WO2019179447A1 - 经导管介入的房间隔造口装置 - Google Patents

经导管介入的房间隔造口装置 Download PDF

Info

Publication number
WO2019179447A1
WO2019179447A1 PCT/CN2019/078760 CN2019078760W WO2019179447A1 WO 2019179447 A1 WO2019179447 A1 WO 2019179447A1 CN 2019078760 W CN2019078760 W CN 2019078760W WO 2019179447 A1 WO2019179447 A1 WO 2019179447A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
catheter body
transcatheter
stoma
atrial
Prior art date
Application number
PCT/CN2019/078760
Other languages
English (en)
French (fr)
Inventor
王永胜
吴俊飞
董元博
Original Assignee
杭州诺生医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810226368.8A external-priority patent/CN109965974A/zh
Priority claimed from CN201820372677.1U external-priority patent/CN208756152U/zh
Application filed by 杭州诺生医疗科技有限公司 filed Critical 杭州诺生医疗科技有限公司
Publication of WO2019179447A1 publication Critical patent/WO2019179447A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the invention belongs to the technical field of medical instruments, and in particular relates to a device for transcatheter access which can be used for atrial septostomy.
  • Room ostomy is a stoma at the patient's interatrial septum to improve abnormal hemodynamics and hypoxemia. Atrial septostomy can form a right-to-left shunt to treat pulmonary hypertension; it can also form a left-to-right shunt. To treat left heart failure.
  • Balloon atrial ostomy After percutaneous puncture, the balloon catheter is inserted through the femoral vein, through the inferior vena cava to the right atrium, the catheter points to the interatrial septum, and the left atrium is missing through the foramen ovale or small chamber. Once the balloon catheter reaches the left atrium, adjust the position, inject the catheter with diluted contrast agent to dilate the balloon at the tip of the catheter, and then quickly pull the balloon from the left atrium to the junction of the right atrium and the right atrium and the inferior vena cava. Push the balloon to the right atrium, pump the contrast agent to collapse the balloon and insert it into the left atrium again. Repeat this 2 to 5 times until the dilatation balloon passes through the interatrial septum without resistance.
  • Atrial septal ostomy After percutaneous puncture, the right atrium is inserted into the left atrium and pulmonary vein via the right atrium, then the long guide wire is inserted into the pulmonary vein, the catheter is removed, and then the balloon is removed.
  • the valvuloplasty inserts a balloon of dilatation of the appropriate diameter so that the center of the balloon rides across the interatrial septum, and the balloon is dilated with a dilute contrast agent until the waist fold disappears, and the balloon is removed several times.
  • Room septal incision a small knife that can be opened and folded at the end of the catheter is used for atrial septotomy, and then the balloon is expanded to expand the atrial septal defect.
  • Balloon ostomy and balloon dilatation can easily tear the heart tissue. And because the myocardial tissue has a tendency to rebound, the stoma will shrink or even close completely after a period of surgery.
  • Room septal incision may cause left atrial injury, left atrial perforation is a serious complication requiring emergency surgical repair, occasional right ventricular outflow tract perforation and postoperative neurological complications.
  • a stoma stent implant for atrial shunt in the prior art, which is characterized by percutaneous delivery of an implant in the interatrial septum after percutaneous transluminal septal puncture.
  • a shunt device is implanted at the puncture to keep the shunt opening open.
  • the left device at the stoma it is easy to cause thrombosis, or the instrument is detached, forming a plug.
  • the endothelium can cause the opening of the instrument to be blocked, the passage closure loses the shunting effect.
  • a ostomy device which comprises a cutting device and a grasping device.
  • the grasping device first positions and grabs part of the tissue to be cut;
  • the cutting portion of the cutting device cuts a portion of the tissue grasped by the grasping device, and the cut portion of the tissue is taken out of the body by the grasping device to form a stoma.
  • This program is similar to atrial septal incision, but it cuts the intracardiac tissue by mechanical or high-frequency electrosurgical during the operation, which has a higher risk, such as loosening or recycling during the operation of the grasping device. This may cause the cut tissue to fall off and form a plug.
  • the loosening of the grasping device during the cutting process is likely to cause damage to other myocardial tissue.
  • the technical problem to be solved by the present invention is to provide a stoma size controllable and non-retracting in view of the defects in the prior art which are easy to cause tear and damage of heart tissue, retraction of the stoma after surgery, and setting of a shunt device to cause embolization.
  • a transcatheter interventional atrial ostomy device that does not create tear and damage to the heart tissue.
  • a transcatheter interventional atrial septum device comprising a catheter body and an expandable balloon secured to the distal end of the catheter body;
  • the balloon is provided with a stoma for extending the interatrial septum through the interatrial septum and radially expanding, and the stoma is disposed at least on the outer surface of the balloon in a circumferential direction with the electrical power of the ablation power source. Conducted electrode assembly.
  • the catheter body is axially provided with a guide wire lumen that is penetrated at both ends and a filling cavity for filling the balloon.
  • one or more balloons are disposed at the catheter body end.
  • the balloon is provided with one, and the sleeve is fixed at the distal end of the catheter body; or the balloon is provided in plurality, and the plurality of balloons are nested or arranged side by side at the distal end of the catheter body.
  • a plurality of balloons are disposed at a distal end of the catheter body, and the plurality of balloons are nested or juxtaposed to each other at a distal end of the catheter body.
  • the plurality of balloons comprises at least one non-compliant balloon, and the electrode assembly is disposed on an outer wall of the outermost balloon.
  • At least the outermost balloon of the plurality of balloons is a compliant balloon.
  • the balloon is provided in two, and the two balloons are nested with each other to form a double-layer balloon, and the inner balloon of the double-layer balloon
  • the outer balloon is a compliant balloon; an electrode assembly is disposed on the outer wall of the outer balloon.
  • the distal end of the catheter body is composed of a plurality of branch tubes juxtaposed; in the proximal end and the distal end of the branch tube, at least the proximal end of the branch tube is merged together It communicates with the lumen of the catheter body.
  • At least one balloon is disposed on the branch tube, and the plurality of balloons are arranged side by side, and the stoma portion is disposed corresponding to the plurality of branch tubes.
  • the balloon is a compliant balloon or a non-compliant balloon, and the shape is spherical, cylindrical, figure-eight, tapered or their shape. The combination.
  • the balloon is provided with a waist having a smaller diameter; the diameter of the balloon gradually decreases from the waist to the proximal end and/or the distal end, respectively. It becomes larger, or a positioning portion having a diameter larger than the waist diameter is provided on at least one of both sides of the waist of the balloon.
  • the stoma portion is disposed at a central position or a position near the center of the outer surface of the balloon in the axial direction.
  • the electrode assembly comprises a connecting line and an electrode; the electrode is fixed on the outer surface of the balloon and arranged in a circle in the circumferential direction, and is ablated through the connecting line
  • the power supply is electrically connected.
  • the electrodes are disposed at a plurality of circumferential intervals on the outer surface of the balloon to form at least one electrode group, and all the electrodes in each electrode group Connect the same cable or connect multiple different cables.
  • the electrode group is provided with at least two; the electrodes of the different electrode groups are insulated from each other or in parallel with each other.
  • the electrode group is a monopolar ablation mode or a bipolar ablation mode.
  • the distal end of the connecting wire is fixed to the proximal end of the electrode, and the proximal end of the balloon penetrates into the catheter body and is connected to the proximal end of the catheter body. Head connection.
  • the balloon is provided with a positioning mechanism for positioning the electrode assembly relative to the atrial septal tissue, and the positioning mechanism is disposed near the stoma portion. Proximal and/or distal.
  • the positioning mechanism is at least one protruding member that protrudes outward from the outer wall surface of the balloon.
  • the catheter body is provided with a cooling device.
  • the catheter body is further provided with a circulation cavity for sucking the cooling material in the balloon in the axial direction, and the two ends of the circulation cavity respectively pass through the ball The lumen of the capsule and the proximal end of the catheter body.
  • the coolant preferably circulates frozen brine.
  • the catheter body is further provided with a developing member for displaying a position during surgery, and the developing member is disposed in the balloon corresponding to the stoma portion.
  • the developing member is disposed in the balloon corresponding to the stoma portion.
  • the ostomy portion is further provided with a temperature sensor electrically connected to the ablation power source.
  • the invention adopts a balloon on the catheter main body to pass through the interatrial septum and radially expand to expand the interatrial septum tissue, and then through the electrode assembly to achieve tissue ablation at the interatrial septum to form a stoma, the stoma formed in this manner, operation
  • the process does not cause tearing and other damage to the heart tissue, the stoma does not retract, and during the ablation process, due to the impedance heating and heat transfer effects of the current, the atrial septal tissue surrounding the electrode is subjected to heat during the energization process and is formed.
  • the atrial septum ostomy device of the present invention avoids the risk of embolization by cutting tissue, and can recover the device after the stoma, thereby avoiding problems such as falling off of the instrument.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 1 is cross-sectional views of A-A, B-B, and C-C of FIG. 1, respectively;
  • Figure 5 is a schematic structural view of Embodiment 2 of the present invention.
  • FIG. 6-10 are cross-sectional views of D-D, E-E, F-F, G-G, and H-H of FIG. 5, respectively;
  • Figure 11 is a schematic view showing the structure of the second embodiment of the present invention after implantation into the heart;
  • Figure 12 is a schematic structural view of Embodiment 3 of the present invention.
  • FIG. 13-15 are cross-sectional views of I-I, J-J, and K-K of FIG. 12, respectively;
  • Figure 16 is a schematic structural view of Embodiment 4 of the present invention.
  • 17-20 are cross-sectional views of L-L, M-M, N-N, and O-O of FIG. 12, respectively;
  • Figure 21 is a schematic structural view of Embodiment 5 of the present invention.
  • 22-26 are cross-sectional views of P-P, Q-Q, R-R, S-S, and T-T of FIG. 21, respectively;
  • Figure 27 is a schematic structural view of the fifth embodiment of the present invention after implantation into the heart;
  • Figure 28 is a schematic structural view of Embodiment 6 of the present invention.
  • 29-32 are cross-sectional views of U-U, V-V, W-W, and X-X of Fig. 28, respectively.
  • a transcatheter-assisted atrial septostomy device includes a catheter body 110, a radially expandable balloon 120 secured to a distal end of the catheter body 110, and a balloon 120 thereon.
  • the stoma portion 101 is provided for extending the interatrial septum through the interatrial septum and radially expanding, and the stoma portion 101 is electrically connected to the ablation power source at least on the outer surface of the balloon 120 in a circumferential direction.
  • the electrode assembly 130; the catheter body 110 is provided with a guide wire cavity 113 penetrating both ends in the axial direction and a filling cavity 114 for filling the balloon 120.
  • the catheter body 110 is used for supporting and conveying the balloon 120, and has a tubular structure, and a lumen is disposed inside thereof. According to different functions, the catheter body 110 is provided with at least two ends in the axial direction.
  • the guide wire lumen 113 is for wearing the guide wire 10, and the filling cavity 114 is used for filling the balloon 120 with liquid or gas.
  • a guide wire lumen 113 is disposed in the catheter body 110.
  • the guidewire lumen 113 extends from the center of the distal end surface of the balloon 120 to the proximal end, and is bent toward the outer wall of the catheter at a position close to the proximal end of the balloon 120.
  • a through cavity is formed through the wall of the catheter and can be used to place the guide wire 10.
  • a filling chamber 114 is disposed in the catheter body 110.
  • the filling chamber 114 is connected at the proximal end to the cavity of the joint at the proximal end of the catheter body 110 through the side wall hole, and is distally along the catheter body 110.
  • the end extends and communicates only with the balloon lumen 122 of the balloon 120 through a sidewall aperture 115 disposed distally of the catheter body 110.
  • the balloon 120 is filled and pressurized by the balloon lumen 122 of the balloon 120 and inflated.
  • a balloon 120 is provided at the distal end of the catheter body 110.
  • the balloon 120 is provided with one sleeve, and the sleeve is fixed to the distal end of the catheter body 110; the balloon 120 can be selected as a compliant balloon or a non-compliant balloon, and the shape thereof is spherical, cylindrical, and 8 A glyph, a cone, or a combination of their shapes.
