size of the housing 20 may be smaller than the size of the membrane 16 (the size L of the hole 12), for example, if the housing 20 can be fixed only to the membrane 16 and the membrane 16 can vibrate together with the housing 20.
  • the size of the casing 20 is preferably 5.0% to 80% of the size L of the hole 12, and more preferably 10% to 50%.
  • the thickness of the housing 20 can be defined as the size between the upper and lower surfaces of the housing 20, but is not particularly limited. The thickness of the housing 20 may be such that the housing 20 can exist in the back space 13 of the film 16 formed by the frame 14 and the film 16, for example.
  • the thickness of the casing 20 is preferably 5.0% to 80% of the depth d of the hole 12, and more preferably 10% to 50%.
  • the volume of the hollow space 21 inside the housing 20 is not particularly limited, but may be set according to the back space 13 of the film 16 formed by the frame 14 and the film 16, for example.
  • the volume of the hollow space 21 is preferably 1.0% to 50%, more preferably 5.0% to 30% of the volume of the back space 13.
  • the cylindrical body 24 protrudes from the housing 20 so that the through hole 24a and the through hole 20a of the housing 20 continuously form the resonance hole 22.
  • the cylindrical body 24 penetrates the through hole 17 of the film 16 and protrudes from the film 16. Since the outer surface on the lower end side of the cylindrical body 24 is in contact with the through hole 17 of the membrane 16, it is preferable that the through hole 17 of the membrane 16 and the outer surface of the cylindrical body 24 are fixed. .
  • the fixing method the same fixing method as that for fixing the housing 20 to the membrane 16 can be used.
  • the material of the cylindrical body 24 is not particularly limited, and the same material as that of the housing 20 can be used. Since the cylindrical body 24 is for constituting the resonance hole 22, the shape and size of the cylindrical body 24 may be set according to the shape and size of the resonance hole.
  • the resonance hole 22 is preferably circular in cross section, but is not particularly limited, and may be a polygon such as a square like the shape of the frame 14.
  • the cross-sectional size and the axial length of the resonance hole 22 are not particularly limited, but both are parameters that determine the resonance frequency of the Helmholtz resonator 18a, and therefore are determined according to the required resonance frequency. Can do.
  • the Helmholtz resonance frequency fh is such that C is the speed of sound
  • S is the cross-sectional area perpendicular to the axial direction of the resonance hole 22
  • La is the axial length of the resonance hole 22 (value corrected for the open end)
  • V is When it is set as the volume of the hollow space 21 used as the resonance space of the housing 20, it is given by the following formula (1).
  • the length La of the resonance hole 22 is given by the sum of the axial length of the through hole 24 a of the cylindrical body 24 and the axial length of the through hole 20 a of the housing 20.
  • the soundproof cell 10 of the present invention includes the membrane 16, the frame 14, and the closed back space 13 composed of the membrane 16 and the frame 14, and the membrane 16 is provided with a resonator 18 for sound waves.
  • a structure For this reason, in this invention, there exist the following advantages by using such a structure. 1.
  • the resonance frequency of the film 16 determined according to the ratio (L 2 / t) of the thickness t of the film 16 and the square of the size L of the hole 12 is reduced. be able to.
  • the cross-sectional area S of the resonance hole 22 of the Helmholtz resonator 18a which is the resonance body 18, the length La of the resonance hole 22, and the volume V of the hollow space 21 of the housing 20 are appropriately selected to obtain the above formula (1).
  • the Helmholtz resonance frequency determined by can be set appropriately. As a result, a plurality of resonance absorption peaks can be obtained at an arbitrary frequency. Therefore, it is possible to absorb the noise having a plurality of peaks as shown in FIG. 29 with fewer soundproof cells 10. 2. Further, the peak can be lowered in frequency without increasing the size of the soundproof cell 10.
  • a film-type resonator comprising a frame and a film
  • the film surface of the film exists approximately parallel to the traveling direction of the sound wave
  • the resonance frequency is lowered.
  • the weight is the resonator 18 for the sound wave and has the hollow space 21 inside, so that the weight is a moderately light weight as compared with the case where the weight is filled with an object.
  • the film 16 is more likely to shake at a low frequency, and a high absorption rate can be obtained. That is, the film-type resonator has a low absorptivity although it is lowered in frequency simply by attaching a weight to the film.
  • the membrane-type resonator including the frame 14 and the membrane 16 if the resonator 18 serving as a weight has a hollow structure having a hollow space 21, the membrane is Since it becomes easy to shake, the absorption rate becomes high.
  • the soundproof cell 10 of the present invention further has an absorption peak even at the resonance frequency of the resonator 18 composed of the hollow space 21, so that it is combined with the absorption peak at the resonance frequency of the membrane resonator 11 composed of the frame 14 and the film 16.
  • the resonator 18 that functions as a weight needs to be disposed at a position where the amplitude of the vibration mode of the film 16 is maximized. That is, the resonator 18 functioning as a weight has the lowest vibration mode (the first vibration mode of the film 16) defined by the opening surface of the hole 12 when at least the ends of the film 16 are all fixed ends.
  • the Helmholtz resonator 18a of the soundproof cell 10 shown in FIG. 1 has a cylindrical body 24 protruding from the housing 20, but the present invention is not limited to this, and like the soundproof cell 10A shown in FIG.
  • the cylindrical body 24 may not be provided.
  • the Helmholtz resonator 18b shown in FIG. 2 is composed of only the casing 20, and is a resonator 18 in which the casing 20 is fixed to the back surface of the film 16 so that the through hole 20a of the casing 20 and the through hole 17 of the film 16 coincide with each other. .
  • the through-hole 20a of the housing 20 and the through-hole 17 of the film 16 are continuous in a matched state and constitute a resonance hole 22.
  • the axial length La of the resonance hole 22 is given as the sum of the axial length of the through hole 20 a of the housing 20 and the thickness t of the through hole 17 of the film 16.
  • a through-hole through which the housing 20 of the Helmholtz resonator 18a or 18b passes is drilled in the membrane 16, and the outer side surface of the housing 20 is fixed to the inner peripheral surface of the through-hole of the membrane 16, so And thus a part of the resonator 18 may be present inside the soundproof cell.
  • the bottom surface of the housing 20 of the Helmholtz resonator 18 a or 18 b may be fixed to the upper surface of the film 16 so that the resonator exists outside the film 16.
  • the soundproof cells 10 and 10A of Embodiment 1 of the present invention are configured as described above.
  • FIG. 3 is a cross-sectional view schematically showing an example of a soundproof cell according to Embodiment 2 of the present invention.
  • a soundproof cell 10B according to the second embodiment shown in FIG. 3 includes a membrane resonator 11 having a frame 14 having a hole 12 and a oscillating film 16 fixed to the frame 14 so as to cover the hole 12. And a membrane resonator 18c as a resonator 18 for sound waves.
  • the soundproof cell 10B shown in FIG. 3 has the same configuration as that of the soundproof cell 10 shown in FIG. 1 except that the resonator 18 includes a membrane resonator 18c instead of the Helmholtz resonator 18a. Therefore, the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the membrane resonator 18c has a hole 12a that is smaller than the hole 12, has a frame 14a that is smaller than the frame 14, and a vibrating film 16a that is fixed to the frame 14a so as to cover the hole 12a.
  • the entire membrane resonator 18 c is enclosed (contained) in the hole 12 of the frame 14.
  • the film-type resonator 18c is fixed only to the film 16, functions as a weight with respect to the vibration of the film 16, lowers the lowest-order resonance frequency of the film 16, and has a resonance different from the resonance frequency of the film 16. It has a frequency.
  • the membrane resonator 18 c is preferably installed at the center of the membrane 16.
  • the hole 12 on the inner surface of the frame 14, the inner surface of the film 16 covering the hole 12, and the outer surface of the frame 14 a of the film type resonator 18 c are within the resonance space of the film 16 in the film type resonator 11.
  • a rear space 13a is formed.
  • the hole 12a on the inner surface of the frame 14a and the film 16a covering the hole 12a constitute a hollow space 13b serving as a resonance space of the film 16a inside the film-type resonator 18c.
  • the hollow space 13b of the membrane resonator 18c contains a gas and is independent of the back space 13a containing the gas.
  • the film 16 a fixed to the hole 12 a of the small frame 14 a is supported by the film 16 by being continuous with the film 16.
  • the membrane resonator 18c is installed and fixed to the membrane 16. Therefore, in the soundproof cell 10B shown in FIG. 3, the film 16 is fixed to the entire opening at the end of the hole 12 of the frame 14, and the small frame 14a is fixed to the film 16a at the center of the film 16. I can say that.
  • the frame 14a is for fixing and supporting the film 16a so as to cover the hole 12a, and serves as a node of the membrane vibration of the film 16a fixed to the frame 14a.
  • the size, depth, and width of the frame 14a are all the size L and depth of the frame 14, respectively. If it is smaller than d and width w, it can be set similarly. As long as the size and depth of the frame 14a are smaller than the size L and depth L of the frame 14, and the size and depth of the frame 14a itself can be accommodated in the hole 12 of the frame 14, any size can be used. Although it may be a size, it may be set according to the resonance frequency of the film 16 a set with respect to the resonance frequency of the film 16. For example, the size of the frame 14a is preferably 5.0% to 80% of the size L of the hole 12, and more preferably 10% to 50%.
  • the depth of the hole 12a of the frame 14a is preferably 5.0% to 80% of the depth d of the hole 12, and more preferably 10% to 50%.
  • the size of the frame 14a may be defined as the size of the opening of the hole 12a of the frame 14a.
  • the shape of the frame 14 a is preferably the same shape as the frame 14, but may be any shape as with the frame 14.
  • the width of the frame 14a is preferably narrower than the width w of the frame 14, and may be set according to the width w of the frame 14, or the size of the opening of the hole 12a as in the case of the width w of the frame 14. You may set according to.
  • the width of the frame 14a is preferably 1.0% to 90% of the width w of the frame 14, and more preferably 5.0% to 50%.
  • the film 16a covers the hole 12a inside the frame 14a and is fixed so as to be restrained by the frame 14a, and absorbs or reflects sound wave energy by vibrating the film in response to sound waves from the outside. Soundproofing.
  • the thickness and material of the film 16a may be exactly the same as the film 16, that is, the same, or the thickness of the film 16a may be different from the thickness t of the film 16 or the material may be different. good.
  • the thickness of the film 16a may be set according to the size of the opening of the hole 12a, as in the case of the thickness t of the film 16, but the thickness of the film 16a set with respect to the resonance frequency of the film 16 It is good to set according to the resonance frequency.
  • the material of the film 16a may be the same material as that of the film 16, or the same material may be used.
  • the size of the film 16a may be defined as the size of the frame 14a or the size of the opening of the hole 12a of the frame 14a.
  • the shape of the film 16a may be defined as the shape of the frame 14a or the shape of the opening of the hole 12a of the frame 14a.
  • the soundproof cell 10B of the present embodiment causes the film-type resonator 18c to function as the resonator 18 to develop an absorption peak, and the film composed of the frame 14 and the film 16 is used.
  • the absorption peak of the membrane resonator 11 can be lowered by functioning as the weight of the film 16 of the resonator 11. That is, also in this embodiment, by having the hollow space 13b containing gas inside the resonator 18 (membrane type resonator 18c), the low frequency absorption peak is strengthened and the membrane type resonator 18c is configured.
  • the weight combined with the frame 14 and the film 16 can function as the resonator 18.
  • the soundproof cell 10B shown in FIG. 3 is obtained by installing a film type resonator 18c as the resonator 18 on the film 16 of the film type resonator 11.
  • a membrane resonator 18d may be installed as the resonator 18 on the membrane 16a of the membrane resonator 18c.
  • the soundproof cell 10C of the second embodiment shown in FIG. 4 includes a membrane resonator 11 having a frame 14 having a hole 12 and a oscillating film 16 fixed to the frame 14 so as to cover the hole 12.
  • the membrane resonator 18c includes a frame 14a having a hole 12a and a oscillating film 16a fixed to the frame 14a so as to cover the hole 12a. The entire membrane resonator 18 c is enclosed (contained) in the hole 12 of the frame 14.
  • the membrane resonator 18d has a hole 12b smaller than the hole 12a, a frame 14b smaller than the frame 14a, and a oscillating film 16b fixed to the frame 14b so as to cover the hole 12b.
  • the entire membrane resonator 18d is enclosed (contained) in the hole 12a of the frame 14a.
  • the hole 12a on the inner surface of the frame 14a, the film 16a covering the hole 12a, and the outer surface of the frame 14b of the film type resonator 18d are the resonance space of the film 16a inside the film type resonator 18c.
  • the hollow space 13b is formed.
  • the hollow space 13b of the membrane resonator 18c contains a gas and is independent of the back space 13a containing the gas.
  • the hole 12b on the inner surface of the frame 14b and the film 16b covering the hole 12b constitute a hollow space 13c serving as a resonance space of the film 16b inside the film type resonator 18d.
  • the hollow space 13c of the membrane resonator 18d contains gas and is a space independent of the back spaces 13a and 13b.
  • the film 16 of the film resonator 11, the film 16a of the film resonator 18c, and the film 16b of the film resonator 18d are continuous.
  • the film 16b is located in the central part of the film 16a, and the films 16b and 16a are located in the central part of the film 16.
  • the membrane resonator 18c is supported by the membrane 16 of the membrane resonator 11, and the membrane resonator 18d is supported by the membrane 16a of the membrane resonator 18c.
  • the films 16, 16a, and 16b preferably have the same center.
  • the film-type resonator 18c and the film-type resonator 18d function as a weight of the film vibration of the film 16 of the film-type resonator 11, reduce the lowest resonance frequency of the film 16, and reduce the film It has a resonance frequency different from 16 resonance frequencies.
  • the membrane resonator 18d functions as a weight of the membrane vibration of the membrane 16a of the membrane resonator 18c, lowers the lowest-order resonance frequency of the membrane 16a, and has a resonance different from the resonance frequency of the membrane 16a. It has a frequency.
  • the film 16b has a resonance frequency of the film vibration of the film 16b itself.
  • the film 16b may be the same as or different from the films 16a and / or 16, and depends on the absorption peak frequency required for the film resonator 18d. Set it.
  • the size of the frame 14b (hole 12b or film 16b) of the membrane resonator 18d, the depth of the hole 12b, and the width of the frame 14b are respectively the same as the frame 14a (hole 12a or film of the membrane resonator 18c).
  • the depth of the hole 12a, and the width of the frame 14a it may be set according to the absorption peak frequency required for the membrane resonator 18d.
  • the size of the frame 14b is preferably 5% to 80% of the size of the hole 12a, and more preferably 10% to 50%.
  • the depth of the hole 12b is preferably 5.0% to 80% of the depth of the hole 12a, and more preferably 10% to 50%.
  • the width of the frame 14b is preferably 1.0% to 90% and more preferably 5.0% to 50% of the width of the frame 14a.
  • the soundproof cell 10C shown in FIG. 4 is obtained by superimposing three membrane resonators including the membrane resonators 11, 18c, and 18d. However, four or more membrane resonators may be superimposed. .
  • a membrane resonator 18c is installed on the membrane 16 of the membrane resonator 11 so that the membrane 16a of the membrane resonator 18c and the membrane 16 are continuous.
  • the present invention is not limited to this.
  • a membrane type resonator 18e is installed as the resonator 18 so that the membrane 16 of the membrane type resonator 11 supports the frame 14 of the membrane type resonator 18e. Also good.
  • a film-type resonator 11 having a frame 14 having a hole 12, a oscillating film 16 fixed to the frame 14 so as to cover the hole 12, and a resonator for sound waves.
  • 18 includes a film-type resonator 18 e installed on the film 16.
  • the membrane resonator 18e has a hole 12c smaller than the hole 12, has a frame 14c smaller than the frame 14, and a oscillating film 16c fixed to the frame 14c so as to cover the hole 12c.
  • the hole 12 on the inner surface of the frame 14, the inner surface of the film 16 covering the hole 12, and the outer surface of the frame 14 c of the film type resonator 18 e are within the resonance space of the film 16 in the film type resonator 11.
  • a rear space 13d is formed.
  • the hole 12c on the inner surface of the frame 14c and the film 16c covering the hole 12c constitute a hollow space 13e serving as a resonance space of the film 16c inside the film-type resonator 18e.
  • the hollow space 13e of the membrane resonator 18e contains a gas and is independent of the back space 13d containing the gas.
  • the side surface of the frame 14c of the membrane resonator 18e (the outer surface of the surrounding portion 15c) is supported by being fixed to the inner peripheral surface of the through hole 17 of the membrane 16 by the fixing method described above.
  • a membrane resonator 18 e is installed on the membrane 16.
  • the film-type resonator 18e is fixed only to the film 16, functions as a weight with respect to the vibration of the film 16, lowers the lowest-order resonance frequency of the film 16, and differs from the resonance frequency of the film 16 It has a frequency.
  • the film 16c of the film type resonator 18e has a resonance frequency of the film vibration of the film 16c itself.
  • the membrane resonator 18e may be basically configured in the same manner as the membrane resonator 18c of the soundproof cell 10B shown in FIG. That is, the hole 12c, the frame 14c, and the film 16c may be basically configured in the same manner as the hole 12a, the frame 14a, and the film 16a, respectively.
  • the soundproof cell 10D shown in FIG. 5 is obtained by installing a film type resonator 18e as the resonator 18 on the film 16 of the film type resonator 11.
  • a film type resonator 18f may be provided as the resonator 18 on the film 16c of the film type resonator 18e.
  • a soundproof cell 10E according to the second embodiment shown in FIG. 6 includes a membrane resonator 11 having a frame 14 having a hole 12 and a oscillating film 16 fixed to the frame 14 so as to cover the hole 12.
  • the resonator 18 for the sound wave there is a membrane resonator 18e installed on the film 16, and as a resonator 18 for the sound wave, there is a film resonator 18f installed on the film 16a of the film resonator 18c.
  • the membrane resonator 18e has a hole 12c smaller than the hole 12, has a frame 14c smaller than the frame 14, and a oscillating film 16c fixed to the frame 14c so as to cover the hole 12c.
  • the membrane resonator 18e is fixed to the inner peripheral surface of the through hole 17 of the membrane 16 of the membrane resonator 11 as described above.
  • the membrane resonator 18f has a hole 12d smaller than the hole 12c, a frame 14d smaller than the frame 14c, and a oscillating film 16d fixed to the frame 14d so as to cover the hole 12d.
  • the membrane resonator 18f is fixed to the inner peripheral surface of the through hole 17a of the film 16c of the membrane resonator 18e by the above-described fixing method.
  • the films 16, 16c, and 16d preferably have the same center.
  • the hole 12c on the inner surface of the frame 14c, the film 16c covering the hole 12c, and the outer surface of the frame 14d of the film-type resonator 18f are the resonance space of the film 16c inside the film-type resonator 18e.
  • a hollow space 13e is formed.
  • the hollow space 13e of the membrane resonator 18e contains a gas and is independent of the back space 13d containing the gas.
  • the hole 12d on the inner surface of the frame 14d and the film 16d covering the hole 12d constitute a hollow space 13f serving as a resonance space of the film 16d inside the film-type resonator 18f.
  • the hollow space 13f of the membrane resonator 18f contains gas and is independent of the back spaces 13d and 13e.
  • the membrane resonator 18e and the membrane resonator 18f function as a weight of the membrane vibration of the membrane 16 of the membrane resonator 11, and lower the lowest-order resonance frequency of the membrane 16. At the same time, it has a resonance frequency different from the resonance frequency of the film 16.
