WO2019179412A1 - 噪声功率的获取方法及终端 - Google Patents

噪声功率的获取方法及终端 Download PDF

Info

Publication number
WO2019179412A1
WO2019179412A1 PCT/CN2019/078630 CN2019078630W WO2019179412A1 WO 2019179412 A1 WO2019179412 A1 WO 2019179412A1 CN 2019078630 W CN2019078630 W CN 2019078630W WO 2019179412 A1 WO2019179412 A1 WO 2019179412A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
agc
received power
offset value
value
Prior art date
Application number
PCT/CN2019/078630
Other languages
English (en)
French (fr)
Inventor
赵丽
赵锐
彭莹
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to US16/982,509 priority Critical patent/US11115940B2/en
Priority to EP19771078.3A priority patent/EP3771166A4/en
Publication of WO2019179412A1 publication Critical patent/WO2019179412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to a method and a terminal for acquiring noise power.
  • the terminal receiver of the wireless communication needs to be subjected to analog automatic gain control (AGC) processing, and the signal is amplified or reduced by the analog signal during the analog-to-digital converter (ADC) sampling process. Can fall within the reasonable range of A/D.
  • AGC analog automatic gain control
  • ADC analog-to-digital converter
  • the general terminal receiver sets the backoff value of the AGC backoff value according to the number of supported AGC bits, that is, sets a reasonable AGC target value, and ensures a certain received power redundancy, so that the receiving terminal can be set within a reasonable AGC processing range.
  • the schematic diagram of the simulated AGC implementation is shown in Figure 1. Three intervals are defined: the Over-ranging region, the Operating Range region, and the Under-ranging region. In the saturation interval, the receiver is saturated due to the strong received signal, and the signal cannot be received. However, the signal in the low interval is too weak, and the receiver cannot distinguish the effective received signal. These two intervals are all areas where the AGC does not work properly when receiving, and should be avoided as much as possible.
  • the input power cannot exceed ADCmax, otherwise the received signal is saturated; in order to meet the minimum signal to noise ratio (SNR) requirement, the input power cannot be lower than Pmin.
  • SNR signal to noise ratio
  • a safety margin is set so that the receiving process can be performed within the safety margin even if the input signal is higher than the AGC operating range.
  • the quantization noise is represented by defining a signal-to-quantization noise ratio (SQNR), and there is a peak-crushing noise effect in the receiving process, if the AGC is properly set.
  • SQNR signal-to-quantization noise ratio
  • the processing range requires accurate calculation of the above-mentioned quantization noise power or peak-cut noise power. Therefore, how to accurately calculate the quantization noise power or the peak-cut noise power becomes an urgent problem to be solved.
  • An object of the present disclosure is to provide a method and a terminal for acquiring noise power, which are used to solve the problem of accurately calculating quantization noise power or peaking noise power.
  • an embodiment of the present disclosure provides a method for acquiring noise power, including:
  • the noise power is obtained according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the step of acquiring the first power offset value of the actual received power relative to the first preset received power in the predetermined transmission time interval TTI includes:
  • the step of acquiring the first power offset value according to the difference between the actual received power of the AGC and the first preset received power according to the predetermined TTI including:
  • the power offset value is obtained based on an average of the at least one of the differences.
  • the step of acquiring the noise power according to the first power offset value, the target AGC backoff value, and the current received power of the AGC includes:
  • the step of acquiring the noise power according to the first power offset value, the target AGC backoff value, and the current received power of the AGC includes:
  • the correspondence between the modulation mode and the AGC backoff value is obtained by converting the number of ADC bits and the modulation mode supported by the system.
  • an embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a terminal including: a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the noise power is obtained according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the power offset value is obtained based on an average of the at least one of the differences.
  • the correspondence between the modulation mode and the AGC backoff value is obtained by converting the number of ADC bits and the modulation mode supported by the system.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method of acquiring noise power as described above.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a first acquiring module configured to acquire a first power offset value of the actual received power relative to the first preset received power in the predetermined transmission time interval TTI;
  • a second acquiring module configured to obtain a target AGC backoff value corresponding to the current modulation mode according to a correspondence between the preset modulation mode and the AGC backoff value
  • a third acquiring module configured to acquire the noise power according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the third obtaining module includes:
  • a first acquiring submodule configured to obtain a target receiving power according to the second preset receiving power and the first power offset value
  • a second acquiring submodule configured to obtain a second power offset value according to a difference between a current received power of the AGC and the target received power
  • a third acquiring submodule configured to obtain the quantization noise power or the peaking noise power according to the difference between the second power offset value and the target AGC backoff value.
  • the third obtaining module includes:
  • a fourth acquiring submodule configured to subtract the first power offset value from the target AGC backoff value, to obtain an updated target AGC backoff value
  • a fifth acquiring submodule configured to obtain a third power offset value according to a difference between a current received power of the AGC and a second preset received power
