JP2014105258A - Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition - Google Patents

Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition Download PDF

Info

Publication number
JP2014105258A
JP2014105258A JP2012258238A JP2012258238A JP2014105258A JP 2014105258 A JP2014105258 A JP 2014105258A JP 2012258238 A JP2012258238 A JP 2012258238A JP 2012258238 A JP2012258238 A JP 2012258238A JP 2014105258 A JP2014105258 A JP 2014105258A
Authority
JP
Japan
Prior art keywords
resin
resin composition
sea
extrusion
polymer alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012258238A
Other languages
Japanese (ja)
Inventor
Toshiharu Goto
敏晴 後藤
Shigehiro Morishita
滋宏 森下
Hideto Momose
秀人 百生
Motoki Uchimura
元樹 内村
Junichi Abe
淳一 安部
Takanori Yamazaki
孝則 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012258238A priority Critical patent/JP2014105258A/en
Publication of JP2014105258A publication Critical patent/JP2014105258A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92561Time, e.g. start, termination, duration or interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition and method for producing the same that realizes an insulated cable being provided with an extrusion coating layer having a high partial discharge inception voltage and having a good extrusion moldability.SOLUTION: The resin composition comprises a polymer alloy, and is characterized in that the polymer alloy has a sea-island structure and the sea component of the sea-island structure is a polyphenylene sulfide (resin A) and the island component of the sea-island structure is a fluororesin (resin B) having an equivalent circle mean diameter of 10 μm or less and the mixture ratio of the resin A and the resin B is 60/40≤(resin A)/(resin B)≤80/20 in weight parts ratio. The resin composition can be applied to the extrusion coating layer 4 of the insulated cable.

Description

本発明は、回転電機や変圧器などの電気機器のコイルに用いられる絶縁電線に係わり、特に、押出成形に好適な樹脂組成物およびその製造方法、ならびに押出被覆層を含む絶縁被覆が形成された絶縁電線に関するものである。   The present invention relates to an insulated wire used for a coil of an electric device such as a rotating electrical machine or a transformer, and in particular, a resin composition suitable for extrusion molding and a method for producing the same, and an insulation coating including an extrusion coating layer are formed. It relates to an insulated wire.

回転電機や変圧器などの電気機器のコイルに用いられている絶縁電線は、一般的に、コイルの用途・形状に合致した断面形状(例えば、丸形状や四辺形状)に成形された導体の外周に単層または複数層の絶縁被覆が形成された構造をしている。該絶縁被覆を形成する方法には、樹脂を有機溶剤に溶解させた絶縁塗料を導体上に塗布・焼付けする方法と、予め調合した樹脂組成物を導体上に押出被覆する方法がある。   Insulated wires used in coils of electrical equipment such as rotating electrical machines and transformers are generally outer peripheries of conductors that have been formed into a cross-sectional shape (for example, a round shape or a quadrilateral shape) that matches the application and shape of the coil. It has a structure in which a single-layer or multiple-layer insulation coating is formed. As a method for forming the insulating coating, there are a method in which an insulating paint in which a resin is dissolved in an organic solvent is applied and baked on the conductor, and a method in which a resin composition prepared in advance is coated on the conductor by extrusion.

近年、電気機器への小型化の要求により、コイル成形工程において絶縁電線を高い張力下で小径のコアに高密度で巻くようになってきており、絶縁被覆には過酷な加工ストレスに耐えられる機械的特性(例えば、導体との密着性や耐摩耗性など)が求められている。また、電気機器への高効率化・高出力化の要求からインバータ制御や高電圧化が進展している。その結果、電気機器の運転時におけるコイルの温度は以前よりも上昇傾向にあり、絶縁被覆には高い耐熱性も求められている。それらに加えて、インバータサージ電圧などのより高い電圧が電気機器中のコイルに掛かることから、部分放電の発生によって絶縁被覆が劣化・損傷することがあるという問題が生じていた。   In recent years, due to the demand for miniaturization of electrical equipment, insulated wires have been wound at high density around small diameter cores under high tension in the coil forming process, and the insulation coating is a machine that can withstand severe processing stress. Characteristics (for example, adhesion to a conductor and wear resistance) are required. In addition, inverter control and higher voltage are progressing due to demands for higher efficiency and higher output of electrical equipment. As a result, the temperature of the coil during the operation of the electric equipment has a tendency to rise more than before, and the insulating coating is also required to have high heat resistance. In addition, since a higher voltage such as an inverter surge voltage is applied to the coil in the electric device, there has been a problem that the insulation coating may be deteriorated or damaged due to the occurrence of partial discharge.

部分放電による絶縁被覆の劣化・損傷を防ぐために、部分放電開始電圧の高い絶縁被覆の開発が進められている。絶縁被覆の部分放電開始電圧を高くする手段の例として、絶縁被覆に比誘電率の低い樹脂を用いる方法や、絶縁被覆の厚さを厚くする方法が挙げられる。   In order to prevent deterioration and damage of the insulation coating due to partial discharge, development of insulation coating with a high partial discharge starting voltage is underway. Examples of means for increasing the partial discharge start voltage of the insulating coating include a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating.

特許文献1(特許第4177295号公報)では、導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有し、該エナメル焼き付け層と該押出被覆樹脂層の厚さの合計が60μm以上であり、前記エナメル焼き付け層の厚さが50μm以下であり、前記押出被覆樹脂層が、25℃における引張弾性率が1000 MPa以上であり、かつ250℃における引張弾性率が10 MPa以上である樹脂材料(ポリエーテルエーテルケトンを除く)からなることを特徴とする耐インバータサージ絶縁ワイヤが開示されている。特許文献1に記載の絶縁ワイヤは、導体と絶縁被覆層の接着強度を下げることなく、高い部分放電開始電圧(900 Vp程度)を有する絶縁ワイヤを提供することができるとされている。   In Patent Document 1 (Japanese Patent No. 4177295), at least one enamel baked layer is provided on the outer periphery of the conductor, and at least one extruded coating resin layer is provided on the outer side of the conductor, and the enamel baked layer and the extruded coating resin are provided. The total thickness of the layers is 60 μm or more, the thickness of the enamel baked layer is 50 μm or less, the extrusion-coated resin layer has a tensile elastic modulus at 25 ° C. of 1000 MPa or more, and a tensile strength at 250 ° C. An inverter surge resistant wire characterized by being made of a resin material (excluding polyether ether ketone) having an elastic modulus of 10 MPa or more is disclosed. The insulated wire described in Patent Document 1 is said to be able to provide an insulated wire having a high partial discharge starting voltage (about 900 Vp) without reducing the adhesive strength between the conductor and the insulating coating layer.

また、特許文献2(特開平11-269383号公報)では、下記(a)と下記(b)とを、(a)と(b)との合量中に(a)50〜99.5重量%、(b)0.5〜50重量%の割合で含有し、さらに、下記(c)を合量で、(a)と(b)との合量100重量部に対して0重量部超250重量部以下の割合で含有する樹脂組成物であり、(a)がポリフェニレンスルフィド、(b)が330℃窒素雰囲気下で溶融後10℃/分の冷却速度で冷却した場合の凝固温度(Tmc)が237℃以上であり、かつ溶融粘度が330℃、荷重5 kg、オリフィスが直径2.095 mm、長さ8 mmの測定条件において示されるメルトインデックスが0.1 g/10分以上であるフッ素樹脂、(c)が有機強化材、無機強化材及び充填材からなる群から選ばれる1種以上である樹脂組成物が開示されている。特許文献2に記載の樹脂組成物は、これを射出成形して得られる立体形状を有する成形品の寸法精度がきわめて高く、自動車や家電・電子分野の構造材料や各種部品の用途に有用であるとそれている。 Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 11-269383), following (a) and the following (b), (a) 50-99.5 weight% in the total amount of (a) and (b), (B) It is contained at a ratio of 0.5 to 50% by weight, and the following (c) is a total amount, more than 0 part by weight and not more than 250 parts by weight with respect to 100 parts by weight of the total amount of (a) and (b) (A) is polyphenylene sulfide, and (b) is melted in a nitrogen atmosphere at 330 ° C. and then cooled at a cooling rate of 10 ° C./min, the solidification temperature (T mc ) is 237 A fluororesin having a melt index of not less than 0.1 g / 10 min under a measurement condition of not less than ℃, a melt viscosity of 330 ° C., a load of 5 kg, an orifice of 2.095 mm in diameter and a length of 8 mm, (c) A resin composition that is one or more selected from the group consisting of organic reinforcing materials, inorganic reinforcing materials, and fillers is disclosed. The resin composition described in Patent Document 2 has extremely high dimensional accuracy of a molded product having a three-dimensional shape obtained by injection molding, and is useful for structural materials and various parts in the fields of automobiles, home appliances, and electronics. And it is.

