WO2019178835A1 - 一种自动化采煤机以及流态化采煤方法 - Google Patents

一种自动化采煤机以及流态化采煤方法 Download PDF

Info

Publication number
WO2019178835A1
WO2019178835A1 PCT/CN2018/080187 CN2018080187W WO2019178835A1 WO 2019178835 A1 WO2019178835 A1 WO 2019178835A1 CN 2018080187 W CN2018080187 W CN 2018080187W WO 2019178835 A1 WO2019178835 A1 WO 2019178835A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
mining
chamber
support
energy storage
Prior art date
Application number
PCT/CN2018/080187
Other languages
English (en)
French (fr)
Inventor
鞠杨
谢和平
张勇
朱彦
高峰
聂晓东
万昌兵
宋进鑫
路畅
刘红彬
任张瑜
Original Assignee
中国矿业大学(北京)
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京), 深圳大学 filed Critical 中国矿业大学(北京)
Priority to PCT/CN2018/080187 priority Critical patent/WO2019178835A1/zh
Priority to US16/473,956 priority patent/US11391151B2/en
Priority to CA3050034A priority patent/CA3050034C/en
Publication of WO2019178835A1 publication Critical patent/WO2019178835A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/12Devices for removing or hauling away excavated material or spoil; Working or loading platforms
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/29Obtaining a slurry of minerals, e.g. by using nozzles
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/108Remote control specially adapted for machines for driving tunnels or galleries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/02Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
    • B03B5/10Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs
    • B03B5/12Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs using pulses generated mechanically in fluid
    • B03B5/18Moving-sieve jigs
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/16Machines slitting solely by one or more rotating saws, cutting discs, or wheels
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/20General features of equipment for removal of chippings, e.g. for loading on conveyor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/08Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield
    • E21D9/087Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/11Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines
    • E21D9/116Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines by means of non-concentric rotary heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • E21F13/002Crushing devices specifically for conveying in mines