  • the membrane resonator 18f functions as a membrane vibration weight of the membrane 16c of the membrane resonator 18e, lowers the lowest-order resonance frequency of the membrane 16c, and has a resonance different from the resonance frequency of the membrane 16c. It has a frequency.
  • the film 16d has a resonance frequency of the film vibration of the film 16d itself.
  • the membrane resonator 18e and the membrane resonator 18f may be basically configured in the same manner as the membrane resonators 18c and 18d of the soundproof cell 10C shown in FIG. That is, the hole 12c, the frame 14c, and the film 16c may be basically configured in the same manner as the hole 12a, the frame 14a, and the film 16a, respectively.
  • the hole 12d, the frame 14d, and the film 16d may be basically configured in the same manner as the hole 12b, the frame 14b, and the film 16b, respectively.
  • the soundproof cell 10E shown in FIG. 6 is obtained by superimposing three membrane resonators including the membrane resonators 11, 18e, and 18f. However, four or more membrane resonators may be superimposed. .
  • the soundproof cell 10E shown in FIG. 6 is obtained by installing a film type resonator 18f as the resonator 18 on the film 16c of the film type resonator 18e.
  • a Helmholtz resonator 18g may be provided as the resonator 18 in the membrane 16c of the membrane resonator 18e as in 10F.
  • a soundproof cell 10F shown in FIG. 7 includes a membrane resonator 11 having a frame 14 having a hole 12 and a oscillating film 16 fixed to the frame 14 so as to cover the hole 12, and a resonator 18 for sound waves.
  • a resonance type 18 for a membrane type resonator 18c installed on the membrane 16 and a Helmholtz resonator 18g installed on the membrane 16a of the membrane type resonator 18c.
  • the membrane resonator 18e has a hole 12c smaller than the hole 12, has a frame 14c smaller than the frame 14, and a oscillating film 16c fixed to the frame 14c so as to cover the hole 12c.
  • the membrane resonator 18e is fixed to the inner peripheral surface of the through hole 17 of the membrane 16 of the membrane resonator 11 as described above.
  • the Helmholtz resonator 18g has a hollow space 27 that communicates with the outside including air inside, and a housing 26 that has a resonance hole 28 that communicates the hollow space 27 with the outside.
  • the hollow space 13e of the membrane resonator 18e is constituted by the hole 12c on the inner surface of the frame 14c, the film 16c covering the hole 12c, and the outer surface of the housing 26 of the Helmholtz resonator 18g.
  • the hollow space 27 of the Helmholtz resonator 18g, the hollow space 13e of the membrane resonator 18e, and the back space 13d of the membrane resonator 11 are mutually independent spaces.
  • the membrane resonator 18e and the Helmholtz resonator 18g function as a membrane vibration weight of the membrane 16 of the membrane resonator 11, and lower the lowest order resonance frequency of the membrane 16.
  • the film 16 has a resonance frequency different from the resonance frequency.
  • the Helmholtz resonator 18g functions as a film vibration weight of the film 16c of the film type resonator 18e, lowers the lowest-order resonance frequency of the film 16c, and has a resonance frequency different from the resonance frequency of the film 16c. It has something.
  • the Helmholtz resonator 18g may set the cross-sectional size and length of the resonance hole 28 and the size of the hollow space 27 of the casing 26 according to the required absorption peak frequency.
  • the membrane resonators 11 and 18e are stacked in two stages, and the Helmholtz resonator 18g is stacked on the uppermost film resonator 18e to form three layers.
  • Three or more membrane resonators may be stacked, and a Helmholtz resonator may be stacked on the uppermost membrane resonator.
  • the soundproof cells 10B, 10C, 10D, 10E, and 10F of Embodiment 2 of the present invention are configured as described above.
  • the through-hole 17 is provided at the center of the film 32 of the soundproof cell 30 made of the membrane resonator of the prior art 1 shown in FIG. It can be said that after the cylindrical body 24 of the two single Helmholtz resonators 18 a is passed through the through-hole 17 of the film 16 and the Helmholtz resonator 18 a is fixed to the film 16, the film 16 is fixed to the frame 14.
  • the soundproof cell 30 of the prior art 1 shown in FIG. 8 is a soundproof cell disclosed in Patent Document 1, in which a film 32 closed on the entire surface is fixed to the frame 14, and an air layer closed on the back surface of the film 32. (Back space 33) is provided.
  • Such a soundproof cell 30 may have absorption peaks at a plurality of frequencies as indicated by a one-dot chain line in FIG. 10, but the elastic modulus of the film 32, the thickness of the film 32, the film 32 (or the frame 14). ) Or the size of the volume of the back air layer in the back space 33, etc., and the resonance frequency is uniquely determined. Therefore, each resonance frequency cannot be controlled independently.
  • the single Helmholtz resonator 18a of Prior Art 2 shown in FIG. Therefore, it is necessary to prepare a plurality of Helmholtzs in order to reduce the multi-noise peak as shown by the one-dot chain line in FIG.
  • the soundproof cell of the present invention for example, the soundproof cell 10 shown in FIG. 1 has a film-type resonator 11 provided with a Helmholtz resonator 18a as a resonator 18 on the film 16, and is closed on the back surface of the film 16. There is an air layer (back space 13). For this reason, it has the following two types of resonance frequencies. 1. 1. Resonance frequency of the film 16 determined by the size of the resonator 18 as a weight attached to the film 16 and the size of the back air layer (back space 13).
  • Resonance frequency of the resonator 18 (Helmholtz resonator 18a itself) attached to the film 16
  • the weighted membrane resonator 11 can simultaneously realize the expression of an absorption peak at a low frequency without being difficult to enlarge.
  • FIG. 11 is a cross-sectional view schematically showing an example of a soundproof structure according to Embodiment 3 of the present invention.
  • the soundproof structure 40 of the third embodiment shown in FIG. 11 has the soundproof cell 10 shown in FIG. 1 in the tubular body 42 (the opening 42a) made of aluminum having a circular cross section which is an opening member of the present invention.
  • the film surface of the film 16 is inclined by a predetermined angle (angle 90 ° in the example shown in FIG. 11) with respect to the opening cross section 42b of the opening, that is, within a predetermined angle range from a position parallel to the traveling direction of the sound wave (shown in FIG. 11).
  • the tube body 42 is an opening member formed in a region of an object that blocks the passage of gas, but the tube wall of the tube body 42 separates an object that blocks the passage of gas, for example, two spaces.
  • a wall of an object or the like is formed, and the inside of the tube body 42 forms an opening 42a formed in a partial region of the object that blocks passage of gas.
  • the opening cross section 42 b can be referred to as a cross section of the opening 42 a of the tube body 42 orthogonal to the axial direction of the tube body 42. Since the sound wave traveling in the tube body 42 travels along the axial direction of the tube body 42, it can also be referred to as a cross section of the opening 42a of the tube body 42 perpendicular to the sound wave traveling direction.
  • the opening member preferably has an opening formed in the region of the object that blocks the passage of gas, and is preferably provided on a wall that separates the two spaces.
  • an object that has a region where an opening is formed and blocks the passage of gas refers to a member that separates two spaces, a wall, and the like, and as a member, a member such as a tube or a cylindrical body is used.
  • the wall for example, a fixed wall constituting a structure of a building such as a house, a building, or a factory, a fixed wall such as a fixed partition (partition) arranged in a room of the building and partitioning the room, A movable wall such as a movable partition that is arranged in a room of a building and partitions the room.
  • the opening member of the present invention may be a tube body such as a duct, or a cylindrical body, or may be a wall itself having an opening for attaching a ventilation hole such as a louver or a louver, a window, It may be an attachment frame such as a window frame attached to the wall.
  • the shape of the opening of the opening member of the present invention is a cross-sectional shape and is circular in the illustrated example.
  • the shape is not particularly limited.
  • Other polygons such as a rhombus or parallelogram, a triangle such as a regular triangle, an isosceles triangle, or a right triangle, a polygon including a regular polygon such as a regular pentagon, or a regular hexagon, or an oval Or may be indefinite.
  • the material of the opening member of the present invention is not particularly limited, and metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, or alloys thereof, acrylic resin, Resin materials such as polymethyl methacrylate, polycarbonate, polyamido, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, or triacetyl cellulose, carbon Carbon Fiber Reinforced Plastics (CFRP), carbon fiber, or glass fiber reinforced plastics (GFRP), or building walls Similar concrete or mortar wall material, such as such as and the like.
  • metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, or alloys thereof, acrylic resin, Resin materials such
  • the soundproof cell 10 is located at a position where the sound pressure generated by the sound wave of the lowest-order resonance frequency of the soundproof cell 10 in the tubular body 42 is high, preferably the maximum value of the sound pressure distribution, in the tubular body 42 which is an opening member. Placed in. Specifically, the soundproof cell 10 is within ⁇ ⁇ / 4 from the position of the antinode where the sound wave of the lowest order resonance frequency of the soundproof cell 10 becomes the maximum value of the sound pressure distribution of the standing wave formed in the tubular body 42. It is preferable to arrange
  • the soundproof cell 10 is located at the antinode position of the wave sound pressure distribution.
  • the tube body 42 is a cylinder or a duct in which an object such as a wall or a cover is arranged at an open end thereof, that is, when the object is a fixed end of sound waves, the soundproof cell 10 is Therefore, it is preferably arranged within ⁇ / 4 of the sound wave of the lowest order resonance frequency of the soundproof cell 10, more preferably within ⁇ / 6, most preferably within ⁇ / 8. preferable.
  • the tubular body 42 is a cylinder or duct in which no object such as a wall or a cover is disposed at the open end, that is, when the open end of the tubular body is a free end of sound waves
  • soundproofing The cell 10 is preferably disposed within the ⁇ / 4 opening end correction distance ⁇ ⁇ / 4 of the sound wave of the lowest resonance frequency of the soundproof cell 10 from the open end, and the ⁇ / 4 opening end correction distance ⁇ More preferably, it is disposed within ⁇ / 6, and most preferably within ⁇ / 4 ⁇ opening end correction distance ⁇ ⁇ / 8.
  • the aperture ratio of the aperture member (tube body 42) of the soundproof structure 40 of the present invention is defined by the following formula (1).
  • Opening ratio (%) ⁇ 1 ⁇ (cross-sectional area of soundproof cell in opening cross section / opening cross-sectional area) ⁇ ⁇ 100 ...
  • the soundproof cell 10 has the film surface of the film 16 substantially parallel to the opening cross section 42 b of the tube 42 in the tube 42 that is an opening member. Or inclined at a predetermined inclination angle ⁇ .
  • a gap formed between the membrane surface of the membrane 16 of the inclined soundproof cell 10 shown in FIG. 12 and the tube wall of the tube body 42 is a vent hole formed in the opening 42a of the tube body 42 through which gas can pass. 42c.
  • the opening ratio of the opening member (tube body 42) of the soundproof structure 40 is preferably 10% or more, more preferably 25% or more, and further preferably 50% or more.
  • the reason why the opening ratio of the air holes 42c is preferably 10% or more is that the opening ratio of a commercially available soundproofing member (Air Tooth (registered trademark)) having air permeability is about 6%. This is because a high soundproofing performance can be exhibited even at an aperture ratio of two digits or more, which is not present (commercially available product).
  • the reason why the opening ratio of the vent hole 42c is preferably 25% or more is that the soundproof structure of the present invention exhibits high soundproofing performance even with a standard sash or an opening ratio of 25% to 30% of a garage. Because it can. Further, the reason why the opening ratio of the vent hole 42c is preferably 50% or more is that the soundproof structure of the present invention exhibits high soundproofing performance even in a highly breathable sash or an opening ratio of 50 to 80% of the louver. Because it can.
  • the inclination angle ⁇ of the film surface of the film 16 with respect to the traveling direction of the sound wave in the tube body 42 shown in FIG. 12 is ⁇ 45 ° to + 45 ° from the viewpoint of air permeability. It is preferably ⁇ 20 ° to + 20 °.
  • the reason why the inclination angle ⁇ is preferably ⁇ 45 ° to + 45 ° is that when it is greater than 45 °, the membrane vibration is inhibited by the wind striking the membrane surface, and the peak value of the absorptance decreases. This is because the resonance frequency shifts as a result, and when it becomes smaller than ⁇ 45 degrees, sound becomes difficult to enter the structure and absorption becomes small.
  • the reason why the inclination angle ⁇ is preferably ⁇ 45 ° to + 45 ° is that the standard sash and louver angles in consideration of the air permeability are about 45 degrees. Further, the reason why ⁇ 20 ° to + 20 ° is more preferable is that the influence of the constant pressure on the film 16 caused by the wind can be suppressed to the minimum, and the change in the soundproof characteristics can be suppressed even when the wind speed increases. In addition, when the temperature is ⁇ 20 ° to + 20 ° or more, the wind speed is not reduced and the ventilation capability is highest.
  • one soundproof cell 10 (see FIG. 1) composed of one frame 14 having one hole 12 and one film 16 is connected to the opening of the tube body 42 (see FIG. 1).
  • the present invention is not limited to this, and a plurality of soundproof cells may be disposed in the tubular body 42 as soundproof cell units.
  • the plurality of soundproof cells may be the same as the soundproof cell 10 or 10A of the first embodiment, or the soundproof cells 10B, 10C, 10D, 10E, or 10F of the second embodiment. It may be different.
  • the number of soundproof cells of the soundproof cell unit applied to the soundproof structure 40 may be any number as long as it is plural.
  • the plurality of frames of the plurality of soundproof cells constituting the soundproof cell unit are configured as a frame body, preferably a single frame body, arranged so as to be two-dimensionally connected. Preferably, it is configured. Note that the plurality of frames may be arranged in a row or two-dimensionally.
  • the size L of the hole 12 of the frame 14 of each of the soundproof cells 10 to 10F may be constant in all the holes 12, but is different.
  • a frame of a size including a case where the shapes are different
  • the average size of the holes 12 may be used as the size of the holes 12. That is, the size L of the frame 14 (hole 12) is preferably represented by an average size when different sizes are included in each frame 14.
  • the width w of the frame 14 and the depth d of the hole 12 may be expressed as an average width and an average thickness, respectively, when different widths and depths of the holes 12 are included in each frame 14. preferable.
  • the number of soundproof cells 10 of the soundproof cell unit that is, the number of frames 14, that is, the number of holes 12 is not particularly limited, and may be set according to the above-described soundproof object. Alternatively, since the size of the hole 12 described above is set according to the above-described soundproof object, the number of the holes 12 in the frame 14 may be set according to the size of the hole 12. Since one soundproof cell 10 has one frame 14 as a structural unit, the number of the soundproof cell unit frames 14 can be regarded as the number of soundproof cells 10. For example, the number of frames 14 is preferably 1 to 10000, more preferably 2 to 5000, and most preferably 4 to 1000 when shielding the noise in the device.
  • shielding refers to shielding by reflection and / or absorption.
  • the size of a device is determined with respect to the size of a general device, in order to make the size of one soundproof cell 10 suitable for the frequency and volume of noise, a plurality of soundproofing devices are used. This is because it is often necessary to shield with a frame body in which the cells 10 are combined, and on the other hand, if the number of the soundproof cells 10 is excessively increased, the overall weight of the frame 14 may increase. On the other hand, in a structure like a partition with no restriction on the size, the number of frames 14 can be freely selected according to the required overall size. As a material of the frame having a plurality of frames 14, a material similar to the material of the frame 14 can be used.
  • the membranes 16 of the plurality of soundproofing cells of the soundproofing cell unit are fixed so as to cover the respective holes 12 of the plurality of frames 14 of the soundproofing cell unit, and are provided with the resonators 18 respectively.
  • One sheet-like film body may be fixed so as to cover each hole 12 of the plurality of frames 14, or each film 16 may be fixed so as to cover the hole 12 of each frame 14. good.
  • the plurality of films 16 may be constituted by a single sheet-like film body that covers the plurality of frames 14, or may cover the holes 12 of each frame 14.
  • each film 16 is provided with a resonator 18.
  • the thickness of the film 16 is preferably expressed as an average thickness when different thicknesses are included in each film 16.
  • all the films 16 and the resonators 18 may be provided on the same side of the holes 12 of the plurality of frames 14 of the soundproof cell unit, or some of the films 16 and the resonators 18 may be provided in a plurality.
  • a part of the film 16 and the resonator 18 are provided on one side of a part of the hole 12 of the frame 14, and the other part of the remaining part of the hole 12 of the plurality of frames 14 is provided on the other side.
  • the film 16 and the resonator 18 may be provided, and the film 16 and the resonator 18 provided on one side, the other side, and both sides of the hole 12 of the frame 14 are mixed. Also good.
  • the soundproof cell unit may have a structure in which the film 16 made of the same material or the film body and the frame 14 or the frame body are integrated.
  • the film 16 fixed to the frame 14 of the soundproof cell 10 has the lowest resonance frequency that is the lowest order vibration mode frequency that can be induced in the structure of the soundproof cell 10.
  • the lowest order resonance frequency is determined by a plurality of soundproof cells 10 each consisting of a frame 14, a film 16, and a resonator 18.
  • the lowest-order resonance frequency determined in this way is referred to as the lowest-order resonance frequency of the membrane in the soundproof cell unit.
  • the resonance frequency of the film 16 in the plurality of soundproof cell structures including the plurality of frames 14, the films 16, and the resonators 18, for example, the lowest resonance frequency is the geometrical shape of the frames 14 of the plurality of soundproof cells 10.
  • the shape and dimensions (size) of the frame 14, for example, the rigidity of the membrane of the plurality of soundproof cells, eg the thickness and flexibility of the membrane, and the volume of the back space 13 (13a or 13d) of the membrane 16 The weight of the resonator 18 that functions as the weight of the film 16 can be determined.
  • the present invention is a soundproof structure having at least one soundproof cell comprising a frame having a hole, a film fixed to the frame so as to cover the hole, and a resonator for sound waves placed on the film,
  • This is a soundproof structure in which a soundproof cell is disposed in an opening member having an opening with a film surface of the film inclined with respect to the opening cross section of the opening member and a region serving as a vent hole through which gas passes.
  • the frequency at which the absorption peak of the soundproofing cell having the film-type resonator composed of the film including the resonator is expressed can be controlled by the size and mass of the resonator.
  • the frequency at which the absorption peak of the resonator itself is expressed is, for example, the diameter of the resonance hole and the length of the resonance hole in the case of Helmholtz type, and the size of the hole in the case of the membrane type resonator, and It can be controlled by depth or the like. That is, in the soundproof structure of the present invention, the two resonance frequencies can be controlled independently.
  • the soundproof structure of Embodiment 3 of the present invention is configured as described above.
  • the soundproof cell of this invention and the soundproof structure using the same are demonstrated concretely based on an Example.
  • Example 1 First, the soundproof cell 10 of the present invention shown in FIG.
  • the soundproof cell 10 includes a membrane-type resonator 11 having a frame 14 having a hole 12 and a vibrating film 16 fixed to the frame 14 so as to cover the hole 12, and a Helmholtz as a resonator 18 on the film 16.
  • the resonator 18a was installed.
  • FIG. 1 First, the soundproof cell 10 of the present invention shown in FIG.
  • the soundproof cell 10 includes a membrane-type resonator 11 having a frame 14 having a hole 12 and a vibrating film 16 fixed to the frame 14 so as to cover the hole 12, and a Helmholtz as a resonator 18 on the film 16.
  • the resonator 18a was installed.
  • the size L of the hole 12 is a square having an inner side of 40 mm, the depth (back surface distance) d is 20 mm, A metal aluminum square tube having a width 14 (outer peripheral thickness) w of 3 mm for fixing 16 was used.