また、特許文献3(特開2011-134447号公報)では、少なくとも1つの押出被覆層を含む複数の被覆層からなる絶縁被覆が導体上に形成されている絶縁電線であって、前記少なくとも1つの押出被覆層は、ポリフェニレンサルファイド樹脂(A)とオレフィン系共重合樹脂(B)とを含む樹脂組成物を押出被覆した層であり、前記樹脂組成物は、前記ポリフェニレンサルファイド樹脂(A)と前記オレフィン系共重合樹脂(B)とが、重量部比で「(B)/(A) = 45/55 〜 70/30」の範囲で混和されていることを特徴とする絶縁電線が開示されている。特許文献3に記載の絶縁電線は、従来と同等の耐熱性と絶縁被覆厚さとを有しながら、従来よりも高い部分放電開始電圧を有するとされている。   Moreover, in patent document 3 (Unexamined-Japanese-Patent No. 2011-134447), it is the insulated wire in which the insulation coating which consists of several coating layers containing at least 1 extrusion coating layer is formed on the conductor, Comprising: Said at least 1 The extrusion coating layer is a layer obtained by extrusion coating a resin composition comprising a polyphenylene sulfide resin (A) and an olefin copolymer resin (B), and the resin composition comprises the polyphenylene sulfide resin (A) and the olefin. An insulated wire characterized in that the copolymer resin (B) is mixed in the range of “(B) / (A) = 45/55 to 70/30” by weight ratio is disclosed. . The insulated wire described in Patent Document 3 is said to have a partial discharge start voltage higher than that of the prior art while having heat resistance and insulating coating thickness equivalent to those of the conventional one.

特許第4177295号公報Japanese Patent No. 4177295 特開平11−269383号公報Japanese Patent Laid-Open No. 11-269383 特開2011−134447号公報JP 2011-134447 A

特許文献1に記載されている押出被覆樹脂層を有する従来の絶縁電線は、押出被覆樹脂層の厚さを厚くすることによって部分放電開始電圧を高くすることができると考えられる。また、押出被覆樹脂層の密着性を確保するために、導体と押出被覆樹脂層との間にエナメル焼き付け層を介在させている。さらに、その好ましい態様としてエナメル焼き付け層と押出被覆樹脂層との間に接着層を更に介在させ、エナメル焼き付け層と押出被覆樹脂層との接着力を強化している。   The conventional insulated wire having the extrusion-coated resin layer described in Patent Document 1 is considered to be able to increase the partial discharge start voltage by increasing the thickness of the extrusion-coated resin layer. Moreover, in order to ensure the adhesiveness of an extrusion coating resin layer, the enamel baking layer is interposed between the conductor and the extrusion coating resin layer. Further, as a preferred embodiment, an adhesive layer is further interposed between the enamel baked layer and the extrusion-coated resin layer to enhance the adhesive force between the enamel baked layer and the extrusion-coated resin layer.

しかしながら、特許文献1におけるこれらの施策は、いずれも絶縁被覆全体の厚さが増大する方向であり、コイルの小型化や導体占積率向上の要求に対応することが困難になる。また、エナメル焼き付け層と押出被覆樹脂層とは樹脂組成物の性質と形成方法とが大きく異なることから、特許文献1の絶縁電線は、製造工程が煩雑になりやすく製造コストが増大しやすい問題がある。加えて、それらの層間に接着層を更に介在させる場合、製造コストが更に増大する問題がある。   However, all of these measures in Patent Document 1 are in the direction of increasing the thickness of the entire insulation coating, and it is difficult to meet the demands for downsizing the coil and improving the conductor space factor. In addition, since the properties of the resin composition and the forming method are greatly different between the enamel baking layer and the extrusion-coated resin layer, the insulated wire of Patent Document 1 has a problem that the manufacturing process is likely to be complicated and the manufacturing cost is likely to increase. is there. In addition, when an adhesive layer is further interposed between these layers, there is a problem that the manufacturing cost further increases.

また、特許文献2に記載されている樹脂組成物は、射出成形用材料として提案されており、その成形品は金型によって形状制御されるため、樹脂組成物の性状(例えば、微構造や、形状拘束されない自由状態での表面形状)によらず、成形品表面は金型面の精度で平滑になる。しかしながら、押出成形においては、押出機から出ると(押出成形ダイスを通過すると)自由空間内で圧力が解放されてしまうため、樹脂組成物の性状を上手く制御しないと成形品表面に過大な凹凸を生じさせてしまうことがある。絶縁電線において絶縁被覆の表面に生じた過大な凹凸は、コイル成形工程の制御性を低下させてコイル中の占積率を低下させたり(すなわち、コイルの小型化を阻害したり)、部分放電開始電圧を低下させる要因になったりすることから好ましくない。言い換えると、特許文献2に記載されている樹脂組成物は、インバータ制御や高電圧化がなされる電気機器のコイルに用いられる絶縁電線の絶縁被覆(特に押出被覆層)に適しているとは必ずしも言えない。   Moreover, since the resin composition described in Patent Document 2 has been proposed as an injection molding material, and the shape of the molded product is controlled by a mold, the properties of the resin composition (for example, microstructure, Regardless of the surface shape in a free state that is not constrained in shape, the surface of the molded product becomes smooth with the accuracy of the mold surface. However, in extrusion molding, the pressure is released in the free space after exiting the extruder (passing through the extrusion die), so that the surface of the molded product will be excessively uneven unless the properties of the resin composition are controlled well. It may cause it. Excessive unevenness generated on the surface of the insulation coating in an insulated wire reduces the controllability of the coil forming process and reduces the space factor in the coil (that is, hinders downsizing of the coil) or partial discharge. This is not preferable because it causes a decrease in the starting voltage. In other words, the resin composition described in Patent Document 2 is not necessarily suitable for the insulation coating (especially the extrusion coating layer) of the insulated wire used for the coil of the electric device that is controlled by the inverter and the voltage is increased. I can not say.

電気機器の小型化に伴って、コイルに対してもその性能を維持した上で(または向上させた上で)更なる小型化が要求されており、高密度巻線の必要性はますます高まっている。加えて、コスト低減の要求は強まる一方である。これらのことから、押出成形による形状制御性(押出成形性)の向上は、高密度巻線およびコスト低減の観点から、従来よりも重要になってきている。特許文献3に記載されている絶縁電線は、従来と同等の耐熱性と絶縁被覆厚さとを有しながら高い部分放電開始電圧を有するものであるが、上記の観点から押出成形性の更なる向上が望まれていた。   Along with the downsizing of electrical equipment, the coil is required to be further downsized while maintaining (or improving) its performance, and the need for high-density winding is increasing. ing. In addition, the demand for cost reduction is increasing. For these reasons, the improvement in shape controllability (extrusion formability) by extrusion molding has become more important than the prior art from the viewpoint of high-density winding and cost reduction. The insulated wire described in Patent Document 3 has a high partial discharge start voltage while having the same heat resistance and insulation coating thickness as the conventional one, but further improved extrusion moldability from the above viewpoint. Was desired.

従って、本発明の目的は、上記の要求を満たすため、高い部分放電開始電圧を有しかつ良好な押出成形性を有する押出被覆層を具備する絶縁電線を可能にするための樹脂組成物およびその製造方法を提供することにある。また、該樹脂組成物を用いた押出被覆層を具備する絶縁電線を提供することにある。   Accordingly, an object of the present invention is to satisfy the above-described requirements, and to provide an insulated wire having an extrusion coating layer having a high partial discharge start voltage and having a good extrusion moldability, and a resin composition therefor It is to provide a manufacturing method. Moreover, it is providing the insulated wire which comprises the extrusion coating layer using this resin composition.