  • the shape referred to herein refers to the shape after the balloon 120 is filled.
  • the balloon 120 used is a non-compliant balloon, and the balloon 120 is cylindrical after filling.
  • the balloon wall 114 provides support and expansion to the atrial septal tissue such that the stoma size is equal to or less than the post-filling diameter of the non-compliant balloon 120.
  • the stoma portion 101 is provided at a position near the center of the axis or at a position near the center of the outer surface of the balloon 120.
  • the stoma 101 is a part of the balloon 120. When the balloon rides over the interatrial septum, the position of the stoma 101 is inserted into the interatrial tissue puncture opening for propping up the interatrial septum.
  • the electrode assembly 130 includes a connecting line 132 and an electrode 131; the electrode 131 is fixed on the outer surface of the balloon 120 in a circumferential direction, and is electrically connected to the ablation power source and its control mechanism through the connecting line 132. through.
  • the electrode 131 disposed in the stoma portion 101 is preferably a flexible electrode, and the electrode 131 is disposed at a plurality of intervals in the circumferential direction on the outer surface of the balloon 120 to form at least one electrode group, and all the electrodes 131 in each electrode group are connected.
  • the same connecting line 132 or a plurality of different connecting lines 132 are respectively connected.
  • the plurality of electrodes 131 of the same electrode group are connected to the same connecting line 132.
  • the plurality of electrode groups are arranged to group the plurality of electrodes 131 on the outer surface of the balloon 120 in a circumferential direction. After grouping, each group controls the electrical connection, and some or all of the electrode groups may be electrified, or may be selected. order.
  • the electrode 131 is a monopolar ablation electrode or a bipolar ablation electrode.
  • twelve electrodes 131 are evenly distributed in the circumferential direction of the balloon 120 of the stoma 101, and the electrodes 131 are respectively parallel to the central axis of the balloon 120.
  • the shape of the electrode 131 may be a circular or elliptical shape, a strip shape, a rod shape or the like, and the shape of the electrode is selected to be elliptical, and the surface thereof is a metal material having good electrical conductivity, such as copper, silver, gold. Wait.
  • the distal end of the connecting wire 132 is fixed to the proximal end of the electrode 131, and penetrates into the catheter body 110 at the proximal end of the balloon 120 and is connected to the connector provided at the proximal end of the catheter body 110.
  • the connecting line 132 includes two parts: the first part is the first connecting line 132a, and the second part is the second connecting line 132b. That is, each of the two electrodes 131 forms a group of electrodes, and the two electrodes 131 of each electrode group are connected at the proximal end of the electrode 131 to the same elongated first surface which is completely insulated and attached to the capsule wall 121.
  • the line 132a the proximal end of the first connecting line 132a extends proximally along the surface of the balloon 120, and is introduced into the catheter body wall 111 at the junction of the proximal end of the balloon 120 with the catheter body 110, and is disposed in the wall of the catheter body 111.
  • the front end of the second connecting wire 132b is welded.
  • a connector for connecting an ablation power source is provided, and a rear end of the second connecting wire 132b in the catheter body wall 111 is welded to the connector.
  • the balloon 120 is preferably disposed in two, and the two balloons 120 are nested with each other to form a double-layer balloon 120, and the inner balloon 120 of the double-layer balloon 120 is a non-compliant ball.
  • the outer balloon 120 is a compliant balloon; an electrode assembly 130 is disposed on the outer wall of the outer balloon 120.
  • the ablation current is started from the ablation power source, and is connected to the ablation power source via the connector, the second connecting line 132b in the catheter body wall 111, the electrode 131, the first connecting line 132a, the electrode 131, the tissue (and blood), and the inert electrode.
  • Ablation circuit Ablation circuit.
  • the catheter body 110 is further provided with a developing member 102 for displaying a position during surgery.
  • a developing ring as a developing member 102 is disposed at a position on the catheter main body 110 in the same section as the center of the stoma portion 101. .
  • the position of the balloon 120 is adjusted so that the developing member is located in the interatrial septum tissue, so that the electrode 131 is just in close contact with the distracted atrial septal tissue, thereby achieving accurate ablation of the stoma.
  • the impedance of the circuit at the metal conductor is small, the conversion of electrical energy to heat is not significant. It has a high impedance when conducting in tissue, and electrical energy is easily converted into heat. Among them, the maximum current density is present at the contact between the atrial septal tissue and the electrode 131, and the temperature rise in the region is very obvious, and can be as high as about 60 to 90 °C. Since the current density decreases rapidly as the distance between the tissue and the electrode 131 increases, the tissue outside the contact surface is about 1 to 2 mm, and the heat generation by the resistor is already small (but there is still energy loss, but the current density is small and the heat is not obvious). The heat is transferred to a small area (5 mm) around the electrode 131 mainly by the heat transfer effect.
  • the atrial septal tissue around the electrode 131 Due to the impedance heating and heat transfer effects of the current, the atrial septal tissue around the electrode 131 is subjected to heat and irreversible damage during the energization process, and a circle of interatrial tissue wrapped around the balloon stoma 101 is necrotic and loses large. Partial elasticity makes the size of the stoma controllable.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is an improvement of the basis of the first embodiment.
  • a transcatheter interventional atrial septostomy device includes a catheter body 110, a radially expandable balloon 120 secured to the distal end of the catheter body 110, and a balloon 120 thereon.
  • the electrode assembly 130 is electrically connected; the catheter body 110 is provided with a guide wire cavity 113 penetrating both ends in the axial direction and a filling cavity 114 for filling the balloon 120.
  • the balloon 120 is provided with a positioning mechanism for positioning the electrode assembly 130 relative to the atrial septal tissue, the positioning mechanism being disposed near the proximal end and/or the distal end of the stoma portion 101.
  • the positioning mechanism is at least one protruding member that protrudes outward from the outer wall surface of the balloon 120.
  • the protruding member is disposed on the distal end and the proximal wall of the stoma 101, respectively, and a solid protrusion 123 is provided for positioning, and each of the rings is provided with six protrusions 123.
  • the protrusion 123 on both sides of the electrode 131 has a positioning effect on the atrial septal tissue, the contact between the interatrial tissue and the conductive portion during the surgical discharge is ensured, and the relative displacement is not easily generated.
  • the catheter body 110 is further provided with a circulation cavity 116 for sucking the circulating frozen saline in the balloon 120, and the two ends of the circulation cavity 116 respectively penetrate the cavity of the balloon 120 and the catheter body.
  • the proximal end of the 110 that is, the circulation lumen 116 extends distally from the proximal end along the catheter body 110 and communicates with the balloon lumen 122 of the balloon 120 at the distal end through the sidewall aperture 117.
  • the balloon 120 is filled with the cooled physiological saline through the guide wire chamber 113, and the physiological saline circulating through the balloon 120 is sucked from the balloon 120 through the circulation chamber 116, thereby the electrode 131 of the stoma portion 101, The blood around the wall of the balloon 120 and the surrounding area are cooled to prevent blood from forming around the stoma tissue due to heat.
  • the stoma portion 101 is further provided with a temperature sensor electrically connected to the ablation power source and its control mechanism.
  • a thermistor 103 as a temperature sensor is provided on the surface of the capsule wall 121 located in the middle of the stoma portion 101. Both ends of the thermistor 103 are respectively soldered to the wires 103A, 103B, and the wires 103A, 103B are attached and extend distally along the surface of the capsule wall 121, and are introduced into the catheter at the distal end of the balloon 120 at the junction with the catheter body 110.
  • the main body wall 111 is welded to the front end of the second connecting wire 132b in the duct body wall 111.
  • the rear end of the second connecting line 132b is connected to the connector connecting the ablation power source, and feeds back the resistance value of the thermistor to the ablation power source control mechanism during the operation.
  • FIG. 11 it is a schematic structural view of the implanted heart of the present embodiment.
  • the stoma 101 is located in the interatrial septum tissue, and the corresponding electrode 131 is facing the interatrial septum.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a transcatheter interventional atrial septostomy device includes a catheter body 110, a radially expandable balloon 120 secured to a distal end of the catheter body 110, and a balloon 120 thereon.
  • the electrode assembly 130 is electrically connected; the catheter body 110 is provided with a guide wire cavity 113 penetrating both ends in the axial direction and a filling cavity 114 for filling the balloon 120.
  • the outer surface of the balloon 120 is provided with three sets of electrode groups uniformly distributed along the axis, and the three sets of electrode groups are disposed in parallel in the axial direction.
  • Each electrode group is uniformly distributed with 10 electrodes 131 in the circumferential direction of the balloon 120.
  • the electrode 131 is circular, and its surface is a metal material with good electrical conductivity, such as copper, silver, gold, and the like.
  • each of the two electrodes 131 is simultaneously connected in parallel to the first connection line 132a whose surface is completely insulated, and in each electrode group, all the electrodes 131 are coupled to the first connection line 132a whose surface is completely insulated.
  • a plurality of first connecting wires 132a extend proximally along the surface of the balloon and merge into the wall of the catheter body 110 at the junction of the proximal end of the balloon 120 with the catheter body 110.
  • the plurality of first connecting wires 132a are each welded to the front ends of the plurality of second connecting wires 132b which are insulated from each other in the wall of the balloon 120.
  • a connector connected to the ablation power source is further disposed at a proximal end of the catheter body 110.
  • the second connector wire 132b is soldered to the connector at a proximal end and connected to the ablation power source through the connector.
  • the ablation power source can be automatically or manually controlled. Or multiple sets of electrical groups are connected to the ablation circuit.
  • the electrodes 131 of the different electrode groups are insulated from each other or in parallel with each other.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment is an improvement on the basis of the first embodiment.
  • a transcatheter interventional atrial septostomy device includes a catheter body 110, a radially expandable balloon 120 secured to a distal end of the catheter body 110, and a balloon 120 thereon.
  • the electrode assembly 130 is electrically connected; the catheter body 110 is provided with a guide wire cavity 113 penetrating both ends in the axial direction and a filling cavity 114 for filling the balloon 120.
  • the balloon 120 is provided with a waist portion having a smaller diameter; the diameter of the balloon 120 gradually increases from the waist to the proximal end and/or the distal end, respectively, or on both sides of the waist of the balloon 120. At least one of the sides is provided with a positioning portion having a diameter larger than the diameter of the waist.
  • the balloon 120 having an outer contour of a figure of eight is used, that is, in the middle portion of the axis of the balloon 120, there is a thin waist shape.
  • the balloon 120 used is a non-compliant balloon. After the balloon 120 is filled, when the balloon 120 rides over the interatrial tissue and is filled, the balloon wall 121 supports and expands the atrial septal tissue to make the stoma size. Equal to or approximately equal to the waist diameter of the non-compliant balloon.
  • the waist portion of the balloon 120 is a stoma portion 101.
  • the stoma portion 101 is provided with an electrode group 130a and an electrode group 130b which are uniformly distributed in the circumferential direction and are parallel to the axis.
  • the electrode group 130a includes six electrodes 131, and the electrode group 130b includes six electrodes 131.
  • the two sets of electrode groups are staggered to form a flexible electrode assembly 130.
  • the electrode 131 has a rounded rectangular shape, and the surface thereof is a metal material having good electrical conductivity, such as copper, silver, gold, or the like.
  • the proximal end of the electrode 131 in the electrode group 130a is electrically connected to an elongated first connecting line 132a, the surface of which is completely insulated, and the proximal end of the first connecting line 132a extends proximally along the surface of the balloon 120 and is near the balloon.