  • a sixth acquiring submodule configured to acquire the quantization noise power or the peaking noise power according to the difference between the third power offset value and the updated target AGC backoff value.
  • the first power offset value of the automatic gain control AGC actual received power relative to the first preset received power is obtained within a predetermined transmission time interval TTI; according to the preset modulation mode and the AGC backoff value Corresponding relationship, obtaining a target AGC backoff value corresponding to the current modulation mode; and acquiring noise power according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the noise power can be accurately calculated according to the first power offset value of the AGC actual received power in the predetermined TTI and the first preset received power and the target AGC backoff value corresponding to the current modulation mode.
  • the noise power can be set to a reasonable AGC working interval, and receiver reception failure due to unreasonable AGC setting is reduced.
  • Figure 1 is a schematic diagram of the implementation of the analog AGC
  • FIG. 2 is a flowchart of a method for acquiring noise power according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of setting n times of received power sampling points in a long TTI according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of setting four received power sampling points in a long TTI according to an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of a terminal according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for acquiring noise power, including:
  • Step 201 Acquire a first power offset value of the actual received power relative to the first preset received power within the predetermined transmission time interval TTI.
  • the predetermined TTI (transmission time interval) is a long TTI
  • the first preset received power is the calculated power according to the information received during the AGC time period of the predetermined TTI.
  • An AGC area is disposed at the forefront of the long TTI, and all the long TTI transmitting nodes and the short TTI transmitting nodes that perform service transmission in the long TTI need to perform information transmission in the AGC area, so that the receiving node sets the sum of all received powers.
  • the AGC is the first preset received power.
  • the above-mentioned AGC actual received power includes the AGC actual received power of a preset plurality of power sampling points within a predetermined TTI.
  • Step 202 Obtain a target AGC fallback value corresponding to the current modulation mode according to the correspondence between the preset modulation mode and the AGC backoff value.
  • the correspondence between the modulation mode and the AGC backoff value is obtained by converting the number of ADC bits and the modulation mode supported by the system.
  • a signal quantization noise ratio SQNR-backoff value backoff curve corresponding to different modulation modes is obtained; secondly, according to an SQNR-backoff curve corresponding to different modulation modes, Obtain the SQNR peak corresponding to different modulation modes; then consider the offset value of the relative SQNR peak according to the receiving performance setting under the influence of the quantization noise and the peaking noise clipping, and calculate the AGC backoff value corresponding to different modulation modes; Under the ADC bit number, the correspondence between different modulation modes supported by the system and the AGC backoff value is established.
  • Step 203 Acquire noise power according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the noise power includes quantization noise power or peak-cut noise power.
  • quantization noise power or peak-cut noise power can be accurately calculated, and thus the noise power can be set reasonably.
  • the AGC working interval reduces receiver reception failure due to unreasonable AGC settings.
  • step 201 is performed to obtain a first power offset value of the actual received power relative to the first preset received power in the predetermined transmission time interval TTI, including:
  • the long TTI service and the short TTI service may exist at the same time, and the system time needs to be divided according to the long TTI duration; in each long TTI duration, the short TTI duration is further divided. period.
  • n receiving power sampling points are set.
  • the difference P(m)diff between the received power PAGC set in the P(m) and AGC time regions is compared; the P_Offset is set to record the difference between the historical received power P(m) and the PAGC, specifically, The average value of the difference P(m)diff corresponding to the M sample points is taken as P_Offset.
  • the AGC is set only according to the received long TTI service, and the AGC that is set may not meet the requirements when receiving the short TTI, and the receiver satisfies the reception failure.
  • the noise power is calculated according to the difference between the historical received power P(m) and the PAGC, so that the calculated result is more accurate, and the AGC with reasonable noise power can be set.
  • the working interval reduces the phenomenon that the receiver is saturated due to the unreasonable setting of the AGC, which leads to the failure of reception.
  • the foregoing step 203 acquiring the noise power according to the first power offset value, the target AGC backoff value, and the current received power of the AGC, including:
  • the second preset received power is the calculated power according to the information received in the AGC time period of the subsequent TTI.
  • the subsequent TTI is a TTI located after a predetermined TTI, and the subsequent TTI is a long TTI.
  • the two modulation modes supported in the system are quadrature phase shift keying QPSK and 16 quadrature amplitude modulation QAM.
  • the number of ADC pins supported in the system is 10. According to the given number of ADC bits and the modulation mode supported in the system, the correspondence between the different modulation modes supported by the system and the AGC backoff values is shown in Table 1:
  • the long TTI and the short TTI services exist in the system at the same time, the long TTI period is 1 ms, and the short TTI period is 0.5 ms.
  • the system time is divided according to the length of the long TTI by 1 ms.
  • a shorter time period is divided according to the short TTI duration, so that there are two short TTIs in one long TTI.