  • a 46 mm square metal plate having a side of 3 mm in thickness was prepared as a member of the bottom portion 15b, and attached to the end of the opening on one side of the hole portion 12 of the frame 14 to form the bottom portion 15b.
  • the frame 14 which is a bottomed frame having the surrounding portion 15a and the bottom portion 15b was manufactured.
  • a circular through-hole 17 having an inner diameter of 5.5 mm is drilled at the center of a membrane 32 (see FIG. 8) of a square PET film (Lumirror made by Toray Industries, Inc., thickness 125 ⁇ m) having a side of 46 mm.
  • a cylindrical body 24 having an outer diameter of 5.5 mm and a length of 5 mm having a circular through hole 24 a having an inner diameter of 3.5 mm and a length of 5 mm, and a circular through hole 20 a having an inner diameter of 3.5 mm and a length of 1 mm are provided.
  • An acrylic Helmholtz resonator 18 a having a square-shaped hollow space 21 having a rectangular cross-section with a side of 18 mm and a rectangular parallelepiped shape with a depth of 5 mm and a housing 20 having a square cross section of 18 mm on each side is manufactured as the resonator 18.
  • the resonance hole 22 of the Helmholtz resonator 18a is a circular hole having an inner diameter of 3.5 mm and a length of 6 mm.
  • the external shape of the housing 20 became a rectangular parallelepiped shape of 20 mm ⁇ 20 mm ⁇ 7 mm.
  • the cylindrical body 24 of the Helmholtz resonator 18a is passed through the central through-hole 17 of the film 16 of the PET film, and the contact portion between the membrane 16, the cylindrical body 24 of the Helmholtz resonator 18a, and the housing 20 is attached to the double-sided tape. Fixed by. Finally, a PET film to be a square film 16 having a side of 46 mm with a Helmholtz resonator 18a fixed at the center was attached to the width of the frame at the end of the opening of the hole 12 of the frame 14. Attachment was performed by adhesion with double-sided tape. Thus, the soundproof cell 10 shown in FIG. 1 was produced.
  • the area (400 mm ⁇ 2 >) which vibrates as a weight was 25% of the area (1600 mm ⁇ 2 >) of an opening part.
  • Comparative Example 1 As shown in FIG. 8, the same as the soundproof cell 10 of Example 1 shown in FIG. 1, except that the through-hole 17 is not provided in the center of the film 16 of the PET film and the Helmholtz resonator 18a is not fixed.
  • the soundproof cell 30 of Comparative Example 1 of the prior art was prepared. That is, the soundproof cell 30 of Comparative Example 1 is obtained by adhering a square PET film film 32 having a side of 46 mm before the through-hole 17 is drilled to the width portion of the frame 14 with double-sided tape.
  • Comparative Example 2 As shown in FIG. 13, the center of the back surface of the film 32 of the PET film of the soundproof cell 30 of Comparative Example 1 shown in FIG.
  • the acoustic characteristics of the soundproof cells 10, 30, 34, 37, and 38 of Example 1 and Comparative Examples 1, 2, 3, and 4 thus manufactured were measured.
  • the acoustic measurement was performed as follows using an acoustic tube having an inner diameter of 8 cm.
  • the acoustic characteristics were measured by a transfer function method using four microphones 44 in an aluminum acoustic tube (tube body 42). This method conforms to “ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method”.
  • an aluminum tube 42 was used as the same measurement principle as WinZac manufactured by Nittobo Acoustic Engineering Co., Ltd.
  • a cylindrical box (not shown) containing a speaker (not shown) was placed inside the pipe 42, and the pipe 42 was placed on the box (not shown).
  • a sound with a predetermined sound pressure was output from a speaker (not shown) and measured with four microphones 44. With this method, sound transmission loss can be measured in a wide spectral band.
  • the soundproof cell 10 of Example 1 is disposed at a predetermined measurement site of a tubular body 42 serving as an acoustic tube so that the film surface of the film 16 of the soundproof cell 10 is inclined to constitute the soundproof structure 40 of Embodiment 3 of the present invention.
  • the acoustic absorptivity was measured in the range of 100 Hz to 4000 Hz.
  • FIG. 16 shows the result of measuring the absorption rate of the soundproof cells 10, 30, 34, 37, and 38 using the soundproof cells of Example 1 and Comparative Examples 1, 2, 3, and 4.
  • the resonance peak derived from the resonator 18 Helmholtz resonator 18 a
  • the weight of the resonator 18 installed on the film 16 It can be seen that two absorption peaks of the resonance peak of the film 16 defined by the functioning structure can be expressed.
  • the resonance peak of the resonator 18 itself can be freely changed by changing the configuration of the resonator 18 without changing the frame-type resonator 11 including the frame 14 and the film 16.
  • the resonance peak of the film 16 can be freely changed by changing the function (weight) of the resonator 18 installed on the film 16 as a weight without changing the film resonator 11. Therefore, it can be seen that these two absorption peaks can be freely changed without changing the membrane resonator 11.
  • the soundproof cell 30 of Comparative Example 1 two absorption peaks are expressed as the resonance peaks of the film 32. However, since these two absorption peaks are resonance peaks determined by the soundproof cell 30 that is a membrane resonator, it can be seen that the two absorption peaks cannot be changed unless the configuration of the membrane resonator itself is changed. Note that the absorption peak on the low frequency side of the two absorption peaks of the soundproof cell 10 of Example 1 is lower than the two absorption peaks of the soundproof cell 30 of Comparative Example 1 having a similar membrane resonator. I understand.
  • Reference Example 1 As shown in FIG. 20, instead of the PET film 32 of the soundproof cell 30 of the comparative example 1 shown in FIG. A soundproof cell 60 made of a simple Helmholtz resonator according to Reference Example 1 of the prior art was manufactured by adhering and fixing to the inner surface of the hole 12 with a double-sided tape.
  • Reference Example 2 As shown in FIG. 21, instead of the acrylic plate 62 of the soundproof cell 60 of Reference Example 1 shown in FIG. 20, a through hole 65 having a diameter of 6 mm ⁇ centered on a point 4 mm inside from two sides of one corner portion.
  • a perforated acrylic plate 66 having a thickness of 2 mm and a side of 40 mm is fixed to the inner surface of the hole 12 of the frame 14 by double-sided tape, and is fixed to a soundproof cell 64 consisting of a simple Helmholtz resonator according to Reference Example 2 of the prior art. Was made.
  • the acoustic characteristics of the soundproof cells 50, 56, 60, and 64 of the comparative examples 5 to 6 and the reference examples 1 and 2 thus manufactured are shown in FIG. In the same manner as 30, 34, 37, and 38, the soundproof structure 40 shown in FIG. Thus, the sound absorption rate of the soundproof cells 50, 56, 60, and 64 of Comparative Examples 5 to 6 and Reference Examples 1 and 2 was measured in the range of 100 Hz to 4000 Hz. The results of measuring the absorption rate of the soundproof structure using the soundproof cells 50, 56, 60, and 64 of Comparative Examples 5 to 6 and Reference Examples 1 and 2 are shown in FIG.
  • the soundproof cell 50 of Comparative Example 5 corresponds to the sound absorber of Patent Document 3 of the prior art. That is, since the soundproof cell 50 of the comparative example 5 has the through-hole 53 which becomes a Helmholtz resonance hole in the center of the film
  • the resonance frequency of the Helmholtz resonator is around 750 Hz from the graph of the soundproof cell 60 of Reference Example 1, and as shown by a dotted line in FIG.
  • the soundproof cell 50 of No. 5 also has an absorption peak in the vicinity of 750 Hz.
  • the resonance frequency in the membrane resonator is known to be around 250 Hz from the graph of the soundproof cell 38 of Comparative Example 4 as shown by the broken line in FIG. As shown by the dotted line in FIG. 22, no peak can be confirmed in the vicinity of 250 Hz.
  • the film 52 (and the acrylic member 54 serving as a weight) has a through-hole 53, so even at the resonance frequency of the film resonance, the film hardly vibrates, that is, the impedance is large, so the sound is relatively This is probably because the absorption of the membrane resonance is weakened as a result.
  • the soundproof cell 56 of Comparative Example 6 corresponds to the sound absorber of Patent Document 3 of the prior art. That is, since the soundproof cell 56 of the comparative example 6 has the through-hole 57 which becomes a Helmholtz resonance hole in the corner
  • FIG. 23 (Comparative Example 7) As shown in FIG. 23, instead of the housing 20 of the Helmholtz resonator 18a which is the resonator 18 of the soundproof cell 10 of the first embodiment shown in FIG. 1, the outer shape is a rectangular parallelepiped shape of 30 mm ⁇ 30 mm ⁇ 7 mm, A soundproof cell 70 having a Helmholtz resonator 72 having a housing 1 having a thickness of 1 mm and a hollow space 73 having a rectangular parallelepiped shape of 28 mm ⁇ 28 mm ⁇ 5 mm was manufactured. Note that the through hole 74a of the housing 74 had an inner diameter of 3.5 mm and a length of 1 mm, similar to the through hole 20a of the housing 20.
  • the resonance hole 76 of the Helmholtz resonator 72 is a circular hole having an inner diameter of 3.5 mm and a length of 6 mm, like the resonance hole 22 of the Helmholtz resonator 18a.
  • a back space 75 was formed on the back surface of the film 16 and the housing 74 of the Helmholtz resonator 72.
  • the area (900 mm ⁇ 2 >) which vibrates as a weight was 56% of the area (1600 mm ⁇ 2 >) of an opening part.
  • the acoustic characteristics of the soundproof cell 70 of Comparative Example 7 and the soundproof cell 10 of Example 1 thus manufactured were measured by a simulation of a finite element method using a COMSOL multiphysics ver 5.3a acoustic module, and the absorption rate was examined. The result is shown in FIG. As shown in FIG. 24, the peak of the absorption rate of the soundproof cell 70 of Comparative Example 7 indicated by the solid line is lower than the peak of the absorption rate of the soundproof cell 10 of Example 1 indicated by the broken line.