  • the end of the joint with the catheter body 110 is introduced into the catheter body wall 111 and welded to the front end of the second connecting line 132b in the conduit wall.
  • the distal end of the electrode 131 of the further electrode set 130b is electrically connected to an elongated first connecting line 132a' whose surface is completely insulated, and the proximal end of the lead extends distally along the surface of the balloon 120 and is distal to the balloon.
  • the junction with the conduit 110 is introduced into the conduit body wall 111 and welded to the front end of the second connecting wire 132b' in the conduit body wall 111.
  • the second connecting lines 132b and 132b' are respectively connected to the input and output terminals of the ablation power source, so that a current loop can be formed between the electrode groups 130a and 130b without the need for an inert electrode plate.
  • a connector for connecting an ablation power source is provided.
  • the rear ends of the second connecting wires 132b in the duct body wall 111 are respectively welded to different stitches of the connector.
  • the catheter main body 110 is further provided with a developing member 102 for displaying a position during surgery, and the developing member 102 is disposed on the catheter main body 110 corresponding to the stoma portion 101 in the balloon 120.
  • developing sleeves 102a and 102b as developing members 102 are provided on the catheter main body 110 at the same cross-section as the both ends of the stoma portion 101.
  • the catheter Prior to the stoma, the catheter is positioned such that the development rings 102a and 102b are respectively located on either side of the interatrial septum such that the two electrodes 131a abut against the distracted interatrial septum.
  • the adaptive structure of the waist contributes to positioning, the atrial septal tissue and the stoma 101 are less prone to relative displacement during surgical discharge, ensuring the reliability of the ablation stoma.
  • a guide wire lumen 113 is disposed in the catheter body 110.
  • the guidewire lumen 113 extends from the center of the distal end surface of the balloon 120 to the proximal end, and a lumen is formed through the catheter wall from the proximal end surface of the catheter body 110.
  • a filling cavity 114 is disposed in the catheter body 110.
  • the filling cavity 114 extends distally from the proximal end along the catheter body 110 and communicates with the balloon lumen 122 of the balloon 120 at the distal end through the sidewall hole 115 to the balloon. 120 is filled with pressure and expanded.
  • a circulation lumen 116 for aspirating circulating chilled saline within the balloon 120 is also provided.
  • the circulation lumen 116 extends distally from the proximal end along the catheter body 110 and communicates with the balloon lumen 122 of the balloon 120 at the distal end through the sidewall apertures 117.
  • the balloon 120 is filled with the cooled physiological saline through the filling chamber 114, and the physiological saline circulating through the balloon 120 is sucked from the balloon 120 through the circulation chamber 116, thereby the electrode 131 and the ball of the stoma 101.
  • the blood around the wall of the balloon 120 and the surrounding area are cooled to prevent the blood around the stoma tissue from forming a thrombus due to heating.
  • the ablation current passes through the interatrial septum between the electrodes 131 of the two different electrode sets 130a, 130b and the surrounding blood to form an ablation circuit.
  • the impedance of the circuit at the metal conductor is small, the conversion of electrical energy to heat is not significant. It has a high impedance when conducting in tissue, and electrical energy is easily converted into heat.
  • the atrial septal tissue has the largest current density at the contact with the electrodes 131 of the two different electrode groups 130a, 130b, and the temperature rise in the region is very obvious, and can be as high as 60 to 90 degrees. Since the resistance is larger in the region farther from the electrode 131, the current is mainly transmitted through the tissue and blood which are closer to the two electrodes (1 to 3 mm), and the heat generated by the resistance is small at a distance (3 mm or more) from the contact surface.
  • the heat is transferred to a small area (5 mm) around the electrode 131 mainly by the heat transfer effect. In a region farther from the electrode 131 (10 mm or more), substantially no current is passed, and there is no loss of energy, which is also a reason why the power required for the ablation of the two electrodes is smaller.
  • the atrial septal tissue around the electrode 131 is subjected to heat and irreversible damage during the energization process, and a circle of interatrial tissue wrapped around the balloon stoma 101 is necrotic and loses large.
  • the size of the stoma is controllable and the stoma size can be maintained for a long time.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is a modification of the above embodiment.
  • the atrial septum system includes a catheter body 110, a balloon 120 at the distal end of the catheter body 110, and an electrode assembly 130 secured to the balloon 120, or the balloon 120 is disposed.
  • the plurality includes a balloon 120a disposed on the outer layer and a balloon 120b disposed in the inner layer, and the plurality of balloons 120 are nested with each other or/and are arranged side by side at the distal end of the catheter body 110.
  • the outer balloon 120a and the inner balloon 120b of the present embodiment are mutually nested structures.
  • the outer balloon 120a is a compliant balloon
  • the inner balloon 120b is a non-compliant balloon
  • the balloon 120b is cylindrical after filling.
  • the two balloons 120a and 120b ride across the interatrial tissue, they are concentric, first filling the inner balloon 120b, and the inner balloon 120b supporting the balloon wall 121a and the interatrial septum of the lateral balloon 120a,
  • the expansion effect is such that the stoma size is equal to or smaller than the nominal diameter of the balloon 120a, and then the outer balloon 120a is refilled, so that the outer balloon 120a is filled with pressure and expanded in addition to the portion located in the interatrial tissue.
  • the outline of the outer balloon 120a is "8"-shaped, that is, in the middle portion of the balloon axis, there is a thin waist shape.
  • the stoma portion 101 is formed near the center position or the center position of the outer surface of the balloon 120a along the axis.
  • twelve electrodes 131 which are circumferentially uniform and parallel to the axis are provided inside the stoma portion 101.
  • the electrode 131 has a rounded rectangular shape, and the surface thereof is a metal material having good electrical conductivity, such as copper, silver, gold, or the like.
  • the proximal end of each electrode 131 is connected to an elongated first surface 132a which is completely insulated and adhered to the capsule wall 121.
  • the proximal end of the first connecting line 132a extends proximally along the inner surface of the balloon 120b.
  • the proximal end of the inner balloon 120b is introduced into the catheter body wall 111 at the junction with the catheter body 110, and is welded to the distal end of the second connecting wire 132b in the catheter body wall 111.
  • a connector for connecting an ablation power source is provided at the proximal end of the catheter body 110.
  • the rear end of the second connecting wire 132b in the duct body wall 111 is welded to the joint.
  • the ablation current is started from the ablation power source, through the connector, the second connecting line 132b in the catheter body wall 111, the first connecting line 132a of the electrode 131, the electrode 131, the tissue (and blood), the inert electrode, and flows back to the ablation power source to form ablation. Loop.
  • Developing portions 102a and 102b as developing members 102 are provided on the catheter main body 110 at the same cross-section as the both ends of the stoma portion 101. Prior to the stoma, the catheter is positioned such that the development rings 102a and 102b are respectively located on either side of the interatrial septum such that the electrodes 131 abut against the distracted interatrial septum.
  • a guide wire lumen 113 is disposed within the catheter body 110.
  • the guidewire lumen 113 extends proximally from the distal end surface of the medial balloon 120b and is bent toward the outer wall of the catheter at a location proximal to the proximal end of the balloon 120b and extends completely through the catheter.
  • the wall forms a through cavity.
  • a filling cavity 114 and a circulation cavity 116 are disposed in the catheter body 110.
  • the filling cavity 114 and the circulation cavity 116 respectively extend from the proximal end to the distal end of the catheter body 110, and the filling cavity 114 passes through the sidewall hole 115 and the lateral balloon at the distal end.
  • the balloon lumen 122a of 120a communicates, and the circulation lumen 116 communicates with the lumen 122b of the medial balloon 120b through the sidewall aperture 117.
  • the outer balloon 120a and the inner balloon 120b are filled and pressurized by the filling chamber 114 and the circulation chamber 116, respectively, and are inflated.
  • a small hole 118 which allows the balloon lumen 122a of the outer balloon 120a to form a passage outside the balloon 120a.
  • cold saline is ejected from the small holes 118, cooling the blood around the electrodes 131 to avoid the formation of a thrombus.
  • FIG. 27 it is a schematic structural view of the implanted heart of the present embodiment.
  • the stoma 101 is located in the interatrial septum tissue, and the corresponding electrode 131 is facing the interatrial septum.
  • This embodiment is an improvement in the above embodiment.
  • the distal end of the catheter body 110 is juxtaposed by a plurality of branch tubes 110A; in the proximal end and the distal end of the branch tube 110A, at least the proximal ends of the branch tubes 110A are merged together.
  • the inlet is connected to the inner cavity of the catheter body 110; the branch tube 110A is provided with at least one balloon 120. If a plurality of balloons 120 are provided, the plurality of balloons 120 are arranged side by side, and the stoma portion 101 is disposed corresponding to the plurality of branch tubes 110A. .
  • the atrial septum system includes a catheter body 110.
  • the distal end of the catheter body 110 is composed of five juxtaposed branch tubes 110A.
  • One of the branch tubes 110A is located at the center of the shaft tube, and the remaining four branch tubes 110A are juxtaposed around the shaft tube.
  • the four branch tubes 110A are respectively fixed with a balloon 120, and the stoma portion 101 of the balloon 120 is provided with four sets of electrode groups.
  • the five juxtaposed branch tubes 110A are merged into the catheter body 110, that is, when the proximal catheter body 110 has a large diameter and extends to the distal end, the five branch tubes 110A are formed, and the five branch tubes 110A form the catheter body 110.
  • the distal ends of the five branch tubes 110A can be merged to form a whole body, that is, a distal end 110C is formed at the distal end, and a guide wire cavity 113 is disposed at the tip end 110C to communicate with the filling cavity 114 as the axial tube branch pipe 110A.
  • Each of the branches 110A is respectively provided with a lumen 119, and the lumen 119 communicates with the balloon lumen 122 of the balloon 120 at the distal end through the sidewall hole 116.
  • the five branches 110A are integrally joined to the distal end of the catheter body 110 at the proximal end.
  • the catheter body 110 includes a total of five lumens 117A, 117B, 117C, 117D, and 117E.
  • the inner chambers 117A, 117B, 117C, and 117D are in communication with the inner chambers 119 of the outer four branch tubes 110A, respectively.
  • the inner chamber 117E is in communication with the proximal end of the filling chamber 114 of the central branch tube 110A.
  • the four balloons 120 can be filled and pressurized by the lumens 117A, 117B, 117C, and 117D of the catheter body 110, respectively.
  • the balloon 120 used is a semi-compliant balloon.
  • the four balloons 120 are simultaneously inflated, and part of the wall facing the atrial septal tissue
  • the spacer tissue produces a supporting effect and expands the interatrial septum at the stoma to adjust the filling pressure or increase the filling frequency to adjust the stoma size.
  • a portion near the center position or the center position of the outer surface of each balloon 120 along the axis and facing the atrial septal tissue is the stoma portion 101.
  • a rounded square electrode 131 parallel to the axis is provided, and the surface thereof is a metal material having good electrical conductivity such as copper, silver, gold or the like.
  • the proximal end of the electrode 131 is connected with an elongated first connecting line 132a, the surface of which is completely insulated, the proximal end of the wire extends proximally along the surface of the balloon, and is dissolved in the furcation wall 111A at the junction of the proximal end of the balloon and the branch pipe 110A.
  • the inside is welded to the front end of the second connecting wire 132b in the branch wall 111A.
  • a second connecting wire 132b is disposed, the distal end of the second connecting wire 132b is welded to the proximal end of the four wires 132a, and the proximal end of the second connecting wire 132b is connected to the ablation power source at the proximal end of the catheter body 110.
  • the connector is soldered.
  • a developing ring as a developing member 102 is disposed at a position of the branch pipe 110A in the same section as the center of the stoma portion 101. Prior to the stoma, the position of the balloon 120 is adjusted such that the four developing rings are positioned in the interatrial septum so that the conductive portion abuts against the distracted interatrial tissue.