  • the node receiving the long TTI service sets the received power PAGC of the AGC to -92.3 dBm in the AGC time zone in which the long TTI starts.
  • quantization noise or peaking noise is calculated with the offset of the second power offset value with respect to BOmod.
  • the AGC receiving power of the long TTI is adjusted according to the first power offset value (the second preset receiving power is added to the first power offset value), and the quantization noise is obtained according to the adjusted AGC receiving power. Power or peaking noise power.
  • the foregoing step 203 acquiring the noise power according to the first power offset value, the target AGC backoff value, and the current received power of the AGC, including:
  • the second preset received power is the calculated power according to the information received in the AGC time period of the subsequent TTI.
  • the subsequent TTI is a TTI located after a predetermined TTI, and the subsequent TTI is a long TTI.
  • the two modulation modes supported in the system are quadrature phase shift keying QPSK and 16 quadrature amplitude modulation QAM.
  • the number of ADC pins supported in the system is 10.
  • the correspondence between the different modulation modes supported by the system and the AGC backoff values is shown in Table 1.
  • the long TTI and the short TTI services exist in the system at the same time, the long TTI period is 1 ms, and the short TTI period is 0.5 ms.
  • the system time is divided according to the length of the long TTI by 1 ms.
  • a shorter time period is divided according to the short TTI duration, so that there are two short TTIs in one long TTI.
  • the node receiving the long TTI service sets the received power PAGC of the AGC to -92.3 dBm in the AGC time zone in which the long TTI starts.
  • the AGC backoff value is adjusted according to the first power offset value (the target AGC backoff value is subtracted from the first power offset value), and the quantization noise is obtained according to the adjusted AGC backoff value. Power or peaking noise power.
  • the noise power can be accurately calculated, and the noise power can be reasonably set.
  • the AGC working interval reduces the receiver saturation due to unreasonable AGC settings, which in turn leads to reception failure.
  • an embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the The computer program implements the following steps:
  • the noise power is obtained according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 530 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • the power offset value is obtained based on an average of the at least one of the differences.
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • the processor 500 is further configured to read a program in the memory 520, and perform the following steps:
  • the correspondence between the modulation mode and the AGC backoff value is obtained by converting the number of ADC bits and the modulation mode supported by the system.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the noise power is obtained according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • an embodiment of the present disclosure further provides a terminal, including:
  • the first obtaining module 601 is configured to acquire a first power offset value of the actual received power relative to the first preset received power in the predetermined transmission time interval TTI;
  • the second obtaining module 602 is configured to obtain a target AGC backoff value corresponding to the current modulation mode according to the correspondence between the preset modulation mode and the AGC backoff value.
  • the third obtaining module 603 is configured to obtain the noise power according to the first power offset value, the target AGC backoff value, and the AGC current received power.
  • the first acquiring module 601 is configured to obtain a first power offset value according to a difference between an actual received power of the AGC and a first preset received power in a predetermined TTI.
  • the first acquiring module 601 includes:
  • a seventh acquiring submodule configured to acquire an actual received power of the AGC corresponding to each power sampling point in the predetermined TTI
  • An eighth obtaining submodule configured to obtain a difference between an actual received power of the AGC corresponding to each power sampling point and the first preset received power
  • a ninth obtaining submodule configured to obtain the power offset value according to an average value of the at least one of the differences.
  • the third obtaining module 603 includes:
  • a first acquiring submodule configured to obtain a target receiving power according to the second preset receiving power and the first power offset value
  • a second acquiring submodule configured to obtain a second power offset value according to a difference between a current received power of the AGC and the target received power
  • a third acquiring submodule configured to obtain the quantization noise power or the peaking noise power according to the difference between the second power offset value and the target AGC backoff value.
  • the third obtaining module 603 includes:
  • a fourth acquiring submodule configured to subtract the first power offset value from the target AGC backoff value, to obtain an updated target AGC backoff value
  • a fifth acquiring submodule configured to obtain a third power offset value according to a difference between a current received power of the AGC and a second preset received power
  • a sixth acquiring submodule configured to acquire the quantization noise power or the peaking noise power according to the difference between the third power offset value and the updated target AGC backoff value.
  • the correspondence between the modulation mode and the AGC backoff value is obtained according to the number of ADCs supported by the system and the modulation mode.
  • the terminal of the embodiment of the present disclosure can accurately calculate the noise power according to the first power offset value of the AGC actual received power in the predetermined TTI and the first preset received power and the target AGC backoff value corresponding to the current modulation mode. Furthermore, the noise power can be set to a reasonable AGC working interval, and the phenomenon that the receiver is saturated due to unreasonable AGC setting and the reception failure is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本公开提供一种噪声功率的获取方法及终端。本公开的获取方法包括:获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;根据第一功率偏移值、目标AGC回退值与AGC当前接收功率,获取噪声功率。

