WO2019181318A1 - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
WO2019181318A1
WO2019181318A1 PCT/JP2019/005739 JP2019005739W WO2019181318A1 WO 2019181318 A1 WO2019181318 A1 WO 2019181318A1 JP 2019005739 W JP2019005739 W JP 2019005739W WO 2019181318 A1 WO2019181318 A1 WO 2019181318A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency power
transmission line
wave transmission
surface wave
heated
Prior art date
Application number
PCT/JP2019/005739
Other languages
English (en)
French (fr)
Inventor
岡島 利幸
大森 義治
和樹 前田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980003877.7A priority Critical patent/CN111034357B/zh
Priority to EP19770268.1A priority patent/EP3771290A4/en
Priority to JP2020507439A priority patent/JP7249491B2/ja
Publication of WO2019181318A1 publication Critical patent/WO2019181318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides

Definitions

  • the present invention relates to a high-frequency heating apparatus that heats an object to be heated through a surface wave transmission line using a periodic structure.
  • the high-frequency power that propagates through the surface wave transmission line is Is absorbed by the object to be heated installed in the vicinity. Thereby, the high frequency power attenuates as it propagates through the surface wave transmission line.
  • the object to be heated is a surface wave transmission line.
  • the power supply side is strongly heated.
  • the heating of the object to be heated becomes weaker as the distance from the power feeding side increases. Thereby, the heating unevenness occurs in the object to be heated with respect to the propagation direction of the high frequency power in the surface wave transmission line.
  • the high-frequency thawing heating device described in Patent Document 1 is configured such that one end of the installation base on which the object to be heated is supplied and the high-frequency power supplied to the surface wave transmission line is vertically movable, and the installation base is tilted upward. Is provided. Thereby, in the article to be heated, the feeding side of the surface wave transmission line is strongly heated, and the heating becomes weaker as the distance from the feeding side is reduced. As a result, it is said that the frozen portion of the frozen sushi can be efficiently thawed or heated using the surface wave transmission line.
  • the present invention provides a high-frequency heating device that can uniformly heat a heated object and prevent rolling of the heated object with respect to the propagation direction of the high-frequency power of the surface wave transmission line.
  • the present invention is a high-frequency heating apparatus that heats an object to be heated installed on an installation table.
  • the high-frequency heating device includes at least one surface wave transmission line provided in the vicinity of the installation table, at least one high-frequency power generation unit that generates high-frequency power, and directly supplies high-frequency power to the surface wave transmission line, One high-frequency power feeder is provided.
  • the surface wave transmission line is configured to have an inclination with respect to the propagation direction of the high frequency power so that the distance between the surface wave transmission line and the installation base becomes large on the high frequency power feeding unit side, and the surface wave transmission It is arranged on the track.
  • the distance between the installation table and the surface wave transmission line becomes smaller without moving the installation table, as the distance from the high frequency power supply side of the surface wave transmission line increases.
  • the absorption of the high-frequency power propagating through the surface wave transmission line into the object to be heated increases as the distance from the side of the surface wave transmission line to which the high-frequency power is supplied is increased.
  • the high-frequency power of the surface wave transmission line can be uniformly heated with respect to the propagation direction.
  • the installation table can be maintained in a horizontal state, it is possible to prevent the occurrence of problems such as the object to be heated installed on the installation table rolling.
  • the high-frequency heating device of the present invention is provided with high-frequency power feeding portions at both ends of the surface wave transmission line, and the surface wave transmission line is substantially at the apex of the intermediate portion with respect to the propagation direction of the high-frequency power. You may comprise so that it may have the mountain-shaped inclination which becomes.
  • high frequency power can be supplied from both ends of the surface wave transmission line. Furthermore, without moving the installation table, the distance between the installation table and the surface wave transmission line can be reduced as the distance from the power supply side of the surface wave transmission line increases. As a result, even when a plurality of objects to be heated are installed side by side with respect to the propagation direction of the high-frequency power of the surface wave transmission line, or when a heated object having a large length is installed, the high-frequency power of the surface wave transmission line The object to be heated can be heated more uniformly with respect to the propagation direction. Furthermore, since the installation table can be maintained in a horizontal state, it is possible to prevent the occurrence of problems such as the object to be heated installed on the installation table rolling.
  • FIG. 1 is a block diagram showing a basic configuration of a high-frequency heating device according to Embodiment 1 of the present invention.
  • FIG. 2A is a plan view showing a configuration of a high-frequency power feeding unit of the high-frequency heating device.
  • FIG. 2B is a side view showing a configuration of a high-frequency power feeder of the high-frequency heating device.
  • FIG. 3 is a diagram showing an example of the shape of the surface wave transmission line of the high-frequency heating device.
  • FIG. 4 is a diagram showing an electric field strength distribution of high-frequency power propagating through a general surface acoustic wave transmission line.
  • FIG. 5 is a diagram showing the electric field strength distribution of the high-frequency power during the heating operation of the object to be heated by the surface wave transmission line shown in FIG.
  • FIG. 6 is a diagram showing a heating operation of the object to be heated by the surface wave transmission line of the high-frequency heating device in the same embodiment.
  • FIG. 7 is a diagram illustrating another example of the shape of the surface wave transmission line of the high-frequency heating device according to the embodiment.
  • FIG. 8 is a block diagram showing a basic configuration of the high-frequency heating device according to Embodiment 2 of the present invention.
  • FIG. 9 is a view showing the shape of the surface wave transmission line of the high-frequency heating device.
  • FIG. 10 is a diagram illustrating a heating operation of an object to be heated by a surface wave transmission line of a general high-frequency heating device.
  • FIG. 11 is a diagram showing a heating operation of the object to be heated by the surface wave transmission line of the high-frequency heating device in the same embodiment.
  • FIG. 12 is a diagram showing another example of the shape of the surface wave transmission line of the high-frequency heating device.
  • FIG. 1 is a block diagram showing a basic configuration of the high-frequency heating device 100 of the first embodiment.
  • the high-frequency heating device 100 includes an installation table 101, a surface wave transmission line 103 installed near the installation table 101, for example, below, a high-frequency power generation unit 110, and a high-frequency power supply unit 120. Etc.
  • the high-frequency heating device 100 heats the object to be heated 102 installed on the installation table 101.
  • the high frequency heating apparatus 100 shown in FIG. 1 has illustrated in the figure the example which has one surface wave transmission line, one high frequency electric power generation part, and one high frequency electric power feeding part, it is restricted to this. Absent.
  • the number of surface wave transmission lines, high-frequency power generation units, and high-frequency power supply units is not limited to the above numbers, and may be two or more.
  • the above-described high-frequency heating device 100 operates as follows.
  • the high frequency power generation unit 110 generates high frequency power.
  • the generated high frequency power is supplied to the surface wave transmission line 103 via the high frequency power supply unit 120.
  • the fed high frequency power propagates near the surface of the surface wave transmission line 103 by a surface wave or is radiated from the vicinity of the surface. Thereby, the object to be heated 102 placed on the installation table 101 is heated.
  • the high-frequency heating device 100 of the first embodiment is configured and operates.
  • the high-frequency power generation unit 110 includes a high-frequency oscillator that outputs a high-frequency power having a frequency (for example, a microwave) and power suitable for the heat treatment of the article to be heated 102.
  • a high-frequency oscillator that outputs a high-frequency power having a frequency (for example, a microwave) and power suitable for the heat treatment of the article to be heated 102.
  • the high-frequency oscillator includes, for example, a magnetron and an inverter power supply circuit, a solid-state oscillator and a power amplifier.
  • Magnetron is a type of oscillation vacuum tube that generates a powerful non-coherent microwave that is a type of radio wave, and is often used for high-power applications such as radar and microwave ovens of several hundred watts to several kilowatts. Since driving a magnetron requires a high voltage of several kilovolts, an inverter power supply circuit is generally used as a drive power supply.
  • the inverter power supply circuit includes a converter circuit having a rectifying function, and an inverter circuit having a step-up (or step-down) function and an output frequency conversion function.
  • the inverter power supply circuit is a technique widely used for lighting devices and motor control.
  • the solid state oscillator is composed of a semiconductor oscillation circuit including a feedback circuit having high frequency electronic components such as a transistor, a capacitor, an inductor, and a resistor. Note that the solid-state oscillator is a technique widely used for an oscillator for low-power output such as a communication device.
  • a solid-state oscillator that output high-frequency power of about 50 watts, but generally, oscillators that output high-frequency power of about several tens of milliwatts to several hundred milliwatts. Therefore, it cannot be used for heat treatment applications that require output power of several hundred watts. Therefore, a solid-state oscillator is usually used with a power amplifier composed of a transistor or the like that amplifies output high-frequency power.
  • the structure of the high frequency electric power generation part 110 is not specifically limited, therefore Detailed description is abbreviate
  • the high-frequency power feeding unit 120 corresponds to a power connection unit that feeds the high-frequency power generated by the high-frequency power generation unit 110 to the surface wave transmission line 103.
  • FIGS. 2A and 2B show an example of the configuration of the high-frequency power feeder 120.
  • FIG. 2A and 2B show an example of the configuration of the high-frequency power feeder 120.
  • FIG. 2A is a plan view of the configuration around the high-frequency power feeding unit 120 as seen from above.
  • FIG. 2B is a side view of the periphery of the high-frequency power feeder 120.
  • a magnetron 111 is used as the high-frequency power generation unit 110 shown in FIG.
  • the magnetron 111 is disposed so as to guide the generated high frequency power to the high frequency power feeding unit 120 using the rectangular waveguide 121.
  • the rectangular waveguide 121 is mainly composed of a hollow waveguide used for transmission of electromagnetic waves such as microwaves.
  • the hollow waveguide is a general waveguide and is formed of a metal tube having a square cross section (for example, a rectangle).
  • the electromagnetic wave propagates through the rectangular waveguide 121 while forming an electromagnetic field according to the shape, size, wavelength or frequency of the rectangular waveguide 121.
  • FIGS. 2A and 2B show the configuration using the rectangular waveguide 121 as an example, but the present invention is not limited to this.