  • the absorption peak (resonance) frequency of 380 Hz was found to be higher than the absorption peak (resonance) frequency of 260 Hz of the soundproof cell 10 of Example 1.
  • the configuration of the soundproof cell 70 of the comparative example 7 has a small absorption rate and a low frequency reduction compared to the structure of the soundproof cell 10 of the first example.
  • the reason why the peak of the absorptance is low is considered to be that the film 16 is less likely to vibrate as a result of an excessive increase in the area ratio occupied by the weight with respect to the film 16.
  • FIG. 25 shows an amplitude distribution of vibration distortion at a resonance frequency of 260 Hz in Example 1
  • FIG. 25 shows an amplitude distribution of vibration distortion at a resonance frequency of 260 Hz in Example 1
  • FIG. 26 shows an amplitude distribution of vibration distortion at a resonance frequency of 380 Hz in Comparative Example 7. From FIG. 25 and FIG. 26, it can be seen that the amplitude of vibration distortion is extremely small in Comparative Example 7 compared to Example 1. From the above, it became clear that a high resonance frequency cannot be obtained at a low frequency unless the area of the portion that vibrates as a weight is small relative to the portion that can vibrate as the film 16. From the above, it can be seen that the superiority of the present invention was shown. From the above, the effect of the present invention is clear.
  • the resonator 18 functioning as a weight has a maximum position in the lowest mode defined by the opening surface of the hole 12 of the frame 14 when at least the ends of the film 16 are all fixed ends. This is because if the shape of the opening of the hole 12 of the frame 14 (the plane of the opening) is determined, the vibration mode of the film 16 is uniquely determined accordingly. As shown in the schematic diagram of FIG. 27, when the plane of the opening is a quadrangle, the lowest order vibration mode (distribution of amplitude absolute value) at the four-end fixed end is Formulas for Dynamics, Acoustics and Vibration (Robert D. Blevins). A circular mountain becomes one amplitude mode with reference to the author, 2015).
  • the lowest-order vibration mode is a case where the vibration is the primary (lowest-order) mode in both the x direction and the y direction.
  • the x direction is secondary and the y direction is primary, a higher-order vibration mode as shown in the schematic diagram of FIG. 28 appears.
  • the upper line indicates the amplitude distribution on the dotted line in each figure. From the above, the above definition is appropriate because the vibration mode of the film 16 is uniquely determined.
  • the soundproof cell of the present invention and the soundproof structure provided with the same are a duct, a muffler, a ventilation freeb and the like that require both air permeability and soundproof, and fans that generate mechanical noise, such as copier fans and electronic device fans. Etc. can be used. Also,

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

防音セルは、膜面を音波の進行方向に対して略平行に配置して防音するために用いられ、孔部を持つ枠と、孔部を覆うように枠に固定された膜と、膜に設置され、音波に対する共鳴体と、を備え、共鳴体は、内部に中空空間を有し、膜のみに固定され、膜の振動に対して錘として機能し、錘として機能する共鳴体は、膜の最低次の振動モードの振幅が最大となる位置に配置されており、膜として振動できる部分の面積が、共鳴体が錘として振動する面積よりも大きく、共鳴体の中空空間は、枠と膜とによって形成される膜の背面空間から独立した空間である。防音セルは、小型であり、それぞれ任意の周波数に制御することができる複数の吸収のピークを有し、ターゲットとなる複数の周波数の音を選択的に強く遮蔽することができる。防音構造は、この防音セルを用い、通気性と防音とを両立させることができる。

Description

防音セル、及びこれを用いる防音構造
 本発明は、複数の周波数にピークを持つ音を防音する防音セル、及びこれを用い、筺体内からの騒音に対する通風防音に適した防音構造に関する。
 従来、ダクト、マフラー、及び換気フリーブ等の通気性の確保を前提とした構造物は、気体、及び/又は熱と同時に音も通過させてしまうことから、騒音対策が求められる場合がある。そのため、ダクト、及びマフラー等、特に騒音性の機械に取り付けられる用途においては、ダクト、及びマフラーの構造を工夫することでの防音が必要となる。一般に、ピーク音を静音化する場合、所望の周波数で高い透過損失を得るためには、共鳴型の防音構造体(ヘルムホルツ共鳴器、気柱共鳴筒、膜振動型構造体等の共鳴体)を置くことが対策の一つとして考えられる(特許文献1参照)。
 但し、図29に示すように、ファン、例えば複写機ファン、及び電子機器ファン等の機械騒音の場合、騒音の周波数ピークが複数となる場合がある。これを防音するためには、特許文献1に開示の防音構造のように、共鳴周波数の異なる多数の防音構造体を設置する必要がある。
 一方、膜型吸音体などは、膜の振動モードが複数存在することなどの理由で、吸音ピークが複数発現する場合がある。しかしながら、それぞれの吸収ピークを任意の周波数に設定することは困難である、これは膜のヤング率、密度、及びサイズ等により一意に振動の固有周波数が決まってしまうためである。
 このため、特許文献2の音響減衰パネルのように、複数のセルの膜等のフレキシブルな材料のシートに質量の異なる錘を固定し、錘の質量を変えることで音響減衰する周波数を制御して、広い周波数範囲に亘って音響減衰を行うことができる。
 これに対し、特許文献3の吸音体のように、膜状吸音材にヘルムホルツ共鳴用の共鳴穴を形成することで、膜振動による吸音作用とヘルムホルツ共鳴による吸音作用を併せて奏することができる。その結果、膜振動による2つの吸音ピークの間のヘルムホルツ共鳴による吸音による吸音のピークを設定して、広い周波数範囲の吸音を達成できる。
 また、特許文献4は、吸音材により複数のヘルムホルツ共鳴器が形成された第1吸音構造体と、第1吸音構造体を取り付けた振動板を、弾性体を介して取付対象面に弾性的に浮上支持した構造を有する第2吸音構造体とからなる吸音構造体を開示している。特許文献4に開示の技術では、複数のヘルムホルツ共鳴器の共鳴洞の容積とオリフィス孔の内周サイズとを変えることにより共鳴周波数をチューニングし、一方、振動板及び吸音材の質量と、弾性体及び振動板背面の空気室の空気バネのバネ定数とによって、ヘルムホルツ共鳴器よりも低い周波数帯域に共鳴周波数をチューニングすることにより、広い周波数帯域の騒音に対する有効な吸音性能を有すると共に、吸音効果の大きな吸音構造体とすることができるとしている。
 また、特許文献5は、振動板と、振動板を支持する第1の弾性体と、振動板、及び第1の弾性体の背後に第1の空気層を形成する第1の箱体とを有する第1の吸音部、並びに、この第1の吸音部を振動板要素とし、第1の吸音部を支持する第2の弾性体と、第1の吸音部、及び第2の弾性体の背後に第2の空気層を形成する第2の箱体とを有する第2の吸音部を備える吸音装置を開示している。特許文献5に開示の技術では、第1の吸音部と第2の吸音部とがそれぞれ特定の共振周波数を持つので、広い周波数帯域の音を吸音することができるとしている。
国際公開(WO)2017/030208号公報 特開2005-250474号公報 特開2009-139556号公報 特開平11-338476号公報 特開昭62-098398号公報
 ところで、騒音の周波数ピークが複数となるファンなどの機械騒音に対処するため、共鳴周波数の異なる多数の防音構造体を設置する対策を施す場合、特許文献1に開示の技術のように、複数の共鳴体を設置する必要があるから、大型化してしまい、ダクト、マフラー、及び換気スリーブ等のように通気性が必要な構造物のサイズが小さく、音の導波路の空間が小さい場合には、開口部の開口率が低下してしまい、通気性が低下してしまうという問題があった。
 また、特許文献2の音響減衰パネルの場合においても、通気性が必要な構造物内に設置する場合、複数の周波数ピークの騒音を防音するためには、特許文献1に開示の防音構造のように、音響減衰する周波数の異なる多数のセルを設置する必要がある。このため、特許文献2の音響減衰パネルでも、通気性が必要な構造物のサイズが小さい場合には、開口部の開口率が低下してしまい、通気性が低下してしまうという問題があった。
 また、特許文献3の技術のように、膜状吸音材にヘルムホルツ共鳴用の共鳴穴を形成することで、膜振動による吸音作用とヘルムホルツ共鳴による吸音作用を併せ持つ小サイズの吸音体を実現できる。
 しかしながら、特許文献3の技術では、共鳴穴は、枠開口部の端部の膜状吸音材に位置していることから、膜振動のモードに影響を与えないように設置されており、膜振動の錘として機能していない。また、特許文献3の図5から、ヘルムホルツ共鳴用の共鳴穴を設置する前後で膜振動による共鳴のピークが変化していないことから、膜振動のモードを変化させるような錘の作用は有しておらず、膜振動により、より低周波数にピークを持つ騒音を効率よく防音することができないという問題があった。
 また、特許文献3の技術では、膜状吸音材にヘルムホルツ共鳴用の共鳴穴を形成しており、膜状吸音材の背面空気層と、ヘルムホルツ共鳴穴の背面空気層とが共通であるため、ヘルムホルツ共鳴の周波数が、背面空気層の体積に依存し、任意の周波数に設定することが難しくなるという問題があった。
 また、特許文献3の技術では、後述する比較例5、及び6、並びに参考例1、及び2から分かるように、膜吸音の吸収ピークとヘルムホルツ共鳴の吸収ピークの両立が困難であるという問題があった。
 また、特許文献4の技術では、ヘルムホルツ共鳴器からなる第1吸音構造体と、ヘルムホルツ共鳴器とこれを取り付けた振動板とを錘とし、振動板を支持する弾性体を振動膜とする膜振動体からなる第1吸音構造体とによって、複数の共鳴周波数を持つことにより、広い周波数帯域の吸音を可能にしている。
 しかしながら、特許文献4の技術では、振動板のサイズが大きく、振動板の全域にヘルムホルツ共鳴器が取り付けられているため、振動板を支持する弾性体が小さいため、ヘルムホルツ共鳴器、振動板、及び弾性体からなる膜振動体の振動モードの振幅が最大となる所に錘となるヘルムホルツ共鳴器、及び振動板を配置することができ無いという問題があった。また、特許文献4の技術では、膜振動する弾性体が小さくなり過ぎ、共鳴周波数を低周波化できるものの、十分な膜振動が得られず、吸音効率が低くなるという問題があった。
 また、特許文献5の技術では、振動板を錘とする膜振動体からなる第1の吸音部と、第1の吸音部を振動板要素(錘)とする膜振動体からなる第2の吸音部とを有し、第1、及び第2の吸音部が異なる共振周波数を持つことにより、広い周波数帯域の吸音を可能にしている。
 しかしながら、このような構成では、膜面に対して音が垂直に入射するような場合では音の吸収が広い帯域で得られるものの、音波の進行方向と振動膜の面を並行に設置する必要がある場合、錘の重さによって、膜が振動しにくくなり、その結果、高い吸音特性が得られないという問題があった。音波の進行方向と振動膜の面との並行設置が必要な場合とは、例えば、通風管路に防音材を設置して風を通しつつ音を吸収するような場合である。この場合においては、風によって膜振動が阻害され、その結果音を吸収しにくくなってしまう。そのため、このような場合には、膜に風が直接当たらないように音及び風の進行方向に対して膜面が並行に設置されていることが必要となる。
 一方で、防音には、吸音材が有効な場合がある、しかしながら、例えば、ウレタン、及びグラスウールといった吸音材は広帯域な吸音には有効であるが、ピーク音を消すのには有効ではない。ある周波数の音だけが顕著に強い場合、全体的に音を低下させても、音の強さのコントラストは残ってしまうため、単周波の耳障りなピーク音は残ってしまう。さらに、より多くの吸音材を用いてピーク音を消したとしても、通気性確保の観点から好適ではない場合がある。また、吸音材は、低周波数になるほど吸収率が低下してしまうという問題がある。
 本発明の目的は、上記従来技術の問題点を克服し、それぞれ任意の周波数に制御することができる複数の吸収のピークを有し、ターゲットとなる複数の周波数の音を選択的に強く遮蔽するための小型の防音セルを提供することにある。
 本発明の他の目的は、上記目的に加え、上記防音セルを用い、通気性と防音とを両立させることができる防音構造を提供することにある。
 上記目的を達成するために、本発明の第1の態様の防音セルは、膜面を音波の進行方向に対して平行な位置から所定角度範囲内に配置して防音するために用いられる防音セルであって、孔部を持つ枠と、孔部を覆うように枠に固定された膜と、膜に設置され、音波に対する共鳴体と、を備え、共鳴体は、内部に中空空間を有し、膜のみに固定され、膜の振動に対して錘として機能し、錘として機能する共鳴体は、膜の端部が全て固定端とした場合の孔部の開口面で規定される最低次の振動モードにおいて振幅が最大となる位置に少なくとも配置されており、膜として振動できる部分の面積が、共鳴体が錘として振動する面積よりも大きく、膜と、枠と膜とによって形成される背面空気層からなる構造は、膜と音波の進行方向とが平行な場合において音波に対する共鳴構造として機能し、共鳴体の中空空間は、枠と膜とによって形成される膜の背面空間から独立した空間であるものである。なお、音波に対する共鳴構造として機能するのは、共鳴体である錘の付いた膜と背面空気層からなる構造である。
 ここで、膜の最低次の共鳴周波数の波長の1/4よりも小さいことが好ましく、また、最低次の共鳴周波数は、10~10000Hzの範囲内に含まれることが好ましい。
 また、最低次の共鳴周波数が、枠と該枠を覆うように構成された膜だけから構成される防音セルの1次共鳴の周波数よりも低くなるように調整されていることが好ましい。
 また、共鳴体は、ヘルムホルツ共振器であることが好ましい。
 又は、共鳴体は、膜型共鳴体であることが好ましい。
 膜型共鳴体は、その膜に設置され、音波に対する共鳴体を有することが好ましい。
 また、共鳴体の少なくとも一部は、共鳴セルの内部に存在することが好ましい。
 また、所定角度範囲は、膜面が音波の進行方向に平行な場合を0°として、-45°~+45°であることが好ましい。
 また、上記他の目的を達成するために、本発明の第2の態様の防音構造は、上記第1の態様の防音セルを少なくとも一つ有する防音構造であって、開口を有する開口部材内に、開口部材の開口断面を進行する音波の進行方向に対して膜の膜面を平行な位置から所定角度範囲内に配置して、開口部材に気体が通過する通気孔となる領域を設けた状態で防音セルを配置したものである。
 また、防音セルは、防音セルの少なくとも一つの共鳴周波数において、開口部材に形成する音圧分布の極大値に設置されていることが好ましい。
 また、防音セルは、防音セルの最低次の共鳴周波数の音波が開口部材に形成する定在波の音圧分布の腹の位置に配置されていることが好ましい。
 また、防音構造は、複数の防音セルを有することが好ましい。
 また、複数の防音セルの中には、最低次の共鳴周波数が異なる2種以上の防音セルが存在し、最低次の共鳴周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する最低次の共鳴周波数の音波によって開口部材内に形成される音圧の高い位置に配置されていることが好ましい。
 また、複数の防音セルの中には、最低次の共鳴周波数が異なる2種以上の防音セルが存在し、最低次の共鳴周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する最低次の共鳴周波数の音波によって開口部材内に形成される定在波の音圧分布の腹の位置に配置されていることが好ましい。
 また、防音セルは、開口部材に対し取外し可能な部材であることが好ましい。
 また、開口部材は、筒状体であり、筒状体内に防音セルが配置されることが好ましい。
 ここで、防音セルは、開口部材の開口端から開口端補正距離以内に配置されていることが好ましい。
 また、更に、枠の孔部内に吸音材が配置されていることが好ましい。
 また、開口部材は、気体の通過を遮断する物体の領域内に形成される開口を有することが好ましく、2つの空間を隔てる壁に設けられることが好ましい。
 本発明によれば、それぞれ任意の周波数に制御することができる複数の吸収のピークを有し、ターゲットとなる複数の周波数の音を選択的に強く遮蔽するための小型の防音セルを提供することができる。
 本発明によれば、更に、上記防音セルを用い、通気性と防音とを両立させることができる防音構造を提供することができる。
本発明の一実施形態に係る防音セルの一例を模式的に示す断面図である。 本発明の一の実施形態に係る防音セルの他の一例を模式的に示す断面図である。 本発明の他の実施形態に係る防音セルの一例を模式的に示す断面図である。 本発明の他の実施形態に係る防音セルの他の一例を模式的に示す断面図である。 本発明の他の実施形態に係る防音セルの他の一例を模式的に示す断面図である。 本発明の他の実施形態に係る防音セルの他の一例を模式的に示す断面図である。 本発明の他の実施形態に係る防音セルの他の一例を模式的に示す断面図である。 従来技術の一例(比較例1)の防音セルを模式的に示す断面図である。 従来技術の他の一例(比較例3)の防音セルを模式的に示す断面図である。 図1に示す本発明の防音セルと、図8、及び図9に示す従来技術の防音セルとの吸収率と周波数の関係を示すグラフである。 本発明の他の実施形態に係る防音セルの他の一例を模式的に示す断面図である。 本発明の防音構造の開口部材の開口断面に対する防音セルの膜面の傾斜角度を説明する説明図である。 従来技術の他の一例(比較例2)の防音セルを模式的に示す断面図である。 従来技術の他の一例(比較例4)の防音セルを模式的に示す断面図である。 本発明の防音構造の管状の開口部材内に挿入配置された防音セルの防音性能を測定する測定系の一例を説明する断面図である。 実施例1の防音セルと、比較例1、2、3、及び4の防音セルとの吸収率と周波数の関係を示すグラフである。 従来技術の他の一例(比較例5)の防音セルを模式的に示す断面図である。 従来技術の他の一例(比較例6)の防音セルを模式的に示す断面図である。 図18に示す防音セルのA-A線断面図である。 従来技術の他の一例(参考例1)の防音セルを模式的に示す断面図である。 従来技術の他の一例(参考例2)の防音セルを模式的に示す断面図である。 比較例5、及び6、並びに参考例1、及び2の防音セルの吸収率と周波数の関係を示すグラフである。 従来技術の他の一例(比較例7)の防音セルを模式的に示す断面図である。 実施例1、及び比較例7の防音セルの吸収率と周波数の関係を示すグラフである。 実施例1の防音セルの共鳴周波数における振動歪みの振幅分布を示す図である。 比較例7の防音セルの共鳴周波数に近い周波数における振動歪みの振幅分布を示す図である。 膜の端部が全て固定端である場合の最低次の振動モードを示す図である。 膜の端部が全て固定端である場合の高次の振動モードを示す図である。 機械騒音の周波数ピークが複数であることを示す騒音レベルのグラフである。