Definitions

  • the invention belongs to the technical field of coal mining, and particularly relates to an automatic coal mining machine and a fluidized coal mining method.
  • the traditional coal mining method is to transport the coal resources mined underground to the ground, and then wash and use the resources on the ground (for example, using coal for power generation).
  • the whole process is very complicated, and the coal is transported and will be mined.
  • the cost of lifting coal from the mine to the ground is also high.
  • the process of washing and resource conversion on the ground will cause a large number of pollution sources such as solid waste pollution and air pollution. Therefore, there is an urgent need for an unmanned automatic coal mining machine and a mining method capable of directly performing a series of processes such as coal mining, washing and coal conversion in a coal mine.
  • the object of the present invention is to provide an automatic coal mining machine and a fluidized coal mining method to provide a coal mining machine capable of directly performing coal mining, washing, coal conversion and the like in a coal mine. And coal mining methods.
  • the present application provides an automated shearer comprising: a first mining chamber, a first coal preparation tank, a first fluid state conversion reaction chamber, and a first energy storage tank;
  • a head of the first mining chamber is provided with a cutter head for cutting the coal body, and the coal raw material cut by the cutter head is transported to the first coal preparation tank;
  • the first coal preparation tank is connected to the first mining chamber through a detachable flexible member for separating coal pieces from the vermiculite in the coal raw material, and transferring the coal block to the first fluid state transformation Reaction chamber
  • the first fluid state conversion reaction chamber is connected to the first coal preparation tank through a detachable flexible member for converting an energy form of the coal block to obtain liquid, gas or electric energy and transmitting to the first storage Energy cabin
  • the first energy storage compartment is coupled to the first fluid state conversion reaction chamber through a detachable flexible member for storing energy converted by the coal block.
  • the first mining compartment comprises: a cutter head, a dialing mechanism and a first conveyor belt;
  • the cutter head is fixed to a head of the first mining chamber
  • the dialing mechanism is disposed behind the cutter head and fixed on a bottom plate of the first mining cabin;
  • the first conveyor belt is disposed on a floor of the first mining chamber.
  • the first mining cabin further includes: a first support and a support mechanism
  • the first support is fixed on a bottom plate of the first mining compartment, and a space between the first support and the bottom plate enables the first conveyor and the object transported on the first conveyor by;
  • the support mechanism is fixed on the first support for reinforcing the excavated roadway.
  • the first coal preparation tank comprises: a crusher, a moving sieve jig, a second conveyor belt, and a discharge pipeline;
  • the crusher is fixed on the bottom plate of the first coal preparation tank for crushing the coal raw material cut by the first mining chamber;
  • the second conveyor belt is fixed on the bottom plate of the first coal preparation tank and located behind the crusher;
  • the moving sieve jig is disposed on the bottom plate of the first coal preparation tank and located behind the second conveyor belt for sorting the coal raw materials transported by the second conveyor belt, and the coal blocks obtained by the sorting Transmitting to the first fluid state conversion reaction chamber;
  • the discharge duct is disposed at a side of the moving sieve jig for discharging the sorted meteorite from the first coal preparation chamber.
  • the first flow state conversion reaction chamber comprises: a fluid state conversion system
  • the fluid state conversion system is disposed on a bottom plate of the first fluid state conversion reaction tank for converting the coal block into a liquid, a gas or an electric energy.
  • the first energy storage compartment includes a fluid product storage device and an energy storage device
  • the fluid product storage device is fixed on the bottom plate of the first energy storage tank for storing the converted fluid energy product
  • the energy storage device is fixed on a bottom plate of the first energy storage compartment for storing the converted electric energy.
  • the automatic shearer further comprises: a guard cabin;
  • the support compartment is connected to the first mining compartment by a detachable flexible component, and the support compartment is used for supporting the excavated roadway when constructing a tunnel.
  • the support cabin includes: a second support, a gas drainage mechanism, a grouting reinforcement mechanism, and a roadway lining mechanism;
  • the second seat is fixed on the bottom plate of the support cabin, and a space between the second seat and the bottom plate enables the objects conveyed on the first conveyor belt and the first conveyor belt to pass ;
  • the gas drainage mechanism is fixed on the second support for extracting gas in the coal seam on both sides of the excavated roadway;
  • the grouting reinforcement mechanism is fixed on the second support for injecting chemical slurry into the coal seams on both sides of the roadway to reinforce the coal walls on both sides of the roadway;
  • the roadway lining mechanism is fixed on the second support for supporting the roadway.
  • the automatic shearer further comprises: a second mining chamber, a second coal preparation tank, a second fluid state conversion reaction chamber and a second energy storage tank;
  • the second energy storage compartment is coupled to the first energy storage compartment by a detachable flexible member
  • the second fluid state conversion reaction chamber is connected to the second energy storage tank by a detachable flexible member
  • the second coal preparation tank is connected to the second fluid state conversion reaction chamber by a detachable flexible member
  • the second mining chamber is coupled to the second coal preparation chamber by a detachable flexible member.
  • the shearer further comprises a remote console, wherein the remote console is configured to control the first mining cabin, the first coal preparation cabin, according to an operating state of the automatic shearer, The first flow regime transforms the operating state of the reaction chamber and the first energy storage compartment.
  • the present application further provides a fluidized coal mining method, the method being applied to the automatic shearer according to any one of the first aspect, wherein the automated shearer comprises a first mining chamber a first coal preparation tank, a first fluid state conversion reaction chamber and a first energy storage tank; the method comprising:
  • the automatic shearer provided by the embodiment includes a first mining chamber, a first coal preparation tank, a first fluid state conversion reaction chamber and a first energy storage tank, and each functional tank is connected by a detachable flexible member;
  • the first mining chamber is used for cutting coal seams to obtain coal raw materials and transporting them to the first coal preparation chamber to separate the coal blocks from the vermiculite. Then, the sorted coal pieces are transferred to the first fluid state conversion reaction chamber.
  • the first flow state conversion reaction chamber converts the energy form of the coal block to obtain liquid, gas or electric energy, and transports it to the first energy storage tank for storage.
  • the mining and conversion of coal is carried out in the underground coal mine.
  • the entire system can control the various functional compartments of the shearer through a remote console on the ground to complete the corresponding operations, without the need for people to operate the automatic shearer downhole.
  • FIG. 1 is a schematic structural view of an automatic coal mining machine according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of another automatic coal mining machine according to an embodiment of the present application.
  • FIG. 3 is a top plan view showing an exploded step of a two-way coal mining lane change mode of an automatic shearer according to an embodiment of the present application;
  • FIG. 4 is a schematic structural view of another automatic coal mining machine according to an embodiment of the present application.
  • FIG. 5 is a schematic flow chart of fluidized coal mining by using an automatic coal mining machine according to an embodiment of the present application.