(I)本発明は、上記目的を達成するため、ポリマーアロイからなる樹脂組成物であって、前記ポリマーアロイは海島構造を有し、前記海島構造の海成分がポリフェニレンサルファイド(樹脂A)であり、前記海島構造の島成分が10μm以下の等価円平均径を有するフッ素樹脂(樹脂B)であり、前記樹脂Aと前記樹脂Bとの混合比が質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であることを特徴とする樹脂組成物を提供する。なお、本発明において、島の等価円平均径とは、断面観察から求められる海島構造の各島部分の面積と同じ面積を示す円(等価円)の平均直径を意味するものとする。   (I) In order to achieve the above object, the present invention provides a resin composition comprising a polymer alloy, wherein the polymer alloy has a sea-island structure, and the sea component of the sea-island structure is polyphenylene sulfide (resin A). The island component of the sea-island structure is a fluororesin (resin B) having an equivalent circular average diameter of 10 μm or less, and the mixing ratio of the resin A and the resin B is “60/40 ≦ (resin A ) / (Resin B) ≦ 80/20 ”is provided. In the present invention, the equivalent circle average diameter of the island means the average diameter of a circle (equivalent circle) showing the same area as the area of each island part of the sea-island structure obtained from cross-sectional observation.

(II)本発明は、上記目的を達成するため、ポリマーアロイからなる樹脂組成物の製造方法であって、前記ポリマーアロイは海島構造を有し、前記海島構造の海成分がポリフェニレンサルファイド(樹脂A)であり、前記海島構造の島成分が10μm以下の等価円平均径を有するフッ素樹脂(樹脂B)であり、
前記製造方法は、所定の混合比の前記樹脂Aと前記樹脂Bとを、押出機のシリンダ内でスクリューの回転によって混練して前記ポリマーアロイを形成する混練工程と、前記シリンダの下流に設けられた押出成形ダイスから前記ポリマーアロイを吐出する押出工程とを含み、
前記所定の混合比は、質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であり、
前記混練工程は、前記シリンダと前記スクリューとの先端クリアランスをc[単位m]とし、かつ前記スクリューの先端の周速度をv[単位m/s]としたときに、前記樹脂Aと前記樹脂Bとに加わる剪断速度が「v/c ≧ 1200 s-1」であり、
前記押出工程は、前記シリンダを出てから前記押出成形ダイスを通過するまでの前記ポリマーアロイの滞留時間が5分間以内であることを特徴とする樹脂組成物の製造方法を提供する。
(II) In order to achieve the above object, the present invention provides a method for producing a resin composition comprising a polymer alloy, wherein the polymer alloy has a sea-island structure, and the sea component of the sea-island structure is polyphenylene sulfide (resin A ), And the island component of the sea-island structure is a fluororesin (resin B) having an equivalent circular average diameter of 10 μm or less,
The manufacturing method includes a kneading step of kneading the resin A and the resin B having a predetermined mixing ratio by rotation of a screw in a cylinder of an extruder to form the polymer alloy, and downstream of the cylinder. And an extrusion step of discharging the polymer alloy from an extrusion die,
The predetermined mixing ratio is “60/40 ≦ (resin A) / (resin B) ≦ 80/20” by mass part ratio,
In the kneading step, when the clearance between the tip of the cylinder and the screw is c [unit m] and the peripheral speed of the tip of the screw is v [unit m / s], the resin A and the resin B And the shear rate applied to is "v / c ≥ 1200 s -1 "
The extruding step provides a method for producing a resin composition, characterized in that the residence time of the polymer alloy from leaving the cylinder to passing through the extrusion die is within 5 minutes.

本発明は、上記目的を達成するため、上記の本発明に係る樹脂組成物(I)および樹脂組成物の製造方法(II)において、以下のような改良や変更を加えることができる。
(i)前記樹脂Aの330℃におけるメルトフローレートが10 g/10min以上22 g/10min以下であり、前記樹脂Bの330℃におけるメルトフローレートが5 g/10min以上40 g/10min以下である。
In order to achieve the above object, the present invention can be modified or changed as follows in the resin composition (I) and the method (II) for producing a resin composition according to the present invention.
(I) The resin A has a melt flow rate at 330 ° C. of 10 g / 10 min to 22 g / 10 min, and the resin B has a melt flow rate at 330 ° C. of 5 g / 10 min to 40 g / 10 min. .

(III)本発明は、上記目的を達成するため、押出被覆層を有する絶縁被覆が導体上に形成された絶縁電線であって、前記押出被覆層が上記の本発明に係る樹脂組成物からなることを特徴とする絶縁電線を提供する。   (III) In order to achieve the above object, the present invention is an insulated wire in which an insulation coating having an extrusion coating layer is formed on a conductor, and the extrusion coating layer comprises the resin composition according to the present invention. An insulated wire characterized by the above is provided.

本発明によれば、高い部分放電開始電圧を有しかつ良好な押出成形性を有する押出被覆層を具備する絶縁電線を可能にするための樹脂組成物およびその製造方法を提供することができる。また、本発明に係る樹脂組成物を押出被覆層として用いることによって、表面凹凸のない良好な外観を有する絶縁電線を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition for enabling the insulated wire which has the extrusion coating layer which has a high partial discharge start voltage and has favorable extrusion property can be provided, and its manufacturing method. Moreover, the insulated wire which has a favorable external appearance without a surface unevenness | corrugation can be provided by using the resin composition which concerns on this invention as an extrusion coating layer.

本発明に係る絶縁電線の実施形態の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of embodiment of the insulated wire which concerns on this invention. 本発明に係る絶縁電線の実施形態の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of embodiment of the insulated wire which concerns on this invention. 本発明に係る樹脂組成物の製造に用いる押出機の一例を示す模式図である。It is a schematic diagram which shows an example of the extruder used for manufacture of the resin composition which concerns on this invention. 図3に示した押出機のシリンダ横断面を示す模式図である。It is a schematic diagram which shows the cylinder cross section of the extruder shown in FIG.

本発明者らは、押出被覆層を有する絶縁被覆が導体上に形成された絶縁電線において、押出被覆層に求められる前述した各種特性(高い耐熱性、高い部分放電開始電圧、良好な押出成形性)を満たすべく、押出被覆層を構成する樹脂組成物の組成および組織(モルフォロジ)を鋭意検討した。その結果、所定の混合比のポリフェニレンサルファイドとフッ素樹脂とから形成したポリマーアロイで、所定の海島構造の組織を形成させた押出被覆層が、前記要求を満たせることを見出した。本発明は、それらの知見に基づいて完成されたものである。   In the insulated wire in which the insulation coating having the extrusion coating layer is formed on the conductor, the present inventors have various characteristics described above required for the extrusion coating layer (high heat resistance, high partial discharge starting voltage, good extrusion moldability). ), The composition and structure (morphology) of the resin composition constituting the extrusion coating layer were studied earnestly. As a result, it has been found that an extruded coating layer in which a predetermined sea-island structure is formed with a polymer alloy formed from a polyphenylene sulfide and a fluororesin having a predetermined mixing ratio can satisfy the above requirements. The present invention has been completed based on these findings.