 以下に、本発明に係る防音セル、及びこれを用いる防音構造を添付の図面に示す好適実施形態を参照して詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明の第1の実施態様の防音セルは、膜面を音波の進行方向に対して平行な位置から所定角度範囲内に配置して防音するために用いられる防音セルである。この防音セルは、孔部を持つ枠と、孔部を覆うように枠に固定された膜と、膜に設置され、音波に対する共鳴体と、を備え、共鳴体は、内部に中空な共鳴空間を有し、膜のみに固定され、膜の振動に対して錘として機能し、錘として機能する共鳴体は、少なくとも膜の端部が全て固定端とした場合の孔部の開口面で規定される最低次の振動モードにおいて振幅が最大となる位置に配置されており、膜として振動できる部分の面積が、共鳴体が錘として振動する面積よりも大きく、防音セルの膜と音波の進行方向とが平行な場合において音波に対する共鳴体として機能し、共鳴体の共鳴空間は、枠と膜とによって形成される膜の背面空間から独立した空間であるものである。
 本発明において、音波に対する共鳴体とは、吸収率の周波数依存性において、4マイク法で測定した場合に、ある周波数で吸収の極大値を有する構造体である。音波に対する共鳴体としては、例えば、ヘルムホルツ共振器、膜型共鳴体、及び気柱共鳴体等が挙げられる。ここで、錘として機能する共鳴体が防音セルの膜と音波の進行方向とが平行な場合において音波に対する共鳴体として機能するとは、音波が膜と並行に入射するように音響管4マイク法で測定した場合において、吸収率の共鳴ピークを有することを意味する。
 本発明の防音セルは、枠と、枠に固定された膜と、膜に設置された共鳴体とを有し、小型で、ターゲットとなる複数の周波数の音を選択的に強く遮蔽することができる。
 本発明の防音セルは、小型で複数の吸収のピークを有する防音構造体であり、その吸収ピークは、それぞれが、任意の周波数に制御できる。また、本発明の防音セルは、低周波のピークもカバーできることが好ましい。
 また、本発明の第2の実施態様の防音構造は、上記第1の実施態様の防音セルを少なくとも一つ有する防音構造であって、開口を有する開口部材内に、開口部材の開口断面を進行する音波の進行方向に対して膜の膜面を平行な位置から所定角度範囲内に配置して、開口部材に気体が通過する通気孔となる領域を設けた状態で防音セルを配置したものである。
 本発明の防音構造は、このような防音セルを1つ、又は複数有し、開口部材の通気性を確保しながら、開口部材を透過する複数の周波数の音を選択的に強く遮蔽することができる。
 本発明の防音構造は、ダクト、マフラー、又は換気スリーブといった通気性の管構造において、通気性を維持しつつ複数のピーク音を吸音するための防音構造である。
 本発明の防音構造は、音の入射方向に対して防音セルの膜面が傾けて開口部材に取り付けても、高い開口率を有した状態でも大きな防音効果を発揮することができ、防音セルの取付に際し、ダクト、又は筒を追加工することなく、騒音を除去することができ、かつ高い通気性を維持することができる。
 まず、本発明に係る防音セルについて説明する。
(実施形態1の防音セル)
 図1は、本発明の実施形態1に係る防音セルの一例を模式的に示す断面図である。
 図1に示す本実施形態1の防音セル10は、孔部12を持つ枠14と、孔部12の一方の開口を覆うように枠14に固定された振動可能な膜16と、膜16に設置され、音波に対する共鳴体18であるヘルムホルツ共振器18aとを有する。ここで、枠14と膜16とは、膜型共鳴体11を構成するものと言える。なお、枠14の内面の孔部12と、孔部12を覆う膜16の内面と、共鳴体18であるヘルムホルツ共振器18aの(後述する筺体20の)底部の外側表面とは、膜型共鳴体11の内部に膜16の共鳴空間となる、気体を含有する背面空間13を構成する。
 本発明において、膜16の膜面が音波の進行方向に対して略平行に、即ち平行な位置から所定角度範囲内に配置されるように、防音セル10を配置して用いる。ここで、所定角度範囲は、膜面が音波の進行方向に平行な場合を0°として、-45°~+45°であることが好ましい。ここで、膜16の膜面が音波の進行方向に対して平行な位置に配置されるように、防音セル10を配置して用いることが最も好ましい。
 この理由は、通風性を確保しつつ防音する場合、風が膜面に直接当たってしまうと、膜16の振動モードが乱れ、その結果所望の吸音ピークが得られなくなってしまうためである。このような、膜16の膜面と音の進行方向が平行な状況では、膜吸音の吸収ピークとヘルムホルツの吸収ピークの両立できるが、後述するように、少なくとも特許文献3の構成では吸収ピークの両立ができないという結果が得られているからである。
(枠)
 枠14は、孔部12を囲む囲み部15aと、孔部12の一方の開口に対向する底部15bによって構成される有底枠である。
 枠14は、孔部12を覆うように膜16を固定し、かつ支持するためのもので、この枠14に固定された膜16の膜振動の節となるものである。したがって、枠14は、膜16に比べて、剛性が高く、具体的には、単位面積当たりの質量及び剛性は、共に高いことが好ましい。
 図1に示す枠14は、底部15bを持ち、一方のみが開放された開口を持つ孔部12を備える有底枠であるが、本発明はこれに限定されず、両方に開放された開口を持つ孔部12を備える囲み部15aのみを有する枠であっても良い。この囲み部15aのみの枠である場合には、他方の開口には、膜16と同様の膜を有するものであっても良いし、枠材料と同様な材料の背面板を有するものであっても良い。
 なお、枠14は、膜16の全周を抑えることができるように膜16を固定できる閉じた連続した形状であることが好ましいが、本発明は、これに限定されず、枠14が、これに固定された膜16の膜振動の節となるものであれば、一部が切断され、不連続な形状であっても良い。即ち、枠14の役割は、膜16を固定し支持して膜振動を制御することにあるため、枠14に小さな切れ目が入っていても、接着していない部位が存在していても効果を発揮する。
 また、枠14の孔部12の形状は、平面形状で、正方形であることが好ましいが、本発明においては、特に制限的ではなく、例えば、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、若しくは円形、又は楕円形等であっても良いし、不定形であっても良い。なお、枠14の孔部12の端部は、閉塞されておらず、そのまま外部に開放されている。この開放された孔部12の端部に孔部12を覆うように膜16が枠14に固定される。
 図1では、枠14の孔部12は、その端部が、閉塞されておらず、そのまま外部に開放されているが、孔部12の両方の端部が外部に開放され、一方の端部が背面板等の部材で閉塞されていてもよい。
 また、枠14のサイズLは、平面視のサイズであり、その孔部12のサイズとして定義できるので、以下では、孔部12のサイズLとするが、円形、又は正方形のような正多角形の場合には、その中心を通る対向する辺間の距離、又は円相当直径と定義することができ、多角形、楕円、又は不定形の場合には、円相当直径と定義することができる。本発明において、円相当直径、及び半径とは、それぞれ面積の等しい円に換算した時の直径、及び半径である。
 このような枠14の孔部12のサイズLは、特に制限的ではなく、本発明の防音セル10が防音のために適用される防音対象物、例えば、複写機、送風機、空調機器、換気扇、ポンプ類、発電機、又はダクト、その他にも塗布機、回転機、又は搬送機など音を発するさまざまな種類の製造機器等の産業用機器、若しくは自動車、電車、航空機等の輸送用機器、冷蔵庫、洗濯機、乾燥機、テレビジョン、コピー機、電子レンジ、ゲーム機、エアコン、扇風機、PC、掃除機、又は空気清浄機等の一般家庭用機器などに応じて設定すればよい。
 なお、枠14、及び膜16からなる防音セル10は、膜16の最低次の共鳴周波数(第1共鳴周波数)の波長よりも小さくすることが好ましく、そのため、すなわち防音セル10を最低次の共鳴周波数の波長よりも小さくするためには、枠14のサイズを小さくすることが好ましい。後述する防音構造の開口部材内に設置するには、防音セル10の小型化が必要であることから、防音セル10の小型化のためには、防音セル10は、膜16の最低次の共鳴周波数の波長の1/4よりも小さくすることがより好ましい。
 例えば、孔部12のサイズLは、特に制限的ではないが、例えば、0.5mm~300mmであることが好ましく、1mm~100mmであることがより好ましく、10mm~50mmであることが最も好ましい。
 ここで、枠14の厚さは、囲み部15aの厚さということができ、枠14の孔部12の深さdとして定義できるので、以下では、孔部12の深さdとする。
 枠14の厚さd、即ち孔部12の深さdは、特に制限的ではないが、膜16の振動の共鳴周波数に影響を与えるので、共鳴周波数に応じて設定しても良いし、例えば、孔部12のサイズに応じて設定しても良い。
 孔部12の深さdは、0.5mm~200mmであることが好ましく、0.7mm~100mmであることがより好ましく、1mm~50mmであることが最も好ましい。
 また、枠14の幅wは、枠14を構成する部材の厚さということができるが、膜16を固定することができ、膜16を確実に支持できれば、特に制限的ではない。枠14の幅wは、例えば、孔部12のサイズLに応じて設定することができる。ここで、枠14の底部15bの厚さも、枠14の幅wと定義することができる。
 例えば、枠14の幅wは、孔部12のサイズLが、0.5mm~50mmの場合には、0.5mm~20mmであることが好ましく、0.7mm~10mmであることがより好ましく、1mm~5mmであることが最も好ましい。
 また、枠14の幅wは、孔部12のサイズLが、50mm超、300mm以下の場合には、1mm~100mmであることが好ましく、3mm~50mmであることがより好ましく、5mm~20mmであることが最も好ましい。
 なお、枠14の幅wが、枠14のサイズLに対して比率が大きくなりすぎると、全体に占める枠14の部分の面積率が大きくなり、デバイス(防音セル10)が重くなる懸念がある。一方、上記比率が小さくなりすぎると、その枠14部分において接着剤などによって膜16を強く固定することが難しくなってくる。
 また、防音セル10は、膜16の最低次の共鳴周波数の波長よりも小さくすることが好ましいので、枠14(孔部12)のサイズLは、防音セル10に固定された膜16の最低次の共鳴周波数の波長以下のサイズであることが好ましい。
 防音セル10の枠14(孔部12)のサイズLが、膜16の最低次の共鳴周波数の波長以下のサイズであれば、膜16の膜面に強度ムラの小さい音圧がかかることになるため、音響の制御が困難な膜の振動モードが誘起されにくくなる。つまり、防音セル10は、高い音響制御性を獲得することができる。
 強度ムラがより小さい音圧を膜16の膜面にかけるためには、すなわち、膜16の膜面にかかる音圧をより均一にするには、枠14(孔部12)のサイズLは、防音セル10に固定された膜16の最低次の共鳴周波数の波長をλとする時、λ/2以下であることが好ましく、λ/4以下であることがより好ましく、λ/8以下であることが最も好ましい。防音セル10の小型化のためには、防音セル10は、膜16の最低次の共鳴周波数の波長の1/4よりも小さくすることがより好ましいのは勿論である。
 枠14の材料は、膜16を支持でき、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があれば、特に制限的ではなく、防音対象物、及びその防音環境に応じて選択することができる。例えば、枠14の材料としては、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、又はこれらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイミド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、又はトリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP)、カーボンファイバ、若しくはガラス繊維強化プラスチック(GFRP)等を挙げることができる。
 また、枠14の材料としてこれらの複数種の材料を組み合わせて用いてもよい。
 また、枠14の孔部12内には、従来公知の吸音材を配置してもよい。
 吸音材を配置することで、吸音材による吸音効果により、遮音特性をより向上できる。
 吸音材としては、特に限定はなく、ウレタン板、不織布等の種々の公知の吸音材が利用可能である。
 以上のように、本発明の防音セル内に、又は防音セルと共に、公知の吸音材を組み合わせて用いることにより、本発明の防音セルによる防音効果と、公知の吸音材による吸音効果との両方の効果を得ることができる。
(膜)
 膜16は、枠14の内部の孔部12を覆い、且つ枠14に抑えられるように固定され、共鳴体18(ヘルムホルツ共振器18a)を設置するためのもので、外部からの音波に対応して膜振動することにより音波のエネルギを吸収、もしくは反射して防音するものである。即ち、枠14と膜16とは、膜型共鳴体11を構成するものである。
 ところで、膜16は、枠14を節とし、共鳴体18(ヘルムホルツ共振器18a)を錘として膜振動する必要があるので、枠14に確実に抑えられるように固定され、共鳴体18(ヘルムホルツ共振器18a)を膜振動の腹として、音波のエネルギを吸収して、もしくは反射して防音する必要がある。このため、膜16は、可撓性のある弾性材料製であることが好ましい。
 このため、膜16は、枠14の孔部12の形状に孔部12の外側の枠14の幅(囲み部15aの幅)wを加えた外側形状を有し、ヘルムホルツ共振器18a(の後述する筒状体24)を貫通させるための貫通孔17を有する。
 また、膜16の(外側形状の)サイズは、枠14に確実に固定されて、振動膜として機能する必要があるので、枠14(孔部12)のサイズLより大きい必要がある。なお、膜16の(外側形状の)サイズは、孔部12のサイズLに孔部12の両側の枠14の囲み部15aの幅wを加えたサイズ(L+2w)より大きくても良いが、この大きい部分は、振動膜としての機能もないし、膜16を固定する機能もないので、サイズ(L+2w)以下であることが好ましい。
 ここで、本発明においては、膜16として振動できる部分の面積が、共鳴体18が錘として振動する面積よりも大きい必要がある。その理由は、特許文献4、及び5に見られるように、膜16として振動できる部分の面積が、共鳴体18が錘として振動する面積以下であると、音の進行方向に対して、膜16の膜面が並行に設置されている場合において、膜16が十分に振動膜として機能せず、吸収率が小さくなってしまうからである。
 また、膜16の厚さtは、音波のエネルギを吸収して防音するために膜振動することができれば、特に制限的ではないが、揺れが最も大きい振動モードを高周波側に得るためには厚く、低周波側に得るためには薄くすることが好ましい。例えば、図1に示す膜16の厚さtは、本発明では、孔部12のサイズL、即ち膜16のサイズに応じて設定することができる。
 例えば、膜16の厚さtは、孔部12のサイズLが0.5mm~50mmの場合には、0.001mm(1μm)~5mmであることが好ましく、0.005mm(5μm)~2mmであることがより好ましく、0.01mm(10μm)~1mmであることが最も好ましい。
 また、膜16の厚さtは、孔部12のサイズLが、50mm超、300mm以下の場合には、0.01mm(10μm)~20mmであることが好ましく、0.02mm(20μm)~10mmであることがより好ましく、0.05mm(50μm)~5mmであることが最も好ましい。
 なお、膜16の厚さは、1つの膜16で厚さが異なる場合などは、平均厚さで表すことが好ましい。
 ここで、防音セル10の枠14に固定された膜16は、防音セル10の構造において、誘起可能な最も低次(1次)の振動モードの周波数である最低次の共鳴周波数(第1共鳴周波数)を持つものである。
 また、枠14及び膜16からなる構造の防音セル10における、即ち枠14に抑えられるように固定された膜16に対して音波が膜面に平行に入射する場合の共鳴周波数は、音波が膜振動を最も揺らすところで、その周波数で防音セル側に音が引き込まれ、最も大きい吸収ピークを発現する(即ち、吸収率が極大となる)周波数である。また、最低次の共鳴周波数は、枠14と膜16からなる防音セル10によって決まる、膜振動が最も低次の振動モードを発現する第1共鳴周波数である。
 枠14に固定された膜16の最低次の共鳴周波数(例えば、剛性則に従う周波数領域と質量側に従う周波数領域との境界が最も低次の第1共振(共鳴)周波数となる)は、人間の音波の感知域に相当する10Hz~100000Hzであることが好ましく、人間の音波の可聴域である20Hz~20000Hzであることがより好ましく、40Hz~16000Hzであることが更により好ましく、100Hz~12000Hzであることが最も好ましい。
 ここで、本実施形態の防音セル10において、枠14及び膜16からなる構造における膜16の共振周波数、例えば最低次の共鳴周波数は、防音セル10の枠14の幾何学的形態、例えば枠14の形状及び寸法(サイズ)と、防音セル10の膜16の剛性、例えば膜16の厚さ及び可撓性と膜16の背面空間13の体積によって定めることができる。
 例えば、膜16の振動モードを特徴づけるパラメータとしては、同種材料の膜16の場合は、膜16の厚み(t)と孔部12のサイズ(L)の2乗との比、例えば、正四角形の場合には一辺の大きさとの比[L/t]を用いることができ、この比[L/t]が等しい場合には、上記振動モードが同じ周波数、即ち同じ共振周波数となる。即ち、比[L/t]を一定値にすることにより、スケール則が成立し、適切なサイズを選択することができる。
 また、膜16のヤング率は、膜16が音波のエネルギを吸収、もしくは反射して防音するために膜振動することができる弾性を有していれば、特に制限的ではないが、膜16の振動モードを高周波側に得るためには大きく、低周波側に得るためには小さくすることが好ましい。例えば、膜16のヤング率は、本発明では、枠14(孔部12)のサイズ、即ち膜のサイズに応じて設定することができる。
 例えば、膜16のヤング率は、1000Pa~3000GPaであることが好ましく、10000Pa~2000GPaであることがより好ましく、1MPa~1000GPaであることが最も好ましい。
 また、膜16の密度も、音波のエネルギを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、例えば、5kg/m~30000kg/mであることが好ましく、10kg/m~20000kg/mであることがより好ましく、100kg/m~10000kg/mであることが最も好ましい。
 膜16の材料は、膜状材料、又は箔状材料にした際に、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があり、膜16が音波のエネルギを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、防音対象物及びその防音環境などに応じて選択することができる。例えば、膜16の材料としては、ポリエチレンテレフタレート(PET)、ポリイミド、ポリメタクリル酸メチル、ポリカーボネート、アクリル(PMMA)、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース、ポリ塩化ビニリデン、低密度ポリエチレン、高密度ポリエチレン、芳香族ポリアミド、シリコーン樹脂、エチレンエチルアクリレート、酢酸ビニル共重合体、ポリエチレン、塩素化ポリエチレン、ポリ塩化ビニル、ポリメチルペンテン、又はポリブテン等の膜状にできる樹脂材料、アルミニウム、クロム、チタン、ステンレス、ニッケル、スズ、ニオブ、タンタル、モリブデン、ジルコニウム、金、銀、白金、パラジウム、鉄、銅、又はパーマロイ等の箔状にできる金属材料、紙、又はセルロースなどその他繊維状の膜になる材質、不織布、ナノサイズのファイバーを含むフィルム、薄く加工したウレタン、又はシンサレートなどのポーラス材料、若しくは薄膜構造に加工したカーボン材料など、薄い構造を形成できる材質または構造等を挙げることができる。
 また、膜16は、枠14の孔部12の開口を覆うように枠14に固定される。
 枠14への膜16の固定方法は、特に制限的ではなく、膜16を枠14に膜振動の節となるように固定できればどのようなものでも良く、例えば、接着剤を用いる方法、又は物理的な固定具を用いる方法などを挙げることができる。
 接着剤を用いる方法は、接着剤を枠14の孔部12を囲む表面上に接着剤を塗布し、その上に膜16載置し、膜16を接着剤で枠14に固定する。接着剤としては、例えば、エポキシ系接着剤(アラルダイト(登録商標)(ニチバン社製)等)、シアノアクリレート系接着剤(アロンアルフア(登録商標)(東亜合成社製)など)、又はアクリル系接着剤等を挙げることができる。
 物理的な固定具を用いる方法としては、枠14の孔部12を覆うように配置された膜16を枠14と棒等の固定部材との間に挟み、固定部材をネジ、又はビス等の固定具を用いて枠14に固定する方法等を挙げることができる。
 なお、本実施形態1の防音セル10は、枠14と膜16とを別体として構成し、膜16を枠14に固定した構造であるが、これに限定されず、同じ材料からなる膜16と枠14が一体化した構造であっても良い。
(共鳴体)
 共鳴体18は、膜16のみに固定され、膜16の振動に対して錘として機能し、膜16の最低次の共鳴周波数を低周波化すると共に、膜16の共鳴周波数とは異なる共鳴周波数を持つものである。したがって、共鳴体18は、膜16の中心に設置されることが好ましい。
 また、錘として機能する共鳴体18は、防音セル10の膜16と音波の進行方向とが平行な場合において音波に対する共鳴体として機能するものである。
 図1に示す例では、共鳴体18は、ヘルムホルツ共振器18aであり、その一部が防音セル10の内部に存在する。
 図1に示すヘルムホルツ共振器18aは、膜16に固定される筺体20と、筺体20の内部の中空空間21と外部とを連通する共鳴穴22を構成し、筺体20から突出する筒状体24とを有するヘルムホルツ共鳴構造を有する共鳴体である。筺体20から突出する筒状体24は、膜16に形成された貫通孔17から突出している。なお、筺体20の貫通孔20aと、筒状体24の貫通孔24aは、共鳴穴22を構成する。
 ここで、ヘルムホルツ共振器18a(共鳴体18)は、筺体20内に共鳴空間となる中空空間21を有する。本発明では、共鳴体18の中空空間21は、気体を含有し、膜型共鳴体11の膜16の背面空間13から独立した空間である必要がある。