Abstract

一种经导管介入的房间隔造口装置,包括导管主体(110)、穿套固定在导管主体(110)远端的可膨胀球囊(120);所述球囊(120)上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部(101),所述造口部(101)至少在球囊(120)外表面沿周向一圈设置有与消融电源电性导通的电极组件(130)。本造口装置针对现有的造口器械易造成心脏组织撕裂和损伤、术后造口回缩以及导致栓塞的缺陷,提供一种造口尺寸可控且不回缩、不会形成心脏组织撕裂和损伤的经导管介入的房间隔造口装置。

Description

经导管介入的房间隔造口装置 技术领域
本发明属于医疗器械技术领域,尤其涉及一种经导管介入的可用于房间隔造口的装置。
背景技术
房间隔造口术是在患者房间隔处造口,改善异常的血流动力学及低氧血症,房间隔造口术可形成右向左分流,治疗肺动脉高压;也可形成左向右分流,从而治疗左心衰。
传统的经导管介入房间隔造口方法,包括有球囊房间隔造口术、球囊扩张法房间隔造口术和房间隔切开术等。
球囊房间隔造口术:经皮穿刺后,球囊导管经股静脉插入,经下腔静脉达右房,导管指向房间隔,经卵圆孔或小房缺达左房。一旦球囊导管达左房,调整位置后,以稀释的造影剂注入导管以扩张导管尖端的球囊,然后迅速由左房抽拉球囊至右房及右房与下腔静脉交界处,再推送球囊至右房,抽吸造影剂使球囊塌瘪后再次插入左房,如此反复2~5次,直至扩张球囊通过房间隔无阻力为止。
球囊扩张法房间隔造口术:经皮穿刺后,先以端孔导管经右心途径由右房插至左房、肺静脉,然后循导管插入长导丝至肺静脉,撤去导管,随后按球囊瓣膜成形术插入适当直径球囊扩张导管使球囊中央骑跨在房间隔,用稀释造影剂扩张球囊至腰凹消失为止,反复数次,撤去球囊。
房间隔切开术:采用导管头端装有可张开及折叠的微型刀作房间隔切开术,然后再以球囊扩张,扩大房间隔缺损。
球囊房隔造口术和球囊扩张法房隔造口术易使心脏组织撕裂。并且由于心肌组织有回弹的趋势,手术一段时间以后造口会缩小甚至完全闭合。
房间隔切开术可能引起左房损伤,左房穿孔为严重的并发症需急诊外科修补,偶有右室流出道穿孔及术后神经系统方面并发症。
为了解决造口缩小甚至闭合的问题,现有技术中有一种造口支架植入物, 用于心房分流,其特点是在经皮房间隔穿刺术后,经皮输送一植入物在房间隔穿刺处植入分流器械,以保持分流开口处通畅。但由于在造口处留下了器械,容易导致血栓形成,或器械脱落,形成栓塞。此外,由于内皮爬覆可导致器械开口被封堵,通道关闭失去分流作用。
另外,现有技术还公布了一种造口器械,包括切割装置及抓取装置,器械在对组织进行造口时,抓取装置先对所需要切割的部分组织进行定位并抓取;然后由切割装置的切割部对抓取装置所抓取的部分组织进行切割,切割下来的部分组织被抓取装置带出体外,从而形成造口。该方案类似于房间隔切开术,但是其在手术过程中通过机械或高频电刀对心内组织进行切割,有较高的风险,如在术中抓取装置手术中发生松动或在回收时,可能导致所切割的组织脱落并形成栓塞。此外,如果在切割过程中,抓取装置的松动极易导致其它心肌组织受损。
发明内容
本发明要解决的技术问题在于,针对现有技术中易造成心脏组织撕裂和损伤、手术后造口回缩以及设置分流器械导致栓塞的缺陷,提供一种造口尺寸可控且不回缩、不会形成心脏组织撕裂和损伤的经导管介入的房间隔造口装置。
本发明解决其技术问题所采用的技术方案是:
一种经导管介入的房间隔造口装置,包括导管主体、穿套固定在导管主体远端的可膨胀球囊;
所述球囊上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部,所述造口部至少在球囊外表面沿周向一圈设置有与消融电源电性导通的电极组件。
所述导管主体沿轴向设有两端贯通的导丝腔和用于球囊充盈的充盈腔。
进一步地,在经导管介入的房间隔造口装置中,导管主体端设置有一个或者多个球囊。
优选所述球囊设一个,穿套固定在导管主体远端;或者所述球囊设置多个,多个球囊相互嵌套或并列排布固定在导管主体远端。
进一步地,所述的经导管介入的房间隔造口装置中,所述导管主体远端设 置多个球囊,多个球囊相互嵌套或并列排布固定在导管主体远端。
进一步地,所述的经导管介入的房间隔造口装置中,所述多个球囊至少包括一个非顺应性球囊,所述电极组件设置在最外层球囊外壁上。
进一步地,所述的经导管介入的房间隔造口装置中,所述多个球囊中至少最外层球囊为顺应性球囊。
进一步地,所述的经导管介入的房间隔造口装置中,所述球囊设置两个,且两个球囊相互嵌套形成双层球囊,所述双层球囊的内层球囊为非顺应性球囊,外层球囊为顺应性球囊;所述外层球囊外壁上设置电极组件。
进一步地,所述的经导管介入的房间隔造口装置中,所述导管主体的远端为由多个支管并列组成;在支管的近端和远端中,至少支管的近端共同汇入与导管主体的内腔联通。
进一步地,所述的经导管介入的房间隔造口装置中,支管上设有至少一个球囊,多个球囊并列排布,所述造口部对应多个支管设置。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述球囊为顺应性球囊或者非顺应性球囊,其形状为球形、柱形、8字形、锥形或者它们形状的组合。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述球囊设有一个直径较小的腰部;所述球囊从腰部分别向近端和/或远端方向的直径逐渐变大,或者在球囊腰部两侧中的至少一侧设有直径大于腰部直径的定位部。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述造口部设置于球囊外表面沿轴线方向上的中心位置或中心附近位置。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述电极组件包括连接线和电极;所述电极固定在球囊外表面沿周向一圈设置,并通过连接线与消融电源电性导通。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述电极在球囊外表面沿周向一圈间隔设置多个,形成至少一个电极组,每个电极组中的所有电极连接同一根连接线或分别连接多根不同连接线。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述电极组设置至少两个;不同电极组的电极之间是相互绝缘或者相互并联。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述电极组为单 极消融模式或者双极消融模式。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述连接线远端与电极近端固定,且在球囊近端穿入导管主体内并与导管主体近端设置的连接头连接。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述球囊上设置有用于电极组件相对于房间隔组织进行定位的定位机构,所述定位机构设置于靠近造口部的近端和/或远端。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述定位机构为球囊外壁面上向外凸出的至少一个外凸件。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述导管主体内设有冷却装置。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述导管主体内轴向还设有用于抽吸球囊内的冷却物的循环腔,所述循环腔两端分别贯通球囊内腔和导管主体近端。所述冷却物优选循环冷冻盐水。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述导管主体上还设置有用于在手术中显示位置的显影件,所述显影件设置在球囊内与造口部对应的导管主体上。
进一步地,所述的经导管介入的房间隔造口装置中,优选所述造口部还设有与消融电源电连接的温度传感器。
本发明采用导管主体上的球囊穿过房间隔并径向膨胀将房间隔组织撑开,再通过电极组件实现房间隔破口处组织消融,形成造口,这种方式形成的造口,操作过程不会造成心脏组织撕裂和其他损伤,造口不会回缩,并且消融过程中,由于电流的阻抗加热和热传递效应,电极周围的房间隔组织在通电过程中均受到热量作用并形成不可逆的损伤,包裹在球囊造口部上的一圈房间隔组织坏死且失去大部分弹性,使得造口尺寸可控,并能够持久保持造口形态。同时,本发明的房间隔造口装置避免了切割组织造成栓塞的风险,并且可以将造口后的器械进行回收,避免了器械脱落等问题。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例1的结构示意图;
图2-4分别是图1的A-A、B-B、C-C的剖视图;
图5是本发明实施例2的结构示意图;
图6-10分别是图5的D-D、E-E、F-F、G-G、H-H的剖视图;
图11是本发明实施例2的植入心脏后的结构示意图;
图12是本发明实施例3的结构示意图;
图13-15分别是图12的I-I、J-J、K-K的剖视图;
图16是本发明实施例4的结构示意图;
图17-20分别是图12的L-L、M-M、N-N、O-O的剖视图;
图21是本发明实施例5的结构示意图;
图22-26分别是图21的P-P、Q-Q、R-R、S-S、T-T的剖视图;
图27是本发明实施例5的植入心脏后的结构示意图;
图28是本发明实施例6的结构示意图;
图29-32分别是图28的U-U、V-V、W-W、X-X的剖视图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
实施例一
如图1-4所示,一种经导管介入的房间隔造口装置,包括导管主体110、穿套固定在导管主体110远端的可径向膨胀的球囊120;所述球囊120上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部101,所述造口部101至少在球囊120外表面沿周向一圈设置有与消融电源电性导通的电极组件130;所述导管主体110沿轴向设有两端贯通的导丝腔113和用于球囊120充盈的充盈腔114。