以下、本発明に係る実施形態を説明する。ただし、本発明はここで取り上げた実施形態に限定されるものではなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Embodiments according to the present invention will be described below. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(絶縁電線)
図1は、本発明に係る絶縁電線の実施形態の一例を示す断面模式図であり、絶縁被覆が単層構造の場合を例示している。本発明に係る絶縁電線10は、導体1上に押出被覆層4からなる絶縁被覆2が形成されており、押出被覆層4が後述する本発明に係る樹脂組成物で構成されている。図2は、本発明に係る絶縁電線の実施形態の他の一例を示す断面模式図であり、絶縁被覆が複数層構造の場合を例示している。図2に示したように、本発明に係る絶縁電線20は、導体1と押出被覆層4との間にそれらの密着性を向上させ絶縁被覆2の耐熱性を向上させるための接着層3が設けられ、押出被覆層4の外周に絶縁被覆2の耐摩耗性および/または滑性を向上させるための最外層5が設けられている。
(Insulated wire)
FIG. 1 is a schematic cross-sectional view illustrating an example of an embodiment of an insulated wire according to the present invention, and illustrates a case where the insulating coating has a single-layer structure. In an insulated wire 10 according to the present invention, an insulating coating 2 made of an extrusion coating layer 4 is formed on a conductor 1, and the extrusion coating layer 4 is composed of a resin composition according to the present invention described later. FIG. 2 is a schematic cross-sectional view illustrating another example of the embodiment of the insulated wire according to the present invention, and illustrates the case where the insulating coating has a multi-layer structure. As shown in FIG. 2, the insulated wire 20 according to the present invention has an adhesive layer 3 for improving the adhesion between the conductor 1 and the extrusion coating layer 4 and improving the heat resistance of the insulation coating 2. An outermost layer 5 is provided on the outer periphery of the extrusion coating layer 4 to improve the wear resistance and / or the slipperiness of the insulating coating 2.

接着層3および最外層5としては、従前の技術を利用することができるが、例えば、ポリアミド、熱可塑性ポリアミドイミド、熱可塑性ポリイミド、ポリエーテルイミド、ポリフェニレンサルファイドからなる群より選ばれる少なくとも一種を主成分とする樹脂を好適に利用できる。なお、各層を構成する樹脂組成物中に、必要に応じて酸化防止剤や銅害防止剤、滑剤、着色剤などを添加してもよい。   As the adhesive layer 3 and the outermost layer 5, conventional techniques can be used. For example, at least one selected from the group consisting of polyamide, thermoplastic polyamideimide, thermoplastic polyimide, polyetherimide, and polyphenylene sulfide is mainly used. Resins as components can be suitably used. In addition, you may add antioxidant, a copper damage inhibitor, a lubricant, a coloring agent, etc. in the resin composition which comprises each layer as needed.

また、接着層3および最外層5の形成方法に特段の限定は無いが、それらの層と押出被覆層4とを昇温した状態で接触(接合)させることが好ましい。各層を構成する樹脂を互いに高い温度で接触させることにより、層同士の密着性をより向上させることができ絶縁被覆2全体としての機械的強度を確保しやすくなる。   Further, the method for forming the adhesive layer 3 and the outermost layer 5 is not particularly limited, but it is preferable that these layers and the extrusion coating layer 4 are brought into contact (bonded) in a heated state. By bringing the resins constituting each layer into contact with each other at a high temperature, the adhesion between the layers can be further improved, and the mechanical strength of the insulating coating 2 as a whole can be easily secured.

接着層3、押出被覆層4および最外層5の厚さは、それぞれ10μm以上であることが好ましい。厚さが10μm未満だと各層の機能(特性)を十分に発揮できない。絶縁被覆2全体の厚さは、30〜500μmの範囲内で絶縁電線への要求性能に合わせて適宜選定される。   The thicknesses of the adhesive layer 3, the extrusion coating layer 4 and the outermost layer 5 are each preferably 10 μm or more. If the thickness is less than 10 μm, the function (characteristics) of each layer cannot be fully exhibited. The total thickness of the insulating coating 2 is appropriately selected within the range of 30 to 500 μm according to the required performance of the insulated wire.

導体1の材料に特段の限定は無く、絶縁電線で常用される材料(例えば、無酸素銅や低酸素銅など)を用いることができる。なお、図1および図2においては、導体1として丸形状の断面を有する例を示したが、それに限定されることはなく、四辺形状の断面を有する導体であってもよい。なお、本発明における四辺形状とは、角部が丸みを有する四角形状や角丸長方形状を含むものとする。   There is no particular limitation on the material of the conductor 1, and materials commonly used for insulated wires (for example, oxygen-free copper, low-oxygen copper, etc.) can be used. In FIGS. 1 and 2, the conductor 1 has an example having a round cross section. However, the conductor 1 is not limited thereto, and may be a conductor having a quadrilateral cross section. The quadrilateral shape in the present invention includes a quadrangular shape with rounded corners and a rounded rectangular shape.

(樹脂組成物)
前述したように、本発明に係る樹脂組成物は、相分離構造の一種である海島構造を有するポリマーアロイからなり、海島構造の海成分がポリフェニレンサルファイド(樹脂A)であり、海島構造の島成分が10μm以下の等価円平均径を有するフッ素樹脂(樹脂B)であり、樹脂Aと樹脂Bとの混合比が質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であることを特徴とする。
(Resin composition)
As described above, the resin composition according to the present invention comprises a polymer alloy having a sea-island structure which is a kind of phase separation structure, and the sea component of the sea-island structure is polyphenylene sulfide (resin A), and the island component of the sea-island structure. Is a fluororesin (resin B) having an equivalent circular average diameter of 10 μm or less, and the mixing ratio of the resin A and the resin B is “60/40 ≦ (resin A) / (resin B) ≦ 80 / 20 ”.

ポリフェニレンサルファイドは、耐熱性・機械的強度・耐薬品性に優れる樹脂であるが、絶縁被覆材料として単体で利用した場合に、比誘電率が特段低いわけではないので部分放電開始電圧の観点で弱点がある。フッ素樹脂は、耐熱性・耐薬品性に優れかつ低い比誘電率を有する利点があるが、絶縁被覆材料として単体で利用した場合に、導体との密着性が低いために機械的応力によって絶縁被覆が導体から剥離する現象(被覆浮き)が発生する可能性がある。そこで、本発明では、ポリフェニレンサルファイドとフッ素樹脂とをアロイ化して海島構造を形成させることによって、樹脂組成物全体としての特性を向上させた。   Polyphenylene sulfide is a resin that excels in heat resistance, mechanical strength, and chemical resistance, but when used alone as an insulation coating material, its relative dielectric constant is not particularly low, so it is a weak point in terms of partial discharge starting voltage. There is. Fluororesin has the advantages of excellent heat resistance and chemical resistance and low dielectric constant. However, when used alone as an insulation coating material, it has low adhesion to conductors, so it is insulated by mechanical stress. Peeling from the conductor may occur (coating floating). Therefore, in the present invention, the characteristics of the resin composition as a whole are improved by alloying polyphenylene sulfide and a fluororesin to form a sea-island structure.

フッ素樹脂(樹脂B)としては、例えば、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン・エチレン共重合体(ETFE)を好ましく用いることができる。中でも、FEPは、成形性および混練性の観点で特に好ましく用いることができる。   Examples of the fluororesin (resin B) include tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyvinylidene fluoride (PVDF), and tetrafluoroethylene. -An ethylene copolymer (ETFE) can be preferably used. Among these, FEP can be particularly preferably used from the viewpoint of moldability and kneadability.

前述したように、ポリマーアロイにおける樹脂Aと樹脂Bとの混合比は、質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であることが好ましい。樹脂Aと樹脂Bとの質量部比が「80/20 < (樹脂A)/(樹脂B)」になると、樹脂Bが少な過ぎて比誘電率の低減効果が不十分になる。一方、樹脂Aと樹脂Bとの質量部比が「(樹脂A)/(樹脂B) < 60/40」になると、樹脂組成物の押出成形性を良好に保つことができない。   As described above, the mixing ratio of the resin A and the resin B in the polymer alloy is preferably “60/40 ≦ (resin A) / (resin B) ≦ 80/20” by mass ratio. When the mass part ratio between the resin A and the resin B is “80/20 <(resin A) / (resin B)”, the resin B is too small and the effect of reducing the relative dielectric constant becomes insufficient. On the other hand, when the mass part ratio between the resin A and the resin B is “(resin A) / (resin B) <60/40”, the extrusion moldability of the resin composition cannot be kept good.