  • the traditional coal mining method will raise the coal mined from the underground to the ground, carry out the processes of washing, conversion and utilization, and the transportation cost is high, and the waste generated by the conversion and utilization process is more polluted by the environment.
  • the traditional theory of mining and rock mechanics is no longer applicable.
  • the temperature in the underground coal mine has exceeded the range that the human body can withstand. Therefore, human beings cannot enter the underground for coal mining operations.
  • the automatic coal mining machine and the fluidized coal mining method provided by the present application carry out coal conversion under the coal mine, and does not need to lift the coal block to the ground for washing, conversion and utilization, thereby reducing transportation cost and avoiding conversion and utilization.
  • the waste generated by the process is contaminated by the ground.
  • the entire mining and conversion process controls the various functional compartments through the remote console to complete the corresponding operations, without the need for people to go underground.
  • FIG. 1 a schematic structural view of an automatic shearer according to an embodiment of the present application is shown.
  • the automatic shearer is also called an Unmanned Mining Machine (UMM).
  • UMM Unmanned Mining Machine
  • the automatic shearer comprises: a first mining cabin 1, a first coal preparation tank 2, a first fluid state conversion reaction chamber 3, and a first energy storage tank 4.
  • Each functional compartment is connected by a detachable flexible part 10, which facilitates the automatic turning of the shearer; the detachable flexible part 10 is sufficiently tough to firmly connect the functional compartments together and is soft enough for the shearer to turn There is a certain turning angle between the various function compartments.
  • each function compartment has a power drive device capable of autonomously advancing and retreating, turning, and enabling a small inclination to climb and downhill.
  • each functional cabin can be controlled according to the operating state of each functional cabin by a remote console disposed on the ground.
  • Wireless communication is possible between the remote console and each function bay.
  • a state acquisition device for example, various sensors, etc.
  • the state parameters collected by the state acquisition device are uploaded to a remote console, and the remote console controls each function cabin according to the state parameters.
  • the first mining cabin 1 is used for roadway driving and coal seam mining, and transports the mined coal raw materials to the first coal preparation tank 2.
  • the first mining chamber 1 includes a cutter head 11, a dialing mechanism 12, and a conveyor belt 13.
  • the cutter head 11 is provided with a head portion of the first mining chamber 1, which is used for rotary cutting of the front coal seam.
  • the dialing mechanism 12 is disposed behind the cutter head 11 and is fixed to the bottom plate of the first mining compartment 1, and the dialing mechanism 12 is used to dial the coal material cut by the cutter head 11 onto the conveyor belt 13.
  • the dialing mechanism 12 may be a star wheel, and the star wheel may be bolted to the bottom plate of the first mining chamber 1.
  • the coal material cut by the cutter head 11 falls in front of the star wheel, and as the mining chamber moves forward, the coal material is rotated by the rotating star wheel to the conveyor belt 13 behind the star wheel.
  • the number of star wheels is determined by the size of the star wheel and the width of the floor of the first mining compartment 1 .
  • the conveyor belt 13 is fixed to the bottom plate behind the dialing mechanism 12 of the first mining chamber 1.
  • the conveyor belt 13 extends into a first coal preparation tank 2 connected to the rear of the first mining chamber 1 for conveying coal feedstock into the first coal preparation tank 2.
  • the first mining cabin 1 further includes a first support 14 and a support mechanism 15.
  • the first pedestal 14 is fixed to the bottom plate of the tail of the first mining chamber 1, and the space between the first pedestal 14 and the bottom plate enables the conveyor belt 13 and the objects transported on the conveyor to pass smoothly.
  • the first mount can be welded to the floor of the mining chamber, and the welded connection is more secure.
  • the support mechanism 15 is fixed to the first support 14, which is used to reinforce the excavated roadway.
  • the support mechanism 15 may employ a bolt rig to perform bolt support on the excavated roadway to prevent the roof of the roadway from falling and the coal wall from collapsing.
  • the anchor drill can be mounted on the first abutment 14 by bolts.
  • the first coal preparation tank 2 is detachably connected to the first mining chamber 1, and the first coal preparation chamber 2 is used for separating coal pieces and vermiculite in the coal raw material, and transferring the sorted coal pieces to the first flow state. Conversion reaction chamber 3.
  • the first coal preparation compartment 2 may include a crusher 21, a moving sieve jig 22, a conveyor belt 23, and a discharge duct 24.
  • the crusher 21 is fixed to the bottom plate of the coal preparation tank, and the crusher 21 can crush the coal raw material sent from the mining chamber 1.
  • the conveyor belt 23 is fixed to the bottom plate of the first coal preparation tank 2 and is located behind the crusher 22; the moving sieve jig 22 is fixed to the bottom plate of the first coal preparation tank 2 and is located behind the conveyor belt 23.
  • the discharge duct 24 is provided at one side of the moving sieve jig 22.
  • the conveyor belt 23 is used to transport the small coal pieces and small gangue pieces crushed by the crusher 21 to the rear moving screen jig 22.
  • the moving sieve jig 22 is used for separating the small coal pieces and small meteorites conveyed by the conveyor belt 23, and discharging the separated meteorite blocks through the discharge pipe 24 to discharge the first coal preparation tank 2, and simultaneously conveying the small coal pieces to the first stream.
  • State transformation reaction chamber 3
  • the fluid state conversion reaction chamber 3 is detachably connected to the first coal preparation tank 2, and the first fluid state conversion reaction chamber 3 is used for converting the energy form of the coal block to obtain liquid, gas or electric energy, and transmitting to the first energy storage.
  • Cabin 4 is detachably connected to the first coal preparation tank 2, and the first fluid state conversion reaction chamber 3 is used for converting the energy form of the coal block to obtain liquid, gas or electric energy, and transmitting to the first energy storage.
  • the first flow state conversion reaction chamber 3 includes a fluid state conversion system 31 disposed on the bottom plate of the fluid state conversion reaction tank, and the fluid state conversion system 31 uses a technology such as coal liquefaction and gasification to convert the solid coal into a liquid or gas stream. State energy, or, can also use electro-chemical technology to convert solid coal into electricity.
  • the first energy storage tank 4 is detachably connected to the first fluid state conversion reaction chamber 3, and the first energy storage tank 4 is used for storing the energy converted from the first fluid state conversion reaction chamber 3.
  • the first energy storage compartment 4 includes a fluid product storage device 41 and an energy storage device 42.
  • Both the fluid product storage device 41 and the energy storage device 42 are fixed to the bottom plate of the first energy storage compartment 4.
  • the fluid product storage device 41 is used to store the liquid and gas obtained by the conversion of the first fluid state conversion reaction chamber 3.
  • the energy storage device 42 is used to store the electrical energy converted by the fluid state conversion reaction chamber 3.
  • the flow product storage device 41 and the energy storage device 42 may be respectively disposed in plurality, and are appropriately adjusted according to the energy storage condition.
  • the mining chamber is used for cutting coal seams to obtain coal raw materials and transporting them to a coal preparation cabin to separate the coal blocks from the vermiculite. Then, the sorted coal pieces are transferred to the fluid state conversion reaction chamber.
  • the fluid state conversion reaction chamber converts the energy form of the coal block to obtain liquid, gas or electric energy, and transports it to the energy storage tank for storage.
  • the mining and conversion of coal is carried out under the coal mine. It is not necessary to raise the coal to the ground for washing and conversion, thereby reducing the transportation cost of coal and avoiding the pollution of the waste generated by the conversion process.