如图1-4所示,导管主体110是用于实现球囊120支撑、输送功能,为管 状结构,其内部设置有内腔,根据功能不同,导管主体110至少沿轴向设有两端贯通的导丝腔113和用于球囊120充盈的充盈腔114。其中导丝腔113用于穿装导丝10,充盈腔114用于球囊120充盈液体或气体。本实施例中,在导管主体110内设置有导丝腔113,导丝腔113从球囊120远端端面中心向近端延伸,并在距离球囊120近端较近的位置向导管外壁弯曲并完全贯穿导管壁形成一通腔,可用于放置导引导丝10。
如图1-4所示,在导管主体110内设置有充盈腔114,充盈腔114通过侧壁孔在近端与位于导管主体110近端的接头的空腔连接,并沿导管主体110向远端延伸,并通过在导管主体110远端设置的侧壁孔115仅与球囊120的球囊内腔122相通。通过球囊120的球囊内腔122向球囊120充盈加压并使其膨胀。
在导管主体110远端设有球囊120,球囊120数量和排布方式有多种实施方式。本实施例中,所述球囊120设一个,穿套固定在导管主体110远端;所述球囊120可以选择顺应性球囊或者非顺应性球囊,其形状为球形、柱形、8字形、锥形或者它们形状的组合。此处所说的形状是指球囊120充盈后的形状。本实施例中,所用球囊120为非顺应性球囊,球囊120在充盈后为圆柱状。当球囊骑跨于房间隔组织并被充盈时,囊壁114对房间隔组织产生支撑、扩张作用,使造口尺寸等于或小于非顺应性球囊120的充盈后直径。
造口部101设在球囊120的外表面沿轴线的中心位置或中心附近位置。造口部101是球囊120的一部分,当球囊骑跨于房间隔组织,造口部101的位置就是穿装于房间隔组织穿刺口中,用于撑开房间隔组织。
如图1所示,电极组件130包括连接线132和电极131;所述电极131固定在球囊120外表面沿周向一圈设置,并通过连接线132与消融电源及其控制机构电性导通。在造口部101设置的电极131优选为柔性电极,所述电极131在球囊120外表面沿周向一圈间隔设置多个,形成至少一个电极组,每个电极组中的所有电极131连接同一根连接线132或分别连接多根不同连接线132。优选同一电极组的多个电极131连接同一根连接线132。设置多个电极组是指将球囊120外表面沿周向一圈的多个电极131进行分组,分组后各组各自控制电连接,可以选择部分或全部的电极组通电,也可以选择通电先后顺序。
所述电极131为单极消融电极或者双极消融电极。本实施例在造口部101 的球囊120周向均布12个电极131,电极131都分别与球囊120中轴线平行。电极131的形状可以是圆形、椭圆形、条形、杆形等各种形状的片状结构,本实施例选择为椭圆状,其表面为导电性能良好的金属材料,如铜、银、黄金等。所述连接线132远端与电极131近端固定,且在球囊120近端穿入导管主体110内并与导管主体110近端设置的连接头连接。本实施例中,连接线132包括两部分:第一部分是第一连接线132a,第二部分是第二连接线132b。即每两个电极131为一组形成一个电极组,每一电极组的两个电极131在电极131近端均连接同一根细长的、表面完全绝缘并贴附于囊壁121的第一连接线132a,第一连接线132a近端沿球囊120表面向近端延伸,并在球囊120近端与导管主体110连接处引入导管主体壁111内,并与导管主体壁111内设置的第二连接线132b前端焊接。在导管主体110的近端,设置有一连接消融电源的连接头,导管主体壁111内的第二连接线132b后端焊接于连接头。
进一步地,本实施例优选所述球囊120设置两个,且两个球囊120相互嵌套形成双层球囊120,所述双层球囊120的内层球囊120为非顺应性球囊,外层球囊120为顺应性球囊;所述外层球囊120外壁上设置电极组件130。
消融电流从消融电源出发,经连接头、导管主体壁111内的第二连接线132b、电极131、第一连接线132a、电极131,组织(及血液)、惰性电极,流回消融电源,构成消融回路。
所述导管主体110上还设置有用于在手术中显示位置的显影件102,本实施例中,在导管主体110上与造口部101中心同截面的位置,设置有一作为显影件102的显影环。造口前,根据显影件102显示,调节球囊120位置,使显影件正位于房间隔组织中,从而使得电极131刚好紧贴于被撑开的房间隔组织上,实现准确消融造口。
由于电路在金属导体处的阻抗较小,电能转换为热不明显。在组织中传导时具有较高的阻抗,电能容易转换为热能。其中,在房间隔组织与电极131接触处具有最大的电流密度,该区域升温十分明显,可以高达60~90℃左右。由于电流密度随组织和电极131的距离增大而快速下降,在距离接触表面约1~2mm外的组织由电阻发热已经很小(但仍然有能量的损耗,只是电流密度小,发热不明显),而主要是通过热传递效应,将热量传递至电极131周围较 小的区域内(5mm)。由于电流的阻抗加热和热传递效应,电极131周围的房间隔组织在通电过程中均受到热量作用并形成不可逆的损伤,包裹在球囊造口部101上的一圈房间隔组织坏死且失去大部分弹性,使得造口尺寸可控。
实施例二:
本实施例是实施例一基础是进行的改进。
如图5-11所示,一种经导管介入的房间隔造口装置,包括导管主体110、穿套固定在导管主体110远端的可径向膨胀的球囊120;所述球囊120上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部101,所述造口部101至少在球囊120外表面沿周向一圈设置有与消融电源及其控制机构电性导通的电极组件130;所述导管主体110沿轴向设有两端贯通的导丝腔113和用于球囊120充盈的充盈腔114。
跟实施例一的区别是:球囊120上设置有用于电极组件130相对于房间隔组织进行定位的定位机构,所述定位机构设置于靠近造口部101的近端和/或远端。优选所述定位机构为球囊120外壁面上向外凸出的至少一个外凸件。在本实施例中,外凸件设置在造口部101远端和近端的囊壁上分别设置有一圈可用于定位的实心突点123,每一圈设置有6个突点123。当球囊120充盈后,由于电极131两侧的突点123对房间隔组织有定位作用,保证房间隔组织和导电部在手术放电期间的接触,不易产生相对位移。
另外,本实施例优选所述导管主体110内轴向还设有用于抽吸球囊120内的循环冷冻盐水的循环腔116,所述循环腔116两端分别贯通球囊120内腔和导管主体110近端,即循环腔116从近端沿导管主体110向远端延伸,并在远端通过侧壁孔117与球囊120的球囊内腔122相通。手术过程中,通过导丝腔113向球囊120充盈冷却的生理盐水,并通过循环腔116从球囊120抽吸经过球囊120内循环的生理盐水,从而对造口部101的电极131、球囊120壁和周围的血液降温,避免造口组织周围血液因加热而形成血栓。
进一步地,还优选所述造口部101还设有与消融电源及其控制机构电连接的温度传感器。具体地,在位于造口部101中间的囊壁121表面,设置有一个作为温度传感器的热敏电阻103。热敏电阻103的两端分别与导线103A、103B焊接,且导线103A、103B贴附并沿着囊壁121表面向远端延伸,并在球囊 120远端与导管主体110连接处引入于导管主体壁111内,并与导管主体壁111内的第二连接线132b前端焊接。第二连接线132b后端与连接消融电源的连接头相连接,并在手术过程中将热敏电阻的阻值反馈至消融电源控制机构。
如图11所示,就是本实施例植入心脏的结构示意图,造口部101位于房间隔组织中,对应电极131正对房间隔组织。
实施例三:
本实施例是在实施例一的基础上改进:
如图12-15所示,一种经导管介入的房间隔造口装置,包括导管主体110、穿套固定在导管主体110远端的可径向膨胀的球囊120;所述球囊120上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部101,所述造口部101至少在球囊120外表面沿周向一圈设置有与消融电源及其控制机构电性导通的电极组件130;所述导管主体110沿轴向设有两端贯通的导丝腔113和用于球囊120充盈的充盈腔114。
在球囊120的外表面设置有沿轴线均匀分布的3组电极组,3组电极组之间在轴向上平行设置。每个电极组均沿球囊120周向分别均布有10个电极131。所述电极131为圆形,其表面为导电性能良好的金属材料,如铜、银、黄金等。
电极组中,每两个电极131同时并联于表面完全绝缘的第一连接线132a,每个电极组中,所有的电极131都联接于表面完全绝缘的第一连接线132a。多个第一连接线132a端沿球囊表面向近端延伸,并在球囊120近端与导管主体110的连接处汇入导管主体110的壁内。多根的第一连接线132a分别各自与位于球囊120导管壁内相互绝缘的多根第二连接线132b前端焊接。在导管主体110的近端还设置有一与消融电源连接的连接头,第二连接线132b近端焊接于该连接头并通过连接头与消融电源相连,消融电源可自动或手动控制的将一组或多组电级组接入消融电路。
与实施例一不同的是,优选电极组设置至少两组;不同电极组的电极131之间是相互绝缘或者相互并联。本实施例有多组可相互绝缘也可相互并联的电极组。当房间隔较薄时,可以调节并选择其中接触较好的一组电极组接入消融电路,避免过多的血液受到过多的热量而形成血栓;当房间隔较厚时,可以同 时使两组或多组电极组同时接入消融电路,达到较好的消融效果。
实施例四:
本实施例是在实施例一的基础上的改进。
如图16-20所示,一种经导管介入的房间隔造口装置,包括导管主体110、穿套固定在导管主体110远端的可径向膨胀的球囊120;所述球囊120上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部101,所述造口部101至少在球囊120外表面沿周向一圈设置有与消融电源及其控制机构电性导通的电极组件130;所述导管主体110沿轴向设有两端贯通的导丝腔113和用于球囊120充盈的充盈腔114。