また、樹脂Bによる島の等価円平均径が10μm超になったり、海島構造が崩れたりすると(すなわち、樹脂Bの大きな塊がポリマーアロイ中で偏在すると)、樹脂組成物の電気的特性・機械的特性・押出成形性が局所的に大きく変動し、絶縁被覆に求められる各種特性を満たすことができなくなる。   In addition, if the equivalent circular average diameter of the island due to resin B exceeds 10 μm or the sea-island structure collapses (that is, if a large lump of resin B is unevenly distributed in the polymer alloy), the electrical properties / mechanics of the resin composition The characteristics and extrusion moldability fluctuate greatly locally, making it impossible to satisfy various characteristics required for insulation coating.

樹脂Aは、そのメルトフローレート(MFR)が10 g/10min以上22 g/10min以下である樹脂が好ましい。樹脂Bは、そのメルトフローレートが5 g/10min以上40 g/10min以下である樹脂が好ましい。なお、本発明において、樹脂Aのメルトフローレートの測定条件は、シリンダ温度330℃、5 kg荷重、オリフィス径2.095 mm、オリフィス長さ8 mmとする。また、フッ素樹脂のメルトフローレートの測定条件は、シリンダ温度330℃、5 kg荷重、オリフィス径2.095 mm、オリフィス長さ8 mmとする。   The resin A is preferably a resin having a melt flow rate (MFR) of 10 g / 10 min to 22 g / 10 min. Resin B is preferably a resin having a melt flow rate of 5 g / 10 min to 40 g / 10 min. In the present invention, the measurement conditions for the melt flow rate of resin A are as follows: cylinder temperature 330 ° C., 5 kg load, orifice diameter 2.095 mm, and orifice length 8 mm. The measurement conditions for the melt flow rate of fluororesin are as follows: cylinder temperature 330 ° C., 5 kg load, orifice diameter 2.095 mm, orifice length 8 mm.

また、本発明の樹脂組成物は、無水マレイン酸やグリシジル基を有する樹脂群からなる相溶化剤が混和されていることは好ましい。それにより、樹脂Aに対する樹脂Bの分散性がより良好になり、押出成形性を更に向上させることができる。加えて、当該樹脂組成物と他の樹脂との密着性が向上し(例えば、当該樹脂組成物からなる押出被覆層と他の被覆層との密着性が向上し)、絶縁被覆の耐熱性や機械的強度の向上に貢献する。   Moreover, it is preferable that the compatibilizer which consists of a resin group which has maleic anhydride or a glycidyl group is mixed with the resin composition of this invention. Thereby, the dispersibility of the resin B with respect to the resin A becomes better, and the extrusion moldability can be further improved. In addition, the adhesion between the resin composition and the other resin is improved (for example, the adhesion between the extrusion coating layer made of the resin composition and the other coating layer is improved), the heat resistance of the insulating coating, Contributes to improved mechanical strength.

(樹脂組成物の製造方法)
次に、本発明に係る樹脂組成物の製造方法について説明する。本発明に係る樹脂組成物の製造方法は、樹脂Aと樹脂Bとを混練してポリマーアロイを形成する混練工程と、該ポリマーアロイを押出成形ダイスから吐出する押出工程とに大別される。
(Production method of resin composition)
Next, the manufacturing method of the resin composition which concerns on this invention is demonstrated. The method for producing a resin composition according to the present invention is roughly divided into a kneading step of kneading resin A and resin B to form a polymer alloy and an extrusion step of discharging the polymer alloy from an extrusion die.

図3は、本発明に係る樹脂組成物の製造に用いる押出機の一例を示す模式図である。図3に示したように、押出機30は、シリンダ31の中に材料を混練するためのスクリュー32(スクリュー軸321、スクリュー羽根322)を具備しており、シリンダ31の上流には混練・押出する材料をシリンダ31に供給するためのホッパ33が配設され、シリンダ31の下流には材料を押出成形するための押出成形ダイス35を具備する押出ヘッド34が配設されている。   FIG. 3 is a schematic view showing an example of an extruder used for producing the resin composition according to the present invention. As shown in FIG. 3, the extruder 30 includes a screw 32 (screw shaft 321 and screw blade 322) for kneading the material in a cylinder 31. A hopper 33 for supplying the material to be supplied to the cylinder 31 is disposed, and an extrusion head 34 including an extrusion die 35 for extruding the material is disposed downstream of the cylinder 31.

所定の混合比の樹脂Aと樹脂Bとをホッパ33に投入し、それらをシリンダ31に供給する。このとき、無水マレイン酸やグリシジル基を有する樹脂群からなる相溶化剤を添加することは好ましい。また、混練機を用いて予備混練を別途行った材料をホッパ33に投入してもよい。予備混練を行うことにより、樹脂Aと樹脂Bとの混合状態(樹脂Bの分散状態)をより良好にすることができる。   Resin A and resin B having a predetermined mixing ratio are put into hopper 33 and supplied to cylinder 31. At this time, it is preferable to add a compatibilizing agent comprising a resin group having maleic anhydride or a glycidyl group. Alternatively, a material that has been separately preliminarily kneaded using a kneader may be charged into the hopper 33. By performing preliminary kneading, the mixed state of resin A and resin B (dispersed state of resin B) can be improved.

前述したように、ポリマーアロイにおける樹脂Aと樹脂Bとの混合比は、質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であることが好ましい。樹脂Aと樹脂Bとの質量部比が「80/20 < (樹脂A)/(樹脂B)」になると、樹脂Bが少な過ぎて比誘電率の低減効果が不十分になる。一方、樹脂Aと樹脂Bとの質量部比が「(樹脂A)/(樹脂B) < 60/40」になると、海島構造の制御が困難となり、樹脂組成物の押出成形性を良好に保つことができない。   As described above, the mixing ratio of the resin A and the resin B in the polymer alloy is preferably “60/40 ≦ (resin A) / (resin B) ≦ 80/20” by mass ratio. When the mass part ratio between the resin A and the resin B is “80/20 <(resin A) / (resin B)”, the resin B is too small and the effect of reducing the relative dielectric constant becomes insufficient. On the other hand, when the mass part ratio between the resin A and the resin B is “(resin A) / (resin B) <60/40”, it becomes difficult to control the sea-island structure, and the extrudability of the resin composition is kept good. I can't.

混練工程において、シリンダ31内でスクリュー32の回転によって樹脂Aと樹脂Bとが混練され、ポリマーアロイが形成される。このとき、混練温度は、300℃以上350℃以下の温度で行うことが好ましい。さらに、混合樹脂に十分な剪断応力が加わるように、剪断速度を制御する。   In the kneading step, the resin A and the resin B are kneaded by the rotation of the screw 32 in the cylinder 31 to form a polymer alloy. At this time, the kneading temperature is preferably 300 ° C. or higher and 350 ° C. or lower. Further, the shear rate is controlled so that sufficient shear stress is applied to the mixed resin.

図4は、図3に示した押出機のシリンダ横断面を示す模式図である。図4に示したようなフライトスクリューを例として説明する。シリンダ31とスクリュー32との先端クリアランスをc[単位m]とし、スクリュー32の先端の周速度をv[単位m/s]とすると、剪断速度はv/c[単位s-1]で与えられる。望ましい海島構造を得るためには、剪断速度が「v/c ≧ 1200 s-1」であることが好ましい。剪断速度が不十分だと、混合樹脂(特に樹脂B)に加わる剪断応力が不十分となり、樹脂Bによる島の等価円平均径が10μm超になる。 FIG. 4 is a schematic view showing a cylinder cross section of the extruder shown in FIG. A flight screw as shown in FIG. 4 will be described as an example. When the tip clearance between the cylinder 31 and the screw 32 is c [unit m] and the peripheral speed at the tip of the screw 32 is v [unit m / s], the shear rate is given by v / c [unit s −1 ]. . In order to obtain a desirable sea-island structure, the shear rate is preferably “v / c ≧ 1200 s −1 ”. If the shear rate is insufficient, the shear stress applied to the mixed resin (especially resin B) becomes insufficient, and the equivalent circular average diameter of the island by the resin B exceeds 10 μm.

溶融状態のポリマーアロイにおける海島構造は、安定状態にあるわけではなく、剪断応力が加わらない環境で長時間保持すると、樹脂Bによる島同士が合体して分散状態が劣化する傾向がある。このため、押出工程においては、ポリマーアロイの滞留時間(シリンダ31を出てから押出成形ダイス35を通過するまでの期間)をできるだけ短くすることが望ましく、少なくとも5分間以内が好ましい。   The sea-island structure in the polymer alloy in the molten state is not in a stable state, and when it is held for a long time in an environment where no shear stress is applied, the islands of the resin B tend to coalesce and the dispersed state tends to deteriorate. For this reason, in the extrusion process, it is desirable to make the residence time of the polymer alloy (the period from the exit from the cylinder 31 to the passage through the extrusion molding die 35) as short as possible, and preferably within at least 5 minutes.

剪断応力の加わらない滞留時間が5分間超となると、樹脂Bによる島の等価円平均径が10μm超になり易くなる。該滞留時間を短くする方法としては、例えば、押出ヘッド34内のポリマーアロイの流路を狭くする(押出ヘッド34内のポリマーアロイの体積を小さくする)方法が挙げられる。なお、押出ヘッド34内での滞留時間は、「(押出ヘッド34内の流路容積[cm3])/(押出速度[cm3/s])」で制御される。また、押出速度は、例えば、スクリュー回転数[rpm]、スクリュー羽根のピッチ、混合樹脂の供給速度[cm3/s]などにより制御可能である。 If the residence time without application of shear stress exceeds 5 minutes, the equivalent circular average diameter of the island by resin B tends to exceed 10 μm. As a method for shortening the residence time, for example, a method of narrowing the flow path of the polymer alloy in the extrusion head 34 (reducing the volume of the polymer alloy in the extrusion head 34) can be mentioned. The residence time in the extrusion head 34 is controlled by “(flow path volume in the extrusion head 34 [cm 3 ]) / (extrusion speed [cm 3 / s])”. The extrusion speed can be controlled by, for example, the screw speed [rpm], the pitch of the screw blades, the supply speed of the mixed resin [cm 3 / s], and the like.

押出成形ダイス35を通過したポリマーアロイは、海島構造が固定されるように、融点未満の温度まで直ちに冷却されることが望ましい。例えば、ポリマーアロイが押出成形ダイス35を通過した直後に、当該押出材を水冷することにより可能である。   The polymer alloy that has passed through the extrusion die 35 is preferably immediately cooled to a temperature below the melting point so that the sea-island structure is fixed. For example, it is possible to cool the extruded material with water immediately after the polymer alloy has passed through the extrusion die 35.

以下、本発明を実施例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these.

(樹脂組成物の作製)
図3に示したような単軸押出機を用いて樹脂組成物を作製した。単軸押出機のホッパに樹脂Aと樹脂Bとの混合物を投入・混練してポリマーアロイを形成し、押出ヘッドの押出成形ダイスから紐状の樹脂組成物を押し出した。紐状の樹脂組成物は押し出された直後に水槽で冷却され、その後、ストランドカッターで切断して円柱状の樹脂組成物ペレット(直径約3 mm、長さ約5 mm)を得た。
(Preparation of resin composition)
The resin composition was produced using the single screw extruder as shown in FIG. A mixture of Resin A and Resin B was put into a hopper of a single screw extruder and kneaded to form a polymer alloy, and a string-like resin composition was extruded from an extrusion die of an extrusion head. The string-shaped resin composition was cooled in a water tank immediately after being extruded, and then cut with a strand cutter to obtain cylindrical resin composition pellets (diameter: about 3 mm, length: about 5 mm).

混合する樹脂Bの種類・混合比、混練時の剪断速度、押出ヘッド内での滞留時間を種々変化させて、実施例1〜8および比較例1〜5の樹脂組成物を作製した。樹脂Aとしては、異なるメルトフローレートを有するポリフェニレンサルファイド(PPS、東レ株式会社、A670T05、MFR=10 g/10min)と(PPS、東レ株式会社、A900、MFR=22 g/10min)とを用いた。樹脂Bとしては、異なるメルトフローレート(MFR=1〜40 g/10min)を有するテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP、ダイキン工業株式会社、ネオフロン(登録商標))を用いた。相溶化剤としては、マレイン酸変性ポリエチレン(三井化学株式会社、タフマー(登録商標)MH7020)を用いた。混練時の剪断速度は、スクリューの回転数を調整することにより制御した。押出ヘッド内での滞留時間は、樹脂混合物の供給速度を調整することにより制御した。   Resin compositions of Examples 1 to 8 and Comparative Examples 1 to 5 were prepared by variously changing the type and mixing ratio of the resin B to be mixed, the shear rate during kneading, and the residence time in the extrusion head. As the resin A, polyphenylene sulfide (PPS, Toray Industries Inc., A670T05, MFR = 10 g / 10 min) and (PPS, Toray Industries Inc., A900, MFR = 22 g / 10 min) having different melt flow rates were used. . As the resin B, a tetrafluoroethylene / hexafluoropropylene copolymer (FEP, Daikin Industries, Ltd., Neoflon (registered trademark)) having different melt flow rates (MFR = 1 to 40 g / 10 min) was used. As the compatibilizer, maleic acid-modified polyethylene (Mitsui Chemicals, Tuffmer (registered trademark) MH7020) was used. The shear rate during kneading was controlled by adjusting the number of rotations of the screw. The residence time in the extrusion head was controlled by adjusting the feed rate of the resin mixture.

作製した実施例1〜8の樹脂組成物の配合組成(質量部)および作製条件を表1〜2に示し、比較例1〜5の樹脂組成物の配合組成(質量部)および作製条件を表3に示す。   The compounding composition (mass part) and preparation conditions of the produced resin compositions of Examples 1-8 are shown in Tables 1-2, and the compounding composition (mass part) and preparation conditions of the resin compositions of Comparative Examples 1-5 are shown 3 shows.

Figure 2014105258
Figure 2014105258

Figure 2014105258
Figure 2014105258

Figure 2014105258
Figure 2014105258

上記のように作製した樹脂組成物(実施例1〜8および比較例1〜5)に対して、次のような測定および試験を行った。   The following measurements and tests were performed on the resin compositions (Examples 1 to 8 and Comparative Examples 1 to 5) produced as described above.

(1)比誘電率測定
前述したように、部分放電開始電圧を高くする手段として、比誘電率の低い樹脂を用いる方法がある。そこで、作製した樹脂組成物の比誘電率測定を行った。得られた樹脂組成物ペレットを射出成形によりシート(600 mm×600 mm×1 mm)に成形し、このシートを用いて比誘電率を測定した。測定にはLCRメータ(アジレント・テクノロジー株式会社、E4980A)を用い、測定条件は、周波数:1 kHz、主電極直径:37 mm、ガード電極内径:39 mm、ガード電極外径:50 mm、測定温度:室温とした。結果を表1〜3に併記する。3.20以下の比誘電率を「合格」と判定した。
(1) Measurement of relative dielectric constant As described above, as a means for increasing the partial discharge start voltage, there is a method using a resin having a low relative dielectric constant. Therefore, the relative dielectric constant of the produced resin composition was measured. The obtained resin composition pellets were molded into a sheet (600 mm × 600 mm × 1 mm) by injection molding, and the relative dielectric constant was measured using this sheet. LCR meter (Agilent Technology Co., E4980A) was used for the measurement. Measurement conditions were: Frequency: 1 kHz, Main electrode diameter: 37 mm, Guard electrode inner diameter: 39 mm, Guard electrode outer diameter: 50 mm, Measurement temperature : Room temperature. The results are shown in Tables 1-3. A relative dielectric constant of 3.20 or less was judged as “pass”.

(2)組織観察(海島構造における島の等価円平均径の測定と、表面凹凸の高低差の測定)
絶縁電線の押出被覆層に求められる各種特性(高い耐熱性、高い部分放電開始電圧、良好な押出成形性)を全て満たすためには、樹脂組成物が少なくとも前述した所定の海島構造(樹脂Aが海部分を構成し、樹脂Bが10μm以下の等価円平均径を有する島部分を構成する)を有していることが望ましい。そこで、走査型電子顕微鏡(SEM)を用いてペレット断面を組織観察し、画像解析により各島の面積を求め、等価円の平均直径を算出した。結果を表1〜3に併記する。
(2) Microstructural observation (measurement of equivalent circular average diameter of island in sea-island structure and measurement of height difference of surface irregularities)
In order to satisfy all of the various characteristics (high heat resistance, high partial discharge starting voltage, good extrusion moldability) required for the extrusion coating layer of the insulated wire, the resin composition must have at least the predetermined sea-island structure (resin A It is desirable to have a sea portion and resin B to form an island portion having an equivalent circular average diameter of 10 μm or less. Therefore, the cross section of the pellet was observed with a scanning electron microscope (SEM), the area of each island was obtained by image analysis, and the average diameter of the equivalent circle was calculated. The results are shown in Tables 1-3.

同様に、SEMを用いてペレット表面を組織観察し、表面凹凸の谷と山との差(高低差)を測定した。当該高低差が10μm以下のものを「合格」と判定し、10μm超のものを「不合格」と判定した。結果を表1〜3に併記する。   Similarly, the structure of the pellet surface was observed using SEM, and the difference (level difference) between the valleys and peaks of the surface irregularities was measured. Those having a height difference of 10 μm or less were judged as “pass”, and those over 10 μm were judged as “fail”. The results are shown in Tables 1-3.

(3)急激伸張試験(密着性評価)
押出機を用いて、導体(銅線、外径1.25 mm)の外層に樹脂組成物(実施例1〜8および比較例1〜5)を押出被覆して、図1に示したような絶縁電線を作製した。導体と押出被覆層との密着性評価は、JIS C3003に準拠した急激伸張試験を実施することにより行った。急激伸張試験の結果、押出被覆層の浮き(剥離)の長さが破断点から2 mm以下のものを「合格」と評価した。結果を表1〜3に併記する。
(3) Rapid extension test (adhesion evaluation)
Using an extruder, the resin composition (Examples 1-8 and Comparative Examples 1-5) is extrusion coated on the outer layer of the conductor (copper wire, outer diameter 1.25 mm), and the insulated wire as shown in FIG. Was made. The adhesion between the conductor and the extrusion coating layer was evaluated by carrying out a rapid extension test based on JIS C3003. As a result of the rapid extension test, an extruding layer with a floating (peeling) length of 2 mm or less from the breaking point was evaluated as “pass”. The results are shown in Tables 1-3.

表1〜2に示したように、実施例1〜8は、樹脂Aと樹脂Bとの混合比が質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」の範囲であり、10μm以下の等価円平均径を有する樹脂Bからなる島が分散した海島構造を形成していることが確認された。そして、そのような構成を有する実施例1〜8の樹脂組成物は、低い比誘電率と良好な密着性と良好な押出成形性(小さい表面凹凸)を兼ね備えていることが実証された。   As shown in Tables 1 and 2, in Examples 1 to 8, the mixing ratio of the resin A and the resin B is “60/40 ≦ (resin A) / (resin B) ≦ 80/20” by mass part ratio. It was confirmed that a sea-island structure was formed in which islands made of resin B having an equivalent circular average diameter of 10 μm or less were dispersed. And it was demonstrated that the resin composition of Examples 1-8 which has such a structure has a low relative dielectric constant, good adhesion, and good extrudability (small surface irregularities).

より具体的に見ていくと、実施例1〜3から、樹脂Bの混合比が増大すると、比誘電率が低下し、島の等価円平均径と表面凹凸とが増大する傾向が見られた。また、実施例8から、相溶化剤を添加することにより島の等価円平均径が小さくなり、押出成形性が向上する(表面凹凸が小さくなる)ことが確認された。   More specifically, from Examples 1 to 3, when the mixing ratio of the resin B increased, the relative permittivity decreased, and the equivalent circle average diameter and surface irregularities of the island tended to increase. . In addition, it was confirmed from Example 8 that the equivalent circular average diameter of the island is reduced by adding a compatibilizing agent, and the extrusion moldability is improved (surface irregularities are reduced).

一方、表3に示したように、混合した樹脂BのMFRが本発明の規定よりも小さい比較例1は、海島構造における島の平均径が大きく、押出成形性が劣っていた(表面凹凸が大きかった)。これは、樹脂BのMFRが小さいことに起因して、混練工程の後に島同士が再合体し易かったためと考えられた。   On the other hand, as shown in Table 3, Comparative Example 1 in which the MFR of the mixed resin B was smaller than that of the present invention had a large average island diameter in the sea-island structure and was inferior in extrusion moldability (surface irregularities were It was big). This was thought to be because the islands were easy to reunite after the kneading step due to the small MFR of resin B.

樹脂Bの混合比が本発明の規定よりも小さい比較例2は、比誘電率の低減効果が不十分であった。また、樹脂Bの混合比が本発明の規定よりも大きい比較例3は、海島構造における島の等価円平均径が大きく、押出成形性が劣っていた(表面凹凸が大きかった)。   In Comparative Example 2 in which the mixing ratio of the resin B is smaller than that of the present invention, the effect of reducing the relative dielectric constant was insufficient. Further, in Comparative Example 3 in which the mixing ratio of the resin B was larger than that of the present invention, the equivalent circle average diameter of the island in the sea-island structure was large, and the extrusion moldability was inferior (surface irregularities were large).

混練工程における剪断速度が本発明の規定よりも低い比較例4は、海島構造における島の平均径が大きく、押出成形性が劣っていた(表面凹凸が大きかった)。また、押出工程における滞留時間が本発明の規定よりも長い比較例5も、海島構造における島の平均径が大きく、押出成形性が劣っていた(表面凹凸が大きかった)。   In Comparative Example 4 in which the shear rate in the kneading step was lower than that of the present invention, the average island diameter in the sea-island structure was large, and the extrusion moldability was inferior (surface irregularities were large). Moreover, the comparative example 5 whose residence time in an extrusion process is longer than prescription | regulation of this invention also had the large average diameter of the island in a sea-island structure, and was inferior in extrusion moldability (surface unevenness | corrugation was large).

以上示したように、本発明に係る樹脂組成物は、従来の高耐熱押出材料よりも低い比誘電率を実現しながら、良好な押出成形性を確保することができる。また、本発明の樹脂組成物を用いて押出被覆層を形成することにより、高い部分放電開始電圧と良好な密着性と表面凹凸のない良好な外観とを有する絶縁電線を提供することができる。   As described above, the resin composition according to the present invention can ensure good extrudability while realizing a relative dielectric constant lower than that of a conventional high heat-resistant extruded material. Moreover, by forming the extrusion coating layer using the resin composition of the present invention, it is possible to provide an insulated wire having a high partial discharge start voltage, good adhesion, and a good appearance without surface irregularities.

10,20…絶縁電線、
1…導体、2…絶縁被覆、3…接着層、4…押出被覆層、5…最外層
30…押出機、31…シリンダ、
32…スクリュー、スクリュー軸321、スクリュー羽根322、
33…ホッパ、34…押出ヘッド、35…押出成形ダイス。
10, 20 ... insulated wires,
1 ... conductor, 2 ... insulation coating, 3 ... adhesive layer, 4 ... extrusion coating layer, 5 ... outermost layer
30 ... Extruder, 31 ... Cylinder,
32 ... Screw, screw shaft 321, screw blade 322,
33 ... Hopper, 34 ... Extrusion head, 35 ... Extrusion die.