 ところで、共鳴体18の中空空間21が、膜16の背面空間13から独立した空間である理由は、膜16による膜吸音の吸収ピークとヘルムホルツ共振器18aによるヘルムホルツの吸収ピークの両立が困難であるためである。これは、膜16とヘルムホルツ共振器18aとが背面体積を共有している場合、膜吸音体の共鳴周波数において、膜16に錘等が付いていて重く振動しにくい場合には、膜16のインピーダンスが大きくなり、その結果、インピーダンスが相対的に低い穴を音が優先的に通ることで膜16が振動しなくなるためである。一方で、膜16が振動しやすい場合には、ヘルムホルツ共鳴器18aの共鳴周波数において、膜16のインピーダンスが低いことから音の透過が可能となるため、ヘルムホルツ共鳴器18aの内部に十分に音圧を閉じ込めることが出来ず、ヘルムホルツの吸収ピークが得られなくなってしまうためである。
 筺体20は、図1において、突出している筒状体24の外側の筺体20の上側表面が、膜16の裏面に固定されることにより、膜16に固定されている。筺体20の膜16への固定方法は、膜16の枠14への固定方法と同様な固定方法を用いることができる。
 即ち、筺体20は、枠14と膜16とによって形成される膜16の背面空間13内に存在するように収納されている。
 ここで、筺体20は、平面形状において、枠14の平面形状と同じであること好ましいが、これに限定されず、膜16のサイズ(孔部12のサイズL)より小さく、膜16のみに固定されることができれば、枠14と同様に、どのような形状でも良い。
 図1に示す例では、筺体20は、平面視正方形の直方体形状であり、共鳴空間である中空空間21も同様に、平面視正方形の直方体形状である。
 筺体20は、中央に共鳴穴22を構成する貫通孔20aが穿孔されている。
 筺体20の材料は、膜16の材料より硬い方が好ましいが、特に制限的ではない。筺体20の材料は、枠14の材料と同様な材料を用いることができるが、膜16の材料を用いても良い。
 筺体20のサイズ(平面視)は、筺体20の外側表面間のサイズと定義できるが、特に制限的ではない。筺体20のサイズは、例えば、筺体20を膜16のみに固定でき、筺体20と共に膜16が振動できれば、膜16のサイズ(孔部12のサイズL)より小さければ良い。筺体20のサイズは、孔部12のサイズLの5.0%~80%であることが好ましく、10%~50%であることがより好ましい。
 筺体20の厚みは、筺体20の上下側表面間のサイズと定義できるが、特に制限的ではない。筺体20の厚みは、例えば筺体20が枠14と膜16とによって形成される膜16の背面空間13内に存在できれば良い。筺体20の厚みは、孔部12の深さdの5.0%~80%であることが好ましく、10%~50%であることがより好ましい。
 筺体20の内部の中空空間21の体積も、特に制限的ではないが、例えば、枠14と膜16とによって形成される膜16の背面空間13に応じて設定すればよい。例えば、中空空間21の体積は、背面空間13の体積の1.0%~50%であることが好ましく、5.0%~30%であることがより好ましい。
 筒状体24は、その貫通孔24aと、筺体20の貫通孔20aとが連続して共鳴穴22を構成するように、筺体20から突出している。ここで、筺体20は、膜16の裏面に固定されているので、筒状体24は、膜16の貫通孔17を貫通し、膜16から突出している。なお、筒状体24の下端側の外側表面は、膜16の貫通孔17と接しているので、膜16の貫通孔17と筒状体24の外側表面とは、固定しておくことが好ましい。固定方法は、筺体20の膜16への固定方法と同様な固定方法を用いることができる。
 筒状体24の材料は、特に制限的ではなく、筺体20の材料と同様な材料を用いることができる。
 筒状体24は、共鳴穴22を構成するためのものであるため、筒状体24の形状、及びサイズは、共鳴穴の形状、及びサイズに応じて設定すればよい。
 共鳴穴22は、断面円形であることが好ましいが、特に限定されず、枠14の形状と同様に、正方形などの多角形であっても良い。
 共鳴穴22の断面サイズ、及び軸方向の長さは、特に制限的ではないが、共に、ヘルムホルツ共振器18aの共鳴周波数を決めるパラメータになるものであるので、必要な共鳴周波数に応じて決めることができる。
 ここで、ヘルムホルツ共鳴周波数fhは、Cを音速とし、Sを共鳴穴22の軸方向に垂直な断面積とし、Laを共鳴穴22の軸方向長さ(開口端補正した値)とし、Vを筺体20の共鳴空間となる中空空間21の体積とする時、下記式(1)で与えられる。
   fh=(C/2π)・{S/(La・V)}1/2     …(1)
 したがって、必要なヘルムホルツ共鳴周波数fhが決っている時には、上記式(1)を満たすように、共鳴穴22の断面積S、共鳴穴22の長さLa、及び筺体20の中空空間21の体積Vを適切に選択すればよい。図1においては、共鳴穴22の長さLaは、筒状体24の貫通孔24aの軸方向の長さと、筺体20の貫通孔20aの軸方向の長さとの和で与えられる。
 上述したように、本発明の防音セル10は、膜16と、枠14と、膜16及び枠14からなる閉じられた背面空間13とからなり、膜16には音波に対する共鳴体18が設置されている構造を有する。
 このため、本発明では、このような構造を用いることにより、以下の利点がある。
 1.共鳴体18を錘として機能させることにより、膜16の厚みtと孔部12のサイズLの2乗との比(L/t)に応じて定まる膜16の共鳴周波数を、低周波化させることができる。これと共に、共鳴体18であるヘルムホルツ共振器18aの共鳴穴22の断面積S、共鳴穴22の長さLa、及び筺体20の中空空間21の体積Vを適切に選択して上記式(1)により定まるヘルムホルツ共鳴周波数を適切に設定することができる。
 その結果、任意の周波数に複数の共鳴吸収ピークを得ることが可能となる。
 したがって、図29に示すような複数のピークを有する騒音に、より少ない防音セル10で吸音することが可能となる。
 2.また、防音セル10を大型化させることなく、ピークを低周波化することができる。
 本発明においては、共鳴体18(ヘルムホルツ共振器18a)の内部に気体を含有する中空空間21を有することにより、低周波の吸収ピークを強くするとともに、共鳴穴22を構成する筒状体24、及び筺体20と合わせた錘を共鳴体18として機能させることができるとも言える。
 特に、枠、及び膜からなる膜型共鳴体において、膜の膜面に対して略平行に音波が入射する場合、換言すれば音波の進行方向に対して略平行に膜の膜面が存在する場合、膜面に錘がついていると共鳴周波数は低周波化するが、錘が個体で充填されていると膜が揺れにくくなり、その結果吸収率が下がってしまう。
 これに対し、本発明においては、錘が音波に対する共鳴体18であり、内部に中空空間21を有することから、錘が物体で充填された場合に比較して、適度に軽い錘となることで、低周波においてより膜16が揺れやすくなり高い吸収率を得られる。
 即ち、膜型共鳴体は、膜に単に錘を付けるだけでは、低周波化するものの、吸収率が低くなってしまう。その一方で、本発明の防音セル10のように、枠14、及び膜16からなる膜型共鳴体において、錘となる共鳴体18が中空空間21を有する中空構造となっていると、膜が揺れやすくなることから、吸収率が高くなる。本発明の防音セル10では、更に、中空空間21からなる共鳴体18の共鳴周波数でも吸収ピークを有するため、枠14、及び膜16からなる膜型共鳴体11の共鳴周波数における吸収ピークと併せることにより、低い周波数を含む複数の周波数に音圧のピークを持つ騒音に対して、効率よく防音することができる。
 なお、錘として機能する共鳴体18は、膜16の振動モードの振幅が最大となる位置に配置されている必要がある。即ち、錘として機能する共鳴体18は、少なくとも膜16の端部が全て固定端とした場合の孔部12の開口面で規定される最低次の振動モード(膜16の1次の振動モード)において振幅が最大となる位置に配置されている必要がある。
 その理由は、1次振動モードの振幅の最大となる位置に配置されていない場合には、音が膜面と平行に入射した場合に最低次の振動モードが励起されにくくなり、錘が膜の1次振動を阻害するように働くため、最低次の共鳴吸収のピーク値が著しく下がり、膜16が最低次で振動する場合の吸収率が著しく低下してしまうからである。
 図1に示す防音セル10のヘルムホルツ共振器18aは、筺体20から突出する筒状体24を有しているが、本発明はこれに限定されず、図2に示す防音セル10Aのように、筒状体24を有していなくても良い。図2に示すヘルムホルツ共振器18bは、筺体20のみからなり、筺体20の貫通孔20aと膜16の貫通孔17とを一致するように筺体20を膜16の裏面に固定した共鳴体18である。ここで、筺体20の貫通孔20aと膜16の貫通孔17とは、一致した状態で連続しており、共鳴穴22を構成している。ここでは、共鳴穴22の軸方向長さLaは、筺体20の貫通孔20aの軸方向の長さと、膜16の貫通孔17厚さtとの和として与えられる。
 また、図示しないが、ヘルムホルツ共振器18a、又は18bの筺体20が通る貫通孔を膜16に穿孔し、筺体20の外側側面を膜16の貫通孔の内周面に固定し、筺体20の一部、したがって共鳴体18の一部を防音セルの内部に存在させても良い。
 また、図示しないが、ヘルムホルツ共振器18a、又は18bの筺体20の底面を膜16の上側表面に固定して、膜16の外部に共鳴体を存在させても良い。
 本発明の実施形態1の防音セル10、及び10Aは、以上のように構成される。
(実施形態2の防音セル)
 図3は、本発明の実施形態2に係る防音セルの一例を模式的に示す断面図である。
 図3に示す本実施形態2の防音セル10Bは、孔部12を持つ枠14と、孔部12を覆うように枠14に固定された振動可能な膜16とを有する膜型共鳴体11、及び膜16に設置され、音波に対する共鳴体18として膜型共鳴体18cとを有する。
図3に示す防音セル10Bは、図1に示す防音セル10と、共鳴体18としてヘルムホルツ共振器18aの代わりに膜型共鳴体18cを有している点を除いて、同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明は省略する。
 膜型共鳴体18cは、孔部12より小さい孔部12aを持ち、枠14より小さい枠14aと、孔部12aを覆うように枠14aに固定された振動可能な膜16aとを有する。膜型共鳴体18cの全体が、枠14の孔部12の内部に内包(収納)される。
 膜型共鳴体18cは、膜16のみに固定され、膜16の振動に対して錘として機能し、膜16の最低次の共鳴周波数を低周波化すると共に、膜16の共鳴周波数とは異なる共鳴周波数を持つものである。膜型共鳴体18cは、膜16の中心に設置されることが好ましい。
 ここで、枠14の内面の孔部12と、孔部12を覆う膜16の内面と、膜型共鳴体18cの枠14aの外側表面とは、膜型共鳴体11内に膜16の共鳴空間となる背面空間13aを構成する。また、枠14aの内面の孔部12aと、孔部12aを覆う膜16aとは、膜型共鳴体18cの内部に膜16aの共鳴空間となる中空空間13bを構成する。なお、この膜型共鳴体18cの中空空間13bは、気体を含有し、気体を含有する背面空間13aから独立した空間である。
 ここで、小さい枠14aの孔部12aに固定されている膜16aは、膜16と連続していることにより、膜16に支持されている。その結果、膜型共鳴体18cは、膜16に設置され、かつ固定されていると言える。
 したがって、図3に示す防音セル10Bにおいては、枠14の孔部12の端部の開口全面に膜16を固定し、膜16の中央の部分の膜16aに小さい枠14aが固定されているともいえる。
 枠14aは、孔部12aを覆うように膜16aを固定し、かつ支持するためのもので、この枠14aに固定された膜16aの膜振動の節となるものである。
 枠14aは、枠14より小さいことを除いて、枠14と同様の構成を有するものであるので、枠14aのサイズ、深さ、及び幅は、いずれも、それぞれ枠14のサイズL、深さd、及び幅wより小さければ、同様に設定することができる。
 枠14aのサイズ、及び深さは、枠14のサイズL、及び深さLより小さく、枠14a自体が枠14の孔部12内に収容されるサイズ、及び深さであれば、どのようなサイズであっても良いが、膜16の共鳴周波数に対して設定される膜16aの共鳴周波数に応じて設定するのが良い。例えば、枠14aのサイズは、孔部12のサイズLの5.0%~80%であることが好ましく、10%~50%であることがより好ましい。枠14aの孔部12a深さは、孔部12の深さdの5.0%~80%であることが好ましく、10%~50%であることがより好ましい。なお、枠14aのサイズは、枠14aの孔部12aの開口のサイズとして定義しても良い。
 また、枠14aの形状は、枠14と同じ形状であることが好ましいが、枠14と同様にどのような形状であっても良い。
 枠14aの幅は、枠14の幅wより狭い方が好ましく、枠14の幅wに応じて設定しても良いし、枠14の幅wの場合と同様に、孔部12aの開口のサイズに応じて設定しても良い。例えば、枠14aの幅は、枠14の幅wの1.0%~90%であることが好ましく、5.0%~50%であることがより好ましい。
 一方、膜16aは、枠14aの内部の孔部12aを覆い、且つ枠14aに抑えられるように固定され、外部からの音波に対応して膜振動することにより音波のエネルギを吸収、もしくは反射して防音するものである。
 膜16aは、その厚み、及び材質において、膜16と全く同じ、即ち共通であっても良いし、膜16aの厚みが膜16の厚みtと異なっていても良いし、材質が異なっていても良い。なお、膜16aの厚みは、膜16の厚みtの場合と同様に、孔部12aの開口のサイズに応じて設定しても良いが、膜16の共鳴周波数に対して設定される膜16aの共鳴周波数に応じて設定するのが良い。
 また、膜16aの材料は、膜16の材料と同じ材料を用いても良いし、同様の材料を用いても良い。
 また、膜16aのサイズは、枠14aのサイズ、又は枠14aの孔部12aの開口のサイズとして定義しても良い。また、膜16aの形状は、枠14aの形状、又は枠14aの孔部12aの開口の形状として定義しても良い。
 本実施形態の防音セル10Bも、実施形態1の防音セル10と同様に、膜型共鳴体18cを、共鳴体18として機能させて吸収ピークを発現させると共に、枠14、及び膜16からなる膜型共鳴体11の膜16の錘として機能させて、膜型共鳴体11の吸収ピークを低周波化することができる。すなわち、本実施形態においても、共鳴体18(膜型共鳴体18c)の内部に気体を含有する中空空間13bを有することにより、低周波の吸収ピークを強くするとともに、膜型共鳴体18cを構成する枠14、及び膜16と合わせた錘を共鳴体18として機能させることができる。
 その結果、中空空間13bからなる共鳴体18の共鳴周波数でも吸収ピークを有するため、枠14、及び膜16からなる膜型共鳴体11において、膜型共鳴体18cの錘によって低周波化した共鳴周波数における吸収ピークと併せることにより、低い周波数を含む複数の周波数に音圧のピークを持つ騒音に対して、効率よく防音することができる。
 図3に示す防音セル10Bは、膜型共鳴体11の膜16に共鳴体18として膜型共鳴体18cを設置したものであるが、本発明はこれに限定されず、図4に示す防音セル10Cのように、膜型共鳴体18cの膜16aに、更に共鳴体18として膜型共鳴体18dを設置しても良い。
 図4に示す本実施形態2の防音セル10Cは、孔部12を持つ枠14と、孔部12を覆うように枠14に固定された振動可能な膜16とを有する膜型共鳴体11、音波に対する共鳴体18として、膜16に設置される膜型共鳴体18c、及び更に音波に対する共鳴体18として、膜型共鳴体18cの膜16aに設置される膜型共鳴体18dを有する。
 膜型共鳴体18cは、孔部12aを持つ枠14aと、孔部12aを覆うように枠14aに固定された振動可能な膜16aとを有する。膜型共鳴体18cの全体が、枠14の孔部12の内部に内包(収納)される。
 また、膜型共鳴体18dは、孔部12aより小さい孔部12b持ち、枠14aより小さい枠14bと、孔部12bを覆うように枠14bに固定された振動可能な膜16bとを有する。膜型共鳴体18dの全体が、枠14aの孔部12a内に内包(収納)される。
 ここで、枠14aの内面の孔部12aと、孔部12aを覆う膜16aと、膜型共鳴体18dの枠14bの外側表面とは、膜型共鳴体18cの内部に膜16aの共鳴空間となる中空空間13bを構成する。なお、この膜型共鳴体18cの中空空間13bは、気体を含有し、気体を含有する背面空間13aから独立した空間である。
 また、枠14bの内面の孔部12bと、孔部12bを覆う膜16bとは、膜型共鳴体18dの内部に膜16bの共鳴空間となる中空空間13cを構成する。なお、この膜型共鳴体18dの中空空間13cは、気体を含有し、背面空間13a、及び13bから独立した空間である。
 防音セル10Cでは、膜型共鳴体11の膜16と、膜型共鳴体18cの膜16aと、膜型共鳴体18dの膜16bとは、連続している。膜16bは、膜16aの中央部分に位置し、膜16b、及び16aは、膜16の中央部分に位置する。その結果、膜型共鳴体11の膜16に膜型共鳴体18cが支持され、膜型共鳴体18cの膜16aに膜型共鳴体18dが支持されることになる。なお、膜16、16a、及び16bは、同一中心を持つことが好ましい。
 ここで、膜型共鳴体18c、及び膜型共鳴体18dは、膜型共鳴体11の膜16の膜振動の錘として機能し、膜16の最低次の共鳴周波数を低周波化すると共に、膜16の共鳴周波数とは異なる共鳴周波数を持つものである。また、膜型共鳴体18dは、膜型共鳴体18cの膜16aの膜振動の錘として機能し、膜16aの最低次の共鳴周波数を低周波化すると共に、膜16aの共鳴周波数とは異なる共鳴周波数を持つものである。なお、膜16bは、膜16b自身の膜振動の共鳴周波数を持つ。
 ここで、膜16bは、膜16aの場合と同様に、膜16a、及び/又は16と、同じであっても異なっていても良く、膜型共鳴体18dに要求される吸収ピーク周波数に応じて設定すれば良い。
 膜型共鳴体18dの枠14b(孔部12b、又は膜16b)のサイズ、孔部12bの深さ、及び枠14bの幅は、それぞれ膜型共鳴体18cの枠14a(孔部12a、又は膜16a)のサイズ、孔部12aの深さ、及び枠14aの幅の場合と同様に、膜型共鳴体18dに要求される吸収ピーク周波数に応じて設定すれば良い。例えば、枠14bのサイズは、孔部12aのサイズの5%~80%であることが好ましく、10%~50%であることがより好ましい。孔部12b深さは、孔部12aの深さの5.0%~80%であることが好ましく、10%~50%であることがより好ましい。枠14bの幅は、枠14aの幅の1.0%~90%であることが好ましく、5.0%~50%であることがより好ましい。
 図4に示す防音セル10Cは、膜型共鳴体11、18c、及び18dからなる3つの膜型共鳴体を重ね合わせたものであるが、4つ以上の膜型共鳴体を重ね合わせても良い。
 図3に示す防音セル10Bは、共鳴体18として、膜型共鳴体18cを膜型共鳴体11の膜16に、膜型共鳴体18cの膜16aと、膜16とが連続するように設置したものであるが、本発明はこれに限定されない。図5に示す防音セル10Dのように、共鳴体18として、膜型共鳴体18eを、膜型共鳴体11の膜16に、膜型共鳴体18eの枠14が支持されるように設置しても良い。
 図5に示す防音セル10Dは、孔部12を持つ枠14と、孔部12を覆うように枠14に固定された振動可能な膜16とを有する膜型共鳴体11、及び音波に対する共鳴体18として、膜16に設置される膜型共鳴体18eとを有する。
 膜型共鳴体18eは、孔部12より小さい孔部12cを持ち、枠14より小さい枠14cと、孔部12cを覆うように枠14cに固定された振動可能な膜16cとを有する。
 ここで、枠14の内面の孔部12と、孔部12を覆う膜16の内面と、膜型共鳴体18eの枠14cの外側表面とは、膜型共鳴体11内に膜16の共鳴空間となる背面空間13dを構成する。また、枠14cの内面の孔部12cと、孔部12cを覆う膜16cとは、膜型共鳴体18eの内部に膜16cの共鳴空間となる中空空間13eを構成する。なお、この膜型共鳴体18eの中空空間13eは、気体を含有し、気体を含有する背面空間13dから独立した空間である。
 防音セル10Dにおいては、膜型共鳴体18eの枠14cの側面(囲み部15cの外表面)が、膜16の貫通孔17の内周面に上述した固定方法により固定されることによって支持され、膜型共鳴体18eが、膜16に設置される。
 膜型共鳴体18eは、膜16のみに固定され、膜16の振動に対して錘として機能し、膜16の最低次の共鳴周波数を低周波化すると共に、膜16の共鳴周波数とは異なる共鳴周波数を持つものである。膜型共鳴体18eの膜16cは、膜16c自身の膜振動の共鳴周波数を持つ。
 なお、膜型共鳴体18eは、図3に示す防音セル10Bの膜型共鳴体18cと、基本的に同様に構成すればよい。即ち、孔部12c、枠14c、及び膜16cは、それぞれ孔部12a、枠14a、及び膜16aと、基本的に同様に構成すればよい。
 図5に示す防音セル10Dは、膜型共鳴体11の膜16に共鳴体18として膜型共鳴体18eを設置したものであるが、本発明はこれに限定されず、図6に示す防音セル10Eのように、膜型共鳴体18eの膜16cに、更に共鳴体18として膜型共鳴体18fを設置しても良い。
 図6に示す本実施形態2の防音セル10Eは、孔部12を持つ枠14と、孔部12を覆うように枠14に固定された振動可能な膜16とを有する膜型共鳴体11、音波に対する共鳴体18として、膜16に設置される膜型共鳴体18e、及び、更に音波に対する共鳴体18として、膜型共鳴体18cの膜16aに設置される膜型共鳴体18fを有する。
 膜型共鳴体18eは、孔部12より小さい孔部12cを持ち、枠14より小さい枠14cと、孔部12cを覆うように枠14cに固定された振動可能な膜16cとを有する。膜型共鳴体18eは、膜型共鳴体11の膜16の貫通孔17の内周面に上述のように固定される。
 また、膜型共鳴体18fは、孔部12cより小さい孔部12d持ち、枠14cより小さい枠14dと、孔部12dを覆うように枠14dに固定された振動可能な膜16dとを有する。膜型共鳴体18fは、膜型共鳴体18eの膜16cの貫通孔17aの内周面に上述の固定方法によって固定される。
 ここで、膜16、16c、及び16dは、同一中心を持つことが好ましい。
 ここで、枠14cの内面の孔部12cと、孔部12cを覆う膜16cと、膜型共鳴体18fの枠14dの外側表面とは、膜型共鳴体18eの内部に膜16cの共鳴空間となる中空空間13eを構成する。なお、この膜型共鳴体18eの中空空間13eは、気体を含有し、気体を含有する背面空間13dから独立した空間である。
 また、枠14dの内面の孔部12dと、孔部12dを覆う膜16dとは、膜型共鳴体18fの内部に膜16dの共鳴空間となる中空空間13fを構成する。なお、この膜型共鳴体18fの中空空間13fは、気体を含有し、背面空間13d、及び13eから独立した空間である。
 防音セル10Eにおいては、膜型共鳴体18e、及び膜型共鳴体18fは、膜型共鳴体11の膜16の膜振動の錘として機能し、膜16の最低次の共鳴周波数を低周波化すると共に、膜16の共鳴周波数とは異なる共鳴周波数を持つものである。また、膜型共鳴体18fは、膜型共鳴体18eの膜16cの膜振動の錘として機能し、膜16cの最低次の共鳴周波数を低周波化すると共に、膜16cの共鳴周波数とは異なる共鳴周波数を持つものである。なお、膜16dは、膜16d自身の膜振動の共鳴周波数を持つ。