  • other power feeding methods such as power feeding using a loop antenna may be used.
  • the surface wave transmission line 103 includes a metal periodic structure in which impedance elements are periodically arranged with a metal plate, a dielectric plate, or the like.
  • a metal periodic structure for example, a stub type surface wave transmission line or an interdigital type surface wave transmission line is used.
  • the stub type surface acoustic wave transmission line is formed by arranging a plurality of metal flat plates at regular intervals on a metal flat plate.
  • the interdigital surface acoustic wave transmission line is formed by punching a metal flat plate into a cross-finger shape. For example, an alumina plate or a bakelite plate is used as the dielectric plate.
  • the surface wave transmission line 103 is illustrated as an example using a stub type surface wave transmission line.
  • the surface wave transmission line 103 concentrates the high frequency power supplied from the high frequency power generation unit 110 via the high frequency power supply unit 120 in the vicinity of the surface and transmits it by surface waves. Therefore, the surface wave transmission line 103 is disposed in the vicinity of the installation table 101. Then, the object to be heated 102 is placed on the installation table 101. As a result, the object to be heated 102 on the installation base 101 is heated by the high-frequency power transmitted in a concentrated manner near the surface of the surface wave transmission line 103.
  • FIG. 3 is a diagram illustrating an example of the shape of the surface acoustic wave transmission line 103 according to the first embodiment.
  • the surface wave transmission line 103 is configured to be inclined at a constant inclination angle 105 (for example, about 10 °) in the direction of the high-frequency power transmission direction 104.
  • the surface wave transmission line 103 is disposed at an inclination angle 105 with respect to the installation table 101 in the vicinity of the installation table 101 arranged in a horizontal state.
  • the distance d101 between the surface wave transmission line 103 on the high-frequency power feeder 120 side and the installation table 101 is larger than the distance d102 between the surface wave transmission line 103 on the other side and the installation table 101.
  • the surface wave transmission line 103 is installed at an inclination angle 105 with respect to the installation table 101.
  • the high-frequency heating device 100 supplies the high-frequency power generated by the high-frequency power generation unit 110 to the surface wave transmission line 103 via the high-frequency power feed unit 120.
  • the object to be heated 102 installed on the installation table 101 disposed in the vicinity of the surface of the surface wave transmission line 103 is heated.
  • the surface wave transmission line 103 has a distance d101 between the surface wave transmission line 103 in the vicinity of the high-frequency power feeder 120 and the end 101a of the installation base 101, and the surface wave transmission line 103 and the installation base 101 in the vicinity of the other side. It is arranged in the vicinity of the installation table 101 so as to be larger than the distance d102 with the end portion 101b. Therefore, the absorption rate of the high-frequency power propagating through the surface wave transmission line 103 to the object to be heated 102 absorbed through the installation base 101 increases as the distance from the high-frequency power supply side of the surface wave transmission line 103 increases. Become.
  • the object to be heated 102 is also provided. Can be heated uniformly.
  • the installation base 101 is arranged so as to maintain a horizontal state. Therefore, it is possible to prevent the occurrence of problems such as the object to be heated 102 installed on the installation table 101 rolling and moving. As a result, it is possible to more reliably prevent the occurrence of heating unevenness due to the movement of the article to be heated 102.
  • FIG. 4 is a diagram showing the electric field strength distribution 141 of the high-frequency power propagating through the general surface wave transmission line 106.
  • FIG. 5 is a diagram showing the electric field strength distribution 142 of the high-frequency power during the heating operation of the article to be heated 102 by the surface wave transmission line 106 shown in FIG.
  • FIG. 4 shows the formation of the high frequency power generated by the high frequency power generation unit 110 in the vicinity of the surface of the surface wave transmission line 106 when the high frequency power supply unit 120 is supplied to the surface wave transmission line 106.
  • the state of the electric field intensity distribution 141 is shown in shades.
  • FIG. 5 shows that when a high-frequency power is supplied to the surface acoustic wave transmission line 106 shown in FIG.
  • the state of the electric field strength distribution 142 formed by the high-frequency power is shown by shading.
  • the high frequency power supplied to the surface wave transmission line 106 via the high frequency power feeder 120 propagates in the vicinity of the surface of the surface wave transmission line 106 with the surface wave.
  • the high-frequency power forms an electric field strength distribution 141 in which the electric field strength near the surface of the surface wave transmission line 106 is strong (dark) and the electric field strength becomes weaker (lighter) as the distance from the surface of the surface wave transmission line 106 increases. Propagate while.
  • the high frequency power supplied to the surface wave transmission line 106 via the high frequency power feeder 120 propagates in the vicinity of the surface of the surface wave transmission line 106 with the surface wave.
  • the high frequency power is absorbed by the object to be heated 102 from the high frequency power feeding unit 120 side. Therefore, the electric field strength of the high frequency power propagating through the surface wave transmission line 106 is attenuated as it passes through the object to be heated 102 from the high frequency power feeder 120 side.
  • an electric field strength distribution 142 as shown in FIG. 5 is formed.
  • the high-frequency power feeding unit 120 side of the object to be heated 102 is often Heated.
  • the high frequency power is absorbed by the heated object 102 as it passes through the heated object 102. Therefore, the high frequency power is gradually attenuated, and the high frequency power for heating the article to be heated 102 is weakened.
  • the high-frequency heating device including the surface wave transmission line 106 heating unevenness occurs in the object to be heated 102 with respect to the propagation direction of the high-frequency power in the surface wave transmission line 106.
  • FIG. 6 is a diagram illustrating a heating operation of the object to be heated 102 by the surface wave transmission line 103 of the high-frequency heating device 100 of the first embodiment.
  • the surface wave transmission line 103 is disposed so as to be inclined with respect to the propagation direction of the high-frequency power. Then, the high frequency power generated by the high frequency power generation unit 110 is supplied to the surface wave transmission line 103 disposed at an inclination via the high frequency power supply unit 120. At this time, the heating state of the object to be heated 102 placed on the installation table 101 by the electric field strength distribution 143 formed by the high frequency power propagating through the surface wave transmission line 103 by the surface wave is shown by light and shade. Yes.
  • the high frequency power supplied to the surface wave transmission line 103 via the high frequency power feeder 120 propagates in the vicinity of the surface of the surface wave transmission line 103 with the surface wave.
  • the high frequency power is sequentially absorbed from the object to be heated 102 on the high frequency power feeding unit 120 side. Therefore, the electric field strength of the high-frequency power propagating through the surface wave transmission line 103 is attenuated as it passes through the object to be heated 102 from the high-frequency power feeder 120 side.
  • the object to be heated 102 on the high frequency power feeding unit 120 placed on the installation base 101 is the surface wave transmission line 103. It is far from the vicinity of the surface. For this reason, the high-frequency power passing through the installation table 101 decreases according to the distance, so that the object to be heated 102 on the installation table 101 is not heated strongly. That is, the attenuation of high-frequency power propagating along the vicinity of the surface of the surface wave transmission line 103 is also reduced.
  • the distance between the object to be heated 102 and the surface wave transmission line 103 decreases as the distance from the high-frequency power feeder 120 side increases.
  • the high-frequency power passing through the installation base 101 becomes large because the distance from the surface wave transmission line 103 becomes small. That is, the degree of absorption of high-frequency power absorbed from the surface wave transmission line 103 to the object to be heated 102 via the installation table 101 is increased. Thereby, it is possible to balance the high-frequency power absorbed and attenuated by the article to be heated 102 and the increasing absorption of the high-frequency power of the article to be heated 102.
  • a uniform electric field strength distribution 143 shown in FIG. 6 is formed on the installation table 101 with respect to the object to be heated 102 placed on the installation table 101.
  • the object to be heated 102 can be uniformly heated with respect to the propagation direction of the high frequency power of the surface wave transmission line 103 while maintaining the installation table 101 in a horizontal state.
  • the configuration using the surface wave transmission line 103 formed with a single slope as shown in FIG. 3 is described as an example, but the present invention is not limited to this.
  • the surface wave transmission line 103 that contributes to the heating of the object to be heated 102 may be configured to be inclined with respect to the propagation direction of the high-frequency power in the region of the surface wave transmission line 103 (for example, the region facing the installation base 101). That is, the inclined region of the surface wave transmission line 103 may be disposed so that the distance between the surface wave transmission line 103 and the installation base 101 is increased on the high frequency power feeding unit 120 side.
  • the horizontal portion 107a and the surface acoustic wave transmission line 107 formed by combining the horizontal portion 107c and the inclined portion 107b shown in FIG. 7 may be used.
  • the inclined portion 107b of the surface wave transmission line 107 is disposed so as to face the installation base 101 on which the article to be heated 102 is placed. Thereby, the same effect as Embodiment 1 can be acquired.
  • the same reference numerals are given to components having the same functions as those of the high frequency heating apparatus 100 of Embodiment 1, and description thereof is omitted. Also, the description of the content having the same action as the high-frequency heating device 100 of Embodiment 1 is omitted.
  • FIG. 8 is a block diagram showing a basic configuration of the high-frequency heating device 200 of the second embodiment.
  • the high frequency heating apparatus 200 includes a surface wave transmission line 203 instead of the surface wave transmission line 103, a high frequency power generation unit 210 instead of the high frequency power generation unit 110, and a first high frequency power instead of the high frequency power supply unit 120.
  • 1 is different from the high-frequency heating device 100 of the first embodiment shown in FIG. 1 in that it includes two high-frequency power supply units 220 including a power supply unit 220a and a second high-frequency power supply unit 220b.
  • the first high-frequency power feeder 220a and the second high-frequency power feeder 220b are collectively described, they are described as the high-frequency power feeder 220.
  • a configuration having one surface wave transmission line 203, one high-frequency power generating unit 210, and two high-frequency power feeding units 220 is illustrated as an example. Not limited.
  • the number of surface wave transmission lines, high frequency power generation units, and high frequency power supply units is not limited to the above numbers.
  • the above-described high-frequency heating device 200 operates as follows.
  • the high-frequency heating device 200 generates high-frequency power at the high-frequency power generation unit 210.