  • the entire process is controlled by the remote console on the ground to control the various functional compartments, and no one needs to go underground to operate the automatic shearer.
  • a mining and support cabin is required during the construction and roadway.
  • the function and composition of the mining chamber will not be described in detail in this embodiment.
  • the automated shearer includes a first mining chamber 1 and a support compartment 5 connected by a detachable flexible member 10.
  • the support cabin 5 is used to support the excavated roadway during the construction and roadway excavation.
  • the support compartment 5 includes a second support 51, a gas extraction mechanism 52, a grouting reinforcement mechanism 53, and a roadway lining mechanism 54.
  • the second abutment 51 is fixed to the bottom plate of the support compartment 5, and the space between the second abutment 51 and the bottom plate enables the conveyor belt extending from the first mining compartment 1 and the objects transported on the conveyor belt to pass smoothly.
  • the gas extraction mechanism 52 is fixed to the second support 51 for extracting gas in the coal seams on both sides of the excavated roadway.
  • the grouting reinforcement mechanism 53 is fixed on the second support 51 for injecting a specific chemical slurry into the coal seams on both sides of the roadway to reinforce the coal walls on both sides of the roadway.
  • the roadway lining mechanism 54 is fixed on the second support 51 for omnidirectional and high-strength lining support for the excavated roadway to increase the service life of the roadway.
  • the first mining cabin 1 and the support cabin 5 of the automatic shearer are separated, and the support cabin 5 is lifted to the ground, and the first coal preparation tank 2, the first fluid state conversion reaction cabin 3
  • the first energy storage compartment 4 and the detachable flexible component 10 connecting the various functional compartments are transported to the underground for assembly connection.
  • the first stage construction and excavation
  • the first mining cabin 1, the support cabin 5 and the detachable flexible member 10 are transported to the underground for connection and assembly, and the tunnel is excavated after the assembly is completed.
  • the coal body in front of the mining chamber is cut by the cutter head 11 on the first mining chamber 1, and the cut coal raw material is sent by the dialing mechanism 12 to the conveyor belt 13 and transported by the conveyor belt 13 to the tail discharge compartment of the support cabin 5.
  • the smart shuttle is transported away from the roadway by the underground.
  • the support mechanism 15 in the first mining cabin 1 supports the bolts around the roadway.
  • the gas drainage mechanism 52 in the support cabin 5 extracts the gas in the coal seams on both sides of the roadway;
  • the chemical grouting mechanism 53 injects a specific chemical slurry into the coal seams on both sides of the roadway to reinforce the coal wall;
  • the roadway lining mechanism 54 All-round, high-strength lining support for the excavated roadway to increase the service life of the roadway.
  • Lining support is an engineering measure to ensure the stability of the surrounding rock of the underground chamber. It is to use a strip of stone, concrete or reinforced concrete to build a wall of a certain thickness in the underground chamber to passively bear the load.
  • the energy pipelines are arranged in the excavated roadways to transport the extracted gas to the designated location.
  • the coal mining stage is entered, the first mining cabin 1 and the support cabin 5 are split, and the support cabin 5 is lifted to the ground.
  • the first coal preparation tank 2, the first fluid state conversion reaction chamber 3 and the first energy storage tank 4 and the detachable flexible member 10 are transported to the underground for assembly connection.
  • Coal mining uses a similar strip-like route for two-way coal mining.
  • the main structure of the automatic shearer consists of two parts, front and rear, and the front and rear parts are mirrored.
  • the first half of the automatic shearer includes, in order from left to right, a first mining chamber 1, a first coal preparation chamber 2, a first fluid state conversion reaction chamber 3, and a first energy storage tank 4, the latter half.
  • the second mining compartment 6, the second coal preparation tank 7, the second fluid state conversion reaction tank 8 and the second energy storage tank 9 are sequentially arranged from right to left.
  • each functional compartment is connected by a detachable flexible member 10.
  • the function of the mining chamber is basically the same as that during the construction and roadway. The difference is that when the roadway is excavated, the support mechanism 15 in the mining cabin supports the bolts around the roadway; while in the coal seam mining, the support mechanism 15 in the mining cabin only supports the top of the roadway with bolt support .
  • the “strip-like” route is adopted for two-way coal mining.
  • the forward coal mining adopts the first half of the automatic coal mining machine, and when it is taken to the minefield boundary, it stops and turns into the backward coal mining.
  • the backward coal mining adopts the automatic mining. The latter part of the coal machine works. When it is taken to the other side of the minefield, it stops and then turns into forward coal mining.
  • Forward coal mining is carried out by the first mining chamber 1 for coal mining, the first coal storage tank 2 is sorted, and the first fluid state conversion reaction chamber 3 is used for coal energy form conversion, and the converted energy source is carried out by the first energy storage tank 4 Store.
  • the backward coal mining is carried out by the second mining chamber 6 for coal mining, the second coal storage tank 7 for sorting, the second fluid state conversion reaction chamber 8 for coal energy form conversion, and the second energy storage tank for 9 pairs of converted energy sources. Save it.
  • the automatic shearer 100 advances the mining coal body 101 in a straight line, and after returning to the well boundary 102, it returns to a distance along the original path, and then the lane change is advanced, and the current mining to the well border 102 is just right. After the lane change is completed, the automatic shearer retreats the coal in a straight line to the other boundary of the mine field, and converts the lane into forward coal according to the same lane change mode.
  • a plurality of energy transmission pipelines are arranged in the roadway perpendicular to the “strip-like” route, and the in-situ converted fluid energy and/or electric energy can be delivered to the designated after the energy transmission pipeline is docked with the automatic shearer. location.
  • the energy transmission pipeline can also supply the energy and water source required for the normal operation of the automatic shearer.
  • the coal mining machine 100 After the coal mining machine 100 is used for coal mining, in order to prevent the overburden strata on the goaf 103 from falling, it affects the coal mining operation of the automatic shearer, and the coal is disposed in the first mining chamber and the second mining chamber.
  • the retaining mechanism hits the anchor rod to the top plate and timely fills the "striped" goaf 103.
  • the filling slurry is transported from the ground to the underground through the filling hole drilled from the ground to the underground, and then the slurry is conveyed to the gob 103 through the filling pipe arranged in the roadway, and is selected by the moving sieve jig 22
  • the vermiculite is mixed to complete the filling of the goaf 103.
  • the present application also provides a method for fluidized coal mining using the automatic shearer provided by the above embodiments.
  • FIG. 5 a flow chart of a fluidized coal mining method of the present application is shown. The method is applied to the remote console of the automatic shearer described above. As shown in FIG. 5, the method may include the following steps:
  • the fluidized coal mining method provided by the embodiment can realize coal mining and conversion under the mine, and does not need to lift the coal block to the ground for washing and conversion, thereby reducing the transportation cost of coal, and avoiding the conversion process.
  • the entire process controls the various functional compartments on the ground through the remote console to complete the corresponding operations, without the need for people to go underground.
  • the remote console in this embodiment may be a terminal or a host computer.