 なお、膜型共鳴体18e、及び膜型共鳴体18fは、それぞれ図4に示す防音セル10Cの膜型共鳴体18c、及び18dと、基本的に同様に構成すればよい。即ち、孔部12c、枠14c、及び膜16cは、それぞれ孔部12a、枠14a、及び膜16aと、基本的に同様に構成すればよい。また、孔部12d、枠14d、及び膜16dは、それぞれ孔部12b、枠14b、及び膜16bと、基本的に同様に構成すればよい。
 図6に示す防音セル10Eは、膜型共鳴体11、18e、及び18fからなる3つの膜型共鳴体を重ね合わせたものであるが、4つ以上の膜型共鳴体を重ね合わせても良い。
 図6に示す防音セル10Eは、膜型共鳴体18eの膜16cに共鳴体18として膜型共鳴体18fを設置したものであるが、本発明はこれに限定されず、図7に示す防音セル10Fのように、膜型共鳴体18eの膜16cに、膜型共鳴体18fの代わりに、共鳴体18としてヘルムホルツ共振器18gを設置しても良い。
 図7に示す防音セル10Fは、孔部12を持つ枠14と、孔部12を覆うように枠14に固定された振動可能な膜16とを有する膜型共鳴体11、音波に対する共鳴体18として、膜16に設置される膜型共鳴体18e、及び、更に音波に対する共鳴体18として、膜型共鳴体18cの膜16aに設置されるヘルムホルツ共振器18gを有する。
 膜型共鳴体18eは、孔部12より小さい孔部12cを持ち、枠14より小さい枠14cと、孔部12cを覆うように枠14cに固定された振動可能な膜16cとを有する。膜型共鳴体18eは、膜型共鳴体11の膜16の貫通孔17の内周面に上述のように固定される。
 ヘルムホルツ共振器18gは、内部に空気を含む外部と連通する中空空間27を有し、図7中上側に中空空間27と外部とを連通する共鳴穴28を持つ筺体26を有する。
 なお、膜型共鳴体18eの中空空間13eは、枠14cの内面の孔部12cと、孔部12cを覆う膜16cと、ヘルムホルツ共振器18gの筺体26の外側表面とによって構成される。
 ヘルムホルツ共振器18gの中空空間27、膜型共鳴体18eの中空空間13e、及び膜型共鳴体11の背面空間13dは、互いに独立した空間である。
 防音セル10Fにおいては、膜型共鳴体18e、及びヘルムホルツ共振器18gは、膜型共鳴体11の膜16の膜振動の錘として機能し、膜16の最低次の共鳴周波数を低周波化すると共に、膜16の共鳴周波数とは異なる共鳴周波数を持つものである。また、ヘルムホルツ共振器18gは、膜型共鳴体18eの膜16cの膜振動の錘として機能し、膜16cの最低次の共鳴周波数を低周波化すると共に、膜16cの共鳴周波数とは異なる共鳴周波数を持つものである。
 なお、ヘルムホルツ共振器18gは、上述したように、共鳴穴28の軸方向に垂直な断面積をSとし、共鳴穴28の軸方向長さをLaとし、筺体26の中空空間27の体積をVとする時、上記式(1)で与えられる共鳴周波数を持つ。
 したがって、ヘルムホルツ共振器18gは、要求される吸収ピーク周波数に応じて、共鳴穴28の断面サイズ、及び長さ、並びに筺体26の中空空間27のサイズを設定すればよい。
 図7に示す防音セル10Fは、膜型共鳴体11、及び18eを2段重ね、最上段の膜型共鳴体18eの上にヘルムホルツ共振器18gを重ねて3段重ねにしたものであるが、膜型共鳴体3段以上重ね、最上段の膜型共鳴体の上にヘルムホルツ共振器を重ねても良い。
 本発明の実施形態2の防音セル10B、10C、10D、10E、及び10Fは、以上のように構成される。
 ところで、図1に示す防音セル10は、図8に示す従来技術1の膜型共鳴体からなる防音セル30の膜32の中央に貫通孔17を設けて膜16とし、図9に示す従来技術2の単体のヘルムホルツ共振器18aの筒状体24を膜16の貫通孔17に通して、ヘルムホルツ共振器18aを膜16に固定した後に、膜16を枠14に固定したものということができる。
 ここで、図8に示す従来技術1の防音セル30は、特許文献1に開示の防音セルであり、全面閉じた膜32を枠14に固定したもので、膜32の背面に閉じた空気層(背面空間33)が有るものである。
 このような防音セル30においては、図10に一点鎖線で示すように、複数の周波数で吸収ピークを持つことがあるが、膜32の弾性率、膜32の厚さ、膜32(又は枠14)のサイズ、又は背面空間33の背面空気層の体積の大きさ等で一意に共鳴周波数が決まってしまうため、それぞれの共鳴周波数を独立に制御することができない。
 一方、図9に示す従来技術2の単体のヘルムホルツ共振器18aは、図10に点線で示すように、原理的に単一の吸収ピーク周波数しか持ちえない。したがって、図10に一点鎖線で示すようなマルチ騒音ピーク低減のためには複数のヘルムホルツを用意することが必要となる。
 これに対し、本発明の防音セル、例えば図1に示す防音セル10は、膜16に共鳴体18としてヘルムホルツ共振器18aが付与された膜型共鳴体11を有し、膜16の背面に閉じた空気層(背面空間13)が有る。このため、以下の2種類の共鳴周波数を持つ。
 1.膜16につける錘としての共鳴体18のサイズと背面空気層(背面空間13)の大きさによって決まる膜16の共鳴周波数
 2.膜16についた共鳴体18(ヘルムホルツ共振器18a自体)の共鳴周波数
 これらの2種類の共鳴周波数を独立に設定することにより、複数の吸収ピークを得ることができる。さらに、錘付き膜型共鳴体11では、難しい大型化を伴わないで、低周波での吸収ピーク発現も同時に実現できる。
(実施形態3の防音構造)
 図11は、本発明の実施形態3に係る防音構造の一例を模式的に示す断面図である。
 図11に示す本実施形態3の防音構造40は、図1に示す防音セル10を、本発明の開口部材であるアルミニウム製の断面円形の管体42(の開口42a)内に、管体42の開口断面42bに対して膜16の膜面を所定角度(図11に示す例では角度90°)傾け、即ち、音波の進行方向に対して平行な位置から所定角度範囲内(図11に示す例では、好ましい平行な位置である0°)に配置して、管体42内の開口42aに気体が通過する通気孔42cとなる領域を設けた状態で配置した構造を有する。
 ここで、管体42は、気体の通過を遮断する物体の領域内に形成される開口部材であるが、管体42の管壁は、気体の通過を遮断する物体、例えば2つの空間を隔てる物体等の壁を構成し、管体42の内部は、気体の通過を遮断する物体の一部の領域に形成された開口42aを構成する。
 開口断面42bは、管体42の軸方向に直交する管体42の開口42aの断面ということができる。なお、管体42内を進行する音波は、管体42の軸方向に沿って進行するので、音波の進行方向に垂直な管体42の開口42aの断面ということもできる。
 なお、本発明において、開口部材は、気体の通過を遮断する物体の領域内に形成される開口を有することが好ましく、2つの空間を隔てる壁に設けられることが好ましい。
 ここで、開口が形成される領域を持ち、気体の通過を遮断する物体とは、2つの空間を隔てる部材、及び壁等を言い、部材としては、管体、又は筒状体等の部材を言い、壁としては、例えば、家、ビル、又は工場等の建造物の構造体を構成する固定壁、建造物の部屋内に配置され、部屋内を仕切る固定間仕切り(パーティション)等の固定壁、建造物の部屋内に配置され、部屋内を仕切る可動間仕切り(パーティション)等の可動壁等を言う。
 本発明の開口部材は、ダクト等の管体、又は筒体であっても良いし、ルーバ、又はガラリ等の換気孔、窓等を取り付けるための開口を持つ壁自体であっても良いし、壁に取り付けられる窓枠等の取付枠等であっても良い。
 なお、本発明の開口部材の開口の形状は、断面形状で、図示例では円形であるが、本発明においては、防音セルを開口内に配置できれば、特に制限的ではなく、例えば、正方形、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、若しくは楕円形等であっても良いし、不定形であっても良い。
 また、本発明の開口部材の材料としては、特に制限的ではなく、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、又はこれらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、又はトリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、カーボンファイバ、又はガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)、若しくは建造物の壁材と同様なコンクリート、又はモルタル等の壁材等を挙げることができる。
 防音セル10は、開口部材である管体42内において、防音セル10の最低次の共鳴周波数の音波が管体42に形成する音圧が高い位置、好ましくは音圧分布の極大値となる位置に配置される。具体的には、防音セル10は、防音セル10の最低次の共鳴周波数の音波が管体42に形成する定在波の音圧分布の極大値となる腹の位置から、±λ/4以内に配置されることが好ましい。また、防音セル10は、定在波の音圧分布の腹の位置から、±λ/6以内に配置されることがより好ましく、±λ/8以内に配置されることがさらに好ましく、定在波の音圧分布の腹の位置に配置されていることが最も好ましい。
 また、例えば、管体42が、その開放端に壁、又はカバー等の物体が配置された筒、又はダクトである場合、即ち物体が音波の固定端となる場合は、防音セル10が、物体から、防音セル10の最低次の共鳴周波数の音波のλ/4以内に配置されることが好ましく、λ/6以内に配置されることがより好ましく、λ/8以内に配置されることが最も好ましい。
 一方、管体42が、その開放端に壁やカバー等の物体が何も配置されていない筒、又はダクトである場合、すなわち、管体の開放端が音波の自由端となる場合は、防音セル10が、開放端から、防音セル10の最低次の共鳴周波数の音波のλ/4-開口端補正距離±λ/4以内に配置されることが好ましく、λ/4-開口端補正距離±λ/6以内に配置されることがより好ましく、λ/4-開口端補正距離±λ/8以内に配置されることが最も好ましい。
 このように、防音セルを管体42内の上述の所定の位置に配置することが好ましい。
 ここで、本発明の防音構造40の開口部材(管体42)の開口率は、下記式(1)で定義されるものである。
   開口率(%)={1-(開口断面における防音セルの断面積/開口断面積)}
          ×100…(1)
 本実施形態3の防音構造40においては、図12に示すように、開口部材である管体42内に、防音セル10が膜16の膜面を管体42の開口断面42bに対して略平行に、又は所定の傾斜角度θで傾斜させて配置されている。なお、図12に示す傾斜した防音セル10の膜16の膜面と管体42の管壁との間にできる隙間は、管体42の開口42aに形成される気体の通過が可能な通気孔42cとなる。
 本発明においては、防音構造40の開口部材(管体42)の開口率は、即ちこの通気孔42cの開口率は、10%以上が好ましく、25%以上がより好ましく、50%以上がさらに好ましい。
 ここで、通気孔42cの開口率が、10%以上が好ましい理由は、市販の通気性を有する防音部材(エアトース(登録商標))の開口率が6%程度であるが、本発明の防音構造は、従来(市販品)にない2桁以上の開口率においても、高い防音性性能を発揮できるからである。
 また、通気孔42cの開口率が、25%以上が好ましい理由は、本発明の防音構造は、標準的なサッシ、又はガラリの25%~30%の開口率においても、高い防音性性能を発揮できるからである。
 また、通気孔42cの開口率が、50%以上が好ましい理由は、本発明の防音構造は、高通気性のサッシ、又はガラリの50~80%の開口率においても、高い防音性性能を発揮できるからである。
 また、本発明の実施形態3においては、図12示す、管体42内の音波の進行方向に対する膜16の膜面の傾斜角度θは、通気性の点から、-45°~+45°であることが好ましく、-20°~+20°がより好ましい。
 ここで、傾斜角度θが-45°~+45°であることが好ましい理由は、45°より大きくなると、膜面に風が当たることによって膜振動が阻害され、吸収率のピーク値が小さくなり、その結果共鳴周波数がずれてしまうからであり、-45度よりも小さくなると、音が構造に入りにくくなり、吸収が小さくなってしまうためである。
 また、傾斜角度θが-45°~+45°であることが好ましい理由は、通風性を考慮した標準的なサッシ及びガラリの角度が約45度程度であるためである。
 また、-20°~+20°がより好ましい理由は、風による、膜16にかかる定圧力の影響を最小限に抑制でき、風速が大きくなっても防音特性の変化を抑制できるからである。また、-20°~+20°以上では、風速の減少がなくなり、最も通気能力が高い状態となるからである。
 上述した実施形態1の防音構造40は、1つの孔部12を持つ1つの枠14と、1つの膜16とからなる1個の防音セル10(図1参照)を、管体42(の開口42a)内に配置したものであるが、本発明は、これに限定されず、複数個の防音セルを、防音セルユニットとして、管体42内に配置したものであっても良い。なお、複数個の防音セルは、上記実施形態1の防音セル10、又は10A、もしくは上記実施形態2の防音セル10B、10C、10D、10E、又は10Fと同じ防音セルであっても良いし、異なっていても良い。また、防音構造40に適用される防音セルユニットの防音セルの数は、複数個であれば、何個であっても良い。
 なお、防音セルユニットを構成する複数個の防音セルの複数の枠は、2次元的に繋がるように配置された枠体、好ましくは1つの枠体として構成され、この枠体は、枠部材によって構成されることが好ましい。なお、複数の枠は、一列に配置されていても良いし、2次元的に配置されていても良い。
 なお、防音セルユニットにおいて、各防音セル10~10F(以下、10で代表する)の枠14の孔部12のサイズLは、全ての孔部12おいて、一定であっても良いが、異なるサイズ(形状が異なる場合も含む)の枠が含まれていても良く、この場合には、孔部12のサイズとして、孔部12の平均サイズを用いればよい。即ち、枠14(孔部12)のサイズLは、各枠14で異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
 また、枠14の幅w、及び孔部12の深さdは、各枠14で異なる幅、及び孔部12の深さが含まれる場合などは、それぞれ平均幅及び平均厚さで表すことが好ましい。
 防音セルユニットの防音セル10の数、即ち枠14の数、即ち、孔部12の数も、特に制限的ではなく、上述した防音対象物に応じて設定すればよい。もしくは、上述した孔部12のサイズは、上述した防音対象物に応じて設定されているので、枠14の孔部12の数は、孔部12のサイズに応じて設定すればよい。なお、1つの防音セル10は、1つの枠14を構成単位とするので、防音セルユニットの枠14の数は、防音セル10の数ということができる。
 例えば、枠14の数は、機器内騒音を遮蔽する場合には、1個~10000個であることが好ましく、2~5000であることがより好ましく、4~1000であることが最も好ましい。なお、ここでの「遮蔽」とは、反射、及び/または吸収による遮蔽のことをいう。
 これは、一般の機器の大きさに対しては、機器のサイズが決まっているために、1つの防音セル10のサイズを騒音の周波数及び音量に適したサイズとするためには、複数の防音セル10を組み合わせた枠体で遮蔽する必要があることが多く、また、一方で防音セル10を増やしすぎることで枠14の重量分全体重量が大きくなることがあるためである。一方で、大きさに制約のないパーティションのような構造では、必要とされる全体の大きさに合わせて枠14の個数を自由に選ぶことができる。
 複数の枠14を有する枠体の材料としては、枠14の材料と同様な材料を用いることができる。
 また、防音セルユニットの複数の防音セルの膜16は、それぞれ防音セルユニットの複数の枠14の各孔部12を覆うように固定され、それぞれ共鳴体18を設置しているものであるが、1枚のシート状の膜体によって複数の枠14の各孔部12を覆うように固定されていても良いし、各膜16が各枠14の孔部12を覆うように固定されていても良い。即ち、複数の膜16は、複数の枠14を覆う1枚のシート状の膜体によって構成されるものであっても良いし、各枠14の孔部12を覆うものであっても良い。なお、各膜16には、それぞれ共鳴体18が設置されていることは勿論である。
 なお、膜16の厚さは、各膜16で異なる厚さが含まれる場合などは、平均厚さで表すことが好ましい。
 ここで、防音セルユニットの複数の枠14の孔部12の同じ側に全ての膜16、及び共鳴体18が設けられていても良いし、一部の膜16、及び共鳴体18が、複数の枠14の一部の孔部12の一方の側に一部の膜16、及び共鳴体18が設けられ、複数の枠14の残りの一部の孔部12の他方の側には残りの膜16、及び共鳴体18が設けられていても良いし、更に、枠14の孔部12一方の側、他方の側、及び両側に設けられた膜16、及び共鳴体18が混在していても良い。
 また、防音セルユニットにおいては、同じ材料からなる膜16、又は膜体と枠14、又は枠体が一体化した構造であっても良い。
 防音セル10の枠14に固定された膜16は、防音セル10の構造において、誘起可能な最も低次の振動モードの周波数である最低次の共鳴周波数を持つものであるが、防音セルユニットにおいては、この最低次の共鳴周波数は、それぞれ枠14、膜16、及び共鳴体18からなる複数個の防音セル10によって決まる。本発明では、このようにして決まる最低次の共鳴周波数を防音セルユニットにおける膜の最低次の共鳴周波数という。
 防音セルユニットにおいて、複数の枠14、膜16、及び共鳴体18からなる複数個の防音セル構造における膜16の共振周波数、例えば最低次の共鳴周波数は、複数の防音セル10の枠14の幾何学的形態、例えば枠14の形状及び寸法(サイズ)と、複数の防音セルの膜の剛性、例えば膜の厚さ及び可撓性と、膜16の背面空間13(13a、又は13d)の体積、膜16の錘として機能する共鳴体18の重さとによって定めることができる。
 本発明は、孔部を持つ枠と、孔部を覆うように枠に固定された膜と、膜に設置された音波に対する共鳴体とを備える防音セルを少なくとも一つ有する防音構造であって、開口を有する開口部材に、開口部材の開口断面に対して、膜の膜面を傾け、開口部材に気体が通過する通気孔となる領域を設けた状態で防音セルを配置した防音構造である。
 本発明の防音構造では、上述したように、共鳴体を含む膜からなる膜型共鳴体を持つ防音セルの吸収ピークを発現する周波数は、共鳴体のサイズ、及び質量等で制御することが可能であり、更に共鳴体自体の吸収ピークを発現する周波数は、例えばヘルムホルツ型の場合は共鳴穴の径、及び共鳴穴の長さ等で、膜型共鳴体の場合には孔部のサイズ、及び深さ等で、制御することが可能である。つまり、本発明の防音構造では、2つの共鳴周波数を独立に制御することが可能となる。
 本発明の実施形態3の防音構造は、以上のように構成される。
 以上、本発明の防音セル、及びこれを用いる防音構造についての種々の実施形態及び実施例を挙げて詳細に説明したが、本発明は、これらの実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
 本発明の防音セル、及びこれを用いる防音構造を実施例に基づいて具体的に説明する。
(実施例1)
 まず、図1に示す本発明の防音セル10を実施例1として作製した。
 防音セル10は、孔部12を有する枠14と、孔部12を覆うように枠14に固定された振動可能な膜16とを有する膜型共鳴体11と、膜16に共鳴体18としてヘルムホルツ共振器18aを設置したものであった。
 当該実施例1では、図1に示すように、枠14の囲む部15aとして、孔部12のサイズLが内辺40mmの正方形であり、その深さ(背面距離)dが20mmであり、膜16を固定する枠14の幅(外周の厚み)wが3mmである金属アルミニウムの角筒を用いた。また、同様に、厚み3mmの金属アルミニウムの一辺46mm角正方形板を底部15bの部材として準備し、枠14の孔部12の片側の開口の端部に取り付けて底部15bとした。こうして、囲む部15a、及び底部15bを持つ有底枠である枠14を製作した。
 次に、一辺46mmの正方形のPETフィルム(東レ(株)社製ルミラー、厚み125μm)の膜32(図8参照)の中央に内径5.5mmの円形の貫通孔17を穿孔して、膜16を作製した。
 次に、内径3.5mm、長さ5mmの円形の貫通孔24aを持つ外径5.5mm、長さ5mmの筒状体24と、内径3.5mm、長さ1mmの円形の貫通孔20aを持ち、これに連通する一辺18mmの正方形断面、深さ5mmの直方体形状の中空空間21を持つ厚み1mmの、筺体20と、を有するアクリル製のヘルムホルツ共振器18aを共鳴体18として製作した。ヘルムホルツ共振器18aの共鳴穴22は、内径3.5mm、長さ6mmの円形の穴となった。また、筺体20の外形は、20mm×20mm×7mmの直方体形状となった。
 次に、PETフィルムの膜16の中央の貫通孔17にヘルムホルツ共振器18aの筒状体24を通し、膜16と、ヘルムホルツ共振器18aの筒状体24、及び筺体20の接触部分を両面テープによって固定した。
 最後に、枠14の孔部12の開口の端部の枠の幅部分に、中央にヘルムホルツ共振器18aが固定された一辺46mm正方形の膜16となるPETフィルムを取り付けた。取り付けは両面テープによる接着によって行った。
 こうして、図1に示す防音セル10を作製した。
 この防音セル10において、膜16が膜として振動できる領域は、ヘルムホルツ共振器18aが接着されていない膜単体の領域であり、枠14の孔部12の開口部の面積(40mm×40mm=1600mm)から、錘として振動する面積であるヘルムホルツ共振器18aの筐体20の面積(20mm×20mm=400mm)を引いた領域であり、1200mmであった。したがって、膜16が膜として振動できる領域(1200mm)は、錘として振動する面積(400mm)より大きいことが分かった。なお、錘として振動する面積(400mm)は、開口部の面積(1600mm)の25%であった。
(比較例1)
 図8に示すように、PETフィルムの膜16の中央に貫通孔17が無く、かつヘルムホルツ共振器18aが固定されていないことを除いては、図1に示す実施例1の防音セル10と同様の従来技術の比較例1の防音セル30を作製した。即ち、比較例1の防音セル30は、貫通孔17を穿孔する前の一辺46mmの正方形のPETフィルムの膜32を枠14の幅部分に両面テープによる接着を行ったものである。
(比較例2)
 図13に示すように、図8に示す比較例1の防音セル30のPETフィルムの膜32の裏面の中央に、図1に示すヘルムホルツ共振器18aの筺体20と同じ形状を有し、筺体20の中空空間21と同じ大きさの中空空間35を持ち、貫通孔20aを持たない、外形20mm×20mm×7mmの直方体形状の筺体36を両面テープによって接着して固定した従来技術の比較例2の防音セル34を作製した。
(比較例3)
 図9に示すように、図1に示す実施例1の防音セル10を作製する際に、作製したヘルムホルツ共振器18aを、単体で従来技術の比較例3の防音セル37として用いた。
(比較例4)