  • the generated high-frequency power is distributed into two and supplied to both ends of the surface wave transmission line 203 via the first high-frequency power feeder 220a and the second high-frequency power feeder 220b.
  • high frequency power is supplied to both ends of the surface wave transmission line 203.
  • the supplied high frequency power is propagated near the surface by a surface wave or radiated from the vicinity of the surface from both ends of the surface wave transmission line 203 toward the center.
  • the object to be heated 102 placed on the installation table 101 is heated.
  • the configurations of the high-frequency power generation unit 210, the first high-frequency power supply unit 220a, and the second high-frequency power supply unit 220b are the configurations of the high-frequency power generation unit 110 and the high-frequency power supply unit 120 described in the first embodiment. Since it is the same, description is abbreviate
  • the high-frequency heating device 200 of the second embodiment is configured and operates.
  • FIG. 9 is a diagram illustrating an example of the shape of the surface acoustic wave transmission line 203 according to the second embodiment.
  • the surface wave transmission line 203 has a fixed inclination angle 205a and 205b (for example, 10 °) with respect to the installation table 101 in the vicinity of the installation table 101 arranged in the horizontal state shown in FIG.
  • a mountain shape For example, a mountain shape.
  • a mountain shape having a fixed inclination angle 205a and inclination angle 205b with respect to the installation base 101. The shape is formed.
  • the surface wave transmission line 203 includes a distance d201 between the surface wave transmission line 203 and the installation base 101 on the first high frequency power supply unit 220a side, and a second high frequency power supply unit 220b.
  • the distance d202 between the surface acoustic wave transmission line 203 on the side and the installation table 101 is larger than the distance d203 between the apex portion 203a of the mountain-shaped surface wave transmission line 203 and the installation table 101 with respect to the installation table 101.
  • the apex portion 203a of the surface wave transmission line 203 corresponds to the position farthest away from each of the first high-frequency power feeder 220a and the second high-frequency power feeder 220b.
  • the high-frequency heating device 200 of the second embodiment transmits the high-frequency power generated by the high-frequency power generation unit 210 via each of the first high-frequency power supply unit 220a and the second high-frequency power supply unit 220b. And supplied from both ends of the surface wave transmission line 203. As a result, the object to be heated 102 installed on the installation table 101 disposed near the surface of the surface wave transmission line 203 is heated.
  • the surface wave transmission line 203 has a distance d201 and a distance d202 between the vicinity of both ends of the surface wave transmission line 203 and the end portions 101a and 101b of the installation base 101, and the apex portion 203a of the surface wave transmission line 203 and the installation base 101. It is arrange
  • the distance increases as the distance from the 101a and 101b sides increases.
  • the object to be heated 102 is also provided. Can be heated uniformly.
  • the installation base 101 is arranged so as to maintain a horizontal state. Therefore, it is possible to prevent the occurrence of problems such as the object to be heated 102 installed on the installation table 101 rolling and moving. As a result, it is possible to more reliably prevent the occurrence of heating unevenness due to the movement of the article to be heated 102.
  • the high frequency power is supplied to the surface wave transmission line 203 from both ends of the surface wave transmission line 203. Therefore, the object to be heated 102 can be heated more uniformly with respect to the propagation direction of the high-frequency power in the surface wave transmission line 203.
  • FIG. 10 is a diagram illustrating a heating operation of the article to be heated 102 by the surface wave transmission line 206 of a general high-frequency heating apparatus.
  • FIG. 10 shows that when high-frequency power is supplied from both ends of the surface wave transmission line 206 in a state where the object to be heated 102 is placed on the installation base 101, the surface wave transmission line 206 propagates through the surface wave.
  • the state of the electric field strength distribution 241 formed by the high-frequency power for heating the object to be heated 102 is shown by shading.
  • high-frequency power is supplied to both ends of the surface wave transmission line 206 via the first high-frequency power supply unit 220a and the second high-frequency power supply unit 220b.
  • the supplied high-frequency power propagates in the vicinity of the surface of the surface wave transmission line 206 by surface waves, and is absorbed by the object to be heated 102 from both ends of the object to be heated 102 via the installation table 101. Therefore, the high frequency power propagating through the surface wave transmission line 206 is absorbed as it passes through the object to be heated 102, and the electric field strength is attenuated. Thereby, an electric field strength distribution 241 as shown in FIG. 10 is formed.
  • FIG. 11 is a diagram illustrating a heating operation of the article to be heated 102 by the surface wave transmission line 203 of the high-frequency heating device 200 of the second embodiment.
  • FIG. 11 shows the heating operation of the object to be heated 102 in the following state.
  • high-frequency power generated by the high-frequency power generator 210 is applied to both ends of the surface wave transmission line 203 formed in the chevron shape shown in FIG. 9, and the first high-frequency power feeder 220 a and the second Is supplied via each of the high-frequency power feeders 220b.
  • the heated object 102 placed on the installation table 101 is heated by the electric field strength distribution 242 formed by the high-frequency power propagating through the surface wave transmission line 203 by the surface wave. Yes.
  • the high frequency power supplied to both ends of the surface wave transmission line 203 via the first high frequency power supply unit 220 a and the second high frequency power supply unit 220 b Propagates near the surface with surface waves.
  • the high frequency power is sequentially absorbed from both ends of the object to be heated 102. Therefore, the high-frequency power propagating through the surface wave transmission line 203 attenuates the electric field strength as it passes through the object to be heated 102. Thereby, an electric field intensity distribution 242 as shown in FIG. 11 is formed, and the object to be heated 102 on the installation base 101 is heated.
  • both end sides of the object to be heated 102 placed on the installation base 101 are It is away from the vicinity of the surface of the surface wave transmission line 203.
  • the high-frequency power passing through the installation table 101 decreases according to the distance, so that the object to be heated 102 on the installation table 101 is not heated strongly. That is, the attenuation of the high-frequency power propagating along the vicinity of the surface of the surface wave transmission line 203 is also reduced.
  • the surface wave transmission line 203 is moved away from the first high frequency power feeding unit 220a and the second high frequency power feeding unit 220b arranged at both ends, and the object to be heated 102 and the surface wave transmission are directed toward the top part 203a.
  • the distance to the track 203 is reduced.
  • the high frequency power passing through the installation base 101 has a small distance from the surface wave transmission line 203. ,growing. That is, the degree of absorption of high-frequency power absorbed from the surface wave transmission line 203 to the object to be heated 102 via the installation table 101 is increased.
  • a uniform electric field strength distribution 242 shown in FIG. 11 is formed on the installation table 101 with respect to the object to be heated 102 placed on the installation table 101.
  • the object to be heated 102 can be heated uniformly with respect to the propagation direction of the high frequency power of the surface wave transmission line 203 while maintaining the installation table 101 in a horizontal state.
  • a region of the surface wave transmission line 103 that contributes to heating of the object to be heated 102 is configured to be inclined in a mountain shape with respect to the propagation direction of the high-frequency power. May be. That is, at least the inclined region of the surface wave transmission line 203 is set so that the distance between the surface wave transmission line 203 and the installation base 101 becomes larger on the first high frequency power supply unit 220a and the second high frequency power supply unit 220b side. What is necessary is just to arrange
  • a horizontal portion 207a and a surface wave transmission line 207 formed by combining the horizontal portion 207c and the inclined portion 207b shown in FIG. 12 may be used.
  • the inclined portion 207b of the surface wave transmission line 207 is disposed so as to face the installation base 101 on which the object to be heated 102 is placed. Thereby, the same effect as Embodiment 2 can be acquired.
  • the present invention is a high-frequency heating apparatus that heats an object to be heated installed on an installation table.
  • the high-frequency heating device includes at least one surface wave transmission line provided in the vicinity of the installation table, at least one high-frequency power generation unit that generates high-frequency power, and directly supplies high-frequency power to the surface wave transmission line, One high-frequency power feeder is provided.
  • the surface wave transmission line is configured to be installed inclined with respect to the propagation direction of the high frequency power so that the distance between the surface wave transmission line and the installation base becomes larger on the high frequency power feeding unit side.
  • the distance between the installation table and the surface wave transmission line decreases as the distance from the high-frequency power supply side of the surface wave transmission line increases.
  • the absorption of the high-frequency power propagating through the surface wave transmission line into the object to be heated increases as the distance from the side of the surface wave transmission line to which the high-frequency power is supplied is increased.
  • the high-frequency power of the surface wave transmission line The object to be heated can be heated uniformly with respect to the propagation direction. Furthermore, since the installation table can be maintained in a horizontal state, it is possible to more reliably prevent the occurrence of problems such as the object to be heated installed on the installation table rolling.
  • the high frequency heating cooker of the present invention has a high frequency power feeding portion disposed at both ends of the surface wave transmission line, and the surface wave transmission line is substantially at the apex of the intermediate portion with respect to the propagation direction of the high frequency power. It is good also as a structure with the mountain-shaped inclination which becomes a part.
  • high frequency power can be supplied from both ends of the surface wave transmission line. Furthermore, without moving the installation table, the distance between the installation table and the surface wave transmission line can be reduced as the distance from the power supply side of the surface wave transmission line increases. As a result, even when a plurality of objects to be heated are installed side by side with respect to the propagation direction of the high-frequency power of the surface wave transmission line, or when a heated object having a large length is installed, the high-frequency power of the surface wave transmission line The object to be heated can be heated more uniformly with respect to the propagation direction. Furthermore, since the installation table can be maintained in a horizontal state, it is possible to prevent the occurrence of problems such as the object to be heated installed on the installation table rolling.
  • the present invention can efficiently heat an object to be heated without heating unevenness in a high frequency heating apparatus that heats the object to be heated by a surface wave transmission line. Therefore, this invention is useful as cooking household appliances, such as a microwave heater.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