Abstract

一种自动化采煤机以及流态化采煤方法,第一采掘舱(1)切割煤层得到煤原料并输送至第一选煤舱(2),将其中的煤块与矸石进行分离。然后,将分选得到的煤块传输至第一流态转化反应舱(3)。第一流态转化反应舱对煤块的能源形态进行转换,得到液体、气体或电能,并输送至第一储能舱(4)进行储存。煤炭的开采与转换均在煤矿井下进行,提高了煤的利用程度,而且避免了开采与转换过程产生的废弃物对地面环境的污染。

Description

一种自动化采煤机以及流态化采煤方法 技术领域
本发明属于煤矿开采技术领域,尤其涉及一种自动化采煤机以及流态化采煤方法。
背景技术
传统的采煤方法是将井下开采的煤资源运送至地面,然后,在地面上进行洗选、资源转换利用(例如,利用煤进行发电),整个过程非常复杂,而且,运输煤、将开采的煤从矿井提升到地面的成本也很高。此外,在地面上进行洗选、资源转换利用的过程会造成大量的固体废弃物污染、大气污染等众多污染源。因此,亟需一种能够直接自动在煤矿井下完成采煤、洗选、煤炭转换等一系列过程的无人自动化采煤机和开采方法。
发明内容
有鉴于此,本发明的目的在于提供一种自动化采煤机以及流态化采煤方法,以提供一种能够直接在煤矿井下完成采煤、洗选、煤炭转换等一系列过程的采煤机以及采煤方法。
第一方面,本申请提供了一种自动化采煤机,包括:第一采掘舱、第一选煤舱、第一流态转化反应舱和第一储能舱;
所述第一采掘舱的头部设置有用于切割煤体的刀盘,并将所述刀盘切割得到的煤原料输送至所述第一选煤舱;
所述第一选煤舱与所述第一采掘舱通过可拆卸柔性部件连接,用于对所述煤原料中的煤块与矸石分离,并将所述煤块传输至所述第一流态转化反应舱;
所述第一流态转化反应舱与所述第一选煤舱通过可拆卸柔性部 件连接,用于对所述煤块的能源形态进行转换,得到液体、气体或电能并传输至所述第一储能舱;
所述第一储能舱与所述第一流态转化反应舱通过可拆卸柔性部件连接,用于对所述煤块转换得到的能源进行储存。
可选地,所述第一采掘舱包括:刀盘、拨分机构和第一传送带;
所述刀盘固定在所述第一采掘舱的头部;
所述拨分机构设置在所述刀盘后方,且固定在所述第一采掘舱的底板上;
所述第一传送带设置在所述第一采掘舱的底板上。
可选地,所述第一采掘舱还包括:第一支座和支护机构;
所述第一支座固定在所述第一采掘舱的底板上,且所述第一支座与所述底板之间的空间能够使所述第一传送带及所述第一传送带上运输的物体通过;
所述支护机构固定在所述第一支座上,用于加固开掘的巷道。
可选地,所述第一选煤舱包括:破碎机、动筛跳汰机、第二传送带、排出管道;
所述破碎机固定在所述第一选煤舱的底板上,用于将所述第一采掘舱切割得到的煤原料进行破碎;
所述第二传送带固定在所述第一选煤舱的底板上,且位于所述破碎机后方;
所述动筛跳汰机设置在所述第一选煤舱的底板上,且位于第二传送带后方,用于将所述第二传送带传输的煤原料进行分选,将分选得到的煤块传输至所述第一流态转化反应舱;
所述排出管道设置在的所述动筛跳汰机的侧边,用于将分选得到的矸石排出所述第一选煤舱。
可选地,所述第一流态转化反应舱包括:流态转化系统;
所述流态转化系统设置在所述第一流态转化反应舱的底板上,用 于将所述煤块转化为液体、气体或电能。
可选地,所述第一储能舱包括流态产物储存装置和能量储存装置;
所述流态产物储存装置固定在所述第一储能舱的底板上,用于储存转化得到的流态能源产物;
所述能量储存装置固定在所述第一储能舱的底板上,用于储存转化得到的电能。
可选地,所述自动化采煤机还包括:支护舱;
所述支护舱与所述第一采掘舱通过可拆卸柔性部件连接,当进行建井掘巷时,所述支护舱用于对开掘的巷道进行支护。
可选地,所述支护舱包括:第二支座、瓦斯抽采机构、注浆加固机构和巷道衬砌机构;
所述第二支座固定在所述支护舱的底板上,且所述第二支座与所述底板之间的空间能够使所述第一传送带及所述第一传送带上运输的物体通过;
所述瓦斯抽采机构固定在所述第二支座上,用于抽采开掘的巷道两侧煤层中的瓦斯;
所述注浆加固机构固定在所述第二支座上,用于向所述巷道两侧煤层中注入化学浆液,以使所述巷道两侧的煤壁加固;
所述巷道衬砌机构固定在所述第二支座上,用于对所述巷道进衬砌支护。
可选地,所述自动化采煤机还包括:第二采掘舱、第二选煤舱、第二流态转化反应舱和第二储能舱;
所述第二储能舱通过可拆卸柔性部件与所述第一储能舱连接;
所述第二流态转化反应舱通过可拆卸柔性部件与所述第二储能舱连接;
所述第二选煤舱通过可拆卸柔性部件与所述第二流态转化反应 舱连接;
所述第二采掘舱通过可拆卸柔性部件与所述第二选煤舱连接。
可选地,所述采煤机还包括远程控制台,其中,所述远程控制台用于根据所述自动化采煤机的运行状态控制所述第一采掘舱、所述第一选煤舱、所述第一流态转化反应舱和所述第一储能舱的工作状态。
第二方面,本申请还提供了一种流态化采煤方法,该方法应用于第一方面任一项所述的自动化采煤机中,其中,所述自动化采煤机包括第一采掘舱、第一选煤舱、第一流态转化反应舱和第一储能舱;所述方法包括:
控制所述第一采掘舱对所述自动化采煤机前方的煤体进行切割;
控制所述第一选煤舱对所述第一采掘舱开掘的煤原料中的煤块与矸石进行分离;
控制所述第一流态转化反应舱对所述第一选煤舱分选得到的煤块转化为液体、气体或电能,并将转化得到的所述液体、气体或电能储存到所述第一储能舱中。
本实施例提供的自动化采煤机,包括第一采掘舱、第一选煤舱、第一流态转化反应舱和第一储能舱,且各个功能舱之间均通过可拆卸柔性部件连接;其中,第一采掘舱用于切割煤层得到煤原料并输送至第一选煤舱将其中的煤块与矸石进行分离。然后,将分选得到的煤块传输至第一流态转化反应舱。第一流态转化反应舱对煤块的能源形态进行转换,得到液体、气体或电能,并输送至第一储能舱进行储存。煤炭的开采与转换均在煤矿井下进行,不需要将煤块提升到地面再进行洗选、转换,从而降低了煤的运输成本,提高了煤的利用程度,而且避免了开采与转换过程产生的废弃物对地面环境的污染。此外,整个系统可以通过地面上的远程控制台控制采煤机各个功能舱完成相应的操作,不需要人去井下操作自动化采煤机。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一种自动化采煤机的结构示意图;
图2是本申请实施例另一种自动化采煤机的结构示意图;
图3是本申请实施例的自动化采煤机双向采煤变道方式的分解步骤俯视图;
图4是本申请实施例又一种自动化采煤机的结构示意图;
图5是本申请实施例一种利用自动化采煤机进行流态化采煤的流程示意图。
具体实施方式
传统的采煤方法将从井下开采的煤提升到地面,进行洗选、转换利用等过程,运输成本高、且转换利用过程产生的废弃物较多对环境造成污染。此外,随着煤炭赋存和开采深度越来越深,传统的采矿学与岩体力学理论逐渐不再适用。当煤炭资源的开采达到一定深度,例如,2000m以下,煤矿井下的温度已经超出人类身体能够承受的范围,因此,人类无法进入井下进行采煤作业。本申请提供的自动化采煤机及流态化采煤方法,在煤矿井下进行煤炭转换,不需要将煤块提升到地面上进行洗选、转换利用,降低了运输成本,同时,避免了转换利用过程产生的废弃物对地面的污染。而且,整个开采和转换过程通过远程控制台控制各个功能舱完成相应的操作,不需要人去井下操作。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1,示出了本申请实施例一种自动化采煤机的结构示意图,自动化采煤机又称为无人自动化采煤机(Unmanned Mining Machine,UMM)。
如图1所示,该自动化采煤机包括:第一采掘舱1、第一选煤舱2、第一流态转化反应舱3、第一储能舱4。
各个功能舱之间均采用可拆卸柔性部件10连接,有利于自动化采煤机整体转弯;可拆卸柔性部件10足够坚韧能够牢固地将各个功能舱连接在一起,且足够柔软以便采煤机在转弯时各个功能舱之间具有一定的转弯角度。
而且,各个功能舱均有动力驱动装置,能够自主进退、转弯,并能够实现小倾角的爬坡、下坡。
