WO2019181190A1 - Transparent oxide-laminated film, method for producing transparent oxide-laminated film, and transparent resin substrate - Google Patents

Transparent oxide-laminated film, method for producing transparent oxide-laminated film, and transparent resin substrate Download PDF

Info

Publication number
WO2019181190A1
WO2019181190A1 PCT/JP2019/002361 JP2019002361W WO2019181190A1 WO 2019181190 A1 WO2019181190 A1 WO 2019181190A1 JP 2019002361 W JP2019002361 W JP 2019002361W WO 2019181190 A1 WO2019181190 A1 WO 2019181190A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent oxide
oxide
transparent
less
Prior art date
Application number
PCT/JP2019/002361
Other languages
French (fr)
Japanese (ja)
Inventor
正和 ▲桑▼原
茂生 仁藤
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020207026627A priority Critical patent/KR20200135337A/en
Priority to CN201980019836.7A priority patent/CN111868293A/en
Publication of WO2019181190A1 publication Critical patent/WO2019181190A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent oxide laminated film, a method for producing a transparent oxide laminated film, and a transparent resin substrate. Specifically, the present invention relates to an amorphous transparent oxide laminated film having excellent water vapor barrier properties and chemical resistance, a method for producing the same, and a transparent resin substrate on which the transparent oxide laminated film is formed.
  • This application claims priority on the basis of Japanese Patent Application No. 2018-050675 filed on March 19, 2018 in Japan. This application is incorporated herein by reference. Incorporated.
  • the water vapor barrier resin substrate whose surface of a transparent resin substrate such as a plastic substrate or a film substrate is covered with a metal oxide film such as silicon oxide or aluminum oxide is used to prevent the invasion of water vapor and the deterioration of food and chemicals. It is used for packaging applications. In recent years, they are also used for liquid crystal display elements, solar cells, electroluminescence display elements (EL elements), quantum dot (QD) display elements, quantum dot sheets (QD sheets), and the like.
  • EL elements electroluminescence display elements
  • QD quantum dot
  • QD sheets quantum dot sheets
  • the transparent resin base material has inferior water vapor barrier properties as compared with the glass substrate, there is a problem that water vapor passes through the base material and deteriorates the EL display element, the QD display element, and the like. Also, when forming the base material, the water vapor barrier layer is damaged by the erosion by the adhesive used for the adhesive layer and the chemical solution used for patterning the transparent conductive layer, and the barrier function is impaired. There is also a problem in that the EL display element, the QD display element, and the like are deteriorated through the material. In order to improve such problems, a transparent resin substrate in which a metal oxide film is formed on a resin base material has been developed.
  • Patent Document 1 describes a water vapor barrier transparent resin substrate in which a transparent conductive film of tin oxide or the like is formed on a transparent film by a sputtering method. According to the description in Patent Document 1, it is described that the water vapor transmission rate by the Mocon method is less than 0.01 g / m 2 / day.
  • Patent Document 2 a barrier film using a laminate of an inorganic film and an organic film is proposed.
  • Patent Document 2 describes that the water vapor transmission rate at this time is 0.01 g / m 2 / day or less, the thickness of the inorganic film is 30 nm to 1 ⁇ m, and the thickness of the organic layer is 10 nm to 2 ⁇ m. .
  • JP 2005-103768 A Japanese Patent No. 5161470
  • these displays have demands for flexibility, and there are many requests for thinning the water vapor barrier transparent resin substrate. There is a demand for the thickness of the barrier film to be 100 nm or less. Furthermore, there is a strong demand for chemical resistance. Regarding chemical resistance, in order to protect the metal oxide layer from chemicals such as acids, alkalis, and organic solvents, studies have been made to provide a chemical resistant layer made of an organic compound on the metal oxide layer.
  • the transparent electrode etching process is a procedure of resist coating, resist exposure, resist development, transparent electrode etching, and resist stripping.
  • An alkaline aqueous solution is used in the resist development process and the resist stripping process, and an acidic aqueous solution is used in the transparent electrode etching process.
  • the adhesive agent and sealing material of an adhesive layer may contain an acidic and basic solvent. As a result, when the water vapor barrier transparent layer is partially eroded, the water vapor barrier property is impaired.
  • Patent Document 1 the water vapor transmission rate is measured by the Mocon method. However, it is difficult to accurately measure 0.01 g / m 2 / day or less by the Mocon method, and the actual water vapor of the membrane is not measured. The question remains about barrier properties. Further, since the film used is 200 ⁇ m and the thickness of the barrier film is as thick as 100 to 200 nm, the flexibility is inferior.
  • Patent Document 2 a barrier film using a laminate of an inorganic film and an organic film has been proposed.
  • the film formation process differs between the inorganic film and the organic film, film formation in each other process is necessary. Therefore, it is conceivable that the productivity deteriorates and the characteristics deteriorate due to foreign matters.
  • the structure is three or more layers and the organic layer is about 500 nm, and the flexibility is poor. .
  • the present invention has been made paying attention to such a demand, and has a transparent oxide laminated film having excellent transparency, good water vapor barrier performance, and chemical resistance, a method for producing the same, and a method using the same.
  • An object is to provide a transparent resin substrate.
  • the present inventors are suitable for water vapor barrier performance and chemical resistance in a laminated film composed of a plurality of amorphous transparent oxide films having different metal atom number ratios of Zn and Sn with respect to the above-described problems. As a result, the present invention has been completed.
  • one embodiment of the present invention is a transparent oxide stacked film in which a plurality of transparent oxide films containing Zn and Sn are stacked, and each layer has an amorphous ratio in which the number of metal atoms of Zn and Sn is different. It consists of a transparent oxide film.
  • a layer having a water vapor barrier performance and a layer having chemical resistance are formed, respectively, thereby providing a good water vapor barrier performance.
  • a transparent oxide laminated film having chemical resistance by changing the metal atom number ratio of Zn and Sn in each layer, a layer having a water vapor barrier performance and a layer having chemical resistance are formed, respectively, thereby providing a good water vapor barrier performance.
  • a transparent oxide laminated film having chemical resistance by changing the metal atom number ratio of Zn and Sn in each layer, a layer having a water vapor barrier performance and a layer having chemical resistance are formed, respectively, thereby providing a good water vapor barrier performance.
  • a transparent oxide laminated film having chemical resistance by changing the metal atom number ratio of Zn and Sn in each layer, a layer having a water vapor barrier performance and a layer having chemical resistance are formed, respectively, thereby providing a good water vapor barrier performance.
  • a transparent oxide laminated film having chemical resistance by changing the metal atom number ratio of Zn and
  • the first transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.18 or more and 0.29 or less and the metal atom number ratio of Sn / ( At least a second transparent oxide film having Zn + Sn) of 0.44 or more and 0.90 or less may be included.
  • the transparent oxide film of at least one of the layers contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) is 0.1 in the atomic ratio of Zn, Sn, Ta, and Ge. 01 or less, Ge / (Zn + Sn + Ge + Ta) may be 0.04 or less.
  • Ta and Ge are components derived from the target, which improves the conductivity of the target itself, thereby increasing the deposition rate, and increasing the target density enables stable deposition. It becomes like this.
  • the transparent oxide multilayer film may have a thickness of 100 nm or less.
  • the transparent oxide multilayer film may have a water vapor transmission rate of 0.001 g / m 2 / day or less by a differential pressure method specified in accordance with the K7129 method of JIS standard.
  • the transparent oxide laminated film has excellent water vapor barrier performance.
  • the transparent oxide multilayer film has chemical resistance to acid or alkali, and has a color difference ⁇ Eab before and after being immersed in a solution of 5% hydrochloric acid or 5% sodium hydroxide for 5 minutes.
  • the change value may be 1.0 or less.
  • the transparent oxide laminated film has excellent chemical resistance.
  • the transparent oxide laminated film has chemical resistance to acid or alkali, and the film changes before and after being immersed in a 5% concentration hydrochloric acid or 5% concentration sodium hydroxide solution for 5 minutes.
  • the amount may be 2.0 nm or less.
  • the transparent oxide laminated film has excellent chemical resistance.
  • Another aspect of the present invention is a method for producing a transparent oxide multilayer film, wherein sputtering is performed using a target made of a Sn—Zn—O-based oxide sintered body, at least in terms of the number of metal atoms, Sn / Zn.
  • a first target having an oxide sintered body in which (Zn + Sn) is 0.18 or more and 0.29 or less, and an oxidation in which Sn / (Zn + Sn) is 0.44 or more and 0.90 or less in terms of the number of metal atoms
  • a transparent oxide laminated film is formed using a second target having a sintered product.
  • a transparent oxide film excellent in water vapor barrier performance can be formed by sputtering using the first target, and chemical resistance can be obtained by sputtering using the second target.
  • a transparent oxide film having excellent properties can be formed.
  • Another aspect of the present invention is a transparent resin substrate in which the transparent oxide laminated film described above is formed on at least one surface of a transparent resin base material.
  • a transparent resin substrate having both excellent water vapor barrier properties and chemical resistance can be obtained by forming the transparent oxide laminated film described above.
  • a transparent oxide film having a metal atom ratio of Sn / (Zn + Sn) of 0.44 or more and 0.90 or less can be the outermost layer.
  • Such a transparent oxide film has chemical resistance, it is preferably formed on the outermost layer of the transparent resin substrate.
  • a transparent oxide multilayer film having excellent transparency, good water vapor barrier performance, and chemical resistance can be provided by high-productivity direct current sputtering.
  • the transparent oxide laminated film according to the present invention the method for producing the transparent oxide laminated film, and the transparent resin substrate will be described in the following order.
  • this invention is not limited to the following examples, In the range which does not deviate from the summary of this invention, it can change arbitrarily.
  • 1. Transparent oxide laminated film 2. Manufacturing method of transparent oxide laminated film Transparent resin substrate
  • Transparent oxide laminated film> is a transparent oxide multilayer film in which a plurality of transparent oxide films containing Zn and Sn are stacked, and the amorphous transparent oxide having different metal atom number ratios of Zn and Sn in each layer It consists of a material film.
  • a layer having a water vapor barrier performance and a layer having a chemical resistance are formed respectively, thereby providing a good water vapor barrier performance and chemical resistance. It can be set as the transparent oxide laminated film which has.
  • the amorphous transparent oxide laminated film of the present invention (hereinafter sometimes simply referred to as an oxide laminated film) is mainly used as a water vapor barrier film.
  • an oxide laminated film For the purpose of preventing deterioration by covering the surface of a flexible display element such as a liquid crystal display element, a solar cell, an electroluminescence (EL) display element, etc., as a metal oxide film by sputtering and blocking water vapor, etc. It's being used.
  • the oxide laminated film is a crystalline film
  • the target material which comprises the sputtering target used for sputtering is the following.
  • a tin oxide system that is the same component as the film is used.
  • this tin oxide target material generally has high acid resistance, the relative density of the target material is low, and there are many problems such that the target material cannot be stably formed due to cracking of the target material during sputtering.
  • the above-mentioned concern has been solved by using a Sn—Zn—O-based sputtering target described later.
  • the oxide sputtered laminated film according to an embodiment of the present invention is an amorphous transparent oxide film containing Zn and Sn, and has different metal atom number ratios of Zn and Sn. It is characterized by being laminated.
  • the number of transparent oxide films to be stacked is not particularly limited, but may be at least two layers.
  • the two transparent oxide films having different metal atom number ratios of Zn and Sn are the first transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.18 to 0.29.
  • the second transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.44 or more and 0.90 or less is preferable.
  • the first transparent oxide film has a metal atom number ratio of Sn / (Zn + Sn) of 0.18 or more and 0.29 or less, good water vapor barrier performance (low water vapor transmission rate) can be obtained. .
  • the second transparent oxide film can obtain good chemical resistance by setting the ratio of metal atoms to Sn / (Zn + Sn) of 0.44 or more and 0.90 or less.
  • Zinc oxide (ZnO) is easily dissolved in chemicals such as acids and alkalis, and has a drawback of poor resistance to chemicals such as acids and alkalis. For example, high-definition patterning processing by wet etching is difficult.
  • the tin oxide (SnO 2 ) system has extremely high chemical resistance. Therefore, the second transparent oxide film of amorphous containing Zn and Sn, to obtain a chemical resistance of acid, alkali or the like in that the main component from SnO 2.
  • the first transparent oxide film and the second transparent oxide film are composed of the same kind of oxide. For this reason, it is possible to use the sputtering method widely used industrially for film formation.
  • the sputtering method is effective because it has high productivity and can form a uniform film thickness.
  • targets used for the first oxide film and the second oxide film (first target and second target described later) are used. It can be installed and sputtered at the same time.
  • first oxide film and the second oxide film are both amorphous oxide films containing Zn and Sn, the adhesion of the films when stacked is high, and the films Since the film is amorphous, the film stress generated during film formation can be relaxed.
  • At least one of the first transparent oxide film and the second transparent oxide film further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, and Ge. Is preferably 0.01 or less, and Ge / (Zn + Sn + Ge + Ta) of the above-mentioned Ge / Zn, Sn, Ta metal atom number ratio is preferably 0.04 or less.
  • the crystallization temperature is 600 ° C. or higher, so that an amorphous film structure is easily obtained.
  • the crystallization temperature is high, the amorphous state can be easily maintained even when there is a thermal influence in the mass production process.
  • by adding Ta and Ge at the above ratio there is an effect of further improving the characteristics of the sputtering target containing Zn and Sn.
  • a sputtering target material is formed by bonding (bonding) an oxide sintered body composed only of Sn—Zn to a backing plate made of a copper material, a stainless steel material, or the like using a bonding material such as indium (In). can get.
  • An oxide sintered body composed only of Sn—Zn has insufficient conductivity and may have a large specific resistance value. This is because it is necessary to perform sputtering with a larger energy as the specific resistance value is larger at the time of sputtering, and the deposition rate cannot be increased. Therefore, it is necessary to increase the conductivity of the sintered body used for the target. Since Zn 2 SnO 4 , ZnO, and SnO 2 are poorly conductive materials in the oxide sintered body, even if the compounding ratio is adjusted to adjust the amount of the compound phase and ZnO, SnO 2 Cannot be improved significantly.
  • Ta tantalum Since Ta is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase or Sn, and Sn in the SnO 2 phase, it dissolves, so that the ZnO phase of the wurtzite crystal structure, Zn of the spinel crystal structure A compound phase other than the 2 SnO 4 phase and the SnO 2 phase having a rutile crystal structure is not formed.
  • Ta the conductivity is improved while maintaining the density of the oxide sintered body.
  • the sintered density of the oxide sintered body composed only of Sn—Zn is around 90%, which is not sufficient. If the density of the oxide sintered body is low, there is a problem that the oxide sintered body is broken during sputtering, and thus the film cannot be stably formed.
  • Ge germanium
  • Ge germanium
  • Ge is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase, or Sn in the Zn 2 SnO 2 phase and is dissolved in solid solution, so that ZnO having a wurtzite crystal structure No compound phase other than the phase, the Zn 2 SnO 4 phase having the spinel crystal structure, and the SnO 2 phase having the rutile crystal structure is formed.
  • the addition of Ge has the effect of densifying the oxide sintered body. Thereby, the sintered density of the oxide sintered body can be further increased.
  • the oxide sintered body further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is 0.01 or less, and the Ge, Zn, Sn, It is preferable that Ge / (Zn + Sn + Ge + Ta) of the Ta metal atom number ratio is 0.04 or less.
  • the approximate lower limit value for obtaining the above effect by addition of Ta and Ge is 0.0005 in terms of the number of metal atoms for both Ta and Ge.
  • Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is larger than 0.01, another compound phase, for example, a compound phase such as Ta 2 O 5 or ZnTa 2 O 6 is generated. The conductivity cannot be improved significantly. Further, when Ge / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ge and Zn, Sn, Ta is larger than 0.04, another compound phase, for example, a compound phase such as Zn 2 Ge 3 O 8 is generated. The density of the oxide sintered body is reduced, and the target is easily broken during sputtering.
  • the sputtered oxide film is not affected. For example, the influence such as water vapor transmission rate is not confirmed.
  • the film thickness of the oxide laminated film is preferably 100 nm or less, and more preferably 90 nm or less. By setting it as such a film thickness, the oxide laminated film excellent in flexibility can be provided.
  • the thickness of the transparent oxide laminated film including the first oxide film and the second oxide film may be 100 nm or less, preferably 90 nm or less. Therefore, there is no limitation on the individual thicknesses of the first oxide film and the second oxide film.