Description

噪声功率的获取方法及终端
相关申请的交叉引用
本申请主张在2018年3月19日在中国提交的中国专利申请No.201810224956.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种噪声功率的获取方法及终端。
背景技术
无线通信的终端接收机,需要经过模拟自动增益控制(Automatic Gain Control,AGC)处理,通过对模拟信号的放大或者缩小,在模数转换(Analog-to-digital converter,ADC)采样处理时,信号能够落在A/D的合理范围内。一般终端接收机根据支持的AGC比特数,来设置AGC回退值backoff的大小,也就是设置合理AGC目标值,保证一定的接收功率冗余,使得接收终端能够设置在合理的AGC处理范围内。
模拟AGC实现原理图如图1所示,定义了3个区间:饱和区间(Over-ranging region),工作区间(Operating range region)以及信号过低区间(Under-ranging region)。其中饱和区间由于接收信号过强,导致接收机饱和,无法接收信号;而信号过低区间接收信号过弱,导致接收机无法分辨有效接收信号。这两个区间都是AGC接收时不能正常工作的区间,应该尽量避免。
其中输入功率不能超过ADCmax,否则接收信号饱和;为了满足最小的信噪比(signal to noise ratio,SNR)要求,输入功率不能低于Pmin。考虑到接收信号功率有抖动,设置安全余量(Safety margin),这样即使输入信号高于AGC工作区间,也可以在安全余量范围内进行接收处理。但是输入信号被量化处理后存在偏差,通过定义信号量化噪声比(signal-to-quantization noise ratio,SQNR)来表示量化噪声,且在接收处理过程中存在削峰噪声影响,若 要合理设置AGC的处理范围,则需要准确地计算上述量化噪声功率或削峰噪声功率,因此,如何准确地计算量化噪声功率或削峰噪声功率成为亟待解决的问题。
发明内容
本公开的目的在于提供一种噪声功率的获取方法及终端,用以解决如何准确地计算量化噪声功率或削峰噪声功率的问题。
为了实现上述目的,本公开实施例提供了一种噪声功率的获取方法,包括:
获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
其中,所述获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值的步骤,包括:
根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
其中,所述根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值的步骤,包括:
获取预定TTI内的每个功率采样点对应的AGC实际接收功率;
获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;
根据至少一个所述差值的平均值,得到所述功率偏移值。
其中,所述根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率的步骤,包括:
根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移 值;
根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,所述根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率的步骤,包括:
将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,所述调制方式与AGC回退值的对应关系是根据系统支持的模数转换ADC比特数及调制方式得到的。
为了实现上述目的,本公开实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
其中,所述处理器执行所述计算机程序时还可实现以下步骤:
根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
其中,所述处理器执行所述计算机程序时还可实现以下步骤:
获取预定TTI内的每个功率采样点对应的AGC实际接收功率;
获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;
根据至少一个所述差值的平均值,得到所述功率偏移值。
其中,所述处理器执行所述计算机程序时还可实现以下步骤:
根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,所述处理器执行所述计算机程序时还可实现以下步骤:
将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,所述调制方式与AGC回退值的对应关系是根据系统支持的模数转换ADC比特数及调制方式得到的。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述噪声功率的获取方法的步骤。
为了实现上述目的,本公开实施例还提供了一种终端,包括:
第一获取模块,用于获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
第二获取模块,用于根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
第三获取模块,用于根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
其中,所述第三获取模块包括:
第一获取子模块,用于根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
第二获取子模块,用于根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
第三获取子模块,用于根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,所述第三获取模块包括:
第四获取子模块,用于将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
第五获取子模块,用于根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
第六获取子模块,用于根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。本公开实施例中,根据预定TTI内AGC实际接收功率与第一预设接收功率的第一功率偏移值及与当前调制方式对应的目标AGC回退值,能够准确地计算出噪声功率,进而能够该噪声功率设置合理的AGC工作区间,减少由于AGC设置不合理导致的接收机接收失败。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为模拟AGC的实现原理图;