优选地,该自动化采煤机在工作时,可由设置在地面上的远程控制台根据各个功能舱的运行状态控制各个功能舱的工作状态。远程控制台与各个功能舱之间可以进行无线通信。
该自动化采煤机上的各个功能舱上设置有状态采集装置(例如,各种传感器等),将状态采集装置采集的状态参数上传至远程控制台,远程控制台根据这些状态参数控制各个功能舱的工作状态。
第一采掘舱1用于巷道掘进与煤层开采,并将开采得到的煤原料输送到第一选煤舱2。
在本申请的一个实施例中,第一采掘舱1包括刀盘11、拨分机构12和传送带13。
刀盘11设置第一采掘舱1的头部,该刀盘11用于旋转切割前方煤层。
拨分机构12设置在刀盘11后方,且固定在第一采掘舱1的底板上,该拨分机构12用于将刀盘11切割下来的煤原料拨至传送带13上。
在本申请的一个实施例中,拨分机构12可以是星轮,星轮可以通过螺栓固定于第一采掘舱1的底板上。
刀盘11切割下的煤原料落在星轮的前方,随着采掘舱向前移动煤原料被旋转的星轮拨至星轮后方的传送带13上。
星轮的数量根据星轮的大小及第一采掘舱1底板的宽度确定。
传送带13固定在第一采掘舱1的拨分机构12后方的底板上。该传送带13延伸至与第一采掘舱1后面连接的第一选煤舱2内,用于将煤原料输送至第一选煤舱2内。
可选地,如图1所示,第一采掘舱1还包括第一支座14和支护机构15。
第一支座14固定在第一采掘舱1尾部的底板上,且该第一支座14与底板之间的空间能够使传送带13及传送带上运输的物体顺利通过。
在本申请的一个实施例中,第一支座可以焊接在采掘舱的底板上,焊接连接方式更牢固。
支护机构15固定在第一支座14上,该支护机构15用于加固开掘的巷道。
例如,支护机构15可以采用锚杆钻机,对开掘的巷道进行锚杆支护,防止巷道的顶板垮落与煤壁坍塌。该锚杆钻机可以通过螺栓安装在第一支座14上。
第一选煤舱2与第一采掘舱1可拆卸连接,该第一选煤舱2用于对煤原料中的煤块和矸石进行分离,并将分选得到的煤块传输至第一流态转化反应舱3。
在本申请的一个实施例中,如图1所示,第一选煤舱2可以包括 破碎机21、动筛跳汰机22、传送带23和排出管道24。
破碎机21固定在选煤舱的底板上,该破碎机21能够将采掘舱1输送来的煤原料进行破碎。
传送带23固定在第一选煤舱2的底板上,且位于破碎机22的后方;动筛跳汰机22固定在第一选煤舱2的底板上,且位于传送带23的后方。排出管道24设置在动筛跳汰机22的一侧。
传送带23用于将破碎机21破碎后的小煤块、小矸石块输送至后方的动筛跳汰机22。动筛跳汰机22用于将传送带23输送的小煤块、小矸石分离,并将分离出的矸石块经由排出管道24排出第一选煤舱2,同时,将小煤块输送至第一流态转化反应舱3。
流态转化反应舱3与第一选煤舱2可拆卸连接,该第一流态转化反应舱3用于对煤块的能源形态进行转化,得到液体、气体或电能,并传输至第一储能舱4。
第一流态转化反应舱3包括设置在流态转化反应舱的底板上的流态转化系统31,该流态转化系统31采用煤炭液化、气化等技术,将固体煤炭转化为液体或气体等流态能源,或者,还可以采用电化技术,将固体煤炭转化为电能。
第一储能舱4与第一流态转化反应舱3可拆卸连接,该第一储能舱4用于对第一流态转化反应舱3转化得到的能源进行储存。
在本申请的一个实施例中,第一储能舱4包括流态产物储存装置41和能量储存装置42。
流态产物储存装置41和能量储存装置42均固定在第一储能舱4的底板上。
流态产物储存装置41用于储存第一流态转化反应舱3转化得到的液体和气体。能量储存装置42用于储存流态转化反应舱3转化得到的电能。
其中,流态产物储存装置41和能量储能装置42可以分别设置是 多个,并根据储能情况进行适当调整。
本实施例提供的自动化采煤机,采掘舱用于切割煤层得到煤原料并输送至选煤舱将其中的煤块与矸石进行分离。然后,将分选得到的煤块传输至流态转化反应舱。流态转化反应舱对煤块的能源形态进行转换,得到液体、气体或电能,并输送至储能舱进行储存。煤炭的开采与转换均在煤矿井下进行,不需要将煤块提升到地面进行洗选、转换,从而降低煤的运输成本,而且避免了转换过程产生的废弃物对地面的污染。此外,整个过程通过地面上的远程控制台控制各个功能舱完成相应的操作,不需要人去井下操作自动化采煤机。
在本申请的另一个实施例中,在建井掘巷阶段,需要使用采掘舱和支护舱。采掘舱的功能及组成本实施例中不再赘述。
如图2所示,自动化采煤机包括通过可拆卸柔性部件10连接的第一采掘舱1和支护舱5。
支护舱5用于在进行建井掘巷阶段,对开掘的巷道进行支护。
如图2所示,支护舱5包括第二支座51、瓦斯抽采机构52、注浆加固机构53、巷道衬砌机构54。
第二支座51固定在支护舱5的底板上,且第二支座51与底板之间的空间能够使第一采掘舱1延伸出的传送带及该传送带上运输的物体顺利通过。
瓦斯抽采机构52固定在第二支座51上,用于抽采开掘的巷道两侧煤层中的瓦斯。
注浆加固机构53固定在第二支座51上,用于向巷道两侧煤层中注入特定化学浆液,以使巷道两侧的煤壁加固。
巷道衬砌机构54固定在第二支座51上,用于对开掘的巷道进行全方位、高强度衬砌支护,以增加巷道的服务年限。
矿井建设完成后,将自动化采煤机的第一采掘舱1和支护舱5拆分开,并将支护舱5提升至地面,将第一选煤舱2、第一流态转化反 应舱3和第一储能舱4及连接各个功能舱的可拆卸柔性部件10运送至矿井下进行组装连接。
下面将针对两个阶段对自动化采煤机的工作过程进行详细介绍:
第一阶段:建井掘巷
将第一采掘舱1、支护舱5及可拆卸柔性部件10输送至井下进行连接组装,组装完成后进行巷道的开掘。由第一采掘舱1上的刀盘11切割采掘舱前方的煤体,切割下来的煤原料由拨分机构12拨送至传送带13上,并由传送带13输送至支护舱5的尾部排出舱外,然后,由井下的智能梭车运离巷道。
在开掘巷道时,第一采掘舱1内的支护机构15对巷道四周进行锚杆支护。同时,支护舱5内的瓦斯抽采机构52对巷道两侧煤层中的瓦斯进行抽采;化学注浆机构53向巷道两侧煤层中注入特定的化学浆液对煤壁进行加固;巷道衬砌机构54对开掘的巷道进行全方位、高强度衬砌支护,以增加巷道的使用年限。
衬砌支护是保证地下硐室围岩稳定的工程措施,即在地下硐室内用条石、混凝土或钢筋混凝土砌筑一定厚度的墙来被动地承受荷载。
与此同时,开掘的巷道中布设输能管线,将抽采的瓦斯输送至指定地点。
第二阶段:煤层开采
矿井建设完成后,进入煤层开采阶段,将第一采掘舱1和支护舱5拆分,并将支护舱5提升至地面。再将第一选煤舱2、第一流态转化反应舱3和第一储能舱4及可拆卸柔性部件10运送至矿井下进行组装连接。
煤层开采时采用类似“条带状”路线进行双向采煤,自动化采煤机的主体结构包括前后两部分,且前后两部分呈镜像分布。
如图4所示,自动化采煤机的前半部分自左向右依次包括第一采掘舱1、第一选煤舱2、第一流态转化反应舱3和第一储能舱4,后 半部分自右向左依次包括第二采掘舱6、第二选煤舱7、第二流态转化反应舱8和第二储能舱9。
第一采掘舱1和第二采掘舱6、第一选煤舱2和第二选煤舱7、第一流态转化反应舱3和第二流态转化反应舱8,以及,第一储能舱4和第二储能舱9,两两功能舱的结构与功能分别完全相同,为了区分前后两部分采用第一、第二进行区分。而且,各个功能舱之间均采用可拆卸柔性部件10连接。
煤层开采阶段,采掘舱的功能与建井掘巷期间的功能基本相同。区别在于:在开掘巷道时,采掘舱内的支护机构15对巷道的四周进行锚杆支护;而在煤层开采时,采掘舱内的支护机构15只对巷道的顶部进行锚杆支护。
采用“条带状”路线进行双向采煤,其中,前进式采煤采用自动化采煤机的前半部分工作,当采至井田边界时停止,转为后退式采煤,后退式采煤采用自动化采煤机的后一部分工作。当采至井田的另一侧边界时停止,再转为前进式采煤。
前进式采煤由第一采掘舱1进行采煤,第一选煤舱2进行分选、第一流态转化反应舱3进行煤炭能源形态转化,由第一储能舱4对转化后的能源进行储存。后退式采煤由第二采掘舱6进行采煤,第二选煤舱7进行分选、第二流态转化反应舱8进行煤炭能源形态转化,由第二储能舱9对转化后的能源进行储存。
由于自动化采煤机整体长度较长,转弯半径较大,在前进式采煤和后退式采煤相互转换时需要设计特定的变道方式。