設置台(101)近傍に設けられる表面波伝送線路(103)は、高周波電力の伝送方向に対して傾斜を持つように構成される。そのため、表面波伝送線路(103)と設置台(101)との距離は、高周波電力給電部(120)側において、大きくなる。これにより、表面波伝送線路(103)を伝搬する高周波電力の被加熱物(102)への吸収度が、表面波伝送線路(103)の高周波電力を給電する側から遠ざかるにつれて、大きくなる。その結果、表面波伝送線路(103)の高周波電力の伝搬方向に対して、複数の被加熱物(102)を並べて設置する場合や、長さ寸法の大きい被加熱物(102)を設置した場合でも、被加熱物(102)を均一に加熱できる。さらに、設置台(101)を水平状態に維持できるため、被加熱物(102)が転がるなどの不具合の発生を防止できる。

Description

高周波加熱装置
 本発明は、周期構造体を用いた表面波伝送線路を介して被加熱物を加熱する高周波加熱装置に関する。
 従来、周期構造体を用いた表面波伝送線路に高周波電力を給電して、食品などの被加熱物を加熱処理する高周波加熱装置の技術が開示されている。
 一般的に、表面波伝送線路の表面付近に集中して伝搬するマイクロ波などの高周波電力を利用して被加熱物を加熱する場合、表面波伝送線路を伝搬する高周波電力は、表面波伝送線路の近傍に設置された被加熱物に吸収される。これにより、表面波伝送線路を伝搬するにつれて、高周波電力は減衰していく。
 そのため、表面波伝送線路の高周波電力の伝搬方向に対して、複数の被加熱物を並べて設置する場合や、長さ寸法の大きい被加熱物を設置する場合、被加熱物は、表面波伝送線路の給電側が強く加熱される。そして、給電側から遠ざかるにつれて、被加熱物の加熱が弱くなる。これにより、表面波伝送線路の高周波電力の伝搬方向に対して、被加熱物に加熱ムラが生じる。
 そこで、上記加熱ムラを解消するために、以下に示す高周波解凍加熱装置が開示されている(例えば、特許文献1参照)。
 特許文献1に記載の高周波解凍加熱装置は、被加熱物を設置する設置台の、表面波伝送線路に高周波電力を給電する側の一方の端部を上下可動とし、設置台を上方に傾ける構成を備える。これにより、被加熱物において、表面波伝送線路の給電側が強く加熱され、給電側から遠ざかるにつれて加熱が弱くなるのを、軽減している。その結果、表面波伝送線路を用いて、冷凍寿司のしゃり部を効率よく解凍もしくは加熱できるとしている。
 しかしながら、上記従来の高周波解凍加熱装置の構成は、被加熱物を設置する設置台が上下可動するために、設置台上に設置した被加熱物が転がるなどの不具合が発生する虞がある。
特開平8-166133号公報
 本発明は、表面波伝送線路の高周波電力の伝搬方向に対して、被加熱物を均一に加熱するとともに、被加熱物の転がりを防止できる高周波加熱装置を提供する。
 本発明は、設置台に設置される被加熱物を加熱処理する高周波加熱装置である。高周波加熱装置は、設置台近傍に設けられる、少なくとも1つの表面波伝送線路と、高周波電力を発生させる、少なくとも1つの高周波電力発生部と、表面波伝送線路に高周波電力を直接に給電する、少なくとも1つの高周波電力給電部を備える。表面波伝送線路は、前記表面波伝送線路と設置台との距離が、高周波電力給電部側において、大きくなるように、高周波電力の伝搬方向に対して傾斜を持つように構成され、表面波伝送線路に配設される。
 この構成によれば、設置台を動かすことなく、設置台と表面波伝送線路との間の距離が、表面波伝送線路の高周波電力を給電する側から遠ざかるにつれて、小さくなる。このとき、表面波伝送線路を伝搬する高周波電力の被加熱物への吸収度は、表面波伝送線路の高周波電力を給電する側から遠ざかるにつれて、大きくなる。これにより、表面波伝送線路の高周波電力の伝搬方向に対して、複数の被加熱物を並べて設置する場合や、長さ寸法の大きい被加熱物を設置した場合でも、表面波伝送線路の高周波電力の伝搬方向に対して、被加熱物を均一に加熱できる。さらに、設置台を、水平状態に維持できるため、設置台上に設置した被加熱物が転がるなどの不具合の発生を未然に防止できる。
 また、本発明の高周波加熱装置は、表面波伝送線路の両端に、高周波給電部を配設し、表面波伝送線路は、高周波電力の伝搬方向に対して、実質的に、中間部が頂点部となるような山形の傾斜を持つように構成してもよい。
 この構成によれば、表面波伝送線路の両端から高周波電力を給電することができる。さらに、設置台を動かすことなく、設置台と表面波伝送線路との距離が、表面波伝送線路の高周波電力を給電する側から遠ざかるにつれて、小さくできる。これにより、表面波伝送線路の高周波電力の伝搬方向に対して、複数の被加熱物を並べて設置する場合や、長さ寸法の大きい被加熱物を設置した場合でも、表面波伝送線路の高周波電力の伝搬方向に対して、被加熱物を、より一層、均一に加熱できる。さらに、設置台を、水平状態に維持できるため、設置台上に設置した被加熱物が転がるなどの不具合の発生を未然に防止できる。
図1は、本発明の実施の形態1における高周波加熱装置の基本構成を示すブロック図である。 図2Aは、同高周波加熱装置の高周波電力給電部の構成を示す平面図である。 図2Bは、同高周波加熱装置の高周波電力給電部の構成を示す側面図である。 図3は、同高周波加熱装置の表面波伝送線路の形状の一例を示す図である。 図4は、一般的な表面波伝送線路を伝搬する高周波電力の電界強度分布を示す図である。 図5は、図4に示す表面波伝送線路による被加熱物の加熱動作時における高周波電力の電界強度分布を示す図である。 図6は、同実施の形態における高周波加熱装置の表面波伝送線路による被加熱物の加熱動作を示す図である。 図7は、同実施の形態における高周波加熱装置の表面波伝送線路の形状の他の例を示す図である。 図8は、本発明の実施の形態2における高周波加熱装置の基本構成を示すブロック図である。 図9は、同高周波加熱装置の表面波伝送線路の形状を示す図である。 図10は、一般的な高周波加熱装置の表面波伝送線路による被加熱物の加熱動作を示す図である。 図11は、同実施の形態における高周波加熱装置の表面波伝送線路による被加熱物の加熱動作を示す図である。 図12は、同高周波加熱装置の表面波伝送線路の形状の他の例を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 以下、実施の形態1に係る高周波加熱装置100について、図1を用いて説明する。
 図1は、実施の形態1の高周波加熱装置100の基本構成を示すブロック図である。
 図1に示すように、高周波加熱装置100は、設置台101と、設置台101の近傍の、例えば下方に設置される表面波伝送線路103と、高周波電力発生部110と、高周波電力給電部120などを含む。高周波加熱装置100は、設置台101に設置される被加熱物102を加熱処理する。
 なお、図1に示す高周波加熱装置100は、1つの表面波伝送線路と、1つの高周波電力発生部と、1つの高周波電力給電部を有する構成を例に図示しているが、これに限られない。表面波伝送線路、高周波電力発生部および高周波電力給電部の数は、上記の数に限定されず、2つ以上であってもよい。
 上述の高周波加熱装置100は、以下のように動作する。
 まず、高周波電力発生部110は、高周波電力を発生させる。発生された高周波電力は、高周波電力給電部120を介して、表面波伝送線路103へ給電される。給電された高周波電力は、表面波伝送線路103の表面近傍を表面波で伝播、もしくは表面近傍から放射される。これにより、設置台101に載置される被加熱物102を加熱する。
 以上のように、実施の形態1の高周波加熱装置100は、構成され、動作する。
 なお、高周波電力発生部110は、被加熱物102の加熱処理に適した周波数(例えば、マイクロ波)とパワーの高周波電力を出力する、高周波発振器で構成される。
 具体的には、高周波発振器は、例えばマグネトロンとインバータ電源回路や、固体発振器と電力増幅器などで構成される。
 マグネトロンは、電波の一種である強力なノンコヒーレントのマイクロ波を発生する発振用真空管の一種で、レーダーや電子レンジなどの数百ワット~数キロワットの高出力の用途に多く使われる。マグネトロンの駆動には、数キロボルトの高電圧が必要となるため、駆動電源として、一般的に、インバータ電源回路が用いられる。インバータ電源回路は、整流機能を有するコンバータ回路と、昇圧(もしくは降圧)機能と出力周波数変換機能を有するインバータ回路と、で構成される。なお、インバータ電源回路は、照明装置やモータ制御に広く用いられる技術である。
 また、固体発振器は、トランジスタ、コンデンサ、インダクタ、抵抗器などの高周波用の電子部品を有する帰還回路を備える半導体発振回路で構成される。なお、固体発振器は、通信機器などの小電力出力の用途の発振器に広く用いられる技術である。