Claims (5)

ポリマーアロイからなる樹脂組成物であって、
前記ポリマーアロイは海島構造を有し、
前記海島構造の海成分がポリフェニレンサルファイド(樹脂A)であり、前記海島構造の島成分が10μm以下の等価円平均径を有するフッ素樹脂(樹脂B)であり、
前記樹脂Aと前記樹脂Bとの混合比が質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であることを特徴とする樹脂組成物。
A resin composition comprising a polymer alloy,
The polymer alloy has a sea-island structure,
The sea component of the sea-island structure is polyphenylene sulfide (resin A), and the island component of the sea-island structure is a fluororesin (resin B) having an equivalent circular average diameter of 10 μm or less,
A resin composition, wherein a mixing ratio of the resin A and the resin B is “60/40 ≦ (resin A) / (resin B) ≦ 80/20” by mass ratio.
請求項1に記載の樹脂組成物において、
前記樹脂Aの330℃におけるメルトフローレートが10 g/10min以上22 g/10min以下であり、
前記樹脂Bの330℃におけるメルトフローレートが5 g/10min以上40 g/10min以下であることを特徴とする樹脂組成物。
The resin composition according to claim 1,
The resin A has a melt flow rate at 330 ° C. of 10 g / 10 min to 22 g / 10 min,
A resin composition, wherein the resin B has a melt flow rate at 330 ° C. of 5 g / 10 min or more and 40 g / 10 min or less.
ポリマーアロイからなる樹脂組成物の製造方法であって、
前記ポリマーアロイは海島構造を有し、前記海島構造の海成分がポリフェニレンサルファイド(樹脂A)であり、前記海島構造の島成分が10μm以下の等価円平均径を有するフッ素樹脂(樹脂B)であり、
前記製造方法は、所定の混合比の前記樹脂Aと前記樹脂Bとを、押出機のシリンダ内でスクリューの回転によって混練して前記ポリマーアロイを形成する混練工程と、
前記シリンダの下流に設けられた押出成形ダイスから前記ポリマーアロイを吐出する押出工程とを含み、
前記所定の混合比は、質量部比で「60/40 ≦ (樹脂A)/(樹脂B) ≦ 80/20」であり、
前記混練工程は、前記シリンダと前記スクリューとの先端クリアランスをc[単位m]とし、かつ前記スクリューの先端の周速度をv[単位m/s]としたときに、前記樹脂Aと前記樹脂Bとに加わる剪断速度が「v/c ≧ 1200 s-1」であり、
前記押出工程は、前記シリンダを出てから前記押出成形ダイスを通過するまでの前記ポリマーアロイの滞留時間が5分間以内であることを特徴とする樹脂組成物の製造方法。
A method for producing a resin composition comprising a polymer alloy,
The polymer alloy has a sea-island structure, the sea component of the sea-island structure is polyphenylene sulfide (resin A), and the island component of the sea-island structure is a fluororesin (resin B) having an equivalent circular average diameter of 10 μm or less. ,
The manufacturing method includes a kneading step of kneading the resin A and the resin B having a predetermined mixing ratio by rotation of a screw in a cylinder of an extruder to form the polymer alloy,
An extrusion step of discharging the polymer alloy from an extrusion die provided downstream of the cylinder,
The predetermined mixing ratio is “60/40 ≦ (resin A) / (resin B) ≦ 80/20” by mass part ratio,
In the kneading step, when the clearance between the tip of the cylinder and the screw is c [unit m] and the peripheral speed of the tip of the screw is v [unit m / s], the resin A and the resin B And the shear rate applied to is "v / c ≥ 1200 s -1 "
The method for producing a resin composition, wherein the extruding step has a residence time of the polymer alloy of 5 minutes or less after leaving the cylinder and passing through the extrusion die.
請求項3に記載の樹脂組成物の製造方法において、
前記樹脂Aの330℃におけるメルトフローレートが10 g/10min以上22 g/10min以下であり、
前記樹脂Bの330℃におけるメルトフローレートが5 g/10min以上40 g/10min以下であることを特徴とする樹脂組成物の製造方法。
In the manufacturing method of the resin composition of Claim 3,
The resin A has a melt flow rate at 330 ° C. of 10 g / 10 min to 22 g / 10 min,
A method for producing a resin composition, wherein the resin B has a melt flow rate at 330 ° C. of 5 g / 10 min to 40 g / 10 min.
押出被覆層を有する絶縁被覆が導体上に形成された絶縁電線であって、
前記押出被覆層が請求項1または請求項2に記載の樹脂組成物からなることを特徴とする絶縁電線。
An insulated wire having an insulation coating having an extrusion coating layer formed on a conductor,
An insulated wire, wherein the extrusion coating layer is made of the resin composition according to claim 1 or 2.
JP2012258238A 2012-11-27 2012-11-27 Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition Pending JP2014105258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258238A JP2014105258A (en) 2012-11-27 2012-11-27 Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258238A JP2014105258A (en) 2012-11-27 2012-11-27 Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition

Publications (1)

Publication Number Publication Date
JP2014105258A true JP2014105258A (en) 2014-06-09

Family

ID=51027042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258238A Pending JP2014105258A (en) 2012-11-27 2012-11-27 Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition

Country Status (1)

Country Link
JP (1) JP2014105258A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098899A (en) * 2014-07-08 2014-10-15 安徽宁国市高新管业有限公司 Corrosion-resistant inflaming retarding heat-proof cable sheath material
JP2017179203A (en) * 2016-03-31 2017-10-05 東レ株式会社 Polyphenylene sulfide resin composition and molded article composed of the same
WO2019225694A1 (en) 2018-05-25 2019-11-28 ダイキン工業株式会社 Resin composition
WO2022091473A1 (en) * 2020-10-29 2022-05-05 Dic株式会社 Polyarylene sulfide resin composition, and, biaxially stretched film and layered body using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098899A (en) * 2014-07-08 2014-10-15 安徽宁国市高新管业有限公司 Corrosion-resistant inflaming retarding heat-proof cable sheath material
JP2017179203A (en) * 2016-03-31 2017-10-05 東レ株式会社 Polyphenylene sulfide resin composition and molded article composed of the same
WO2019225694A1 (en) 2018-05-25 2019-11-28 ダイキン工業株式会社 Resin composition
CN112189034A (en) * 2018-05-25 2021-01-05 大金工业株式会社 Resin composition
KR20210010558A (en) 2018-05-25 2021-01-27 다이킨 고교 가부시키가이샤 Resin composition
JPWO2019225694A1 (en) * 2018-05-25 2021-05-27 ダイキン工業株式会社 Resin composition
EP3789458A4 (en) * 2018-05-25 2022-03-09 Daikin Industries, Ltd. Resin composition
JP7082303B2 (en) 2018-05-25 2022-06-08 ダイキン工業株式会社 Resin composition
CN112189034B (en) * 2018-05-25 2023-08-25 大金工业株式会社 resin composition
WO2022091473A1 (en) * 2020-10-29 2022-05-05 Dic株式会社 Polyarylene sulfide resin composition, and, biaxially stretched film and layered body using same
JPWO2022091473A1 (en) * 2020-10-29 2022-05-05
JP7392847B2 (en) 2020-10-29 2023-12-06 Dic株式会社 Polyarylene sulfide resin composition, biaxially stretched film and laminate using the same

Similar Documents

Publication Publication Date Title
KR102000380B1 (en) Insulated electrical wire having excellent resistance to bending process, coil and electronic/electric equipment using same
CN104871259B (en) Insulated electric conductor and electric and electronic, motor and the transformer using the insulated electric conductor
US11024441B2 (en) Insulated wire
US10991478B2 (en) Insulated wire
CN107077922B (en) Insulated wire and rotating electric machine
JP5757358B2 (en) Thermoplastic resin composition and molded article
WO2014103665A1 (en) Insulated wire, electrical device, and method for producing insulated wire
KR20160133518A (en) Insulation wire, insulation wire manufacturing method, method of manufacturing stator for rotary electric machine and rotary electric machine
JP2014105258A (en) Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition
CN114270454A (en) Magnet wire with thermoplastic insulation
KR102518221B1 (en) Composite resin composition for shielding electromagnetic waves and high-voltage shielding cable containing the same
US11708491B2 (en) Polymeric insulating films
WO2012090921A1 (en) Automotive insulated wire and automotive wire harness
JP2010123389A (en) Insulated wire
TWI389143B (en) Insulated wire
JP6604104B2 (en) Insulated wire and manufacturing method thereof
JP2014136738A (en) Resin composition for extrusion molding, method for manufacturing the same, and insulated electric cable using the same
JP2017076560A (en) Insulated wire and method for producing the same
JP2014105257A (en) Resin composition for extrusion molding and method for producing the same, and insulated cable employing said resin composition
JP2014237736A (en) Polyphenylene sulfide resin composition and insulated wire using the same
JP2015067715A (en) Polyphenylene sulfide resin composition and insulated wire using the same
WO2022032125A1 (en) Magnet wire with thermoplastic insulation
KR20200080275A (en) cable