如图3所示,自动化采煤机100沿直线前进对待采掘煤体101进行开采,采至井田边界102后沿原路径退回一段距离,然后,变道前进,当前进采至井田边界102时恰好完成变道;完成变道后,自动化采煤机再沿直线后退采煤至井田另一边界,按照同样的变道方式进行变道转换成前进式采煤。
可选地,垂直于“条带状”路线的巷道内布设有多种输能管线,输能管线与自动化采煤机对接后,可将原位转化的流态能源和/或电能输送至指定地点。同时,输能管线也可以为自动化采煤机供应正常运转所需的能量和水源等。
自动化采煤机100采煤后,为了防止采空区103上的覆岩层垮落,影响自动化采煤机采煤作业,采煤的同时采用布设在第一采掘舱、第二采掘舱里的支护机构向顶板打锚杆,并及时进行“条带状”采空区103的填充。
通过由地面钻至井下的填充钻孔将填充料浆由地面输送至矿井下,再通过巷道内布设的填充管道将料浆输送至采空区103,与动筛跳汰机22分选出的矸石混合,完成采空区103的填充。
另一方面,本申请还提供了一种应用上述实施例提供的自动化采煤机进行流态化采煤方法。
请参见图5,示出了本申请一种流态化采煤方法的流程图,该方法应用于上述的自动化采煤机的远程控制台中,如图5所示,该方法可以包括以下步骤:
S110,控制第一采掘舱对自动化采煤机前方的煤体进行切割。
S120,控制第一选煤舱对第一采掘舱开掘的煤原料中的煤块与矸石进行分离。
S130,控制第一流态转化反应舱对第一选煤舱分选得到的煤块转化为液体、气体或电能,并将转化得到的所述液体、气体或电能储存到第一储能舱中。
本实施例提供的流态化采煤方法,能够在矿井下实现煤炭的开采与转换,不需要将煤块提升到地面进行洗选、转换,从而降低煤的运输成本,而且避免了转换过程产生的废弃物对地面的污染。而且,整个过程在地面上通过远程控制台控制各个功能舱完成相应的操作,不需要人去井下操作。
其中,本实施例中的远程控制台可以是终端或上位机。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种自动化采煤机,其特征在于,包括:第一采掘舱、第一选煤舱、第一流态转化反应舱和第一储能舱;
    所述第一采掘舱的头部设置有用于切割煤体的刀盘,并将所述刀盘切割得到的煤原料输送至所述第一选煤舱;
    所述第一选煤舱与所述第一采掘舱通过可拆卸柔性部件连接,用于对所述煤原料中的煤块与矸石分离,并将所述煤块传输至所述第一流态转化反应舱;
    所述第一流态转化反应舱与所述第一选煤舱通过可拆卸柔性部件连接,用于对所述煤块的能源形态进行转换,得到液体、气体或电能并传输至所述第一储能舱;
    所述第一储能舱与所述第一流态转化反应舱通过可拆卸柔性部件连接,用于对所述煤块转换得到的能源进行储存。
  2. 根据权利要求1所述的自动化采煤机,其特征在于,所述第一采掘舱包括:刀盘、拨分机构和第一传送带;
    所述刀盘固定在所述第一采掘舱的头部;
    所述拨分机构设置在所述刀盘后方,且固定在所述第一采掘舱的底板上;
    所述第一传送带设置在所述第一采掘舱的底板上。
  3. 根据权利要求2所述的自动化采煤机,其特征在于,所述第一采掘舱还包括:第一支座和支护机构;
    所述第一支座固定在所述第一采掘舱的底板上,且所述第一支座与所述底板之间的空间能够使所述第一传送带及所述第一传送带上运输的物体通过;
    所述支护机构固定在所述第一支座上,用于加固开掘的巷道。
  4. 根据权利要求1所述的自动化采煤机,其特征在于,所述第 一选煤舱包括:破碎机、动筛跳汰机、第二传送带、排出管道;
    所述破碎机固定在所述第一选煤舱的底板上,用于将所述第一采掘舱切割得到的煤原料进行破碎;
    所述第二传送带固定在所述第一选煤舱的底板上,且位于所述破碎机后方;
    所述动筛跳汰机设置在所述第一选煤舱的底板上,且位于所述第二传送带后方,用于将所述第二传送带传输的煤原料进行分选,将分选得到的煤块传输至所述第一流态转化反应舱;
    所述排出管道设置在的所述动筛跳汰机的侧边,用于将分选得到的矸石排出所述第一选煤舱。
  5. 根据权利要求1所述的自动化采煤机,其特征在于,所述第一流态转化反应舱包括流态转化系统;
    所述流态转化系统设置在所述第一流态转化反应舱的底板上,用于将所述煤块转化为液体、气体或电能。
  6. 根据权利要求1所述的自动化采煤机,其特征在于,所述第一储能舱包括流态产物储存装置和能量储存装置;
    所述流态产物储存装置固定在所述第一储能舱的底板上,用于储存转化得到的流态能源产物;
    所述能量储存装置固定在所述第一储能舱的底板上,用于储存转化得到的电能。
  7. 根据权利要求1所述的自动化采煤机,其特征在于,还包括:支护舱;
    所述支护舱与所述第一采掘舱通过可拆卸柔性部件连接,当进行建井掘巷时,所述支护舱用于对开掘的巷道进行支护。
  8. 根据权利要求7所述的自动化采煤机,其特征在于,所述支护舱包括:第二支座、瓦斯抽采机构、注浆加固机构和巷道衬砌机构;
    所述第二支座固定在所述支护舱的底板上,且所述第二支座与所 述底板之间的空间能够使所述第一传送带及所述第一传送带上运输的物体通过;
    所述瓦斯抽采机构固定在所述第二支座上,用于抽采开掘的巷道两侧煤层中的瓦斯;
    所述注浆加固机构固定在所述第二支座上,用于向所述巷道两侧煤层中注入化学浆液,以使所述巷道两侧的煤壁加固;
    所述巷道衬砌机构固定在所述第二支座上,用于对所述巷道进衬砌支护。
  9. 根据权利要求1所述的自动化采煤机,其特征在于,还包括:第二采掘舱、第二选煤舱、第二流态转化反应舱和第二储能舱;
    所述第二储能舱通过可拆卸柔性部件与所述第一储能舱连接;
    所述第二流态转化反应舱通过可拆卸柔性部件与所述第二储能舱连接;
    所述第二选煤舱通过可拆卸柔性部件与所述第二流态转化反应舱连接;
    所述第二采掘舱通过可拆卸柔性部件与所述第二选煤舱连接。
  10. 根据权利要求1-9任一项所述的自动化采煤机,其特征在于,还包括:远程控制台;
    所述远程控制台,用于根据所述自动化采煤机的运行状态控制所述第一采掘舱、所述第一选煤舱、所述第一流态转化反应舱和所述第一储能舱的工作状态。
  11. 一种流态化采煤方法,其特征在于,应用于权利要求1-10任一项所述的自动化采煤机中,所述自动化采煤机包括第一采掘舱、第一选煤舱、第一流态转化反应舱和第一储能舱;所述方法包括:
    控制所述第一采掘舱对所述自动化采煤机前方的煤体进行切割;
    控制所述第一选煤舱对所述第一采掘舱开掘的煤原料中的煤块与矸石进行分离;
    控制所述第一流态转化反应舱对所述第一选煤舱分选得到的煤块转化为液体、气体或电能,并将转化得到的所述液体、气体或电能储存到所述第一储能舱中。
PCT/CN2018/080187 2018-03-23 2018-03-23 一种自动化采煤机以及流态化采煤方法 WO2019178835A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/080187 WO2019178835A1 (zh) 2018-03-23 2018-03-23 一种自动化采煤机以及流态化采煤方法
US16/473,956 US11391151B2 (en) 2018-03-23 2018-03-23 Automatic coal mining machine and fluidized coal mining method
CA3050034A CA3050034C (en) 2018-03-23 2018-03-23 Automatic coal mining machine and fluidized coal mining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080187 WO2019178835A1 (zh) 2018-03-23 2018-03-23 一种自动化采煤机以及流态化采煤方法