 固体発振器は、近年、50ワット程度の高周波電力を出力する発振器もあるが、一般的には、数十ミリワット~数百ミリワット程度の高周波電力を出力する発振器である。そのため、数百ワットの出力パワーが必要な加熱処理の用途には使用できない。そこで、通常、固体発振器は、出力された高周波電力を増幅する、トランジスタなどで構成される電力増幅器とともに使用される。
 なお、実施の形態1の高周波加熱調理器においては、高周波電力発生部110の構成は、特に、限定されないので、詳細な説明は省略する。
 高周波電力給電部120は、高周波電力発生部110で発生される高周波電力を、表面波伝送線路103に給電する電力接続部に相当する。
 以下に、高周波電力給電部120の構成について、図2Aおよび図2Bを用いて説明する。なお、図2Aおよび図2Bは、高周波電力給電部120の構成の一例を示している。
 図2Aは、高周波電力給電部120周辺の構成を示す上方から見た平面図である。図2Bは、高周波電力給電部120周辺の側面図である。
 なお、図2Aおよび図2Bでは、図1に示す高周波電力発生部110として、マグネトロン111を用いている。
 マグネトロン111は、発生する高周波電力を、方形導波管121を用いて、高周波電力給電部120へ導くように配置される。
 方形導波管121は、主に、マイクロ波などの電磁波の伝送に用いられる中空導波管で構成される。中空導波管は、一般的な導波管で、断面形状が方形(例えば、長方形)である金属製の管で形成される。電磁波は、方形導波管121の形状や寸法、波長もしくは周波数に応じた、電磁界を形成しながら、方形導波管121の中を伝播する。
 なお、図2Aおよび図2Bでは、方形導波管121を用いた構成を例に示したが、これに、限られない。例えば、ループアンテナを用いた給電など、他の給電方法を用いてもよい。
 表面波伝送線路103は、金属板で周期的にインピーダンス素子を配列した金属周期構造体や、誘電体板などで構成される。金属周期構造体の場合、例えば、スタブ型表面波伝送線路や、インターデジタル型表面波伝送線路が用いられる。スタブ型表面波伝送線路は、金属平板上に、複数の金属平板を一定の間隔で並べて、形成される。インターデジタル型表面波伝送線路は、金属平板を交叉指状に打ち抜いて形成される。誘電体板は、例えばアルミナ板やベークライト板などが用いられる。なお、図1では、表面波伝送線路103として、スタブ型表面波伝送線路を用いた例で示している。
 また、表面波伝送線路103は、高周波電力給電部120を介して高周波電力発生部110から供給される高周波電力を、表面近傍に集中させて、表面波で伝送する。そのため、表面波伝送線路103は、設置台101の近傍に配設される。そして、設置台101の上に、被加熱物102が載置される。これにより、表面波伝送線路103の表面近傍に集中して伝送される高周波電力により、設置台101上の被加熱物102が加熱される。
 つぎに、実施の形態1の表面波伝送線路103の形状について、図3を用いて、説明する。
 図3は、実施の形態1の表面波伝送線路103の形状の一例を示す図である。
 表面波伝送線路103は、図3に示すように、高周波電力の伝送方向104の方向に、一定の傾斜角105(例えば、10°程度)で傾斜する形状で構成される。これにより、表面波伝送線路103は、図1に示すように、水平状態で配設される設置台101近傍で、設置台101に対して、傾斜角105で傾斜して配設される。具体的には、高周波電力給電部120側の表面波伝送線路103と設置台101との距離d101が、他方側の表面波伝送線路103と設置台101との距離d102よりも大きくなるように、表面波伝送線路103は、設置台101に対して、傾斜角105で傾斜して設置される。
 以上の構成により、実施の形態1の高周波加熱装置100は、高周波電力発生部110で発生される高周波電力を、高周波電力給電部120を介して、表面波伝送線路103に供給する。これにより、表面波伝送線路103の表面近傍に配設される設置台101の上に設置される被加熱物102が加熱処理される。
 また、表面波伝送線路103は、高周波電力給電部120側近傍の表面波伝送線路103と設置台101の端部101aとの距離d101が、他方側近傍の表面波伝送線路103と設置台101の端部101bとの距離d102よりも大きくなるように、設置台101の近傍に配設される。そのため、表面波伝送線路103を伝搬する高周波電力の、設置台101を介して吸収される被加熱物102への吸収度が、表面波伝送線路103の高周波電力を給電する側から遠ざかるにつれて、大きくなる。これより、表面波伝送線路103の高周波電力の伝搬方向に対して、複数の被加熱物102を並べて設置した場合や、長さ寸法の大きい被加熱物102を設置した場合でも、被加熱物102を均一に加熱できる。
 また、設置台101は、図1に示すように、水平状態を維持するように配置される。そのため、設置台101上に設置した被加熱物102が、例えば転がって移動するなどの不具合の発生を防止できる。その結果、被加熱物102の移動に伴う加熱ムラの発生を、より確実に防止できる。
 つぎに、上記構成を備える高周波加熱装置100における、被加熱物102の加熱処理動作について、図4から図6を用いて、より詳細に説明する。
 まず、一般的な高周波加熱装置における、被加熱物102の加熱処理動作について、図4および図5を用いて、説明する。
 図4は、一般的な表面波伝送線路106を伝搬する高周波電力の電界強度分布141を示す図である。図5は、図4に示す表面波伝送線路106による被加熱物102の加熱動作時における高周波電力の電界強度分布142を示す図である。
 詳しくは、図4は、高周波電力発生部110で発生される高周波電力を、高周波電力給電部120を介して、表面波伝送線路106に供給した時の、表面波伝送線路106の表面近傍に形成される電界強度分布141の様子を濃淡で示している。また、図5は、設置台101上に被加熱物102を載置した状態において、図4に示す表面波伝送線路106に、高周波電力を供給した時に、表面波伝送線路106を表面波で伝搬する高周波電力により形成される電界強度分布142の様子を濃淡で示している。
 つまり、図4に示すように、高周波電力給電部120を介して表面波伝送線路106に供給される高周波電力は、表面波伝送線路106の表面近傍を表面波で伝搬する。このとき、高周波電力は、表面波伝送線路106の表面付近の電界強度が強く(濃い)、表面波伝送線路106の表面から離れるに従って、電界強度が弱く(淡い)なる電界強度分布141を形成しながら伝搬する。
 また、図5に示すように、高周波電力給電部120を介して表面波伝送線路106に供給される高周波電力は、表面波伝送線路106の表面近傍を表面波で伝搬する。このとき、高周波電力は、高周波電力給電部120側から被加熱物102に吸収される。そのため、表面波伝送線路106を伝搬する高周波電力は、高周波電力給電部120側から、被加熱物102を通過するにつれて、電界強度が減衰する。これにより、図5に示すような電界強度分布142が形成される。
 つまり、一般的な構成を備える表面波伝送線路106に高周波電力を供給し、設置台101上に設置した被加熱物102を加熱処理する場合、被加熱物102の高周波電力給電部120側が、よく加熱される。しかし、被加熱物102を通過するにしたがって、高周波電力が被加熱物102に吸収される。そのため、高周波電力が徐々に減衰し、被加熱物102を加熱する高周波電力が弱くなる。その結果、表面波伝送線路106を備える高周波加熱装置の場合、表面波伝送線路106の高周波電力の伝搬方向に対して、被加熱物102に加熱ムラが発生する。
 つぎに、実施の形態1の高周波加熱装置100における、被加熱物102の加熱処理動作について、図6を用いて、説明する。
 図6は、実施の形態1の高周波加熱装置100の表面波伝送線路103による被加熱物102の加熱動作を示す図である。
 詳しくは、図6では、図3で示すように、表面波伝送線路103が、高周波電力の伝搬方向に対して傾斜して配設される。そして、傾斜して配設される表面波伝送線路103に、高周波電力発生部110で発生される高周波電力が、高周波電力給電部120を介して供給される。このとき、設置台101上に載置された被加熱物102が、表面波伝送線路103を表面波で伝搬する高周波電力により形成される電界強度分布143により、加熱される様子を濃淡で示している。