图2为本公开实施例的噪声功率的获取方法的流程图;
图3为本公开实施例中在长TTI内设置n次接收功率采样点的示意图;
图4为本公开实施例中在长TTI内设置4次接收功率采样点的示意图;
图5为本公开实施例的终端的结构框图;
图6为本公开实施例的终端的模块示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完成地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图2所示,本公开实施例提供了一种噪声功率的获取方法,包括:
步骤201:获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值。
该预定TTI(transmission time interval)为长TTI,上述第一预设接收功率为根据所述预定TTI的AGC时间段内接收到的信息,计算得到的功率。
在长TTI的最前部设置有AGC区域,所有在该长TTI内进行业务发送的长TTI发送节点及短TTI发送节点,都需要在AGC区域进行信息发送,这样接收节点以所有接收功率总和来设置AGC,即上述第一预设接收功率。
上述AGC实际接收功率包括预定TTI内的预设多个功率采样点的AGC实际接收功率。
步骤202:根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值。
所述调制方式与AGC回退值的对应关系是根据系统支持的模数转换ADC比特数及调制方式得到的。
具体地,首先根据给定的ADC bit数和系统中支持的调制方式,获取不同调制方式对应的信号量化噪声比SQNR-回退值backoff曲线;其次,根据不同调制方式对应的SQNR-backoff曲线,获得不同调制方式对应的SQNR峰值;然后考虑在量化噪声和削峰噪声clipping的影响下,根据接收性能设置相对SQNR峰值的偏移值,计算不同调制方式对应的AGC backoff值;最后在给定的ADC bit数下,建立系统中支持的不同的调制方式和AGC backoff 值的对应关系。
步骤203:根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
该噪声功率包括量化噪声功率或削峰噪声功率,通过引入上述第一功率偏移值和目标AGC回退值,能够准确地计算量化噪声功率或削峰噪声功率,进而能够该噪声功率设置合理的AGC工作区间,减少由于AGC设置不合理导致的接收机接收失败。
进一步地,上述步骤201获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值,包括:
根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
具体地,获取预定TTI内的每个功率采样点对应的AGC实际接收功率;获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;根据至少一个所述差值的平均值,得到所述功率偏移值。
本公开实施例中,由于长TTI业务和短TTI业务可能同时存在,需要将系统时间按照长TTI时长来进行划分;在每个长TTI时长的时间段内,再按照短TTI时长划分更细的时间段。
在长TTI对应的时间段内,设置n个接收功率采样点,如图3所示,接收长TTI业务的节点在长TTI开始的AGC时间区域内设置AGC后,在各个接收功率采样点处计算接收功率,各功率采样点的接收功率记为P(m),其中m=1,2,…,n。
然后比较P(m)和AGC时间区域内设置的接收功率PAGC之间的差值P(m)diff;设置P_Offset用来记录历史接收功率P(m)与PAGC之间的差值,具体的,取M个采样点对应的差值P(m)diff的平均值作为P_Offset。
相关技术的系统中,由于不同业务的TTI周期不同,只按照接收到的长TTI业务来设置AGC,可能在收到短TTI时,设置的AGC不符合要求,接收机饱和导致接收失败,本公开实施例中,考虑系统中混合不同TTI的影响,根据历史接收功率P(m)与PAGC之间的差值来计算噪声功率,使得计算出来的结果更加准确,进而能够该噪声功率设置合理的AGC工作区间,减少由于 AGC设置不合理导致接收机饱和,进而导致接收失败的现象。
作为第一种可选的实现方式,上述步骤203根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率,包括:
根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,上述第二预设接收功率为根据后续TTI的AGC时间段内接收到的信息,计算得到的功率。后续TTI为位于预定TTI之后的TTI,且该后续TTI为长TTI。
假定系统中有两种TTI,长TTI和短TTI,系统中支持的两种调制方式分别为正交相移键控QPSK和16正交振幅调制QAM。假设系统中支持的ADC bit数为10。根据给定的ADC bit数和系统中支持的调制方式,获得系统中支持的不同的调制方式和AGC backoff值的对应关系如表1所示:
表1
调制方式 AGC backoff
QPSK -11dB
16QAM -13dB
假设系统中长TTI和短TTI业务同时存在,长TTI周期为1ms,短TTI周期为0.5ms。将系统时间按照长TTI时长1ms来进行划分,在每个长TTI对应的时间段内,再按照短TTI时长划分更细的时间段,这样1个长TTI内有2个短TTI。假设接收长TTI业务的节点在长TTI开始的AGC时间区域内设置AGC的接收功率PAGC为-92.3dBm。
假设在1个长TTI内,设置4个接收功率采样点,如图4所示,在各个接收功率采样点处计算接收功率,各功率采样点的接收功率为P(1)=-92.7dBm,P(2)=-91.5dBm,P(3)=-72.5dBm,P(4)=-68.8dBm;然后比较P(m)和PAGC之间的差值P(m)diff,得到P(1)diff=-0.4dB,P(2)diff=0.8dB,P(3)diff=19.8dB,P(4)diff=23.5dB;P_Offset为P(1)~P(4)取平均值,即P_Offset=10.93dB。
假设下一长TTI的PAGC=-88.6dBm,将 PAGC+P_Offset=-88.6dBm+10.93dB=-77.67dBm,作为目标接收功率。
该接收业务对应的调制方式为QPSK,查找QPSK和AGC backoff值的关系表,获得调制方式确定的AGC backoff为BOmod=-11dB;获取AGC当前接收功率与上述目标接收功率的差值,得到第二功率偏移值。
因此,在后续长TTI接收处理中,以上述第二功率偏移值相对于BOmod的偏移来计算量化噪声或削峰噪声。
该实现方式中,根据第一功率偏移值,调整长TTI的AGC接收功率(将第二预设接收功率加上第一功率偏移值),并根据调整后的AGC接收功率,获取量化噪声功率或削峰噪声功率。
作为第二种可选的实现方式,上述步骤203根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率,包括:
将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,上述第二预设接收功率为根据后续TTI的AGC时间段内接收到的信息,计算得到的功率。后续TTI为位于预定TTI之后的TTI,且该后续TTI为长TTI。
假定系统中有两种TTI,长TTI和短TTI,系统中支持的两种调制方式分别为正交相移键控QPSK和16正交振幅调制QAM。假设系统中支持的ADC bit数为10。根据给定的ADC bit数和系统中支持的调制方式,获得系统中支持的不同的调制方式和AGC backoff值的对应关系如表1所示。
假设系统中长TTI和短TTI业务同时存在,长TTI周期为1ms,短TTI周期为0.5ms。将系统时间按照长TTI时长1ms来进行划分,在每个长TTI对应的时间段内,再按照短TTI时长划分更细的时间段,这样1个长TTI内有2个短TTI。假设接收长TTI业务的节点在长TTI开始的AGC时间区域内设置AGC的接收功率PAGC为-92.3dBm。
假设在1个长TTI内,设置4个接收功率采样点,如图4所示,在各个接收功率采样点处计算接收功率,各功率采样点的接收功率为P(1)=-92.7dBm, P(2)=-91.5dBm,P(3)=-72.5dBm,P(4)=-68.8dBm;然后比较P(m)和PAGC之间的差值P(m)diff,得到P(1)diff=-0.4dB,P(2)diff=0.8dB,P(3)diff=19.8dB,P(4)diff=23.5dB;P_Offset为P(1)~P(4)取平均值,即P_Offset=10.93dB。
假设下一长TTI的PAGC=-88.6dBm,该接收业务对应的调制方式为QPSK,查找QPSK和AGC backoff值的关系表,获得调制方式确定的AGC backoff为BOmod=-11dB。
再根据P_Offset,在调制方式确定的BOmod基础上,减去P_Offset作为更新后的BOmod,即BOnew=BOmod-P_Offset=-11dB-10.93dB=-21.93dB。
后续长TTI接收处理中,获取AGC当前接收功率相对于PAGC=-88.6dBm的功率偏移,得到第三功率偏移值,根据第三功率偏移值相对于BOnew=-21.93dB的偏移来计算量化噪声或削峰噪声。
该实现方式中,根据第一功率偏移值,调整AGC回退值(将目标AGC回退值减去所述第一功率偏移值),并根据调整后的AGC回退值,获取量化噪声功率或削峰噪声功率。根据预定TTI内AGC实际接收功率与第一预设接收功率的第一功率偏移值及与当前调制方式对应的目标AGC回退值,能够准确地计算出噪声功率,进而能够该噪声功率设置合理的AGC工作区间,减少由于AGC设置不合理导致接收机饱和,进而导致接收失败的现象。
如图5所示,本公开的实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等 之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500还用于读取存储器520中的程序,执行如下步骤:
根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
处理器500还用于读取存储器520中的程序,执行如下步骤:
获取预定TTI内的每个功率采样点对应的AGC实际接收功率;
获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;
根据至少一个所述差值的平均值,得到所述功率偏移值。
处理器500还用于读取存储器520中的程序,执行如下步骤:
根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
处理器500还用于读取存储器520中的程序,执行如下步骤:
将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
其中,所述调制方式与AGC回退值的对应关系是根据系统支持的模数转 换ADC比特数及调制方式得到的。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
该程序被处理器执行时能实现上述噪声功率的获取方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图6所示,本公开的实施例还提供了一种终端,包括:
第一获取模块601,用于获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
第二获取模块602,用于根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
第三获取模块603,用于根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
本公开实施例的终端,所述第一获取模块601用于根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
本公开实施例的终端,所述第一获取模块601包括:
第七获取子模块,用于获取预定TTI内的每个功率采样点对应的AGC实际接收功率;
第八获取子模块,用于获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;
第九获取子模块,用于根据至少一个所述差值的平均值,得到所述功率偏移值。
本公开实施例的终端,所述第三获取模块603包括:
第一获取子模块,用于根据第二预设接收功率与所述第一功率偏移值, 得到目标接收功率;
第二获取子模块,用于根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
第三获取子模块,用于根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
本公开实施例的终端,所述第三获取模块603包括:
第四获取子模块,用于将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
第五获取子模块,用于根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
第六获取子模块,用于根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
本公开实施例的终端,所述调制方式与AGC回退值的对应关系是根据系统支持的模数转换ADC比特数及调制方式得到的。
本公开实施例的终端,根据预定TTI内AGC实际接收功率与第一预设接收功率的第一功率偏移值及与当前调制方式对应的目标AGC回退值,能够准确地计算出噪声功率,进而能够该噪声功率设置合理的AGC工作区间,减少由于AGC设置不合理导致接收机饱和,进而导致接收失败的现象。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (16)