本实施例中,所述球囊120设有一个直径较小的腰部;所述球囊120从腰部分别向近端和/或远端方向的直径逐渐变大,或者在球囊120腰部两侧中的至少一侧设有直径大于腰部直径的定位部。本实施例中,选用外轮廓为8字状的球囊120,即在球囊120轴线的中间部分,存在一细腰形状。所用球囊120为非顺应性球囊,球囊120在充盈后,当球囊120骑跨于房间隔组织并被充盈时,囊壁121对房间隔组织产生支撑、扩张作用,使造口尺寸等于或近似等于非顺应性球囊的腰部直径。
在球囊120的腰部为造口部101。造口部101设置有周向均匀分布、与轴线平行的电极组130a和电极组130b,电极组130a包括6个电极131,电极组130b包括6个电极131。两组电极组相互交错排列组成柔性的电极组件130。电极131为圆角矩形状,其表面为导电性能良好的金属材料,如铜、银、黄金等。
其中电极组130a中的电极131近端电连接于有一细长的第一连接线132a,其表面完全绝缘,第一连接线132a近端沿球囊120表面向近端延伸,并在球囊近端与导管主体110连接处引入于导管主体壁111内,并与导管壁内的第二连接线132b前端焊接。相反地,另外电极组130b的电极131远端电连接于有一细长的第一连接线132a′,其表面完全绝缘,导线近端沿球囊120表面向远端延伸,并在球囊远端与导管110连接处引入于导管主体壁111内,并与导管主体壁111内的第二连接线132b′前端焊接。所述第二连接线132b和132b′分别连接消融电源的输入端和输出端,因此可在电极组130a和130b之间形成 电流回路,无需惰性电极板。
在导管主体110的近端,设置有一连接消融电源的连接头。导管主体壁111内的第二连接线132b后端分别焊接于连接头不同的针脚上。
本实施例也优选所述导管主体110上还设置有用于在手术中显示位置的显影件102,所述显影件102设置在球囊120内与造口部101对应的导管主体110上。具体地,在导管主体110上与造口部101两端同截面的位置,分别设置有作为显影件102的显影环102a及102b。造口前,调节导管位置使显影环102a和102b分别位于房间隔两侧,从而使得两个电极131a紧贴于被撑开的房间隔组织上。
由于腰部的自适应结构有助于定位,房间隔组织和造口部101在手术放电期间不易产生相对位移,保证消融造口的可靠性。
在导管主体110内设置有导丝腔113,导丝腔113从球囊120远端端面中心向近端延伸,并在距离导管主体110近端端面完全贯穿导管壁形成一通腔。
在导管主体110内设置有充盈腔114,充盈腔114从近端沿导管主体110向远端延伸,并在远端通过侧壁孔115与球囊120的球囊内腔122相通,向球囊120充盈加压并使其膨胀。
在导管主体110内,也设置有用于抽吸球囊120内的循环冷冻盐水的循环腔116。循环腔116从近端沿导管主体110向远端延伸,并在远端通过侧壁孔117与球囊120的球囊内腔122相通。手术过程中,通过充盈腔114向球囊120充盈冷却的生理盐水,并通过循环腔116从球囊120抽吸经过球囊120内循环的生理盐水,从而对造口部101的电极131、球囊120壁和周围的血液降温,避免造口组织周围血液因加热而形成血栓。
消融电流经过两个不同电极组130a、130b中的电极131间的房间隔组织及周围血液,构成消融回路。
由于电路在金属导体处的阻抗较小,电能转换为热不明显。在组织中传导时具有较高的阻抗,电能容易转换为热能。其中,在房间隔组织与两个不同电极组130a、130b中的电极131接触处具有最大的电流密度,该区域升温十分明显,可以高达60~90度左右。由于距离电极131越远的区域其电阻越大,故电流主要经过距离双电极较近(1~3mm)的组织及血液传播,在距离接触表面 较远(3mm以上)组织由电阻发热已经很小,而主要是通过热传递效应,将热量传递至电极131周围较小的区域内(5mm)。在距离电极131更远的区域(10mm以上),基本没有电流通过,也没有能量的损耗,这也是双电极消融所需功率更小的原因。
由于电流的阻抗加热和热传递效应,电极131周围的房间隔组织在通电过程中均受到热量作用并形成不可逆的损伤,包裹在球囊造口部101上的一圈房间隔组织坏死且失去大部分弹性,使得造口尺寸可控,并能够长久保持造口尺寸。
实施例五:
本实施例是在上述实施例的改进。
如图21-27所示,所述的房间隔造口系统包括导管主体110、位于导管主体110远端的球囊120,以及球囊120上固定的电极组件130,或者所述球囊120设置多个,包括设置在外层的球囊120a和设置在内层的球囊120b,多个球囊120相互嵌套或/和并列排布固定在导管主体110远端。
本实施例的外层球囊120a和内层球囊120b为相互嵌套的结构。本实施例中,外侧的球囊120a为顺应性球囊,内侧的球囊120b为非顺应性球囊,球囊120b在充盈后为圆柱状。当两个球囊120a和120b骑跨于房间隔组织中,二者同中心,首先充盈内侧的球囊120b,内侧的球囊120b对外侧球囊120a的囊壁121a和房间隔组织产生支撑、扩张作用,使造口尺寸等于或小于球囊120a的名义直径,然后再充盈外侧的球囊120a,使外侧的球囊120a除了位于房间隔组织中的部分外,其余部分受到压力充盈而膨胀,从而使外侧球囊120a的轮廓为“8”字状,即在球囊轴线的中间部,存在一细腰形状。
在球囊120a的外表面沿轴线的中心位置或中心位置附近为造口部101。造口部101内,设置有周向均布、与轴线平行的12个电极131。电极131为圆角矩形状,其表面为导电性能良好的金属材料,如铜、银、黄金等。每电极131的近端均连接一根细长的、表面完全绝缘并贴附于囊壁121的第一连接线132a,第一连接线132a近端沿内侧的球囊120b表面向近端延伸,并在内侧的球囊120b近端与导管主体110连接处导入到导管主体壁111内,并与导管主体壁111内的第二连接线132b前端焊接。在导管主体110的近端,设置有一 连接消融电源的连接头。导管主体壁111内的第二连接线132b后端焊接于连接头。
消融电流从消融电源出发,经连接头、导管主体壁111内的第二连接线132b、电极131第一连接线132a,电极131,组织(及血液)、惰性电极,流回消融电源,构成消融回路。
在导管主体110上与造口部101两端同截面的位置,分别设置有作为显影件102的显影环102a及102b。造口前,调节导管位置使显影环102a和102b分别位于房间隔两侧,从而使得电极131紧贴于被撑开的房间隔组织上。
在导管主体110内设置有导丝腔113,导丝腔113从内侧球囊120b远端端面中心向近端延伸,并在距离球囊120b近端较近的位置向导管外壁弯曲并完全贯穿导管壁形成一通腔。
在导管主体110内设置有充盈腔114和循环腔116,充盈腔114、循环腔116分别从近端沿导管主体110向远端延伸,充盈腔114在远端通过侧壁孔115与外侧球囊120a的球囊内腔122a相通,循环腔116通过侧壁孔117与内侧球囊120b的内腔122b相通。分别通过充盈腔114、循环腔116向外侧的球囊120a和内侧的球囊120b充盈加压并使其膨胀。在电极131的的近端和远端位置,分别开设有一小孔118,小孔118使外侧球囊120a的球囊内腔122a与球囊120a外形成通道。当向球囊120a充盈冷盐水时,冷盐水会从小孔118中喷出,冷却电极131周围的血液,避免形成血栓。
如图27所示,就是本实施例植入心脏的结构示意图,造口部101位于房间隔组织中,对应电极131正对房间隔组织。
实施例六:
本实施例是在上述实施例上的改进。
如图28-32所示,本实施例中,优选所述导管主体110的远端为由多个支管110A并列组成;在支管110A的近端和远端中,至少支管110A的近端共同汇入与导管主体110的内腔联通;支管110A上设有至少一个球囊120,如果设置多个球囊120,多个球囊120并列排布,所述造口部101对应多个支管110A设置。
所述的房间隔造口系统包括导管主体110,在导管主体110远端由五个并 列的支管110A,其中一个支管110A位于中心为轴心管,其余4个支管110A并列围绕轴心管设置,这四个支管110A上分别套装固定有球囊120,球囊120的造口部101设有4组电极组。五个并列的支管110A近端汇入导管主体110中,即在近端的导管主体110直径较大,延伸至远端时,分成了五个支管110A,这五个支管110A形成导管主体110的远端,五个支管110A的远端可以汇合后形成一个整体,即在远端汇为一尖端110C,尖端110C处设置有一导丝腔113,与作为轴心管支管110A的充盈腔114连接相通。各支管110A内分别设置有一内腔119,内腔119在远端通过侧壁孔116与球囊120的球囊内腔122相连通。
五个支管110A在近端与导管主体110远端融为一体。导管主体110中共包括有5个内腔117A、117B、117C、117D、117E。内腔117A、117B、117C、117D分别与外周4个支管110A的内腔119相连相通。内腔117E与中心的支管110A的充盈腔114近端连接相通。可通过导管主体110的内腔117A、117B、117C、117D分别向4个球囊120充盈加压。
本实施例中,所用球囊120为半顺应性球囊,当球囊120骑跨于房间隔组织并被冲盈时,4个球囊120同时膨胀,面向房间隔组织的部分囊壁对房间隔组织产生支撑作用并将造口处的房间隔组织撑开,调节充盈压力或增加充盈次数,以调整造口尺寸。
在每个球囊120的外表面沿轴线的中心位置或中心位置附近且面向房间隔组织的部分为造口部101。在每个球囊120的造口部101上的电极组中,设置有一个与轴线平行的圆角方形的电极131,其表面为导电性能良好的金属材料,如铜、银、黄金等。电极131近端均连接有一细长的第一连接线132a,其表面完全绝缘,导线近端沿球囊表面向近端延伸,并在球囊近端与支管110A连接处溶于分叉壁111A内,并与分叉壁111A内的第二连接线132b前端焊接。在导管主体110内,设置有一第二连接线132b,第二连接线132b远端与4根根线132a近端焊接,第二连接线132b近端与位于导管主体110近端的连接消融电源的连接头焊接。
在支管110A上与造口部101中心同截面的位置,设置有一作为显影件102的显影环。造口前,调节球囊120位置使四个显影环位于房间隔组织中,从而 使得导电部紧贴于被撑开的房间隔组织上。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (21)