  • the water vapor permeability of the oxide multilayer film by a differential pressure method specified in accordance with the JIS standard K7129 method is 0.001 g / m 2 / day or less.
  • the water vapor transmission rate (WVTR) required for the water vapor barrier transparent resin substrate that can be used for the display is 0.01 g / m 2 / day or less, preferably 0.005 g / m 2 / day. It is said that The water vapor permeability of the oxide multilayer film of the present invention is 0.001 g / m 2 / day or less, and can be sufficiently applied to these.
  • the water vapor transmission rate is mainly influenced by the first oxide film, and particularly by the film thickness. As the water vapor transmission rate increases, the water vapor transmission rate decreases as the film thickness increases. Therefore, each film thickness is appropriately set in consideration of the required water vapor transmission rate.
  • the second oxide film has chemical resistance.
  • the chemical resistance is evaluated by a color difference ⁇ Eab.
  • the color difference is evaluated using the L * a * b * color system (CIE 1976).
  • L * represents lightness
  • a * and b * represent hue and saturation, and are represented by chromaticity.
  • L * is a numerical value from 0 to 100 and is large. It turns white.
  • a * is the axis from red to green
  • + a is the red direction
  • -a is the green direction
  • b * is the axis from yellow to blue
  • + b is the yellow direction
  • -b is the blue direction
  • both a * b * are 0, the color is achromatic.
  • the color difference ⁇ Eab is calculated by the CIE 1976 color difference calculation formula. L *, a *, and b * before and after the evaluation are measured, and the difference between before and after the evaluation is ⁇ L *, ⁇ a *, and ⁇ b *, and the color difference ⁇ Eab is (( ⁇ L *) 2 + ( ⁇ a *) 2 + ( ⁇ b *) 2 ) Obtained by 1/2 .
  • the chemical resistance is confirmed to be resistant to acids and alkalis.
  • the acid resistance is 5% hydrochloric acid
  • the alkali resistance can be evaluated as a color difference ⁇ Eab change value before and after immersion in a 5% sodium hydroxide solution for 5 minutes.
  • this color difference ⁇ Eab is large, the color changes before and after the treatment, and it is presumed that the oxide laminated film is eluted and discolored by the chemical.
  • the color difference ⁇ Eab change value is 1.0 or less, more preferably 0.5 or less, it can be determined that the oxide laminated film is less eluted by chemicals and has chemical resistance.
  • chemical resistance can also be confirmed by a change in the thickness of the film after immersion in acid or alkali.
  • the thickness change before and after immersion in the chemical was confirmed by the ICP-AES method for the amount of Zn and Sn dissolved in the chemical in which the sample was immersed. Amount).
  • the acid resistance is 5% hydrochloric acid
  • the alkali resistance is as long as the decrease in film thickness (film change amount) after being immersed in a 5% sodium hydroxide solution for 5 minutes is 2.0 nm or less. It can be judged that there is chemical nature.
  • the tin oxide (SnO 2 ) system has extremely high chemical resistance.
  • the amorphous second transparent oxide film containing Zn and Sn is made to be 0.44 or more and 0.90 or less in Sn / (Zn + Sn) by Sn / (Zn + Sn) as a main component with SnO 2 as a main component.
  • the color difference ⁇ Eab change value can be 0.5 or less, and the film change amount can also be 2.0 nm or less.
  • the transparent oxide laminated film which concerns on one Embodiment of this invention, it can have outstanding transparency, favorable water vapor
  • One embodiment of the present invention is a method for manufacturing a transparent oxide multilayer film, in which sputtering is performed using a target made of a Sn—Zn—O-based oxide sintered body, and includes at least a metal atom ratio, Sn / ( A first target having an oxide sintered body in which Zn + Sn is 0.18 or more and 0.29 or less, and an oxide in which Sn / (Zn + Sn) is 0.44 or more and 0.90 or less in terms of the number of metal atoms A transparent oxide multilayer film is formed using a second target having a sintered body.
  • the method for producing a transparent oxide multilayer film performs sputtering using a Sn—Zn—O-based oxide sintered body, and has different metal atom number ratios of Zn and Sn. Two amorphous laminated films are obtained. That is, a transparent oxide film excellent in water vapor barrier performance can be formed by sputtering using the first target, and a transparent oxide film excellent in chemical resistance can be formed by sputtering using the second target. Can be formed.
  • a sintered body in which Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the oxide sintered body used for sputtering of the first oxide film is 0.18 or more and 0.29 or less.
  • Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the oxide sintered body used when sputtering the first target and the second oxide film is 0.44 or more and 0.90 or less.
  • a target composed of a second target having a sintered body is prepared. The technical significance of the composition range of each sintered body is as described above.
  • the total film thickness of the sputtered oxide laminated film is preferably 100 nm or less, and more preferably 90 nm or less. As described above, in this way, it is possible to provide an oxide laminated film having good water vapor barrier performance and more excellent flexibility. Note that the thicknesses of the first oxide film and the second oxide film are not particularly limited.
  • Sputtering may be performed using a sputtering target composed of the above-described oxide sintered body.
  • the sputtering apparatus is not particularly limited, and a direct current magnetron sputtering apparatus or the like can be used.
  • the degree of vacuum in the chamber is adjusted to 1 ⁇ 10 ⁇ 4 Pa or less.
  • An inert gas is introduced into the atmosphere in the chamber.
  • the inert gas is argon gas or the like, and preferably has a purity of 99.999% by mass or more.
  • the inert gas contains 4 to 10% by volume of oxygen with respect to the total gas flow rate. Since the oxygen concentration affects the surface resistance value of the film, the oxygen concentration is set to a predetermined resistance value. Thereafter, a predetermined DC power source is used to put between the sputtering target and the substrate, plasma is generated by DC pulsing, and sputtering is performed to form a film. Note that the film thickness is controlled by the film formation time.
  • Sputtering forms a second oxide film after forming a first oxide film.
  • the first target used for the first oxide film and the second target used for the second oxide film are installed, and sputtering is continuously performed. It is possible to improve productivity by forming continuously with the same apparatus. Moreover, it is the same type of target and has good film adhesion and affinity.
  • the transparent oxide laminated film which concerns on one Embodiment of this invention, it is the oxide which has the outstanding transparency, favorable water vapor
  • a laminated film can be obtained.
  • a transparent resin substrate according to an embodiment of the present invention is obtained by forming at least two amorphous transparent oxide laminated films having different metal atom number ratios of Zn and Sn on a transparent base material. .
  • the transparent oxide multilayer film is formed on at least one surface of the substrate, and the first oxide film has a Sn / (Zn + Sn) ratio of Zn / Sn metal atom number of 0.18 or more and 0. It is preferable that Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn is 0.44 or more and 0.90 or less in the second oxide film.
  • the film thickness of the transparent oxide multilayer film is preferably 100 nm or less, and more preferably 90 nm or less.
  • the transparent substrate polyethylene terephthalate, polyethylene, naphthalate, polycarbonate, polysulfone, polyethersulfone, polyarylate, cycloolefin polymer, fluorine resin, polypropylene, polyimide resin, epoxy resin, and the like can be used.
  • the thickness of the transparent resin substrate is not particularly limited, but is preferably 50 to 150 ⁇ m in view of flexibility, cost, and device needs.
  • the sputtering method for the transparent substrate may be performed as described in the method for producing the transparent oxide laminated film.
  • the technical significance such as the preferred metal atom number ratio and film thickness of Zn and Sn is as described above.
  • the transparent resin substrate according to an embodiment of the present invention has an amorphous sputtered oxide film containing Zn and Sn formed on at least one surface of a base material and having a water vapor barrier property.
  • it may be laminated through another film.
  • a silicon oxide film, a silicon nitride oxide film, a resin film, a wet coat film, a metal film, an oxide film, or the like is formed on the substrate, and then the oxide sputter film is used as a water vapor barrier layer. You may form in at least one.
  • the second oxide film be an outermost layer.
  • the second oxide film having chemical resistance is preferably formed on the outer side (surface side) of the first oxide film.
  • a second oxide film is formed on the outermost surface on the surface side where acid or alkaline chemicals are used in a step of producing a transparent electrode, a step of applying an adhesive, or the like.
  • the first oxide film mainly has a water vapor barrier property, and when this surface is formed on the surface side, it is weak in chemical resistance, and there is a high possibility that the water vapor barrier property is impaired by the chemical.
  • a flexible OLED display element, a flexible QD display element, or a QD sheet, which is one of flexible display elements can be formed using the transparent resin substrate according to an embodiment of the present invention.
  • the transparent resin substrate which concerns on one Embodiment of this invention, it has the outstanding transparency, favorable water vapor
  • SnO 2 powder and ZnO powder were used.
  • Ta 2 O 5 powder was used as the additive element Ta
  • GeO 2 powder was used as the additive element Ge.
  • Example 1 a sintered body manufactured so as to have zinc oxide as a main component and tin oxide as a metal atom number ratio Sn / (Zn + Sn) of 0.26, and tin oxide as a metal atom number ratio Sn / (
  • a sputtering target manufactured by Sumitomo Metal Mining Co., Ltd.
  • a sintered body produced to have a Zn + Sn ratio of 0.49 was produced using a sintered body produced to have a Zn + Sn ratio of 0.49, and this sputtering target was used to perform sputtering to form a film.
  • a direct current magnetron sputtering apparatus manufactured by ULVAC, SH-550 type
  • the amorphous oxide sputtered film was formed under the following conditions.
  • a target was attached to the cathode, and a resin film substrate was disposed immediately above the cathode.
  • the distance between the target and the resin film substrate was 80 mm.
  • the resin film base material on which the film was formed was stationary on the opposite surface of the cathode, and the film formation was performed on the stationary surface.
  • As the resin film substrate a PEN film (manufactured by Teijin, thickness 50 ⁇ m) was used.
  • argon gas having a purity of 99.9999% by mass is introduced into the chamber to a gas pressure of 0.6 Pa, and argon containing 5% oxygen
  • a DC power supply (MDX, manufactured by DELTA) was used as a DC power supply, and DC power 1500 W adopting 20 kHz DC pulsing was introduced between the sputtering target and the Teijin PEN film substrate, and DC pulsing Plasma was generated, and a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.26 was formed on the Teijin PEN film substrate to a thickness of 50 nm by sputtering.
  • a second oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.49 was formed to a thickness of 50 nm by sputtering.
  • the crystallinity, water vapor transmission rate (WVTR), and chemical resistance of the formed oxide sputtered film were confirmed. Crystallinity was measured by X-ray diffraction, and diffraction peaks were observed. Water vapor permeability was measured by a differential pressure method (DELTATAPRM-UH manufactured by Technolox). Moreover, the transmittance
  • the sample before and after chemical immersion was measured using a spectrocolorimeter (Konica Minolta Co., Ltd. model: CM-5), and the color difference ⁇ Eab was calculated.
  • the amount of decrease in thickness before and after chemical immersion was determined by confirming the amount of Zn and Sn dissolved by ICP-AES method (ICPS-8100, manufactured by Shimadzu Corp.)
  • the amount of film change was estimated from the film formation area and film density.
  • a transparent oxide laminated film formed on a glass substrate was used so that the base material was not dissolved. The results are shown in Table 1.
  • Example 2 In Example 2, the first oxide film has a metal atom number ratio Sn / (Zn + Sn) of 0.18, and the second oxide film has a metal atom number ratio Sn / (Zn + Sn) of 0.59.
  • a transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that sputtering was performed. The results are shown in Table 1.
  • Example 3 In Example 3, a first oxide film is formed by sputtering to a thickness of 70 nm, and then a second oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.68 is formed by sputtering. A transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that the film was formed at 20 nm. The results are shown in Table 1.
  • Example 4 In Example 4, the same procedure as in Example 1 was performed, except that the first oxide film was formed to a thickness of 15 nm by sputtering, and then the second oxide film was formed to a thickness of 15 nm by sputtering. A transparent oxide laminated film was obtained and measured. The results are shown in Table 1.
  • Example 5 the first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.22 was formed by sputtering to a film thickness of 15 nm, and the metal atom number ratio Sn / (Zn + Sn) was 0.59.
  • a transparent oxide multilayer film was obtained and measured in the same manner as in Example 1 except that the second oxide film was formed by sputtering to a film thickness of 15 nm. The results are shown in Table 1.
  • Example 6 (Example 6) In Example 6, a first oxide film is formed by sputtering to a thickness of 20 nm, and then a second oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.68 is formed by sputtering. A transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that the film was formed at 10 nm. The results are shown in Table 1.
  • Example 7 a first oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.22, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed by sputtering.
  • a transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that the film was formed with a thickness of 30 nm and the second oxide film was formed with a thickness of 20 nm by sputtering. The results are shown in Table 1.
  • Example 8 a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.18 was formed to a thickness of 85 nm by sputtering, and the metal atom number ratio Sn / (Zn + Sn) was 0.79.
  • Transparent oxidation is performed in the same manner as in Example 1 except that a second oxide film having a thickness of Ta / (Zn + Sn + Ge + Ta) of 0.01 and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed to a thickness of 15 nm by sputtering.
  • the product laminated film was obtained and measured. The results are shown in Table 1.
  • Example 9 In Example 9, a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.28, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 was formed by sputtering. A second oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.68, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 was formed by sputtering. Except for this, a transparent oxide laminated film was obtained in the same manner as in Example 1, and the measurement was performed. The results are shown in Table 1.
  • Comparative Example 1 a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.18 is formed by sputtering, and a metal atom number ratio Sn / (Zn + Sn) of 0.29 is obtained.
  • a transparent oxide laminate film was obtained and measured in the same manner as in Example 1 except that the oxide film was formed by sputtering. The results are shown in Table 1.
  • Comparative Example 2 In Comparative Example 2, a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.16 is formed by sputtering, and a metal atom number ratio Sn / (Zn + Sn) of 0.49 is obtained. A transparent oxide laminate film was obtained and measured in the same manner as in Example 1 except that the oxide film was formed by sputtering. The results are shown in Table 1.
  • Comparative Example 3 In Comparative Example 3, the first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.35 was formed by sputtering to a film thickness of 15 nm, and the metal atom number ratio Sn / (Zn + Sn) was 0.79. Transparent oxidation is performed in the same manner as in Example 1 except that a second oxide film having a thickness of Ta / (Zn + Sn + Ge + Ta) of 0.01 and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed to a thickness of 15 nm by sputtering. The product laminated film was obtained and measured. The results are shown in Table 1.
  • the water vapor transmission rate by the differential pressure method specified according to the JIS standard K7129 method is 0.001 g / m 2 / day or less (1.0 ⁇ 10 ⁇ 3 or less). g / m 2 / day or less), and it was found that the film had good water vapor barrier performance. Furthermore, it was found that the color difference ⁇ Eab in the chemical resistance evaluation was 1.0 or less, and the film change amount was 2.0 nm or less, thus having good chemical resistance.
  • a transparent oxide laminated film having excellent transparency, good water vapor barrier performance, and chemical resistance can be obtained by DC sputtering with high mass productivity.
  • the transparent oxide laminated film, the method for producing the transparent oxide laminated film, and the configuration of the transparent resin substrate are not limited to those described in the embodiment and the examples of the present invention, and various modifications can be made. is there.
  • the transparent oxide laminated film according to the present invention By using the transparent oxide laminated film according to the present invention, it becomes possible to form a water vapor barrier transparent resin substrate, and by using the water vapor barrier transparent resin substrate, the degree of freedom of shape, phase display, etc. It is possible to produce a liquid crystal display element, an electroluminescence display element (EL display element), a quantum dot display element (QD display element), electronic paper, a film type solar cell, and the like. Therefore, the present invention is extremely valuable industrially.
  • EL display element electroluminescence display element
  • QD display element quantum dot display element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided are: a transparent oxide-laminated film having excellent transparency, good moisture barrier performance, and chemical resistance; a method for producing the transparent oxide-laminated film; and a transparent resin substrate using the transparent oxide-laminated film. The transparent oxide-laminated film is obtained by laminating a plurality of layers of a transparent oxide film containing Zn and Sn, wherein each of the layers is composed of an amorphous transparent oxide film having a different atomic ratio of Zn to Sn. The method for producing the transparent oxide-laminated film uses sputtering targets made of different Sn-Zn-O-based oxide sintered bodies, wherein a first target having an oxide sintered body having an atomic ratio Sn/(Zn+Sn) of 0.18-0.29, and a second target having an oxide sintered body having an atomic ratio Sn/(Zn+Sn) of 0.44-0.90 are used to form the transparent oxide laminated-film.

Description

透明酸化物積層膜、透明酸化物積層膜の製造方法、及び透明樹脂基板Transparent oxide laminated film, method for producing transparent oxide laminated film, and transparent resin substrate
 本発明は、透明酸化物積層膜、透明酸化物積層膜の製造方法、及び透明樹脂基板に関する。具体的には、優れた水蒸気バリア性及び耐薬品性を有する、非晶質の透明酸化物積層膜と、その製造方法、及びこの透明酸化物積層膜を形成した透明樹脂基板に関するものである。本出願は、日本国において2018年3月19日に出願された日本特許出願番号特願2018-050675を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a transparent oxide laminated film, a method for producing a transparent oxide laminated film, and a transparent resin substrate. Specifically, the present invention relates to an amorphous transparent oxide laminated film having excellent water vapor barrier properties and chemical resistance, a method for producing the same, and a transparent resin substrate on which the transparent oxide laminated film is formed. This application claims priority on the basis of Japanese Patent Application No. 2018-050675 filed on March 19, 2018 in Japan. This application is incorporated herein by reference. Incorporated.
 プラスチック基板やフィルム基板等の透明樹脂基板の表面を酸化珪素や酸化アルミニウム等の金属酸化物膜で覆った水蒸気バリア性樹脂基板は、水蒸気の侵入を防ぎ、食品や薬品などの劣化を防止する目的の包装用途に用いられている。近年では、液晶表示素子、太陽電池、エレクトロルミネッセンス表示素子(EL素子)、量子ドット(QD)表示素子、量子ドットシート(QDシート)などにも利用されている。 The water vapor barrier resin substrate whose surface of a transparent resin substrate such as a plastic substrate or a film substrate is covered with a metal oxide film such as silicon oxide or aluminum oxide is used to prevent the invasion of water vapor and the deterioration of food and chemicals. It is used for packaging applications. In recent years, they are also used for liquid crystal display elements, solar cells, electroluminescence display elements (EL elements), quantum dot (QD) display elements, quantum dot sheets (QD sheets), and the like.
 電子機器、特に表示素子に使用されている水蒸気バリア性透明樹脂基板には、近年、表示素子の展開に合わせて、軽量化、大型化という要求に加え、形状の自由度、曲面表示等フレキシブル化などへの要求も求められている。このため、今まで使用してきたガラス基板では対応が厳しく、透明な樹脂基板の採用が始まっている。 In recent years, water vapor barrier transparent resin substrates used in electronic devices, especially display elements, have become more flexible, such as flexibility in shape and curved surface display, in addition to demands for lighter and larger sizes in accordance with the development of display elements. There is also a demand for such as. For this reason, the glass substrate that has been used so far has a strict response, and the adoption of a transparent resin substrate has begun.
 しかしながら、透明樹脂基材は、ガラス基板と比べて水蒸気バリア性が劣るため、水蒸気が基材を透過し、EL表示素子、QD表示素子等を劣化させてしまうという問題があった。また基材を成形する上で、接着層の接着材、透明導電層のパターニングの際に用いられる薬品液などによる浸食等により、水蒸気バリア層がダメージを受けバリア機能が損なわれてしまい水蒸気が基材を透過し、EL表示素子、QD表示素子等を劣化させてしまうという問題もあった。このような問題を改善するために、樹脂基材上に金属酸化物膜を形成した透明樹脂基板の開発が行われている。 However, since the transparent resin base material has inferior water vapor barrier properties as compared with the glass substrate, there is a problem that water vapor passes through the base material and deteriorates the EL display element, the QD display element, and the like. Also, when forming the base material, the water vapor barrier layer is damaged by the erosion by the adhesive used for the adhesive layer and the chemical solution used for patterning the transparent conductive layer, and the barrier function is impaired. There is also a problem in that the EL display element, the QD display element, and the like are deteriorated through the material. In order to improve such problems, a transparent resin substrate in which a metal oxide film is formed on a resin base material has been developed.
 例えば、特許文献1では、透明フィルム上に、酸化スズ系等の透明導電膜をスパッタリング法にて形成した、水蒸気バリア性透明樹脂基板が記載されている。特許文献1の記載よるとモコン法による水蒸気透過率が0.01g/m/day未満である旨が記載されている。 For example, Patent Document 1 describes a water vapor barrier transparent resin substrate in which a transparent conductive film of tin oxide or the like is formed on a transparent film by a sputtering method. According to the description in Patent Document 1, it is described that the water vapor transmission rate by the Mocon method is less than 0.01 g / m 2 / day.
 また、特許文献2では、無機膜、有機膜の積層を利用したバリアフィルムの提案がなされている。特許文献2では、この時の水蒸気透過率が、0.01g/m/day以下であり、無機膜の厚みが30nm~1μm、有機層の厚みは10nm~2μmであることが記載されている。 In Patent Document 2, a barrier film using a laminate of an inorganic film and an organic film is proposed. Patent Document 2 describes that the water vapor transmission rate at this time is 0.01 g / m 2 / day or less, the thickness of the inorganic film is 30 nm to 1 μm, and the thickness of the organic layer is 10 nm to 2 μm. .
特開2005-103768号公報JP 2005-103768 A 特許5161470号公報Japanese Patent No. 5161470
 近年、EL表示素子やQD表示素子の実用化に伴い、ディスプレイ、例えば有機ELディスプレイの場合では、有機EL表示素子に水蒸気が混入すると、陰極層と有機層との界面で水分によるダメージが大きく影響し、有機層と陰極部間での剥離や、発光しない部分であるダークスポットが発生し、性能が著しく低下するという問題があることが知られている。これらのディスプレイに使用することができる水蒸気バリア性透明樹脂基板に要求される水蒸気透過率(WVTR)は、0.01g/m/day以下、好ましくは0.005g/m/day以下と言われている。 In recent years, with the practical application of EL display elements and QD display elements, in the case of a display, for example, an organic EL display, when water vapor is mixed into the organic EL display element, damage caused by moisture greatly affects the interface between the cathode layer and the organic layer. However, it is known that peeling between the organic layer and the cathode portion and dark spots, which are portions that do not emit light, are generated, resulting in a significant decrease in performance. Water vapor permeability required of the water vapor barrier transparent resin substrate that can be used in these displays (WVTR) is, 0.01g / m 2 / day or less, preferably 0.005g / m 2 / day and word It has been broken.
 また、これらのディスプレイはフレキシブル化などへの要求もあり水蒸気バリア性透明樹脂基板の薄型化の要望も多く挙がっている。バリア膜の膜厚としては、100nm以下の要求がある。更に、耐薬品性についても強い要求がある。耐薬品性については、金属酸化物層を酸、アルカリ、有機溶剤などの薬品から保護するために、金属酸化物層上に有機化合物からなる耐薬品層を設ける検討もなされている。 In addition, these displays have demands for flexibility, and there are many requests for thinning the water vapor barrier transparent resin substrate. There is a demand for the thickness of the barrier film to be 100 nm or less. Furthermore, there is a strong demand for chemical resistance. Regarding chemical resistance, in order to protect the metal oxide layer from chemicals such as acids, alkalis, and organic solvents, studies have been made to provide a chemical resistant layer made of an organic compound on the metal oxide layer.
 例えば、透明電極付きバリアフィルムの透明電極をパターン化する際のエッチング工程で用いる、アルカリ性水溶液や酸性水溶液に対する耐薬品性である。一般的に透明電極のエッチング工程は、レジスト被覆、レジスト露光、レジスト現像、透明電極エッチング、レジスト剥離の手順であり、レジスト現像工程とレジスト剥離工程でアルカリ性水溶液を、透明電極エッチング工程で酸性水溶液を用いる。また基材を形成する上で、接着層の接着材や封止材には酸性及び塩基性の溶剤が含まれることがある。これらによって、部分的に水蒸気バリア性透明層が浸食されると水蒸気バリア性を損なうため、耐薬品性が重要視されている。液晶素子、有機EL素子、TFT素子、半導体素子、太陽電池等形成された素子は、水、酸素に弱いため、これらの薬品液などによる水蒸気バリア性透明層が浸食された場合、ディスプレイの表示にダークスポットやドット抜けが発生し、半導体素子、太陽電池が機能しなくなる問題が発生する。これを改善するために、樹脂基材上に金属酸化物膜を形成した、透明樹脂基板を開発する要求がある。 For example, chemical resistance against an alkaline aqueous solution or an acidic aqueous solution used in an etching process when patterning a transparent electrode of a barrier film with a transparent electrode. Generally, the transparent electrode etching process is a procedure of resist coating, resist exposure, resist development, transparent electrode etching, and resist stripping. An alkaline aqueous solution is used in the resist development process and the resist stripping process, and an acidic aqueous solution is used in the transparent electrode etching process. Use. Moreover, when forming a base material, the adhesive agent and sealing material of an adhesive layer may contain an acidic and basic solvent. As a result, when the water vapor barrier transparent layer is partially eroded, the water vapor barrier property is impaired. Therefore, chemical resistance is regarded as important. Since formed elements such as liquid crystal elements, organic EL elements, TFT elements, semiconductor elements and solar cells are vulnerable to water and oxygen, when the water vapor barrier transparent layer is eroded by these chemicals, etc. Dark spots and missing dots occur, causing a problem that the semiconductor element and the solar cell do not function. In order to improve this, there is a need to develop a transparent resin substrate in which a metal oxide film is formed on a resin base material.
 これに対し、特許文献1では、水蒸気透過率はモコン法により測定しているが、モコン法の測定では、0.01g/m/day以下を正確に測ることは難しく、実際の膜の水蒸気バリア性には疑問が残る。また、使用しているフィルムが200μm、バリア膜の厚さは100~200nmと厚いことでフレキシブル性に劣っている。 On the other hand, in Patent Document 1, the water vapor transmission rate is measured by the Mocon method. However, it is difficult to accurately measure 0.01 g / m 2 / day or less by the Mocon method, and the actual water vapor of the membrane is not measured. The question remains about barrier properties. Further, since the film used is 200 μm and the thickness of the barrier film is as thick as 100 to 200 nm, the flexibility is inferior.
 また、特許文献2では、無機膜、有機膜の積層を利用したバリアフィルムの提案がなされているが、無機膜及び有機膜では成膜プロセスが異なるため、各々他プロセスでの膜付けが必要になり、生産性悪化や異物などによる特性悪化が考えられる。また水蒸気透過率が、0.01g/m/day以下を達成するためには、構成が積層で3層以上であり、有機層が500nm程度必要との記載があり、フレキシブル性に劣っている。 In Patent Document 2, a barrier film using a laminate of an inorganic film and an organic film has been proposed. However, since the film formation process differs between the inorganic film and the organic film, film formation in each other process is necessary. Therefore, it is conceivable that the productivity deteriorates and the characteristics deteriorate due to foreign matters. In addition, in order to achieve a water vapor transmission rate of 0.01 g / m 2 / day or less, there is a description that the structure is three or more layers and the organic layer is about 500 nm, and the flexibility is poor. .
 したがって、EL表示素子、QD表示素子などに使用するバリア膜として、スパッタリング法で成膜した膜を用いるには、更に、薄膜厚で良好な水蒸気透過バリア性能を有し、且つ高い耐薬品性が求められている。 Therefore, in order to use a film formed by a sputtering method as a barrier film used for an EL display element, a QD display element, etc., it has a good water vapor transmission barrier performance with a thin film thickness and high chemical resistance. It has been demanded.
 本発明はこのような要請に着目してなされたものであり、優れた透明性、良好な水蒸気バリア性能、そして耐薬品性を有する、透明酸化物積層膜とその製造方法、そしてこれを用いた透明樹脂基板を提供することを目的とする。 The present invention has been made paying attention to such a demand, and has a transparent oxide laminated film having excellent transparency, good water vapor barrier performance, and chemical resistance, a method for producing the same, and a method using the same. An object is to provide a transparent resin substrate.
 本発明者らは、上述した課題に対してZnとSnの金属原子数比が異なる複数の非晶質の透明酸化物膜から構成される積層膜において、水蒸気バリア性能と耐薬品性に適した組成について鋭意分析し、その結果、本発明に至った。 The present inventors are suitable for water vapor barrier performance and chemical resistance in a laminated film composed of a plurality of amorphous transparent oxide films having different metal atom number ratios of Zn and Sn with respect to the above-described problems. As a result, the present invention has been completed.
 すなわち、本発明の一態様は、ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜であって、各層でZnとSnの金属原子数比が異なる非晶質の透明酸化物膜から構成される。 That is, one embodiment of the present invention is a transparent oxide stacked film in which a plurality of transparent oxide films containing Zn and Sn are stacked, and each layer has an amorphous ratio in which the number of metal atoms of Zn and Sn is different. It consists of a transparent oxide film.
 本発明の一態様によれば、各層のZnとSnの金属原子数比を変えることで、水蒸気バリア性能を有する層と、耐薬品性を有する層をそれぞれ形成することで、良好な水蒸気バリア性能と耐薬品性を有する透明酸化物積層膜とすることができる。 According to one embodiment of the present invention, by changing the metal atom number ratio of Zn and Sn in each layer, a layer having a water vapor barrier performance and a layer having chemical resistance are formed, respectively, thereby providing a good water vapor barrier performance. And a transparent oxide laminated film having chemical resistance.
 この時、本発明の一態様では、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である第1の透明酸化物膜と、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である第2の透明酸化物膜を少なくとも有するとしても良い。 At this time, according to one embodiment of the present invention, the first transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.18 or more and 0.29 or less and the metal atom number ratio of Sn / ( At least a second transparent oxide film having Zn + Sn) of 0.44 or more and 0.90 or less may be included.
 Sn/(Zn+Sn)を0.18以上0.29以下とすると、水蒸気バリア性能に優れ、Sn/(Zn+Sn)が0.44以上0.90以下とすると耐薬品性に優れた透明酸化物膜となる。 When Sn / (Zn + Sn) is 0.18 or more and 0.29 or less, the water vapor barrier performance is excellent, and when Sn / (Zn + Sn) is 0.44 or more and 0.90 or less, a transparent oxide film having excellent chemical resistance Become.
 また、本発明の一態様では、少なくともいずれかの層の透明酸化物膜は、Ta及びGeを含有し、Zn、Sn、Ta、及びGeの原子数比において、Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下であるとしても良い。 In one embodiment of the present invention, the transparent oxide film of at least one of the layers contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) is 0.1 in the atomic ratio of Zn, Sn, Ta, and Ge. 01 or less, Ge / (Zn + Sn + Ge + Ta) may be 0.04 or less.
 Ta及びGeは、ターゲット由来の成分であり、これにより、ターゲット自体の電導性が改善されることで成膜速度が向上し、またターゲット密度が向上することで安定して成膜することができるようになる。 Ta and Ge are components derived from the target, which improves the conductivity of the target itself, thereby increasing the deposition rate, and increasing the target density enables stable deposition. It becomes like this.
 また、本発明の一態様では、透明酸化物積層膜の膜厚が100nm以下であるとしても良い。 In one embodiment of the present invention, the transparent oxide multilayer film may have a thickness of 100 nm or less.
 膜厚を100nm以下とすることにより、フレキシブル性にも優れた透明酸化物積層膜とすることができる。 By setting the film thickness to 100 nm or less, a transparent oxide multilayer film having excellent flexibility can be obtained.
 また、本発明の一態様では、透明酸化物積層膜は、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が0.001g/m/day以下であるとしても良い。 In one embodiment of the present invention, the transparent oxide multilayer film may have a water vapor transmission rate of 0.001 g / m 2 / day or less by a differential pressure method specified in accordance with the K7129 method of JIS standard.
 上記要件を満たすことにより、水蒸気バリア性能に優れた透明酸化物積層膜であると言える。 By satisfying the above requirements, it can be said that the transparent oxide laminated film has excellent water vapor barrier performance.
 また、本発明の一態様では、透明酸化物積層膜は、酸又はアルカリに対する耐薬品性を持ち、5%濃度の塩酸又は5%濃度の水酸化ナトリウムの溶液に5分間浸漬した前後の色差ΔEab変化値が1.0以下であるとしても良い。 In one embodiment of the present invention, the transparent oxide multilayer film has chemical resistance to acid or alkali, and has a color difference ΔEab before and after being immersed in a solution of 5% hydrochloric acid or 5% sodium hydroxide for 5 minutes. The change value may be 1.0 or less.
 上記要件を満たすことにより、耐薬品性に優れた透明酸化物積層膜であると言える。 By satisfying the above requirements, it can be said that the transparent oxide laminated film has excellent chemical resistance.
 また、本発明の一態様では、透明酸化物積層膜は、酸又はアルカリに対する耐薬品性を持ち、5%濃度の塩酸又は5%濃度の水酸化ナトリウムの溶液に5分間浸漬した前後の膜変化量が2.0nm以下であるとしても良い。 In one embodiment of the present invention, the transparent oxide laminated film has chemical resistance to acid or alkali, and the film changes before and after being immersed in a 5% concentration hydrochloric acid or 5% concentration sodium hydroxide solution for 5 minutes. The amount may be 2.0 nm or less.
 上記要件を満たすことにより、耐薬品性に優れた透明酸化物積層膜であると言える。 By satisfying the above requirements, it can be said that the transparent oxide laminated film has excellent chemical resistance.
 本発明の他の態様は、Sn-Zn-O系の酸化物焼結体からなるターゲットを用いてスパッタリングする透明酸化物積層膜の製造方法であって、少なくとも、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である酸化物焼結体を有する第1のターゲットと、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である酸化物焼結体を有する第2のターゲットとを用いて透明酸化物積層膜を形成する。 Another aspect of the present invention is a method for producing a transparent oxide multilayer film, wherein sputtering is performed using a target made of a Sn—Zn—O-based oxide sintered body, at least in terms of the number of metal atoms, Sn / Zn. A first target having an oxide sintered body in which (Zn + Sn) is 0.18 or more and 0.29 or less, and an oxidation in which Sn / (Zn + Sn) is 0.44 or more and 0.90 or less in terms of the number of metal atoms A transparent oxide laminated film is formed using a second target having a sintered product.
 本発明の他の態様によれば、第1のターゲットを用いてスパッタリングすることにより、水蒸気バリア性能に優れた透明酸化物膜を形成でき、第2のターゲットを用いてスパッタリングすることにより、耐薬品性に優れた透明酸化物膜を形成することができる。 According to another aspect of the present invention, a transparent oxide film excellent in water vapor barrier performance can be formed by sputtering using the first target, and chemical resistance can be obtained by sputtering using the second target. A transparent oxide film having excellent properties can be formed.
 本発明の他の態様は、上述した透明酸化物積層膜が透明な樹脂基材の少なくとも一方の面に形成されている透明樹脂基板である。 Another aspect of the present invention is a transparent resin substrate in which the transparent oxide laminated film described above is formed on at least one surface of a transparent resin base material.
 本発明の他の態様によれば、上述した透明酸化物積層膜を形成することで優れた水蒸気バリア性と耐薬品性の両方を有する透明樹脂基板とすることができる。 According to another aspect of the present invention, a transparent resin substrate having both excellent water vapor barrier properties and chemical resistance can be obtained by forming the transparent oxide laminated film described above.
 この時、本発明の他の態様では、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である透明酸化物膜が最外層となるようにすることができる。 At this time, in another aspect of the present invention, a transparent oxide film having a metal atom ratio of Sn / (Zn + Sn) of 0.44 or more and 0.90 or less can be the outermost layer.
 このような、透明酸化物膜は耐薬品性を有するため、透明樹脂基板の最外層に形成することが好ましい。 Since such a transparent oxide film has chemical resistance, it is preferably formed on the outermost layer of the transparent resin substrate.
 本発明によれば、量産性の高い直流スパッタリングによって、優れた透明性、良好な水蒸気バリア性能をもち、耐薬品性を備えた透明酸化物積層膜を提供する事ができる。 According to the present invention, a transparent oxide multilayer film having excellent transparency, good water vapor barrier performance, and chemical resistance can be provided by high-productivity direct current sputtering.
 以下、本発明に係る透明酸化物積層膜、透明酸化物積層膜の製造方法、及び透明樹脂基板について以下の順序で説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能である。
 1.透明酸化物積層膜
 2.透明酸化物積層膜の製造方法
 3.透明樹脂基板
Hereinafter, the transparent oxide laminated film according to the present invention, the method for producing the transparent oxide laminated film, and the transparent resin substrate will be described in the following order. In addition, this invention is not limited to the following examples, In the range which does not deviate from the summary of this invention, it can change arbitrarily.
1. 1. Transparent oxide laminated film 2. Manufacturing method of transparent oxide laminated film Transparent resin substrate
<1.透明酸化物積層膜>
 本発明の一態様は、ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜であって、各層でZnとSnの金属原子数比が異なる非晶質の透明酸化物膜から構成される。このように、各層のZnとSnの金属原子数比を変えることで、水蒸気バリア性能を有する層と、耐薬品性を有する層をそれぞれ形成することで、良好な水蒸気バリア性能と耐薬品性を有する透明酸化物積層膜とすることができる。
<1. Transparent oxide laminated film>
One embodiment of the present invention is a transparent oxide multilayer film in which a plurality of transparent oxide films containing Zn and Sn are stacked, and the amorphous transparent oxide having different metal atom number ratios of Zn and Sn in each layer It consists of a material film. Thus, by changing the metal atom number ratio of Zn and Sn in each layer, a layer having a water vapor barrier performance and a layer having a chemical resistance are formed respectively, thereby providing a good water vapor barrier performance and chemical resistance. It can be set as the transparent oxide laminated film which has.
 本発明の非晶質の透明酸化物積層膜(以下、単に酸化物積層膜という場合もある)は、主に水蒸気バリア膜として使用される。プラスチック基板やフィルム基板、例えば液晶表示素子や太陽電池、エレクトロルミネッセンス(EL)表示素子等のフレキシブル表示素子の表面にスパッタリング法により金属酸化物膜として覆って水蒸気の遮断などにより変質を防止する目的で利用されている。 The amorphous transparent oxide laminated film of the present invention (hereinafter sometimes simply referred to as an oxide laminated film) is mainly used as a water vapor barrier film. For the purpose of preventing deterioration by covering the surface of a flexible display element such as a liquid crystal display element, a solar cell, an electroluminescence (EL) display element, etc., as a metal oxide film by sputtering and blocking water vapor, etc. It's being used.
 これは、酸化物積層膜が結晶質膜である場合には、この膜に結晶粒界が存在し、結晶粒界を介して水蒸気が透過するため、水蒸気バリア性能が低下するからである。また、上記特許文献1では、この非晶質膜として酸化スズ系膜を提案しているが、酸化スズ系膜をスパッタリング法により成膜する場合、スパッタリングに用いるスパッタリングターゲットを構成するターゲット材は、膜と同成分である酸化スズ系が用いられる。この酸化スズ系のターゲット材は、一般に耐酸性は高いがターゲット材の相対密度が低く、スパッタリング中にターゲット材が割れる等により安定して成膜ができない等課題が多い。本発明に係る透明酸化物積層膜では、後述するSn-Zn-O系スパッタリングターゲットを使用することで、上記懸念事項は解消に至った。 This is because when the oxide laminated film is a crystalline film, a crystal grain boundary exists in this film, and water vapor permeates through the crystal grain boundary, so that the water vapor barrier performance is deteriorated. Moreover, in the said patent document 1, although the tin oxide type film | membrane is proposed as this amorphous film, when forming a tin oxide type film | membrane by sputtering method, the target material which comprises the sputtering target used for sputtering is the following. A tin oxide system that is the same component as the film is used. Although this tin oxide target material generally has high acid resistance, the relative density of the target material is low, and there are many problems such that the target material cannot be stably formed due to cracking of the target material during sputtering. In the transparent oxide multilayer film according to the present invention, the above-mentioned concern has been solved by using a Sn—Zn—O-based sputtering target described later.
 すなわち、本発明の一実施形態に係る酸化物スパッタ積層膜は、ZnとSnとを含有する非晶質の透明酸化物膜であって、ZnとSnの金属原子数比が異なる透明酸化物膜を積層したことを特徴とする。積層する透明酸化物膜の数は特に限定はされないが、少なくとも2層であれば良い。また、ZnとSnの金属原子数比が異なる2つの透明酸化物膜は、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である第1の透明酸化物膜と、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である第2の透明酸化物膜であることが好ましい。 That is, the oxide sputtered laminated film according to an embodiment of the present invention is an amorphous transparent oxide film containing Zn and Sn, and has different metal atom number ratios of Zn and Sn. It is characterized by being laminated. The number of transparent oxide films to be stacked is not particularly limited, but may be at least two layers. The two transparent oxide films having different metal atom number ratios of Zn and Sn are the first transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.18 to 0.29. The second transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.44 or more and 0.90 or less is preferable.
 第1の透明酸化物膜は、金属原子数比で、Sn/(Zn+Sn)で0.18以上0.29以下にすることで、良好な水蒸気バリア性能(低い水蒸気透過率)を得ることができる。 When the first transparent oxide film has a metal atom number ratio of Sn / (Zn + Sn) of 0.18 or more and 0.29 or less, good water vapor barrier performance (low water vapor transmission rate) can be obtained. .
 上記の金属原子数比Sn/(Zn+Sn)が0.18未満の場合はSnO比率が少なくなることで、結晶性の強いZnOの析出が多くなり、膜内に一部結晶化する部分(微結晶状態)が増え、結晶粒界から水蒸気の流入が多くなり、所望の水蒸気バリア性を有する酸化物スパッタ膜を得ることができない。 When the above-mentioned metal atom number ratio Sn / (Zn + Sn) is less than 0.18, the SnO 2 ratio decreases, so that the precipitation of ZnO having strong crystallinity increases and a part of the film crystallizes partially (finely The crystal state) increases and the inflow of water vapor from the crystal grain boundary increases, so that an oxide sputtered film having a desired water vapor barrier property cannot be obtained.
 一方、上記の金属原子数比Sn/(Zn+Sn)が0.29より大きい場合は、SnO比率が多くなくなることで、膜の応力が強くなり、さらには成膜時の熱の発生が大きくなり、膜の剥がれや基材へのダメージが発生し、OLED、QDなどに使用可能な水蒸気バリア性を有する酸化物スパッタ膜を得ることができない。 On the other hand, when the above-mentioned metal atom number ratio Sn / (Zn + Sn) is larger than 0.29, the SnO 2 ratio is not increased so that the stress of the film is increased and further the generation of heat during the film formation is increased. Further, peeling of the film and damage to the substrate occur, and it is impossible to obtain an oxide sputtered film having a water vapor barrier property that can be used for OLED, QD and the like.
 また、第2の透明酸化物膜は、金属原子数比で、Sn/(Zn+Sn)で0.44以上0.90以下にすることで、良好な耐薬品性を得ることができる。 Moreover, the second transparent oxide film can obtain good chemical resistance by setting the ratio of metal atoms to Sn / (Zn + Sn) of 0.44 or more and 0.90 or less.
 酸化亜鉛(ZnO)系は酸・アルカリ等の薬品に対して容易に溶解し、酸・アルカリ等の薬品に対する耐性に乏しい欠点がある。例えばウェットエッチングによる高精細なパターニング処理は困難である。しかしながら、酸化スズ(SnO)系は耐薬品性の極めて高い特性がある。そこで、ZnとSnとを含有する非晶質の第2の透明酸化物膜を、主成分をSnOよりにする事で酸・アルカリ等の薬品性を得る。 Zinc oxide (ZnO) is easily dissolved in chemicals such as acids and alkalis, and has a drawback of poor resistance to chemicals such as acids and alkalis. For example, high-definition patterning processing by wet etching is difficult. However, the tin oxide (SnO 2 ) system has extremely high chemical resistance. Therefore, the second transparent oxide film of amorphous containing Zn and Sn, to obtain a chemical resistance of acid, alkali or the like in that the main component from SnO 2.
 上記の金属原子数比Sn/(Zn+Sn)が0.44より小さい場合は、ZnO比率が多くなくなることで、耐薬品性が劣る。 When the metal atom number ratio Sn / (Zn + Sn) is smaller than 0.44, the chemical resistance is inferior because the ZnO ratio is not increased.
 一方、上記の金属原子数比Sn/(Zn+Sn)が0.90より大きい場合は、スパッタリングする時に用いるターゲットの焼結体の密度が低くスパッタリング中に焼結体の割れ不具合が発生する可能性が高い。 On the other hand, when the above metal atom number ratio Sn / (Zn + Sn) is larger than 0.90, the density of the sintered compact of the target used when sputtering is low, and there is a possibility that cracking defects of the sintered compact occur during sputtering. high.
 第1の透明酸化物膜及び第2の透明酸化物膜は、同種の酸化物で構成する。このため、成膜は、工業的に広範に利用されているスパッタリング法を用いることが可能である。スパッタリング法は、量産性が高く、膜厚も均一に成膜することが可能であり有効である。また、スパッタリング装置にもよるが、複数のターゲットを設置するスパッタリング装置の場合、第1の酸化物膜及び第2の酸化物膜に用いるターゲット(後述する第1のターゲット及び第2のターゲット)を設置し、同時にスパッタリングすることが可能で生産性に優れる。また、第1の酸化物膜及び第2の酸化物膜は、共にZnとSnとを含有する非晶質の酸化物膜であるため、積層した時の膜の密着力が高く、かつ、膜が非晶質であることより成膜時の発生する膜応力を緩和させることができる。 The first transparent oxide film and the second transparent oxide film are composed of the same kind of oxide. For this reason, it is possible to use the sputtering method widely used industrially for film formation. The sputtering method is effective because it has high productivity and can form a uniform film thickness. Further, although depending on the sputtering apparatus, in the case of a sputtering apparatus in which a plurality of targets are installed, targets used for the first oxide film and the second oxide film (first target and second target described later) are used. It can be installed and sputtered at the same time. In addition, since the first oxide film and the second oxide film are both amorphous oxide films containing Zn and Sn, the adhesion of the films when stacked is high, and the films Since the film is amorphous, the film stress generated during film formation can be relaxed.
 第1の透明酸化物膜及び第2の透明酸化物膜の少なくともいずれかの層は、さらにTa及びGeを含有し、上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることが好ましい。 At least one of the first transparent oxide film and the second transparent oxide film further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, and Ge. Is preferably 0.01 or less, and Ge / (Zn + Sn + Ge + Ta) of the above-mentioned Ge / Zn, Sn, Ta metal atom number ratio is preferably 0.04 or less.
 TaやGeが含まれても、結晶化温度が600℃以上となるため、非晶質膜構造が得やすい。また、結晶化温度が高いため量産工程プロセス内での熱影響があった場合でも、非結晶状態を容易に維持することが可能である。また、Ta、Geを上記比率で添加することで、ZnとSnとを含有するスパッタリングターゲットの特性をより向上させる効果がある。 Even when Ta or Ge is contained, the crystallization temperature is 600 ° C. or higher, so that an amorphous film structure is easily obtained. In addition, since the crystallization temperature is high, the amorphous state can be easily maintained even when there is a thermal influence in the mass production process. Further, by adding Ta and Ge at the above ratio, there is an effect of further improving the characteristics of the sputtering target containing Zn and Sn.
 以下、添加元素(Ta、Ge)について簡単に説明する。スパッタリングターゲット材は、Sn-Znのみ組成で構成された酸化物焼結体を銅材、ステンレス材等からなるバッキングプレートにインジウム(In)等の接合材等を用いて張合わせる(ボンディング)ことによって得られる。 Hereinafter, the additive elements (Ta, Ge) will be briefly described. A sputtering target material is formed by bonding (bonding) an oxide sintered body composed only of Sn—Zn to a backing plate made of a copper material, a stainless steel material, or the like using a bonding material such as indium (In). can get.
 Sn-Znのみ組成で構成された酸化物焼結体では、導電性が不十分であり、比抵抗値が大きい場合がある。これは、スパッタリング時、比抵抗値が大きい程、大きなエネルギーでスパッタリングする必要があり、成膜速度を上げることができない。よって、ターゲットに用いられる焼結体の導電率を大きくする必要がある。酸化物焼結体中でZnSnO、ZnO、SnOは導電性に乏しい物質であることから、配合比を調整して化合物相やZnO、SnOの量を調整したとしても、導電性を大幅に改善することはできない。 An oxide sintered body composed only of Sn—Zn has insufficient conductivity and may have a large specific resistance value. This is because it is necessary to perform sputtering with a larger energy as the specific resistance value is larger at the time of sputtering, and the deposition rate cannot be increased. Therefore, it is necessary to increase the conductivity of the sintered body used for the target. Since Zn 2 SnO 4 , ZnO, and SnO 2 are poorly conductive materials in the oxide sintered body, even if the compounding ratio is adjusted to adjust the amount of the compound phase and ZnO, SnO 2 Cannot be improved significantly.
 そこで、Ta(タンタル)を添加することが好ましい。Taは、ZnO相中のZn、ZnSnO相中のZn又はSn、SnO相中のSnと置換して固溶するため、ウルツ鉱型結晶構造のZnO相、スピネル型結晶構造のZnSnO相、及び、ルチル型結晶構造のSnO相以外の化合物相は形成されない。Taの添加により酸化物焼結体の密度を維持したまま、導電性が改善される。 Therefore, it is preferable to add Ta (tantalum). Since Ta is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase or Sn, and Sn in the SnO 2 phase, it dissolves, so that the ZnO phase of the wurtzite crystal structure, Zn of the spinel crystal structure A compound phase other than the 2 SnO 4 phase and the SnO 2 phase having a rutile crystal structure is not formed. By adding Ta, the conductivity is improved while maintaining the density of the oxide sintered body.
 また、Sn-Znのみ組成で構成された酸化物焼結体の焼結密度は90%前後であり十分とは言えない場合がある。酸化物焼結体の密度が低いとスパッタリング中に酸化物焼結体が割れる等により安定して成膜ができない等課題がある。 Also, the sintered density of the oxide sintered body composed only of Sn—Zn is around 90%, which is not sufficient. If the density of the oxide sintered body is low, there is a problem that the oxide sintered body is broken during sputtering, and thus the film cannot be stably formed.
 そこで、Ge(ゲルマニウム)を所定量添加することが好ましい。Geは、酸化物焼結体中で、ZnO相中のZn、ZnSnO相中のZn又はSn、SnO相中のSnと置換して固溶するため、ウルツ鉱型結晶構造のZnO相、スピネル型結晶構造のZnSnO相、及び、ルチル型結晶構造のSnO相以外の化合物相は形成されない。Geの添加により酸化物焼結体を緻密にする作用がある。これにより、酸化物焼結体の焼結密度をより高密度にすることができる。 Therefore, it is preferable to add a predetermined amount of Ge (germanium). In the oxide sintered body, Ge is substituted for Zn in the ZnO phase, Zn in the Zn 2 SnO 4 phase, or Sn in the Zn 2 SnO 2 phase and is dissolved in solid solution, so that ZnO having a wurtzite crystal structure No compound phase other than the phase, the Zn 2 SnO 4 phase having the spinel crystal structure, and the SnO 2 phase having the rutile crystal structure is formed. The addition of Ge has the effect of densifying the oxide sintered body. Thereby, the sintered density of the oxide sintered body can be further increased.
 従って、上記酸化物焼結体は、さらにTa及びGeを含有し、上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01以下、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04以下であることが好ましい。なお、Ta及びGeの添加による上記効果が得られるおおよその下限値は、Ta、Ge共に、上記金属原子数比で0.0005である。 Accordingly, the oxide sintered body further contains Ta and Ge, and Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is 0.01 or less, and the Ge, Zn, Sn, It is preferable that Ge / (Zn + Sn + Ge + Ta) of the Ta metal atom number ratio is 0.04 or less. Note that the approximate lower limit value for obtaining the above effect by addition of Ta and Ge is 0.0005 in terms of the number of metal atoms for both Ta and Ge.
 上記TaとZn、Sn、Geの金属原子数比のTa/(Zn+Sn+Ge+Ta)が0.01より大きい場合、別の化合物相、例えばTa、ZnTa等の化合物相を生成するため、導電性を大幅に改善することはできない。また、上記GeとZn、Sn、Taの金属原子数比のGe/(Zn+Sn+Ge+Ta)が0.04より大きい場合、別の化合物相、例えばZnGe等の化合物相を生成するため、酸化物焼結体の密度が低くなり、スパッタリング中にターゲットが割れ易くなる。 When Ta / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ta and Zn, Sn, Ge is larger than 0.01, another compound phase, for example, a compound phase such as Ta 2 O 5 or ZnTa 2 O 6 is generated. The conductivity cannot be improved significantly. Further, when Ge / (Zn + Sn + Ge + Ta) of the metal atom number ratio of Ge and Zn, Sn, Ta is larger than 0.04, another compound phase, for example, a compound phase such as Zn 2 Ge 3 O 8 is generated. The density of the oxide sintered body is reduced, and the target is easily broken during sputtering.
 Ta及びGeを添加したターゲットを使用してスパッタリングをしても、成膜した酸化物スパッタ膜への影響はない。例えば、水蒸気透過率等の影響は確認されない。耐薬品性についても同様である。よって、Taが、Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下の割合で含まれても、水蒸気バリア性能を悪化させることはなく、良好な特性を持った、非晶質な酸化物スパッタ膜を得ることが可能である。耐薬品性についても同様である。 Even if sputtering is performed using a target to which Ta and Ge are added, the sputtered oxide film is not affected. For example, the influence such as water vapor transmission rate is not confirmed. The same applies to chemical resistance. Therefore, even if Ta is included at a ratio of Ta / (Zn + Sn + Ge + Ta) of 0.01 or less and Ge / (Zn + Sn + Ge + Ta) of 0.04 or less, the water vapor barrier performance is not deteriorated and it has good characteristics. It is possible to obtain an amorphous oxide sputtered film. The same applies to chemical resistance.
 上記の酸化物積層膜の膜厚は、100nm以下であることが好ましく、90nm以下とすることがより好ましい。このような膜厚にすることにより、フレキシブル性に優れた酸化物積層膜を提供することができる。 The film thickness of the oxide laminated film is preferably 100 nm or less, and more preferably 90 nm or less. By setting it as such a film thickness, the oxide laminated film excellent in flexibility can be provided.
 第1の酸化物膜と第2の酸化物膜とを合わせた透明酸化物積層膜の厚みが100nm以下、好ましくは90nm以下であればよい。よって、第1の酸化物膜と第2の酸化物膜の個々の厚みに限定はない。 The thickness of the transparent oxide laminated film including the first oxide film and the second oxide film may be 100 nm or less, preferably 90 nm or less. Therefore, there is no limitation on the individual thicknesses of the first oxide film and the second oxide film.
 本発明の一態様では、酸化物積層膜のJIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、0.001g/m/day以下であることが好ましい。前述したように、ディスプレイに使用することができる水蒸気バリア性透明樹脂基板に要求される水蒸気透過率(WVTR)は、0.01g/m/day以下、好ましくは0.005g/m/day以下と言われている。本発明の酸化物積層膜の水蒸気透過率は、0.001g/m/day以下であり、これらに十分に適用することが可能である。 In one embodiment of the present invention, it is preferable that the water vapor permeability of the oxide multilayer film by a differential pressure method specified in accordance with the JIS standard K7129 method is 0.001 g / m 2 / day or less. As described above, the water vapor transmission rate (WVTR) required for the water vapor barrier transparent resin substrate that can be used for the display is 0.01 g / m 2 / day or less, preferably 0.005 g / m 2 / day. It is said that The water vapor permeability of the oxide multilayer film of the present invention is 0.001 g / m 2 / day or less, and can be sufficiently applied to these.
 なお、水蒸気透過率は、主に第1の酸化物膜の影響を受け、特に膜厚の影響を受ける。水蒸気透過率は、膜厚が厚い程、水蒸気透過率が小さくなる。よって、必要な水蒸気透過率を考慮した上で、各々の膜厚を適宜設定する。 Note that the water vapor transmission rate is mainly influenced by the first oxide film, and particularly by the film thickness. As the water vapor transmission rate increases, the water vapor transmission rate decreases as the film thickness increases. Therefore, each film thickness is appropriately set in consideration of the required water vapor transmission rate.
 本発明の一態様において、第2の酸化物膜は、耐薬品性を有する。耐薬品性の評価は、色差ΔEabで評価する。色差の評価は、L*a*b*表色系(CIE1976)を用いる。L*a*b*表色系とは、L*は明度を、a*、b*は色相と彩度を示し、色度で表わされ、L*は0~100まで数値で示され大きい程ほど白色になる。a*は赤から緑への軸であり、+aは赤方向を-aは緑方向を表し、b*は黄から青への軸であり、+bは黄方向を-bは青方向を表し、a*b*ともに0の場合には無彩色となる。色差ΔEabは、CIE1976の色差計算式により算出する。評価する前後のL*,a*、b*を測定し、その前後の差をΔL*、Δa*、Δb*とし、色差ΔEabは、((ΔL*)+(Δa*)+(Δb*)1/2で求める。 In one embodiment of the present invention, the second oxide film has chemical resistance. The chemical resistance is evaluated by a color difference ΔEab. The color difference is evaluated using the L * a * b * color system (CIE 1976). In the L * a * b * color system, L * represents lightness, a * and b * represent hue and saturation, and are represented by chromaticity. L * is a numerical value from 0 to 100 and is large. It turns white. a * is the axis from red to green, + a is the red direction, -a is the green direction, b * is the axis from yellow to blue, + b is the yellow direction, -b is the blue direction, When both a * b * are 0, the color is achromatic. The color difference ΔEab is calculated by the CIE 1976 color difference calculation formula. L *, a *, and b * before and after the evaluation are measured, and the difference between before and after the evaluation is ΔL *, Δa *, and Δb *, and the color difference ΔEab is ((ΔL *) 2 + (Δa *) 2 + (Δb *) 2 ) Obtained by 1/2 .
 本発明の一態様においては、耐薬品性は酸、アルカリに対する耐薬品性を確認している。耐酸性は、5%濃度の塩酸とし、耐アルカリ性は5%濃度の水酸化ナトリウムの溶液にそれぞれ5分間浸漬し、その前後の色差ΔEab変化値として評価することができる。この色差ΔEabが大きいと処理前後で色味が変化しており、薬品により酸化物積層膜が溶出して変色したと推測される。この色差ΔEab変化値が1.0以下、より好ましくは0.5以下であると、薬品により酸化物積層膜の溶出が少なく耐薬品性があると判断できる。 In one embodiment of the present invention, the chemical resistance is confirmed to be resistant to acids and alkalis. The acid resistance is 5% hydrochloric acid, and the alkali resistance can be evaluated as a color difference ΔEab change value before and after immersion in a 5% sodium hydroxide solution for 5 minutes. When this color difference ΔEab is large, the color changes before and after the treatment, and it is presumed that the oxide laminated film is eluted and discolored by the chemical. When the color difference ΔEab change value is 1.0 or less, more preferably 0.5 or less, it can be determined that the oxide laminated film is less eluted by chemicals and has chemical resistance.
 また、本発明の一態様において、耐薬品性は、酸又はアルカリ浸漬後の膜の厚みの変化により確認することもできる。薬品へ浸漬した前後の厚み変化は、試料を浸漬させた薬品をICP-AES法でZnとSnの溶解量を確認し、その結果と成膜面積と膜密度から膜厚の減り量(膜変化量)を試算することができる。耐酸性は、5%濃度の塩酸とし、耐アルカリ性は、5%濃度の水酸化ナトリウムの溶液に5分間浸漬した後の膜厚の減り量(膜変化量)が2.0nm以下であれば耐薬品性があると判断できる。 In one embodiment of the present invention, chemical resistance can also be confirmed by a change in the thickness of the film after immersion in acid or alkali. The thickness change before and after immersion in the chemical was confirmed by the ICP-AES method for the amount of Zn and Sn dissolved in the chemical in which the sample was immersed. Amount). The acid resistance is 5% hydrochloric acid, and the alkali resistance is as long as the decrease in film thickness (film change amount) after being immersed in a 5% sodium hydroxide solution for 5 minutes is 2.0 nm or less. It can be judged that there is chemical nature.
 前述したように、酸化スズ(SnO)系は耐薬品性の極めて高い特性がある。ZnとSnとを含有する非晶質の第2の透明酸化物膜を、主成分をSnOにより、金属原子数比で、Sn/(Zn+Sn)で0.44以上0.90以下にする事で、この色差ΔEab変化値は、0.5以下とすることができ、膜変化量も2.0nm以下にすることができる。 As described above, the tin oxide (SnO 2 ) system has extremely high chemical resistance. The amorphous second transparent oxide film containing Zn and Sn is made to be 0.44 or more and 0.90 or less in Sn / (Zn + Sn) by Sn / (Zn + Sn) as a main component with SnO 2 as a main component. Thus, the color difference ΔEab change value can be 0.5 or less, and the film change amount can also be 2.0 nm or less.
 以上より、本発明の一実施形態に係る透明酸化物積層膜によれば、優れた透明性、良好な水蒸気バリア性、及び耐薬品性を有することができる。 As mentioned above, according to the transparent oxide laminated film which concerns on one Embodiment of this invention, it can have outstanding transparency, favorable water vapor | steam barrier property, and chemical resistance.
 <2.透明酸化物積層膜の製造方法>
 次に、本発明の一実施形態に係る透明酸化物積層膜の製造方法について説明する。本発明の一態様は、Sn-Zn-O系の酸化物焼結体からなるターゲットを用いてスパッタリングする透明酸化物積層膜の製造方法であって、少なくとも、金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である酸化物焼結体を有する第1のターゲットと、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である酸化物焼結体を有する第2のターゲットとを用いて透明酸化物積層膜を形成する。
<2. Manufacturing method of transparent oxide laminated film>
Next, the manufacturing method of the transparent oxide laminated film which concerns on one Embodiment of this invention is demonstrated. One embodiment of the present invention is a method for manufacturing a transparent oxide multilayer film, in which sputtering is performed using a target made of a Sn—Zn—O-based oxide sintered body, and includes at least a metal atom ratio, Sn / ( A first target having an oxide sintered body in which Zn + Sn is 0.18 or more and 0.29 or less, and an oxide in which Sn / (Zn + Sn) is 0.44 or more and 0.90 or less in terms of the number of metal atoms A transparent oxide multilayer film is formed using a second target having a sintered body.
 このように、本発明の一実施形態に係る透明酸化物積層膜の製造方法は、Sn-Zn-O系の酸化物焼結体を用いてスパッタリングし、ZnとSnの金属原子数比が異なる2つの非晶質の積層膜を得るものである。すなわち、第1のターゲットを用いてスパッタリングすることにより、水蒸気バリア性能に優れた透明酸化物膜を形成でき、第2のターゲットを用いてスパッタリングすることにより、耐薬品性に優れた透明酸化物膜を形成することができる。 As described above, the method for producing a transparent oxide multilayer film according to one embodiment of the present invention performs sputtering using a Sn—Zn—O-based oxide sintered body, and has different metal atom number ratios of Zn and Sn. Two amorphous laminated films are obtained. That is, a transparent oxide film excellent in water vapor barrier performance can be formed by sputtering using the first target, and a transparent oxide film excellent in chemical resistance can be formed by sputtering using the second target. Can be formed.
 第1の酸化物膜のスパッタリング時に用いられる前記酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下である焼結体を有する第1のターゲット、及び、第2の酸化物膜のスパッタ時に用いられる酸化物焼結体に含有するZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.90以下の焼結体を有する第2のターゲットで、構成されたターゲットを用意する。なお、各焼結体の組成範囲の技術的意義は、上述した通りである。 A sintered body in which Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the oxide sintered body used for sputtering of the first oxide film is 0.18 or more and 0.29 or less. Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn contained in the oxide sintered body used when sputtering the first target and the second oxide film is 0.44 or more and 0.90 or less. A target composed of a second target having a sintered body is prepared. The technical significance of the composition range of each sintered body is as described above.
 また、スパッタリングした酸化物積層膜の膜厚の合計は、100nm以下が好ましく、90nm以下とすることがより好ましい。上述したように、このようにすれば、良好な水蒸気バリア性能を有し、かつよりフレキシブル性に優れた酸化物積層膜を提供することができる。なお、第1の酸化物膜と第2の酸化物膜の個々の厚みは特に限定はない。 Further, the total film thickness of the sputtered oxide laminated film is preferably 100 nm or less, and more preferably 90 nm or less. As described above, in this way, it is possible to provide an oxide laminated film having good water vapor barrier performance and more excellent flexibility. Note that the thicknesses of the first oxide film and the second oxide film are not particularly limited.
 スパッタリングとしては、上述した酸化物焼結体から構成されたスパッタリングターゲットを用いてスパッタリングを行えばよい。スパッタリング装置は、特に限定はないが、直流マグネトロンスパッタ装置等を用いることができる。 Sputtering may be performed using a sputtering target composed of the above-described oxide sintered body. The sputtering apparatus is not particularly limited, and a direct current magnetron sputtering apparatus or the like can be used.
 スパッタリングの条件としては、チャンバー内の真空度を1×10-4Pa以下に調整する。チャンバー内の雰囲気は、不活性ガスを導入する。不活性ガスは、アルゴンガス等であり、純度99.999質量%以上が好ましい。また、不活性ガスには全ガス流量に対して酸素を4~10容量%含有させる。酸素濃度は、膜の表面抵抗値に影響を及ぼすため、所定の抵抗値になるように酸素濃度を設定する。その後、所定の直流電源を用い、スパッタリングターゲット-基材間に投入して、直流パルシングによるプラズマを発生させ、スパッタリングを行い成膜する。なお、膜厚は、成膜時間で制御する。 As sputtering conditions, the degree of vacuum in the chamber is adjusted to 1 × 10 −4 Pa or less. An inert gas is introduced into the atmosphere in the chamber. The inert gas is argon gas or the like, and preferably has a purity of 99.999% by mass or more. The inert gas contains 4 to 10% by volume of oxygen with respect to the total gas flow rate. Since the oxygen concentration affects the surface resistance value of the film, the oxygen concentration is set to a predetermined resistance value. Thereafter, a predetermined DC power source is used to put between the sputtering target and the substrate, plasma is generated by DC pulsing, and sputtering is performed to form a film. Note that the film thickness is controlled by the film formation time.
 スパッタリングは、第1の酸化物膜を形成した後に、第2の酸化物膜を形成する。この時、スパッタリング装置に複数のターゲットを設置できる場合は、第1の酸化物膜に用いる第1のターゲットと、第2の酸化物膜に用いる第2のターゲットを設置して、連続してスパッタリングすることが可能であり、同一の装置で連続して形成することで生産性を向上させることができる。また、同種類のターゲットであり膜の密着性がよく親和性もある。 Sputtering forms a second oxide film after forming a first oxide film. At this time, when a plurality of targets can be installed in the sputtering apparatus, the first target used for the first oxide film and the second target used for the second oxide film are installed, and sputtering is continuously performed. It is possible to improve productivity by forming continuously with the same apparatus. Moreover, it is the same type of target and has good film adhesion and affinity.
 以上より、本発明の一実施形態に係る透明酸化物積層膜の製造方法によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能、耐薬品性を有する酸化物積層膜を得ることができる。 As mentioned above, according to the manufacturing method of the transparent oxide laminated film which concerns on one Embodiment of this invention, it is the oxide which has the outstanding transparency, favorable water vapor | steam barrier performance, and chemical resistance in DC sputtering with high mass-productivity. A laminated film can be obtained.
<3.透明樹脂基板>
 本発明の一実施形態に係る透明樹脂基板は、上述したZnとSnの金属原子数比が異なる少なくとも2つの非晶質の透明酸化物積層膜が透明な基材に成膜されたものである。また、上記透明酸化物積層膜は、上記基材の少なくとも一方の面に成膜され、第1の酸化物膜はZnとSnの金属原子数比のSn/(Zn+Sn)が0.18以上0.29以下であり、第2の酸化物膜はZnとSnの金属原子数比のSn/(Zn+Sn)が0.44以上0.90以下であることが好ましい。そして、透明酸化物積層膜の膜厚は、100nm以下であることが好ましく、90nm以下であることがより好ましい。
<3. Transparent resin substrate>
A transparent resin substrate according to an embodiment of the present invention is obtained by forming at least two amorphous transparent oxide laminated films having different metal atom number ratios of Zn and Sn on a transparent base material. . The transparent oxide multilayer film is formed on at least one surface of the substrate, and the first oxide film has a Sn / (Zn + Sn) ratio of Zn / Sn metal atom number of 0.18 or more and 0. It is preferable that Sn / (Zn + Sn) of the metal atom number ratio of Zn and Sn is 0.44 or more and 0.90 or less in the second oxide film. The film thickness of the transparent oxide multilayer film is preferably 100 nm or less, and more preferably 90 nm or less.
 透明な基材としては、ポリエチレンテレフタレート、ポリエチレン、ナフタレート、ポリカーボネイト、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、シクロオレフィンポリマー、フッ素樹脂、ポリプロピレン、ポリイミド樹脂、エポキシ樹脂、などが使用できる。また、透明樹脂基材の厚みは特に制限はないが、フレキシブル性、コストやデバイスのニーズを鑑みると50~150μmであることが好ましい。 As the transparent substrate, polyethylene terephthalate, polyethylene, naphthalate, polycarbonate, polysulfone, polyethersulfone, polyarylate, cycloolefin polymer, fluorine resin, polypropylene, polyimide resin, epoxy resin, and the like can be used. The thickness of the transparent resin substrate is not particularly limited, but is preferably 50 to 150 μm in view of flexibility, cost, and device needs.
 透明な基材へのスパッタ方法は、透明酸化物積層膜の製造方法で説明したようにスパッタリングすれば良い。なお、上記ZnとSnの好適な金属原子数比や膜厚等の技術的意義は、上述した通りである。 The sputtering method for the transparent substrate may be performed as described in the method for producing the transparent oxide laminated film. The technical significance such as the preferred metal atom number ratio and film thickness of Zn and Sn is as described above.
 また、本発明の一実施形態に係る透明樹脂基板は、基材の少なくとも一方の面にZnとSnとを含有する非晶質の透明な水蒸気バリア性を有する酸化物スパッタ膜が形成されたものであるが、他の膜を介して積層してもよい。例えば、上記基材上に、酸化珪素膜や、窒化酸化珪素膜、樹脂膜、ウェットコート膜、金属膜、酸化物膜などが形成され、その後、水蒸気バリア層として、上記の酸化物スパッタ膜を少なくとも一方に形成されてもよい。 Moreover, the transparent resin substrate according to an embodiment of the present invention has an amorphous sputtered oxide film containing Zn and Sn formed on at least one surface of a base material and having a water vapor barrier property. However, it may be laminated through another film. For example, a silicon oxide film, a silicon nitride oxide film, a resin film, a wet coat film, a metal film, an oxide film, or the like is formed on the substrate, and then the oxide sputter film is used as a water vapor barrier layer. You may form in at least one.
 また、本発明の一態様では、第2の酸化物膜を最外層となるようにすることが好ましい。すなわち、耐薬品性を有する第2の酸化物膜は、第1の酸化物膜の外側(表面側)に形成することが好ましい。詳細には、後工程において、透明電極を作製する工程や接着剤を塗布する工程等で酸やアルカリ性の薬品を使用する面側の最表面に第2の酸化物膜を形成する。第1の酸化物膜は、主に水蒸気バリア性を有しており、この面が表面側に形成した場合、耐薬品性には弱く、薬品により水蒸気バリア特性も損なう可能性が大きい。本発明の第2の酸化物膜を第1の酸化物膜の外側(表面側)に形成することで、耐薬品性及び水蒸気バリア特性の両特性を維持することが可能となる。 Moreover, in one embodiment of the present invention, it is preferable that the second oxide film be an outermost layer. In other words, the second oxide film having chemical resistance is preferably formed on the outer side (surface side) of the first oxide film. Specifically, in the subsequent step, a second oxide film is formed on the outermost surface on the surface side where acid or alkaline chemicals are used in a step of producing a transparent electrode, a step of applying an adhesive, or the like. The first oxide film mainly has a water vapor barrier property, and when this surface is formed on the surface side, it is weak in chemical resistance, and there is a high possibility that the water vapor barrier property is impaired by the chemical. By forming the second oxide film of the present invention on the outer side (surface side) of the first oxide film, it is possible to maintain both chemical resistance and water vapor barrier characteristics.
 本発明の一実施形態に係る透明樹脂基板を用いて、例えばフレキシブル表示素子の一つであるフレキシブルOLED表示素子やフレキシブルQD表示素子、QDシートを形成することが可能である。 For example, a flexible OLED display element, a flexible QD display element, or a QD sheet, which is one of flexible display elements, can be formed using the transparent resin substrate according to an embodiment of the present invention.
 以上より、本発明の一実施形態に係る透明樹脂基板によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能、耐薬品性を有する。 As mentioned above, according to the transparent resin substrate which concerns on one Embodiment of this invention, it has the outstanding transparency, favorable water vapor | steam barrier performance, and chemical resistance by DC sputtering with high mass-productivity.
 以下、本発明の実施例について比較例も挙げて具体的に説明するが、本発明に係る技術的範囲が下記実施例の記載内容に限定されることはなく、本発明に適合する範囲で変更を加えて実施することも当然のことながら可能である。 Hereinafter, examples of the present invention will be specifically described with reference to comparative examples. However, the technical scope of the present invention is not limited to the description of the following examples, and changes are made within the scope suitable for the present invention. Of course, it is also possible to carry out by adding.
 以下の実施例では、SnO粉と、ZnO粉とを使用した。また、添加元素を加える場合には、添加元素TaとしてTa粉と、添加元素GeとしてGeO粉とをそれぞれ使用した。 In the following examples, SnO 2 powder and ZnO powder were used. In addition, when adding an additive element, Ta 2 O 5 powder was used as the additive element Ta and GeO 2 powder was used as the additive element Ge.
(実施例1)
 実施例1では、酸化亜鉛を主成分とし、酸化スズを金属原子数比Sn/(Zn+Sn)として0.26となるように製造された焼結体と、酸化スズを金属原子数比Sn/(Zn+Sn)として0.49となるように製造された焼結体を用いてスパッタリングターゲット(住友金属鉱山製)を作製し、このスパッタリングターゲットを用いてスパッタリング装置によりスパッタリングして成膜した。このスパッタリング装置は、直流マグネトロンスパッタ装置(アルバック社製、SH-550型)を使用した。
(Example 1)
In Example 1, a sintered body manufactured so as to have zinc oxide as a main component and tin oxide as a metal atom number ratio Sn / (Zn + Sn) of 0.26, and tin oxide as a metal atom number ratio Sn / ( A sputtering target (manufactured by Sumitomo Metal Mining Co., Ltd.) was produced using a sintered body produced to have a Zn + Sn ratio of 0.49, and this sputtering target was used to perform sputtering to form a film. As this sputtering apparatus, a direct current magnetron sputtering apparatus (manufactured by ULVAC, SH-550 type) was used.
 非晶質の酸化物スパッタ膜の成膜は、以下の条件で行った。カソードに、ターゲットを取り付け、カソードの直上に樹脂フィルム基材を配置した。ターゲットと樹脂フィルム基材との距離を80mmとした。成膜を行う樹脂フィルム基材は、カソードの対向面に静止させ、成膜は静止対向で行った。樹脂フィルム基材には、PENフィルム(帝人製、厚さ50μm)を用いた。チャンバー内の真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のアルゴンガスをチャンバー内に導入してガス圧0.6Paとし、酸素を5%含有させたアルゴンガス中で、直流電源としてDC電源装置(DELTA社製、MDX)を用い、20kHzの直流パルシングを採用した直流電力1500Wを、スパッタリングターゲット-帝人製PENフィルム基材間に投入して、直流パルシングによるプラズマを発生させ、帝人製PENフィルム基材上に、酸化スズを金属原子数比Sn/(Zn+Sn)として0.26となる第1の酸化物膜をスパッタリングにより膜厚50nmで成膜した。次に酸化スズを金属原子数比Sn/(Zn+Sn)として0.49となる第2の酸化物膜をスパッタリングにより膜厚50nmで成膜した。 The amorphous oxide sputtered film was formed under the following conditions. A target was attached to the cathode, and a resin film substrate was disposed immediately above the cathode. The distance between the target and the resin film substrate was 80 mm. The resin film base material on which the film was formed was stationary on the opposite surface of the cathode, and the film formation was performed on the stationary surface. As the resin film substrate, a PEN film (manufactured by Teijin, thickness 50 μm) was used. When the degree of vacuum in the chamber reaches 2 × 10 −4 Pa or less, argon gas having a purity of 99.9999% by mass is introduced into the chamber to a gas pressure of 0.6 Pa, and argon containing 5% oxygen In a gas, a DC power supply (MDX, manufactured by DELTA) was used as a DC power supply, and DC power 1500 W adopting 20 kHz DC pulsing was introduced between the sputtering target and the Teijin PEN film substrate, and DC pulsing Plasma was generated, and a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.26 was formed on the Teijin PEN film substrate to a thickness of 50 nm by sputtering. Next, a second oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.49 was formed to a thickness of 50 nm by sputtering.
 成膜した酸化物スパッタ膜の結晶性、水蒸気透過率(WVTR)、耐薬品性の確認を行った。結晶性は、X線回折測定し、回折ピークの観察を実施し、水蒸気透過率は差圧法(Technolox社製DELTAPERM-UH)にて測定を実施した。また、透過率を、波長550nmにおける可視光平均透過率とし、分光光度計で測定した。耐薬品性の評価方法は、5%塩酸または5%水酸化ナトリウム水溶液に試料を5分間浸漬した。なお、その際の薬品温度は常温である。薬品浸漬前後の試料を、分光測色計(コニカミノルタ株式会社 型式:CM-5)を用いて測定を実施し、色差ΔEabを算出した。また、薬品浸漬前後の厚みの減り量(膜変化量)は、試料を浸漬させた薬液をICP-AES法(島津製作所製 ICPS―8100)でZnとSnの溶解量を確認し、その結果と成膜面積と膜密度から膜変化量を試算した。なお、耐薬品性評価においては、基材が溶解しないようガラス基板に透明酸化物積層膜を成膜したものを用いた。結果を表1に示す。 The crystallinity, water vapor transmission rate (WVTR), and chemical resistance of the formed oxide sputtered film were confirmed. Crystallinity was measured by X-ray diffraction, and diffraction peaks were observed. Water vapor permeability was measured by a differential pressure method (DELTATAPRM-UH manufactured by Technolox). Moreover, the transmittance | permeability was made into the visible light average transmittance | permeability in wavelength 550nm, and it measured with the spectrophotometer. The chemical resistance was evaluated by immersing the sample in 5% hydrochloric acid or 5% sodium hydroxide aqueous solution for 5 minutes. In addition, the chemical | medical agent temperature in that case is normal temperature. The sample before and after chemical immersion was measured using a spectrocolorimeter (Konica Minolta Co., Ltd. model: CM-5), and the color difference ΔEab was calculated. The amount of decrease in thickness before and after chemical immersion (film change amount) was determined by confirming the amount of Zn and Sn dissolved by ICP-AES method (ICPS-8100, manufactured by Shimadzu Corp.) The amount of film change was estimated from the film formation area and film density. In the chemical resistance evaluation, a transparent oxide laminated film formed on a glass substrate was used so that the base material was not dissolved. The results are shown in Table 1.
(実施例2)
 実施例2では、第1の酸化物膜を金属原子数比Sn/(Zn+Sn)で0.18となるようにし、第2の酸化物膜を金属原子数比Sn/(Zn+Sn)で0.59となるようにスパッタリングしたこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Example 2)
In Example 2, the first oxide film has a metal atom number ratio Sn / (Zn + Sn) of 0.18, and the second oxide film has a metal atom number ratio Sn / (Zn + Sn) of 0.59. A transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that sputtering was performed. The results are shown in Table 1.
(実施例3)
 実施例3では、第1の酸化物膜をスパッタリングにより膜厚70nmで成膜し、次に金属原子数比Sn/(Zn+Sn)として0.68となる第2の酸化物膜をスパッタリングにより膜厚20nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Example 3)
In Example 3, a first oxide film is formed by sputtering to a thickness of 70 nm, and then a second oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.68 is formed by sputtering. A transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that the film was formed at 20 nm. The results are shown in Table 1.
(実施例4)
 実施例4では、第1の酸化物膜をスパッタリングにより膜厚15nmで成膜し、次に第2の酸化物膜をスパッタリングにより膜厚15nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
Example 4
In Example 4, the same procedure as in Example 1 was performed, except that the first oxide film was formed to a thickness of 15 nm by sputtering, and then the second oxide film was formed to a thickness of 15 nm by sputtering. A transparent oxide laminated film was obtained and measured. The results are shown in Table 1.
(実施例5)
 実施例5では、金属原子数比Sn/(Zn+Sn)として0.22となる第1の酸化物膜をスパッタリングにより膜厚15nmで成膜し、金属原子数比Sn/(Zn+Sn)として0.59となる第2の酸化物膜をスパッタリングにより膜厚15nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Example 5)
In Example 5, the first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.22 was formed by sputtering to a film thickness of 15 nm, and the metal atom number ratio Sn / (Zn + Sn) was 0.59. A transparent oxide multilayer film was obtained and measured in the same manner as in Example 1 except that the second oxide film was formed by sputtering to a film thickness of 15 nm. The results are shown in Table 1.
(実施例6)
 実施例6では、第1の酸化物膜をスパッタリングにより膜厚20nmで成膜し、次に金属原子数比Sn/(Zn+Sn)として0.68となる第2の酸化物膜をスパッタリングにより膜厚10nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Example 6)
In Example 6, a first oxide film is formed by sputtering to a thickness of 20 nm, and then a second oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.68 is formed by sputtering. A transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that the film was formed at 10 nm. The results are shown in Table 1.
(実施例7)
 実施例7では、金属原子数比Sn/(Zn+Sn)が0.22、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる第1の酸化物膜をスパッタリングにより膜厚30nmで成膜し、第2の酸化物膜をスパッタリングにより膜厚20nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Example 7)
In Example 7, a first oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.22, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed by sputtering. A transparent oxide laminated film was obtained and measured in the same manner as in Example 1 except that the film was formed with a thickness of 30 nm and the second oxide film was formed with a thickness of 20 nm by sputtering. The results are shown in Table 1.
(実施例8)
 実施例8では、金属原子数比Sn/(Zn+Sn)として0.18となる第1の酸化物膜をスパッタリングにより膜厚85nmで成膜し、金属原子数比Sn/(Zn+Sn)が0.79、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる第2の酸化物膜をスパッタリングにより膜厚15nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Example 8)
In Example 8, a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.18 was formed to a thickness of 85 nm by sputtering, and the metal atom number ratio Sn / (Zn + Sn) was 0.79. Transparent oxidation is performed in the same manner as in Example 1 except that a second oxide film having a thickness of Ta / (Zn + Sn + Ge + Ta) of 0.01 and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed to a thickness of 15 nm by sputtering. The product laminated film was obtained and measured. The results are shown in Table 1.
(実施例9)
 実施例9では、金属原子数比Sn/(Zn+Sn)が0.28、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる第1の酸化物膜をスパッタリングにより成膜し、金属原子数比Sn/(Zn+Sn)が0.68、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる第2の酸化物膜をスパッタリングにより成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
Example 9
In Example 9, a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.28, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 was formed by sputtering. A second oxide film having a metal atomic ratio Sn / (Zn + Sn) of 0.68, Ta / (Zn + Sn + Ge + Ta) of 0.01, and Ge / (Zn + Sn + Ge + Ta) of 0.04 was formed by sputtering. Except for this, a transparent oxide laminated film was obtained in the same manner as in Example 1, and the measurement was performed. The results are shown in Table 1.
(比較例1)
 比較例1では、金属原子数比Sn/(Zn+Sn)として0.18となる第1の酸化物膜をスパッタリングにより成膜し、金属原子数比Sn/(Zn+Sn)として0.29となる第2の酸化物膜をスパッタリングにより成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Comparative Example 1)
In Comparative Example 1, a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.18 is formed by sputtering, and a metal atom number ratio Sn / (Zn + Sn) of 0.29 is obtained. A transparent oxide laminate film was obtained and measured in the same manner as in Example 1 except that the oxide film was formed by sputtering. The results are shown in Table 1.
(比較例2)
 比較例2では、金属原子数比Sn/(Zn+Sn)として0.16となる第1の酸化物膜をスパッタリングにより成膜し、金属原子数比Sn/(Zn+Sn)として0.49となる第2の酸化物膜をスパッタリングにより成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Comparative Example 2)
In Comparative Example 2, a first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.16 is formed by sputtering, and a metal atom number ratio Sn / (Zn + Sn) of 0.49 is obtained. A transparent oxide laminate film was obtained and measured in the same manner as in Example 1 except that the oxide film was formed by sputtering. The results are shown in Table 1.
(比較例3)
 比較例3では、金属原子数比Sn/(Zn+Sn)として0.35となる第1の酸化物膜をスパッタリングにより膜厚15nmで成膜し、金属原子数比Sn/(Zn+Sn)として0.79、Ta/(Zn+Sn+Ge+Ta)が0.01、Ge/(Zn+Sn+Ge+Ta)が0.04となる第2の酸化物膜をスパッタリングにより膜厚15nmで成膜したこと以外は実施例1と同様にして透明酸化物積層膜を得て、測定を実施した。結果を表1に示す。
(Comparative Example 3)
In Comparative Example 3, the first oxide film having a metal atom number ratio Sn / (Zn + Sn) of 0.35 was formed by sputtering to a film thickness of 15 nm, and the metal atom number ratio Sn / (Zn + Sn) was 0.79. Transparent oxidation is performed in the same manner as in Example 1 except that a second oxide film having a thickness of Ta / (Zn + Sn + Ge + Ta) of 0.01 and Ge / (Zn + Sn + Ge + Ta) of 0.04 is formed to a thickness of 15 nm by sputtering. The product laminated film was obtained and measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明に含まれる実施例1~9では、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、0.001g/m/day以下(1.0×10-3g/m/day以下)となり、良好な水蒸気バリア性能を有していることが分かった。さらに、耐薬品性評価における色差ΔEabが1.0以下であり、膜変化量が2.0nm以下となり、良好な耐薬品性を有することが分かった。 From Table 1, in Examples 1 to 9 included in the present invention, the water vapor transmission rate by the differential pressure method specified according to the JIS standard K7129 method is 0.001 g / m 2 / day or less (1.0 × 10 −3 or less). g / m 2 / day or less), and it was found that the film had good water vapor barrier performance. Furthermore, it was found that the color difference ΔEab in the chemical resistance evaluation was 1.0 or less, and the film change amount was 2.0 nm or less, thus having good chemical resistance.
 一方、第2の酸化物膜のSn/(Zn+Sn)が0.29である比較例1では、耐薬品性評価において、透明酸化物積層膜が酸又はアルカリに対して溶解してしまった。 On the other hand, in Comparative Example 1 in which Sn / (Zn + Sn) of the second oxide film was 0.29, the transparent oxide multilayer film was dissolved in acid or alkali in the chemical resistance evaluation.
 また、第1の酸化物膜のSn/(Zn+Sn)が0.16である比較例2や、第1の酸化物膜のSn/(Zn+Sn)が0.35である比較例3では、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が、0.001g/m/day(1.0×10-3g/m/day)を超えており、水蒸気バリア性に劣ることが分かった。また、波長が550nmで測定した透過率も、90%以上あり透明性を有していることが分かった。なお、結晶性は、X線回折測定した結果、実施例1~9の全てにおいて非晶質であった。 In Comparative Example 2 in which Sn / (Zn + Sn) of the first oxide film is 0.16 and Comparative Example 3 in which Sn / (Zn + Sn) of the first oxide film is 0.35, the JIS standard is used. water vapor transmission rate according to the specified differential pressure method in accordance with K7129 method of, 0.001g / m 2 /day(1.0×10 -3 g / m 2 / day) are over, poor in water vapor barrier property I understood. Further, the transmittance measured at a wavelength of 550 nm was 90% or more, and it was found to have transparency. The crystallinity was amorphous in all of Examples 1 to 9 as a result of X-ray diffraction measurement.
 以上より、本発明によれば、量産性の高い直流スパッタリングにて、優れた透明性、良好な水蒸気バリア性能をもち、耐薬品性を備えた透明酸化物積層膜を得ることができた。 As described above, according to the present invention, a transparent oxide laminated film having excellent transparency, good water vapor barrier performance, and chemical resistance can be obtained by DC sputtering with high mass productivity.
 なお、上記のように本発明の一実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although one embodiment and each example of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications that do not substantially depart from the novel matters and effects of the present invention are possible. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、透明酸化物積層膜、透明酸化物積層膜の製造方法、及び透明樹脂基板の構成も本発明の一実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described together with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the transparent oxide laminated film, the method for producing the transparent oxide laminated film, and the configuration of the transparent resin substrate are not limited to those described in the embodiment and the examples of the present invention, and various modifications can be made. is there.
 本発明に係る透明酸化物積層膜を利用して、水蒸気バリア性透明樹脂基板を形成することが可能となり、該水蒸気バリア性透明樹脂基板を利用することで、形状の自由度、局面表示などを有する、液晶表示素子やエレクトロルミネッセンス表示素子(EL表示素子)、量子ドット表示素子(QD表示素子)、電子ペーパー、フィルム型太陽電池などを作製することが可能となる。従って、本発明は、工業的に極めて価値が高い。 By using the transparent oxide laminated film according to the present invention, it becomes possible to form a water vapor barrier transparent resin substrate, and by using the water vapor barrier transparent resin substrate, the degree of freedom of shape, phase display, etc. It is possible to produce a liquid crystal display element, an electroluminescence display element (EL display element), a quantum dot display element (QD display element), electronic paper, a film type solar cell, and the like. Therefore, the present invention is extremely valuable industrially.

Claims (10)

  1.  ZnとSnとを含有する透明酸化物膜を複数層積層した透明酸化物積層膜であって、
     各層でZnとSnの金属原子数比が異なる非晶質の透明酸化物膜から構成される透明酸化物積層膜。
    A transparent oxide laminated film in which a plurality of transparent oxide films containing Zn and Sn are laminated,
    A transparent oxide multilayer film composed of amorphous transparent oxide films having different metal atom number ratios of Zn and Sn in each layer.
  2.  金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である第1の透明酸化物膜と、金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である第2の透明酸化物膜を少なくとも有する請求項1に記載の透明酸化物積層膜。 A first transparent oxide film having a metal atom number ratio of Sn / (Zn + Sn) of 0.18 or more and 0.29 or less and a metal atom number ratio of Sn / (Zn + Sn) of 0.44 or more and 0.90. The transparent oxide laminated film of Claim 1 which has at least the 2nd transparent oxide film which is the following.
  3.  少なくともいずれかの層の透明酸化物膜は、Ta及びGeを含有し、
     前記Zn、Sn、Ta、及びGeの原子数比において、
     Ta/(Zn+Sn+Ge+Ta)が0.01以下、Ge/(Zn+Sn+Ge+Ta)が0.04以下である請求項2に記載の透明酸化物積層膜。
    The transparent oxide film of at least one layer contains Ta and Ge,
    In the atomic ratio of Zn, Sn, Ta, and Ge,
    The transparent oxide multilayer film according to claim 2, wherein Ta / (Zn + Sn + Ge + Ta) is 0.01 or less and Ge / (Zn + Sn + Ge + Ta) is 0.04 or less.
  4.  前記透明酸化物積層膜の膜厚が100nm以下である請求項2に記載の透明酸化物積層膜。 The transparent oxide multilayer film according to claim 2, wherein the transparent oxide multilayer film has a thickness of 100 nm or less.
  5.  前記透明酸化物積層膜は、JIS規格のK7129法に従って指定された差圧法による水蒸気透過率が0.001g/m/day以下である請求項2に記載の透明酸化物積層膜。 The transparent oxide multilayer film according to claim 2, wherein the transparent oxide multilayer film has a water vapor transmission rate of 0.001 g / m 2 / day or less by a differential pressure method specified in accordance with the K7129 method of JIS standards.
  6.  前記透明酸化物積層膜は、酸又はアルカリに対する耐薬品性を持ち、5%濃度の塩酸又は5%濃度の水酸化ナトリウムの溶液に5分間浸漬した前後の色差ΔEab変化値が1.0以下である請求項2に記載の透明酸化物積層膜。 The transparent oxide laminated film has chemical resistance to acid or alkali, and the color difference ΔEab change value before and after being immersed in a 5% concentration hydrochloric acid or 5% concentration sodium hydroxide solution for 5 minutes is 1.0 or less. The transparent oxide laminated film according to claim 2.
  7.  前記透明酸化物積層膜は、酸又はアルカリに対する耐薬品性を持ち、5%濃度の塩酸又は5%濃度の水酸化ナトリウムの溶液に5分間浸漬した前後の膜変化量が2.0nm以下である請求項2に記載の透明酸化物積層膜。 The transparent oxide laminated film has chemical resistance to acid or alkali and has a film change amount of 2.0 nm or less before and after being immersed in a solution of 5% hydrochloric acid or 5% sodium hydroxide for 5 minutes. The transparent oxide laminated film according to claim 2.
  8.  Sn-Zn-O系の酸化物焼結体からなるターゲットを用いてスパッタリングする透明酸化物積層膜の製造方法であって、
     少なくとも、
     金属原子数比で、Sn/(Zn+Sn)が0.18以上0.29以下である酸化物焼結体を有する第1のターゲットと、
     金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である酸化物焼結体を有する第2のターゲットとを用いて透明酸化物積層膜を形成する透明酸化物積層膜の製造方法。
    A method for producing a transparent oxide multilayer film in which sputtering is performed using a target composed of a Sn—Zn—O-based oxide sintered body,
    at least,
    A first target having an oxide sintered body in which Sn / (Zn + Sn) is 0.18 or more and 0.29 or less in a metal atom number ratio;
    Transparent oxide multilayer film forming a transparent oxide multilayer film using a second target having an oxide sintered body with Sn / (Zn + Sn) being 0.44 or more and 0.90 or less in terms of the number of metal atoms Manufacturing method.
  9.  請求項1乃至請求項7のいずれか1項に記載の透明酸化物積層膜が透明な樹脂基材の少なくとも一方の面に形成されている透明樹脂基板。 A transparent resin substrate in which the transparent oxide multilayer film according to any one of claims 1 to 7 is formed on at least one surface of a transparent resin base material.
  10.  金属原子数比で、Sn/(Zn+Sn)が0.44以上0.90以下である透明酸化物膜が最外層となる請求項9に記載の透明樹脂基板。 The transparent resin substrate according to claim 9, wherein a transparent oxide film having Sn / (Zn + Sn) of 0.44 or more and 0.90 or less as a metal atom ratio is the outermost layer.
PCT/JP2019/002361 2018-03-19 2019-01-24 Transparent oxide-laminated film, method for producing transparent oxide-laminated film, and transparent resin substrate WO2019181190A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207026627A KR20200135337A (en) 2018-03-19 2019-01-24 Transparent oxide laminated film, transparent oxide laminated film manufacturing method, and transparent resin substrate
CN201980019836.7A CN111868293A (en) 2018-03-19 2019-01-24 Transparent oxide laminated film, method for producing transparent oxide laminated film, and transparent resin substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-050675 2018-03-19
JP2018050675A JP2019163493A (en) 2018-03-19 2018-03-19 Transparent oxide-laminated film, method of manufacturing transparent oxide-laminated film, and transparent resin substrate

Publications (1)

Publication Number Publication Date
WO2019181190A1 true WO2019181190A1 (en) 2019-09-26

Family

ID=67987612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002361 WO2019181190A1 (en) 2018-03-19 2019-01-24 Transparent oxide-laminated film, method for producing transparent oxide-laminated film, and transparent resin substrate

Country Status (5)

Country Link
JP (1) JP2019163493A (en)
KR (1) KR20200135337A (en)
CN (1) CN111868293A (en)
TW (1) TW201938372A (en)
WO (1) WO2019181190A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032642A (en) * 2008-07-25 2010-02-12 Sumitomo Chemical Co Ltd Active matrix substrate, display panel, display device, and manufacturing method for active matrix substrate
JP2014013917A (en) * 2012-06-06 2014-01-23 Kobe Steel Ltd Thin film transistor
JP2017145185A (en) * 2015-11-20 2017-08-24 住友金属鉱山株式会社 Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889195B2 (en) 2003-09-26 2012-03-07 住友金属鉱山株式会社 Gas barrier transparent resin substrate, flexible display element using gas barrier transparent resin substrate, and method for producing gas barrier transparent resin substrate
JP4961786B2 (en) * 2006-03-17 2012-06-27 住友金属鉱山株式会社 Transparent conductive film and transparent conductive film using the same
JP5161470B2 (en) 2006-03-29 2013-03-13 富士フイルム株式会社 GAS BARRIER LAMINATED FILM, PROCESS FOR PRODUCING THE SAME, AND IMAGE DISPLAY ELEMENT
FR2949775B1 (en) * 2009-09-10 2013-08-09 Saint Gobain Performance Plast PROTECTIVE SUBSTRATE FOR COLOR DEVICE OR RADIATION TRANSMITTER
JP2015109315A (en) * 2013-12-03 2015-06-11 出光興産株式会社 Thin film transistor, manufacturing method of the same, oxide semiconductor layer, display device and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032642A (en) * 2008-07-25 2010-02-12 Sumitomo Chemical Co Ltd Active matrix substrate, display panel, display device, and manufacturing method for active matrix substrate
JP2014013917A (en) * 2012-06-06 2014-01-23 Kobe Steel Ltd Thin film transistor
JP2017145185A (en) * 2015-11-20 2017-08-24 住友金属鉱山株式会社 Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP2019163493A (en) 2019-09-26
KR20200135337A (en) 2020-12-02
CN111868293A (en) 2020-10-30
TW201938372A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
EP2639057B1 (en) Transparent conductive film
KR101173713B1 (en) Multilayer body, light-emitting device and use thereof
JP5417698B2 (en) Method for producing functional film
WO2016204018A1 (en) Low-reflectance electrode for display device, and sputtering target
JP4889195B2 (en) Gas barrier transparent resin substrate, flexible display element using gas barrier transparent resin substrate, and method for producing gas barrier transparent resin substrate
KR20160066316A (en) Thin film for encapsulation
US20100279092A1 (en) Multiple-layer film and method for manufacturnig the same
JP2014164882A (en) Laminate having excellent reliability and workability and method for producing laminate
JP2005319678A (en) Laminate, light emitting element and its use
TW201728444A (en) Laminate substrate, method for manufacturing laminate substrate, electroconductive substrate, and method for manufacturing electroconductive substrate
CN101065239B (en) Gas barrier transparent resin substrate, method for manufacture thereof, and flexible display element using gas barrier transparent resin substrate
WO2019181190A1 (en) Transparent oxide-laminated film, method for producing transparent oxide-laminated film, and transparent resin substrate
TWI699675B (en) Conductive substrate and manufacturing method of conductive substrate
TW201725112A (en) Laminate substrate, conductive substrate, method for manufacturing laminate substrate and method for manufacturing conductive substrate
JP2004291306A (en) Transparent barrier film
TWI769349B (en) Gas barrier film and method for producing the same
WO2019181191A1 (en) Transparent oxide film, method for producing transparent oxide film, oxide sintered compact and transparent resin substrate
TW201936953A (en) Oxide sputtered film, method for manufacturing oxide sputtered film, oxide sintered compact, and transparent resin substrate
JP2012206381A (en) Transparent gas barrier film, method of forming transparent gas barrier film, organic electroluminescence element, solar battery, and thin film battery
WO2019202819A1 (en) Transparent oxide laminate film, method for producing transparent oxide laminate film, sputtering target, and transparent resin substrate
TW201726401A (en) Laminated body substrate, electrically conductive substrate, method for producing laminated body substrate and method for producing electrically conductive substrate
JP2004042412A (en) Film coated with transparent gas-barrier membrane
WO2023106314A1 (en) Multilayer body having function of transparent conductive film
JP4004813B2 (en) Transparent gas / water vapor barrier film
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770795

Country of ref document: EP

Kind code of ref document: A1