WO2019181124A1 - Dicyclopentadiene-based ring-opened polymer hydride, method for producing same, resin molded article, resin film, and method for producing stretched film - Google Patents

Dicyclopentadiene-based ring-opened polymer hydride, method for producing same, resin molded article, resin film, and method for producing stretched film Download PDF

Info

Publication number
WO2019181124A1
WO2019181124A1 PCT/JP2018/047290 JP2018047290W WO2019181124A1 WO 2019181124 A1 WO2019181124 A1 WO 2019181124A1 JP 2018047290 W JP2018047290 W JP 2018047290W WO 2019181124 A1 WO2019181124 A1 WO 2019181124A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
dicyclopentadiene
opening polymer
film
group
Prior art date
Application number
PCT/JP2018/047290
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 充輝
村田 徹
健作 藤井
重孝 早野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020507358A priority Critical patent/JP7218753B2/en
Publication of WO2019181124A1 publication Critical patent/WO2019181124A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a dicyclopentadiene ring-opening polymer hydride and a method for producing the same, a resin molded product, a resin film, and a method for producing a stretched film.
  • a hydride of norbornene-based ring-opening polymer that can be prepared by ring-opening polymerization of a norbornene-based monomer such as dicyclopentadiene is called “cycloolefin polymer” and is a kind of a commercially available material.
  • cycloolefin polymer is attracting attention as a material applicable to various uses including optical use because it is excellent in transparency, low birefringence, molding processability and the like.
  • the ring-opening polymer hydride containing monomer units derived from dicyclopentadiene (hereinafter also referred to as “dicyclopentadiene-based ring-opening polymer hydride”) is an amorphous structure having an atactic structure. It was common to obtain it as a polymer. However, the amorphous dicyclopentadiene ring-opening polymer hydride having an atactic structure may have insufficient heat resistance, mechanical strength, solvent resistance, and the like depending on its use.
  • dicyclopentadiene ring-opening polymer hydride having crystallinity is produced by producing dicyclopentadiene ring-opening polymer hydride having stereoregularity in the main chain.
  • Patent Documents 1 and 2 disclose a crystalline dicyclopentadiene ring-opened polymer hydride having a melting start temperature of 260 ° C. or higher, a melting point of less than 280 ° C., and a syndiotacticity of more than 90%. It is disclosed.
  • Patent Document 3 discloses a hydrogenated poly (dicyclopentadiene) polymer in which more than 80% is syndiotactic.
  • an object of the present invention is to provide a dicyclopentadiene ring-opening polymer hydride and a method for producing the same, which are capable of forming a resin molded body and the like that are compatible at a high strength and ductility level. Furthermore, an object of the present invention is to provide a resin film and a resin molded body that are compatible at a high strength and ductility level. Furthermore, an object of this invention is to provide the manufacturing method of a stretched film which can manufacture a stretched film favorably using the resin film in which the intensity
  • the present inventor has intensively studied for the purpose of solving the above problems. Then, when preparing the dicyclopentadiene-based ring-opening polymer hydride, the inventor increases the hydrogenation rate to a predetermined value or higher when the syndiotacticity is remarkably increased. It has been found that both strength and ductility of a resin molded article containing a cyclic polymer hydride can be achieved at a high level, and the present invention has been completed.
  • the present invention aims to advantageously solve the above problems, and the dicyclopentadiene ring-opening polymer hydride of the present invention has a syndiotacticity of 99% or more and a hydrogenation.
  • the rate is 98.0% or more.
  • the dicyclopentadiene ring-opening polymer hydride satisfying both the above-mentioned ranges for both syndiotacticity and hydrogenation rate achieves both high strength and ductility of the resulting resin molded article. can do.
  • the syndiotacticity of the dicyclopentadiene ring-opening polymer hydride can be determined by the method using 13 C-NMR described in Examples.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride can be determined by the method using 1 H-NMR described in Examples.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride of the present invention is preferably 99.0% or more.
  • a hydride of a dicyclopentadiene ring-opening polymer having a hydrogenation rate of 99.0% or more it becomes possible to provide a resin molded article having excellent reflow resistance.
  • the present invention aims to advantageously solve the above-mentioned problems, and the resin molded product of the present invention contains any one of the above dicyclopentadiene ring-opening polymer hydrides. And
  • the resin molded article containing the dicyclopentadiene-based ring-opening polymer hydride of the present invention has both high strength and ductility.
  • the present invention is also intended to advantageously solve the above problems, and the resin film of the present invention contains any one of the above dicyclopentadiene ring-opening polymer hydrides. To do.
  • the resin film containing the dicyclopentadiene-based ring-opening polymer hydride of the present invention has both high strength and ductility.
  • the resin film of the present invention has a gas generation amount attributed to a mass number of 18 (m / z) generated between room temperature and 300 ° C. as measured by heat generation gas mass spectrometry.
  • the mass is preferably less than 0.5% by mass based on 100% by mass.
  • a resin film in which the amount of gas generated when measured under predetermined conditions is highly suitable as an electric / electronic material.
  • the heat generation gas mass spectrometry Tempoture Programmed Desorption / Mass Spectrometry (TPD-MS)
  • TPD-MS Tempoture Programmed Desorption / Mass Spectrometry
  • the definition of “room temperature” follows JIS Z 8703: 1983.
  • the “initial mass of the film” is the mass of the resin film in the stage before starting the measurement according to the heat generation gas mass spectrometry.
  • the present invention aims to advantageously solve the above-mentioned problems, and the method for producing a dicyclopentadiene ring-opening polymer hydride of the present invention is represented by the following general formula ( ⁇ ).
  • a ring-opening polymerization catalyst ring-opening polymerization of a monomer containing dicyclopentadiene to obtain a dicyclopentadiene-based ring-opening polymer, and the dicyclopentadiene-based ring-opening polymer And hydrogenation to obtain a dicyclopentadiene ring-opened polymer hydride having a hydrogenation rate of 98.0% or more.
  • a dicyclopentadiene-based ring-opening polymer hydride capable of forming a resin molded body compatible with strength and ductility at a high level is obtained. It can be manufactured satisfactorily.
  • Ph represents a phenyl group
  • R 1 and R 2 each independently represents a monovalent linear, branched or cyclic hydrocarbon group having 1 to 6 carbon atoms.
  • X represents a hydrogen atom, a halogen atom, a nitro group, an amino group, or a cyano group, and n represents an integer of 0 to 5, and when n is an integer of 1 or more, a plurality of X May be the same or different;
  • Y represents C (R 3 ) 2 R 4 (wherein each R 3 independently represents —R 5 , —OR 5 , —SR).
  • each R 5 is independently hydrogen or a straight chain of 1 to 12 carbon atoms.
  • heteroalkyl 1 to 10 heteroalkyl groups having 1 to 3 heteroatoms independently selected from the group, nitrogen, oxygen or sulfur, phenyl groups, 3 to 7-membered saturated or partially unsaturated carbons 5 to 5 having 1 to 4 heteroatoms independently selected from a ring, a 6 to 10-membered bicyclic saturated ring, a partially unsaturated ring, or an aryl ring, nitrogen, oxygen, or sulfur 6-membered monocyclic heteroaryl ring, 3- to 7-membered saturated or partially unsaturated heterocycle having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, nitrogen, oxygen Or a 7 to 10 membered bicyclic saturated or partially unsaturated heterocycle having 1 to 5 heteroatoms independently selected from sulfur, and independently from nitrogen, oxygen, or sulfur 8 to 10 members with 1 to 5 heteroatoms selected Is selected from the bicyclic heteroaryl ring, or an optionally substituted group, or, optionally, two R 5, optionally in combination with the intervening atoms, said
  • this invention aims at solving the said subject advantageously, and the manufacturing method of the stretched film of this invention uses one of the dicyclopentadiene type ring-opening polymer hydrides mentioned above. It includes a stretching step of stretching the unstretched film formed at a temperature of 95 ° C. or higher and 130 ° C. or lower. According to such a method for producing a stretched film, an unstretched film having both high strength and ductility can be stretched satisfactorily, and a stretched film having excellent performance can be efficiently produced.
  • the method for producing a stretched film of the present invention further includes a heat setting treatment step of heat-treating the film that has undergone the stretching step at a temperature of 175 ° C. or more and 225 ° C. or less.
  • a heat setting treatment step of heat-treating the film that has undergone the stretching step at a temperature of 175 ° C. or more and 225 ° C. or less.
  • the dicyclopentadiene type ring-opening polymer hydride which can form the resin molding etc. which were compatible in the level with high intensity
  • the dicyclopentadiene ring-opening polymer hydride of the present invention is suitably used when preparing a resin film and a resin molded body.
  • the resin film and the resin molded body of the present invention are characterized by containing the dicyclopentadiene ring-opening polymer hydride of the present invention.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention can be favorably produced by the method for producing a dicyclopentadiene ring-opening polymer hydride of the present invention.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention (hereinafter also simply referred to as “HDDCD polymer”) has a syndiotacticity of 99% or more and a hydrogenation rate of 98.0% or more. It is characterized by.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention having a syndiotacticity and a hydrogenation rate that are each equal to or higher than the lower limit, a resin material that has both high strength and ductility can be obtained. Can be formed.
  • the HDCPD polymer contains a repeating unit derived from dicyclopentadiene (hereinafter also referred to as “repeating unit (1)”). More specifically, the repeating unit (1) can be a repeating unit of hydrogenated dicyclopentadiene represented by the following formula (1).
  • the dicyclopentadiene ring-opening polymer hydrogen There may be stereoregularity (tacticity) in the compound.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention has syndiotactic stereoregularity.
  • the proportion of the repeating unit (1) is preferably 90% by mass or more, preferably 95% by mass or more, based on 100% by mass of all repeating units constituting the HDCPD polymer. More preferably, it is more preferably 97% by mass or more, and particularly preferably 100% by mass. If the ratio of the repeating unit (1) in the HDCPD polymer is not less than the above lower limit, the strength of the obtained resin material and the like can be further increased.
  • the repeating unit (1) represented by the above formula (1) is derived from dicyclopentadiene.
  • Dicyclopentadiene has two stereoisomers, an endo isomer and an exo isomer, both of which can be used as monomers.
  • one of the endo isomer and the exo isomer may be used alone, or an isomer mixture in which the endo isomer and the exo isomer are mixed at an arbitrary ratio can be used. From the viewpoint of increasing the crystallinity of the HDDCD polymer and particularly increasing the strength of the resin material obtained, it is preferable to increase the ratio of one stereoisomer.
  • the total isomer mixture is 100% by mass, and one of the endo isomer and the exo isomer is 90% by mass or more. Is more preferable, it is more preferable that it is 95 mass% or more, and it is especially preferable that it is 99 mass% or more. Furthermore, from the viewpoint of ease of synthesis, it is preferable that the ratio of the endo isomer is higher than the ratio of the exo isomer in the isomer mixture.
  • the HDDCD polymer when preparing the HDDCD polymer, other cyclic olefin monomers copolymerizable with dicyclopentadiene can be used in combination.
  • the amount of the other cyclic olefin monomer used is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less, based on 100% by mass of all repeating units constituting the HDCPD polymer.
  • 0% by mass that is, the HDCPD polymer preferably contains no other cyclic olefin monomer.
  • cyclic olefin monomers copolymerizable with dicyclopentadiene are not particularly limited, and examples thereof include known cyclic olefin monomers disclosed in International Publication No. 2016/143795.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention is obtained by first ring-opening polymerizing the above-mentioned dicyclopentadiene and any other cyclic olefin monomer to obtain a dicyclopentadiene ring-opening polymer.
  • the obtained ring-opening polymer can be prepared by hydrogenation.
  • the ring-opening polymer is not particularly limited, and is prepared by ring-opening polymerization of dicyclopentadiene and any other cyclic olefin monomer as described above using a ring-opening polymerization catalyst. be able to. According to the study by the present inventors, by using a ring-opening polymerization catalyst that can be represented by the following general formula ( ⁇ ) as the ring-opening polymerization catalyst, the dicyclopentadiene-based ring-opening polymer hydride of the present invention can be efficiently produced. It became clear that it could be manufactured.
  • the skeleton structure defined by the following general formula ( ⁇ ) can satisfactorily form a polymer chain having high syndiotacticity in the ring-opening polymerization of dicyclopentadiene.
  • the ring-opening polymerization catalyst represented by the general formula ( ⁇ ) is an alkylidene ligand, a 5- to 14-membered heteroaryl ligand represented by Z, a phenyl-substituted phenoxy ligand, a terminal oxo coordination. This is thought to be due to the fact that it consists of a child and a phosphorus-containing ligand.
  • the alkoxy group is a substituted phenoxy group, and has a phenyl group at the 2, 3, 5, and 6 positions, and the 2, 3, 5, and 6 positions. It is presumed that when the substituent X of the phenyl group is small, the steric effect on dicyclopentadiene is optimized and stereo error can be suppressed. In addition, since the ring-opening polymerization catalyst has a terminal oxy ligand, a sufficient coordination space for dicyclopentadiene can be secured, and stereo errors can be suppressed.
  • Ph represents a phenyl group
  • R 1 and R 2 each independently represents a monovalent linear, branched or cyclic hydrocarbon group having 1 to 6 carbon atoms.
  • X represents a hydrogen atom, a halogen atom, a nitro group, an amino group, or a cyano group
  • n represents an integer of 0 to 5, and when n is an integer of 1 or more, a plurality of X May be the same or different;
  • Y represents C (R 3 ) 2 R 4 (wherein each R 3 independently represents —R 5 , —OR 5 , —SR).
  • each R 5 is independently hydrogen or a straight chain of 1 to 12 carbon atoms.
  • heteroalkyl 1 to 10 heteroalkyl groups having 1 to 3 heteroatoms independently selected from the group, nitrogen, oxygen or sulfur, phenyl groups, 3 to 7-membered saturated or partially unsaturated carbons 5 to 5 having 1 to 4 heteroatoms independently selected from a ring, a 6 to 10-membered bicyclic saturated ring, a partially unsaturated ring, or an aryl ring, nitrogen, oxygen, or sulfur 6-membered monocyclic heteroaryl ring, 3- to 7-membered saturated or partially unsaturated heterocycle having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, nitrogen, oxygen Or a 7 to 10 membered bicyclic saturated or partially unsaturated heterocycle having 1 to 5 heteroatoms independently selected from sulfur, and independently from nitrogen, oxygen, or sulfur 8 to 10 members with 1 to 5 heteroatoms selected Is selected from the bicyclic heteroaryl ring, or an optionally substituted group, or, optionally, two R 5, optionally in combination with the intervening atoms, said
  • Halogen atoms that can be X include F, Cl, Br, and I. Especially, when X is a halogen atom, it is preferable that it is Br. N is preferably 0.
  • the linear or branched hydrocarbon group having 1 to 6 carbon atoms which is R 1 or R 2 , is not particularly limited, but is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl.
  • a straight chain or branched chain alkyl group having 1 to 6 carbon atoms such as a tert-butyl group, a pentyl group, a hexyl group and an isohexyl group, and a cyclic aliphatic hydrocarbon group and an aromatic hydrocarbon group. Can be mentioned.
  • the cyclic hydrocarbon group having 1 to 6 carbon atoms which can be R 1 and R 2 is not particularly limited, and is a cyclic aliphatic group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group. Hydrocarbon groups; and aromatic hydrocarbon groups such as phenyl groups. Of these, R 1 and R 2 are preferably methyl groups.
  • Examples of the linear or branched alkyl group having 1 to 12 carbon atoms which may be R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, Examples include a hexyl group, a heptyl group, an octyl group, and a nonyl group. Among them, it is preferable that R 3 is a methyl group.
  • Other examples of the group that may be R 3 include various groups listed as the group “R” in International Publication No. 2015/127192 (for example, International Publication No. 2015/127192, paragraph).
  • examples of the substituent bonded to the substitutable carbon atom of the optionally substituted group include various substituents described in International Publication No. 2015/127192 ( For example, see International Publication No. 2015/127192, paragraphs 0058-0064).
  • Z In the 5- to 14-membered heteroaryl group that is Z, it is preferable that at least one heteroatom is N. Further, it is more preferable that Z is bonded to W through at least one nitrogen atom.
  • Z may be a group represented by any one of the following general formulas (Z-1) to (Z-6).
  • Z is a 5-membered heteroaryl having 1 to 4 heteroatoms independently selected from N, O and S, and it is particularly preferred that at least one heteroatom is nitrogen.
  • Z is preferably a group represented by the following formula (Z-1), (Z-2), (Z-3), or (Z-6), and is represented by the following formula (Z-6). Particularly preferred is a group.
  • Z is 5-membered heteroaryl, at least one heteroatom is nitrogen, and the substituents at the 2- and 5-positions are a hydrogen atom or a methyl group, thereby stabilizing the catalyst structure and reducing stereo errors. Become.
  • the ring-opening polymerization catalyst represented by the above formula ( ⁇ ) is not particularly limited.
  • the amount of the ring-opening polymerization catalyst used is preferably 0.01 parts by mass or more and 0.50 parts by mass or less with respect to 100 parts by mass of the monomer containing dicyclopentadiene. It is more preferable that the content be 0.05 parts by mass or more and 0.30 parts by mass or less.
  • the polymerization time is usually from 1 minute to 100 hours, preferably from 30 minutes to 5 hours.
  • the polymerization temperature can usually be ⁇ 30 ° C. or higher and 200 ° C. or lower, preferably 0 ° C. or higher and 180 ° C. or lower.
  • a known molecular weight regulator that can be a vinyl group-containing compound such as 1-hexene can be added in a general blending amount.
  • the ring-opening polymerization reaction can be performed in a solvent-free system, but is preferably performed in an organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve or disperse the dicyclopentadiene-based ring-opening polymer obtained by the ring-opening polymerization reaction and does not adversely affect the ring-opening polymerization reaction. And any organic solvent can be used.
  • organic solvents include aliphatic hydrocarbons such as pentane, hexane, heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, Hexahydroindene cyclohexane, cyclooctane and other alicyclic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; dichloromethane, chloroform, 1,2-dichloroethane and other halogenated aliphatic hydrocarbons; chlorobenzene, dichlorobenzene, etc.
  • aliphatic hydrocarbons such as pentane, hexane, heptane; cyclopen
  • Halogen-containing aromatic hydrocarbons nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene and acetonitrile; ethers such as diethyl ether and tetrahydrofuran; aniso , And aromatic ethers such as phenetole.
  • nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene and acetonitrile
  • ethers such as diethyl ether and tetrahydrofuran
  • aniso , And aromatic ethers such as phenetole.
  • aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, ethers, and aromatic ethers are preferable, and aromatic hydrocarbons are more preferable.
  • the weight average molecular weight (Mw) of the obtained dicyclopentadiene-based ring-opening polymer is not particularly limited, but is usually 10,000 to 1,000,000, preferably 10,000 to 500,000. .
  • Such a polymer having a weight average molecular weight is preferably used as a material for various resin moldings.
  • the molecular weight distribution (Mw / Mn) of the dicyclopentadiene-based ring-opening polymer is not particularly limited, but is usually 4.0 or less, preferably 3.5 or less.
  • a hydride obtained by subjecting a polymer having such a molecular weight distribution to a hydrogenation reaction described later is excellent in molding processability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the dicyclopentadiene ring-opening polymer are standard polystyrene conversion values measured by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent. is there.
  • the hydrogenation reaction can be performed by adding (a) a hydrogenating agent as a hydrogen source to the system in which the dicyclopentadiene-based ring-opening polymer is present, and then heating and reacting, or (b) adding a hydrogenation catalyst. Then, hydrogen gas can be added as a hydrogen source to hydrogenate unsaturated bonds present in the dicyclopentadiene-based ring-opening polymer.
  • a hydrogenating agent as a hydrogen source
  • hydrogen gas can be added as a hydrogen source to hydrogenate unsaturated bonds present in the dicyclopentadiene-based ring-opening polymer.
  • the method (a) includes a hydrazine-containing compound known as a hydrogenating agent (hydrogen source) for a hydrogen transfer hydrogenation reaction, and is included in a dicyclopentadiene-based ring-opening polymer.
  • a hydrogenating agent hydrogen source
  • the method of hydrogenating an unsaturated bond is mentioned.
  • the hydrogenating agent is not particularly limited, and examples thereof include hydrazine and paratoluenesulfonyl hydrazide. Among them, paratoluenesulfonyl hydrazide is preferable.
  • a conventionally known hydrogenation catalyst for a ring-opening polymer can be used as the hydrogenation catalyst used in the method (b).
  • a conventionally known hydrogenation catalyst for a ring-opening polymer can be used.
  • Specific examples thereof include RuHCl (CO) (PPh 3 ) 3 , RuHCl (CO) [P (p-Me-Ph) 3 ] 3 , RuHCl (CO) (PCy 3 ) 2 , RuHCl (CO) [P ( n-Bu) 3 ] 3 , RuHCl (CO) [P (i-Pr) 3 ] 2 , RuH 2 (CO) (PPh 3 ) 3 , RuH 2 (CO) [P (p-Me-Ph) 3 ] 3 , RuH 2 (CO) (PCy 3 ) 3 , RuH 2 (CO) [P (n-Bu) 3 ] 3 RuH (OCOCH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh)
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • inert organic solvents that can be used include cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, hexahydroindenecyclohexane, and cyclooctane.
  • Alicyclic hydrocarbons such as benzene, toluene and xylene; Halogenous aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; Halogenous aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; Diethyl And ethers such as ether and tetrahydrofuran; aromatic ethers such as anisole and phenetole; and the like. These can be used singly or as a mixture of two or more. Of these, alicyclic hydrocarbons and aromatic hydrocarbons are preferred.
  • hydrogenation reaction conditions such as hydrogenation reaction temperature
  • the hydrogenation reaction temperature is usually ⁇ 20 ° C. or higher and 250 ° C. or lower, preferably 50 ° C. or higher and 220 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower, and further preferably 160 ° C. or higher and 200 ° C. or lower. If the hydrogenation temperature is too low, the reaction rate may be too slow, and if it is too high, the side reaction may occur and the hydrogenation rate may be reduced.
  • the hydrogenation rate of the HDDCD polymer obtained can be made into a desired value by adjusting the hydrogenation temperature within an appropriate range.
  • the hydrogen pressure can be usually 0.01 to 20 MPa, preferably 0.05 to 15 MPa, more preferably 0.1 to 10 MPa. If the hydrogen pressure is too low, the hydrogenation rate may be too slow, and if it is too high, there will be restrictions on the apparatus in that a high pressure reactor is required.
  • the hydrogenation reaction time is not particularly limited as long as the desired hydrogenation rate can be obtained, but it can usually be 0.1 to 10 hours.
  • the catalyst residue can be removed by a known method such as centrifugation and filtration.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention must have a hydrogenation rate of 98.0% or more, preferably 99.0% or more, and preferably 99.2% or more. More preferred. If a hydrogenation rate is more than the said lower limit, the intensity
  • reflow resistance means resistance when the printed circuit board material is heated according to a reflow method commonly used when soldering a component to a printed circuit board or the like. The temperature profile of heating according to the reflow method is defined, for example, in J-STD-020C.
  • a hydrogenation rate shows the ratio of the hydrogenated unsaturated bond among all the unsaturated bonds contained in the principal chain and side chain of the dicyclopentadiene ring-opening polymer hydride. Further, the hydrogenation rate is a value based on 1 H-NMR measurement, and is a value on a molar basis.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention needs to have a syndiotacticity of 99% or more.
  • syndiotacticity is the ratio of racemodyad to the total abundance of isotactic dyad (mesodyad) and racemodyad present in the polymer chain having stereoregularity (hereinafter simply referred to as “racemodyad ratio”). May be referred to).
  • the dicyclopentadiene ring-opening polymer hydride of the present invention preferably has a syndiotacticity of 99.5% or more, more preferably 100%.
  • syndiotacticity is at least the above lower limit, the crystallinity of the dicyclopentadiene ring-opening polymer hydride is sufficiently high, and the strength of the resulting resin material and the like can be sufficiently increased.
  • the syndiotacticity is a value based on 13 C-NMR measurement, and is a value on a molar basis.
  • the syndiotacticity of the dicyclopentadiene-based ring-opening polymer hydride is adjusted as appropriate using the specific catalyst as described above, and various conditions during polymerization, including polymerization time and polymerization temperature. By doing so, it can be increased to a desired value.
  • the glass transition temperature of the dicyclopentadiene ring-opening polymer hydride of the present invention is preferably 80 ° C. or higher, more preferably 90 ° C. or higher. If the glass transition temperature of the dicyclopentadiene ring-opening polymer hydride is within such a range, the heat resistance is good, and, for example, the load deflection temperature of the resulting resin molded article is high, which is preferable.
  • the upper limit of the glass transition point is not particularly limited, but is approximately 120 ° C.
  • the melting point of the dicyclopentadiene ring-opening polymer hydride of the present invention is preferably 260 ° C. or higher and 300 ° C. or lower, more preferably 266 ° C. or higher and 295 ° C. or lower, and 270 ° C. or higher and 290 ° C. or lower. It is particularly preferred. If the melting point of the HDCPD polymer is not less than the above lower limit, a resin material having excellent heat resistance can be provided.
  • the melting point of the HDCPD polymer is not more than the above upper limit, there is no need to excessively increase the processing temperature when processing the obtained resin material, and deterioration of the resin material due to an excessively high processing temperature is eliminated. It can be avoided.
  • the resin material containing the above-described dicyclopentadiene ring-opening polymer hydride of the present invention has both high strength and ductility.
  • the resin material may contain an optional component.
  • optional components include, but are not limited to, inorganic fillers disclosed in International Publication No. 2016/143795, antioxidants, ultraviolet absorbers, light stabilizers, near infrared absorbers, plastics, and the like. And additives such as an agent, an antistatic agent, an acid scavenger, a flame retardant, and a flame retardant aid.
  • the blending amount of the inorganic filler and additive can be arbitrarily set according to the purpose.
  • the compounding amount of the inorganic filler may be 5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the dicyclopentadiene ring-opening polymer hydride of the present invention.
  • the compounding quantity of an additive may be 0.01 mass part or more and 10 mass parts or less with respect to 100 mass parts of dicyclopentadiene type ring-opening polymer hydrides of this invention.
  • the content ratio of the dicyclopentadiene-based ring-opening polymer hydride of the present invention in the resin material may be 30% by mass or more, based on 100% by mass of the entire resin material.
  • the resin material does not contain an optional component, and substantially 100% by mass may be constituted by the dicyclopentadiene ring-opening polymer hydride of the present invention.
  • substantially 100% by mass can contain, for example, 0.05% by mass or less of inevitable impurities such as a polymerization solvent that can be mixed due to the purification limit during production. Means that.
  • the resin material is not particularly limited, and can be prepared, for example, by mixing the hydride of the dicyclopentadiene-based ring-opening polymer of the present invention obtained as described above and an arbitrary component. More specifically, in mixing, the HDDCD polymer and optional components may be kneaded in a molten state.
  • the kneading can be performed using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a feeder ruder.
  • the kneading temperature is preferably in the range of 250 ° C to 400 ° C, more preferably 260 ° C to 350 ° C.
  • the components may be added together and kneaded, or may be kneaded while adding in several times. Then, after kneading, the obtained kneaded material is extruded into a rod shape according to a conventional method, and cut into an appropriate length with a strand cutter, whereby a pelletized resin material can be obtained.
  • the resin molding of the present invention contains the above-described hydrogenated dicyclopentadiene ring-opening polymer of the present invention. Since the resin molded product of the present invention contains the dicyclopentadiene ring-opening polymer hydride of the present invention, both strength and ductility are at high levels.
  • the resin molded body may be a molded product formed by molding the above-described resin material into an arbitrary shape. Therefore, the resin molded body may also contain various optional components that can be blended in the resin material in the above-described proportions.
  • the resin molded body may be composed of 30% by mass or more of the dicyclopentadiene ring-opening polymer hydride of the present invention, with the total mass of the resin molded body being 100% by mass. No component is contained, and substantially 100% by mass may be constituted by the dicyclopentadiene ring-opening polymer hydride of the present invention.
  • melt molding method As a molding method for forming the resin molded body, a melt molding method is preferable.
  • the melt molding method include extrusion molding methods, injection molding methods, melt spinning molding methods, press molding methods, blow molding methods, and calendar molding methods.
  • the molding method can be appropriately selected according to the shape of the target resin molding.
  • the resin film of the present invention contains the dicyclopentadiene ring-opening polymer hydride of the present invention described above.
  • the resin film of the present invention is a kind of the above-described resin molded body of the present invention and contains the hydrogenated dicyclopentadiene ring-opening polymer of the present invention, so that both strength and ductility are at a high level.
  • the resin film of the present invention may be a molded product formed by molding the above-described resin material into a film shape. Therefore, the resin film may also contain various optional components that can be blended in the resin material in the above-described proportions.
  • the resin film may be composed of 100% by mass of the total mass of the resin film, and 30% by mass or more of the hydride of the dicyclopentadiene ring-opening polymer of the present invention. Not contained, and substantially 100% by mass may be constituted by the dicyclopentadiene ring-opening polymer hydride of the present invention.
  • An example of the melt molding method that can be suitably used for producing a resin film that is a kind of resin molded body is an extrusion molding method.
  • an extrusion molding method When producing a resin film by an extrusion method, a known method can be used as appropriate.
  • the resin material is put into an extruder, melted and kneaded, and then a molten resin is continuously extruded into a film form from a T die connected to the extruder, and then cooled to obtain a resin film. it can.
  • the amount of a gas attributed to a mass number of 18 (m / z) generated between room temperature and 300 ° C. measured by heat generation gas mass spectrometry is 100% of the mass of the resin film.
  • the mass% is preferably less than 0.5 mass%.
  • the gas belonging to the mass number 18 (m / z) is specifically H 2 O. If the gas generation amount of the resin film is less than the above upper limit, the amount of moisture that can be released when heated when the resin film is used in a desired application is sufficiently small. High suitability. Note that H 2 O generated from the film during the measurement is mainly moisture adsorbed on the film.
  • the thickness of the resin film is not particularly limited, but is usually 1 to 300 ⁇ m, preferably 2 to 200 ⁇ m.
  • the resin film obtained by molding may be subjected to a known stretching process or a heat setting process as described in International Publication No. 2016/143795.
  • a resin film having a high degree of crystallinity and superior strength can be obtained.
  • the resin film with a small heat shrinkage rate is obtained by performing a heat setting process.
  • surface of this invention by the well-known method can be used suitably as a flexible printed circuit board material.
  • a method for producing a laminated film a method in which a resin film and a metal foil for forming a metal layer are hot-pressed and heated to a temperature close to the melting point of the resin film, and a resin film and a metal layer are formed.
  • a method of adhering a metal foil to the resin film via an adhesive layer and a method of forming a metal layer on both sides or one side of the resin film by sputtering or plating the resin film.
  • the layer containing metals such as copper, gold
  • copper is preferable because a laminated film useful as a flexible printed circuit board material can be obtained.
  • the adhesive layer can be formed of a commercially available adhesive sheet such as an epoxy film.
  • the thickness of the metal layer is not particularly limited and can be appropriately determined according to the purpose of use of the laminated film.
  • the thickness of the metal layer is usually 1 to 35 ⁇ m, preferably 3 to 18 ⁇ m.
  • the method for producing a stretched film of the present invention includes a stretching step of stretching an unstretched film formed using the dicyclopentadiene ring-opening polymer hydride according to the present invention at a temperature of 95 ° C. or higher and 130 ° C. or lower. It is characterized by.
  • the “unstretched film” refers to the above-described resin film of the present invention that has not been stretched.
  • the manufacturing method of the stretched film of this invention further includes the heat setting process process. Hereinafter, each process is explained in full detail.
  • the predetermined unstretched film is stretched at a temperature of 95 ° C. or higher and 130 ° C. or lower.
  • the dicyclopentadiene ring-opening polymer hydride of the present invention has both high levels of syndiotacticity and hydrogenation rate.
  • Such an unstretched film formed using the dicyclopentadiene-based ring-opening polymer hydride of the present invention has high crystallinity and high strength, while being prone to haze when subjected to a stretching treatment according to a conventional method, A stretched film with high transparency could not be obtained. Therefore, as a result of intensive studies by the present inventors, by setting the temperature during the stretching treatment to 95 ° C.
  • the haze value (ie, haze) of the stretched film is prevented from becoming excessively high.
  • an unstretched film can be stretched satisfactorily. More specifically, by setting the temperature during the stretching treatment to 95 ° C. or higher, the unstretched film is too hard at the time of stretching and it is difficult to stretch and the film is prevented from breaking, and the productivity is deteriorated. Can be suppressed.
  • the temperature during the stretching treatment to 130 ° C. or lower, it is possible to suppress the occurrence of haze in the film obtained through the stretching process and to suppress the resulting film from being easily thermally expanded. be able to.
  • the temperature during the stretching treatment is preferably 125 ° C. or less, and more preferably 115 ° C. or less.
  • the linear expansion coefficient is represented by a rate (unit: ppm / ° C.) in which the length changes with a temperature change of 1 ° C.
  • the stretching process is not particularly limited and can be performed according to a known method.
  • a uniaxial stretching method such as a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed between rolls and a method of uniaxially stretching in the transverse direction using a tenter stretching machine; Simultaneously stretching in the longitudinal direction using the simultaneous biaxial stretching method that stretches in the transverse direction according to the spread angle of the guide rail, and the difference in peripheral speed between the rolls, and then extending both ends of the longitudinal direction.
  • a biaxial stretching method such as a sequential biaxial stretching method in which a clip is gripped and stretched in the lateral direction using a tenter stretching machine; and a feed force, a pulling force, or a pulling force at different speeds can be applied in the lateral or longitudinal direction. Examples thereof include a method of continuously and obliquely stretching in the direction of an arbitrary angle ⁇ with respect to the width direction of the film using the tenter stretching machine. Among these, the biaxial stretching method is preferable.
  • the draw ratio in the drawing step is preferably 1.2 times or more, more preferably 1.5 times or more, preferably 10 times or less, and more preferably 5 times or less. If a draw ratio is more than the said lower limit, it can suppress that the film obtained becomes easy to thermally expand too much. Moreover, if a draw ratio is below the said upper limit, generation
  • the stretching ratio is defined by the product of the vertical and horizontal stretching ratios.
  • the stretching speed in the stretching step is preferably adjusted according to the stretching temperature. More specifically, since the progress of crystallization is promoted in the film as the stretching temperature increases, it is preferable to increase the stretching speed from the viewpoint of performing the stretching step efficiently and satisfactorily.
  • the film that has undergone the stretching step is heat-treated at a temperature of 175 ° C. or more and 225 ° C. or less.
  • the film obtained through the heat setting process step is more likely to thermally expand, and the generation of haze in the film is more effectively suppressed.
  • the fact that the film is difficult to thermally expand means that the dimensional stability of the film is high.
  • the heat setting temperature in the heat setting treatment step is preferably 190 ° C. or higher, and more preferably 205 ° C. or higher, from the viewpoint of further favorably suppressing the film from being easily thermally expanded.
  • the heat treatment method in this step is not particularly limited, and examples thereof include blowing hot air into a heat treatment oven and heating by radiant heat using a heat source such as an infrared heater.
  • the heat treatment time (heat setting time) in this step is preferably 10 seconds or more, more preferably 20 seconds or more, preferably 10 minutes or less, more preferably 5 minutes or less, and even more preferably 2 minutes or less.
  • the heat setting time is not more than the above upper limit, it is possible to more effectively suppress the occurrence of haze in the obtained film.
  • ⁇ Melting point of HDPDD polymer> Using a differential scanning calorimeter (DSC), differential scanning calorimetry was carried out at a temperature rising rate of 10 ° C./min, and the melting point of the HDCPD polymer was measured.
  • DSC differential scanning calorimeter
  • the stretched films which are the resin films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, were cut out at 5 cm square and a 0.8 mm thick copper-clad laminate (manufactured by Panasonic Corporation, “R- 1766 ”) and affixed four sides with polyimide tape to obtain a test piece. Appearance of the test piece after putting it in a small reflow furnace (manufactured by Antom, “HAS-6116H”) according to J-STD-020C and setting the peak temperature at 260 ° C. was visually evaluated. Evaluation was performed on three test pieces for each example, and evaluation was performed according to the following criteria. A: There is no deformation in any of the three test pieces. B: There are deformations in 1 to 2 test pieces. C: All three specimens are deformed.
  • ⁇ Haze (cloudiness)> A 50 mm ⁇ 50 mm square thin film sample was cut out from the stretched films obtained in Examples 10 to 15, and the haze (Nippon Denshoku Industries Co., Ltd., “NDH5000”) was used to measure the haze (scattered light / total light transmission). Light x 100 (%)) value was obtained.
  • Example 1 ⁇ Preparation of dicyclopentadiene-based ring-opening polymer>
  • 344 parts of toluene 344 parts of toluene, 286 parts of a toluene solution (concentration 35% or more) of dicyclopentadiene (end content 99% or more) (100 parts as dicyclopentadiene), 1-hexene 8 parts were added and the whole was heated to 35 ° C.
  • polymerization catalyst Nos A catalyst solution was prepared by dissolving 0.086 parts of the tungsten complex, which is the ring-opening polymerization catalyst represented by 1, in 29 parts of toluene.
  • This catalyst solution was added to the reactor and a ring-opening polymerization reaction was performed at 35 ° C. for 1 hour to obtain a solution containing a dicyclopentadiene-based ring-opening polymer.
  • “Me” represents a methyl group.
  • the reaction liquid after cooling was a slurry liquid in which a solid content was deposited.
  • the reaction solution was centrifuged to separate the solid content and the solution, and the solid content was dried under reduced pressure at 120 ° C. for 24 hours to obtain 90 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the obtained dicyclopentadiene ring-opening polymer hydride was 99.5%
  • the melting point was 276 ° C.
  • the ratio of racemodyad (ie, syndiotacticity) was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the strand-shaped molded body was chopped with a strand cutter to obtain pellets which are resin materials containing a dicyclopentadiene ring-opening polymer hydride.
  • the operating conditions of the twin screw extruder are shown below. ⁇ Barrel set temperature: 280 ⁇ 290 °C ⁇ Die setting temperature: 260 °C ⁇ Screw speed: 145rpm ⁇ Feeder rotation speed: 50 rpm
  • a resin film (non-stretched film) obtained in accordance with the above is cut into a 120 mm square, and simultaneously biaxially stretched and heat-fixed with a multi-tank biaxially stretched birefringence-orientation axis measuring device (manufactured by Saito)
  • a stretched film of a dicyclopentadiene ring-opening polymer hydride which is a resin film containing a 25 ⁇ m thick dicyclopentadiene ring-opening polymer hydride, was obtained.
  • the operating conditions of the multi-tank biaxial stretching birefringence orientation axis measuring device are shown below.
  • Example 2 ⁇ Hydrogenation of ring-opening polymer>
  • the hydrogenation reaction in the step was performed at 185 ° C.
  • 27.2 parts of a dicyclopentadiene-based ring-opening polymer hydride was obtained.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.2%
  • the melting point was 272 ° C.
  • the ratio (syndiotacticity) of racemodyad was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 ⁇ Hydrogenation of ring-opening polymer> Step 26.9 parts of a dicyclopentadiene-based ring-opening polymer hydride was obtained in the same manner as in Example 1 except that the hydrogenation reaction was performed at 190 ° C.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 98.6%, the melting point was 269 ° C., and the ratio of racemodyad (syndiotacticity) was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 Preparation of dicyclopentadiene-based ring-opening polymer>
  • a solution containing the dicyclopentadiene-based ring-opening polymer was performed in the same manner as in Example 1. Got. A part of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer.
  • the weight average molecular weight (Mw) was 23,600
  • the number average molecular weight (Mn) was 8,700
  • Mw / Mn was 2.71.
  • the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.4%
  • the melting point was 276 ° C.
  • the ratio of racemodyad (syndiotacticity) was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 ⁇ Preparation of dicyclopentadiene-based ring-opening polymer>
  • a solution containing the dicyclopentadiene-based ring-opening polymer was performed in the same manner as in Example 1. Got. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer.
  • the weight average molecular weight (Mw) was 26,100
  • the number average molecular weight (Mn) was 8,100
  • Mw / Mn was 3.22.
  • the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the dicyclopentadiene-based ring-opening polymer hydride was 99.5%
  • the melting point was 276 ° C.
  • the ratio of racemodyad (syndiotacticity) was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 ⁇ Preparation of dicyclopentadiene-based ring-opening polymer>
  • polymerization catalyst No. 1 shown in Table 2 was prepared. Except that the ring-opening polymerization reaction was carried out using 0.100 part of the tungsten complex of 2, a solution containing a dicyclopentadiene-based ring-opening polymer was obtained in the same manner as in Example 1. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer.
  • the weight average molecular weight (Mw) was 24,300
  • the number average molecular weight (Mn) was 8,200
  • the molecular weight distribution (Mw / Mn) was 2.96.
  • the obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
  • ⁇ Hydrogenation of ring-opening polymer> In a glass flask, 30.0 parts of a dicyclopentadiene-based ring-opening polymer, 170 parts of paratoluenesulfonyl hydrazide as a hydrogenating agent, and 600 parts of paraxylene are mixed and heated to 120 ° C. in a dry nitrogen atmosphere. Warmed and allowed to react for 4 hours.
  • the reaction liquid was a slurry liquid in which a solid content was deposited.
  • the reaction solution was centrifuged to separate the solid and the solution, and the solid was dried under reduced pressure at 60 ° C. for 24 hours to obtain 27.0 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the obtained dicyclopentadiene ring-opening polymer hydride was 99.4%, the melting point was 284 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 Polymerization catalyst no. 3 was carried out in the same manner as in Example 6 except that 0.100 part of the tungsten complex 3 was used to obtain a solution containing a dicyclopentadiene ring-opening polymer. A part of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer.
  • the weight average molecular weight (Mw) was 25,000
  • the number average molecular weight (Mn) was 8,500
  • Mw / Mn was 2.94.
  • the obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
  • the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.6%
  • the melting point was 286 ° C.
  • the ratio of racemodyad (syndiotacticity) was 99%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 Polymerization catalyst no. Except that the ring-opening polymerization reaction was carried out using 0.100 part of the tungsten complex of 4, a solution containing a dicyclopentadiene-based ring-opening polymer was obtained in the same manner as in Example 6. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer.
  • the weight average molecular weight (Mw) was 23,900
  • the number average molecular weight (Mn) was 8,200
  • Mw / Mn was 2.91.
  • the obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer. Similarly, the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.5%, the melting point was 285 ° C., and the ratio of racemodyad (syndiotacticity) was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 Polymerization catalyst no. Except that the ring-opening polymerization reaction was performed using 0.100 part of the tungsten complex of 5, a solution containing a dicyclopentadiene-based ring-opening polymer was obtained in the same manner as in Example 6. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer.
  • the weight average molecular weight (Mw) was 25,300
  • the number average molecular weight (Mn) was 8,400
  • the molecular weight distribution (Mw / Mn) was 3.01.
  • the obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
  • the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.2%
  • the melting point was 287 ° C.
  • the ratio of racemodyad (syndiotacticity) was 100%.
  • the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • the obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • ⁇ Preparation of dicyclopentadiene-based ring-opening polymer> Dissolve 0.3 parts of n-hexane solution of 19% diethylaluminum ethoxide and 0.1 part of tetrachlorotungstenphenylimide (tetrahydrofuran) complex (polymerization catalyst No. 6 shown in Table 2) in 3 parts of toluene. Thus, a catalyst solution was obtained. On the other hand, 350 parts of cyclohexane, 6.4 parts of 1-hexene, and a concentration of 70% were added to a metal reactor (Sumitomo Heavy Industries, Ltd.) equipped with a stirrer and a temperature control jacket, the inside of which was sufficiently dried and replaced with nitrogen.
  • a metal reactor Suditomo Heavy Industries, Ltd.
  • the weight average molecular weight (Mw) of the dicyclopentadiene ring-opening polymer contained in the obtained polymerization reaction solution is 28,700, the number average molecular weight (Mn) is 9570, and the molecular weight distribution (Mw / Mn) is 3.0. there were.
  • diatomaceous earth manufactured by Showa Chemical Industry Co., Ltd., Radiolite # 1500
  • This suspension was subjected to filtration with a leaf filter (CFR2 manufactured by IHI), and the insolubilized catalyst was separated with diatomaceous earth to obtain a dicyclopentadiene ring-opening polymer solution.
  • the slurry thus obtained is centrifuged to separate the solid and the solution, and the solid is dried under reduced pressure at 60 ° C. for 24 hours to obtain a dicyclopentadiene ring-opening polymer hydride 27.0. Got a part.
  • the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.5%, the melting point was 265 ° C., and the ratio of racemodyad (syndiotacticity) was 89%.
  • Pellets were obtained in the same manner as in Example 1 except that the barrel set temperature was 270 to 280 ° C. and the die set temperature was 250 ° C. during the operation of the twin screw extruder.
  • the dicyclopentadiene ring-opening polymer hydrides of Examples 1 to 3 having a syndiotacticity of 100% and a hydrogenation rate of 98.0% or more. It can be seen that it was possible to form a resin molded body and the like that are compatible at a high level of strength and ductility. Therefore, the dicyclopentadiene ring-opening polymer hydride of the present invention can be suitably used for the production of various resin molded products and films.
  • the biaxially stretched film containing a dicyclopentanediene ring-opening polymer hydride produced in Examples 1 to 3 and having a syndiotacticity of 100% and a hydrogenation rate of 98.0% or more is In addition to being excellent in reflow resistance, the amount of gas generated from the film is small, so that it is particularly useful as an electrical / electronic material.
  • Example 10 A stretched film was obtained by subjecting an unstretched resin film (unstretched film) produced in the same manner as in Example 1 to a stretching process and a heat setting treatment process as described below. About the obtained stretched film, haze, tensile strength, breaking elongation, and linear expansion coefficient were measured according to the above. The results are shown in Table 3. ⁇ Extension process and heat setting process> The unstretched film obtained according to the above was cut into 120 mm squares, and a stretching process according to the following conditions and a heat setting treatment process were performed in this order using a multi-tank biaxial stretching birefringence orientation axis measuring device (manufactured by Saitoh). Carried out.
  • a stretching process according to the following conditions and a heat setting treatment process were performed in this order using a multi-tank biaxial stretching birefringence orientation axis measuring device (manufactured by Saitoh). Carried out.
  • Examples 11 to 15 A stretched film was obtained and subjected to various measurements in the same manner as in Example 10, except that the stretching temperature, stretching speed, and heat setting temperature in the heat setting treatment step were changed as shown in Table 3, respectively. It was. The results are shown in Table 3.
  • an unstretched film formed using a dicyclopentadiene ring-opening polymer hydride having a syndiotacticity of 100% and a hydrogenation rate of 98.0% or more It was confirmed that a stretched film could be produced satisfactorily by stretching at a stretching temperature of 95 ° C. or higher and 130 ° C. or lower.
  • Table 3 shows that by adjusting the stretching temperature, it is possible to effectively suppress the occurrence of haze in the resulting stretched film.
  • the dicyclopentadiene type ring-opening polymer hydride which can form the resin molded object etc. which were compatible in the intensity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A dicyclopentadiene-based ring-opened polymer hydride having a syndiotacticity of 99% or higher and a hydrogenation rate of 98.0% or higher.

Description

ジシクロペンタジエン系開環重合体水素化物及びその製造方法、樹脂成形体、樹脂フィルム、並びに、延伸フィルムの製造方法Dicyclopentadiene-based ring-opening polymer hydride and method for producing the same, resin molded product, resin film, and method for producing stretched film
 本発明は、ジシクロペンタジエン系開環重合体水素化物及びその製造方法、樹脂成形体、樹脂フィルム、並びに、延伸フィルムの製造方法に関するものである。 The present invention relates to a dicyclopentadiene ring-opening polymer hydride and a method for producing the same, a resin molded product, a resin film, and a method for producing a stretched film.
 ジシクロペンタジエン等のノルボルネン系単量体を開環重合して調製され得るノルボルネン系開環重合体水素化物は、「シクロオレフィンポリマー」と称され、流通している材料の一種である。かかる開環重合体水素化物は、透明性、低複屈折性、及び成形加工性等に優れることから、光学用途を初めとする種々の用途に適用可能な材料として注目されている。 A hydride of norbornene-based ring-opening polymer that can be prepared by ring-opening polymerization of a norbornene-based monomer such as dicyclopentadiene is called “cycloolefin polymer” and is a kind of a commercially available material. Such a ring-opened polymer hydride is attracting attention as a material applicable to various uses including optical use because it is excellent in transparency, low birefringence, molding processability and the like.
 ここで、ジシクロペンタジエンに由来する単量体単位を含む開環重合体水素化物(以下、「ジシクロペンタジエン系開環重合体水素化物」とも称する)は、アタクチックな構造を有する非晶性の重合体として得られることが一般的であった。しかしながら、アタクチックな構造を有する非晶性のジシクロペンタジエン系開環重合体水素化物は、その用途によっては、耐熱性、機械強度、及び耐溶剤性等が不十分となる場合があった。そこで、それらの性能を改良する手法として、主鎖に立体規則性を有するジシクロペンタジエン系開環重合体水素化物を製造することにより、結晶性を有するジシクロペンタジエン系開環重合体水素化物が開発されてきた。 Here, the ring-opening polymer hydride containing monomer units derived from dicyclopentadiene (hereinafter also referred to as “dicyclopentadiene-based ring-opening polymer hydride”) is an amorphous structure having an atactic structure. It was common to obtain it as a polymer. However, the amorphous dicyclopentadiene ring-opening polymer hydride having an atactic structure may have insufficient heat resistance, mechanical strength, solvent resistance, and the like depending on its use. Therefore, as a technique for improving the performance, dicyclopentadiene ring-opening polymer hydride having crystallinity is produced by producing dicyclopentadiene ring-opening polymer hydride having stereoregularity in the main chain. Has been developed.
 そこで、工業的な取り扱い性の向上した、結晶性ジシクロペンタジエン開環重合体水素化物を含む樹脂、及びかかる樹脂を用いて得られる樹脂成形体、樹脂フィルム、及び射出成形品が提案されてきた(例えば、特許文献1~2参照)。特許文献1~2には、融解開始温度が260℃以上であるとともに、融点が280℃未満である、シンジオタクティシティーが90%超である、結晶性ジシクロペンタジエン開環重合体水素化物が開示されている。
 また、特許文献3には、80%超がシンジオタクチックである水素化ポリ(ジシクロペンタジエン)ポリマーが開示されている。
Therefore, a resin containing a crystalline dicyclopentadiene ring-opening polymer hydride with improved industrial handleability, and a resin molded product, a resin film, and an injection molded product obtained using such a resin have been proposed. (For example, see Patent Documents 1 and 2). Patent Documents 1 and 2 disclose a crystalline dicyclopentadiene ring-opened polymer hydride having a melting start temperature of 260 ° C. or higher, a melting point of less than 280 ° C., and a syndiotacticity of more than 90%. It is disclosed.
Patent Document 3 discloses a hydrogenated poly (dicyclopentadiene) polymer in which more than 80% is syndiotactic.
国際公開第2016/143795号International Publication No. 2016/143795 国際公開第2016/143424号International Publication No. 2016/143424 国際公開第2015/127192号International Publication No. 2015/127192
 ここで、近年、樹脂成形体等には、強度及び延性を高いレベルで両立させることが求められている。しかし、上記特許文献1~3に記載された重合体水素化物用いて形成された樹脂成形体等には、強度及び延性の双方を高めるという点で改善の余地があった。 Here, in recent years, resin molded bodies and the like are required to have both strength and ductility at a high level. However, the resin moldings and the like formed using the polymer hydrides described in Patent Documents 1 to 3 have room for improvement in terms of improving both strength and ductility.
 そこで、本発明は、強度及び延性が高いレベルで両立された樹脂成形体等を形成可能な、ジシクロペンタジエン系開環重合体水素化物及びその製造方法を提供することを目的とする。
 さらに、本発明は、強度及び延性が高いレベルで両立された樹脂フィルム、及び樹脂成形体を提供することを目的とする。
 さらに、本発明は、強度及び延性が高いレベルで両立された樹脂フィルムを用いて、延伸フィルムを良好に製造し得る、延伸フィルムの製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a dicyclopentadiene ring-opening polymer hydride and a method for producing the same, which are capable of forming a resin molded body and the like that are compatible at a high strength and ductility level.
Furthermore, an object of the present invention is to provide a resin film and a resin molded body that are compatible at a high strength and ductility level.
Furthermore, an object of this invention is to provide the manufacturing method of a stretched film which can manufacture a stretched film favorably using the resin film in which the intensity | strength and ductility were compatible at a high level.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、ジシクロペンタジエン系開環重合体水素化物を調製する際に、シンジオタクティシティーを顕著に高めた場合に、水素化率を所定値以上に高めることで、得られる開環重合体水素化物を含有する樹脂成形体等の強度及び延性の双方を高いレベルで両立することが可能となることを見出し、本発明を完成させた。 The present inventor has intensively studied for the purpose of solving the above problems. Then, when preparing the dicyclopentadiene-based ring-opening polymer hydride, the inventor increases the hydrogenation rate to a predetermined value or higher when the syndiotacticity is remarkably increased. It has been found that both strength and ductility of a resin molded article containing a cyclic polymer hydride can be achieved at a high level, and the present invention has been completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のジシクロペンタジエン系開環重合体水素化物は、シンジオタクティシティーが99%以上、且つ、水素化率が98.0%以上であることを特徴とする。このように、シンジオタクティシティー及び水素化率の双方が、それぞれ上記範囲を満たすジシクロペンタジエン系開環重合体水素化物は、得られる樹脂成形体等の強度及び延性の双方を高いレベルで両立することができる。
 ここで、ジシクロペンタジエン系開環重合体水素化物のシンジオタクティシティーは、実施例に記載の13C-NMRを用いた手法で求めることができる。また、ジシクロペンタジエン系開環重合体水素化物の水素化率は、実施例に記載の1H-NMRを用いた手法で求めることができる。
That is, the present invention aims to advantageously solve the above problems, and the dicyclopentadiene ring-opening polymer hydride of the present invention has a syndiotacticity of 99% or more and a hydrogenation. The rate is 98.0% or more. Thus, the dicyclopentadiene ring-opening polymer hydride satisfying both the above-mentioned ranges for both syndiotacticity and hydrogenation rate achieves both high strength and ductility of the resulting resin molded article. can do.
Here, the syndiotacticity of the dicyclopentadiene ring-opening polymer hydride can be determined by the method using 13 C-NMR described in Examples. The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride can be determined by the method using 1 H-NMR described in Examples.
 ここで、本発明のジシクロペンタジエン系開環重合体水素化物は、水素化率が99.0%以上であることが好ましい。水素化率が99.0%以上であるジシクロペンタジエン系開環重合体水素化物を用いることで、リフロー耐性に優れる樹脂成形体等を提供することが可能となる。 Here, the hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride of the present invention is preferably 99.0% or more. By using a hydride of a dicyclopentadiene ring-opening polymer having a hydrogenation rate of 99.0% or more, it becomes possible to provide a resin molded article having excellent reflow resistance.
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の樹脂成形体は、上記何れかのジシクロペンタジエン系開環重合体水素化物を含有することを特徴とする。本発明のジシクロペンタジエン系開環重合体水素化物を含有する樹脂成形体は、強度及び延性の双方が高いレベルにある。 Furthermore, the present invention aims to advantageously solve the above-mentioned problems, and the resin molded product of the present invention contains any one of the above dicyclopentadiene ring-opening polymer hydrides. And The resin molded article containing the dicyclopentadiene-based ring-opening polymer hydride of the present invention has both high strength and ductility.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の樹脂フィルムは、上記何れかのジシクロペンタジエン系開環重合体水素化物を含有することを特徴とする。本発明のジシクロペンタジエン系開環重合体水素化物を含有する樹脂フィルムは、強度及び延性の双方が高いレベルにある。 The present invention is also intended to advantageously solve the above problems, and the resin film of the present invention contains any one of the above dicyclopentadiene ring-opening polymer hydrides. To do. The resin film containing the dicyclopentadiene-based ring-opening polymer hydride of the present invention has both high strength and ductility.
 ここで、本発明の樹脂フィルムは、加熱発生ガス質量分析法により測定した、室温~300℃までの間に発生した質量数18(m/z)に帰属する気体の発生量が、フィルムの初期質量を100質量%として、0.5質量%未満であることが好ましい。所定の条件で測定した場合のガス発生量が低減された樹脂フィルムは、電気・電子系材料としての適性が高い。ここで、加熱発生ガス質量分析(Temperature Programmed Desorption/Mass Spectrometry:TPD-MS)は、本明細書の実施例に記載の方法に従って行うことができる。また、「室温」の定義は、JIS Z 8703:1983に従う。さらに、「フィルムの初期質量」とは、加熱発生ガス質量分析法に従う測定を開始する前の段階における樹脂フィルムの質量である。 Here, the resin film of the present invention has a gas generation amount attributed to a mass number of 18 (m / z) generated between room temperature and 300 ° C. as measured by heat generation gas mass spectrometry. The mass is preferably less than 0.5% by mass based on 100% by mass. A resin film in which the amount of gas generated when measured under predetermined conditions is highly suitable as an electric / electronic material. Here, the heat generation gas mass spectrometry (Temperature Programmed Desorption / Mass Spectrometry (TPD-MS)) can be performed according to the method described in the examples of the present specification. The definition of “room temperature” follows JIS Z 8703: 1983. Furthermore, the “initial mass of the film” is the mass of the resin film in the stage before starting the measurement according to the heat generation gas mass spectrometry.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のジシクロペンタジエン系開環重合体水素化物の製造方法は、以下の一般式(α)で表される開環重合触媒を用いて、ジシクロペンタジエンを含む単量体を開環重合して、ジシクロペンタジエン系開環重合体を得る開環重合工程と、前記ジシクロペンタジエン系開環重合体を水素化して、水素化率が98.0%以上であるジシクロペンタジエン系開環重合体水素化物を得る水素化工程と、を含むことを特徴とする。本発明のジシクロペンタジエン系開環重合体水素化物の製造方法によれば、強度及び延性が高いレベルで両立された樹脂成形体等を形成可能な、ジシクロペンタジエン系開環重合体水素化物を良好に製造することができる。
Figure JPOXMLDOC01-appb-C000002
[式(α)中、Phはフェニル基を示し、R1、R2は、それぞれ独立して、炭素数1~6の一価の直鎖状、分岐鎖状、又は環状の炭化水素基を示し;Xは、水素原子、ハロゲン原子、ニトロ基、アミノ基、又はシアノ基を示し、また、nは0~5の整数を示すとともに、nが1以上の整数の場合には、複数のXは同一であっても相異なっていても良く;Yは、C(R324を示し(ここで、それぞれのR3は、独立して、-R5、-OR5、-SR5、-N(R5、-OC(O)R5、-S(O)R5、-SO5、-SON(R5、-C(O)N(R5、-NR5C(O)R5、又は-NR5SO5であり、さらにここで、それぞれのR5は、独立して、水素、炭素数1~12の直鎖状又は分岐鎖状アルキル基、窒素、酸素、若しくは硫黄から独立して選択される1~3個のヘテロ原子を有する炭素数1~10のヘテロアルキル基、フェニル基、三~七員の飽和若しくは一部不飽和の炭素環、六~十員の二環式の飽和の環、一部不飽和の環、若しくはアリール環、窒素、酸素、若しくは硫黄から独立して選択される1~4個のヘテロ原子を有する五~六員の単環式ヘテロアリール環、窒素、酸素、若しくは硫黄から独立して選択される1~3個のヘテロ原子を有する三~七員の飽和若しくは一部不飽和の複素環、窒素、酸素、若しくは硫黄から独立して選択される1~5個のヘテロ原子を有する七~十員の二環式の飽和若しくは一部不飽和の複素環、及び、窒素、酸素、若しくは硫黄から独立して選択される1~5個のヘテロ原子を有する八~十員の二環式ヘテロアリール環から選択される、任意選択的に置換された基であるか、或いは、任意で、2個のR5が、介在している原子と共に任意選択的に組み合わされ、前記介在している原子に加えて、窒素、酸素、又は硫黄から独立して選択される0~4個のヘテロ原子を有する、任意選択的に置換された三~十員の単環式又は二環式の、飽和の環、一部不飽和の環、又はアリール環を形成してなり;R4は、任意選択的に置換されたフェニル基である。);及び、Zは、窒素、酸素、及び硫黄からなる群より選択される1~4個のヘテロ原子を有する5~14員ヘテロアリール基を示す。]
Further, the present invention aims to advantageously solve the above-mentioned problems, and the method for producing a dicyclopentadiene ring-opening polymer hydride of the present invention is represented by the following general formula (α). Using a ring-opening polymerization catalyst, ring-opening polymerization of a monomer containing dicyclopentadiene to obtain a dicyclopentadiene-based ring-opening polymer, and the dicyclopentadiene-based ring-opening polymer And hydrogenation to obtain a dicyclopentadiene ring-opened polymer hydride having a hydrogenation rate of 98.0% or more. According to the method for producing a dicyclopentadiene-based ring-opening polymer hydride of the present invention, a dicyclopentadiene-based ring-opening polymer hydride capable of forming a resin molded body compatible with strength and ductility at a high level is obtained. It can be manufactured satisfactorily.
Figure JPOXMLDOC01-appb-C000002
[In the formula (α), Ph represents a phenyl group, and R 1 and R 2 each independently represents a monovalent linear, branched or cyclic hydrocarbon group having 1 to 6 carbon atoms. X represents a hydrogen atom, a halogen atom, a nitro group, an amino group, or a cyano group, and n represents an integer of 0 to 5, and when n is an integer of 1 or more, a plurality of X May be the same or different; Y represents C (R 3 ) 2 R 4 (wherein each R 3 independently represents —R 5 , —OR 5 , —SR). 5 , —N (R 5 ) 2 , —OC (O) R 5 , —S (O) R 5 , —SO 2 R 5 , —SO 2 N (R 5 ) 2 , —C (O) N (R 5 ) 2 , —NR 5 C (O) R 5 , or —NR 5 SO 2 R 5 , wherein each R 5 is independently hydrogen or a straight chain of 1 to 12 carbon atoms. Or branched alkyl 1 to 10 heteroalkyl groups having 1 to 3 heteroatoms independently selected from the group, nitrogen, oxygen or sulfur, phenyl groups, 3 to 7-membered saturated or partially unsaturated carbons 5 to 5 having 1 to 4 heteroatoms independently selected from a ring, a 6 to 10-membered bicyclic saturated ring, a partially unsaturated ring, or an aryl ring, nitrogen, oxygen, or sulfur 6-membered monocyclic heteroaryl ring, 3- to 7-membered saturated or partially unsaturated heterocycle having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, nitrogen, oxygen Or a 7 to 10 membered bicyclic saturated or partially unsaturated heterocycle having 1 to 5 heteroatoms independently selected from sulfur, and independently from nitrogen, oxygen, or sulfur 8 to 10 members with 1 to 5 heteroatoms selected Is selected from the bicyclic heteroaryl ring, or an optionally substituted group, or, optionally, two R 5, optionally in combination with the intervening atoms, said intervening Optionally substituted 3-10 membered monocyclic or bicyclic having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur And R 4 is an optionally substituted phenyl group; and Z is nitrogen, oxygen, and A 5- to 14-membered heteroaryl group having 1 to 4 heteroatoms selected from the group consisting of sulfur is shown. ]
 さらにまた、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の延伸フィルムの製造方法は、上述した何れかのジシクロペンタジエン系開環重合体水素化物を用いて形成した未延伸フィルムを、95℃以上130℃以下の温度で延伸する延伸工程を含むことを特徴とする。かかる延伸フィルムの製造方法によれば、強度及び延性が高いレベルで両立された未延伸フィルムを良好に延伸処理することができ、優れた性能を有する延伸フィルムを効率的に製造することができる。 Furthermore, this invention aims at solving the said subject advantageously, and the manufacturing method of the stretched film of this invention uses one of the dicyclopentadiene type ring-opening polymer hydrides mentioned above. It includes a stretching step of stretching the unstretched film formed at a temperature of 95 ° C. or higher and 130 ° C. or lower. According to such a method for producing a stretched film, an unstretched film having both high strength and ductility can be stretched satisfactorily, and a stretched film having excellent performance can be efficiently produced.
 ここで、本発明の延伸フィルムの製造方法は、前記延伸工程を経たフィルムを、175℃以上225℃以下の温度で熱処理する熱固定処理工程を更に含むことが好ましい。上記条件に従う熱固定処理工程を実施することで、得られる延伸フィルムの寸法安定性といった物性を向上させることができる。 Here, it is preferable that the method for producing a stretched film of the present invention further includes a heat setting treatment step of heat-treating the film that has undergone the stretching step at a temperature of 175 ° C. or more and 225 ° C. or less. By carrying out the heat setting treatment step according to the above conditions, physical properties such as dimensional stability of the stretched film obtained can be improved.
 本発明によれば、強度及び延性が高いレベルで両立された樹脂成形体等を形成可能な、ジシクロペンタジエン系開環重合体水素化物、及びその製造方法を提供することができる。
 さらに、本発明によれば、強度及び延性が高いレベルで両立された樹脂フィルム及び樹脂成形体を提供することができる。
 そして、本発明によれば、強度及び延性が高いレベルで両立された樹脂フィルムを用いて、延伸フィルムを良好に製造し得る、延伸フィルムの製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the dicyclopentadiene type ring-opening polymer hydride which can form the resin molding etc. which were compatible in the level with high intensity | strength and ductility, and its manufacturing method can be provided.
Furthermore, according to the present invention, it is possible to provide a resin film and a resin molded body that are compatible at a high level of strength and ductility.
And according to this invention, the manufacturing method of a stretched film which can manufacture a stretched film satisfactorily can be provided using the resin film in which intensity | strength and ductility were compatible in the high level.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のジシクロペンタジエン系開環重合体水素化物は、樹脂フィルム及び樹脂成形体を調製する際に好適に用いられる。また、本発明の樹脂フィルム及び樹脂成形体は、本発明のジシクロペンタジエン系開環重合体水素化物を含有することを特徴とする。また、本発明のジシクロペンタジエン系開環重合体水素化物は、本発明のジシクロペンタジエン系開環重合体水素化物の製造方法により、良好に製造することができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the dicyclopentadiene ring-opening polymer hydride of the present invention is suitably used when preparing a resin film and a resin molded body. In addition, the resin film and the resin molded body of the present invention are characterized by containing the dicyclopentadiene ring-opening polymer hydride of the present invention. Moreover, the dicyclopentadiene ring-opening polymer hydride of the present invention can be favorably produced by the method for producing a dicyclopentadiene ring-opening polymer hydride of the present invention.
(ジシクロペンタジエン系開環重合体水素化物)
 本発明のジシクロペンタジエン系開環重合体水素化物(以下、単に「HDCPD重合体」とも称する)は、シンジオタクティシティーが99%以上、且つ、水素化率が98.0%以上であることを特徴とする。シンジオタクティシティー、及び水素化率が、それぞれ上記下限値以上である本発明のジシクロペンタジエン系開環重合体水素化物を用いることで、強度及び延性が高いレベルで両立された樹脂材料等を形成することができる。
(Dicyclopentadiene ring-opening polymer hydride)
The dicyclopentadiene ring-opening polymer hydride of the present invention (hereinafter also simply referred to as “HDDCD polymer”) has a syndiotacticity of 99% or more and a hydrogenation rate of 98.0% or more. It is characterized by. By using the dicyclopentadiene ring-opening polymer hydride of the present invention having a syndiotacticity and a hydrogenation rate that are each equal to or higher than the lower limit, a resin material that has both high strength and ductility can be obtained. Can be formed.
 HDCPD重合体は、ジシクロペンタジエン由来の繰り返し単位(以下、「繰り返し単位(1)」とも称する)を含む。より具体的には、繰り返し単位(1)は、下記式(1)で表される、水素化ジシクロペンタジエンの繰り返し単位であり得る。
Figure JPOXMLDOC01-appb-C000003
The HDCPD polymer contains a repeating unit derived from dicyclopentadiene (hereinafter also referred to as “repeating unit (1)”). More specifically, the repeating unit (1) can be a repeating unit of hydrogenated dicyclopentadiene represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
 上記式(1)において、(1,4)で表される炭素が不斉炭素(式(1)中、「*」を付して表示)であるため、ジシクロペンタジエン系開環重合体水素化物には立体規則性(タクティシティー)が存在し得る。本発明のジシクロペンタジエン系開環重合体水素化物は、シンジオタクチックな立体規則性を有する。 In the above formula (1), since the carbon represented by (1,4) is an asymmetric carbon (indicated by adding “*” in formula (1)), the dicyclopentadiene ring-opening polymer hydrogen There may be stereoregularity (tacticity) in the compound. The dicyclopentadiene ring-opening polymer hydride of the present invention has syndiotactic stereoregularity.
 本発明のHDCPD重合体は、繰り返し単位(1)の割合が、HDCPD重合体を構成する全繰り返し単位を100質量%として、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。HDCPD重合体における繰り返し単位(1)の割合が上記下限値以上であれば、得られる樹脂材料等の強度を一層高めることができる。 In the HDCPD polymer of the present invention, the proportion of the repeating unit (1) is preferably 90% by mass or more, preferably 95% by mass or more, based on 100% by mass of all repeating units constituting the HDCPD polymer. More preferably, it is more preferably 97% by mass or more, and particularly preferably 100% by mass. If the ratio of the repeating unit (1) in the HDCPD polymer is not less than the above lower limit, the strength of the obtained resin material and the like can be further increased.
 上記式(1)で表される繰り返し単位(1)は、ジシクロペンタジエンに由来する。ジシクロペンタジエンには、エンド体及びエキソ体の2つの立体異性体が存在するが、そのどちらも単量体として用いることが可能である。HDCPD重合体の調製にあたり、エンド体及びエキソ体のうちの一方を単独で用いてもよいし、エンド体及びエキソ体が任意の割合で混在する異性体混合物を用いることもできる。HDCPD重合体の結晶性を高め、得られる樹脂材料等の強度を特に高める観点からは、一方の立体異性体の割合を高くすることが好ましい。具体的には、HDCPD重合体の調製時に、ジシクロペンタジエンとして、エンド体及びエキソ体のうちの一方のみを用いることが好ましく、合成容易性の観点から、エンド体のみを用いることがより好ましい。また、HDCPD重合体の調製時にジシクロペンタジエンの異性体混合物を用いる場合には、異性体混合物全体を100質量%として、エンド体及びエキソ体のうちの一方の割合が90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが特に好ましい。さらに、合成容易性の観点から、異性体混合物中において、エンド体の比率をエキソ体の比率よりも高くすることが好ましい。 The repeating unit (1) represented by the above formula (1) is derived from dicyclopentadiene. Dicyclopentadiene has two stereoisomers, an endo isomer and an exo isomer, both of which can be used as monomers. In preparing the HDDCD polymer, one of the endo isomer and the exo isomer may be used alone, or an isomer mixture in which the endo isomer and the exo isomer are mixed at an arbitrary ratio can be used. From the viewpoint of increasing the crystallinity of the HDDCD polymer and particularly increasing the strength of the resin material obtained, it is preferable to increase the ratio of one stereoisomer. Specifically, at the time of preparing the HDDCD polymer, it is preferable to use only one of an endo isomer and an exo isomer as dicyclopentadiene, and it is more preferable to use only an endo isomer from the viewpoint of ease of synthesis. In addition, when an isomer mixture of dicyclopentadiene is used at the time of preparing the HDCPD polymer, the total isomer mixture is 100% by mass, and one of the endo isomer and the exo isomer is 90% by mass or more. Is more preferable, it is more preferable that it is 95 mass% or more, and it is especially preferable that it is 99 mass% or more. Furthermore, from the viewpoint of ease of synthesis, it is preferable that the ratio of the endo isomer is higher than the ratio of the exo isomer in the isomer mixture.
 また、HDCPD重合体の調製に際して、ジシクロペンタジエンと共重合可能な他の環状オレフィン単量体を組み合わせて用いることもできる。かかる他の環状オレフィン単量体の使用量は、HDCPD重合体を構成する全繰り返し単位を100質量%として、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下であり、0質量%、即ち、HDCPD重合体が他の環状オレフィン単量体を含有しないことが好ましい。 Also, when preparing the HDDCD polymer, other cyclic olefin monomers copolymerizable with dicyclopentadiene can be used in combination. The amount of the other cyclic olefin monomer used is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less, based on 100% by mass of all repeating units constituting the HDCPD polymer. And 0% by mass, that is, the HDCPD polymer preferably contains no other cyclic olefin monomer.
 ジシクロペンタジエンと共重合可能な他の環状オレフィン単量体としては、特に限定されることなく、例えば、国際公開第2016/143795号に開示されている既知の環状オレフィン単量体が挙げられる。 Other cyclic olefin monomers copolymerizable with dicyclopentadiene are not particularly limited, and examples thereof include known cyclic olefin monomers disclosed in International Publication No. 2016/143795.
<ジシクロペンタジエン系開環重合体水素化物の調製方法>
 本発明のジシクロペンタジエン系開環重合体水素化物は、まず、上記したジシクロペンタジエン、及び任意の他の環状オレフィン単量体を開環重合して、ジシクロペンタジエン系開環重合体を得て、得られた開環重合体を水素化することにより、調製することができる。
<Preparation Method of Dicyclopentadiene-Based Ring-Opening Polymer Hydride>
The dicyclopentadiene ring-opening polymer hydride of the present invention is obtained by first ring-opening polymerizing the above-mentioned dicyclopentadiene and any other cyclic olefin monomer to obtain a dicyclopentadiene ring-opening polymer. Thus, the obtained ring-opening polymer can be prepared by hydrogenation.
 開環重合体は、特に限定されることなく、上記したような、ジシクロペンタジエン、及び任意の他の環状オレフィン単量体を、開環重合触媒を用いて開環重合することにより、調製することができる。本発明者らの検討により、開環重合触媒として、下記一般式(α)で表されうる開環重合触媒を用いることで、本発明のジシクロペンタジエン系開環重合体水素化物を効率的に製造することができることが明らかとなった。これは、下記一般式(α)にて規定される骨格構造が、ジシクロペンタジエンの開環重合にあたり、シンジオタクティシティーが高いポリマー鎖を良好に形成し得ることに起因すると推察される。これは、一般式(α)で表されうる開環重合触媒は、アルキリデン配位子、Zにて表される5~14員ヘテロアリール配位子、フェニル置換フェノキシ配位子、末端オキソ配位子、及び含リン配位子からなることに起因すると考えられる。具体的には、フェニル置換フェノキシ配位子において、アルコキシ基が、置換フェノキシ基であって、2,3,5,6位にフェニル基が有ること、及び、2,3,5,6位のフェニル基の置換基Xが小さいことにより、ジシクロペンタジエンに対する立体効果が最適となりステレオエラーを抑制することができると推定される。また、開環重合触媒が末端オキシ配位子を有することで、ジシクロペンタジエンに対する十分な配位空間を確保することができ、ステレオエラーを抑制することができる。
Figure JPOXMLDOC01-appb-C000004
[式(α)中、Phはフェニル基を示し、R1、R2は、それぞれ独立して、炭素数1~6の一価の直鎖状、分岐鎖状、又は環状の炭化水素基を示し;Xは、水素原子、ハロゲン原子、ニトロ基、アミノ基、又はシアノ基を示し、また、nは0~5の整数を示すとともに、nが1以上の整数の場合には、複数のXは同一であっても相異なっていても良く;Yは、C(R324を示し(ここで、それぞれのR3は、独立して、-R5、-OR5、-SR5、-N(R5、-OC(O)R5、-S(O)R5、-SO5、-SON(R5、-C(O)N(R5、-NR5C(O)R5、又は-NR5SO5であり、さらにここで、それぞれのR5は、独立して、水素、炭素数1~12の直鎖状又は分岐鎖状アルキル基、窒素、酸素、若しくは硫黄から独立して選択される1~3個のヘテロ原子を有する炭素数1~10のヘテロアルキル基、フェニル基、三~七員の飽和若しくは一部不飽和の炭素環、六~十員の二環式の飽和の環、一部不飽和の環、若しくはアリール環、窒素、酸素、若しくは硫黄から独立して選択される1~4個のヘテロ原子を有する五~六員の単環式ヘテロアリール環、窒素、酸素、若しくは硫黄から独立して選択される1~3個のヘテロ原子を有する三~七員の飽和若しくは一部不飽和の複素環、窒素、酸素、若しくは硫黄から独立して選択される1~5個のヘテロ原子を有する七~十員の二環式の飽和若しくは一部不飽和の複素環、及び、窒素、酸素、若しくは硫黄から独立して選択される1~5個のヘテロ原子を有する八~十員の二環式ヘテロアリール環から選択される、任意選択的に置換された基であるか、或いは、任意で、2個のR5が、介在している原子と共に任意選択的に組み合わされ、前記介在している原子に加えて、窒素、酸素、又は硫黄から独立して選択される0~4個のヘテロ原子を有する、任意選択的に置換された三~十員の単環式又は二環式の、飽和の環、一部不飽和の環、又はアリール環を形成してなり;R4は、任意選択的に置換されたフェニル基である。);及び、Zは、窒素、酸素、及び硫黄からなる群より選択される1~4個のヘテロ原子を有する5~14員ヘテロアリール基を示す。]
The ring-opening polymer is not particularly limited, and is prepared by ring-opening polymerization of dicyclopentadiene and any other cyclic olefin monomer as described above using a ring-opening polymerization catalyst. be able to. According to the study by the present inventors, by using a ring-opening polymerization catalyst that can be represented by the following general formula (α) as the ring-opening polymerization catalyst, the dicyclopentadiene-based ring-opening polymer hydride of the present invention can be efficiently produced. It became clear that it could be manufactured. This is presumed to be due to the fact that the skeleton structure defined by the following general formula (α) can satisfactorily form a polymer chain having high syndiotacticity in the ring-opening polymerization of dicyclopentadiene. This is because the ring-opening polymerization catalyst represented by the general formula (α) is an alkylidene ligand, a 5- to 14-membered heteroaryl ligand represented by Z, a phenyl-substituted phenoxy ligand, a terminal oxo coordination. This is thought to be due to the fact that it consists of a child and a phosphorus-containing ligand. Specifically, in the phenyl-substituted phenoxy ligand, the alkoxy group is a substituted phenoxy group, and has a phenyl group at the 2, 3, 5, and 6 positions, and the 2, 3, 5, and 6 positions. It is presumed that when the substituent X of the phenyl group is small, the steric effect on dicyclopentadiene is optimized and stereo error can be suppressed. In addition, since the ring-opening polymerization catalyst has a terminal oxy ligand, a sufficient coordination space for dicyclopentadiene can be secured, and stereo errors can be suppressed.
Figure JPOXMLDOC01-appb-C000004
[In the formula (α), Ph represents a phenyl group, and R 1 and R 2 each independently represents a monovalent linear, branched or cyclic hydrocarbon group having 1 to 6 carbon atoms. X represents a hydrogen atom, a halogen atom, a nitro group, an amino group, or a cyano group, and n represents an integer of 0 to 5, and when n is an integer of 1 or more, a plurality of X May be the same or different; Y represents C (R 3 ) 2 R 4 (wherein each R 3 independently represents —R 5 , —OR 5 , —SR). 5 , —N (R 5 ) 2 , —OC (O) R 5 , —S (O) R 5 , —SO 2 R 5 , —SO 2 N (R 5 ) 2 , —C (O) N (R 5 ) 2 , —NR 5 C (O) R 5 , or —NR 5 SO 2 R 5 , wherein each R 5 is independently hydrogen or a straight chain of 1 to 12 carbon atoms. Or branched alkyl 1 to 10 heteroalkyl groups having 1 to 3 heteroatoms independently selected from the group, nitrogen, oxygen or sulfur, phenyl groups, 3 to 7-membered saturated or partially unsaturated carbons 5 to 5 having 1 to 4 heteroatoms independently selected from a ring, a 6 to 10-membered bicyclic saturated ring, a partially unsaturated ring, or an aryl ring, nitrogen, oxygen, or sulfur 6-membered monocyclic heteroaryl ring, 3- to 7-membered saturated or partially unsaturated heterocycle having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, nitrogen, oxygen Or a 7 to 10 membered bicyclic saturated or partially unsaturated heterocycle having 1 to 5 heteroatoms independently selected from sulfur, and independently from nitrogen, oxygen, or sulfur 8 to 10 members with 1 to 5 heteroatoms selected Is selected from the bicyclic heteroaryl ring, or an optionally substituted group, or, optionally, two R 5, optionally in combination with the intervening atoms, said intervening Optionally substituted 3-10 membered monocyclic or bicyclic having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur And R 4 is an optionally substituted phenyl group; and Z is nitrogen, oxygen, and A 5- to 14-membered heteroaryl group having 1 to 4 heteroatoms selected from the group consisting of sulfur is shown. ]
 Xでありうるハロゲン原子としては、F、Cl、Br、及びIが挙げられる。中でも、Xがハロゲン原子である場合には、Brであることが好ましい。
 また、nが0であることが好ましい。
Halogen atoms that can be X include F, Cl, Br, and I. Especially, when X is a halogen atom, it is preferable that it is Br.
N is preferably 0.
 R1、R2である、炭素数1~6の直鎖状又は分岐鎖状炭化水素基としては、特に限定されることなく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、及びイソヘキシル基等の炭素数1~6の直鎖状又は分岐鎖状アルキル基、並びに、環状の脂肪族炭化水素基及び芳香族炭化水素基が挙げられる。また、R1、R2でありうる、炭素数1~6の環状炭化水素基としては、特に限定されることなく、シクロプロピル基、シクロブチル基、シクロペンチル基、及びシクロヘキシル基等の環状の脂肪族炭化水素基;及びフェニル基等の芳香族炭化水素基が挙げられる。中でも、R1及びR2が、メチル基であることが好ましい。 The linear or branched hydrocarbon group having 1 to 6 carbon atoms, which is R 1 or R 2 , is not particularly limited, but is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl. A straight chain or branched chain alkyl group having 1 to 6 carbon atoms such as a tert-butyl group, a pentyl group, a hexyl group and an isohexyl group, and a cyclic aliphatic hydrocarbon group and an aromatic hydrocarbon group. Can be mentioned. In addition, the cyclic hydrocarbon group having 1 to 6 carbon atoms which can be R 1 and R 2 is not particularly limited, and is a cyclic aliphatic group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group. Hydrocarbon groups; and aromatic hydrocarbon groups such as phenyl groups. Of these, R 1 and R 2 are preferably methyl groups.
 R3でありうる、炭素数1~12の直鎖状又は分岐鎖状アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、及びノニル基等が挙げられる。中でも、R3がメチル基であることが好ましい。
 この他に、R3でありうる基としては、例えば、国際公開第2015/127192号にて、基「R」として列挙された各種基が挙げられる(例えば、国際公開第2015/127192号、段落0201~0222参照)。また、これらの基のうち、任意選択的に置換された基の置換可能な炭素原子に結合した置換基としては、例えば、国際公開第2015/127192号に記載された各種置換基が挙げられる(例えば、国際公開第2015/127192号、段落0058~0064参照)。
Examples of the linear or branched alkyl group having 1 to 12 carbon atoms which may be R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, Examples include a hexyl group, a heptyl group, an octyl group, and a nonyl group. Among them, it is preferable that R 3 is a methyl group.
Other examples of the group that may be R 3 include various groups listed as the group “R” in International Publication No. 2015/127192 (for example, International Publication No. 2015/127192, paragraph). See 0201-0222). Further, among these groups, examples of the substituent bonded to the substitutable carbon atom of the optionally substituted group include various substituents described in International Publication No. 2015/127192 ( For example, see International Publication No. 2015/127192, paragraphs 0058-0064).
 Zである5~14員ヘテロアリール基において、少なくとも1つのヘテロ原子がNであることが好ましい。さらに、Zは、少なくとも1個の窒素原子を介してWに結合していることがより好ましい。例えば、Zは、下記一般式(Z-1)~(Z-6)の何れかにより表される基でありうる。ここで、Zは、N,O、及びSから独立して選択される1~4個のヘテロ原子を有する五員ヘテロアリールであり、少なくとも1個のヘテロ原子が、窒素であることが特に好ましい。中でも、Zが下記式(Z-1)、(Z-2)、(Z-3)、(Z-6)で表される基であることが好ましく、下記式(Z-6)で表される基であることが特に好ましい。Zが五員ヘテロアリールであり、少なくとも1個のヘテロ原子が窒素であり、かつ2,5位の置換基が水素原子もしくはメチル基であることによって、触媒構造が安定となり、かつステレオエラーが少なくなる。
Figure JPOXMLDOC01-appb-C000005
In the 5- to 14-membered heteroaryl group that is Z, it is preferable that at least one heteroatom is N. Further, it is more preferable that Z is bonded to W through at least one nitrogen atom. For example, Z may be a group represented by any one of the following general formulas (Z-1) to (Z-6). Here, Z is a 5-membered heteroaryl having 1 to 4 heteroatoms independently selected from N, O and S, and it is particularly preferred that at least one heteroatom is nitrogen. . Among them, Z is preferably a group represented by the following formula (Z-1), (Z-2), (Z-3), or (Z-6), and is represented by the following formula (Z-6). Particularly preferred is a group. Z is 5-membered heteroaryl, at least one heteroatom is nitrogen, and the substituents at the 2- and 5-positions are a hydrogen atom or a methyl group, thereby stabilizing the catalyst structure and reducing stereo errors. Become.
Figure JPOXMLDOC01-appb-C000005
 上記式(α)にて示したような開環重合触媒は、特に限定されることなく、例えば、国際公開第2015/127192号、国際公開第2016/14311号、及びBenjamin Autenriethら著、「Stereospecific Ring-Opening Metathesis Polymerization (ROMP) of endo-Dicyclopentadiene by Molybdenum and Tungsten Catalysts」、Macromolecules、2015年、48、p.2480~2492に開示されたような方法に従って合成することができる。 The ring-opening polymerization catalyst represented by the above formula (α) is not particularly limited. For example, International Publication No. 2015/127192, International Publication No. 2016/14311, Benjamin Autenrieth et al., “Stereospecific Ring-Opening に 従 っ て Metathesis Polymerization (ROMP) of endo-Dicyclopentadiene by Molybdenum and Tungsten Catalysts ”, Macromolecules, 2015, 48, p. 2480-2492.
 開環重合にあたり、開環重合触媒の使用量は、例えば、ジシクロペンタジエンを含む単量体100質量部に対して、0.01質量部以上0.50質量部以下とすることが好ましく、0.05質量部以上0.30質量部以下とすることがより好ましい。触媒の使用量を上記範囲内とすることで、開環重合反応を充分に促進することができる。また、重合時間は、通常、1分以上100時間以内であり、好ましくは、30分以上5時間以内とすることができる。さらに、重合温度は、通常、-30℃以上200℃以下、好ましくは、0℃以上180℃以下とすることができる。
 また、開環重合にあたり、1-ヘキセン等のビニル基含有化合物であり得る既知の分子量調整剤等を一般的な配合量で添加することができる。
In the ring-opening polymerization, the amount of the ring-opening polymerization catalyst used is preferably 0.01 parts by mass or more and 0.50 parts by mass or less with respect to 100 parts by mass of the monomer containing dicyclopentadiene. It is more preferable that the content be 0.05 parts by mass or more and 0.30 parts by mass or less. By making the usage-amount of a catalyst into the said range, ring-opening polymerization reaction can fully be accelerated | stimulated. The polymerization time is usually from 1 minute to 100 hours, preferably from 30 minutes to 5 hours. Furthermore, the polymerization temperature can usually be −30 ° C. or higher and 200 ° C. or lower, preferably 0 ° C. or higher and 180 ° C. or lower.
In addition, in the ring-opening polymerization, a known molecular weight regulator that can be a vinyl group-containing compound such as 1-hexene can be added in a general blending amount.
 開環重合反応は、無溶媒系でも行うこともできるが、有機溶媒中で行うことが好ましい。有機溶媒としては、開環重合反応により得られるジシクロペンタジエン系開環重合体を溶解又は分散させることができ、且つ、開環重合反応に悪影響を及ぼさないものであれば、特に限定されることなく、あらゆる有機溶媒を用いることができる。例えば、有機溶媒としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;アニソール、フェネトール等の芳香族エーテルを挙げることができる。これらは一種単独で、或いは複数種を混合して用いることができる。これらの中でも、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、エーテル、及び芳香族エーテルが好ましく、芳香族炭化水素がより好ましい。 The ring-opening polymerization reaction can be performed in a solvent-free system, but is preferably performed in an organic solvent. The organic solvent is not particularly limited as long as it can dissolve or disperse the dicyclopentadiene-based ring-opening polymer obtained by the ring-opening polymerization reaction and does not adversely affect the ring-opening polymerization reaction. And any organic solvent can be used. For example, organic solvents include aliphatic hydrocarbons such as pentane, hexane, heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, Hexahydroindene cyclohexane, cyclooctane and other alicyclic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; dichloromethane, chloroform, 1,2-dichloroethane and other halogenated aliphatic hydrocarbons; chlorobenzene, dichlorobenzene, etc. Halogen-containing aromatic hydrocarbons; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene and acetonitrile; ethers such as diethyl ether and tetrahydrofuran; aniso , And aromatic ethers such as phenetole. These can be used singly or as a mixture of two or more. Among these, aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, ethers, and aromatic ethers are preferable, and aromatic hydrocarbons are more preferable.
 ここで、得られたジシクロペンタジエン系開環重合体の重量平均分子量(Mw)は特に限定されないが、通常10,000~1,000,000、好ましくは、10,000~500,000である。このような重量平均分子量の重合体は、各種樹脂成形体の材料として好ましく用いられる。
 ジシクロペンタジエン系開環重合体の分子量分布(Mw/Mn)は、特に限定されないが、通常4.0以下であり、好ましくは3.5以下である。このような分子量分布を有する重合体を後述する水素化反応に供して得られた水素化物は、成形加工性に優れる。
 ジシクロペンタジエン系開環重合体の重量平均分子量(Mw)や分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定される標準ポリスチレン換算値である。
Here, the weight average molecular weight (Mw) of the obtained dicyclopentadiene-based ring-opening polymer is not particularly limited, but is usually 10,000 to 1,000,000, preferably 10,000 to 500,000. . Such a polymer having a weight average molecular weight is preferably used as a material for various resin moldings.
The molecular weight distribution (Mw / Mn) of the dicyclopentadiene-based ring-opening polymer is not particularly limited, but is usually 4.0 or less, preferably 3.5 or less. A hydride obtained by subjecting a polymer having such a molecular weight distribution to a hydrogenation reaction described later is excellent in molding processability.
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the dicyclopentadiene ring-opening polymer are standard polystyrene conversion values measured by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent. is there.
 そして、得られた開環重合体を水素化反応に供する。水素化反応は、ジシクロペンタジエン系開環重合体が存在する系に、(a)水素源として水素化剤を添加し、次いで加熱し反応させることにより、又は、(b)水素化触媒を添加し、次いで水素源としての水素ガスを添加して、ジシクロペンタジエン系開環重合体中に存在する不飽和結合を水素化することにより、行うことができる。これらの中でも、工業的な製造の観点からは、(b)の水素化方法を採用することが好ましい。換言すれば、水素化触媒と水素ガスを用いてジシクロペンタジエン系開環重合体の水素化反応を行うことが好ましい。 Then, the obtained ring-opening polymer is subjected to a hydrogenation reaction. The hydrogenation reaction can be performed by adding (a) a hydrogenating agent as a hydrogen source to the system in which the dicyclopentadiene-based ring-opening polymer is present, and then heating and reacting, or (b) adding a hydrogenation catalyst. Then, hydrogen gas can be added as a hydrogen source to hydrogenate unsaturated bonds present in the dicyclopentadiene-based ring-opening polymer. Among these, it is preferable to employ the hydrogenation method (b) from the viewpoint of industrial production. In other words, it is preferable to perform a hydrogenation reaction of the dicyclopentadiene ring-opening polymer using a hydrogenation catalyst and hydrogen gas.
 前記(a)の方法としては、水素移動型水素化反応(transfer hydrogenation)のための水素化剤(水素源)として既知のヒドラジン含有化合物を用いて、ジシクロペンタジエン系開環重合体に含まれる不飽和結合を水素化する方法が挙げられる。水素化剤としては、特に限定されることなく、例えば、ヒドラジン及びパラトルエンスルホニルヒドラジド等が挙げられ、中でも、パラトルエンスルホニルヒドラジドが好ましい。 The method (a) includes a hydrazine-containing compound known as a hydrogenating agent (hydrogen source) for a hydrogen transfer hydrogenation reaction, and is included in a dicyclopentadiene-based ring-opening polymer. The method of hydrogenating an unsaturated bond is mentioned. The hydrogenating agent is not particularly limited, and examples thereof include hydrazine and paratoluenesulfonyl hydrazide. Among them, paratoluenesulfonyl hydrazide is preferable.
 前記(b)の方法で用いられる水素化触媒は、開環重合体の水素化触媒として従来公知のものを使用することができる。その具体例としては、RuHCl(CO)(PPh、RuHCl(CO)[P(p-Me-Ph)、RuHCl(CO)(PCy、RuHCl(CO)[P(n-Bu)、RuHCl(CO)[P(i-Pr)、RuH(CO)(PPh、RuH(CO)[P(p-Me-Ph)、RuH(CO)(PCy、RuH(CO)[P(n-Bu)RuH(OCOCH)(CO)(PPh、RuH(OCOPh)(CO)(PPh、RuH(OCOPh-CH)(CO)(PPh、RuH(OCOPh-OCH)(CO)(PPh、RuH(OCOPh)(CO)(PCy、ラネーニッケル、ニッケル珪藻土、酢酸ニッケル、酢酸パラジウム、及びPdCl、RhCl(PPh)等が挙げられる。中でも、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム[RuHCl(CO)(PPh]が好ましい。 As the hydrogenation catalyst used in the method (b), a conventionally known hydrogenation catalyst for a ring-opening polymer can be used. Specific examples thereof include RuHCl (CO) (PPh 3 ) 3 , RuHCl (CO) [P (p-Me-Ph) 3 ] 3 , RuHCl (CO) (PCy 3 ) 2 , RuHCl (CO) [P ( n-Bu) 3 ] 3 , RuHCl (CO) [P (i-Pr) 3 ] 2 , RuH 2 (CO) (PPh 3 ) 3 , RuH 2 (CO) [P (p-Me-Ph) 3 ] 3 , RuH 2 (CO) (PCy 3 ) 3 , RuH 2 (CO) [P (n-Bu) 3 ] 3 RuH (OCOCH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh) (CO) (CO) ( PPh 3 ) 2 , RuH (OCOPh-CH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh-OCH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh) (CO) (PCy 3 ) 2 , Raneynicke , Nickel diatomaceous earth, nickel acetate, palladium acetate, PdCl 2 , RhCl (PPh) 3 and the like. Among these, carbonylchlorohydridotris (triphenylphosphine) ruthenium [RuHCl (CO) (PPh 3 ) 3 ] is preferable.
 水素化反応は、通常、不活性有機溶媒中で行う。用いられうる不活性有機溶媒としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル;アニソール、フェネトール等の芳香族エーテル;等が挙げられる。これらは一種単独で、或いは複数種を混合して用いることができる。中でも、脂環族炭化水素及び芳香族炭化水素が好ましい。 The hydrogenation reaction is usually performed in an inert organic solvent. Examples of inert organic solvents that can be used include cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, hexahydroindenecyclohexane, and cyclooctane. Alicyclic hydrocarbons; Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenous aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; Halogenous aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; Diethyl And ethers such as ether and tetrahydrofuran; aromatic ethers such as anisole and phenetole; and the like. These can be used singly or as a mixture of two or more. Of these, alicyclic hydrocarbons and aromatic hydrocarbons are preferred.
 また、水素化反応温度等の水素化反応条件は、使用する水素化剤や、水素化触媒に応じて、適宜設定することができる。例えば、水素化反応温度は、通常-20℃以上250℃以下、好ましくは50℃以上220℃以下、より好ましくは100℃以上200℃以下、さらに好ましくは160℃以上200℃以下である。水素化温度が低すぎると反応速度が遅くなりすぎる場合があり、高すぎると副反応が起こる等して水素化速度が低下する場合がある。また、水素化温度を適切な範囲で調節することで、得られるHDCPD重合体の水素化率を所望の値とすることができる。
 また、特に、上記(b)に従う水素化方法の場合には、水素圧力は、通常0.01~20MPa、好ましくは0.05~15MPa、より好ましくは0.1~10MPaでありうる。水素圧力が低すぎると水素化速度が遅くなりすぎる場合があり、高すぎると高耐圧反応装置が必要となる点において装置上の制約が生じる。
 さらにまた、水素化反応時間は所望の水素化率とできれば特に限定されないが、通常0.1~10時間でありうる。
 そして、任意の方法に従う水素化反応が終了した後には、常法に従ってジシクロペンタジエン系開環重合体水素化物を回収すればよい。ジシクロペンタジエン系開環重合体水素化物の回収にあたっては、例えば、遠心分離、及びろ過等の既知の手法により、触媒残渣を除去することができる。
Moreover, hydrogenation reaction conditions, such as hydrogenation reaction temperature, can be suitably set according to the hydrogenating agent to be used and a hydrogenation catalyst. For example, the hydrogenation reaction temperature is usually −20 ° C. or higher and 250 ° C. or lower, preferably 50 ° C. or higher and 220 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower, and further preferably 160 ° C. or higher and 200 ° C. or lower. If the hydrogenation temperature is too low, the reaction rate may be too slow, and if it is too high, the side reaction may occur and the hydrogenation rate may be reduced. Moreover, the hydrogenation rate of the HDDCD polymer obtained can be made into a desired value by adjusting the hydrogenation temperature within an appropriate range.
In particular, in the case of the hydrogenation method according to the above (b), the hydrogen pressure can be usually 0.01 to 20 MPa, preferably 0.05 to 15 MPa, more preferably 0.1 to 10 MPa. If the hydrogen pressure is too low, the hydrogenation rate may be too slow, and if it is too high, there will be restrictions on the apparatus in that a high pressure reactor is required.
Furthermore, the hydrogenation reaction time is not particularly limited as long as the desired hydrogenation rate can be obtained, but it can usually be 0.1 to 10 hours.
And after the hydrogenation reaction according to arbitrary methods is complete | finished, what is necessary is just to collect | recover dicyclopentadiene type ring-opening polymer hydrides according to a conventional method. In the recovery of the dicyclopentadiene ring-opening polymer hydride, the catalyst residue can be removed by a known method such as centrifugation and filtration.
<HDCPD重合体の水素化率>
 本発明のジシクロペンタジエン系開環重合体水素化物は水素化率が、98.0%以上である必要があり、99.0%以上であることが好ましく、99.2%以上であることがより好ましい。水素化率が上記下限値以上であれば、得られる樹脂材料の強度及びリフロー耐性を一層向上させることができる。ここで、「リフロー耐性」とは、プリント基板等に部品をはんだ付けする際に常用されるリフロー方式に従ってプリント基板材料を加熱した場合の耐性を意味する。リフロー方式に従う加熱の温度プロファイルは、例えば、J-STD-020Cに定められている。なお、水素化率は、ジシクロペンタジエン系開環重合体水素化物の主鎖及び側鎖に含まれる全不飽和結合のうち水素化された不飽和結合の割合を示す。また、水素化率は1H-NMR測定に基づく値であり、モル基準の値である。
<Hydrogenation rate of HDPDD polymer>
The dicyclopentadiene ring-opening polymer hydride of the present invention must have a hydrogenation rate of 98.0% or more, preferably 99.0% or more, and preferably 99.2% or more. More preferred. If a hydrogenation rate is more than the said lower limit, the intensity | strength and reflow tolerance of the resin material obtained can be improved further. Here, “reflow resistance” means resistance when the printed circuit board material is heated according to a reflow method commonly used when soldering a component to a printed circuit board or the like. The temperature profile of heating according to the reflow method is defined, for example, in J-STD-020C. In addition, a hydrogenation rate shows the ratio of the hydrogenated unsaturated bond among all the unsaturated bonds contained in the principal chain and side chain of the dicyclopentadiene ring-opening polymer hydride. Further, the hydrogenation rate is a value based on 1 H-NMR measurement, and is a value on a molar basis.
<HDCPD重合体のシンジオタクティシティー>
 本発明のジシクロペンタジエン系開環重合体水素化物は、シンジオタクティシティーが99%以上である必要がある。ここで、シンジオタクティシティーとは、立体規則性を有するポリマー鎖中に存在する、イソタクチックダイアッド(メソダイアッド)及びラセモダイアッドの合計存在量に対するラセモダイアッドの割合(以下、単に、「ラセモダイアッドの割合」と称する場合がある)を意味する。特に、本発明のジシクロペンタジエン系開環重合体水素化物は、シンジオタクティシティーが99.5%以上であることが好ましく、100%であることがより好ましい。シンジオタクティシティーが上記下限値以上であれば、ジシクロペンタジエン系開環重合体水素化物の結晶性が十分に高く、得られる樹脂材料等の強度を充分に高めることができる。なお、シンジオタクティシティーは13C-NMR測定に基づく値であり、モル基準の値である。
<Syndiotacticity of HDPDD polymer>
The dicyclopentadiene ring-opening polymer hydride of the present invention needs to have a syndiotacticity of 99% or more. Here, syndiotacticity is the ratio of racemodyad to the total abundance of isotactic dyad (mesodyad) and racemodyad present in the polymer chain having stereoregularity (hereinafter simply referred to as “racemodyad ratio”). May be referred to). In particular, the dicyclopentadiene ring-opening polymer hydride of the present invention preferably has a syndiotacticity of 99.5% or more, more preferably 100%. If the syndiotacticity is at least the above lower limit, the crystallinity of the dicyclopentadiene ring-opening polymer hydride is sufficiently high, and the strength of the resulting resin material and the like can be sufficiently increased. The syndiotacticity is a value based on 13 C-NMR measurement, and is a value on a molar basis.
 ここで、本発明において、ジシクロペンタジエン系開環重合体水素化物のシンジオタクティシティーは、上記したような特定の触媒を用いて、重合時間及び重合温度を含む重合時の諸条件を適宜調節することにより、所望の値まで高めることができる。 Here, in the present invention, the syndiotacticity of the dicyclopentadiene-based ring-opening polymer hydride is adjusted as appropriate using the specific catalyst as described above, and various conditions during polymerization, including polymerization time and polymerization temperature. By doing so, it can be increased to a desired value.
<HDCPD重合体のガラス転移温度>
 本発明のジシクロペンタジエン系開環重合体水素化物のガラス転移温度は、80℃以上が好ましく、90℃以上がより好ましい。ジシクロペンタジエン系開環重合体水素化物のガラス転移温度がかかる範囲にあれば、耐熱性が良好で、例えば、得られる樹脂成形体等の荷重たわみ温度が高く、好適である。ガラス転移点の上限は、特に限定されないが、概ね120℃である。
<Glass transition temperature of HDPDD polymer>
The glass transition temperature of the dicyclopentadiene ring-opening polymer hydride of the present invention is preferably 80 ° C. or higher, more preferably 90 ° C. or higher. If the glass transition temperature of the dicyclopentadiene ring-opening polymer hydride is within such a range, the heat resistance is good, and, for example, the load deflection temperature of the resulting resin molded article is high, which is preferable. The upper limit of the glass transition point is not particularly limited, but is approximately 120 ° C.
<HDCPD重合体の融点>
 本発明のジシクロペンタジエン系開環重合体水素化物の融点は、260℃以上300℃以下であることが好ましく、266℃以上295℃以下であることがより好ましく、270℃以上290℃以下であることが特に好ましい。HDCPD重合体の融点が上記下限値以上であれば、耐熱性に優れる樹脂材料を提供することができる。また、HDCPD重合体の融点が上記上限値以下であれば、得られる樹脂材料を加工する際の加工温度を過度に高くする必要性が無くなり、過度に高い加工温度に起因する樹脂材料の劣化を回避することができる。
<Melting point of HDPDD polymer>
The melting point of the dicyclopentadiene ring-opening polymer hydride of the present invention is preferably 260 ° C. or higher and 300 ° C. or lower, more preferably 266 ° C. or higher and 295 ° C. or lower, and 270 ° C. or higher and 290 ° C. or lower. It is particularly preferred. If the melting point of the HDCPD polymer is not less than the above lower limit, a resin material having excellent heat resistance can be provided. Moreover, if the melting point of the HDCPD polymer is not more than the above upper limit, there is no need to excessively increase the processing temperature when processing the obtained resin material, and deterioration of the resin material due to an excessively high processing temperature is eliminated. It can be avoided.
(樹脂材料)
 上述した本発明のジシクロペンタジエン系開環重合体水素化物を含有する樹脂材料は、強度及び延性の双方が高いレベルにある。樹脂材料は、本発明のジシクロペンタジエン系開環重合体水素化物の他に、任意成分を含有していてもよい。かかる任意成分としては、特に限定されることなく、例えば、国際公開第2016/143795号に開示された無機充填材、並びに、酸化防止剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、可塑剤、帯電防止剤、酸捕捉剤、難燃剤、及び難燃助剤等の添加剤が挙げられる。
(Resin material)
The resin material containing the above-described dicyclopentadiene ring-opening polymer hydride of the present invention has both high strength and ductility. In addition to the dicyclopentadiene ring-opening polymer hydride of the present invention, the resin material may contain an optional component. Examples of such optional components include, but are not limited to, inorganic fillers disclosed in International Publication No. 2016/143795, antioxidants, ultraviolet absorbers, light stabilizers, near infrared absorbers, plastics, and the like. And additives such as an agent, an antistatic agent, an acid scavenger, a flame retardant, and a flame retardant aid.
 無機充填材、及び添加剤の配合量は目的に応じて任意に設定することができる。例えば、無機充填材の配合量は、本発明のジシクロペンタジエン系開環重合体水素化物100質量部に対して、5質量部以上200質量部以下であり得る。また、添加剤の配合量は、本発明のジシクロペンタジエン系開環重合体水素化物100質量部に対して、0.01質量部以上10質量部以下であり得る。換言すれば、樹脂材料における本発明のジシクロペンタジエン系開環重合体水素化物の含有割合は、樹脂材料全体を100質量%として、30質量%以上であり得る。もちろん、樹脂材料が任意成分を含有せず、実質的に100質量%が本発明のジシクロペンタジエン系開環重合体水素化物により構成されていても良い。なお、本明細書において、「実質的に100質量%」とは、例えば、製造時の精製限界等に起因して混入し得る重合溶媒等の不可避的不純物を0.05質量%以下含有し得ることを意味する。 The blending amount of the inorganic filler and additive can be arbitrarily set according to the purpose. For example, the compounding amount of the inorganic filler may be 5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the dicyclopentadiene ring-opening polymer hydride of the present invention. Moreover, the compounding quantity of an additive may be 0.01 mass part or more and 10 mass parts or less with respect to 100 mass parts of dicyclopentadiene type ring-opening polymer hydrides of this invention. In other words, the content ratio of the dicyclopentadiene-based ring-opening polymer hydride of the present invention in the resin material may be 30% by mass or more, based on 100% by mass of the entire resin material. Of course, the resin material does not contain an optional component, and substantially 100% by mass may be constituted by the dicyclopentadiene ring-opening polymer hydride of the present invention. In the present specification, “substantially 100% by mass” can contain, for example, 0.05% by mass or less of inevitable impurities such as a polymerization solvent that can be mixed due to the purification limit during production. Means that.
 樹脂材料は、特に限定されることなく、例えば、上述のようにして得られた本発明のジシクロペンタジエン系開環重合体水素化物と、任意成分とを混合することにより調製することができる。より具体的には、混合に際して、HDCPD重合体及び任意成分を溶融状態として混練することが挙げられる。混練は、例えば、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、及びフィーダールーダー等の溶融混練機を用いて行うことができる。混練温度は、好ましくは250℃~400℃、より好ましくは260℃~350℃の範囲である。混練に際し、各成分を一括添加して混練してもよいし、数回に分けて添加しながら混練してもよい。そして、混錬後は、常法に従って、得られた混練物を棒状に押出し、ストランドカッターで適当な長さに切ることで、ペレット化された樹脂材料を得ることができる。 The resin material is not particularly limited, and can be prepared, for example, by mixing the hydride of the dicyclopentadiene-based ring-opening polymer of the present invention obtained as described above and an arbitrary component. More specifically, in mixing, the HDDCD polymer and optional components may be kneaded in a molten state. The kneading can be performed using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a feeder ruder. The kneading temperature is preferably in the range of 250 ° C to 400 ° C, more preferably 260 ° C to 350 ° C. In kneading, the components may be added together and kneaded, or may be kneaded while adding in several times. Then, after kneading, the obtained kneaded material is extruded into a rod shape according to a conventional method, and cut into an appropriate length with a strand cutter, whereby a pelletized resin material can be obtained.
(樹脂成形体)
 本発明の樹脂成形体は、上述した本発明のジシクロペンタジエン系開環重合体水素化物を含有する。本発明の樹脂成形体は、本発明のジシクロペンタジエン系開環重合体水素化物を含有するので、強度及び延性の双方が高いレベルにある。なお、樹脂成形体は、上述した樹脂材料を任意の形状に成形してなる成形物であり得る。従って、樹脂成形体も、上記樹脂材料に配合され得る各種任意成分を上記した割合で含有していても良い。また、樹脂成形体は、樹脂成形体の全質量を100質量%として、30質量%以上が本発明のジシクロペンタジエン系開環重合体水素化物により構成されていても良く、上述したような任意成分を含有せず、実質的に100質量%が、本発明のジシクロペンタジエン系開環重合体水素化物により構成されていても良い。
(Resin molding)
The resin molding of the present invention contains the above-described hydrogenated dicyclopentadiene ring-opening polymer of the present invention. Since the resin molded product of the present invention contains the dicyclopentadiene ring-opening polymer hydride of the present invention, both strength and ductility are at high levels. The resin molded body may be a molded product formed by molding the above-described resin material into an arbitrary shape. Therefore, the resin molded body may also contain various optional components that can be blended in the resin material in the above-described proportions. Further, the resin molded body may be composed of 30% by mass or more of the dicyclopentadiene ring-opening polymer hydride of the present invention, with the total mass of the resin molded body being 100% by mass. No component is contained, and substantially 100% by mass may be constituted by the dicyclopentadiene ring-opening polymer hydride of the present invention.
 樹脂成形体を形成するための成形方法としては、溶融成形法が好ましい。溶融成形法としては、例えば、押出成形法、射出成形法、溶融紡糸成形法、プレス成形法、ブロー成形法、カレンダー成形法等の方法が挙げられる。成形方法は、目的の樹脂成形体の形状に応じて適宜選択することができる。 As a molding method for forming the resin molded body, a melt molding method is preferable. Examples of the melt molding method include extrusion molding methods, injection molding methods, melt spinning molding methods, press molding methods, blow molding methods, and calendar molding methods. The molding method can be appropriately selected according to the shape of the target resin molding.
(樹脂フィルム)
 本発明の樹脂フィルムは、上述した本発明のジシクロペンタジエン系開環重合体水素化物を含有する。本発明の樹脂フィルムは、上述した本発明の樹脂成形体の一種であり、本発明のジシクロペンタジエン系開環重合体水素化物を含有するので、強度及び延性の双方が高いレベルにある。本発明の樹脂フィルムは、上述した樹脂材料をフィルム状に成形してなる成形物であり得る。従って、樹脂フィルムも、上記樹脂材料に配合され得る各種任意成分を上記した割合で含有していても良い。また、樹脂フィルムは、樹脂フィルムの全質量を100質量%として、30質量%以上が本発明のジシクロペンタジエン系開環重合体水素化物により構成されていても良く、上述したような任意成分を含有せず、実質的に100質量%が、本発明のジシクロペンタジエン系開環重合体水素化物により構成されていても良い。
(Resin film)
The resin film of the present invention contains the dicyclopentadiene ring-opening polymer hydride of the present invention described above. The resin film of the present invention is a kind of the above-described resin molded body of the present invention and contains the hydrogenated dicyclopentadiene ring-opening polymer of the present invention, so that both strength and ductility are at a high level. The resin film of the present invention may be a molded product formed by molding the above-described resin material into a film shape. Therefore, the resin film may also contain various optional components that can be blended in the resin material in the above-described proportions. Further, the resin film may be composed of 100% by mass of the total mass of the resin film, and 30% by mass or more of the hydride of the dicyclopentadiene ring-opening polymer of the present invention. Not contained, and substantially 100% by mass may be constituted by the dicyclopentadiene ring-opening polymer hydride of the present invention.
 樹脂成形体の一種である樹脂フィルムを製造するために好適に用い得る溶融成形法としては、押出成形法が挙げられる。押出成形法により樹脂フィルムを製造する場合、公知の方法を適宜使用することができる。例えば、上記樹脂材料を押出機に投入して、溶融混練し、次いで、押出機に接続したTダイから溶融樹脂を連続的にフィルム状に押出し、これを冷却することで樹脂フィルムを得ることができる。 An example of the melt molding method that can be suitably used for producing a resin film that is a kind of resin molded body is an extrusion molding method. When producing a resin film by an extrusion method, a known method can be used as appropriate. For example, the resin material is put into an extruder, melted and kneaded, and then a molten resin is continuously extruded into a film form from a T die connected to the extruder, and then cooled to obtain a resin film. it can.
<樹脂フィルムのガス発生量>
 本発明の樹脂フィルムは、加熱発生ガス質量分析法により測定した、室温~300℃までの間に発生した質量数18(m/z)に帰属する気体の発生量が、樹脂フィルムの質量を100質量%として、0.5質量%未満であることが好ましい。ここで、質量数18(m/z)に帰属する気体は、具体的には、HOである。樹脂フィルムのガス発生量が上記上限値未満であれば、樹脂フィルムを所望の用途で使用した際に加熱された場合に放出し得る水分量が充分に少ないため、特に、電気・電子系材料としての適性が高い。なお、上記測定の際にフィルムから発生するHOは、主にフィルムに対する吸着水分である。
<Gas generation amount of resin film>
In the resin film of the present invention, the amount of a gas attributed to a mass number of 18 (m / z) generated between room temperature and 300 ° C. measured by heat generation gas mass spectrometry is 100% of the mass of the resin film. The mass% is preferably less than 0.5 mass%. Here, the gas belonging to the mass number 18 (m / z) is specifically H 2 O. If the gas generation amount of the resin film is less than the above upper limit, the amount of moisture that can be released when heated when the resin film is used in a desired application is sufficiently small. High suitability. Note that H 2 O generated from the film during the measurement is mainly moisture adsorbed on the film.
 樹脂フィルムの厚みは特に限定されないが、通常、1~300μm、好ましくは2~200μmである。 The thickness of the resin film is not particularly limited, but is usually 1 to 300 μm, preferably 2 to 200 μm.
 成形して得られた樹脂フィルムに対して、国際公開第2016/143795号に記載されているような、既知の延伸処理や、熱固定処理を施してもよい。
 延伸処理を行うことで、結晶化度が高く、より強度に優れる樹脂フィルムが得られる。また、熱固定処理をすることで、熱収縮率が小さい樹脂フィルムが得られる。
The resin film obtained by molding may be subjected to a known stretching process or a heat setting process as described in International Publication No. 2016/143795.
By performing the stretching treatment, a resin film having a high degree of crystallinity and superior strength can be obtained. Moreover, the resin film with a small heat shrinkage rate is obtained by performing a heat setting process.
 さらに、本発明の樹脂フィルムの両面または片面に、金属層を公知の方法により積層した積層フィルムは、フレキシブルプリント基板材料として、好適に用いることができる。積層フィルムの製造方法としては、樹脂フィルムと金属層を構成するための金属箔とを熱プレスしつつ、樹脂フィルムの融点付近迄加温して融着させる方法、樹脂フィルムと金属層を構成するための金属箔とを、接着層を介して接着する方法、及び樹脂フィルムをスパッタまたはめっき処理することで樹脂フィルムの両面又は片面上に金属層を形成する方法等があげられる。
 金属層としては、銅、金、銀、アルミニウム、ニッケル、及びクロム等の金属を含有する層が挙げられる。これらの中でも、フレキシブルプリント基板材料として有用な積層フィルムが得られることから、銅が好ましい。また、上記接着層は、エポキシフィルム等の市販の接着シートにより形成することができる。
Furthermore, the laminated film which laminated | stacked the metal layer on the both surfaces or single side | surface of this invention by the well-known method can be used suitably as a flexible printed circuit board material. As a method for producing a laminated film, a method in which a resin film and a metal foil for forming a metal layer are hot-pressed and heated to a temperature close to the melting point of the resin film, and a resin film and a metal layer are formed. For example, a method of adhering a metal foil to the resin film via an adhesive layer, and a method of forming a metal layer on both sides or one side of the resin film by sputtering or plating the resin film.
As a metal layer, the layer containing metals, such as copper, gold | metal | money, silver, aluminum, nickel, and chromium, is mentioned. Among these, copper is preferable because a laminated film useful as a flexible printed circuit board material can be obtained. The adhesive layer can be formed of a commercially available adhesive sheet such as an epoxy film.
 金属層の厚みは特に限定されず、積層フィルムの使用目的に合わせて適宜決定することができる。金属層の厚みは、通常、1~35μmであり、好ましくは3~18μmである。 The thickness of the metal layer is not particularly limited and can be appropriately determined according to the purpose of use of the laminated film. The thickness of the metal layer is usually 1 to 35 μm, preferably 3 to 18 μm.
(延伸フィルムの製造方法)  
 本発明の延伸フィルムの製造方法は、本発明に従うジシクロペンタジエン系開環重合体水素化物を用いて形成した未延伸フィルムを、95℃以上130℃以下の温度で延伸処理する延伸工程を含むことを特徴とする。なお、「未延伸フィルム」は、上述した本発明の樹脂フィルムであって、延伸処理を施していないものを指す。さらに、本発明の延伸フィルムの製造方法は、熱固定処理工程を更に含むことが好ましい。以下、各工程について詳述する。
(Method for producing stretched film)
The method for producing a stretched film of the present invention includes a stretching step of stretching an unstretched film formed using the dicyclopentadiene ring-opening polymer hydride according to the present invention at a temperature of 95 ° C. or higher and 130 ° C. or lower. It is characterized by. The “unstretched film” refers to the above-described resin film of the present invention that has not been stretched. Furthermore, it is preferable that the manufacturing method of the stretched film of this invention further includes the heat setting process process. Hereinafter, each process is explained in full detail.
<延伸工程>
 延伸工程では、上記所定の未延伸フィルムを95℃以上130℃以下の温度で延伸処理する。ここで、本発明のジシクロペンタジエン系開環重合体水素化物は、シンジオタクティシティー及び水素化率の値が共に高いレベルにある。かかる本発明のジシクロペンタジエン系開環重合体水素化物を用いて形成した未延伸フィルムは、結晶性が高く、強度に富む一方で、従来法に従って延伸処理を施した際にヘイズが生じ易く、透明性の高い延伸フィルムが得られないことがあった。そこで、本発明者らが鋭意検討した結果、延伸処理の際の温度を、95℃以上130℃以下とすることで、延伸フィルムの曇り度(即ち、ヘイズ)の値が過度に高くならないようにしつつ、未延伸フィルムを良好に延伸することができることが明らかになった。より具体的には、延伸処理の際の温度を95℃以上とすることで、延伸時に未延伸フィルムが硬すぎて延伸し難くなりフィルムが破断することを抑制するとともに、生産性が悪化することを抑制することができる。また、延伸処理の際の温度を130℃以下とすることで、延伸工程を経て得られたフィルムにヘイズが発生することを抑制するとともに、得られたフィルムが熱膨張し易くなることを抑制することができる。さらに、ヘイズ及び熱膨張に関するこれらの効果を一層高める観点から、延伸処理の際の温度が125℃以下であることが好ましく、115℃以下であることがより好ましい。なお、フィルムが熱膨張し易いか否かは、線膨張係数によって定量的に表すことができる。線膨張係数は、1℃の温度変化で長さの変化する割合(単位:ppm/℃)で表される。
<Extension process>
In the stretching step, the predetermined unstretched film is stretched at a temperature of 95 ° C. or higher and 130 ° C. or lower. Here, the dicyclopentadiene ring-opening polymer hydride of the present invention has both high levels of syndiotacticity and hydrogenation rate. Such an unstretched film formed using the dicyclopentadiene-based ring-opening polymer hydride of the present invention has high crystallinity and high strength, while being prone to haze when subjected to a stretching treatment according to a conventional method, A stretched film with high transparency could not be obtained. Therefore, as a result of intensive studies by the present inventors, by setting the temperature during the stretching treatment to 95 ° C. or higher and 130 ° C. or lower, the haze value (ie, haze) of the stretched film is prevented from becoming excessively high. However, it was revealed that an unstretched film can be stretched satisfactorily. More specifically, by setting the temperature during the stretching treatment to 95 ° C. or higher, the unstretched film is too hard at the time of stretching and it is difficult to stretch and the film is prevented from breaking, and the productivity is deteriorated. Can be suppressed. In addition, by setting the temperature during the stretching treatment to 130 ° C. or lower, it is possible to suppress the occurrence of haze in the film obtained through the stretching process and to suppress the resulting film from being easily thermally expanded. be able to. Furthermore, from the viewpoint of further enhancing these effects relating to haze and thermal expansion, the temperature during the stretching treatment is preferably 125 ° C. or less, and more preferably 115 ° C. or less. Note that whether or not the film is likely to thermally expand can be quantitatively expressed by a linear expansion coefficient. The linear expansion coefficient is represented by a rate (unit: ppm / ° C.) in which the length changes with a temperature change of 1 ° C.
 延伸処理は、特に限定されることなく、既知の方途に従って実施することができる。具体的には、ロール間の周速の差を利用して縦方向に一軸延伸する方法、及びテンター延伸機を用いて横方向に一軸延伸する方法等の一軸延伸法;固定するクリップの間隔を開いての縦方向の延伸と同時に、ガイドレールの広がり角度により横方向に延伸する同時二軸延伸法、及びロール間の周速の差を利用して縦方向に延伸した後、その両端部をクリップ把持してテンター延伸機を用いて横方向に延伸する逐次二軸延伸法などの二軸延伸法;並びに、横又は縦方向に左右異なる速度の送り力若しくは引張り力又は引取り力を付加できるようにしたテンター延伸機を用いてフィルムの幅方向に対して任意の角度θの方向に連続的に斜め延伸する方法などが挙げられる。中でも、二軸延伸法が好ましい。 The stretching process is not particularly limited and can be performed according to a known method. Specifically, a uniaxial stretching method such as a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed between rolls and a method of uniaxially stretching in the transverse direction using a tenter stretching machine; Simultaneously stretching in the longitudinal direction using the simultaneous biaxial stretching method that stretches in the transverse direction according to the spread angle of the guide rail, and the difference in peripheral speed between the rolls, and then extending both ends of the longitudinal direction. A biaxial stretching method such as a sequential biaxial stretching method in which a clip is gripped and stretched in the lateral direction using a tenter stretching machine; and a feed force, a pulling force, or a pulling force at different speeds can be applied in the lateral or longitudinal direction. Examples thereof include a method of continuously and obliquely stretching in the direction of an arbitrary angle θ with respect to the width direction of the film using the tenter stretching machine. Among these, the biaxial stretching method is preferable.
 また、延伸工程における延伸倍率は、1.2倍以上が好ましく、1.5倍以上がより好ましく、10倍以下が好ましく、5倍以下がより好ましい。延伸倍率が上記下限値以上であれば、得られるフィルムが過度に熱膨張し易くなることを抑制することができる。また、延伸倍率が上記上限値以下であれば、ヘイズの発生を抑制することができる。尚、延伸方法として、各種の二軸延伸法を採用した場合には延伸倍率は、縦と横の延伸倍率の積によって規定される。 Further, the draw ratio in the drawing step is preferably 1.2 times or more, more preferably 1.5 times or more, preferably 10 times or less, and more preferably 5 times or less. If a draw ratio is more than the said lower limit, it can suppress that the film obtained becomes easy to thermally expand too much. Moreover, if a draw ratio is below the said upper limit, generation | occurrence | production of a haze can be suppressed. When various biaxial stretching methods are employed as the stretching method, the stretching ratio is defined by the product of the vertical and horizontal stretching ratios.
 また、延伸工程における延伸速度は、延伸温度に応じて調節することが好ましい。より具体的には、延伸温度が高くなるほど、フィルムにて結晶化の進行が促進されるため、効率的且つ良好に延伸工程を実施する観点から、延伸速度を速めることが好ましい。 Further, the stretching speed in the stretching step is preferably adjusted according to the stretching temperature. More specifically, since the progress of crystallization is promoted in the film as the stretching temperature increases, it is preferable to increase the stretching speed from the viewpoint of performing the stretching step efficiently and satisfactorily.
<熱固定処理工程>
 熱固定処理工程では、延伸工程を経たフィルムを、175℃以上225℃以下の温度で熱処理する。延伸工程を経たフィルムに対して熱固定処理を施すことで、熱固定処理工程を経て得られたフィルムが熱膨張し易くなること、及びフィルムにヘイズが発生することを一層効果的に抑制することができる。特に、フィルムが熱膨張し難い、ということは、フィルムの寸法安定性が高い、ということを意味する。さらに、熱固定処理工程における熱固定温度は、フィルムが熱膨張し易くなることをより一層良好に抑制する観点から、190℃以上であることが好ましく、205℃以上であることがより好ましい。
<Heat setting process>
In the heat setting treatment step, the film that has undergone the stretching step is heat-treated at a temperature of 175 ° C. or more and 225 ° C. or less. By subjecting the film that has undergone the stretching process to heat setting treatment, the film obtained through the heat setting process step is more likely to thermally expand, and the generation of haze in the film is more effectively suppressed. Can do. In particular, the fact that the film is difficult to thermally expand means that the dimensional stability of the film is high. Furthermore, the heat setting temperature in the heat setting treatment step is preferably 190 ° C. or higher, and more preferably 205 ° C. or higher, from the viewpoint of further favorably suppressing the film from being easily thermally expanded.
 本工程における熱処理方法は、特に限定されることなく、例えば、熱処理オーブン内に熱風を吹き込むこと、及び、赤外線ヒーターのような熱源を用いた輻射熱によって加熱すること、等が挙げられる。 The heat treatment method in this step is not particularly limited, and examples thereof include blowing hot air into a heat treatment oven and heating by radiant heat using a heat source such as an infrared heater.
 本工程における熱処理時間(熱固定時間)は、10秒以上が好ましく、20秒以上がより好ましく、10分以下が好ましく、5分以下がより好ましく、2分以下が更に好ましい。特に、熱固定時間が上記上限以下であれば、得られるフィルムにヘイズが発生することを一層効果的に抑制することができる。 The heat treatment time (heat setting time) in this step is preferably 10 seconds or more, more preferably 20 seconds or more, preferably 10 minutes or less, more preferably 5 minutes or less, and even more preferably 2 minutes or less. In particular, if the heat setting time is not more than the above upper limit, it is possible to more effectively suppress the occurrence of haze in the obtained film.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。なお、圧力はゲージ圧力である。
 各例における測定及び評価は、以下の方法により行った。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified. The pressure is a gauge pressure.
Measurement and evaluation in each example were performed by the following methods.
<開環重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)>
 テトラヒドロフランを溶媒として、40℃でゲル・パーミエーション・クロマトグラフィー(GPC)を行い、重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)をポリスチレン換算値として求めた。
 測定装置:ゲル・パーミエーション・クロマトグラフィー(GPC)システム「HLC-8320」(東ソー社製)
 カラム:「Hタイプカラム」(東ソー社製)
<Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of ring-opening polymer>
Gel permeation chromatography (GPC) was performed at 40 ° C. using tetrahydrofuran as a solvent, and the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) were determined as polystyrene equivalent values. .
Measuring device: Gel permeation chromatography (GPC) system “HLC-8320” (manufactured by Tosoh Corporation)
Column: “H type column” (manufactured by Tosoh Corporation)
<HDCPD重合体の融点>
 示差走査熱量計(DSC)を用いて、昇温速度が10℃/分の条件で示差走査熱量測定を行い、HDCPD重合体の融点を測定した。
<Melting point of HDPDD polymer>
Using a differential scanning calorimeter (DSC), differential scanning calorimetry was carried out at a temperature rising rate of 10 ° C./min, and the melting point of the HDCPD polymer was measured.
<HDCPD重合体の水素化率>
 H-NMR測定に基づいて、HDCPD重合体中の不飽和結合の水素化率を求めた。
<Hydrogenation rate of HDPDD polymer>
Based on the 1 H-NMR measurement, the hydrogenation rate of the unsaturated bond in the HDCPD polymer was determined.
<HDCPD重合体のシンジオタクティシティー>
 オルトジクロロベンゼン-d/1,2,4-トリクロロベンゼン(TCB)-d(混合比(質量基準)1/2)を溶媒として、200℃でinverse-gated decoupling法を適用して13C-NMR測定を行い、ジシクロペンタジエン系開環重合体水素化物のラセモダイアッドの割合を求めた。具体的には、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモダイアッド由来の43.43ppmのシグナルの強度比に基づいて、ラセモダイアッドの割合(%)を求めた。
<Syndiotacticity of HDPDD polymer>
By applying the inverse-gate decoupling method at 200 ° C. using ortho-dichlorobenzene-d 4 / 1,2,4-trichlorobenzene (TCB) -d 3 (mixing ratio (mass basis) 1/2) as a solvent, 13 C -NMR measurement was performed to determine the ratio of racemodyad of dicyclopentadiene ring-opening polymer hydride. Specifically, based shift the peak of 127.5ppm orthodichlorobenzene -d 4, a signal 43.35ppm from meso-diad, based on the intensity ratio of signals 43.43ppm from Rasemodaiaddo, Rasemodaiaddo The ratio (%) was obtained.
<樹脂フィルム(無延伸フィルム及び延伸フィルム)の強度及び延性>
 実施例1~9、及び比較例1~2で得られた無延伸フィルム及び実施例10~15で得られた延伸フィルムを、JIS K7127:1999規格の試験片タイプ1Bの形状でMD方向(MD:Machine Direction)に打ち抜き、引張試験用サンプルを作製した。得られたサンプルを、万能材料試験機(「インストロン社製」、5582型)にて、試験速度100m/分で引張試験を行い、引張強度(強度)と破断伸び(延性)を測定した。試験結果は、5サンプルの平均値とした。
<Strength and ductility of resin film (non-stretched film and stretched film)>
The unstretched films obtained in Examples 1 to 9 and Comparative Examples 1 and 2 and the stretched films obtained in Examples 10 to 15 were formed in the MD direction (MD in the shape of test piece type 1B of JIS K7127: 1999 standard). : Machine Direction) to produce a sample for a tensile test. The obtained sample was subjected to a tensile test with a universal material testing machine (“Instron”, Model 5582) at a test speed of 100 m / min, and tensile strength (strength) and elongation at break (ductility) were measured. The test result was an average value of 5 samples.
<樹脂フィルムのリフロー耐性>
 実施例1~9、比較例1~2で得られた樹脂フィルムである延伸フィルムを、5cm角で切り出し、10cm角に切り出した0.8mm厚の銅張積層板(パナソニック社製、「R-1766」)上に、4辺をポリイミドテープで固定した状態で貼りつけて試験片とした。この試験片を、J-STD-020Cに準拠し、260℃をピーク温度に設定した小型リフロー炉(アントム社製、「HAS-6116H」)へ1回投入し、取り出した後の試験片の外観を目視にて評価した。評価は各例について3個の試験片について行い、以下の基準に従って評価した。
 A:3個の試験片のいずれにも変形がない。
 B:1~2個の試験片に変形がある。
 C:3個の試験片全てに変形がある。
<Reflow resistance of resin film>
The stretched films, which are the resin films obtained in Examples 1 to 9 and Comparative Examples 1 and 2, were cut out at 5 cm square and a 0.8 mm thick copper-clad laminate (manufactured by Panasonic Corporation, “R- 1766 ") and affixed four sides with polyimide tape to obtain a test piece. Appearance of the test piece after putting it in a small reflow furnace (manufactured by Antom, “HAS-6116H”) according to J-STD-020C and setting the peak temperature at 260 ° C. Was visually evaluated. Evaluation was performed on three test pieces for each example, and evaluation was performed according to the following criteria.
A: There is no deformation in any of the three test pieces.
B: There are deformations in 1 to 2 test pieces.
C: All three specimens are deformed.
<樹脂フィルムのガス発生量>
 実施例1~9、比較例1~2で得られた樹脂フィルムである延伸フィルム0.5mgを、温度23℃,湿度60%の恒温恒湿槽内に24時間以上静置した後、秤量して、初期質量W0を得た。そして、かかる延伸フィルムを、加熱発生ガス質量分析装置(昇温脱離ガス分析装置)にてヘリウム気流下、昇温速度10℃/minにて、室温~300℃迄分析した。樹脂フィルムの初期質量を100質量%として、水に由来する質量数18(m/z)の成分の量が占める割合を算出し、以下の基準により評価した。
 A:0.5質量%未満
 B:0.5質量%以上
<Gas generation amount of resin film>
0.5 mg of the stretched film, which is the resin film obtained in Examples 1 to 9 and Comparative Examples 1 and 2, was allowed to stand in a constant temperature and humidity chamber at 23 ° C. and 60% humidity for 24 hours or more, and then weighed. Thus, an initial mass W0 was obtained. Then, the stretched film was analyzed from a room temperature to 300 ° C. at a temperature rising rate of 10 ° C./min under a helium stream with a heat generation gas mass spectrometer (temperature desorption gas analyzer). When the initial mass of the resin film was 100% by mass, the proportion of the component having a mass number of 18 (m / z) derived from water was calculated and evaluated according to the following criteria.
A: Less than 0.5% by mass B: 0.5% by mass or more
<ヘイズ(曇り度)>
 実施例10~15で得られた延伸フィルムから、50mm×50mmの正方形薄膜サンプルを切り出し、ヘイズメーター(日本電色工業社製、「NDH5000」)を用いて、曇り度(散乱光/全光線透過光×100(%))の値を得た。
<Haze (cloudiness)>
A 50 mm × 50 mm square thin film sample was cut out from the stretched films obtained in Examples 10 to 15, and the haze (Nippon Denshoku Industries Co., Ltd., “NDH5000”) was used to measure the haze (scattered light / total light transmission). Light x 100 (%)) value was obtained.
<線膨張係数>
 実施例10~15で得られた延伸フィルムから、MD(Machine Direction)方向20mm×TD(Transverse Direction)方向4mmの長方形薄膜サンプルを切り出した後、TMA(日立ハイテクサイエンス社製、「TMASS7100」)を用いて、温度範囲40℃~80℃、及び120℃~160℃での線膨張係数(ppm/℃=μm/℃/m)をそれぞれ測定した。
<Linear expansion coefficient>
A rectangular thin film sample of MD (Machine Direction) direction 20 mm × TD (Transverse Direction) direction 4 mm was cut out from the stretched films obtained in Examples 10 to 15, and then TMA (manufactured by Hitachi High-Tech Science Corporation, “TMASS7100”) was used. The linear expansion coefficients (ppm / ° C. = μm / ° C./m) were measured in the temperature ranges of 40 ° C. to 80 ° C. and 120 ° C. to 160 ° C., respectively.
(実施例1)
<ジシクロペンタジエン系開環重合体の調製>
 内部を窒素置換した金属製耐圧反応容器に、トルエン344部、ジシクロペンタジエン(エンド体含有率99%以上)のトルエン溶液(濃度35%)286部(ジシクロペンタジエンとして100部)、1-ヘキセン8部を加え、全容を35℃に加熱した。
 一方、表2に示す重合触媒No.1で示される開環重合触媒であるタングステン錯体0.086部を29部のトルエンに溶解して触媒溶液を調製した。この触媒溶液を前記反応器内に添加し、35℃で1時間、開環重合反応を行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。なお、表2にて、「Me」はメチル基を示す。
(Example 1)
<Preparation of dicyclopentadiene-based ring-opening polymer>
In a metal pressure-resistant reaction vessel purged with nitrogen inside, 344 parts of toluene, 286 parts of a toluene solution (concentration 35% or more) of dicyclopentadiene (end content 99% or more) (100 parts as dicyclopentadiene), 1-hexene 8 parts were added and the whole was heated to 35 ° C.
On the other hand, polymerization catalyst Nos. A catalyst solution was prepared by dissolving 0.086 parts of the tungsten complex, which is the ring-opening polymerization catalyst represented by 1, in 29 parts of toluene. This catalyst solution was added to the reactor and a ring-opening polymerization reaction was performed at 35 ° C. for 1 hour to obtain a solution containing a dicyclopentadiene-based ring-opening polymer. In Table 2, “Me” represents a methyl group.
 得られたジシクロペンタジエン系開環重合体を含む溶液667部に、停止剤として、2-プロパノール1.1部を加えて、重合反応を停止させた。
 この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は24,600、数平均分子量(Mn)は8,600、分子量分布(Mw/Mn)は2.86であった。
To 667 parts of the solution containing the obtained dicyclopentadiene ring-opening polymer, 1.1 parts of 2-propanol was added as a terminator to stop the polymerization reaction.
A part of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 24,600, the number average molecular weight (Mn) was 8,600, and the molecular weight distribution (Mw / Mn) was 2.86.
<開環重合体の水素化>
 得られたジシクロペンタジエン系開環重合体を含む反応液を、攪拌機、温調ジャケット付きの金属製耐圧容器に移送した後、トルエン330部、水素化触媒としてのカルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム0.027部を添加した。次いで全容を回転数64rpmで撹拌しながら、水素圧2.0MPa、120℃まで昇温・昇圧し、さらに0.03MPa/minで4.0MPaまで、1℃/minで180℃まで昇温・昇圧を行った後に6時間水素添加反応を行なった。冷却後の反応液は、固形分が析出したスラリー液であった。
 反応液を遠心分離することにより、固形分と溶液とを分離し、固形分を、120℃で24時間減圧乾燥し、ジシクロペンタジエン系開環重合体水素化物90部を得た。
 得られたジシクロペンタジエン系開環重合体水素化物の水素化率は99.5%、融点は276℃、ラセモダイアッドの割合(即ち、シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
<Hydrogenation of ring-opening polymer>
After the resulting reaction solution containing the dicyclopentadiene-based ring-opening polymer was transferred to a metal pressure vessel equipped with a stirrer and a temperature control jacket, 330 parts of toluene, carbonylchlorohydridotris (triphenylphosphine) as a hydrogenation catalyst ) 0.027 part of ruthenium was added. Next, while stirring the whole volume at a rotational speed of 64 rpm, the temperature was increased to 120 MPa at a hydrogen pressure of 2.0 MPa, further increased to 4.0 MPa at 0.03 MPa / min, and increased to 180 ° C. at 1 ° C./min. Then, a hydrogenation reaction was performed for 6 hours. The reaction liquid after cooling was a slurry liquid in which a solid content was deposited.
The reaction solution was centrifuged to separate the solid content and the solution, and the solid content was dried under reduced pressure at 120 ° C. for 24 hours to obtain 90 parts of a dicyclopentadiene ring-opening polymer hydride.
The hydrogenation rate of the obtained dicyclopentadiene ring-opening polymer hydride was 99.5%, the melting point was 276 ° C., and the ratio of racemodyad (ie, syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
<樹脂材料の調製>
 上記のようにして得られたジシクロペンタジエン系開環重合体水素化物20部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、製品名「イルガノックス(登録商標)1010」、BASFジャパン社製)0.16部を混合した後、混合物を二軸押出し機(TEM-37B、東芝機械社製)に投入し、熱溶融押出し成形により、ストランド状の成形体を得た。その後、かかるストランド状の成形体をストランドカッターにて細断し、ジシクロペンタジエン系開環重合体水素化物を含む樹脂材料であるペレットを得た。
 二軸押出し機の運転条件を、以下に示す。
・バレル設定温度:280~290℃
・ダイ設定温度:260℃
・スクリュー回転数:145rpm
・フィーダー回転数:50rpm
<Preparation of resin material>
20 parts of the dicyclopentadiene ring-opening polymer hydride obtained as described above was added with an antioxidant (tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl). ) Propionate] After mixing 0.16 parts of methane, product name “Irganox (registered trademark) 1010” (manufactured by BASF Japan), the mixture was put into a twin screw extruder (TEM-37B, manufactured by Toshiba Machine Co., Ltd.). A strand-like molded body was obtained by hot melt extrusion molding. Thereafter, the strand-shaped molded body was chopped with a strand cutter to obtain pellets which are resin materials containing a dicyclopentadiene ring-opening polymer hydride.
The operating conditions of the twin screw extruder are shown below.
・ Barrel set temperature: 280 ~ 290 ℃
・ Die setting temperature: 260 ℃
・ Screw speed: 145rpm
・ Feeder rotation speed: 50 rpm
<樹脂フィルム(無延伸)の製造>
 上記に従って得られた樹脂材料(ペレット)を、Tダイを備える熱溶融押出しフィルム成形機(Optical Control Systems社製、製品名「Measuring Extruder Type Me-20/2800V3」)を用いて、幅130mmのフィルムを1m/分の速度でロールに巻き取ることで、厚さ100μmのジシクロペンタジエン系開環重合体水素化物を含む樹脂フィルムである無延伸フィルムを得た。
 フィルム成形機の運転条件を、以下に示す。
・バレル温度設定:290℃~300℃
・ダイ温度:280℃
・スクリュー回転数:35rpm
<Manufacture of resin film (non-stretched)>
The resin material (pellet) obtained in accordance with the above was formed into a film having a width of 130 mm using a hot melt extrusion film forming machine (manufactured by Optical Control Systems, product name “Measuring Extruder Type Me-20 / 2800V3”) equipped with a T-die. Was wound on a roll at a speed of 1 m / min to obtain an unstretched film which is a resin film containing a hydrogenated dicyclopentadiene ring-opening polymer having a thickness of 100 μm.
The operating conditions of the film forming machine are shown below.
・ Barrel temperature setting: 290 ℃ ~ 300 ℃
-Die temperature: 280 ° C
-Screw rotation speed: 35rpm
<樹脂フィルム(延伸)の製造>
 上記に従って得られた樹脂フィルム(無延伸フィルム)を120mm角に切り出し、多槽式二軸延伸複屈折配向軸測定装置(ヱトー社製)にて、同時2軸延伸処理及び熱固定処理を行うことにより、厚さ25μmのジシクロペンタジエン系開環重合体水素化物を含む樹脂フィルムであるジシクロペンタジエン系開環重合体水素化物の延伸フィルムを得た。
 多槽式二軸延伸複屈折配向軸測定装置の運転条件を、以下に示す。
・延伸速度:15mm/sec
・延伸温度:130℃
・延伸倍率:MD(Machine Direction)方向2倍、TD(Transverse Direction)方向2倍
・熱固定温度:220℃
・熱固定時間:60秒
<Manufacture of resin film (stretched)>
A resin film (non-stretched film) obtained in accordance with the above is cut into a 120 mm square, and simultaneously biaxially stretched and heat-fixed with a multi-tank biaxially stretched birefringence-orientation axis measuring device (manufactured by Saito) Thus, a stretched film of a dicyclopentadiene ring-opening polymer hydride, which is a resin film containing a 25 μm thick dicyclopentadiene ring-opening polymer hydride, was obtained.
The operating conditions of the multi-tank biaxial stretching birefringence orientation axis measuring device are shown below.
-Stretching speed: 15mm / sec
-Stretching temperature: 130 ° C
-Stretch ratio: MD (Machine Direction) direction double, TD (Transverse Direction) direction double-Heat setting temperature: 220 ° C
・ Heat setting time: 60 seconds
(実施例2)
 <開環重合体の水素化>工程における水素添加反応を185℃で行ったこと以外は実施例1と同様にして、ジシクロペンタジエン系開環重合体水素化物27.2部を得た。
 ジシクロペンタジエン系開環重合体水素化物の水素化率は99.2%、融点は272℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(Example 2)
<Hydrogenation of ring-opening polymer> In the same manner as in Example 1 except that the hydrogenation reaction in the step was performed at 185 ° C., 27.2 parts of a dicyclopentadiene-based ring-opening polymer hydride was obtained.
The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.2%, the melting point was 272 ° C., and the ratio (syndiotacticity) of racemodyad was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 <開環重合体の水素化>工程水素添加反応を190℃で行ったこと以外は実施例1と同様にして、ジシクロペンタジエン系開環重合体水素化物26.9部を得た。
 ジシクロペンタジエン系開環重合体水素化物の水素化率は98.6%、融点は269℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(Example 3)
<Hydrogenation of ring-opening polymer> Step 26.9 parts of a dicyclopentadiene-based ring-opening polymer hydride was obtained in the same manner as in Example 1 except that the hydrogenation reaction was performed at 190 ° C.
The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 98.6%, the melting point was 269 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
<ジシクロペンタジエン系開環重合体の調製>工程において、25℃で5時間、開環重合反応を行った以外は、実施例1と同様に行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は23,600、数平均分子量(Mn)は8,700、分子量分布(Mw/Mn)は2.71であった。同様に以降の工程を行い、ジシクロペンタジエン系開環重合体水素化物26.9部を得た。ジシクロペンタジエン系開環重合体水素化物の水素化率は99.4%、融点は276℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
Example 4
<Preparation of dicyclopentadiene-based ring-opening polymer> In the step, except that the ring-opening polymerization reaction was performed at 25 ° C. for 5 hours, a solution containing the dicyclopentadiene-based ring-opening polymer was performed in the same manner as in Example 1. Got. A part of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 23,600, the number average molecular weight (Mn) was 8,700, and the molecular weight distribution (Mw / Mn) was 2.71. Similarly, the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride. The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.4%, the melting point was 276 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例5)
<ジシクロペンタジエン系開環重合体の調製>工程において、80℃で1時間、開環重合反応を行った以外は、実施例1と同様に行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は26,100、数平均分子量(Mn)は8,100、分子量分布(Mw/Mn)は3.22であった。同様に以降の工程を行い、ジシクロペンタジエン系開環重合体水素化物26.9部を得た。ジシクロペンタジエン系開環重合体水素化物の水素化率は99.5%、融点は276℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(Example 5)
<Preparation of dicyclopentadiene-based ring-opening polymer> In the step, except that the ring-opening polymerization reaction was performed at 80 ° C. for 1 hour, a solution containing the dicyclopentadiene-based ring-opening polymer was performed in the same manner as in Example 1. Got. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 26,100, the number average molecular weight (Mn) was 8,100, and the molecular weight distribution (Mw / Mn) was 3.22. Similarly, the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride. The hydrogenation rate of the dicyclopentadiene-based ring-opening polymer hydride was 99.5%, the melting point was 276 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例6)
<ジシクロペンタジエン系開環重合体の調製>工程において、表2に示す重合触媒No.2であるタングステン錯体0.100部を用いて開環重合反応を行った以外は、実施例1と同様に行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は24,300、数平均分子量(Mn)は8,200、分子量分布(Mw/Mn)は2.96であった。得られた溶液を2‐プロパノール2000部に混合して凝固し、濾別・乾燥してジシクロペンタジエン系開環重合体99部を得た。
(Example 6)
<Preparation of dicyclopentadiene-based ring-opening polymer> In the step, polymerization catalyst No. 1 shown in Table 2 was prepared. Except that the ring-opening polymerization reaction was carried out using 0.100 part of the tungsten complex of 2, a solution containing a dicyclopentadiene-based ring-opening polymer was obtained in the same manner as in Example 1. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 24,300, the number average molecular weight (Mn) was 8,200, and the molecular weight distribution (Mw / Mn) was 2.96. The obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
<開環重合体の水素化>
 ガラス製フラスコに、ジシクロペンタジエン系開環重合体30.0部と、水素化剤であるパラトルエンスルホニルヒドラジド170部と、パラキシレン600部とを混合し、乾燥窒素雰囲気下にて120℃に加温し、4時間反応させた。反応液は、固形分が析出したスラリー液であった。反応液を遠心分離することにより、固形分と溶液とを分離し、固形分を60℃で24時間減圧乾燥し、ジシクロペンタジエン系開環重合体水素化物27.0部を得た。
 得られたジシクロペンタジエン系開環重合体水素化物の水素化率は99.4%、融点は284℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
<Hydrogenation of ring-opening polymer>
In a glass flask, 30.0 parts of a dicyclopentadiene-based ring-opening polymer, 170 parts of paratoluenesulfonyl hydrazide as a hydrogenating agent, and 600 parts of paraxylene are mixed and heated to 120 ° C. in a dry nitrogen atmosphere. Warmed and allowed to react for 4 hours. The reaction liquid was a slurry liquid in which a solid content was deposited. The reaction solution was centrifuged to separate the solid and the solution, and the solid was dried under reduced pressure at 60 ° C. for 24 hours to obtain 27.0 parts of a dicyclopentadiene ring-opening polymer hydride.
The hydrogenation rate of the obtained dicyclopentadiene ring-opening polymer hydride was 99.4%, the melting point was 284 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例7)
表2に示す重合触媒No.3であるタングステン錯体0.100部を用いて開環重合反応を行った以外は、実施例6と同様に行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は25,000、数平均分子量(Mn)は8,500、分子量分布(Mw/Mn)は2.94であった。得られた溶液を2‐プロパノール2000部に混合して凝固し、濾別・乾燥してジシクロペンタジエン系開環重合体99部を得た。
同様に以降の工程を行い、ジシクロペンタジエン系開環重合体水素化物26.9部を得た。ジシクロペンタジエン系開環重合体水素化物の水素化率は99.6%、融点は286℃、ラセモダイアッドの割合(シンジオタクティシティー)は99%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(Example 7)
Polymerization catalyst no. 3 was carried out in the same manner as in Example 6 except that 0.100 part of the tungsten complex 3 was used to obtain a solution containing a dicyclopentadiene ring-opening polymer. A part of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 25,000, the number average molecular weight (Mn) was 8,500, and the molecular weight distribution (Mw / Mn) was 2.94. The obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
Similarly, the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride. The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.6%, the melting point was 286 ° C., and the ratio of racemodyad (syndiotacticity) was 99%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例8)
 表2に示す重合触媒No.4であるタングステン錯体0.100部を用いて開環重合反応を行った以外は、実施例6と同様に行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は23,900、数平均分子量(Mn)は8,200、分子量分布(Mw/Mn)は2.91であった。得られた溶液を2‐プロパノール2000部に混合して凝固し、濾別・乾燥してジシクロペンタジエン系開環重合体99部を得た。
 同様に以降の工程を行い、ジシクロペンタジエン系開環重合体水素化物26.9部を得た。ジシクロペンタジエン系開環重合体水素化物の水素化率は99.5%、融点は285℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(Example 8)
Polymerization catalyst no. Except that the ring-opening polymerization reaction was carried out using 0.100 part of the tungsten complex of 4, a solution containing a dicyclopentadiene-based ring-opening polymer was obtained in the same manner as in Example 6. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 23,900, the number average molecular weight (Mn) was 8,200, and the molecular weight distribution (Mw / Mn) was 2.91. The obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
Similarly, the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride. The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.5%, the melting point was 285 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例9)
 表2に示す重合触媒No.5であるタングステン錯体0.100部を用いて開環重合反応を行った以外は、実施例6と同様に行い、ジシクロペンタジエン系開環重合体を含む溶液を得た。この溶液の一部を用いて、ジシクロペンタジエン系開環重合体の分子量を測定したところ、重量平均分子量(Mw)は25,300、数平均分子量(Mn)は8,400、分子量分布(Mw/Mn)は3.01であった。得られた溶液を2‐プロパノール2000部に混合して凝固し、濾別・乾燥してジシクロペンタジエン系開環重合体99部を得た。
 同様に以降の工程を行い、ジシクロペンタジエン系開環重合体水素化物26.9部を得た。ジシクロペンタジエン系開環重合体水素化物の水素化率は99.2%、融点は287℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。また、示差走査熱量計(DSC)を用いて、得られたジシクロペンタジエン系開環重合体水素化物のガラス転移温度が90℃以上120℃以下であることを確認した。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
Example 9
Polymerization catalyst no. Except that the ring-opening polymerization reaction was performed using 0.100 part of the tungsten complex of 5, a solution containing a dicyclopentadiene-based ring-opening polymer was obtained in the same manner as in Example 6. A portion of this solution was used to measure the molecular weight of the dicyclopentadiene-based ring-opening polymer. The weight average molecular weight (Mw) was 25,300, the number average molecular weight (Mn) was 8,400, and the molecular weight distribution (Mw / Mn) was 3.01. The obtained solution was mixed with 2000 parts of 2-propanol, solidified, filtered and dried to obtain 99 parts of a dicyclopentadiene ring-opening polymer.
Similarly, the subsequent steps were performed to obtain 26.9 parts of a dicyclopentadiene ring-opening polymer hydride. The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.2%, the melting point was 287 ° C., and the ratio of racemodyad (syndiotacticity) was 100%. Moreover, it confirmed that the glass transition temperature of the obtained dicyclopentadiene type ring-opening polymer hydride was 90 degreeC or more and 120 degrees C or less using the differential scanning calorimeter (DSC).
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 <開環重合体の水素化>工程における水素添加反応を190℃で4時間行ったこと以外は実施例1と同様にして、ジシクロペンタジエン系開環重合体水素化物25.4部を得た。ジシクロペンタジエン系開環重合体水素化物の水素化率は97.8%、融点は265℃、ラセモダイアッドの割合(シンジオタクティシティー)は100%であった。
 そして、得られたジシクロペンタジエン系開環重合体水素化物を、実施例1と同様に処理して、ジシクロペンタジエン系開環重合体水素化物のペレット、無延伸フィルム、延伸フィルムを得た。そして、実施例1と同様にして各種測定及び評価を行った。結果を表1に示す。
(Comparative Example 1)
<Hydrogenation of ring-opening polymer> 25.4 parts of a dicyclopentadiene ring-opening polymer hydride was obtained in the same manner as in Example 1 except that the hydrogenation reaction in the step was performed at 190 ° C. for 4 hours. . The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 97.8%, the melting point was 265 ° C., and the ratio (syndiotacticity) of racemodyad was 100%.
The obtained dicyclopentadiene ring-opening polymer hydride was treated in the same manner as in Example 1 to obtain dicyclopentadiene ring-opening polymer hydride pellets, an unstretched film, and a stretched film. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 以下のようにして、シンジオタクティシティーが89%、水素化率が99.5%のジシクロペンタジエン系開環重合体水素化物を調製した。
(Comparative Example 2)
A dicyclopentadiene ring-opening polymer hydride having a syndiotacticity of 89% and a hydrogenation rate of 99.5% was prepared as follows.
<ジシクロペンタジエン系開環重合体の調製>
 濃度19%のジエチルアルミニウムエトキシドのn-ヘキサン溶液0.3部、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体(表2に示す重合触媒No.6)0.1部を3部のトルエンに溶解させて触媒溶液を得た。
 一方、内部を十分に乾燥し、窒素で置換した、攪拌機、温調ジャケット付きの金属製反応器(住友重機械工業社製)に、シクロヘキサン350部、1-ヘキセン6.4部、濃度70%のジシクロペンタジエン(エンド体含有率99%以上)のシクロヘキサン溶液145部を入れ、全容を50℃に昇温した。そこへ、前記触媒溶液を加えて、開環重合反応を開始させた。
 全容を55℃に保ちながら270分攪拌した後、メタノール1.5部を加え、開環重合反応を停止させた。なお、重合反応液にメタノールを添加することで、触媒分を不溶化させる効果も得られる。
 得られた重合反応液に含まれるジシクロペンタジエン系開環重合体の重量平均分子量(Mw)は28,700、数平均分子量(Mn)は9570、分子量分布(Mw/Mn)は3.0であった。
<Preparation of dicyclopentadiene-based ring-opening polymer>
Dissolve 0.3 parts of n-hexane solution of 19% diethylaluminum ethoxide and 0.1 part of tetrachlorotungstenphenylimide (tetrahydrofuran) complex (polymerization catalyst No. 6 shown in Table 2) in 3 parts of toluene. Thus, a catalyst solution was obtained.
On the other hand, 350 parts of cyclohexane, 6.4 parts of 1-hexene, and a concentration of 70% were added to a metal reactor (Sumitomo Heavy Industries, Ltd.) equipped with a stirrer and a temperature control jacket, the inside of which was sufficiently dried and replaced with nitrogen. 145 parts of a cyclohexane solution of dicyclopentadiene (endo content rate of 99% or more) was added, and the whole volume was heated to 50 ° C. The catalyst solution was added thereto to initiate a ring-opening polymerization reaction.
After stirring the whole volume at 55 ° C. for 270 minutes, 1.5 parts of methanol was added to stop the ring-opening polymerization reaction. In addition, the effect which insolubilizes a catalyst part is also acquired by adding methanol to a polymerization reaction liquid.
The weight average molecular weight (Mw) of the dicyclopentadiene ring-opening polymer contained in the obtained polymerization reaction solution is 28,700, the number average molecular weight (Mn) is 9570, and the molecular weight distribution (Mw / Mn) is 3.0. there were.
 得られた重合反応液に、濾過助剤として珪藻土(昭和化学工業社製、ラヂオライト#1500)1部を加えた。この懸濁液に対して、リーフフィルター(IHI社製、CFR2)にて濾過処理を行い、不溶化した触媒分を珪藻土とともに濾別し、ジシクロペンタジエン系開環重合体の溶液を得た。 1 part of diatomaceous earth (manufactured by Showa Chemical Industry Co., Ltd., Radiolite # 1500) was added to the resulting polymerization reaction liquid as a filter aid. This suspension was subjected to filtration with a leaf filter (CFR2 manufactured by IHI), and the insolubilized catalyst was separated with diatomaceous earth to obtain a dicyclopentadiene ring-opening polymer solution.
<開環重合体の水素化>
 上記に従って得たジシクロペンタジエン系開環重合体の溶液を、攪拌機、温調ジャケット付きの反応器(住友重機械工業社製)に移送した後、ジシクロペンタジエン系開環重合体の濃度が9%になるようにシクロヘキサン600部、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム0.1部を加えた。次いで、全容を回転数64rpmで攪拌しながら、水素圧4MPa、温度180℃にて6時間水素化反応を行い、ジシクロペンタジエン系開環重合体水素化物の粒子を含有するスラリーを得た。
 このようにして得られたスラリーを遠心分離することにより、固形分と溶液とを分離し、固形分を、60℃で24時間減圧乾燥し、ジシクロペンタジエン系開環重合体水素化物27.0部を得た。
 ジシクロペンタジエン系開環重合体水素化物の水素化率は99.5%、融点は265℃、ラセモダイアッドの割合(シンジオタクティシティー)は89%であった。
<Hydrogenation of ring-opening polymer>
After the dicyclopentadiene ring-opening polymer solution obtained in accordance with the above was transferred to a reactor equipped with a stirrer and a temperature control jacket (manufactured by Sumitomo Heavy Industries, Ltd.), the concentration of the dicyclopentadiene ring-opening polymer was 9 %, Cyclohexane 600 parts and carbonylchlorohydridotris (triphenylphosphine) ruthenium 0.1 part were added. Next, while stirring the whole volume at a rotational speed of 64 rpm, a hydrogenation reaction was performed at a hydrogen pressure of 4 MPa and a temperature of 180 ° C. for 6 hours to obtain a slurry containing dicyclopentadiene ring-opening polymer hydride particles.
The slurry thus obtained is centrifuged to separate the solid and the solution, and the solid is dried under reduced pressure at 60 ° C. for 24 hours to obtain a dicyclopentadiene ring-opening polymer hydride 27.0. Got a part.
The hydrogenation rate of the dicyclopentadiene ring-opening polymer hydride was 99.5%, the melting point was 265 ° C., and the ratio of racemodyad (syndiotacticity) was 89%.
<樹脂材料の調製>
 二軸押出し機の運転時に、バレル設定温度を270~280℃とし、ダイ設定温度を250℃とした以外は、実施例1と同様にして、ペレットを得た。
<Preparation of resin material>
Pellets were obtained in the same manner as in Example 1 except that the barrel set temperature was 270 to 280 ° C. and the die set temperature was 250 ° C. during the operation of the twin screw extruder.
<樹脂フィルム(無延伸)の製造>
 フィルム成形機の運転条件を、以下に示す通りに変更した以外は、実施例1と同様にして、無延伸フィルムを得た。得られた無延伸フィルムについて、上記に従って引張強度及び破断伸びを測定した。結果を表1に示す。
 ・バレル温度設定:280℃~290℃
 ・ダイ温度:270℃
 ・スクリュー回転数:30rpm
<Manufacture of resin film (non-stretched)>
An unstretched film was obtained in the same manner as in Example 1 except that the operating conditions of the film forming machine were changed as shown below. About the obtained unstretched film, the tensile strength and breaking elongation were measured according to the above. The results are shown in Table 1.
・ Barrel temperature setting: 280 ℃ ~ 290 ℃
-Die temperature: 270 ° C
-Screw rotation speed: 30rpm
<樹脂フィルム(延伸)の製造>
 実施例1と同じ操作をして、延伸フィルムを得た。得られた延伸フィルムについて、リフロー耐性及びガス発生量を評価した。結果を表1に示す。
<Manufacture of resin film (stretched)>
The same operation as in Example 1 was performed to obtain a stretched film. About the obtained stretched film, reflow resistance and gas generation amount were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1より明らかなように、シンジオタクティシティーが100%であり、且つ、水素化率が98.0%以上である実施例1~3のジシクロペンタジエン系開環重合体水素化物によれば、強度及び延性が高いレベルで両立された樹脂成形体等を形成可能であったことが分かる。従って、本発明のジシクロペンタジエン系開環重合体水素化物は、各種樹脂成形体及びフィルム等の製造に好適に利用することができる。また、実施例1~3で製造した、シンジオタクティシティーが100%であり、水素化率が98.0%以上であるジシクロペンタンジエン系開環重合体水素化物を含む二軸延伸フィルムは、リフロー耐性に優れるとともに、フィルムからのガス発生量が少ないため、特に電気・電子用材料として有用である。 As is clear from Table 1, according to the dicyclopentadiene ring-opening polymer hydrides of Examples 1 to 3 having a syndiotacticity of 100% and a hydrogenation rate of 98.0% or more. It can be seen that it was possible to form a resin molded body and the like that are compatible at a high level of strength and ductility. Therefore, the dicyclopentadiene ring-opening polymer hydride of the present invention can be suitably used for the production of various resin molded products and films. In addition, the biaxially stretched film containing a dicyclopentanediene ring-opening polymer hydride produced in Examples 1 to 3 and having a syndiotacticity of 100% and a hydrogenation rate of 98.0% or more is In addition to being excellent in reflow resistance, the amount of gas generated from the film is small, so that it is particularly useful as an electrical / electronic material.
(実施例10)
 実施例1と同様にして作製した、無延伸の樹脂フィルム(未延伸フィルム)を、下記のような延伸工程、及び熱固定処理工程に供することで、延伸フィルムを得た。得られた延伸フィルムについて、上記に従ってヘイズ、引張強度、破断伸び、及び線膨張係数を測定した。結果を表3に示す。
<延伸工程及び熱固定処理工程>
 上記に従って得られた未延伸フィルムを120mm角に切り出し、多槽式二軸延伸複屈折配向軸測定装置(ヱトー社製)にて、下記条件に従う延伸工程と、熱固定処理工程とをこの順で実施した。その結果、厚さ25μmのジシクロペンタジエン系開環重合体水素化物を含む樹脂フィルムであるジシクロペンタジエン系開環重合体水素化物の延伸フィルムを得た。
-延伸工程
・同時2軸延伸処理
・延伸速度:3.3mm/sec
・延伸温度:100℃
・延伸倍率:MD(Machine Direction)方向2倍、TD(Transverse Direction)方向2倍
-熱固定処理工程
・熱固定温度:220℃
・熱固定時間:30秒
(Example 10)
A stretched film was obtained by subjecting an unstretched resin film (unstretched film) produced in the same manner as in Example 1 to a stretching process and a heat setting treatment process as described below. About the obtained stretched film, haze, tensile strength, breaking elongation, and linear expansion coefficient were measured according to the above. The results are shown in Table 3.
<Extension process and heat setting process>
The unstretched film obtained according to the above was cut into 120 mm squares, and a stretching process according to the following conditions and a heat setting treatment process were performed in this order using a multi-tank biaxial stretching birefringence orientation axis measuring device (manufactured by Saitoh). Carried out. As a result, a stretched film of dicyclopentadiene ring-opening polymer hydride, which is a resin film containing 25 μm thick dicyclopentadiene ring-opening polymer hydride, was obtained.
-Stretching process, simultaneous biaxial stretching process, stretching speed: 3.3 mm / sec
-Stretching temperature: 100 ° C
-Stretch ratio: MD (Machine Direction) direction double, TD (Transverse Direction) direction double-heat setting treatment process-Heat setting temperature: 220 ° C
・ Heat setting time: 30 seconds
(実施例11~15)
 延伸工程における延伸温度、延伸速度、及び熱固定処理工程における熱固定温度を、それぞれ表3に示す通りに変更した以外は、実施例10と同様にして、延伸フィルムを得て、各種測定を行った。結果を表3に示す。
(Examples 11 to 15)
A stretched film was obtained and subjected to various measurements in the same manner as in Example 10, except that the stretching temperature, stretching speed, and heat setting temperature in the heat setting treatment step were changed as shown in Table 3, respectively. It was. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例10~15にて、シンジオタクティシティーが100%であり、且つ、水素化率が98.0%以上であるジシクロペンタジエン系開環重合体水素化物を用いて形成した未延伸フィルムを、95℃以上130℃以下の延伸温度で延伸処理することで、延伸フィルムを良好に製造可能であることを確認した。特に、表3より、延伸温度を調節することにより、得られる延伸フィルムにヘイズが生じることを効果的に抑制し得ることが分かる。 In Examples 10 to 15, an unstretched film formed using a dicyclopentadiene ring-opening polymer hydride having a syndiotacticity of 100% and a hydrogenation rate of 98.0% or more. It was confirmed that a stretched film could be produced satisfactorily by stretching at a stretching temperature of 95 ° C. or higher and 130 ° C. or lower. In particular, Table 3 shows that by adjusting the stretching temperature, it is possible to effectively suppress the occurrence of haze in the resulting stretched film.
 本発明によれば、強度及び延性が高いレベルで両立された樹脂成形体等を形成可能な、ジシクロペンタジエン系開環重合体水素化物を提供することができる。
 さらに、本発明によれば、強度及び延性が高いレベルで両立された樹脂フィルム、樹脂成形体を提供することができる。
 そして、本発明によれば、強度及び延性が高いレベルで両立された樹脂フィルムを用いて、延伸フィルムを良好に製造し得る、延伸フィルムの製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the dicyclopentadiene type ring-opening polymer hydride which can form the resin molded object etc. which were compatible in the intensity | strength and ductility high level can be provided.
Furthermore, according to the present invention, it is possible to provide a resin film and a resin molded body that are compatible at a high level of strength and ductility.
And according to this invention, the manufacturing method of a stretched film which can manufacture a stretched film satisfactorily can be provided using the resin film in which intensity | strength and ductility were compatible in the high level.

Claims (8)

  1.  シンジオタクティシティーが99%以上、且つ、水素化率が98.0%以上である、ジシクロペンタジエン系開環重合体水素化物。 A dicyclopentadiene ring-opening polymer hydride having a syndiotacticity of 99% or more and a hydrogenation rate of 98.0% or more.
  2.  水素化率が99.0%以上である、請求項1に記載のジシクロペンタジエン系開環重合体水素化物。 The dicyclopentadiene ring-opening polymer hydride according to claim 1, wherein the hydrogenation rate is 99.0% or more.
  3.  請求項1又は2に記載されたジシクロペンタジエン系開環重合体水素化物を含有する、樹脂成形体。 A resin molded article containing the hydride of the dicyclopentadiene ring-opening polymer according to claim 1 or 2.
  4.  請求項1又は2に記載されたジシクロペンタジエン系開環重合体水素化物を含有する、樹脂フィルム。 A resin film containing the dicyclopentadiene ring-opening polymer hydride according to claim 1 or 2.
  5.  加熱発生ガス質量分析法により測定した、室温~300℃までの間に発生した質量数18(m/z)に帰属する気体の発生量が、樹脂フィルムの初期質量を100質量%として、0.5質量%未満である、請求項4に記載の樹脂フィルム。 The amount of gas attributed to a mass number of 18 (m / z) generated between room temperature and 300 ° C. measured by a heat generation gas mass spectrometry method is set to 0.1%, assuming that the initial mass of the resin film is 100% by mass. The resin film of Claim 4 which is less than 5 mass%.
  6.  以下の一般式(α)で表される開環重合触媒を用いて、ジシクロペンタジエンを含む単量体を開環重合して、ジシクロペンタジエン系開環重合体を得る開環重合工程と、
     前記ジシクロペンタジエン系開環重合体を水素化して、水素化率が98.0%以上であるジシクロペンタジエン系開環重合体水素化物を得る水素化工程と、
    を含む、ジシクロペンタジエン系開環重合体水素化物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(α)中、Phはフェニル基を示し、R1、R2は、それぞれ独立して、炭素数1~6の一価の直鎖状、分岐鎖状、又は環状の炭化水素基を示し;Xは、水素原子、ハロゲン原子、ニトロ基、アミノ基、又はシアノ基を示し、また、nは0~5の整数を示すとともに、nが1以上の整数の場合には、複数のXは同一であっても相異なっていても良く;Yは、C(R324を示し(ここで、それぞれのR3は、独立して、-R5、-OR5、-SR5、-N(R5、-OC(O)R5、-S(O)R5、-SO5、-SON(R5、-C(O)N(R5、-NR5C(O)R5、又は-NR5SO5であり、さらにここで、それぞれのR5は、独立して、水素、炭素数1~12の直鎖状又は分岐鎖状アルキル基、窒素、酸素、若しくは硫黄から独立して選択される1~3個のヘテロ原子を有する炭素数1~10のヘテロアルキル基、フェニル基、三~七員の飽和若しくは一部不飽和の炭素環、六~十員の二環式の飽和の環、一部不飽和の環、若しくはアリール環、窒素、酸素、若しくは硫黄から独立して選択される1~4個のヘテロ原子を有する五~六員の単環式ヘテロアリール環、窒素、酸素、若しくは硫黄から独立して選択される1~3個のヘテロ原子を有する三~七員の飽和若しくは一部不飽和の複素環、窒素、酸素、若しくは硫黄から独立して選択される1~5個のヘテロ原子を有する七~十員の二環式の飽和若しくは一部不飽和の複素環、及び、窒素、酸素、若しくは硫黄から独立して選択される1~5個のヘテロ原子を有する八~十員の二環式ヘテロアリール環から選択される、任意選択的に置換された基であるか、或いは、任意で、2個のR5が、介在している原子と共に任意選択的に組み合わされ、前記介在している原子に加えて、窒素、酸素、又は硫黄から独立して選択される0~4個のヘテロ原子を有する、任意選択的に置換された三~十員の単環式又は二環式の、飽和の環、一部不飽和の環、又はアリール環を形成してなり;R4は、任意選択的に置換されたフェニル基である。);及び、Zは、窒素、酸素、及び硫黄からなる群より選択される1~4個のヘテロ原子を有する5~14員ヘテロアリール基を示す。]
    A ring-opening polymerization step of obtaining a dicyclopentadiene-based ring-opening polymer by ring-opening polymerization of a monomer containing dicyclopentadiene using a ring-opening polymerization catalyst represented by the following general formula (α);
    Hydrogenating the dicyclopentadiene ring-opening polymer to obtain a hydrogenated dicyclopentadiene ring-opening polymer having a hydrogenation rate of 98.0% or more;
    A process for producing a hydride of a dicyclopentadiene-based ring-opening polymer.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (α), Ph represents a phenyl group, and R 1 and R 2 each independently represents a monovalent linear, branched or cyclic hydrocarbon group having 1 to 6 carbon atoms. X represents a hydrogen atom, a halogen atom, a nitro group, an amino group, or a cyano group, and n represents an integer of 0 to 5, and when n is an integer of 1 or more, a plurality of X May be the same or different; Y represents C (R 3 ) 2 R 4 (wherein each R 3 independently represents —R 5 , —OR 5 , —SR). 5 , —N (R 5 ) 2 , —OC (O) R 5 , —S (O) R 5 , —SO 2 R 5 , —SO 2 N (R 5 ) 2 , —C (O) N (R 5 ) 2 , —NR 5 C (O) R 5 , or —NR 5 SO 2 R 5 , wherein each R 5 is independently hydrogen or a straight chain of 1 to 12 carbon atoms. Or branched alkyl 1 to 10 heteroalkyl groups having 1 to 3 heteroatoms independently selected from the group, nitrogen, oxygen or sulfur, phenyl groups, 3 to 7-membered saturated or partially unsaturated carbons 5 to 5 having 1 to 4 heteroatoms independently selected from a ring, a 6 to 10-membered bicyclic saturated ring, a partially unsaturated ring, or an aryl ring, nitrogen, oxygen, or sulfur 6-membered monocyclic heteroaryl ring, 3- to 7-membered saturated or partially unsaturated heterocycle having 1 to 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, nitrogen, oxygen Or a 7 to 10 membered bicyclic saturated or partially unsaturated heterocycle having 1 to 5 heteroatoms independently selected from sulfur, and independently from nitrogen, oxygen, or sulfur 8 to 10 members with 1 to 5 heteroatoms selected Is selected from the bicyclic heteroaryl ring, or an optionally substituted group, or, optionally, two R 5, optionally in combination with the intervening atoms, said intervening Optionally substituted 3-10 membered monocyclic or bicyclic having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur And R 4 is an optionally substituted phenyl group; and Z is nitrogen, oxygen, and A 5- to 14-membered heteroaryl group having 1 to 4 heteroatoms selected from the group consisting of sulfur is shown. ]
  7.  請求項1又は2に記載されたジシクロペンタジエン系開環重合体水素化物を用いて形成した未延伸フィルムを、95℃以上130℃以下の延伸温度で延伸処理する延伸工程を含む、延伸フィルムの製造方法。 An unstretched film formed using the dicyclopentadiene-based ring-opening polymer hydride according to claim 1 or 2, comprising a stretching step of stretching at a stretching temperature of 95 ° C or higher and 130 ° C or lower. Production method.
  8. 前記延伸工程を経たフィルムを、175℃以上225℃以下の熱固定温度で熱処理する熱固定処理工程を更に含む、請求項7に記載の延伸フィルムの製造方法。 The manufacturing method of the stretched film of Claim 7 which further includes the heat setting process process which heat-processes the film which passed through the said extending process at the heat setting temperature of 175 degreeC or more and 225 degrees C or less.
PCT/JP2018/047290 2018-03-22 2018-12-21 Dicyclopentadiene-based ring-opened polymer hydride, method for producing same, resin molded article, resin film, and method for producing stretched film WO2019181124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507358A JP7218753B2 (en) 2018-03-22 2018-12-21 Dicyclopentadiene-based ring-opening polymer hydride and method for producing same, resin molding, resin film, and method for producing stretched film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054030 2018-03-22
JP2018-054030 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019181124A1 true WO2019181124A1 (en) 2019-09-26

Family

ID=67986906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047290 WO2019181124A1 (en) 2018-03-22 2018-12-21 Dicyclopentadiene-based ring-opened polymer hydride, method for producing same, resin molded article, resin film, and method for producing stretched film

Country Status (2)

Country Link
JP (1) JP7218753B2 (en)
WO (1) WO2019181124A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702436B2 (en) * 2018-03-22 2023-07-18 Verbio Vereinigte Bioenergie Ag Tetraphenylphenoxy tungsten oxo alkylidene complexes and methods of making same and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120699A (en) * 2014-12-25 2016-07-07 日本ゼオン株式会社 Insulating sheet
WO2016143424A1 (en) * 2015-03-09 2016-09-15 日本ゼオン株式会社 Syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride, syndiotactic dicyclopentadiene ring-opening polymer, and production method for these
WO2016143911A1 (en) * 2015-03-09 2016-09-15 Zeon Corporation Hydrogenated syndiotactic norbornene-based ring-opening polymer
JP2017139111A (en) * 2016-02-03 2017-08-10 日本ゼオン株式会社 Secondary battery separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120699A (en) * 2014-12-25 2016-07-07 日本ゼオン株式会社 Insulating sheet
WO2016143424A1 (en) * 2015-03-09 2016-09-15 日本ゼオン株式会社 Syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride, syndiotactic dicyclopentadiene ring-opening polymer, and production method for these
WO2016143911A1 (en) * 2015-03-09 2016-09-15 Zeon Corporation Hydrogenated syndiotactic norbornene-based ring-opening polymer
JP2017139111A (en) * 2016-02-03 2017-08-10 日本ゼオン株式会社 Secondary battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702436B2 (en) * 2018-03-22 2023-07-18 Verbio Vereinigte Bioenergie Ag Tetraphenylphenoxy tungsten oxo alkylidene complexes and methods of making same and use thereof

Also Published As

Publication number Publication date
JP7218753B2 (en) 2023-02-07
JPWO2019181124A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5810679B2 (en) Film production method
JP6398975B2 (en) Stretched film and method for producing the same
JP2009203249A (en) Cyclic olefin polymer film and its preparation method
WO2016067920A1 (en) Resin film and production method for resin film
WO2019181124A1 (en) Dicyclopentadiene-based ring-opened polymer hydride, method for producing same, resin molded article, resin film, and method for producing stretched film
JP6631810B2 (en) Block copolymer hydride and stretched film comprising the same
JP5809895B2 (en) Polyphenylene sulfide foam and method for producing the same
US10351664B2 (en) Resin molded body, resin film, and injection molded article
US10519288B2 (en) Resin molded body manufacturing method, resin film manufacturing method, and injection molded article manufacturing method
JP2021107508A (en) Stretched film and method for producing the same
JP4928126B2 (en) Reinforced phenoxy resin composition and method for producing the same
JP2017125174A (en) Polyphenylene ether resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
JP7294314B2 (en) Capacitor film and manufacturing method thereof
JP6922913B2 (en) Conductive film and its manufacturing method
CN111615452A (en) Laminated film, method for producing same, and polarizing plate
JP7392847B2 (en) Polyarylene sulfide resin composition, biaxially stretched film and laminate using the same
KR102557788B1 (en) optical film
JP2020050745A (en) Film and method for producing the same
JP2021138879A (en) Olefinic resin composition and molded article
JP2006052326A (en) Alicyclic structure polymer and resin composition containing the polymer and optical material using the same
WO2021132040A1 (en) Resin composition, molded article obtained by molding same, and method for producing resin composition
JP2023081543A (en) Polymer composite material
JPH06297558A (en) High strength and heat-resistant film or sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911127

Country of ref document: EP

Kind code of ref document: A1