 図14に示すように、図8に示す比較例1の防音セル30のPETフィルムの膜32の裏面の中央に、図13に示す比較例2の防音セル34の筺体36の代わりに、筺体36と同じ外形であるが内部に中空空間35を持たない点で異なる中実の筺体39を両面テープによって接着して固定した従来技術の比較例2の防音セル38を作製した。
 こうして作製した実施例1、比較例1、2、3、及び4の防音セル10、30、34、37、及び38の音響特性をそれぞれ測定した。音響測定は、内径8cmの音響管を用い、以下のようにして行った。
 音響特性は、図15に示すように、アルミニウム製音響管(管体42)に4つのマイクロフォン44を用いて伝達関数法による測定を行った。この手法は「ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method」に従うものである。音響管としては、例えば日東紡音響エンジニアリング株式会社製のWinZacと同一の測定原理であるものとして、アルミニウム製の管体42を用いた。管体42の内部にスピーカ(図示せず)を収納した円筒状の函体(図示せず)を配置し、函体(図示せず)に管体42を載置した。スピーカ(図示せず)から所定音圧の音を出力し、4本のマイクロフォン44で測定した。この方法で広いスペクトル帯域において音響透過損失を測定することができる。実施例1の防音セル10を音響管となる管体42の所定測定部位に防音セル10の膜16の膜面を傾斜させて配置して、本発明の実施形態3の防音構造40を構成し、100Hz~4000Hzの範囲で音響吸収率測定を行った。
 実施例1、比較例1、2、3、及び4の防音セルを用いた防音セル10、30、34、37、及び38の吸収率を測定した結果を図16に示す。
 図16に実線で示す結果から、本発明の構成である実施例1の防音セル10においては、共鳴体18(ヘルムホルツ共振器18a)由来の共鳴ピーク、及び膜16に設置した共鳴体18の錘としての機能する構造によって規定される膜16の共鳴ピークの2つの吸収ピークが発現できることが示されたことが分かる。ここで、枠14、及び膜16からなる膜型共鳴体11を変更することなく、共鳴体18自身の持つ共鳴ピークは、共鳴体18の構成を変更することにより自由に変えることができる。一方、膜16の共鳴ピークは、膜型共鳴体11を変更することなく、膜16に設置する共鳴体18の錘としての機能(重さ)を変えることにより自由に変えることができる。したがって、これらの2つの吸収ピークは、膜型共鳴体11を変更することなく、自由に変更できることが分かる。
 これに対し、図16に点線で示す結果から、比較例1の防音セル30においては、膜32の共鳴ピークとして2つの吸収ピークを発現している。しかしながら、これらの2つの吸収ピークは、膜型共鳴体である防音セル30によって決まった共鳴ピークであるので、膜型共鳴体自体の構成を変更しない限り、変更することができないことが分かる。
 なお、実施例1の防音セル10の2つの吸収ピークの低周波側の吸収ピークは、類似の膜型共鳴体を持つ比較例1の防音セル30の2つの吸収ピークより低周波化していることが分かる。
 また、図16に一点鎖線で示す結果から、比較例2の防音セル34においては、実施例1の防音セル10の2つの吸収ピークの低周波側の周波数において1つの吸収ピークを発現しているに過ぎないことが分かる。これは、膜16、及び32に対してそれぞれ錘として機能する共鳴体18、及び筺体36が共にそれぞれ中空空間21、及び35を有しており、同様の質量を示していることから、同様に低周波化した吸収ピークを発現しているものと思われる。
 また、図16に二点鎖線で示す結果から、比較例3の防音セル37においては、防音セル37が、ヘルムホルツ共振器18a単体であるので、実施例1の防音セル10の2つの吸収ピークの高周波側の周波数に近い周波数において1つの吸収ピークを発現しているに過ぎないし、吸収率が低下していることが分かる。これは、実施例1の防音セル10において、共鳴体18であるヘルムホルツ共振器18aは、膜型共鳴体11の影響をあまり受けていないことが分かる。
 また、図16に破線で示す結果から、比較例4の防音セル38においては、実施例1の防音セル10の2つの吸収ピークの低周波側の周波数に近い周波数において1つの吸収ピークを発現しているが、吸収率が低下していることが分かる。これは、膜32に対して錘として機能する筺体39が中空空間を有しておらず、中実の筺体であるため、質量が増加しているためであると思われる。
 以上より、本発明の優位性が示されたことが分かる。
(比較例5)
 次に、図17に示すように、図8に示す比較例1の防音セル30のPETフィルムの膜32と同じ一辺46mmの正方形のPETフィルムの膜52の裏面の中央に、厚さ5mm、一辺20mmの正方形のアクリル部材54を両面テープによって接着して固定した。この後、膜52の中央に、膜52及びアクリル部材54を貫通する直径10mmΦの貫通孔53を設けた。このPETフィルムの膜52を枠14の幅部分に両面テープによって接着して固定して、従来技術の比較例5のヘルムホルツ共鳴穴となる貫通孔53を持つ防音セル50を作製した。
(比較例6)
 図18、及び図19に示すように、図8に示す比較例1の防音セル30のPETフィルムの膜32と同じ一辺46mmの正方形のPETフィルムの膜52の裏面の1つの角部の2辺からそれぞれ3mm内側に、厚さ2mm、一辺8mmの正方形のアクリル部材58を両面テープによって接着して固定した。この後、アクリル部材58の中心に、膜52及びアクリル部材58を貫通する直径6mmΦの貫通孔57を設けた。このPETフィルムの膜52を枠14の幅部分に両面テープによって接着して固定して、従来技術の比較例6のヘルムホルツ共鳴穴となる貫通孔57を持つ防音セル56を作製した。
(参考例1)
 図20に示すように、図8に示す比較例1の防音セル30のPETフィルムの膜32の代わりに、中央に貫通孔61を持つ、厚さ5mm、一辺40mmのアクリル板62を枠14の孔部12の内面に両面テープによって接着して固定して、従来技術の参考例1の単なるヘルムホルツ共振器からなる防音セル60を作製した。
(参考例2)
 図21に示すように、図20に示す参考例1の防音セル60のアクリル板62の代わりに、1つの角部の2辺からそれぞれ4mm内側の点を中心とする直径6mmΦの貫通孔65が穿孔された、厚さ2mm、一辺40mmのアクリル板66を枠14の孔部12の内面に両面テープによって接着して固定して、従来技術の参考例2の単なるヘルムホルツ共振器からなる防音セル64を作製した。
 こうして作製した比較例5~6、及び参考例1~2の防音セル50、56、60、及び64の音響特性を、実施例1、比較例1、2、3、及び4の防音セル10、30、34、37、及び38と同様にして、図15に示す防音構造40を構成して測定した。こうして、100Hz~4000Hzの範囲で比較例5~6、及び参考例1~2の防音セル50、56、60、及び64の音響吸収率測定を行った。
 比較例5~6、及び参考例1~2の防音セル50、56、60、及び64を用いた防音構造の吸収率を測定した結果を図22に示す。
 比較例5の防音セル50は、従来技術の特許文献3の吸音体に相当するものであると考えることができる。即ち、比較例5の防音セル50は、膜52の中央にヘルムホルツ共鳴穴となる貫通孔53を持つので、参考例1の防音セル60のようなヘルムホルツ共振器の機能を持つものと考えられる。また、比較例5の防音セル50は、膜52の裏面の中央にアクリル部材54を備えているので、比較例4の防音セル38のような膜52の裏面の中央に錘となる筺体39を備える膜共鳴体の機能を持つものとも考えられる。
 ここで、図22に実線で示すように、ヘルムホルツ共振器の共鳴周波数は、参考例1の防音セル60のグラフから750Hz近傍であることが確認でき、図22に点線で示すように、比較例5の防音セル50も、750Hz近傍に吸収率のピークを持つ。一方で膜共鳴体における共鳴周波数は、図16に破線で示すように、比較例4の防音セル38のグラフから250Hz近傍であることが分かっているものの、比較例5の防音セル50では、図22に点線で示すように、250Hz近傍にピークが確認できない。これは、膜52(及び錘となるアクリル部材54)に貫通孔53があいているため、膜共鳴の共鳴周波数であっても、膜が振動し難い、即ちインピーダンスが大きいため、音は相対的にインピーダンスの小さい穴を通り、結果として膜共鳴の吸収が弱くなってしまうためと考えられる。
 比較例6の防音セル56は、従来技術の特許文献3の吸音体に相当するものであると考えることができる。即ち、比較例6の防音セル56は、膜52の角部にヘルムホルツ共鳴穴となる貫通孔57を持つので、参考例2の防音セル64のようなヘルムホルツ共振器の機能を持つものと考えられる。また、比較例6の防音セル56は、アクリル部材54及び貫通孔57を備えているのは、膜52の角部であり、膜振動に与える影響は少ないので、比較例1の防音セル30のような膜52の膜振動による膜共鳴体の機能を持つものとも考えられる。
 ここで、図22に2点鎖線で示すように、ヘルムホルツの共鳴周波数は、参考例2の防音セル64のグラフから、550Hz付近であることが分かる。しかし、比較例6においては、図22に破線で示すように、550Hz付近にピークが確認できず、比較例1の防音セル30のような膜共鳴と思われる2つの吸収ピークだけが確認できる。これは、ヘルムホルツ共振の共鳴周波数において、膜52が振動しやすく、音が抜けてしまうため、ヘルムホルツ共鳴が発現しないためと考えられる。
 以上の比較例5~6、及び参考例1~2の結果から、特許文献3の技術においては、背面空間が共有している場合において(特に、膜16の膜面に平行に音が入射した場合において)、共鳴吸音を両立することが難しくなってしまうことが明らかである。
 本発明においては、共鳴体の背面空間と膜共鳴体の背面空間とをそれぞれ独立にすることによって、膜共鳴とヘルムホルツ共鳴、又は他の膜共鳴とを両立させることを可能にしている。
(比較例7)
 図23に示すように、図1に示す実施例1の防音セル10の共鳴体18であるヘルムホルツ共振器18aの筐体20の代わりに、外形が30mm×30mm×7mmの直方体形状で、内部の中空空間73が、28mm×28mm×5mmの直方体形状である厚み1mmの筺体74を持つヘルムホルツ共振器72を持つ防音セル70を作製した。なお、筺体74の貫通孔74aは、筐体20の貫通孔20aと同じく、内径3.5mm、長さ1mmであった。したがって、ヘルムホルツ共振器72の共鳴穴76は、ヘルムホルツ共振器18aの共鳴穴22と同じく、内径3.5mm、長さ6mmの円形の穴であった。また、膜16、及びヘルムホルツ共振器72の筐体74の背面には、背面空間75が形成された。
 この防音セル70において、膜16が膜として振動できる領域は、ヘルムホルツ共振器72が接着されていない膜単体の領域であり、枠14の孔部12の開口部の面積(40mm×40mm=1600mm)から、錘として振動する面積であるヘルムホルツ共振器72の筐体74の面積(30mm×30mm=900mm)を引いた領域の面積で、700mmであった。したがって、膜16が膜として振動できる領域の面積(700mm)は、錘として振動する面積(900mm)より小さいことが分かった。なお、錘として振動する面積(900mm)は、開口部の面積(1600mm)の56%であった。
 こうして作製した比較例7の防音セル70、及び実施例1の防音セル10の音響特性をCOMSOLマルチフィジックスver5.3aの音響モジュールを用いて有限要素法のシミュレーションにより測定し、吸収率を調べた。
 その結果を図24に示す。
 図24に示すように、実線で示す比較例7の防音セル70の吸収率のピークは、破線で示す実施例1の防音セル10の吸収率のピークより低く、比較例7の防音セル70の吸収率のピーク(共鳴)周波数380Hzは、実施例1の防音セル10の吸収率のピーク(共鳴)周波数260Hzより高いことが分かった。その結果、実施例1の防音セル10の構成に対して、比較例7の防音セル70の構成は、吸収率が小さく、また、低周波化の程度も小さいことが分かった。
 吸収率のピークが低い理由としては、膜16に対して、錘が占める面積割合が増加しすぎた結果、膜16が振動しにくくなったためと考えられる。
 その点を明らかするため、更にシミュレーションで、実施例1の防音セル10、及び比較例7の防音セル70の各共鳴周波数における振動歪みの振幅分布を調べた。実施例1の共鳴周波数260Hzにおける振動歪みの振幅分布を図25に、比較例7の共鳴周波数380Hzにおける振動歪みの振幅分布を図26に示す。
 図25、及び図26から、実施例1に対して、比較例7は、振動歪みの振幅が極めて小さくなっていることが分かる。
 以上のことから、膜16として振動できる部分に対して、錘として振動する部分の面積が小さくなければ、低周波で高い共鳴周波数を得ることができなくなってしまうことが明らかとなった。
 以上より、本発明の優位性が示されたことが分かる。
 以上から、本発明の効果は明らかである。
 なお、本発明において、錘として機能する共鳴体18は、少なくとも膜16の端部が全て固定端とした場合の枠14の孔部12の開口面で規定される最低次モードにおいて最大となる位置に配置されてなる規定は、枠14の孔部12の開口部の形状(開口部の平面)が決まれば、それに応じて膜16の振動モードが一意に決まるからである。
 図27の模式図に示すように、開口部の平面が四角形の場合において四端固定端の最低次の振動モード(振幅絶対値の分布)は、Formulas for Dynamics, Acoustics and Vibration (Robert D. Blevins 著、2015)を参考に円形の山が1つの振幅モードとなる。ここで、最低次の振動モードとは、x方向、y方向のいずれも振動が1次(最低次)のモードの場合である。
 なお、x方向が2次、y方向が1次の場合は、図28の模式図ような高次の振動モードが発現する。
 図27、及び図28の各図において、上部の線は、各図の点線上での振幅分布を示す。
 以上から、上記規定は、膜16の振動モードが一意に決まることから、適切である。
 本発明の防音セル、及びこれを備える防音構造は、通気性と防音との両立が求められるダクト、マフラー、及び換気フリーブ等、並びに、機械騒音を発するファン、例えば複写機ファン、及び電子機器ファン等に用いることができる。また、
10、10A、10B、10C、10D、10E、10F、30、34、37、38、50、56、60、64、70 防音セル
11、18c、18d、18e、18f 膜型共鳴体
12、12a、12b、12c、12d 孔部
13、13a、13d、33、75 背面空間
13b、13c、13e、13f、21、27、35、73 中空空間
14,14a、14b、14c、14d 枠
15a、15c 囲み部
15b 底部
16、16a、16b、16c、16d、32、52 膜
17、17a、20a、24a、53、57、61、65、74a 貫通孔
18 共鳴体
18a、18b、18g、72 ヘルムホルツ共振器
20、26、36、39、74 筺体
22、28、76 共鳴穴
24 筒状体
40 防音構造
42 管体
42a 開口
42b 開口断面
42c 通気孔
44 マイクロフォン
54、58 アクリル部材
62、66 アクリル板

Claims (16)

  1.  膜面を音波の進行方向に対して平行な位置から所定角度範囲内に配置して防音するために用いられる防音セルであって、
     孔部を持つ枠と、
     前記孔部を覆うように前記枠に固定された膜と、
     前記膜に設置され、音波に対する共鳴体と、を備え、
     前記共鳴体は、内部に中空空間を有し、前記膜のみに固定され、前記膜の振動に対して錘として機能し、
     前記錘として機能する前記共鳴体は、前記膜の端部が全て固定端とした場合の前記孔部の開口面で規定される最低次の振動モードにおいて振幅が最大となる位置に少なくとも配置されており、
     前記膜として振動できる部分の面積が、前記共鳴体が前記錘として振動する面積よりも大きく、
     前記膜と、前記枠と膜とによって形成される背面空気層からなる構造は、前記膜と前記音波の進行方向とが平行な場合において前記音波に対する共鳴構造として機能し、
     前記共鳴体の前記中空空間は、前記枠と前記膜とによって形成される前記膜の背面空間から独立した空間である防音セル。
  2.  前記膜の最低次の共鳴周波数の波長の1/4よりも小さい請求項1に記載の防音セル。
  3.  前記最低次の共鳴周波数は、10~10000Hzの範囲内に含まれる請求項2に記載の防音セル。
  4.  前記最低次の共鳴周波数が、前記枠と該枠を覆うように構成された前記膜だけから構成される前記防音セルの1次共鳴の周波数よりも低くなるように調整されている請求項2、又は3に記載の防音セル。
  5.  前記共鳴体は、ヘルムホルツ共振器である請求項1~4のいずれか1項に記載の防音セル。
  6.  前記共鳴体は、膜型共鳴体である請求項1~4のいずれか1項に記載の防音セル。
  7.  前記共鳴体の少なくとも一部は、前記共鳴セルの内部に存在する請求項1~6のいずれか1項に記載の防音セル。
  8.  前記所定角度範囲は、前記膜面が前記音波の進行方向に平行な場合を0°として、-45°~+45°である請求項1~7のいずれか1項に記載の防音セル。
  9.  請求項1~8のいずれか1項に記載の防音セルを少なくとも一つ有する防音構造であって、
     開口を有する開口部材内に、前記開口部材の開口断面を進行する前記音波の進行方向に対して前記膜の膜面を平行な位置から前記所定角度範囲内に配置して、前記開口部材に気体が通過する通気孔となる領域を設けた状態で前記防音セルを配置した防音構造。
  10.  前記防音セルは、前記防音セルの少なくとも一つの共鳴周波数において、前記開口部材に形成する音圧分布の極大値に設置されている請求項9に記載の防音構造。
  11.  前記防音セルは、前記防音セルの最低次の共鳴周波数の音波が前記開口部材に形成する定在波の音圧分布の腹の位置に配置されている請求項9、又は10に記載の防音構造。
  12.  前記防音構造は、複数の前記防音セルを有する請求項9~11のいずれか1項に記載の防音構造。
  13.  前記複数の防音セルの中には、最低次の共鳴周波数が異なる2種以上の防音セルが存在し、
     前記最低次の共鳴周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する前記最低次の共鳴周波数の音波によって前記開口部材内に形成される音圧の高い位置に配置されている請求項12に記載の防音構造。
  14.  前記複数の防音セルの中には、最低次の共鳴周波数が異なる2種以上の防音セルが存在し、
     前記最低次の共鳴周波数が異なる2種以上の防音セルは、それぞれ、各防音セルに対応する前記最低次の共鳴周波数の音波によって前記開口部材内に形成される定在波の音圧分布の腹の位置に配置されている請求項12、又は13に記載の防音構造。
  15.  前記防音セルは、前記開口部材に対し取外し可能な部材である請求項9~14のいずれか1項に記載の防音構造。
  16.  前記開口部材は、筒状体であり、前記筒状体内に前記防音セルが配置される請求項9~15いずれか1項に記載の防音構造。
PCT/JP2019/009746 2018-03-22 2019-03-11 防音セル、及びこれを用いる防音構造 WO2019181614A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-055163 2018-03-22
JP2018055163 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019181614A1 true WO2019181614A1 (ja) 2019-09-26

Family

ID=67986216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009746 WO2019181614A1 (ja) 2018-03-22 2019-03-11 防音セル、及びこれを用いる防音構造

Country Status (1)

Country Link
WO (1) WO2019181614A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878794B2 (en) * 2016-11-29 2020-12-29 Fujifilm Corporation Soundproofing structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298398A (ja) * 1985-10-24 1987-05-07 松下電工株式会社 吸音装置
JPH02282794A (ja) * 1989-04-25 1990-11-20 Matsushita Electric Works Ltd 吸音装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298398A (ja) * 1985-10-24 1987-05-07 松下電工株式会社 吸音装置
JPH02282794A (ja) * 1989-04-25 1990-11-20 Matsushita Electric Works Ltd 吸音装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878794B2 (en) * 2016-11-29 2020-12-29 Fujifilm Corporation Soundproofing structure

Similar Documents

Publication Publication Date Title
US10704255B2 (en) Soundproof structure and soundproof structure manufacturing method
WO2019203089A1 (ja) 防音構造体
JP6450003B2 (ja) 防音構造
JP6574840B2 (ja) 防音構造、ルーバ及び防音壁
US11493232B2 (en) Silencing system
US12067963B2 (en) Soundproof structure body
US11841163B2 (en) Silencing system
US10923094B2 (en) Soundproof structure
WO2016208507A1 (ja) 防音構造、ルーバーおよびパーティション
CN110785806B (zh) 隔音系统
JP6585314B2 (ja) 防音構造
JP2010097148A (ja) 吸音構造、吸音構造群及び音響室
WO2019181614A1 (ja) 防音セル、及びこれを用いる防音構造
US10861432B2 (en) Soundproof structure and opening structure
JP2019056516A (ja) 消音システム
WO2019167572A1 (ja) 防音構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP