WO2022091473A1 - Polyarylene sulfide resin composition, and, biaxially stretched film and layered body using same - Google Patents

Polyarylene sulfide resin composition, and, biaxially stretched film and layered body using same Download PDF

Info

Publication number
WO2022091473A1
WO2022091473A1 PCT/JP2021/022024 JP2021022024W WO2022091473A1 WO 2022091473 A1 WO2022091473 A1 WO 2022091473A1 JP 2021022024 W JP2021022024 W JP 2021022024W WO 2022091473 A1 WO2022091473 A1 WO 2022091473A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
resin composition
biaxially stretched
stretched film
Prior art date
Application number
PCT/JP2021/022024
Other languages
French (fr)
Japanese (ja)
Inventor
一範 小橋
啓介 山田
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020237012871A priority Critical patent/KR20230095071A/en
Priority to JP2022527764A priority patent/JP7392847B2/en
Priority to CN202180068936.6A priority patent/CN116367999A/en
Publication of WO2022091473A1 publication Critical patent/WO2022091473A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a polyarylene sulfide resin composition having excellent continuous film formation / stretchability and a low dielectric constant, as well as a biaxially stretched film and a laminate using the same.
  • a film using a polyarylene sulfide resin represented by a polyphenylene sulfide resin (PPS resin) has excellent heat resistance, flame retardancy, chemical resistance, and electrical insulation, so that it is an insulating material for capacitors and motors, and heat resistance. Used for tape. Since the polyarylene sulfide resin has excellent dielectric properties as compared with PI and PET, it can be suitably applied to the fields of FPC and FFC. However, in order to support next-generation high-speed transmission, it is necessary to further reduce the dielectric constant.
  • Patent Document 1 proposes a method in which inorganic particles are contained in a PPS resin to form pores during biaxial stretching.
  • the film described in Patent Document 1 although the effect of lowering the dielectric constant can be sufficiently obtained, the mechanical properties of the film are deteriorated due to the presence of pores. Therefore, although a layer containing no inorganic particles is laminated on the surface layer, sufficient mechanical strength cannot be obtained.
  • Patent Document 2 proposes a resin composition composed of a PPS resin and a fluororesin containing a functional group, in which the dispersed particle size is stabilized before and after retention.
  • the proposals described in these patents have been proposed mainly for injection molding applications, and although stability of viscosity is important for film applications that require continuous extrusion, there is no description. Further, there is no description as a biaxially stretched film having a low dielectric constant.
  • the present invention provides a resin composition having excellent continuous extrusion film forming property and stretchability, having a low dielectric constant and having excellent toughness in the obtained biaxially stretched film, and a laminate using such a film. There is something in it.
  • the present inventors have retained in the resin composition composed of the polyarylene sulfide resin (A) and the fluorine-containing resin (B) having a reactive functional group.
  • the present invention relates to the following (1) to (8).
  • a resin having a continuous phase and a dispersed phase which is made from at least 51 to 95% by mass of a polyarylene sulfide resin (A) and 5 to 49% by mass of a fluororesin (B) having a reactive functional group.
  • the continuous phase contains a polyarylene sulfide resin (A) and contains.
  • the dispersed phase is a polyarylene sulfide resin composition containing a fluorine-containing resin (B) having a reactive functional group.
  • melt flow rate 1 The fluidity of the resin composition after being retained at 330 ° C. for 5 minutes (melt flow rate 1) and the fluidity of the resin composition after being retained at 330 ° C. for 30 minutes (melt flow rate 2).
  • the ratio of melt flow rate 1 to melt flow rate 2 is preferably 0.2 or more and 4.5 or less.
  • the fluorine-containing resin (B) having a reactive functional group is a fluorine-containing resin having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. It is preferable to have.
  • the modified elastomer (C) is preferably made of an olefin polymer having at least one functional group selected from the group consisting of an epoxy group and an acid anhydride group.
  • the film of the present invention is a biaxially stretched film obtained by biaxially stretching the resin composition according to any one of the above items (1) to (6).
  • the laminate of the present invention is a laminate containing the biaxially stretched film according to (7) above and a metal layer arranged on at least one surface of the biaxially stretched film.
  • a resin composition which is excellent in continuous extrusion film forming property and stretchability, and the obtained biaxially stretched film can have low dielectric property and excellent toughness.
  • the resin composition is made from at least a polyarylene sulfide-based resin (hereinafter, may be referred to as "PAS-based resin”) and a fluorine-containing resin having a reactive functional group as raw materials.
  • PAS-based resin polyarylene sulfide-based resin
  • the resin composition has a continuous phase and a dispersed phase, and at this time, the continuous phase contains a polyarylene sulfide-based resin, and the dispersed phase contains a fluorine-containing resin having a reactive functional group.
  • Melt flow rate 1 the melt flow rate referred to here is a measure indicating the fluidity of the resin in a molten state
  • MFR2 A resin composition having a MFR1 / MFR2 ratio of 0.2 or more and 4.5 or less in terms of fluidity (melt flow rate 2, hereinafter, “MFR2”) after staying at 330 ° C. for 30 minutes.
  • MFR1 / MFR2 ratio is larger than 4.5, the reactivity between the PAS-based resin (A) and the fluorine-containing resin (B) having a reactive functional group proceeds, and the thickening of the resin composition is large.
  • the average dispersion diameter of the dispersed phase in the resin composition is 5 ⁇ m or less, preferably 3 ⁇ m or less, and more preferably 0.5 to 3 ⁇ m. When the average dispersion diameter of the dispersed phase is 3 ⁇ m or less, a uniform stretched film can be obtained.
  • the polyarylene sulfide-based resin (A) (PAS-based resin (A)) is the main component of the resin composition and is a component having a function of imparting excellent heat resistance and toughness to the film.
  • the PAS-based resin (A) is a polymer containing a structure in which an aromatic ring and a sulfur atom are bonded (specifically, a structure represented by the following formula (1)) as a repeating unit.
  • R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, and an ethoxy group, and n independently represents each of them. It is an integer of 1 to 4.
  • R 1 in the structure represented by the formula (1) is a hydrogen atom.
  • the structure represented by the formula (1) in which all R 1s are hydrogen atoms is the structure represented by the following formula (2) (that is, the structure in which the sulfur atom is bonded to the aromatic ring at the para position).
  • a structure represented by the following formula (3) that is, a structure in which a sulfur atom is bonded to an aromatic ring at the meta position.
  • the structure represented by the formula (1) is preferably the structure represented by the formula (2).
  • a PAS-based resin (A) having a structure represented by the formula (2) can further improve heat resistance and crystallinity.
  • the PAS-based resin (A) may contain not only the structure represented by the above formula (1) but also the structure represented by the following formulas (4) to (7) as a repeating unit.
  • the structures represented by the formulas (4) to (7) are preferably contained in an amount of 30 mol% or less, more preferably 10 mol% or less, in all the repeating units constituting the PAS-based resin (A). .. With such a configuration, the heat resistance and mechanical strength of the PAS-based resin (A) can be further enhanced. Further, the bonding mode of the structures represented by the formulas (4) to (7) may be either a random shape or a block shape.
  • the PAS-based resin (A) may contain a trifunctional structure represented by the following formula (8), a naphthyl sulfide structure, or the like as a repeating unit in its molecular structure.
  • the structure represented by the formula (8), the naphthyl sulfide structure and the like are preferably contained in an amount of 1 mol% or less, and substantially not contained in all the repeating units constituting the PAS-based resin (A). More preferred. With such a configuration, the content of chlorine atoms in the PAS-based resin (A) can be reduced.
  • the characteristics of the PAS-based resin (A) are not particularly limited as long as the effects of the present invention are not impaired, but the melt viscosity (V6) at 300 ° C. is preferably 50 to 2000 Pa ⁇ s, and further flows. It is more preferably 80 to 1500 Pa ⁇ s because the balance between the properties and the mechanical strength is good.
  • the PAS-based resin (A) has a peak in the molecular weight range of 25,000 to 40,000 as measured by gel permeation chromatography (GPC), and has a weight average molecular weight (Mw) and a number average molecular weight (Mw). It is particularly preferable that the ratio (Mw / Mn) to Mn) is in the range of 5 to 10 and the non-Newton index is in the range of 0.9 to 1.3.
  • the chlorine atom content in the PAS-based resin (A) itself can be reduced to the range of 800 to 2,000 ppm without lowering the mechanical strength of the film, and the halogen can be used. It will be easy to apply to free electronic and electrical component applications.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) adopt the values measured by gel permeation chromatography (GPC), respectively.
  • the measurement conditions of GPC are as follows.
  • the method for producing the PAS-based resin (A) is not particularly limited, but for example, 1) a dihalogeno aromatic compound, if necessary, a polyhalogeno aromatic compound or other copolymerization component in the presence of sulfur and sodium carbonate.
  • a method of polymerizing 2) a method of polymerizing a dihalogeno aromatic compound in the presence of a sulfide agent or the like in a polar solvent, if necessary, by adding a polyhalogeno aromatic compound or other copolymerization component.
  • a method of self-condensing p-chlorthiophenol by adding other copolymerization components if necessary can be mentioned.
  • the method 2) above is general-purpose and preferable.
  • an alkali metal salt of a carboxylic acid or a sulfonic acid or an alkali hydroxide may be added in order to adjust the degree of polymerization.
  • the following method 2-1) or 2-2) is particularly preferable.
  • a hydrous sulfide agent is introduced into a mixture containing a heated organic polar solvent and a dihalogeno aromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogeno fragrance is introduced in the organic polar solvent.
  • the group compound and the sulfidizing agent are added to the polyhalogeno aromatic compound as required and reacted, the water content in the reaction system is adjusted to 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent.
  • the PAS-based resin (A) is produced by controlling the range (see Japanese Patent Application Laid-Open No. 07-228699).
  • a dihalogeno aromatic compound and, if necessary, a polyhalogeno aromatic compound or other copolymerization component are added in the presence of a solid alkali metal sulfide and an aprotonic polar organic solvent, and the alkali metal is added.
  • the amount of the organic acid alkali metal salt should be controlled in the range of 0.01 to 0.9 mol with respect to 1 mol of the sulfur source, and in the reaction system.
  • the PAS-based resin (A) is produced by controlling the water content of the above in the range of 0.02 mol or less with respect to 1 mol of the aprotonic polar organic solvent (see WO2010 / 058713 pamphlet).
  • dihalogeno aromatic compound examples include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, and 4,4'.
  • -Dihalobiphenyl 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p'- Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and aromatic rings of each of the above compounds.
  • Examples thereof include compounds having an alkyl group having an number of carbon atoms in the range of 1 to 18.
  • polyhalogeno aromatic compound examples include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1, Examples thereof include 2,4,5-tetrahalobenzene and 1,4,6-trihalonaphthalene.
  • the halogen atom contained in the above compound is preferably a chlorine atom or a bromine atom.
  • the post-treatment method is not particularly limited, and examples thereof include the following methods (1) to (5).
  • the reaction mixture is first used as it is, or an acid or a base is added, and then the solvent is distilled off under reduced pressure or normal pressure, and then the solid substance after the solvent is distilled off is water.
  • reaction solvent or an organic solvent having equivalent solubility in a low molecular weight polymer
  • a reaction solvent or an organic solvent having equivalent solubility in a low molecular weight polymer
  • acetone or an organic solvent having equivalent solubility in a low molecular weight polymer
  • acetone or an organic solvent having equivalent solubility in a low molecular weight polymer
  • acetone or an organic solvent having equivalent solubility in a low molecular weight polymer
  • methyl ethyl ketone or an organic solvent having equivalent solubility in a low molecular weight polymer
  • alcohols e.g., acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons
  • a solvent such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons
  • a solvent that is soluble and at least a poor solvent for the PAS-based resin (A)) is added as a precipitating agent to precipitate solid products such as the PAS-based resin (A) and inorganic salts. These are filtered, washed and dried.
  • a reaction solvent or an organic solvent having the same solubility as that of a low molecular weight polymer
  • a solvent such as water, acetone, methyl ethyl ketone, alcohols, etc., and then neutralized, washed with water, filtered and dried.
  • water is added to the reaction mixture, and the reaction mixture is washed with water, filtered, and if necessary, acid is added at the time of washing with water, and the mixture is treated with acid and dried.
  • the reaction mixture is filtered, washed once or twice or more with a reaction solvent, if necessary, and further washed with water, filtered and dried.
  • Examples of the acid that can be used in the method (4) above include saturated fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid and monochloroacetic acid, and unsaturated acids such as acrylic acid, crotonic acid and oleic acid.
  • Aromatic carboxylic acids such as fatty acids, benzoic acid, phthalic acid and salicylic acid, dicarboxylic acids such as maleic acid and fumaric acid, organic acids such as sulfonic acid such as methanesulfonic acid and paratoluenesulfonic acid, hydrochloric acid, sulfuric acid, sulfite and nitrate.
  • the PAS-based resin (A) may be dried in a vacuum, in the air, or in an atmosphere of an inert gas such as nitrogen. ..
  • the PAS-based resin (A) post-treated by the method (4) above has a fluorine-containing resin (B) having a reactive functional group due to an increase in the amount of acid groups bonded to the molecular ends thereof.
  • the acid group is particularly preferably a carboxyl group.
  • the content of the PAS-based resin (A) in the resin composition may be 51 to 95% by mass, but preferably 60 to 80% by mass. When the content of the PAS-based resin (A) is in the above range, the heat resistance and toughness of the film can be further improved.
  • the fluorine-containing resin (B) having a reactive functional group is at least one reactive functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Has a group. Two or more of these reactive functional groups may be contained. Of these, a carbonyl group-containing group is preferable because it is excellent in reactivity with the PAS-based resin (A).
  • Examples of the carbonyl group-containing group include a group having a carbonyl group between carbon atoms of the hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride group, a polyfluoroalkoxycarbonyl group and the like.
  • a fluorine-containing resin (B) having a functional group is produced by a polymerization reaction using a chain transfer agent that generates a radical having a reactive functional group.
  • a fluorine-containing resin (B) having a functional group is produced by a polymerization reaction using a polymerization initiator that generates a radical having a reactive functional group.
  • Examples thereof include a method of modifying a fluororesin by a method such as oxidation or thermal decomposition. Further, (5) a method of blending a compound or a resin that is compatible with a fluororesin and contains the functional group can be mentioned.
  • Examples of the reactive functional group-containing monomer include a monomer having a carbonyl group-containing group, an epoxy group-containing monomer, a hydroxy group-containing monomer, and an isocyanate group-containing monomer.
  • Examples of the monomer having a carboxyl group-containing group include unsaturated dicarboxylic acids (maleic acid, itaconic acid, citraconic acid, crotonic acid, hymic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid) and their non-saturation.
  • Examples thereof include saturated dicarboxylic acid anhydrides, unsaturated monocarboxylic acids (acrylic acid, methacrylic acid), vinyl esters (vinyl acetate, chloroacetic acid vinyl, vinyl butanoate, vinyl pivalate, vinyl benzoate, vinyl crotonate) and the like.
  • hydroxy group-containing monomer examples include a hydroxy group-containing vinyl ester, a hydroxy group-containing vinyl ether, a hydroxy-containing allyl ether, a hydroxy-containing (meth) acrylate, hydroxyethyl crotonate, and allyl alcohol.
  • epoxy group-containing monomer examples include unsaturated glycidyl ether (allyl glycidyl ether, 2-methylallyl glycidyl ether, vinyl glycidyl ether, etc.) and unsaturated glycidyl ester (glycidyl acrylate, glycidyl methacrylate, etc.).
  • isocyanate group-containing monomer examples include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. Can be mentioned.
  • the amount of the reactive functional group contained in the fluorinated resin (B) is preferably 0.01 to 3 mol%, preferably 0.03 to 2 mol%, of all the units constituting the fluorinated resin (B). Is more preferable, and 0.05 to 1 mol% is further preferable. When the amount of the reactive functional group is within the above range, the reactivity with the PAS-based resin is excellent and the deterioration of the fluidity can be suppressed.
  • the structure of the fluorine-containing resin (B) is not particularly limited, but is composed of at least one fluoroolefin unit.
  • a fluoroolefin unit for example, a tetrafluoroethylene polymer, a copolymer with perfluoro (alkyl vinyl ether), hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, and further, ethylene, propylene, butene.
  • Copolymers with non-fluoroethylene-based monomers that do not contain fluorine, such as alkyl vinyl ethers can also be mentioned.
  • polytetrafluoroethylene ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene- Examples thereof include hexafluoropropylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene and the like.
  • an ethylene-tetrafluoroethylene copolymer, a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, and a tetrafluoroethylene-hexafluoropropylene copolymer are preferable from the viewpoint of easy melt extrusion.
  • the melting point of the fluorine-containing resin (B) used in the present invention is not particularly limited, but is 170 ° C to 340 ° C, preferably 180 ° C to 340 ° C, and more preferably 190 ° C to 330 ° C.
  • the melting point of the fluorine-containing resin (B) is within the above range, maintenance of heat resistance and good melt extrusion stability can be obtained.
  • the glass transition temperature of the fluorine-containing resin (B) used in the present invention is not particularly limited, but is 130 ° C. or lower, more preferably 120 ° C. or lower and 110 ° C. or lower.
  • the PAS-based resin (A) which is a continuous phase and the fluorine-containing resin which is a dispersed phase are stretched after being mixed with the PAS-based resin (A). It is possible to suppress peeling at the interface with the resin (B). As a result, breakage during stretching can be suppressed, and a film having excellent mechanical characteristics can be obtained.
  • the content of the fluorine-containing resin (B) in the resin composition may be 5 to 49% by mass, but preferably 5 to 40% by mass.
  • the content of the fluorine-containing resin (B) is in the above range, the effect of improving the dielectric property (reducing the dielectric constant) of the film is more remarkable.
  • the fluorine-containing resin (B) in combination with the fluorine-containing resin that does not contain a reactive functional group.
  • the modified elastomer (C) has a reactive group capable of reacting with at least one of the PAS-based resin (A) and the fluorine-containing resin (B), thereby improving the mechanical strength (folding resistance, etc.) of the film. It is a component with a function.
  • the reactive group of the modified elastomer (C) is preferably at least one selected from the group consisting of an epoxy group and an acid anhydride group, and more preferably an epoxy group. These reactive groups can rapidly react with the functional groups of the PAS-based resin (A) and the fluorine-containing resin (B).
  • Examples of the modified elastomer (C) include a copolymer containing a repeating unit based on ⁇ -olefin and a repeating unit based on a vinyl polymerizable compound having the above functional group, a repeating unit based on ⁇ -olefin, and the above functional group.
  • Examples thereof include a copolymer containing a repeating unit based on a vinyl polymerizable compound having the above, and a repeating unit based on an acrylic acid ester.
  • Examples of the ⁇ -olefin include ⁇ -olefins having 2 to 8 carbon atoms such as ethylene, propylene and butene-1.
  • Examples of the vinyl polymerizable compound having a functional group include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, acrylic acid ester and methacrylic acid ester and their esters, maleic acid, fumaric acid, itaconic acid and others.
  • Examples thereof include unsaturated dicarboxylic acids having 4 to 10 carbon atoms, mono or diesters thereof, ⁇ , ⁇ -unsaturated dicarboxylic acids such as acid anhydrides thereof, esters thereof and acid anhydrides thereof, ⁇ , ⁇ -unsaturated glycidyl esters and the like. Be done.
  • the ⁇ , ⁇ -unsaturated glycidyl ester is not particularly limited, and examples thereof include compounds represented by the following formula (10).
  • R 3 is an alkenyl group having 1 to 6 carbon atoms.
  • alkenyl group having 1 to 6 carbon atoms include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-methylethenyl group, a 1-butenyl group, a 2-butenyl group, a 1-methyl-1-propenyl group and a 1-.
  • Methyl-2-propenyl group 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4pentenyl group, 1-methyl-1- Examples thereof include a pentenyl group, a 1-methyl-3-pentenyl group, a 1,1-dimethyl-1-butenyl group, a 1-hexenyl group, a 3-hexenyl group and the like.
  • R4 is an independently hydrogen atom, a halogen atom, and an alkyl group having 1 to 6 carbon atoms.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2-methylbutyl group and 3-methylbutyl group.
  • ⁇ , ⁇ -unsaturated glycidyl ester examples include glycidyl acrylate and glycidyl methacrylate, and glycidyl methacrylate is preferable.
  • the ratio of the repeating unit based on ⁇ -olefin in the modified elastomer (C) is preferably 50 to 95% by mass, more preferably 50 to 80% by mass. When the ratio of the repeating unit based on ⁇ -olefin is within the above range, the stretch uniformity, folding resistance and the like of the film can be improved.
  • the ratio of the repeating unit based on the vinyl polymerizable compound having a functional group in the modified elastomer (C) is preferably 1 to 30% by mass, more preferably 2 to 20% by mass.
  • the ratio of the repeating unit based on the vinyl polymerizable compound having a functional group is in the above range, not only the desired improvement effect but also good extrusion stability can be obtained.
  • the content of the modified elastomer (C) in the resin composition is preferably 1 to 20% by mass, more preferably 1 to 5% by mass.
  • the content of the modified elastomer (C) is within the above range, the effect of improving the dielectric properties, folding resistance and the like of the film is remarkably exhibited.
  • the silane coupling agent (D) in the present invention is compatible (mutually) with the PAS-based resin (A), the fluorine-containing resin (B) having a reactive functional group, which is another component, and the modified elastomer (C). It is a component having a function of enhancing action).
  • the silane coupling agent (D) By using the silane coupling agent (D), the dispersibility of other components in the PAS-based resin (A) is dramatically improved, and good morphology can be formed.
  • the silane coupling agent (D) is preferably a compound having a functional group capable of reacting with a carboxyl group.
  • the silane coupling agent (D) reacts with the PAS-based resin (A) and the fluorine-containing resin (B) to firmly bond with them.
  • the effect of the silane coupling agent (D) is exhibited more remarkably, and the dispersibility of the fluorine-containing resin (B) in the PAS-based resin (A) can be particularly enhanced.
  • silane coupling agent (D) examples include compounds having an epoxy group, an isocyanate group, an amino group or a hydroxyl group.
  • Specific examples of the silane coupling agent (D) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • Group-containing alkoxysilane compound ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxy Isocyanato group-containing alkoxysilane compounds such as silane, ⁇ -isocyanatopropylethyldiethoxysilane, ⁇ -isocyanatopropyltrichlorosilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) Examples thereof include amino group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane and ⁇ -aminopropyltrimethoxysilane, and hydroxyl
  • the content of the silane coupling agent (D) in the resin composition is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass.
  • the content of the silane coupling agent (D) is in the above range, the effect of improving the dispersibility of other components in the PAS-based resin (A) is remarkably exhibited.
  • the resin composition contains a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, a lubricant, an antistatic agent, a colorant, a conductive agent and the like as long as the effect of the present invention is not impaired. May be.
  • the method for producing the resin composition is not particularly limited, but is limited to PAS-based resin (A), fluorine-containing resin (B), modified elastomer (C), silane coupling agent (D), and if necessary, others.
  • PAS-based resin A
  • fluorine-containing resin B
  • modified elastomer C
  • silane coupling agent D
  • the ratio (discharge amount / screw rotation speed) of the discharge amount (kg / hr) of the kneaded material to the screw rotation speed (rpm) is 0.02 to 0.2 (kg / hr ⁇ rpm). It is preferable to carry out under the conditions.
  • the set temperature at the time of mixing is selected in the range of +5 to 70 ° C. from the melting point of the resin having the higher melting point among the PAS-based resin (A) and the fluorine-containing resin (B), and the range of +10 to 50 ° C. is more. preferable.
  • the set temperature is lower than the melting points of the PAS-based resin (A) and the fluorine-containing resin (B)
  • the composition is due to the presence of the PAS-based resin (A) or the fluorine-containing resin (B) that does not partially melt. This is not preferable in terms of productivity because the viscosity of the resin increases significantly and the load on the twin-screw extruder increases.
  • each component is put into a twin-screw extruder and melt-kneaded at the set temperature under a temperature condition of a resin temperature of about 310 ° C. on a strand die is preferable.
  • the discharge amount of the kneaded product is in the range of 5 to 50 kg / hr at a rotation speed of 250 rpm.
  • the discharge amount of the kneaded product is preferably 20 to 35 kg / hr at a rotation speed of 250 rpm.
  • the ratio (discharge amount / screw rotation speed) between the discharge amount (kg / hr) of the kneaded product and the screw rotation speed (rpm) may be 0.08 to 0.14 (kg / hr ⁇ rpm). More preferred.
  • the average particle size (average dispersion diameter) of the particles (dispersed phase) dispersed in the matrix is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 0.5 to 3 ⁇ m.
  • the average particle size of the particles is in the above range, a uniform and homogeneous film can be obtained.
  • the value measured by the method described in Examples described later is adopted as the “average particle size of particles”.
  • the film of the present invention is formed from the above resin composition.
  • the PAS-based resin (A) is used as a matrix (continuous phase), and particles (dispersed phase) containing the fluorine-containing resin (B) are dispersed in the matrix.
  • the modified elastomer (C) may be used on the surface of the particles of the fluorine-containing resin (B) (that is, at the interface between the matrix and the particles), in the particles of the fluorine-containing resin (B), or on the fluorine-containing resin (B). It exists as a particle (dispersed phase) different from the particle.
  • the present inventors also function as a compatibilizer between the PAS-based resin (A) and the fluorine-containing resin (B) in the modified elastomer (C), so that the particles are finely dispersed in the matrix. It is believed that this will improve the mechanical strength of the film. Furthermore, the present inventors further improve the adhesiveness of the interface between the matrix and the particles via the modified elastomer (C) and further improve the mechanical strength of the film when used in combination with the silane coupling agent (D). I also think that it will be done.
  • the film is preferably a biaxially stretched film formed by biaxially stretching a sheet obtained from a resin composition. If the biaxially stretched film is used, the PAS-based resin (A) constituting the matrix crystallizes in a stretched state, so that a film with high dimensional accuracy can be obtained.
  • the stretching ratio in the longitudinal direction (MD direction) of the biaxially stretched film is preferably 1.5 to 4 times, more preferably 2 to 3.8 times.
  • the draw ratio of the biaxially stretched film in the width direction (TD direction) is preferably 1.5 to 4 times, more preferably 2 to 3.8 times.
  • the ratio of the stretching ratio in the width direction (TD direction) of the biaxially stretched film to the stretching ratio in the longitudinal direction (MD direction) of the biaxially stretched film (width direction (TD direction) / (longitudinal direction (MD direction)) is , 0.8 to 1.3, and more preferably 0.9 to 1.2 because it is easy to balance the physical properties in the longitudinal direction and the physical properties in the width direction.
  • the thickness of the biaxially stretched film of the present invention is not particularly limited, but is in the range of 300 ⁇ m or less, preferably 3 to 200 ⁇ m, and more preferably 5 to 150 ⁇ m.
  • a biaxially stretched film having such a thickness can exhibit sufficient mechanical strength.
  • the biaxially stretched film of the present invention may have at least one layer made of the resin composition of the present invention, and layers made of other resin compositions are laminated directly or via an adhesive layer or the like. May be.
  • a surface treatment may be applied to the biaxially stretched film for the purpose of enhancing the adhesiveness between the biaxially stretched film of the present invention and the metal or resin molded body.
  • the surface treatment includes corona discharge treatment (including corona treatment under various gas atmospheres), plasma treatment (including plasma treatment under various gas atmospheres), oxidation treatment with chemicals, ultraviolet rays, electron irradiation rays, etc. Can be mentioned. Above all, plasma treatment is preferable.
  • the biaxially stretched film is manufactured, for example, as follows. First, the resin composition is dried at 140 ° C. for 3 hours or more, and then put into an extruder heated to 280 to 320 ° C. Then, the molten resin composition (that is, the kneaded product) that has passed through the extruder is discharged into a sheet (film) by a T-die. Next, the sheet-shaped kneaded product is brought into close contact with a cooling roll having a surface temperature of 20 to 50 ° C. to be cooled and solidified. As a result, an unoriented sheet in an unoriented state is obtained.
  • the unstretched sheet is biaxially stretched.
  • the stretching method is not particularly limited, and a known method can be adopted.
  • a sequential biaxial stretching method, a simultaneous biaxial stretching method, or a combination thereof can be used.
  • the obtained unstretched sheet is heated by a heating roll group and 1.5 to 4 times (preferably 2 to 3) in the longitudinal direction (MD direction). After stretching in one stage or multiple stages of two or more stages), it is cooled in a cooling roll group at 30 to 60 ° C.
  • the stretching temperature is preferably the glass transition temperature (Tg) to Tg + 40 ° C. of the PAS-based resin (A), more preferably Tg + 5 ° C. to Tg + 30 ° C., and further preferably Tg + 5 ° C. to Tg + 20 ° C. preferable.
  • the stretching temperature is preferably Tg to Tg + 40 ° C, more preferably Tg + 5 ° C to Tg + 30 ° C, and even more preferably Tg + 5 ° C to Tg + 20 ° C.
  • the heat fixing temperature is not particularly limited, but is preferably 200 to 280 ° C, more preferably 220 to 280 ° C, and even more preferably 240 to 275 ° C.
  • the heat fixing may be performed in two stages by changing the heat fixing temperature. In this case, it is preferable that the heat fixing temperature of the second stage is higher than the heat fixing temperature of the first stage by +10 to 40 ° C.
  • the stretched film heat-fixed at a heat-fixing temperature in this range has higher heat resistance and mechanical strength.
  • the heat fixing time is preferably 1 to 60 seconds.
  • this film is cooled in a temperature zone of 50 to 270 ° C. while relaxing in the width direction.
  • the relaxation rate is preferably 0.5 to 10%, more preferably 2 to 8%, and even more preferably 3 to 7%.
  • the laminated body of the present invention has the above-mentioned biaxially stretched film and a metal layer or a resin molded body provided on at least one surface side of the film.
  • the constituent material (metal material) of the metal layer is not particularly limited, and examples thereof include copper, aluminum, zinc, titanium, nickel, and alloys containing these.
  • the metal layer may have a single-layer structure or a laminated structure of two or more layers. When the metal layers have a laminated structure, each layer may be made of the same metal material or different metal materials.
  • the laminate is a metal layer-film, metal layer-film-metal layer, metal layer-film-metal layer-film, metal layer-metal layer-film, metal layer-metal layer-film-metal layer.
  • Etc. may have a structure such as. Examples of the method for forming the metal layer include vacuum deposition of metal, sputtering, plating, and the like. Further, a metal layer may be formed by a method of superimposing a film and a metal foil and heat-welding them.
  • the film has excellent dielectric properties
  • such a laminate can be processed into a flexible printed wiring board (FPC) or a flexible flat cable (FFC) suitable for next-generation high-speed transmission.
  • FPC flexible printed wiring board
  • FFC flexible flat cable
  • the laminated body has excellent thickness uniformity and can suppress variations in its dielectric constant.
  • an intermediate layer having a function of improving the adhesion thereof may be provided between the film and the metal layer, for example.
  • the resin molded product examples include, but are limited to, extrusion-molded products such as polyolefin resins, polyester resins, nylon resins, polyarylene sulfide resins, aromatic polyamides, and liquid crystal resins, injection-molded products, and fiber sheets. is not.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the film and the laminate of the present invention may be added to any other configuration in the configuration described above, or may be replaced with any configuration that exhibits the same function.
  • Example 1 84.5 parts by mass of polyphenylene sulfide resin-1 (manufactured by DIC Corporation, linear type, melt viscosity (V6) 160 Pa ⁇ s at melting point 280 ° C., 300 ° C.) and a fluorine-containing resin having 15 parts by mass of functional groups.
  • B (“AH-2000” manufactured by AGC Corporation, melting point 240 ° C.) and 0.5 parts by mass of 3-glycidoxypropyltriethoxysilane were uniformly mixed with a tumbler to obtain a mixture. ..
  • the polyphenylene sulfide resin has a carboxyl group at the molecular terminal thereof.
  • the polyphenylene sulfide resin will be referred to as “PPS” and 3-glycidoxypropyltriethoxysilane will be referred to as “silane coupling agent”.
  • the mixture obtained above was put into a twin-screw extruder with a vent (manufactured by Japan Steel Works, Ltd., "TEX-30 ⁇ "). After that, it is melt-extruded under the conditions of a discharge rate of 20 kg / hr, a screw rotation speed of 300 rpm, a cylinder set temperature of 320 ° C., and a resin temperature of about 310 ° C. on a strand die, discharged into a strand shape, and cooled with water having a temperature of 30 ° C. , Cutting was performed to produce a resin composition.
  • this resin composition was dried at 140 ° C. for 3 hours, and then charged into a single-screw extruder of a full flight screw and melted under the conditions of 280 to 310 ° C.
  • the melted resin composition was extruded from the T-die and then closely cooled with a chill roll set at 40 ° C. to prepare an unstretched sheet.
  • the produced unstretched sheet was biaxially stretched 3.0 ⁇ 3.0 times at 100 ° C. using a batch type biaxial stretching machine (manufactured by Imoto Seisakusho Co., Ltd.) to form a film having a thickness of 50 ⁇ m.
  • the obtained film was fixed to a mold and heat-fixed in an oven at 275 ° C. to produce a biaxially stretched film.
  • the average particle size of the particles in the produced resin composition was measured as follows. First, the resin composition pellets were cut in a direction perpendicular to the flow direction by an ultrathin section method. Next, each of the cut surfaces of the cut pellets was photographed by a scanning electron microscope (SEM) at 2000 times, and the obtained image was enlarged to A3 size. Next, any 50 particles in the enlarged SEM photograph were selected, the maximum diameter of each particle on the cut surface was measured, and the average particle size was calculated. As a result, the average particle size of the particles of the resin composition pellet was 1.3 ⁇ m.
  • Example 2 A resin composition and a biaxially stretched film were produced in the same manner as in Example 1 except that (B) (manufactured by AGC Inc., “EA-2000”, melting point 300 ° C.) was used as the fluorine-containing resin.
  • the average particle size of the particles in the biaxially stretched film was measured by the same method as in Example 1 and found to be 1.5 ⁇ m. Further, as a result of analyzing the constituent components of the resin composition pellets by the same method as in Example 1, it was found that the particles of the fluorine-containing resin were dispersed in the PPS matrix.
  • Example 3 The resin composition is the same as in Example 2 except that the PPS resin is changed to PPS resin-2 (manufactured by DIC Corporation, linear type, melt viscosity (V6) 110 Pa ⁇ s at melting points 280 ° C. and 300 ° C.). And a biaxially stretched film was produced. The average particle size of the particles in the biaxially stretched film was measured by the same method as in Example 1 and found to be 1.6 ⁇ m. Further, as a result of analyzing the constituent components of the resin pellets by the same method as in Example 1, it was found that the particles of the fluorine-containing resin were dispersed in the PPS matrix.
  • PPS resin-2 manufactured by DIC Corporation, linear type, melt viscosity (V6) 110 Pa ⁇ s at melting points 280 ° C. and 300 ° C.
  • the constituent components of the resin pellets by the same method as in Example 1, it was found that the particles of the fluorine-containing resin were dispersed in the PPS matrix.
  • the modified elastomer existed as particles dispersed alone or at the interface between the mattrix and the particles of the fluorine-containing resin.
  • the average particle size of the fluorine-containing particles in the resin pellets was measured and found to be 1.2 ⁇ m.
  • Example 2 A biaxially stretched film was prepared in the same manner as in Example 1 except that PPS resin-3 (crosslinked type, melt viscosity (V6) 250 Pa ⁇ s at melting point 280 ° C. and 300 ° C.) was used as the PPS resin. Obtained.
  • PPS resin-3 crosslinked type, melt viscosity (V6) 250 Pa ⁇ s at melting point 280 ° C. and 300 ° C.
  • Dielectric constant The dielectric constant was determined based on the cavity resonance method specified in JIS C 2565: 1992. Specifically, a strip having a width of 2 mm and a length of 150 mm was produced from the biaxially stretched film. Next, the produced strips were allowed to stand for 24 hours at 23 ° C. and 50% Rh, and then the dielectric constant at a frequency of 1 GHz was measured by a cavity resonance method using an ADMS010c series (manufactured by AET Co., Ltd.). [Evaluation criteria] ⁇ ; Dielectric constant 3.2 or less ⁇ ; Dielectric constant greater than 3.2 The above results are shown in Tables 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is a resin composition of excellent continuous extrusion film-forming ability and stretchability, which can achieve excellent toughness with a low permittivity in a biaxially stretched film obtained therefrom. Also provided is a layered body using such a film. The present inventors discovered that excellent toughness with a low permittivity is achieved in a biaxially stretched film by setting the fluidity before and after dwelling to be within a specific range for a resin composition comprising (A) a polyarylene sulfide-based resin and (B) a fluorine-based resin having a reactive functional group, and thus arrived at the present invention.

Description

ポリアリーレンスルフィド樹脂組成物、並びこれを用いた二軸延伸フィルムおよび積層体Polyarylene sulfide resin composition, biaxially stretched film and laminate using this
 本発明は、連続製膜・延伸性に優れ、低誘電率であるポリアリーレンスルフィド樹脂組成物、並びこれを用いた二軸延伸フィルムおよび積層体に関する。 The present invention relates to a polyarylene sulfide resin composition having excellent continuous film formation / stretchability and a low dielectric constant, as well as a biaxially stretched film and a laminate using the same.
 近年、フレキシブルプリント配線板(FPC)やフレキシブルフラットケーブル(FFC)の分野では、クラウドやIoT(Internet of Things)などの発展、自動車の自動運転化の技術の向上、電気自動車、ハイブリッド車の発展に伴い、大量のデータ処理や高速かつ損失のなく伝送できるケーブルやアンテナが求められている。しかし、従来、FPC基材にはポリイミド(PI)フィルム、FCC基材にはポリエステルフィルム(PETフィルム等)が用いられており、次世代の高速伝送に対応できる誘電特性を有しているとはいえない。  In recent years, in the fields of flexible printed wiring boards (FPC) and flexible flat cables (FFC), the development of clouds and IoT (Internet of Things), the improvement of automatic driving technology for automobiles, and the development of electric vehicles and hybrid vehicles. Therefore, there is a demand for cables and antennas that can process a large amount of data and transmit at high speed and without loss. However, conventionally, a polyimide (PI) film is used as the FPC base material, and a polyester film (PET film, etc.) is used as the FCC base material, and it is said that the FPC base material has dielectric properties capable of supporting next-generation high-speed transmission. I can't say. It was
 一方、ポリフェニレンスルフィド樹脂(PPS樹脂)に代表されるポリアリーレンスルフィド系樹脂を用いたフィルムは、耐熱性、難燃性、耐薬品性、電気絶縁性に優れるため、コンデンサーやモーターの絶縁材料、耐熱テープに用いられている。ポリアリーレンスルフィド樹脂は、PIやPETに比べ誘電特性に優れることから、FPCやFFCの分野等に好適に適用され得る。しかし、次世代の高速伝送に対応するには、更なる低誘電率化が必要である。 On the other hand, a film using a polyarylene sulfide resin represented by a polyphenylene sulfide resin (PPS resin) has excellent heat resistance, flame retardancy, chemical resistance, and electrical insulation, so that it is an insulating material for capacitors and motors, and heat resistance. Used for tape. Since the polyarylene sulfide resin has excellent dielectric properties as compared with PI and PET, it can be suitably applied to the fields of FPC and FFC. However, in order to support next-generation high-speed transmission, it is necessary to further reduce the dielectric constant.
 これを改善するものとして、例えば、特許文献1には、PPS樹脂に無機粒子を含有させ、二軸延伸時に空孔を形成する方法が提案されている。しかしながら、特許文献1に記載のフィルムでは、低誘電率化する効果は十分得られるが、空孔が存在する事によりフィルムの機械物性が低下する。そのため、表層に無機粒子を含有しない層を積層させているが、十分な機械強度が得られない。また、積層化させる必要があり、積層体の延伸では、層間の接着性や各層の延伸性の一致が重要であり、生産上の観点から非常に難しい傾向にある。 As a method for improving this, for example, Patent Document 1 proposes a method in which inorganic particles are contained in a PPS resin to form pores during biaxial stretching. However, in the film described in Patent Document 1, although the effect of lowering the dielectric constant can be sufficiently obtained, the mechanical properties of the film are deteriorated due to the presence of pores. Therefore, although a layer containing no inorganic particles is laminated on the surface layer, sufficient mechanical strength cannot be obtained. In addition, it is necessary to stack them, and in stretching the laminated body, it is important to match the adhesiveness between the layers and the stretchability of each layer, which tends to be very difficult from the viewpoint of production.
 また、PPS樹脂とフッ素樹脂の優れた特性を両立させるために、両樹脂を配合する試みが幾つか報告されている。例えば、特許文献2には、PPS樹脂と官能基を含有するフッ素樹脂からなる樹脂組成物で滞留前後の分散粒子径の安定化を図った樹脂組成物が提案されている。しかしながら、これら特許に記載された提案は、射出成形用途を主目的に提案されたもので、連続押出性が必要となるフィルム用途では粘度の安定性が重要となるが何ら記載されていない。また、低誘電率化した二軸延伸フィルムとしての記載も何ら記載されていない。 In addition, some attempts to combine both resins have been reported in order to achieve both the excellent properties of the PPS resin and the fluororesin. For example, Patent Document 2 proposes a resin composition composed of a PPS resin and a fluororesin containing a functional group, in which the dispersed particle size is stabilized before and after retention. However, the proposals described in these patents have been proposed mainly for injection molding applications, and although stability of viscosity is important for film applications that require continuous extrusion, there is no description. Further, there is no description as a biaxially stretched film having a low dielectric constant.
特開2018-83415号公報Japanese Unexamined Patent Publication No. 2018-83415 特開2015-110732号公報JP-A-2015-110732
 本発明は、連続押出製膜性、延伸性に優れ、得られる二軸延伸フィルムにおいて低誘電率で、優れた靭性を有する事ができる樹脂組成物、およびかかるフィルムを使用した積層体を提供することにある。 The present invention provides a resin composition having excellent continuous extrusion film forming property and stretchability, having a low dielectric constant and having excellent toughness in the obtained biaxially stretched film, and a laminate using such a film. There is something in it.
 本発明者らは、上記課題を解決すべく誠意検討を行った結果、ポリアリーレンスルフィド系樹脂(A)と、反応性官能基を有する含フッ素系樹脂(B)からなる樹脂組成物において、滞留前後の流動性を特定の範囲内とする事で、上記課題を解決し得ることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、下記(1)~(8)に関する。
As a result of sincere studies to solve the above problems, the present inventors have retained in the resin composition composed of the polyarylene sulfide resin (A) and the fluorine-containing resin (B) having a reactive functional group. We have found that the above problems can be solved by setting the front-back fluidity within a specific range, and have completed the present invention.
That is, the present invention relates to the following (1) to (8).
 (1) 少なくともポリアリーレンスルフィド系樹脂(A)51~95質量%と、反応性官能基を有する含フッ素系樹脂(B)5~49質量%を原料とする、連続相および分散相を有する樹脂組成物であって、前記樹脂組成物を用いた二軸延伸フィルムにおいて誘電率が3.2以下であり、
 前記連続相が、ポリアリーレンスルフィド系樹脂(A)を含み、
 前記分散相が、反応性官能基を有する含フッ素系樹脂(B)を含むポリアリーレンスルフィド樹脂組成物であることを特徴とする。
(1) A resin having a continuous phase and a dispersed phase, which is made from at least 51 to 95% by mass of a polyarylene sulfide resin (A) and 5 to 49% by mass of a fluororesin (B) having a reactive functional group. A composition having a dielectric constant of 3.2 or less in a biaxially stretched film using the resin composition.
The continuous phase contains a polyarylene sulfide resin (A) and contains.
The dispersed phase is a polyarylene sulfide resin composition containing a fluorine-containing resin (B) having a reactive functional group.
(2)前記樹脂組成物の330℃で5分間滞留させた後の流動性(メルトフローレート1)と330℃で30分間滞留させた後の前記樹脂組成物の流動性(メルトフローレート2)との比メルトフローレート1/メルトフローレート2が、0.2以上4.5以下である事が好ましい。 (2) The fluidity of the resin composition after being retained at 330 ° C. for 5 minutes (melt flow rate 1) and the fluidity of the resin composition after being retained at 330 ° C. for 30 minutes (melt flow rate 2). The ratio of melt flow rate 1 to melt flow rate 2 is preferably 0.2 or more and 4.5 or less.
 (3) 反応性官能基を有する含フッ素系樹脂(B)が、カルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する含フッ素系樹脂であることが好ましい。
 (4) 更に、反応性基が付与された変性エラストマー(C)を1~20質量%含有した方が好ましい。
 (5) 変性エラストマー(C)がエポキシ基、酸無水物基からなる群から選ばれる少なくとも1つの官能基を有するオレフィン系重合体からなることが好ましい。
(3) The fluorine-containing resin (B) having a reactive functional group is a fluorine-containing resin having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. It is preferable to have.
(4) Further, it is preferable to contain 1 to 20% by mass of the modified elastomer (C) to which the reactive group is added.
(5) The modified elastomer (C) is preferably made of an olefin polymer having at least one functional group selected from the group consisting of an epoxy group and an acid anhydride group.
 (6) エポキシ基、アミノ基、イソシアネート基から選択される少なくとも1種の官能基を含有するシランカップリング化合物(D)を0.05~5質量%を含むことが好ましい。
(7)本発明のフィルムは、上記(1)~(6)項のいずれか1項記載の樹脂組成物を二軸延伸してなる、二軸延伸フィルム。
 (8) 本発明の積層体は上記(7)に記載の二軸延伸フィルムと、前記二軸延伸フィルムの少なくとも一方の面に配置される金属層とを含む積層体。
(6) It is preferable to contain 0.05 to 5% by mass of the silane coupling compound (D) containing at least one functional group selected from an epoxy group, an amino group and an isocyanate group.
(7) The film of the present invention is a biaxially stretched film obtained by biaxially stretching the resin composition according to any one of the above items (1) to (6).
(8) The laminate of the present invention is a laminate containing the biaxially stretched film according to (7) above and a metal layer arranged on at least one surface of the biaxially stretched film.
 本発明によれば、連続押出製膜性、延伸性に優れ、得られる二軸延伸フィルムが低誘電特性及び優れた靭性を有する事のできる樹脂組成物が提供される。 According to the present invention, there is provided a resin composition which is excellent in continuous extrusion film forming property and stretchability, and the obtained biaxially stretched film can have low dielectric property and excellent toughness.
以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
[樹脂組成物]
 樹脂組成物は、少なくともポリアリーレンスルフィド系樹脂(以下、「PAS系樹脂」と称することがある)と、反応性官能基を有する含フッ素系樹脂を原料とする。この際、前記樹脂組成物は、連続相および分散相を有し、この際、前記連続相が、ポリアリーレンスルフィド系樹脂を含み、前記分散相が、反応性官能基を有する含フッ素系樹脂を含む。
[Resin composition]
The resin composition is made from at least a polyarylene sulfide-based resin (hereinafter, may be referred to as "PAS-based resin") and a fluorine-containing resin having a reactive functional group as raw materials. At this time, the resin composition has a continuous phase and a dispersed phase, and at this time, the continuous phase contains a polyarylene sulfide-based resin, and the dispersed phase contains a fluorine-containing resin having a reactive functional group. include.
 前記樹脂組成物の330℃で5分間滞留後の流動性(メルトフローレート1、ここで言うメルトフローレートとは、溶融状態にある樹脂の流動性を示す尺度を示す。以下、「MFR1」)と330℃で30分間滞留後の流動性(メルトフローレート2、以下、「MFR2」)の比 MFR1/MFR2が、0.2以上4.5以下となる樹脂組成物である。MFR1/MFR2比が4.5より大きい場合には、PAS系樹脂(A)と反応性官能基を有する含フッ素系樹脂(B)との反応性が進行し、樹脂組成物の増粘が大きい事を意味し、連続製膜時にゲル化等が発生し、急激な押出機の樹脂圧力の上昇と延伸時の破断等の不具合を生じる。MFR1/MFR2比が0.2より小さい場合には、連続製膜時にPAS系樹脂(A)、反応性官能基を有する含フッ素系樹脂(B)の分解が進行し、減粘していることを意味し、安定した製膜化が困難となる。よって、330℃で5分、30分後の流動性比が前記の範囲内であれば、安定した製膜性、延伸性となり、連続押出製膜性、延伸性に最適な樹脂組成物となる。 Fluidity of the resin composition after staying at 330 ° C. for 5 minutes (melt flow rate 1, the melt flow rate referred to here is a measure indicating the fluidity of the resin in a molten state; hereinafter, “MFR1”). A resin composition having a MFR1 / MFR2 ratio of 0.2 or more and 4.5 or less in terms of fluidity (melt flow rate 2, hereinafter, “MFR2”) after staying at 330 ° C. for 30 minutes. When the MFR1 / MFR2 ratio is larger than 4.5, the reactivity between the PAS-based resin (A) and the fluorine-containing resin (B) having a reactive functional group proceeds, and the thickening of the resin composition is large. This means that gelation or the like occurs during continuous film formation, causing problems such as a rapid increase in the resin pressure of the extruder and breakage during stretching. When the MFR1 / MFR2 ratio is smaller than 0.2, the PAS-based resin (A) and the fluorine-containing resin (B) having a reactive functional group are decomposed during continuous film formation, and the viscosity is reduced. This means that stable film formation becomes difficult. Therefore, if the fluidity ratio after 5 minutes and 30 minutes at 330 ° C. is within the above range, stable film-forming property and stretchability are obtained, and the resin composition is optimal for continuous extrusion film-forming property and stretchability. ..
 樹脂組成物中の分散相の平均分散径は、5μm以下であり、好ましくは3μm以下であり、より好ましくは0.5~3μmである。分散相の平均分散径が3μm以下であると、均一な延伸フィルムを得ることができる。 The average dispersion diameter of the dispersed phase in the resin composition is 5 μm or less, preferably 3 μm or less, and more preferably 0.5 to 3 μm. When the average dispersion diameter of the dispersed phase is 3 μm or less, a uniform stretched film can be obtained.
 [ポリアリーレンスルフィド系樹脂(A)]
 ポリアリーレンスルフィド系樹脂(A)(PAS系樹脂(A))は、樹脂組成物の主成分であり、フィルムに優れた耐熱性、靭性を付与する機能を有する成分である。
 PAS系樹脂(A)は、芳香族環と硫黄原子とが結合した構造(具体的には、下記式(1)で表される構造)を繰り返し単位として含む重合体である。
[Polyarylene sulfide resin (A)]
The polyarylene sulfide-based resin (A) (PAS-based resin (A)) is the main component of the resin composition and is a component having a function of imparting excellent heat resistance and toughness to the film.
The PAS-based resin (A) is a polymer containing a structure in which an aromatic ring and a sulfur atom are bonded (specifically, a structure represented by the following formula (1)) as a repeating unit.
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表し、nは、それぞれ独立して、1~4の整数である。
Figure JPOXMLDOC01-appb-C000001
In the above formula, R 1 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, and an ethoxy group, and n independently represents each of them. It is an integer of 1 to 4.
 ここで、式(1)で表される構造中のRは、いずれも水素原子であることが好ましい。かかる構成により、PAS系樹脂(A)の機械的強度をより高めることができる。Rがいずれも水素原子である式(1)で表される構造としては、下記式(2)で表される構造(すなわち、硫黄原子が芳香族環に対してパラ位で結合する構造)、および下記式(3)で表される構造(すなわち、硫黄原子が芳香族環に対してメタ位で結合する構造)が挙げられる。 Here, it is preferable that R 1 in the structure represented by the formula (1) is a hydrogen atom. With such a configuration, the mechanical strength of the PAS-based resin (A) can be further increased. The structure represented by the formula (1) in which all R 1s are hydrogen atoms is the structure represented by the following formula (2) (that is, the structure in which the sulfur atom is bonded to the aromatic ring at the para position). , And a structure represented by the following formula (3) (that is, a structure in which a sulfur atom is bonded to an aromatic ring at the meta position).
Figure JPOXMLDOC01-appb-C000002
 これらの中でも、式(1)で表される構造は、式(2)で表される構造であることが好ましい。式(2)で表される構造を有するPAS系樹脂(A)であれば、耐熱性や結晶性をより向上させることができる。
Figure JPOXMLDOC01-appb-C000002
Among these, the structure represented by the formula (1) is preferably the structure represented by the formula (2). A PAS-based resin (A) having a structure represented by the formula (2) can further improve heat resistance and crystallinity.
 また、PAS系樹脂(A)は、上記式(1)で表される構造のみならず、下記式(4)~(7)で表される構造を繰り返し単位として含んでいてもよい。 Further, the PAS-based resin (A) may contain not only the structure represented by the above formula (1) but also the structure represented by the following formulas (4) to (7) as a repeating unit.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(4)~(7)で表される構造は、PAS系樹脂(A)を構成する全繰り返し単位中に、30モル%以下含まれることが好ましく、10モル%以下含まれることがより好ましい。かかる構成により、PAS系樹脂(A)の耐熱性や機械的強度をより高めることができる。
 また、式(4)~(7)で表される構造の結合様式としては、ランダム状、ブロック状のいずれであってもよい。
The structures represented by the formulas (4) to (7) are preferably contained in an amount of 30 mol% or less, more preferably 10 mol% or less, in all the repeating units constituting the PAS-based resin (A). .. With such a configuration, the heat resistance and mechanical strength of the PAS-based resin (A) can be further enhanced.
Further, the bonding mode of the structures represented by the formulas (4) to (7) may be either a random shape or a block shape.
 また、PAS系樹脂(A)は、その分子構造中に、下記式(8)で表される3官能性の構造、ナフチルスルフィド構造等を繰り返し単位として含んでいてもよい。 Further, the PAS-based resin (A) may contain a trifunctional structure represented by the following formula (8), a naphthyl sulfide structure, or the like as a repeating unit in its molecular structure.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(8)で表される構造、ナフチルスルフィド構造等は、PAS系樹脂(A)を構成する全繰り返し単位中に、1モル%以下含まれることが好ましく、実質的には含まれないことがより好ましい。かかる構成により、PAS系樹脂(A)中における塩素原子の含有量を低減することができる。
 また、PAS系樹脂(A)の特性は、本発明の効果を損ねない限り、特に限定されないが、その300℃における溶融粘度(V6)は、50~2000Pa・sであることが好ましく、さらに流動性および機械的強度のバランスが良好となることから、80~1500Pa・sであることがより好ましい。
The structure represented by the formula (8), the naphthyl sulfide structure and the like are preferably contained in an amount of 1 mol% or less, and substantially not contained in all the repeating units constituting the PAS-based resin (A). More preferred. With such a configuration, the content of chlorine atoms in the PAS-based resin (A) can be reduced.
The characteristics of the PAS-based resin (A) are not particularly limited as long as the effects of the present invention are not impaired, but the melt viscosity (V6) at 300 ° C. is preferably 50 to 2000 Pa · s, and further flows. It is more preferably 80 to 1500 Pa · s because the balance between the properties and the mechanical strength is good.
 さらに、PAS系樹脂(A)は、ゲル浸透クロマトグラフィ(GPC)を用いた測定において、分子量25,000~40,000の範囲にピークを有し、かつ重量平均分子量(Mw)と数平均分子量(Mn)との比率(Mw/Mn)が5~10の範囲にあり、かつ、非ニュートン指数が0.9~1.3の範囲にあることが特に好ましい。かかるPAS系樹脂(A)を用いることにより、フィルムの機械的強度を低下させることなく、PAS系樹脂(A)自体における塩素原子の含有量を800~2,000ppmの範囲にまで低減でき、ハロゲンフリーの電子・電気部品用途への適用が容易となる。 Further, the PAS-based resin (A) has a peak in the molecular weight range of 25,000 to 40,000 as measured by gel permeation chromatography (GPC), and has a weight average molecular weight (Mw) and a number average molecular weight (Mw). It is particularly preferable that the ratio (Mw / Mn) to Mn) is in the range of 5 to 10 and the non-Newton index is in the range of 0.9 to 1.3. By using the PAS-based resin (A), the chlorine atom content in the PAS-based resin (A) itself can be reduced to the range of 800 to 2,000 ppm without lowering the mechanical strength of the film, and the halogen can be used. It will be easy to apply to free electronic and electrical component applications.
 なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、それぞれゲル浸透クロマトグラフィ(GPC)により測定された値を採用する。なお、GPCの測定条件は、以下の通りである。
 [ゲル浸透クロマトグラフィーによる測定条件]
 装置:超高温ポリマー分子量分布測定装置(センシュウ科学社製SSC-7000)
    カラム  :UT-805L(昭和電工社製)
    カラム温度:210℃
    溶媒   :1-クロロナフタレン
    測定方法 :UV検出器(360nm)で6種類の単分散ポリスチレンを校正に
          用いて分子量分布とピーク分子量を測定する。
In this specification, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) adopt the values measured by gel permeation chromatography (GPC), respectively. The measurement conditions of GPC are as follows.
[Measurement conditions by gel permeation chromatography]
Equipment: Ultra-high temperature polymer molecular weight distribution measuring device (SSC-7000 manufactured by Senshu Kagaku Co., Ltd.)
Column: UT-805L (manufactured by Showa Denko KK)
Column temperature: 210 ° C
Solvent: 1-Chloronaphthalene Measurement method: Measure the molecular weight distribution and peak molecular weight using 6 types of monodisperse polystyrene for calibration with a UV detector (360 nm).
 PAS系樹脂(A)の製造方法としては、特に限定されないが、例えば、1)硫黄と炭酸ソーダの存在下で、ジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、2)極性溶媒中でスルフィド化剤等の存在下に、ジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、3)p-クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法等が挙げられる。これらの製造方法の中でも、上記2)の方法が汎用的であり好ましい。
 なお、反応の際には、重合度を調節するために、カルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加してもよい。
The method for producing the PAS-based resin (A) is not particularly limited, but for example, 1) a dihalogeno aromatic compound, if necessary, a polyhalogeno aromatic compound or other copolymerization component in the presence of sulfur and sodium carbonate. In addition, a method of polymerizing, 2) a method of polymerizing a dihalogeno aromatic compound in the presence of a sulfide agent or the like in a polar solvent, if necessary, by adding a polyhalogeno aromatic compound or other copolymerization component. ) A method of self-condensing p-chlorthiophenol by adding other copolymerization components if necessary can be mentioned. Among these manufacturing methods, the method 2) above is general-purpose and preferable.
At the time of the reaction, an alkali metal salt of a carboxylic acid or a sulfonic acid or an alkali hydroxide may be added in order to adjust the degree of polymerization.
 上記2)の方法の中でも、次の2-1)の方法または2-2)の方法が特に好ましい。
 2-1)の方法では、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に、含水スルフィド化剤を、水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させる際に、反応系内の水分量を、有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることにより、PAS系樹脂(A)を製造する(特開平07-228699号公報参照)。
 2-2)の方法では、固形のアルカリ金属硫化物および非プロトン性極性有機溶媒の存在下で、ジハロゲノ芳香族化合物と、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物および有機酸アルカリ金属塩とを反応させる際に、有機酸アルカリ金属塩の量を硫黄源1モルに対して0.01~0.9モルの範囲にコントロールすること、および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールすることにより、PAS系樹脂(A)を製造する(WO2010/058713号パンフレット参照)。
Among the above methods 2), the following method 2-1) or 2-2) is particularly preferable.
In the method of 2-1), a hydrous sulfide agent is introduced into a mixture containing a heated organic polar solvent and a dihalogeno aromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogeno fragrance is introduced in the organic polar solvent. When the group compound and the sulfidizing agent are added to the polyhalogeno aromatic compound as required and reacted, the water content in the reaction system is adjusted to 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent. The PAS-based resin (A) is produced by controlling the range (see Japanese Patent Application Laid-Open No. 07-228699).
In the method of 2-2), a dihalogeno aromatic compound and, if necessary, a polyhalogeno aromatic compound or other copolymerization component are added in the presence of a solid alkali metal sulfide and an aprotonic polar organic solvent, and the alkali metal is added. When reacting with hydrosulfide and the organic acid alkali metal salt, the amount of the organic acid alkali metal salt should be controlled in the range of 0.01 to 0.9 mol with respect to 1 mol of the sulfur source, and in the reaction system. The PAS-based resin (A) is produced by controlling the water content of the above in the range of 0.02 mol or less with respect to 1 mol of the aprotonic polar organic solvent (see WO2010 / 058713 pamphlet).
 ジハロゲノ芳香族化合物の具体例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、および上記各化合物の芳香環に炭素原子数1~18の範囲のアルキル基を有する化合物が挙げられる。
 また、ポリハロゲノ芳香族化合物としては、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレンなどが挙げられる。
 なお、上記化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
Specific examples of the dihalogeno aromatic compound include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, and 4,4'. -Dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p'- Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and aromatic rings of each of the above compounds. Examples thereof include compounds having an alkyl group having an number of carbon atoms in the range of 1 to 18.
Examples of the polyhalogeno aromatic compound include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1, Examples thereof include 2,4,5-tetrahalobenzene and 1,4,6-trihalonaphthalene.
The halogen atom contained in the above compound is preferably a chlorine atom or a bromine atom.
 重合工程により得られたPAS系樹脂(A)を含む反応混合物の後処理方法には、公知慣用の方法が用いられる。かかる後処理方法としては、特に限定されないが、例えば、次の(1)~(5)の方法が挙げられる。
 (1)の方法では、重合反応終了後、まず反応混合物をそのまま、あるいは酸または塩基を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(または低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、さらに中和、水洗、濾過および乾燥する。
 (2)の方法では、重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともPAS系樹脂(A)に対しては貧溶媒である溶媒)を沈降剤として添加して、PAS系樹脂(A)や無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する。
As a method for post-treating the reaction mixture containing the PAS-based resin (A) obtained in the polymerization step, a known and commonly used method is used. The post-treatment method is not particularly limited, and examples thereof include the following methods (1) to (5).
In the method (1), after the polymerization reaction is completed, the reaction mixture is first used as it is, or an acid or a base is added, and then the solvent is distilled off under reduced pressure or normal pressure, and then the solid substance after the solvent is distilled off is water. It is washed once or twice or more with a reaction solvent (or an organic solvent having equivalent solubility in a low molecular weight polymer), acetone, methyl ethyl ketone, alcohols, etc., and further neutralized, washed with water, filtered and dried.
In the method (2), after the completion of the polymerization reaction, a solvent such as water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons is added to the reaction mixture (as the polymerization solvent used). A solvent that is soluble and at least a poor solvent for the PAS-based resin (A)) is added as a precipitating agent to precipitate solid products such as the PAS-based resin (A) and inorganic salts. These are filtered, washed and dried.
 (3)の方法では、重合反応終了後、反応混合物に反応溶媒(または低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて攪拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥する。
 (4)の方法では、重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄のときに酸を加えて酸処理し、乾燥する。
 (5)の方法では、重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、さらに水洗浄、濾過および乾燥する。
In the method (3), after the polymerization reaction was completed, a reaction solvent (or an organic solvent having the same solubility as that of a low molecular weight polymer) was added to the reaction mixture, and the mixture was stirred and then filtered to remove the low molecular weight polymer. After that, it is washed once or twice or more with a solvent such as water, acetone, methyl ethyl ketone, alcohols, etc., and then neutralized, washed with water, filtered and dried.
In the method (4), after the completion of the polymerization reaction, water is added to the reaction mixture, and the reaction mixture is washed with water, filtered, and if necessary, acid is added at the time of washing with water, and the mixture is treated with acid and dried.
In the method (5), after the completion of the polymerization reaction, the reaction mixture is filtered, washed once or twice or more with a reaction solvent, if necessary, and further washed with water, filtered and dried.
 上記(4)の方法で使用可能な酸としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、モノクロロ酢酸等の飽和脂肪酸、アクリル酸、クロトン酸、オレイン酸等の不飽和脂肪酸、安息香酸、フタル酸、サリチル酸等の芳香族カルボン酸、マレイン酸、フマル酸等のジカルボン酸、メタンスルホン酸、パラトルエンスルホン酸等のスルホン酸等の有機酸、塩酸、硫酸、亜硫酸、硝酸、亜硝酸、リン酸等の無機酸が挙げられる。
 また、水素塩としては、例えば、硫化水素ナトリウム、リン酸水素二ナトリウム、炭酸水素ナトリウム等が挙げられる。ただし、実機での使用においては、金属部材への腐食が少ない有機酸が好ましい。
 なお、上記(1)~(5)の方法において、PAS系樹脂(A)の乾燥は、真空中で行ってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行ってもよい。
Examples of the acid that can be used in the method (4) above include saturated fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid and monochloroacetic acid, and unsaturated acids such as acrylic acid, crotonic acid and oleic acid. Aromatic carboxylic acids such as fatty acids, benzoic acid, phthalic acid and salicylic acid, dicarboxylic acids such as maleic acid and fumaric acid, organic acids such as sulfonic acid such as methanesulfonic acid and paratoluenesulfonic acid, hydrochloric acid, sulfuric acid, sulfite and nitrate. , Inorganic acids such as nitrite and phosphoric acid.
Examples of the hydrogen salt include sodium hydrogen sulfide, disodium hydrogen phosphate, sodium hydrogen carbonate and the like. However, when used in an actual machine, an organic acid that does not corrode metal members is preferable.
In the methods (1) to (5) above, the PAS-based resin (A) may be dried in a vacuum, in the air, or in an atmosphere of an inert gas such as nitrogen. ..
 特に、上記(4)の方法で後処理されたPAS系樹脂(A)は、その分子末端に結合する酸基の量が増加することで、反応性官能基を有する含フッ素系樹脂(B)、変性エラストマー(C)やシランカップリング剤(D)と混合する場合、それらの分散性を高める効果が得られる。酸基としては、特に、カルボキシル基であることが好ましい。
 樹脂組成物中におけるPAS系樹脂(A)の含有量は、51~95質量%であればよいが、60~80質量%であることが好ましい。PAS系樹脂(A)の含有量が上記範囲であれば、フィルムの耐熱性および靭性をより向上させることができる。
In particular, the PAS-based resin (A) post-treated by the method (4) above has a fluorine-containing resin (B) having a reactive functional group due to an increase in the amount of acid groups bonded to the molecular ends thereof. When mixed with the modified elastomer (C) or the silane coupling agent (D), the effect of enhancing their dispersibility can be obtained. The acid group is particularly preferably a carboxyl group.
The content of the PAS-based resin (A) in the resin composition may be 51 to 95% by mass, but preferably 60 to 80% by mass. When the content of the PAS-based resin (A) is in the above range, the heat resistance and toughness of the film can be further improved.
 [反応性官能基を有する含フッ素系樹脂(B)]
 反応性官能基を有する含フッ素系樹脂(B)(含フッ素系樹脂(B))は、カルボニル基含有基、ヒドロキシ基、エポキシ基及びイソシアネート基からなる群から選ばれる少なくとも1種の反応性官能基を有する。これらの反応性官能基が2種以上含まれても良い。中でも、PAS系樹脂(A)との反応性に優れる点からカルボニル基含有基が好ましい。カルボニル基含有基としては、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物基、ポリフルオロアルコキシカルボニル基等が挙げられる。
[Fluorine-containing resin (B) having a reactive functional group]
The fluorine-containing resin (B) having a reactive functional group (fluorine-containing resin (B)) is at least one reactive functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Has a group. Two or more of these reactive functional groups may be contained. Of these, a carbonyl group-containing group is preferable because it is excellent in reactivity with the PAS-based resin (A). Examples of the carbonyl group-containing group include a group having a carbonyl group between carbon atoms of the hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride group, a polyfluoroalkoxycarbonyl group and the like.
 含フッ素系樹脂(B)の反応性官能基を導入する方法としては、(1)重合反応で反応性官能基を有する含フッ素系樹脂の主鎖を製造する際に、反応性官能基を有するモノマーを使用する。(2)反応性官能基を有するラジカルを発生する連鎖移動剤を用いて、重合反応で官能基を有する含フッ素系樹脂(B)を製造する。(3)反応性官能基を有するラジカルを発生する重合開始剤を用いて、重合反応で官能基を有する含フッ素系樹脂(B)を製造する。(4)フッ素系樹脂を酸化、熱分解などの手法により変性する方法などが挙げられる。また、(5)フッ素系樹脂に相溶し、前記官能基を含有する化合物または樹脂を配合する方法が挙げられる。 As a method for introducing the reactive functional group of the fluorine-containing resin (B), (1) it has a reactive functional group when producing the main chain of the fluorine-containing resin having the reactive functional group in the polymerization reaction. Use monomers. (2) A fluorine-containing resin (B) having a functional group is produced by a polymerization reaction using a chain transfer agent that generates a radical having a reactive functional group. (3) A fluorine-containing resin (B) having a functional group is produced by a polymerization reaction using a polymerization initiator that generates a radical having a reactive functional group. (4) Examples thereof include a method of modifying a fluororesin by a method such as oxidation or thermal decomposition. Further, (5) a method of blending a compound or a resin that is compatible with a fluororesin and contains the functional group can be mentioned.
 反応性官能基含有単量体としては、カルボニル基含有基を有する単量体、エポキシ基含有単量体、ヒドロキシ基含有単量体、イソシアネート基含有単量体等が挙げられる。 Examples of the reactive functional group-containing monomer include a monomer having a carbonyl group-containing group, an epoxy group-containing monomer, a hydroxy group-containing monomer, and an isocyanate group-containing monomer.
 カルボキシル基含有基を有する単量体としては、不飽和ジカルボン酸(マレイン酸、イタコン酸、シトラコン酸、クロトン酸、ハイミック酸、5-ノルボルネン-2、3-ジカルボン酸、マレイン酸)、それらの不飽和ジカルボン酸無水物、不飽和モノカルボン酸(アクリル酸、メタクリル酸)、ビニルエステル(酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニル)等が挙げられる。 Examples of the monomer having a carboxyl group-containing group include unsaturated dicarboxylic acids (maleic acid, itaconic acid, citraconic acid, crotonic acid, hymic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid) and their non-saturation. Examples thereof include saturated dicarboxylic acid anhydrides, unsaturated monocarboxylic acids (acrylic acid, methacrylic acid), vinyl esters (vinyl acetate, chloroacetic acid vinyl, vinyl butanoate, vinyl pivalate, vinyl benzoate, vinyl crotonate) and the like.
 ヒドロキシ基含有単量体としては、ヒドロキシ基含有ビニルエステル、ヒドロキシ基含有ビニルエーテル、ヒドロキシ含有アリルエーテル、ヒドロキシ含有(メタ)アクリレート、クロトン酸ヒドロキシエチル、アリルアルコール等が挙げられる。 Examples of the hydroxy group-containing monomer include a hydroxy group-containing vinyl ester, a hydroxy group-containing vinyl ether, a hydroxy-containing allyl ether, a hydroxy-containing (meth) acrylate, hydroxyethyl crotonate, and allyl alcohol.
 エポキシ基含有単量体としては、不飽和グリシジルエーテル(アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、ビニルグリシジルエーテル等)、不飽和グリシジルエステル(アクリル酸グリシジル、メタクリル酸グリシジル等)が挙げられる。 Examples of the epoxy group-containing monomer include unsaturated glycidyl ether (allyl glycidyl ether, 2-methylallyl glycidyl ether, vinyl glycidyl ether, etc.) and unsaturated glycidyl ester (glycidyl acrylate, glycidyl methacrylate, etc.).
 イソシアネート基含有単量体としては、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。 Examples of the isocyanate group-containing monomer include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. Can be mentioned.
 含フッ素系樹脂(B)中に含まれる反応性官能基量は、含フッ素系樹脂(B)を構成する全単位のうち、0.01~3モル%が好ましく、0.03~2モル%がより好ましく、0.05~1モル%がさらに好ましい。反応性官能基量が前記範囲内であれば、PAS系樹脂との反応性に優れ、流動性の悪化も抑制できる。 The amount of the reactive functional group contained in the fluorinated resin (B) is preferably 0.01 to 3 mol%, preferably 0.03 to 2 mol%, of all the units constituting the fluorinated resin (B). Is more preferable, and 0.05 to 1 mol% is further preferable. When the amount of the reactive functional group is within the above range, the reactivity with the PAS-based resin is excellent and the deterioration of the fluidity can be suppressed.
 含フッ素系樹脂(B)の構造は、特に限定されるものでは無いが、少なくとも1種のフルオロオレフィン単位から構成される。例えば、テトラフルオロエチレン重合体や、パーフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレンとの共重合体、更には、エチレン、プロピレン、ブテン、アルキルビニルエーテル類等のフッ素を含まない非フッ素エチレン系単量体との共重合体も挙げられる。具体的には、ポリテトラフルオロエチレン、エチレンーテトラフルオロエチレン共重合体、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等が挙げられる。中でも、溶融押出性が容易である点からエチレンーテトラフルオロエチレン共重合体、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体が好ましい。 The structure of the fluorine-containing resin (B) is not particularly limited, but is composed of at least one fluoroolefin unit. For example, a tetrafluoroethylene polymer, a copolymer with perfluoro (alkyl vinyl ether), hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, and further, ethylene, propylene, butene. , Copolymers with non-fluoroethylene-based monomers that do not contain fluorine, such as alkyl vinyl ethers, can also be mentioned. Specifically, polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene- Examples thereof include hexafluoropropylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene and the like. Of these, an ethylene-tetrafluoroethylene copolymer, a tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, and a tetrafluoroethylene-hexafluoropropylene copolymer are preferable from the viewpoint of easy melt extrusion.
 本発明で用いられる含フッ素系樹脂(B)の融点は、特に限定されるものではないが、170℃~340℃であり、180℃~340℃が好ましく、190℃~330℃がより好ましい。含フッ素系樹脂(B)の融点が前記範囲内であれば、耐熱性の維持と良好な溶融押出安定性が得られる。 The melting point of the fluorine-containing resin (B) used in the present invention is not particularly limited, but is 170 ° C to 340 ° C, preferably 180 ° C to 340 ° C, and more preferably 190 ° C to 330 ° C. When the melting point of the fluorine-containing resin (B) is within the above range, maintenance of heat resistance and good melt extrusion stability can be obtained.
 本発明で用いられる含フッ素系樹脂(B)のガラス転移温度は、特に限定されるものではないが、130℃以下であり、120℃以下、110℃以下がより好ましい。前記のガラス転移温度を有する含フッ素系樹脂(B)であれば、PAS系樹脂(A)との混合後の延伸において、連続相であるPAS系樹脂(A)と分散相である含フッ素系樹脂(B)との界面での剥離を抑える事ができる。それにより、延伸時の破断が抑制でき、更には、優れた機械物性を有するフィルムを得る事ができる。 The glass transition temperature of the fluorine-containing resin (B) used in the present invention is not particularly limited, but is 130 ° C. or lower, more preferably 120 ° C. or lower and 110 ° C. or lower. In the case of the fluorine-containing resin (B) having the glass transition temperature, the PAS-based resin (A) which is a continuous phase and the fluorine-containing resin which is a dispersed phase are stretched after being mixed with the PAS-based resin (A). It is possible to suppress peeling at the interface with the resin (B). As a result, breakage during stretching can be suppressed, and a film having excellent mechanical characteristics can be obtained.
樹脂組成物中における含フッ素系樹脂(B)の含有量は、5~49質量%であればよいが、5~40質量%であることが好ましい。含フッ素系樹脂(B)の含有量が上記範囲であれば、フィルムの誘電特性(低誘電率化)の改善効果がより顕著に発揮される。 The content of the fluorine-containing resin (B) in the resin composition may be 5 to 49% by mass, but preferably 5 to 40% by mass. When the content of the fluorine-containing resin (B) is in the above range, the effect of improving the dielectric property (reducing the dielectric constant) of the film is more remarkable.
本発明では、含フッ素系樹脂(B)と共に反応性官能基を含有しない含フッ素系樹脂を併用することも可能である。 In the present invention, it is also possible to use the fluorine-containing resin (B) in combination with the fluorine-containing resin that does not contain a reactive functional group.
 [変性エラストマー(C)]
 変性エラストマー(C)は、PAS系樹脂(A)および含フッ素系樹脂(B)の少なくとも一方と反応可能な反応性基を有することにより、フィルムの機械的強度(耐折強度等)を向上させる機能を有する成分である。
 変性エラストマー(C)が有する反応性基としては、エポキシ基および酸無水物基からなる群から選ばれる少なくとも1種であることが好ましく、エポキシ基であることがより好ましい。これらの反応性基は、PAS系樹脂(A)および含フッ素系樹脂(B)が有する官能基と迅速に反応可能である。
[Modified Elastomer (C)]
The modified elastomer (C) has a reactive group capable of reacting with at least one of the PAS-based resin (A) and the fluorine-containing resin (B), thereby improving the mechanical strength (folding resistance, etc.) of the film. It is a component with a function.
The reactive group of the modified elastomer (C) is preferably at least one selected from the group consisting of an epoxy group and an acid anhydride group, and more preferably an epoxy group. These reactive groups can rapidly react with the functional groups of the PAS-based resin (A) and the fluorine-containing resin (B).
 かかる変性エラストマー(C)としては、α-オレフィンに基づく繰り返し単位と、上記官能基を有するビニル重合性化合物に基づく繰り返し単位とを含む共重合体、α-オレフィンに基づく繰り返し単位と、上記官能基を有するビニル重合性化合物に基づく繰り返し単位と、アクリル酸エステルに基づく繰り返し単位とを含む共重合体等が挙げられる。 Examples of the modified elastomer (C) include a copolymer containing a repeating unit based on α-olefin and a repeating unit based on a vinyl polymerizable compound having the above functional group, a repeating unit based on α-olefin, and the above functional group. Examples thereof include a copolymer containing a repeating unit based on a vinyl polymerizable compound having the above, and a repeating unit based on an acrylic acid ester.
 α-オレフィンとしては、エチレン、プロピレン、ブテン-1等の炭素数2~8のα-オレフィン等が挙げられる。
 また、官能基を有するビニル重合性化合物としては、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等のα,β-不飽和カルボン酸およびそのエステル、マレイン酸、フマル酸、イタコン酸、その他炭素数4~10の不飽和ジカルボン酸、そのモノまたはジエステル、その酸無水物等のα,β-不飽和ジカルボン酸、そのエステルおよびその酸無水物、α,β-不飽和グリシジルエステル等が挙げられる。
Examples of the α-olefin include α-olefins having 2 to 8 carbon atoms such as ethylene, propylene and butene-1.
Examples of the vinyl polymerizable compound having a functional group include α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, acrylic acid ester and methacrylic acid ester and their esters, maleic acid, fumaric acid, itaconic acid and others. Examples thereof include unsaturated dicarboxylic acids having 4 to 10 carbon atoms, mono or diesters thereof, α, β-unsaturated dicarboxylic acids such as acid anhydrides thereof, esters thereof and acid anhydrides thereof, α, β-unsaturated glycidyl esters and the like. Be done.
 α,β-不飽和グリシジルエステルとしては、特に限定されないが、下記式(10)で表される化合物等が挙げられる。 The α, β-unsaturated glycidyl ester is not particularly limited, and examples thereof include compounds represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式中、Rは、炭素数1~6のアルケニル基である。
 炭素数1~6のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-メチルエテニル基、1-ブテニル基、2-ブテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4ペンテニル基、1-メチル-1-ペンテニル基、1-メチル-3-ペンテニル基、1,1-ジメチル-1-ブテニル基、1-ヘキセニル基、3-ヘキセニル基等が挙げられる。
In the above formula, R 3 is an alkenyl group having 1 to 6 carbon atoms.
Examples of the alkenyl group having 1 to 6 carbon atoms include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-methylethenyl group, a 1-butenyl group, a 2-butenyl group, a 1-methyl-1-propenyl group and a 1-. Methyl-2-propenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4pentenyl group, 1-methyl-1- Examples thereof include a pentenyl group, a 1-methyl-3-pentenyl group, a 1,1-dimethyl-1-butenyl group, a 1-hexenyl group, a 3-hexenyl group and the like.
 Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基である。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、2,4-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基等が挙げられる。
R4 is an independently hydrogen atom, a halogen atom, and an alkyl group having 1 to 6 carbon atoms.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2-methylbutyl group and 3-methylbutyl group. Group, 2,2-dimethylpropyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethyl Examples thereof include a butyl group, a 2,4-dimethylbutyl group, a 3,3-dimethylbutyl group and a 2-ethylbutyl group.
 α,β-不飽和グリシジルエステルの具体例としては、グリシジルアクリレート、グリシジルメタクリレート等が挙げられ、グリシジルメタクリレートであることが好ましい。
 変性エラストマー(C)中に占めるα-オレフィンに基づく繰り返し単位の割合は、50~95質量%であることが好ましく、50~80質量%であることがより好ましい。α-オレフィンに基づく繰り返し単位の占める割合が上記範囲であれば、フィルムの延伸均一性、耐折強度等を向上することができる。
 また、変性エラストマー(C)中に占める官能基を有するビニル重合性化合物に基づく繰り返し単位の割合は、1~30質量%であることが好ましく、2~20質量%であることがより好ましい。官能基を有するビニル重合性化合物に基づく繰り返し単位の占める割合が上記範囲であれば、目的とする改善効果のみならず、良好な押出安定性が得られる。
Specific examples of the α, β-unsaturated glycidyl ester include glycidyl acrylate and glycidyl methacrylate, and glycidyl methacrylate is preferable.
The ratio of the repeating unit based on α-olefin in the modified elastomer (C) is preferably 50 to 95% by mass, more preferably 50 to 80% by mass. When the ratio of the repeating unit based on α-olefin is within the above range, the stretch uniformity, folding resistance and the like of the film can be improved.
Further, the ratio of the repeating unit based on the vinyl polymerizable compound having a functional group in the modified elastomer (C) is preferably 1 to 30% by mass, more preferably 2 to 20% by mass. When the ratio of the repeating unit based on the vinyl polymerizable compound having a functional group is in the above range, not only the desired improvement effect but also good extrusion stability can be obtained.
 樹脂組成物中における変性エラストマー(C)の含有量は、1~20質量%であることが好ましく、1~5質量%であることがより好ましい。変性エラストマー(C)の含有量が上記範囲であれば、フィルムの誘電特性、耐折強度等の向上効果が顕著に発揮される。 The content of the modified elastomer (C) in the resin composition is preferably 1 to 20% by mass, more preferably 1 to 5% by mass. When the content of the modified elastomer (C) is within the above range, the effect of improving the dielectric properties, folding resistance and the like of the film is remarkably exhibited.
 [シランカップリング剤(D)]
 本発明におけるシランカップリング剤(D)は、PAS系樹脂(A)と、他の成分である反応性官能基を有する含フッ素系樹脂(B)、変性エラストマー(C)との相溶性(相互作用)を高める機能を有する成分である。シランカップリング剤(D)を使用することにより、PAS系樹脂(A)中における他の成分の分散性が飛躍的に向上し、良好なモルフォロジーを形成することができる。
[Silane Coupling Agent (D)]
The silane coupling agent (D) in the present invention is compatible (mutually) with the PAS-based resin (A), the fluorine-containing resin (B) having a reactive functional group, which is another component, and the modified elastomer (C). It is a component having a function of enhancing action). By using the silane coupling agent (D), the dispersibility of other components in the PAS-based resin (A) is dramatically improved, and good morphology can be formed.
 シランカップリング剤(D)は、カルボキシル基と反応し得る官能基を有する化合物であることが好ましい。かかるシランカップリング剤(D)は、PAS系樹脂(A)および含フッ素系樹脂(B)と反応することで、これらと強固に結合する。その結果、シランカップリング剤(D)の効果がより顕著に発揮され、PAS系樹脂(A)中における含フッ素系樹脂(B)の分散性を特に高めることができる。 The silane coupling agent (D) is preferably a compound having a functional group capable of reacting with a carboxyl group. The silane coupling agent (D) reacts with the PAS-based resin (A) and the fluorine-containing resin (B) to firmly bond with them. As a result, the effect of the silane coupling agent (D) is exhibited more remarkably, and the dispersibility of the fluorine-containing resin (B) in the PAS-based resin (A) can be particularly enhanced.
 かかるシランカップリング剤(D)としては、例えば、エポキシ基、イソシアネート基、アミノ基または水酸基を有する化合物が挙げられる。
 シランカップリング剤(D)の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。
Examples of the silane coupling agent (D) include compounds having an epoxy group, an isocyanate group, an amino group or a hydroxyl group.
Specific examples of the silane coupling agent (D) include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Group-containing alkoxysilane compound, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxy Isocyanato group-containing alkoxysilane compounds such as silane, γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) Examples thereof include amino group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane and γ-aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane.
 樹脂組成物中におけるシランカップリング剤(D)の含有量は、0.05~5質量%であることが好ましく、0.1~3質量%であることがより好ましい。シランカップリング剤(D)の含有量が上記範囲であれば、PAS系樹脂(A)中における他の成分の分散性を向上する効果が顕著に発揮される。 The content of the silane coupling agent (D) in the resin composition is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass. When the content of the silane coupling agent (D) is in the above range, the effect of improving the dispersibility of other components in the PAS-based resin (A) is remarkably exhibited.
 [添加剤]
 樹脂組成物は、本発明の効果を阻害しない範囲であれば、可塑剤、耐候剤、酸化防止剤、熱安定剤、紫外線安定剤、滑剤、帯電防止剤、着色剤、導電剤等を含有してもよい。
[Additive]
The resin composition contains a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, an ultraviolet stabilizer, a lubricant, an antistatic agent, a colorant, a conductive agent and the like as long as the effect of the present invention is not impaired. May be.
 <樹脂組成物及び製造方法>
 樹脂組成物を製造する方法としては、特に限定されないが、PAS系樹脂(A)、含フッ素系樹脂(B)、変性エラストマー(C)、シランカップリング剤(D)、および必要に応じてその他の成分をタンブラーまたはヘンシェルミキサー等で均一に混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられ、この溶融混錬は剪断流動場での混錬、伸長流動場での混錬のいずれか一方、若しくは、両方であってもよい。この溶融混練は、混練物の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.02~0.2(kg/hr・rpm)となる条件で行うことが好ましい。
<Resin composition and manufacturing method>
The method for producing the resin composition is not particularly limited, but is limited to PAS-based resin (A), fluorine-containing resin (B), modified elastomer (C), silane coupling agent (D), and if necessary, others. There is a method of uniformly mixing the components of the above with a tumbler or a Henschel mixer, and then putting them into a twin-screw extruder for melt kneading. This melt kneading is carried out in a shear flow field or an extension flow field. Either one or both of the kneading may be used. In this melt kneading, the ratio (discharge amount / screw rotation speed) of the discharge amount (kg / hr) of the kneaded material to the screw rotation speed (rpm) is 0.02 to 0.2 (kg / hr · rpm). It is preferable to carry out under the conditions.
 混合時の設定温度は、PAS系樹脂(A)及び含フッ素系樹脂(B)のうち融点が高い方の樹脂の融点より+5~70℃の範囲が選択され、+10~50℃の範囲がより好ましい。設定温度がPAS系樹脂(A)及び含フッ素系樹脂(B)の融点より低い場合には、部分的に融解しないPAS系樹脂(A)または含フッ素系樹脂(B)の存在により、組成物の粘度が大幅に上昇し、二軸押出機への負荷が大きくなるため生産性上好ましくない。
更に詳述すれば、各成分を二軸押出機内に投入し、前記設定温度でストランドダイでの樹脂温度310℃程度の温度条件下に溶融混練する方法が好ましい。この際、混練物の吐出量は、回転数250rpmで5~50kg/hrの範囲となる。特に各成分の分散性を高める観点からは、混練物の吐出量は、回転数250rpmで20~35kg/hrであることが好ましい。よって、混練物の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)は、0.08~0.14(kg/hr・rpm)であることがより好ましい。
The set temperature at the time of mixing is selected in the range of +5 to 70 ° C. from the melting point of the resin having the higher melting point among the PAS-based resin (A) and the fluorine-containing resin (B), and the range of +10 to 50 ° C. is more. preferable. When the set temperature is lower than the melting points of the PAS-based resin (A) and the fluorine-containing resin (B), the composition is due to the presence of the PAS-based resin (A) or the fluorine-containing resin (B) that does not partially melt. This is not preferable in terms of productivity because the viscosity of the resin increases significantly and the load on the twin-screw extruder increases.
More specifically, a method in which each component is put into a twin-screw extruder and melt-kneaded at the set temperature under a temperature condition of a resin temperature of about 310 ° C. on a strand die is preferable. At this time, the discharge amount of the kneaded product is in the range of 5 to 50 kg / hr at a rotation speed of 250 rpm. In particular, from the viewpoint of enhancing the dispersibility of each component, the discharge amount of the kneaded product is preferably 20 to 35 kg / hr at a rotation speed of 250 rpm. Therefore, the ratio (discharge amount / screw rotation speed) between the discharge amount (kg / hr) of the kneaded product and the screw rotation speed (rpm) may be 0.08 to 0.14 (kg / hr · rpm). More preferred.
マトリックス中に分散する粒子(分散相)の平均粒径(平均分散径)は、5μm以下であることが好ましく、3μm以下であることがより好ましく、0.5~3μmであることがさらに好ましい。粒子の平均粒径が上記範囲であれば、均一かつ均質なフィルムを得ることができる。なお、本明細書において、「粒子の平均粒径」は、後述する実施例に記載の方法で測定された値を採用する。 The average particle size (average dispersion diameter) of the particles (dispersed phase) dispersed in the matrix is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 0.5 to 3 μm. When the average particle size of the particles is in the above range, a uniform and homogeneous film can be obtained. In this specification, the value measured by the method described in Examples described later is adopted as the “average particle size of particles”.
  <フィルム>
 以上のような樹脂組成物から本発明のフィルムが形成される。
 かかるフィルムの一実施態様では、PAS系樹脂(A)をマトリックス(連続相)として、このマトリックス中に含フッ素系樹脂(B)を含む粒子(分散相)が分散している。
 なお、変性エラストマー(C)は、含フッ素系樹脂(B)の粒子の表面(すなわちマトリックスと粒子との界面)、含フッ素系樹脂(B)の粒子内、または含フッ素系樹脂(B)の粒子と別の粒子(分散相)として存在する。
<Film>
The film of the present invention is formed from the above resin composition.
In one embodiment of such a film, the PAS-based resin (A) is used as a matrix (continuous phase), and particles (dispersed phase) containing the fluorine-containing resin (B) are dispersed in the matrix.
The modified elastomer (C) may be used on the surface of the particles of the fluorine-containing resin (B) (that is, at the interface between the matrix and the particles), in the particles of the fluorine-containing resin (B), or on the fluorine-containing resin (B). It exists as a particle (dispersed phase) different from the particle.
 また、本発明者らは、変性エラストマー(C)は、PAS系樹脂(A)と含フッ素系樹脂(B)との相溶化剤としても機能することにより、粒子がマトリックス中に微分散化することで、フィルムの機械的強度が向上するものと考えている。さらに、本発明者らは、シランカップリング剤(D)との併用により、変性エラストマー(C)を介したマトリックスと粒子との界面の接着性がより向上し、フィルムの機械的強度がさらに向上するものとも考えている。 In addition, the present inventors also function as a compatibilizer between the PAS-based resin (A) and the fluorine-containing resin (B) in the modified elastomer (C), so that the particles are finely dispersed in the matrix. It is believed that this will improve the mechanical strength of the film. Furthermore, the present inventors further improve the adhesiveness of the interface between the matrix and the particles via the modified elastomer (C) and further improve the mechanical strength of the film when used in combination with the silane coupling agent (D). I also think that it will be done.
 フィルムは、樹脂組成物から得られたシートを二軸延伸してなる二軸延伸フィルムであることが好ましい。
 二軸延伸フィルムとすれば、マトリックスを構成するPAS系樹脂(A)は、その分子鎖が伸張された状態で結晶化するため、寸法精度の高いフィルムを得ることができる。
The film is preferably a biaxially stretched film formed by biaxially stretching a sheet obtained from a resin composition.
If the biaxially stretched film is used, the PAS-based resin (A) constituting the matrix crystallizes in a stretched state, so that a film with high dimensional accuracy can be obtained.
 二軸延伸フィルムの長手方向(MD方向)の延伸倍率は、1.5~4倍であることが好ましく、2~3.8倍であることがより好ましい。
 また、二軸延伸フィルムの幅方向(TD方向)の延伸倍率は、1.5~4倍であることが好ましく、2~3.8倍であることがより好ましい。
 なお、二軸延伸フィルムの長手方向(MD方向)の延伸倍率に対する二軸延伸フィルムの幅方向(TD方向)の延伸倍率の比(幅方向(TD方向)/(長手方向(MD方向))は、0.8~1.3であることが好ましく、長手方向の物性と幅方向の物性とをバランスさせ易いことから、0.9~1.2であることがより好ましい。
The stretching ratio in the longitudinal direction (MD direction) of the biaxially stretched film is preferably 1.5 to 4 times, more preferably 2 to 3.8 times.
The draw ratio of the biaxially stretched film in the width direction (TD direction) is preferably 1.5 to 4 times, more preferably 2 to 3.8 times.
The ratio of the stretching ratio in the width direction (TD direction) of the biaxially stretched film to the stretching ratio in the longitudinal direction (MD direction) of the biaxially stretched film (width direction (TD direction) / (longitudinal direction (MD direction)) is , 0.8 to 1.3, and more preferably 0.9 to 1.2 because it is easy to balance the physical properties in the longitudinal direction and the physical properties in the width direction.
本発明の二軸延伸フィルムの厚みは、特に限定されないが、300μm以下、好ましくは、3~200μm、さらに好ましくは5~150μmの範囲である。かかる厚さの二軸延伸フィルムであれば、十分な機械的強度を発揮することができる。 The thickness of the biaxially stretched film of the present invention is not particularly limited, but is in the range of 300 μm or less, preferably 3 to 200 μm, and more preferably 5 to 150 μm. A biaxially stretched film having such a thickness can exhibit sufficient mechanical strength.
本発明の二軸延伸フィルムは、少なくとも、本発明の樹脂組成物からなる層が一層あれば良く、他の樹脂組成物からなる層が直接、あるいは、接着剤層などを介して、積層されていても良い。 The biaxially stretched film of the present invention may have at least one layer made of the resin composition of the present invention, and layers made of other resin compositions are laminated directly or via an adhesive layer or the like. May be.
本発明の二軸延伸フィルムと金属あるいは樹脂成形体との接着性を高める目的で二軸延伸フィルムに表面処理を施しても良い。該表面処理としては、コロナ放電処理(各種ガス雰囲気下でのコロナ処理も含む)、プラズマ処理(各種ガス雰囲気下でのプラズマ処理も含む)、化学薬品や紫外線、電子照射線等による酸化処理等が挙げられる。中でも、プラズマ処理が好ましい。 A surface treatment may be applied to the biaxially stretched film for the purpose of enhancing the adhesiveness between the biaxially stretched film of the present invention and the metal or resin molded body. The surface treatment includes corona discharge treatment (including corona treatment under various gas atmospheres), plasma treatment (including plasma treatment under various gas atmospheres), oxidation treatment with chemicals, ultraviolet rays, electron irradiation rays, etc. Can be mentioned. Above all, plasma treatment is preferable.
 <二軸延伸フィルムの製造方法>
 二軸延伸フィルムは、例えば、次のようにして製造される。
 まず、樹脂組成物を140℃で3時間以上乾燥した後、280~320℃に加熱された押出機に投入する。
 その後、押出機を経た溶融状態の樹脂組成物(すなわち混練物)をTダイにてシート(フィルム)状に吐出させる。
 次いで、シート状の混練物を、表面温度20~50℃の冷却ロールに密着させて冷却固化する。これにより、無配向状態の未延伸シートを得る。
<Manufacturing method of biaxially stretched film>
The biaxially stretched film is manufactured, for example, as follows.
First, the resin composition is dried at 140 ° C. for 3 hours or more, and then put into an extruder heated to 280 to 320 ° C.
Then, the molten resin composition (that is, the kneaded product) that has passed through the extruder is discharged into a sheet (film) by a T-die.
Next, the sheet-shaped kneaded product is brought into close contact with a cooling roll having a surface temperature of 20 to 50 ° C. to be cooled and solidified. As a result, an unoriented sheet in an unoriented state is obtained.
 次に、未延伸シートを二軸延伸する。延伸方法としては、特に制限されず、公知の手法が採用されうる。逐次二軸延伸法、同時二軸延伸法、またはこれらを組み合わせた方法を用いることができる。
 逐次二軸延伸法により二軸延伸をする場合には、例えば、得られた未延伸シートを加熱ロール群で加熱し、長手方向(MD方向)に1.5~4倍(好ましくは2~3.8倍)に、1段または2段以上の多段で延伸した後、30~60℃の冷却ロール群で冷却する。
 なお、延伸温度は、PAS系樹脂(A)のガラス転移温度(Tg)~Tg+40℃であることが好ましく、Tg+5℃~Tg+30℃であることがより好ましく、Tg+5℃~Tg+20℃であることがさらに好ましい。
Next, the unstretched sheet is biaxially stretched. The stretching method is not particularly limited, and a known method can be adopted. A sequential biaxial stretching method, a simultaneous biaxial stretching method, or a combination thereof can be used.
In the case of biaxial stretching by the sequential biaxial stretching method, for example, the obtained unstretched sheet is heated by a heating roll group and 1.5 to 4 times (preferably 2 to 3) in the longitudinal direction (MD direction). After stretching in one stage or multiple stages of two or more stages), it is cooled in a cooling roll group at 30 to 60 ° C.
The stretching temperature is preferably the glass transition temperature (Tg) to Tg + 40 ° C. of the PAS-based resin (A), more preferably Tg + 5 ° C. to Tg + 30 ° C., and further preferably Tg + 5 ° C. to Tg + 20 ° C. preferable.
 次に、テンターを用いる方法により幅方向(TD方向)に延伸する。MD方向に延伸させたフィルムの両端部をクリップで把持して、テンターに導き、TD方向の延伸を行う。
 なお、延伸倍率は、1.5~4倍であることが好ましく、2~3.8倍であることがより好ましい。
 また、延伸温度は、Tg~Tg+40℃であることが好ましく、Tg+5℃~Tg+30℃であることがより好ましく、Tg+5℃~Tg+20℃であることがさらに好ましい。
Next, it is stretched in the width direction (TD direction) by a method using a tenter. Both ends of the film stretched in the MD direction are gripped with clips, guided to the tenter, and stretched in the TD direction.
The draw ratio is preferably 1.5 to 4 times, more preferably 2 to 3.8 times.
The stretching temperature is preferably Tg to Tg + 40 ° C, more preferably Tg + 5 ° C to Tg + 30 ° C, and even more preferably Tg + 5 ° C to Tg + 20 ° C.
 次に、この延伸フィルムを緊張下または幅方向に弛緩しながら熱固定する。
 熱固定温度は、特に限定されないが、200~280℃であることが好ましく、220~280℃であることがより好ましく、240~275℃であることがさらに好ましい。なお、熱固定は、熱固定温度を変更して2段で実施してもよい。この場合、2段目の熱固定温度を1段目の熱固定温度より+10~40℃高くすることが好ましい。この範囲の熱固定温度で熱固定された延伸フィルムは、その耐熱性、機械的強度がより向上する。
 また、熱固定時間は、1~60秒間であることが好ましい。
Next, the stretched film is heat-fixed under tension or while relaxing in the width direction.
The heat fixing temperature is not particularly limited, but is preferably 200 to 280 ° C, more preferably 220 to 280 ° C, and even more preferably 240 to 275 ° C. The heat fixing may be performed in two stages by changing the heat fixing temperature. In this case, it is preferable that the heat fixing temperature of the second stage is higher than the heat fixing temperature of the first stage by +10 to 40 ° C. The stretched film heat-fixed at a heat-fixing temperature in this range has higher heat resistance and mechanical strength.
The heat fixing time is preferably 1 to 60 seconds.
 さらに、このフィルムを50~270℃の温度ゾーンで、幅方向に弛緩しながら冷却する。弛緩率は、0.5~10%であることが好ましく、2~8%であることがより好ましく、3~7%であることがさらに好ましい。 Further, this film is cooled in a temperature zone of 50 to 270 ° C. while relaxing in the width direction. The relaxation rate is preferably 0.5 to 10%, more preferably 2 to 8%, and even more preferably 3 to 7%.
 [積層体]
 本発明の積層体は、上述の二軸延伸フィルムと、このフィルムの少なくとも一方の面側に設けられた金属層あるいは樹脂成形体とを有する。
 金属層の構成材料(金属材料)としては、特に限定されないが、銅、アルミニウム、亜鉛、チタン、ニッケル、またはこれらを含む合金等が挙げられる。
 なお、金属層は、単層構造であってもよいし、2層以上の積層構造であってもよい。金属層が積層構造である場合、各層は同一の金属材料で構成されても、異なる金属材料で構成されてもよい。
[Laminate]
The laminated body of the present invention has the above-mentioned biaxially stretched film and a metal layer or a resin molded body provided on at least one surface side of the film.
The constituent material (metal material) of the metal layer is not particularly limited, and examples thereof include copper, aluminum, zinc, titanium, nickel, and alloys containing these.
The metal layer may have a single-layer structure or a laminated structure of two or more layers. When the metal layers have a laminated structure, each layer may be made of the same metal material or different metal materials.
 一実施形態において、積層体は、金属層-フィルム、金属層-フィルム-金属層、金属層-フィルム-金属層-フィルム、金属層-金属層-フィルム、金属層-金属層-フィルム-金属層等の構造を有し得る。
 なお、金属層を形成する方法としては、金属の真空蒸着、スパッタリング、めっき等による方法が挙げられる。また、フィルムと金属箔とを重ね合わせ、熱溶着させる方法により金属層を形成してもよい。
In one embodiment, the laminate is a metal layer-film, metal layer-film-metal layer, metal layer-film-metal layer-film, metal layer-metal layer-film, metal layer-metal layer-film-metal layer. Etc. may have a structure such as.
Examples of the method for forming the metal layer include vacuum deposition of metal, sputtering, plating, and the like. Further, a metal layer may be formed by a method of superimposing a film and a metal foil and heat-welding them.
 かかる積層体は、フィルムが優れた誘電特性を有するため、次世代の高速伝送に好適なフレキシブルプリント配線板(FPC)やフレキシブルフラットケーブル(FFC)に加工して使用することができる。
 また、延伸均一性に優れる二軸延伸フィルムを使用すれば、積層体は、厚み均一性に優れ、その誘電率のばらつきを抑制することができる。
 さらに、フィルムと金属層との間には、例えば、これらの密着性を向上する機能を有する中間層を設けるようにしてもよい。
Since the film has excellent dielectric properties, such a laminate can be processed into a flexible printed wiring board (FPC) or a flexible flat cable (FFC) suitable for next-generation high-speed transmission.
Further, if a biaxially stretched film having excellent stretch uniformity is used, the laminated body has excellent thickness uniformity and can suppress variations in its dielectric constant.
Further, an intermediate layer having a function of improving the adhesion thereof may be provided between the film and the metal layer, for example.
前記樹脂成形体としては、ポリオレフィン系樹脂、ポリエステル樹脂、ナイロン樹脂、ポリアリーレンスルフィド樹脂、芳香族ポリアミド、液晶樹脂などの押出成形品または射出成型品、繊維シートが挙げられるがこれに限定されるものではない。 Examples of the resin molded product include, but are limited to, extrusion-molded products such as polyolefin resins, polyester resins, nylon resins, polyarylene sulfide resins, aromatic polyamides, and liquid crystal resins, injection-molded products, and fiber sheets. is not.
 以上、本発明のフィルムおよび積層体について説明したが、本発明は、前述した実施形態の構成に限定されない。
 例えば、本発明のフィルムおよび積層体は、それぞれ、前述した実施形態に構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
Although the film and the laminate of the present invention have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, the film and the laminate of the present invention may be added to any other configuration in the configuration described above, or may be replaced with any configuration that exhibits the same function.
 次に、実施例を挙げて本発明をより詳しく説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 1.樹脂組成物および二軸延伸フィルムの製造
 [実施例1]
 84.5質量部のポリフェニレンスルフィド樹脂-1(DIC株式会社製、リニア型、融点280℃、300℃における溶融粘度(V6)160Pa・s)と、15質量部の官能基を有する含フッ素系樹脂(B)(AGC株式会社製、「AH-2000」、融点240℃)と、0.5質量部の3-グリシドキシプロピルトリエトキシシランとを、タンブラーで均一に混合して混合物を得た。
1. 1. Production of Resin Composition and Biaxial Stretched Film [Example 1]
84.5 parts by mass of polyphenylene sulfide resin-1 (manufactured by DIC Corporation, linear type, melt viscosity (V6) 160 Pa · s at melting point 280 ° C., 300 ° C.) and a fluorine-containing resin having 15 parts by mass of functional groups. (B) (“AH-2000” manufactured by AGC Corporation, melting point 240 ° C.) and 0.5 parts by mass of 3-glycidoxypropyltriethoxysilane were uniformly mixed with a tumbler to obtain a mixture. ..
 なお、ポリフェニレンスルフィド樹脂は、その分子末端にカルボキシル基を有している。
 以下では、ポリフェニレンスルフィド樹脂を「PPS」と、3-グリシドキシプロピルトリエトキシシランを「シランカップリング剤」と記載する。
The polyphenylene sulfide resin has a carboxyl group at the molecular terminal thereof.
Hereinafter, the polyphenylene sulfide resin will be referred to as “PPS” and 3-glycidoxypropyltriethoxysilane will be referred to as “silane coupling agent”.
 次に、上記で得られた混合物を、ベント付二軸押出機(株式会社日本製鋼所製、「TEX-30α」)に投入した。その後、吐出量20kg/hr、スクリュー回転数300rpm、シリンダー設定温度320℃、ストランドダイでの樹脂温度310℃程度となる条件で溶融押出してストランド状に吐出し、温度30℃の水で冷却した後、カッティングして樹脂組成物を製造した。 Next, the mixture obtained above was put into a twin-screw extruder with a vent (manufactured by Japan Steel Works, Ltd., "TEX-30α"). After that, it is melt-extruded under the conditions of a discharge rate of 20 kg / hr, a screw rotation speed of 300 rpm, a cylinder set temperature of 320 ° C., and a resin temperature of about 310 ° C. on a strand die, discharged into a strand shape, and cooled with water having a temperature of 30 ° C. , Cutting was performed to produce a resin composition.
 次に、この樹脂組成物を、140℃で3時間乾燥した後、フルフライトスクリューの単軸押出機に投入して、280~310℃の条件で溶融させた。溶融した樹脂組成物をTダイから押出した後、40℃に設定したチルロールで密着冷却し、未延伸シートを作製した。
 次に、作製された未延伸シートを、バッチ式二軸延伸機(株式会社井本製作所製)を用いて100℃で3.0×3.0倍に二軸延伸することで、厚み50μmのフィルムを得た。さらに、得られたフィルムを型枠に固定し、275℃のオーブンにて熱固定処理することで、二軸延伸フィルムを製造した。
Next, this resin composition was dried at 140 ° C. for 3 hours, and then charged into a single-screw extruder of a full flight screw and melted under the conditions of 280 to 310 ° C. The melted resin composition was extruded from the T-die and then closely cooled with a chill roll set at 40 ° C. to prepare an unstretched sheet.
Next, the produced unstretched sheet was biaxially stretched 3.0 × 3.0 times at 100 ° C. using a batch type biaxial stretching machine (manufactured by Imoto Seisakusho Co., Ltd.) to form a film having a thickness of 50 μm. Got Further, the obtained film was fixed to a mold and heat-fixed in an oven at 275 ° C. to produce a biaxially stretched film.
 製造した樹脂組成物中の粒子の平均粒径を、次のようにして測定した。
 まず、樹脂組成物ペレットを、超薄切片法により、流動方向に対して直角方向に切断した。次に、切断されたペレットの切断面をそれぞれ2000倍の走査型電子顕微鏡(SEM)写真を撮影とし、得られた画像をA3サイズに拡大した。次に、拡大したSEM写真の任意の50個の粒子を選択し、切断面における各粒子の最大直径を計測し、平均粒径を算出した。
 その結果、樹脂組成物ペレットの粒子の平均粒径は、1.3μmであった。
The average particle size of the particles in the produced resin composition was measured as follows.
First, the resin composition pellets were cut in a direction perpendicular to the flow direction by an ultrathin section method. Next, each of the cut surfaces of the cut pellets was photographed by a scanning electron microscope (SEM) at 2000 times, and the obtained image was enlarged to A3 size. Next, any 50 particles in the enlarged SEM photograph were selected, the maximum diameter of each particle on the cut surface was measured, and the average particle size was calculated.
As a result, the average particle size of the particles of the resin composition pellet was 1.3 μm.
また、切断された樹脂ペレットのSEM-EDS分析を行い、樹脂組成物ペレットのマトリックスおよび粒子を構成する成分について分析した。その結果、マトリックスを構成する成分は、PPSであり、粒子を構成する成分は、含フッ素系樹脂であることが判った。 In addition, SEM-EDS analysis of the cut resin pellets was performed, and the matrix and the components constituting the particles of the resin composition pellets were analyzed. As a result, it was found that the component constituting the matrix was PPS and the component constituting the particles was a fluorine-containing resin.
 [実施例2]
 含フッ素系樹脂に(B)(AGC株式会社製、「EA-2000」、融点300℃)を用いた以外は、実施例1と同様にして、樹脂組成物および二軸延伸フィルムを製造した。
 なお、実施例1と同様の方法で、二軸延伸フィルム中の粒子の平均粒径を測定したところ、1.5μmであった。
 また、実施例1と同様の方法で、樹脂組成物ペレットの構成成分について分析した結果、PPSのマトリックス中に、含フッ素系樹脂の粒子が分散していることが判った。
[Example 2]
A resin composition and a biaxially stretched film were produced in the same manner as in Example 1 except that (B) (manufactured by AGC Inc., “EA-2000”, melting point 300 ° C.) was used as the fluorine-containing resin.
The average particle size of the particles in the biaxially stretched film was measured by the same method as in Example 1 and found to be 1.5 μm.
Further, as a result of analyzing the constituent components of the resin composition pellets by the same method as in Example 1, it was found that the particles of the fluorine-containing resin were dispersed in the PPS matrix.
 [実施例3]
 PPS樹脂に、PPS樹脂-2(DIC株式会社製、リニア型、融点280℃、300℃における溶融粘度(V6)110Pa・s)に変更した以外は、実施例2と同様にして、樹脂組成物および二軸延伸フィルムを製造した。
 なお、実施例1と同様の方法で、二軸延伸フィルム中の粒子の平均粒径を測定したところ、1.6μmであった。
 また、実施例1と同様の方法で、樹脂ペレットの構成成分について分析した結果、PPSのマトリックス中に、含フッ素系樹脂の粒子が分散していることが判った。
[Example 3]
The resin composition is the same as in Example 2 except that the PPS resin is changed to PPS resin-2 (manufactured by DIC Corporation, linear type, melt viscosity (V6) 110 Pa · s at melting points 280 ° C. and 300 ° C.). And a biaxially stretched film was produced.
The average particle size of the particles in the biaxially stretched film was measured by the same method as in Example 1 and found to be 1.6 μm.
Further, as a result of analyzing the constituent components of the resin pellets by the same method as in Example 1, it was found that the particles of the fluorine-containing resin were dispersed in the PPS matrix.
 [実施例4]
 PPS樹脂-2を79.5質量%、EA-2000を15質量%、反応基を有する変性エラストマーにボンドファースト7L(エチレン/グリシジルメタクリレート/アクリル酸メチル=70/3/27(質量%)、住友化学株式会社製)5質量%、シランカップリング剤を0.5質量%とした以外は、実施例1と同様にして延伸フィルムを得た。
 なお、実施例1と同様の方法で、樹脂ペレットの構成成分について分析した結果、PPSのマトリックス中に、含フッ素系樹脂の粒子が分散していることが判った。なお、変性エラストマーは、単独で分散する粒子として存在するか、マットリックスと含フッ素系樹脂の粒子との界面に存在していた。樹脂ペレット中の含フッ素粒子の平均粒径を測定したところ、1.2μmであった。
[Example 4]
79.5% by mass of PPS resin-2, 15% by mass of EA-2000, 7L of Bond First (ethylene / glycidylmethacrylate / methyl acrylate = 70/3/27 (% by mass)) to a modified elastomer having a reactive group, Sumitomo A stretched film was obtained in the same manner as in Example 1 except that the content was 5% by mass and the silane coupling agent was 0.5% by mass.
As a result of analyzing the constituent components of the resin pellets by the same method as in Example 1, it was found that the particles of the fluorine-containing resin were dispersed in the PPS matrix. The modified elastomer existed as particles dispersed alone or at the interface between the mattrix and the particles of the fluorine-containing resin. The average particle size of the fluorine-containing particles in the resin pellets was measured and found to be 1.2 μm.
 [比較例1]
ベント付二軸押出機(株式会社日本製鋼所製、「TEX-30α」)にPPS樹脂-1を投入した。その後、吐出量20kg/hr、スクリュー回転数300rpm、設定温度320℃、ストランドダイでの樹脂温度310℃程度の条件で溶融押出してストランド状に吐出し、温度30℃の水で冷却した後、カッティングして樹脂組成物を製造した。次に実施例1と同様にして二軸延伸フィルムを得た。
[Comparative Example 1]
PPS resin-1 was put into a twin-screw extruder with a vent (manufactured by Japan Steel Works, Ltd., "TEX-30α"). After that, it is melt-extruded under the conditions of a discharge rate of 20 kg / hr, a screw rotation speed of 300 rpm, a set temperature of 320 ° C., and a resin temperature of about 310 ° C. on a strand die, discharged into a strand shape, cooled with water at a temperature of 30 ° C., and then cut. The resin composition was produced. Next, a biaxially stretched film was obtained in the same manner as in Example 1.
 [比較例2]
 PPS樹脂にPPS樹脂―3(DIC株式会社製、架橋型、融点280℃、300℃における溶融粘度(V6)250Pa・s)を用いた以外は、実施例1と同様にして二軸延伸フィルムを得た。
[Comparative Example 2]
A biaxially stretched film was prepared in the same manner as in Example 1 except that PPS resin-3 (crosslinked type, melt viscosity (V6) 250 Pa · s at melting point 280 ° C. and 300 ° C.) was used as the PPS resin. Obtained.
[比較例3]
 PPS樹脂にPPS樹脂-1 20質量%とPPS樹脂-3 64.5質量%、含フッ素系樹脂にAH-2000 15質量%とシランカップリング剤0.5質量%をタンブラーで均一に混合して混合物を得た。その後、株式会社日本製鋼所製ベント付2軸押出機「TEX-30α」に前記配合材を投入し、吐出量20kg/hr、スクリュー回転数300rpm、原料投入口直下のシリンダー2か所とシリンダー先端とダイスの設定温度300℃、その他のシリンダー設定温度230℃で溶融押出してストランド状に吐出した以外は、実施例1と同様にして二軸延伸フィルムを得た。
[Comparative Example 3]
PPS resin-1 20% by mass and PPS resin-3 64.5% by mass, and fluorine-containing resin AH-2000 15% by mass and silane coupling agent 0.5% by mass are uniformly mixed with a tumbler. A mixture was obtained. After that, the compound material was put into a twin-screw extruder "TEX-30α" with a vent manufactured by Japan Steel Works, Ltd., the discharge rate was 20 kg / hr, the screw rotation speed was 300 rpm, two cylinders directly under the raw material input port and the tip of the cylinder. A biaxially stretched film was obtained in the same manner as in Example 1 except that the die was melt-extruded at a set temperature of 300 ° C. and another cylinder set temperature of 230 ° C. and discharged in a strand shape.
 2.評価
 2-1. 加熱滞留前後(330℃)でのMFRの比
メルトインデクサーを用い、シリンダー温度330℃、2.16kgf荷重下で5分滞留後、ノズルから流出する質量を測定し、MFR1とした。また、シリンダー温度330℃、2.16kgf荷重下で30分滞留後の流出量を測定し、MFR2とした。
[評価基準]
〇:MFR1/MFR2 0.2以上4.5以下
×:MFR1/MFR2 0.2より小さい、4.5より大きい
2. 2. Evaluation 2-1. Ratio of MFR before and after heating retention (330 ° C) Using a melt indexer, the mass flowing out from the nozzle was measured after staying for 5 minutes under a cylinder temperature of 330 ° C and a load of 2.16 kgf, and used as MFR1. Further, the outflow amount after staying for 30 minutes under a cylinder temperature of 330 ° C. and a load of 2.16 kgf was measured and used as MFR2.
[Evaluation criteria]
〇: MFR1 / MFR2 0.2 or more and 4.5 or less ×: MFR1 / MFR2 smaller than 0.2, larger than 4.5
 2-2.製膜安定性
150μmメッシュのフィルターを用いて溶融濾過し、5時間連続押出を行い、試験開始直後の樹脂圧と5時間経過後の樹脂圧から昇圧を評価
 [評価基準]
 〇:昇圧2MPa以下
×:昇圧2MPaより大きい
2-2. Film formation stability Melt filtration using a 150 μm mesh filter, continuous extrusion for 5 hours, and evaluation of pressurization from the resin pressure immediately after the start of the test and the resin pressure after 5 hours [evaluation criteria]
〇: Booster 2MPa or less ×: Booster 2MPa or less
 2-3.誘電率
 誘電率は、JIS C 2565:1992に規定された空洞共振法に基づいて行った。具体的には、二軸延伸フィルムから幅2mm×長さ150mmの短冊を作製した。次いで、作製した短冊を23℃、50%Rhの環境下、24hr静置した後、ADMS010cシリーズ(株式会社エーイーティー製)を用いて、空洞共振法にて周波数1GHzの誘電率を測定した。
 [評価基準]
 〇;誘電率3.2以下
 ×;誘電率3.2より大きい