 つまり、図6に示すように、高周波電力給電部120を介して表面波伝送線路103に供給される高周波電力は、表面波伝送線路103の表面近傍を表面波で伝搬する。このとき、高周波電力は、高周波電力給電部120側の被加熱物102から、順次、吸収される。そのため、表面波伝送線路103を伝搬する高周波電力は、高周波電力給電部120側から、被加熱物102を通過するにつれて、電界強度が減衰する。
 このとき、図6に示すように、実施の形態1の表面波伝送線路103の場合、設置台101に載置される高周波電力給電部120側の被加熱物102は、表面波伝送線路103の表面近傍から離れている。そのため、設置台101を通過する高周波電力は、距離に応じて少なくなるので、設置台101上の被加熱物102は、強く加熱されない。つまり、表面波伝送線路103の表面近傍に沿って伝搬する高周波電力の減衰度も、小さくなる。
 さらに、高周波電力給電部120側から遠ざかるにつれて、被加熱物102と表面波伝送線路103との距離が小さくなる。しかし、表面波伝送線路103を伝搬するにしたがって高周波電力が減衰しても、設置台101を通過する高周波電力は、表面波伝送線路103との距離が小さくなるため、大きくなる。つまり、表面波伝送線路103から設置台101を介して被加熱物102へ吸収される高周波電力の吸収度は、大きくなる。これにより、被加熱物102に吸収されて減衰する高周波電力と、増加する被加熱物102の高周波電力の吸収度とのバランスを取ることができる。そのため、設置台101に載置される被加熱物102に対して、図6に示す均一な電界強度分布143が、設置台101上に形成される。その結果、設置台101を水平状態に維持したまま、表面波伝送線路103の高周波電力の伝搬方向に対して、被加熱物102を均一に加熱できる。
 なお、実施の形態1では、図3に示すような、単一の傾斜で形成される表面波伝送線路103を用いる構成を例に説明したが、これに限られない。例えば、被加熱物102の加熱に寄与する表面波伝送線路103の領域(例えば、設置台101と対向する領域)において、高周波電力の伝搬方向に対して、傾斜するように構成してもよい。つまり、表面波伝送線路103と設置台101との距離が、高周波電力給電部120側において大きくなるように、表面波伝送線路103の傾斜領域を配設すればよい。具体的には、例えば図7に示す水平部分107aおよび水平部分107cと傾斜部分107bを組み合わせて形成される表面波伝送線路107を用いてもよい。この場合、表面波伝送線路107の傾斜部分107bが、被加熱物102が載置される設置台101と対向するように配置される。これにより、実施の形態1と同様の効果を、得ることができる。
 (実施の形態2)
 以下、実施の形態2に係る高周波加熱装置200について、図8を参照しながら、説明する。
 なお、実施の形態2の高周波加熱装置200において、実施の形態1の高周波加熱装置100と同じ機能を有する構成要素には、同じ参照符号を付し、説明を省略する。また、実施の形態1の高周波加熱装置100と同じ作用を有する内容についても、説明を省略する。
 図8は、実施の形態2の高周波加熱装置200の基本構成を示すブロック図である。
 図8に示すように、高周波加熱装置200は、表面波伝送線路103に代わり表面波伝送線路203、高周波電力発生部110に代わり高周波電力発生部210、高周波電力給電部120に代わり第1の高周波電力給電部220aおよび第2の高周波電力給電部220bからなる2つの高周波電力給電部220を備える点で、図1に示す実施の形態1の高周波加熱装置100と異なる。ここで、以降では、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bを総称して記載する場合は、高周波電力給電部220と記して説明する。
 なお、図8の高周波加熱装置200では、1つの表面波伝送線路203と、1つの高周波電力発生部210と、2つの高周波電力給電部220を有する構成を例に図示しているが、これに限られない。表面波伝送線路、高周波電力発生部および高周波電力給電部の数は、上記の数に限定されない。
 上述の高周波加熱装置200は、以下のように動作する。
 まず、高周波加熱装置200は、高周波電力発生部210で、高周波電力を発生させる。発生された高周波電力は2つに分配され、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bのそれぞれを介して、表面波伝送線路203の両端へ供給される。これにより、表面波伝送線路203の両端に、高周波電力が供給される。供給された高周波電力は、表面波伝送線路203の両端から中央部に向かって、表面近傍を表面波で伝播、もしくは表面近傍から放射される。これにより、設置台101上に載置される被加熱物102を加熱する。
 なお、高周波電力発生部210と、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bの構成は、実施の形態1で説明した高周波電力発生部110と高周波電力給電部120の構成と同一であるので、説明は省略する。
 以上のように、実施の形態2の高周波加熱装置200は、構成され、動作する。
 つぎに、実施の形態2の表面波伝送線路203の形状について、図9を用いて、説明する。
 図9は、実施の形態2の表面波伝送線路203の形状の一例を示す図である。
 表面波伝送線路203は、図9に示すように、図8に示す水平状態で配設される設置台101近傍で、設置台101に対して、一定の傾斜角205aおよび205b(例えば、10°程度)で傾斜する、例えば山形の形状で構成される。つまり、表面波伝送線路203の両端のそれぞれから供給される高周波電力の伝送方向204aおよび伝送方向204bにおいて、設置台101に対して、一定の傾斜角205aおよび傾斜角205bの傾斜を持った、山形の形状で形成される。
 詳しくは、表面波伝送線路203は、図8に示すように、第1の高周波電力給電部220a側の表面波伝送線路203と設置台101との距離d201、および第2の高周波電力給電部220b側の表面波伝送線路203と設置台101との距離d202が、山形の表面波伝送線路203の頂点部203aと設置台101との距離d203よりも、大きくなるように、設置台101に対して配設される。なお、表面波伝送線路203の頂点部203aは、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bのそれぞれから、最も遠ざかる位置に対応する。
 以上の構成により、実施の形態2の高周波加熱装置200は、高周波電力発生部210で発生される高周波電力を、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bのそれぞれを介して、表面波伝送線路203の両端より供給する。これにより、表面波伝送線路203の表面近傍に配設される設置台101の上に設置される被加熱物102が加熱処理される。
 また、表面波伝送線路203は、表面波伝送線路203の両端近傍と設置台101の端部101a、101bとの距離d201および距離d202が、表面波伝送線路203の頂点部203aと設置台101との距離d203よりも大きくなるように、設置台101近傍に配設される。そのため、表面波伝送線路203の両端から伝搬する高周波電力の、設置台101を介して吸収される被加熱物102への吸収度が、表面波伝送線路203の高周波電力を給電する両方の端部101a、101b側から遠ざかるにつれて、大きくなる。これにより、表面波伝送線路203の高周波電力の伝搬方向に対して、複数の被加熱物102を並べて設置した場合や、長さ寸法の大きい被加熱物102を設置した場合でも、被加熱物102を均一に加熱できる。
 また、設置台101は、図8に示すように、水平状態を維持するように配置される。そのため、設置台101上に設置した被加熱物102が、例えば転がって移動するなどの不具合の発生を防止できる。その結果、被加熱物102の移動に伴う加熱ムラの発生を、より確実に防止できる。
 さらに、高周波電力は、表面波伝送線路203の両端から、表面波伝送線路203に供給される。そのため、表面波伝送線路203の高周波電力の伝搬方向に対して、被加熱物102を、より一層、均一に加熱できる。
 つぎに、上記構成を備える高周波加熱装置200における、被加熱物102の加熱処理動作について、図10および図11を用いて、より詳細に説明する。
 まず、表面波伝送線路203の両端から供給される高周波電力で被加熱物を加熱する一般的な高周波加熱装置における、被加熱物102の加熱処理動作について、図10を用いて、説明する。
 図10は、一般的な高周波加熱装置の表面波伝送線路206による被加熱物102の加熱動作を示す図である。
 詳しくは、図10は、設置台101上に被加熱物102を載置した状態において、表面波伝送線路206の両端から、高周波電力を供給した時に、表面波伝送線路206を表面波で伝搬し、被加熱物102を加熱する高周波電力により形成される電界強度分布241の様子を濃淡で示している。