  1. 一种经导管介入的房间隔造口装置,其特征在于,包括导管主体、穿套固定在导管主体远端的可膨胀球囊;
    所述球囊上设有用于穿过房间隔并径向膨胀将房间隔组织撑开的造口部,所述造口部至少在球囊外表面沿周向一圈设置有与消融电源电性导通的电极组件。
  2. 根据权利要求1所述的经导管介入的房间隔造口装置,其特征在于,所述导管主体远端设置有一个或者多个球囊。
  3. 根据权利要求2所述的经导管介入的房间隔造口装置,其特征在于,所述导管主体远端设置多个球囊,多个球囊相互嵌套或并列排布固定在导管主体远端。
  4. 根据权利要求3所述的经导管介入的房间隔造口装置,其特征在于,所述多个球囊至少包括一个非顺应性球囊,所述电极组件设置在最外层球囊外壁上。
  5. 根据权利要求4所述的经导管介入的房间隔造口装置,其特征在于,所述多个球囊中至少最外层球囊为顺应性球囊。
  6. 根据权利要求2所述的经导管介入的房间隔造口装置,其特征在于,所述导管主体的远端为由多个支管并列组成;在支管的近端和远端中,至少支管的近端共同汇入与导管主体的内腔联通。
  7. 根据权利要求6所述的经导管介入的房间隔造口装置,其特征在于,所述支管上设有至少一个球囊。
  8. 根据权利要求2所述的经导管介入的房间隔造口装置,其特征在于,所述球囊为顺应性球囊或者非顺应性球囊,其形状为球形、柱形、8字形、锥形或者它们形状的组合。
  9. 根据权利要求8所述的经导管介入的房间隔造口装置,其特征在于,所述球囊设有一个直径较小的腰部;所述球囊从腰部分别向近端和/或远端方向的直径逐渐变大,或者在球囊腰部两侧中的至少一侧设有直径 大于腰部直径的定位部。
  10. 根据权利要求1-9任意一项所述的经导管介入的房间隔造口装置,其特征在于,所述造口部设置于球囊外表面沿轴线方向上的中心位置或中心附近位置。
  11. 根据权利要求1-9任意一项所述的经导管介入的房间隔造口装置,其特征在于,所述电极组件包括连接线和电极;所述电极固定在球囊外表面沿周向一圈设置,并通过连接线与消融电源电性导通。
  12. 根据权利要求11所述的经导管介入的房间隔造口装置,其特征在于,所述电极在球囊外表面沿周向一圈间隔设置多个,形成至少一个电极组,每个电极组中的所有电极连接同一根连接线或分别连接多根不同连接线。
  13. 根据权利要求12所述的经导管介入的房间隔造口装置,其特征在于,所述电极组设置至少两个;不同电极组的电极之间是相互绝缘或者相互并联。
  14. 根据权利要求11所述的经导管介入的房间隔造口装置,其特征在于,所述电极组件为单极消融或者双极消融。
  15. 根据权利要求11所述的经导管介入的房间隔造口装置,其特征在于,所述连接线远端与电极近端固定,且在球囊近端穿入导管主体内并与导管主体近端设置的连接头连接。
  16. 根据权利要求1-9任意一项所述的经导管介入的房间隔造口装置,其特征在于,所述球囊上设置有用于电极组件相对于房间隔组织进行定位的定位机构,所述定位机构设置于靠近造口部的近端和/或远端。
  17. 根据权利要求16所述的经导管介入的房间隔造口装置,其特征在于,所述定位机构为球囊外壁面上向外凸出的至少一个外凸件。
  18. 根据权利要求1-9任意一项所述的经导管介入的房间隔造口装置,其特征在于,所述导管主体内设有冷却装置。
  19. 根据权利要求18所述的经导管介入的房间隔造口装置,其特征 在于,所述冷却装置为轴向设置在导管主体内的用于抽吸球囊内的冷却物的循环腔,所述循环腔两端分别贯通球囊内腔和导管主体近端。
  20. 根据权利要求1-9任意一项所述的经导管介入的房间隔造口装置,其特征在于,所述导管主体上还设置有用于在手术中显示位置的显影件,所述显影件设置在球囊内与造口部对应的导管主体上。
  21. 根据权利要求1-9任意一项所述的经导管介入的房间隔造口装置,其特征在于,所述造口部还设有与消融电源电连接的温度传感器。
PCT/CN2019/078760 2018-03-19 2019-03-19 经导管介入的房间隔造口装置 WO2019179447A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810226368.8 2018-03-19
CN201820372677.1 2018-03-19
CN201810226368.8A CN109965974A (zh) 2018-03-19 2018-03-19 经导管介入的房间隔造口装置
CN201820372677.1U CN208756152U (zh) 2018-03-19 2018-03-19 经导管介入的房间隔造口装置