  1. 一种噪声功率的获取方法,包括:
    获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
    根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
    根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
  2. 根据权利要求1所述的获取方法,其中,所述获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值的步骤,包括:
    根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
  3. 根据权利要求2所述的获取方法,其中,所述根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值的步骤,包括:
    获取预定TTI内的每个功率采样点对应的AGC实际接收功率;
    获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;
    根据至少一个所述差值的平均值,得到所述功率偏移值。
  4. 根据权利要求1所述的获取方法,其中,所述根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率的步骤,包括:
    根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
    根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
    根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
  5. 根据权利要求1所述的获取方法,其中,所述根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率的步骤,包括:
    将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
    根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
    根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
  6. 根据权利要求1所述的获取方法,其中,所述调制方式与AGC回退值的对应关系是根据系统支持的模数转换ADC比特数及调制方式得到的。
  7. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:
    获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
    根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
    根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
  8. 根据权利要求7所述的终端,其中,所述处理器执行所述计算机程序时还可实现以下步骤:
    根据预定TTI内,AGC实际接收功率与第一预设接收功率的差值,获取第一功率偏移值。
  9. 根据权利要求8所述的终端,其中,所述处理器执行所述计算机程序时还可实现以下步骤:
    获取预定TTI内的每个功率采样点对应的AGC实际接收功率;
    获取每个功率采样点对应的AGC实际接收功率与所述第一预设接收功率之间的差值;
    根据至少一个所述差值的平均值,得到所述功率偏移值。
  10. 根据权利要求7所述的终端,其中,所述处理器执行所述计算机程序时还可实现以下步骤:
    根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
    根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
    根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
  11. 根据权利要求7所述的终端,其中,所述处理器执行所述计算机程序时还可实现以下步骤:
    将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
    根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
    根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
  12. 根据权利要求7所述的终端,其中,所述调制方式与AGC回退值的对应关系是根据系统支持的模数转换ADC比特数及调制方式得到的。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至6中任一项所述噪声功率的获取方法的步骤。
  14. 一种终端,包括:
    第一获取模块,用于获取预定传输时间间隔TTI内,自动增益控制AGC实际接收功率相对于第一预设接收功率的第一功率偏移值;
    第二获取模块,用于根据预设调制方式与AGC回退值的对应关系,得到与当前调制方式对应的目标AGC回退值;
    第三获取模块,用于根据所述第一功率偏移值、所述目标AGC回退值与AGC当前接收功率,获取噪声功率。
  15. 根据权利要求14所述的终端,其中,所述第三获取模块包括:
    第一获取子模块,用于根据第二预设接收功率与所述第一功率偏移值,得到目标接收功率;
    第二获取子模块,用于根据AGC当前接收功率与所述目标接收功率的差值,得到第二功率偏移值;
    第三获取子模块,用于根据所述第二功率偏移值与所述目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
  16. 根据权利要求14所述的终端,其中,所述第三获取模块包括:
    第四获取子模块,用于将所述目标AGC回退值减去所述第一功率偏移值,得到更新后的目标AGC回退值;
    第五获取子模块,用于根据AGC当前接收功率与第二预设接收功率的差值,得到第三功率偏移值;
    第六获取子模块,用于根据所述第三功率偏移值与所述更新后的目标AGC回退值的差值,获取量化噪声功率或削峰噪声功率。
PCT/CN2019/078630 2018-03-19 2019-03-19 噪声功率的获取方法及终端 WO2019179412A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/982,509 US11115940B2 (en) 2018-03-19 2019-03-19 Method for obtaining noise power and terminal
EP19771078.3A EP3771166A4 (en) 2018-03-19 2019-03-19 METHOD AND TERMINAL FOR NOISE POWER DETECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810224956.8 2018-03-19
CN201810224956.8A CN110290578B (zh) 2018-03-19 2018-03-19 一种噪声功率的获取方法及终端