 つまり、図10に示すように、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bを介して、高周波電力が表面波伝送線路206の両端に供給される。供給された高周波電力は、表面波伝送線路206の表面近傍を表面波で伝搬し、設置台101を介して、被加熱物102の両端側から被加熱物102に吸収される。そのため、表面波伝送線路206を伝搬する高周波電力は、被加熱物102を通過するにつれて吸収され、電界強度が減衰する。これにより、図10に示すような電界強度分布241が形成される。
 つまり、一般的な構成を備える表面波伝送線路206に高周波電力を供給し、設置台101上に設置した被加熱物102を加熱処理する場合、被加熱物102の両端側が、よく加熱される。しかし、表面波伝送線路206の中央部に近づくにつれて、高周波電力が被加熱物102に吸収される。そのため、高周波電力が徐々に減衰し、被加熱物102を加熱する高周波電力が弱くなる。その結果、表面波伝送線路206を備える高周波加熱装置の場合、表面波伝送線路206の高周波電力の伝搬方向に対して、被加熱物102に加熱ムラが発生する。
 つぎに、実施の形態2の高周波加熱装置200における、被加熱物102の加熱処理動作について、図11を用いて、説明する。
 図11は、実施の形態2の高周波加熱装置200の表面波伝送線路203による被加熱物102の加熱動作を示す図である。
 詳しくは、図11は、以下の状態における被加熱物102の加熱動作を示している。
 まず、図11では、図9で示す山形の形状で形成された表面波伝送線路203の両端に、高周波電力発生部210で発生された高周波電力を、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bのそれぞれを介して、供給する。このとき、設置台101上に載置された被加熱物102が、表面波伝送線路203を表面波で伝搬する高周波電力により形成される電界強度分布242により、加熱される様子を濃淡で示している。
 つまり、図11に示すように、第1の高周波電力給電部220aおよび第2の高周波電力給電部220bを介して表面波伝送線路203の両端に供給される高周波電力は、表面波伝送線路203の表面近傍を表面波で伝搬する。このとき、高周波電力は、被加熱物102の両端側から、順次、吸収される。そのため、表面波伝送線路203を伝搬する高周波電力は、被加熱物102を通過するにつれて、電界強度が減衰する。これにより、図11に示すような電界強度分布242が形成され、設置台101上の被加熱物102が加熱される。
 このとき、図11に示すように、高周波電力の伝搬方向に対して傾斜して形成される表面波伝送線路203の場合、設置台101上に載置される被加熱物102の両端側は、表面波伝送線路203の表面近傍から離れている。そのため、設置台101を通過する高周波電力は、距離に応じて少なくなるので、設置台101上の被加熱物102は、強く加熱されない。つまり、表面波伝送線路203の表面近傍に沿って伝搬する高周波電力の減衰度も、小さくなる。
 さらに、表面波伝送線路203は、両端に配置される第1の高周波電力給電部220aおよび第2の高周波電力給電部220b側から遠ざかり、頂点部203aに向かうにつれて、被加熱物102と表面波伝送線路203との距離が小さくなる。しかし、表面波伝送線路203の両端から頂点部203aに向かって伝搬するにしたがって高周波電力が減衰しても、設置台101を通過する高周波電力は、表面波伝送線路203との距離が小さくなるため、大きくなる。つまり、表面波伝送線路203から設置台101を介して被加熱物102へ吸収される高周波電力の吸収度は、大きくなる。これにより、被加熱物102に吸収されて減衰する高周波電力と、増加する被加熱物102の高周波電力の吸収度とのバランスを取ることができる。そのため、設置台101に載置される被加熱物102に対して、図11に示す均一な電界強度分布242が、設置台101上に形成される。その結果、設置台101を水平状態に維持したまま、表面波伝送線路203の高周波電力の伝搬方向に対して、被加熱物102を均一に加熱できる。
 なお、実施の形態2では、図9に示すような、単一の山形の傾斜で形成される表面波伝送線路203を用いる構成を例に説明したが、これに限られない。例えば、被加熱物102の加熱に寄与する表面波伝送線路103の領域(例えば、設置台101と対向する領域)において、高周波電力の伝搬方向に対して、山形の形状で傾斜するように構成してもよい。つまり、表面波伝送線路203と設置台101との距離が、第1の高周波電力給電部220aおよび第2の高周波電力給電部220b側において大きくなるように、少なくとも表面波伝送線路203の傾斜領域を配設すればよい。具体的には、例えば図12に示す水平部分207aおよび水平部分207cと傾斜部分207bを組み合わせて形成される表面波伝送線路207を用いてもよい。この場合、表面波伝送線路207の傾斜部分207bが、被加熱物102が載置される設置台101と対向するように配置される。これにより、実施の形態2と同様の効果を、得ることができる。
 以上、本発明に係る高周波加熱装置について、各実施の形態に基づき説明したが、本発明はこの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 以上で説明したように、本発明は、設置台に設置された被加熱物を加熱処理する高周波加熱装置である。高周波加熱装置は、設置台近傍に設けられる、少なくとも1つの表面波伝送線路と、高周波電力を発生させる、少なくとも1つの高周波電力発生部と、表面波伝送線路に高周波電力を直接に給電する、少なくとも1つの高周波電力給電部を備える。表面波伝送線路は、表面波伝送線路と設置台との距離が、高周波電力給電部側において、大きくなるように、高周波電力の伝搬方向に対して傾斜して、設置するように構成される。
 この構成によれば、設置台を動かすことなく、設置台と表面波伝送線路との距離が、表面波伝送線路の高周波電力を給電する側から遠ざかるにつれて小さくなる。このとき、表面波伝送線路を伝搬する高周波電力の被加熱物への吸収度は、表面波伝送線路の高周波電力を給電する側から遠ざかるにつれて、大きくなる。これにより、表面波伝送線路の高周波電力の伝搬方向に対して、複数の被加熱物を並べて設置する場合や、長さ寸法の大きい被加熱物を設置した場合でも、表面波伝送線路の高周波電力の伝搬方向に対して、被加熱物を均一な加熱できる。さらに、設置台を、水平状態に維持できるため、設置台上に設置した被加熱物が転がるなどの不具合の発生を、より確実に防止できる。
 また、本発明の高周波加熱調理器は、表面波伝送線路の両端に高周波給電部を配設し、表面波伝送線路は、高周波電力の伝搬方向に対して、実質的に、中間部が、頂点部となるような山形の傾斜を持つ構成としてもよい。
 この構成によれば、表面波伝送線路の両端から高周波電力を給電することができる。さらに、設置台を動かすことなく、設置台と表面波伝送線路との距離が、表面波伝送線路の高周波電力を給電する側から遠ざかるにつれて、小さくできる。これにより、表面波伝送線路の高周波電力の伝搬方向に対して、複数の被加熱物を並べて設置する場合や、長さ寸法の大きい被加熱物を設置した場合でも、表面波伝送線路の高周波電力の伝搬方向に対して、被加熱物を、より一層、均一に加熱できる。さらに、設置台を、水平状態に維持できるため、設置台上に設置した被加熱物が転がるなどの不具合の発生を未然に防止できる。
 本発明は、表面波伝送線路により被加熱物を加熱処理する高周波加熱装置において、被加熱物を加熱ムラなく、効率の良く加熱できる。そのため、本発明は、マイクロ波加熱器などの調理家電などとして、有用である。
 100,200  高周波加熱装置
 101  設置台
 101a,101b  端部
 102  被加熱物
 103,106,107,203,206,207  表面波伝送線路
 104,204a,204b  伝送方向
 105,205a,205b  傾斜角
 107a,107c,207a,207c  水平部分
 107b,207b  傾斜部分
 110,210  高周波電力発生部
 111  マグネトロン
 120,220  高周波電力給電部
 203a  頂点部
 220a  第1の高周波電力給電部(高周波電力給電部)
 220b  第2の高周波電力給電部(高周波電力給電部)
 121  方形導波管
 141,142,143,241,242  電界強度分布
 d101,d102,d201,d202,d203  距離