Publications (1)

Publication Number Publication Date
WO2019179447A1 true WO2019179447A1 (zh) 2019-09-26

Family

ID=67986721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078760 WO2019179447A1 (zh) 2018-03-19 2019-03-19 经导管介入的房间隔造口装置

Country Status (1)

Country Link
WO (1) WO2019179447A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US10912645B2 (en) 2004-02-03 2021-02-09 V-Wave Ltd. Device and method for controlling in-vivo pressure
US10925706B2 (en) 2009-05-04 2021-02-23 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10940296B2 (en) 2015-05-07 2021-03-09 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Temporary interatrial shunts
WO2021065874A1 (ja) * 2019-09-30 2021-04-08 テルモ株式会社 医療デバイス
US11109988B2 (en) 2016-05-31 2021-09-07 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US20210315629A1 (en) * 2020-04-14 2021-10-14 Medtronic, Inc. Apparatus and system for creating chronically stable atrial shunt
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
US11253353B2 (en) 2006-01-23 2022-02-22 V-Wave Ltd. Heart anchor device
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
US11304831B2 (en) 2016-05-31 2022-04-19 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
US11622695B1 (en) 2020-04-23 2023-04-11 Shifamed Holdings, Llc Intracardiac sensors with switchable configurations and associated systems and methods
US11633194B2 (en) 2020-11-12 2023-04-25 Shifamed Holdings, Llc Adjustable implantable devices and associated methods
US11672661B2 (en) 2019-08-22 2023-06-13 Silara Medtech Inc. Annuloplasty systems and methods
US11690976B2 (en) 2013-05-21 2023-07-04 V-Wave Ltd. Apparatus and methods for delivering devices for reducing left atrial pressure
US11744589B2 (en) 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US11801369B2 (en) 2020-08-25 2023-10-31 Shifamed Holdings, Llc Adjustable interatrial shunts and associated systems and methods
US11813386B2 (en) 2022-04-14 2023-11-14 V-Wave Ltd. Interatrial shunt with expanded neck region
US11850138B2 (en) 2009-05-04 2023-12-26 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11865282B2 (en) 2019-05-20 2024-01-09 V-Wave Ltd. Systems and methods for creating an interatrial shunt
EP4205676A4 (en) * 2020-08-26 2024-03-06 Terumo Corp MEDICAL DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007003058A1 (en) * 2005-07-06 2007-01-11 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation
CN1901844A (zh) * 2004-01-06 2007-01-24 东丽株式会社 球囊导管
CN101926699A (zh) * 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 房间隔造孔支架及其输送器
CN103635226A (zh) * 2011-02-10 2014-03-12 Dc设备公司 用于建立和保持房内压力释放孔的装置
CN204909629U (zh) * 2015-06-12 2015-12-30 先健科技(深圳)有限公司 造口器械
CN106880400A (zh) * 2015-12-16 2017-06-23 上海微创电生理医疗科技有限公司 电生理导管及射频消融系统
CN108784896A (zh) * 2017-10-31 2018-11-13 杭州诺生医疗科技有限公司 房间隔造口装置、房间隔造口系统及其操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901844A (zh) * 2004-01-06 2007-01-24 东丽株式会社 球囊导管
WO2007003058A1 (en) * 2005-07-06 2007-01-11 National Research Council Of Canada Method and system for determining material properties using ultrasonic attenuation
CN101926699A (zh) * 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 房间隔造孔支架及其输送器
CN103635226A (zh) * 2011-02-10 2014-03-12 Dc设备公司 用于建立和保持房内压力释放孔的装置
CN204909629U (zh) * 2015-06-12 2015-12-30 先健科技(深圳)有限公司 造口器械
CN106880400A (zh) * 2015-12-16 2017-06-23 上海微创电生理医疗科技有限公司 电生理导管及射频消融系统
CN108784896A (zh) * 2017-10-31 2018-11-13 杭州诺生医疗科技有限公司 房间隔造口装置、房间隔造口系统及其操作方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912645B2 (en) 2004-02-03 2021-02-09 V-Wave Ltd. Device and method for controlling in-vivo pressure
US11266501B2 (en) 2004-02-03 2022-03-08 V-Wave Ltd. Device and method for controlling in-vivo pressure
US11382747B2 (en) 2004-02-03 2022-07-12 V-Wave, Ltd. Device and method for controlling in-vivo pressure
US11253353B2 (en) 2006-01-23 2022-02-22 V-Wave Ltd. Heart anchor device
US11850138B2 (en) 2009-05-04 2023-12-26 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10925706B2 (en) 2009-05-04 2021-02-23 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US11690976B2 (en) 2013-05-21 2023-07-04 V-Wave Ltd. Apparatus and methods for delivering devices for reducing left atrial pressure
US10940296B2 (en) 2015-05-07 2021-03-09 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Temporary interatrial shunts
US11497631B2 (en) 2016-05-31 2022-11-15 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11109988B2 (en) 2016-05-31 2021-09-07 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11607327B2 (en) 2016-05-31 2023-03-21 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11304831B2 (en) 2016-05-31 2022-04-19 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
US11744589B2 (en) 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
US11865282B2 (en) 2019-05-20 2024-01-09 V-Wave Ltd. Systems and methods for creating an interatrial shunt
US11672661B2 (en) 2019-08-22 2023-06-13 Silara Medtech Inc. Annuloplasty systems and methods
WO2021065874A1 (ja) * 2019-09-30 2021-04-08 テルモ株式会社 医療デバイス
WO2021211229A1 (en) * 2020-04-14 2021-10-21 Medtronic, Inc. Apparatus and system for creating chronically stable atrial shunt
US20210315629A1 (en) * 2020-04-14 2021-10-14 Medtronic, Inc. Apparatus and system for creating chronically stable atrial shunt
US11622695B1 (en) 2020-04-23 2023-04-11 Shifamed Holdings, Llc Intracardiac sensors with switchable configurations and associated systems and methods
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11801369B2 (en) 2020-08-25 2023-10-31 Shifamed Holdings, Llc Adjustable interatrial shunts and associated systems and methods
EP4205676A4 (en) * 2020-08-26 2024-03-06 Terumo Corp MEDICAL DEVICE
US11633194B2 (en) 2020-11-12 2023-04-25 Shifamed Holdings, Llc Adjustable implantable devices and associated methods
US11857197B2 (en) 2020-11-12 2024-01-02 Shifamed Holdings, Llc Adjustable implantable devices and associated methods
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
US11813386B2 (en) 2022-04-14 2023-11-14 V-Wave Ltd. Interatrial shunt with expanded neck region

Similar Documents

Publication Publication Date Title
WO2019179447A1 (zh) 经导管介入的房间隔造口装置
US7081115B2 (en) Probes having helical and loop shaped inflatable therapeutic elements
JP4740265B2 (ja) 心臓組織の切除装置及び使用方法
US20200038103A1 (en) Multi-electrode irrigated balloon catheter
ES2270892T3 (es) Lazo de ablacion de anillo auricular con empujador extensible.
WO2019085841A1 (zh) 房间隔造口装置、房间隔造口系统及其操作方法和造口方法
US7104990B2 (en) Loop structure including inflatable therapeutic device
US20200305947A1 (en) Systems and methods for cryoablation of a tissue
JP4970049B2 (ja) 2つの可膨張性部材を備えた周囲切除装置アセンブリ
US8679104B2 (en) Wide area ablation of myocardial tissue
US6306133B1 (en) Ablation catheter system and methods for repairing a valvular annulus
AU2019338398A1 (en) Heated vapor ablation systems and methods for treating cardiac conditions
ES2272287T3 (es) Sistema de colocacion de cateter.
JP2005508695A (ja) 組織アブレーション装置および使用方法
CN208756152U (zh) 经导管介入的房间隔造口装置
JP2007516802A (ja) 可膨張性部材を備えた周囲切除装置アセンブリ
CN109965974A (zh) 经导管介入的房间隔造口装置
WO2014166436A1 (zh) 多电极消融导管
JP2022531655A (ja) 複数のループセグメントを備えたマッピング及び焼灼カテーテル
CN114305665A (zh) 分瓣囊状电极导管及包括该分瓣囊状电极导管的消融设备
US20230054269A1 (en) Basket Catheter with Porous Sheath
CN217390844U (zh) 消融导管
CN115363745B (zh) 消融导管
US20220361942A1 (en) Distal Assembly for Catheter with Lumens Running Along Spines
JP2023090689A (ja) クッション性多孔質シースカバーを有するバスケットカテーテル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771005

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19771005

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.03.2021)