Publications (1)

Publication Number Publication Date
WO2019179412A1 true WO2019179412A1 (zh) 2019-09-26

Family

ID=67986714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078630 WO2019179412A1 (zh) 2018-03-19 2019-03-19 噪声功率的获取方法及终端

Country Status (4)

Country Link
US (1) US11115940B2 (zh)
EP (1) EP3771166A4 (zh)
CN (1) CN110290578B (zh)
WO (1) WO2019179412A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924927A (zh) * 2021-01-20 2021-06-08 维沃移动通信有限公司 定位系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371214A (zh) * 2001-02-16 2002-09-25 汤姆森许可贸易公司 具有自动增益控制的接收装置
CN1497992A (zh) * 2002-10-07 2004-05-19 Lg电子株式会社 根据移动通信终端的频率来补偿接收功率的方法
CN101427506A (zh) * 2006-04-17 2009-05-06 高通股份有限公司 用于无线通信的噪声估计
CN101926144A (zh) * 2008-01-21 2010-12-22 Ut斯达康通讯有限公司 在正交频分多址系统中实现自动增益控制的装置和方法
CN102299874A (zh) * 2010-06-24 2011-12-28 大唐移动通信设备有限公司 一种获得链路增益的方法及装置
CN103338165A (zh) * 2013-05-24 2013-10-02 华为技术有限公司 一种信道估计方法和装置
CN107809258A (zh) * 2017-11-03 2018-03-16 上海华虹集成电路有限责任公司 一种无线通信接收机的自动增益控制方法和电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6748200B1 (en) * 2000-10-02 2004-06-08 Mark A. Webster Automatic gain control system and method for a ZIF architecture
US20030162518A1 (en) * 2002-02-22 2003-08-28 Baldwin Keith R. Rapid acquisition and tracking system for a wireless packet-based communication device
KR100689400B1 (ko) * 2002-10-24 2007-03-08 삼성전자주식회사 자동 이득의 이득 보상 제어 장치 및 방법
US7174138B2 (en) * 2003-08-21 2007-02-06 Conexant Systems, Inc. Power-based hardware diversity
KR100922947B1 (ko) * 2006-03-30 2009-10-23 삼성전자주식회사 무선통신 시스템의 수신기에서 이득 제어 방법 및 장치
CN101192862B (zh) * 2006-11-30 2013-01-16 昂达博思公司 用于无线通信系统的自动增益控制方法和设备
US8149964B2 (en) * 2007-01-05 2012-04-03 Qualcomm, Incorporated Symbol scaling with automatic gain control for wireless communication
JP2009088972A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 無線通信の受信装置
US9584146B2 (en) * 2015-01-16 2017-02-28 Mediatek Inc. System and method for measuring the DC-transfer characteristic of an analog-to-digital converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371214A (zh) * 2001-02-16 2002-09-25 汤姆森许可贸易公司 具有自动增益控制的接收装置
CN1497992A (zh) * 2002-10-07 2004-05-19 Lg电子株式会社 根据移动通信终端的频率来补偿接收功率的方法
CN101427506A (zh) * 2006-04-17 2009-05-06 高通股份有限公司 用于无线通信的噪声估计
CN101926144A (zh) * 2008-01-21 2010-12-22 Ut斯达康通讯有限公司 在正交频分多址系统中实现自动增益控制的装置和方法
CN102299874A (zh) * 2010-06-24 2011-12-28 大唐移动通信设备有限公司 一种获得链路增益的方法及装置
CN103338165A (zh) * 2013-05-24 2013-10-02 华为技术有限公司 一种信道估计方法和装置
CN107809258A (zh) * 2017-11-03 2018-03-16 上海华虹集成电路有限责任公司 一种无线通信接收机的自动增益控制方法和电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3771166A4 *

Also Published As

Publication number Publication date
US11115940B2 (en) 2021-09-07
CN110290578A (zh) 2019-09-27
EP3771166A1 (en) 2021-01-27
EP3771166A4 (en) 2021-05-05
CN110290578B (zh) 2021-09-03
US20210022093A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
CN102656806B (zh) 管理接收机的正交信号路径中的自动增益控制的电路、系统和方法
RU2389131C2 (ru) Регулятор усиления для приемника в системе связи со множеством несущих
US6968166B2 (en) Method and apparatus of a fast digital automatic gain control circuit
JP2012516597A (ja) 帯域幅及び遅延広がりに基づく自動利得制御
JP2003168931A (ja) 歪補償回路
JP2000036790A (ja) 受信電力算出方法及び移動局
JP2001168664A (ja) 受信電力計算回路及びそれを用いた受信機
CN104025452A (zh) 高频信号处理装置及无线通信装置
CN102355721A (zh) 一种多模系统的混合自动增益控制的方法和装置
TW200931813A (en) ADC use with multiple signal modes
US6775336B1 (en) Receiver and gain control method of the same
KR20100014283A (ko) 자동 이득 제어를 위한 방법 및 디바이스
WO2019179412A1 (zh) 噪声功率的获取方法及终端
JPH11289231A (ja) Agc回路
JPH10224321A (ja) Cdma方式通信システムの基地局受信電力レベル追跡方法
KR20170079931A (ko) 중계기 및 이의 신호 감쇄 방법
JP4196380B2 (ja) 無線受信装置
CN109714816B (zh) 一种机动车电子标识读写设备的功率调整方法、装置及系统
US10291340B2 (en) Repeater and signal attenuation method thereof
CN114039619B (zh) 零中频射频前端电路、系统、射频单元保护方法和介质
EP1553698A1 (en) Gain control method, gain controller, receiver having the gain controller, and mobile telephone
US9949217B2 (en) Transmit power control method and system in mobile communications device
JP2008533759A (ja) 受信信号品質測定
US12028032B2 (en) Wireless communication device for controlling signal power of received signal and operating method thereof
CN117335762A (zh) 自动增益控制方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771078

Country of ref document: EP

Effective date: 20201019