 以上の結果を表1および表2に示す。




2-3. Dielectric constant The dielectric constant was determined based on the cavity resonance method specified in JIS C 2565: 1992. Specifically, a strip having a width of 2 mm and a length of 150 mm was produced from the biaxially stretched film. Next, the produced strips were allowed to stand for 24 hours at 23 ° C. and 50% Rh, and then the dielectric constant at a frequency of 1 GHz was measured by a cavity resonance method using an ADMS010c series (manufactured by AET Co., Ltd.).
[Evaluation criteria]
〇; Dielectric constant 3.2 or less ×; Dielectric constant greater than 3.2

The above results are shown in Tables 1 and 2.




Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1、2から明らかなように、実施例1~4では製膜安定性に優れ、得られた二軸延伸フィルムは、誘電率が低く、引張伸度に優れることが解かる。  As is clear from Tables 1 and 2, it can be seen that in Examples 1 to 4, the film-forming stability was excellent, and the obtained biaxially stretched film had a low dielectric constant and excellent tensile elongation. It was

Claims (8)

  1.  少なくともポリアリーレンスルフィド樹脂(A)51~95質量%と、反応性官能基を有する含フッ素系樹脂(B)5~49質量%を原料とする、連続相および分散相を有する樹脂組成物であって、前記樹脂組成物を用いた二軸延伸フィルムにおいて誘電率が3.2以下であり、
     前記連続相が、ポリアリーレンスルフィド樹脂(A)を含み、
     前記分散相が、反応性官能基を有する含フッ素系樹脂(B)を含むポリアリーレンスルフィド樹脂組成物。
    A resin composition having a continuous phase and a dispersed phase, using at least 51 to 95% by mass of the polyarylene sulfide resin (A) and 5 to 49% by mass of the fluororesin (B) having a reactive functional group as raw materials. The biaxially stretched film using the resin composition has a dielectric constant of 3.2 or less.
    The continuous phase contains the polyarylene sulfide resin (A) and contains.
    A polyarylene sulfide resin composition in which the dispersed phase contains a fluorine-containing resin (B) having a reactive functional group.
  2.  前記樹脂組成物の330℃で5分間滞留させた後の流動性(メルトフローレート1)と30分間滞留させた後の流動性(メルトフローレート2)との比メルトフローレート1/メルトフローレート2が、0.2以上4.5以下となる請求項1に記載の樹脂組成物。 Ratio of fluidity (melt flow rate 1) after accumulating the resin composition at 330 ° C. for 5 minutes and fluidity (melt flow rate 2) after accumulating for 30 minutes Melt flow rate 1 / melt flow rate The resin composition according to claim 1, wherein 2 is 0.2 or more and 4.5 or less.
  3.  前記反応性官能基を有する含フッ素系樹脂(B)が、カルボニル基含有基、ヒドロキシ基、エポキシ基、及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する含フッ素系樹脂である、請求項1または2に記載の樹脂組成物。 The fluorine-containing resin (B) having a reactive functional group is a fluorine-containing resin having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, and an isocyanate group. , The resin composition according to claim 1 or 2.
  4.  更に、反応性基が付与された変性エラストマー(C)を1~20質量%含有した請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further comprising 1 to 20% by mass of the modified elastomer (C) to which a reactive group is added.
  5.  前記変性エラストマー(C)がエポキシ基、酸無水物基からなる群から選ばれる少なくとも1つの官能基を有するオレフィン系重合体からなる、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the modified elastomer (C) comprises an olefin polymer having at least one functional group selected from the group consisting of an epoxy group and an acid anhydride group. ..
  6.  更に、エポキシ基、アミノ基、イソシアネート基から選択される少なくとも1種の官能基を含有するシランカップリング剤(D)0.05~5質量%を含む請求項1~5のいずれか1項に記載の樹脂組成物。 Further, according to any one of claims 1 to 5, the silane coupling agent (D) containing 0.05 to 5% by mass of a silane coupling agent (D) containing at least one functional group selected from an epoxy group, an amino group and an isocyanate group. The resin composition described.
  7.  請求項1~6のいずれか1項に記載の樹脂組成物を二軸延伸してなる、二軸延伸フィルム。 A biaxially stretched film obtained by biaxially stretching the resin composition according to any one of claims 1 to 6.
  8.  請求項7に記載の二軸延伸フィルムと、前記二軸延伸フィルムの少なくとも一方の面に配置される金属層あるいは樹脂成形体のいずれか1種以上とを含む、積層体。 A laminated body comprising the biaxially stretched film according to claim 7 and any one or more of a metal layer or a resin molded body arranged on at least one surface of the biaxially stretched film.
PCT/JP2021/022024 2020-10-29 2021-06-10 Polyarylene sulfide resin composition, and, biaxially stretched film and layered body using same WO2022091473A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237012871A KR20230095071A (en) 2020-10-29 2021-06-10 Polyarylene sulfide resin composition, and biaxially stretched film and laminate using the same
JP2022527764A JP7392847B2 (en) 2020-10-29 2021-06-10 Polyarylene sulfide resin composition, biaxially stretched film and laminate using the same
CN202180068936.6A CN116367999A (en) 2020-10-29 2021-06-10 Polyarylene sulfide resin composition, and biaxially stretched film and laminate using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181317 2020-10-29
JP2020-181317 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022091473A1 true WO2022091473A1 (en) 2022-05-05

Family

ID=81383864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022024 WO2022091473A1 (en) 2020-10-29 2021-06-10 Polyarylene sulfide resin composition, and, biaxially stretched film and layered body using same

Country Status (5)

Country Link
JP (1) JP7392847B2 (en)
KR (1) KR20230095071A (en)
CN (1) CN116367999A (en)
TW (1) TW202229457A (en)
WO (1) WO2022091473A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291222A (en) * 2006-04-25 2007-11-08 Toray Ind Inc Biaxially oriented polyarylene sulfide film and method for producing biaxially oriented polyarylene sulfide film
WO2008102851A1 (en) * 2007-02-21 2008-08-28 Asahi Kasei E-Materials Corporation Polyelectrolyte composition, polyelectrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2014105258A (en) * 2012-11-27 2014-06-09 Hitachi Ltd Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition
JP2015110732A (en) * 2013-10-31 2015-06-18 東レ株式会社 Polyphenylene sulfide resin composition
WO2017131028A1 (en) * 2016-01-26 2017-08-03 東レ株式会社 Polyphenylene sulfide resin composition and method for producing same
WO2019225694A1 (en) * 2018-05-25 2019-11-28 ダイキン工業株式会社 Resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083415A (en) 2016-11-17 2018-05-31 東レ株式会社 Laminate film, and production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291222A (en) * 2006-04-25 2007-11-08 Toray Ind Inc Biaxially oriented polyarylene sulfide film and method for producing biaxially oriented polyarylene sulfide film
WO2008102851A1 (en) * 2007-02-21 2008-08-28 Asahi Kasei E-Materials Corporation Polyelectrolyte composition, polyelectrolyte membrane, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2014105258A (en) * 2012-11-27 2014-06-09 Hitachi Ltd Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition
JP2015110732A (en) * 2013-10-31 2015-06-18 東レ株式会社 Polyphenylene sulfide resin composition
WO2017131028A1 (en) * 2016-01-26 2017-08-03 東レ株式会社 Polyphenylene sulfide resin composition and method for producing same
WO2019225694A1 (en) * 2018-05-25 2019-11-28 ダイキン工業株式会社 Resin composition

Also Published As

Publication number Publication date
JPWO2022091473A1 (en) 2022-05-05
TW202229457A (en) 2022-08-01
JP7392847B2 (en) 2023-12-06
KR20230095071A (en) 2023-06-28
CN116367999A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
EP3409726B1 (en) Molded product formed from a polyphenylene sulfide resin composition and method for producing same
JP6849156B2 (en) Insulation film, adhesive film and flat cable
CN114514117B (en) Biaxially stretched laminated film, laminate, and method for producing same
JP7207605B2 (en) Polyarylene sulfide resin composition, and biaxially stretched film and laminate using the same
JP7392847B2 (en) Polyarylene sulfide resin composition, biaxially stretched film and laminate using the same
JPWO2020170919A1 (en) Films and laminates
KR102595637B1 (en) Polyarylene sulfide resin composition, and biaxially stretched films and laminates using the same
KR20160051812A (en) Polyarylene-sulfide film and manufacturing method therefor
JP7448927B1 (en) polyarylene sulfide film
JP7364123B1 (en) Copper-clad laminate and circuit board using the same
JP2023146159A (en) Flexible copper-clad laminate and method for manufacturing the same
TWI838479B (en) Insulation films, adhesive films and flat cables
JP2023015622A (en) Polyarylene sulfide-based resin composition and biaxially oriented film using the same, laminate, and circuit board
TW202348409A (en) Laminate, circuit board and high-frequency circuit board in which the laminate is formed by laminating a low-roughness copper foil and a resin layer containing a polyarylene sulfide-based resin with excellent adhesiveness via an adhesive layer
JP2024070340A (en) Polyphenylene Sulfide Film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022527764

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885597

Country of ref document: EP

Kind code of ref document: A1