Claims (3)

  1. 設置台に設置される被加熱物を加熱処理する高周波加熱装置であって、
    前記設置台近傍に設けられる、少なくとも1つの表面波伝送線路と、
    高周波電力を発生させる、少なくとも1つの高周波電力発生部と、
    前記表面波伝送線路に高周波電力を直接に給電する、少なくとも1つの高周波電力給電部と、を備え、
    前記表面波伝送線路は、前記表面波伝送線路と前記設置台との距離が、前記高周波電力給電部側において、大きくなるように、前記高周波電力の伝搬方向に対して、傾斜を持つように構成され、前記表面波伝送線路に設置される、
    高周波加熱装置。
  2. 前記表面波伝送線路の両端に、前記高周波給電部を配設し、
    前記表面波伝送線路は、前記高周波電力の伝搬方向に対して、実質的に、中間部が頂点部となるように山形の傾斜を持つように構成される、
    請求項1に記載の高周波加熱装置。
  3. 前記表面波伝送線路の前記傾斜は、少なくとも前記設置台と対向する領域に配設される請求項1または請求項2のいずれか1項に記載の高周波加熱装置。
PCT/JP2019/005739 2018-03-22 2019-02-18 高周波加熱装置 WO2019181318A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980003877.7A CN111034357B (zh) 2018-03-22 2019-02-18 高频加热装置
EP19770268.1A EP3771290A4 (en) 2018-03-22 2019-02-18 RADIO FREQUENCY HEATING DEVICE
JP2020507439A JP7249491B2 (ja) 2018-03-22 2019-02-18 高周波加熱装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-054010 2018-03-22
JP2018054010 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019181318A1 true WO2019181318A1 (ja) 2019-09-26

Family

ID=67986187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005739 WO2019181318A1 (ja) 2018-03-22 2019-02-18 高周波加熱装置

Country Status (4)

Country Link
EP (1) EP3771290A4 (ja)
JP (1) JP7249491B2 (ja)
CN (1) CN111034357B (ja)
WO (1) WO2019181318A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129952A (en) * 1975-05-07 1976-11-11 Matsushita Electric Ind Co Ltd High frequency heater
JPS5292148A (en) * 1976-01-29 1977-08-03 Nippon Electric Co High frequency heater
JPH08148270A (ja) * 1994-11-21 1996-06-07 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH08166133A (ja) 1994-12-12 1996-06-25 New Japan Radio Co Ltd 高周波解凍加熱装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155443A (en) * 1976-06-18 1977-12-23 Matsushita Electric Ind Co Ltd High frequency heating equipment
JPS54105351A (en) * 1978-02-07 1979-08-18 Toshiba Corp Microwave heating device
JPS5816667A (ja) * 1981-07-20 1983-01-31 Matsushita Electric Ind Co Ltd 高周波加熱による解凍方法
JPS58148270U (ja) * 1982-03-31 1983-10-05 日産ディーゼル工業株式会社 デイ−ゼル機関の燃料噴射ノズル
CN104186024A (zh) * 2011-12-19 2014-12-03 松下电器产业株式会社 微波加热装置
JP2015162272A (ja) * 2014-02-26 2015-09-07 パナソニック株式会社 マイクロ波処理装置
JPWO2018037696A1 (ja) * 2016-08-22 2019-06-20 パナソニックIpマネジメント株式会社 高周波加熱装置
JP2018032471A (ja) 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 高周波加熱装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129952A (en) * 1975-05-07 1976-11-11 Matsushita Electric Ind Co Ltd High frequency heater
JPS5292148A (en) * 1976-01-29 1977-08-03 Nippon Electric Co High frequency heater
JPH08148270A (ja) * 1994-11-21 1996-06-07 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH08166133A (ja) 1994-12-12 1996-06-25 New Japan Radio Co Ltd 高周波解凍加熱装置

Also Published As

Publication number Publication date
CN111034357B (zh) 2022-03-04
JPWO2019181318A1 (ja) 2021-03-11
JP7249491B2 (ja) 2023-03-31
EP3771290A4 (en) 2021-05-26
CN111034357A (zh) 2020-04-17
EP3771290A1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP4935188B2 (ja) マイクロ波利用装置
US9179506B2 (en) Door choke and cooking apparatus including the same
US9876481B2 (en) Microwave processing device
JP2008269793A (ja) マイクロ波処理装置
JP2009016149A (ja) マイクロ波加熱装置
WO2017022711A1 (ja) 電磁波加熱装置
JP2008021493A (ja) マイクロ波利用装置
JP6956326B2 (ja) 高周波加熱装置
WO2019181318A1 (ja) 高周波加熱装置
JP7230802B2 (ja) マイクロ波処理装置
JP6807522B2 (ja) 高周波加熱装置
JP2020161348A (ja) 高周波加熱装置
JP2018032471A (ja) 高周波加熱装置
JP6861332B2 (ja) 高周波加熱装置
JP6807523B2 (ja) 高周波加熱装置
CN110547044B (zh) 微波处理装置
US10470258B2 (en) High frequency heating device
WO2022220160A1 (ja) 高周波加熱装置
KR101625881B1 (ko) 마이크로웨이브를 이용한 조리기기
JP2018032470A (ja) 高周波加熱装置
JP2019185964A (ja) 高周波加熱装置
KR101637880B1 (ko) 마이크로웨이브를 이용한 조리기기
JPWO2018225870A1 (ja) 加熱装置及び高周波加熱調理器
JP2006132794A (ja) 加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019770268

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019770268

Country of ref document: EP

Effective date: 20201022