Publications (1)

Publication Number Publication Date
WO2019178835A1 true WO2019178835A1 (zh) 2019-09-26

Family

ID=67986651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080187 WO2019178835A1 (zh) 2018-03-23 2018-03-23 一种自动化采煤机以及流态化采煤方法

Country Status (3)

Country Link
US (1) US11391151B2 (zh)
CA (1) CA3050034C (zh)
WO (1) WO2019178835A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878706A (zh) * 2019-12-16 2020-03-13 徐永佳 一种煤矿快速掘进矸石运输系统
CN113217089A (zh) * 2021-06-27 2021-08-06 中国矿业大学 一种深部煤炭流态化开采装备自主行走机构
CN113338934A (zh) * 2021-07-07 2021-09-03 中国矿业大学 一种深部煤炭流态化开采原位气化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431593B (zh) * 2020-10-15 2023-07-14 重庆市能源投资集团科技有限责任公司 一种自动化割煤工艺
CN117545909A (zh) * 2021-06-30 2024-02-09 中国矿业大学(北京) 一种实现co2地下封存的煤炭流态化开采方法
CN115744046A (zh) * 2022-12-07 2023-03-07 中国煤炭科工集团太原研究院有限公司 井下工作面矸石转运方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200981013Y (zh) * 2006-12-05 2007-11-28 煤炭科学研究总院唐山分院 一种用于机械动筛跳汰机的动筛装置
CN101869868A (zh) * 2010-06-01 2010-10-27 辽宁天安矿山科技有限公司 井下块煤排矸分选综合处理方法
CN102392637A (zh) * 2011-12-07 2012-03-28 天地上海采掘装备科技有限公司 一种新型采煤机
CN202578697U (zh) * 2012-04-18 2012-12-05 中国煤矿机械装备有限责任公司 具有记忆截割功能的薄煤层大功率自动化采煤机
RU2514248C1 (ru) * 2012-12-19 2014-04-27 Федеральное государственное бюджетное учреждение науки Институт горного дела Севера им. Н.В. Черского Сибирского отделения Российской академии наук Способ подготовки к обогащению труднообогатимых углей
CN204746555U (zh) * 2015-05-29 2015-11-11 天地科技股份有限公司 一种煤矿井下双洗选系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032195A (en) * 1975-05-16 1977-06-28 Kilroy Oliver B Push-pull mining system
US4548443A (en) * 1984-07-03 1985-10-22 The Robbins Company Tunnel boring machine
US5813482A (en) * 1995-12-26 1998-09-29 Barbera; Leo J. Earth boring system and apparatus
US6554368B2 (en) * 2000-03-13 2003-04-29 Oil Sands Underground Mining, Inc. Method and system for mining hydrocarbon-containing materials
US7832960B2 (en) * 2008-12-17 2010-11-16 The Robbins Company All-conditions tunnel boring machine
CN102226400B (zh) * 2011-05-31 2012-09-12 中铁隧道装备制造有限公司 预防土压平衡盾构机因摩阻力过大而卡滞的方法及系统
AU2012262141B2 (en) * 2011-06-01 2017-07-13 Vermeer Manufacturing Company Tunneling apparatus
CN106089208B (zh) 2016-07-25 2018-04-24 四川大学 基于tbm的煤矿资源流相开发装备及开发方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200981013Y (zh) * 2006-12-05 2007-11-28 煤炭科学研究总院唐山分院 一种用于机械动筛跳汰机的动筛装置
CN101869868A (zh) * 2010-06-01 2010-10-27 辽宁天安矿山科技有限公司 井下块煤排矸分选综合处理方法
CN102392637A (zh) * 2011-12-07 2012-03-28 天地上海采掘装备科技有限公司 一种新型采煤机
CN202578697U (zh) * 2012-04-18 2012-12-05 中国煤矿机械装备有限责任公司 具有记忆截割功能的薄煤层大功率自动化采煤机
RU2514248C1 (ru) * 2012-12-19 2014-04-27 Федеральное государственное бюджетное учреждение науки Институт горного дела Севера им. Н.В. Черского Сибирского отделения Российской академии наук Способ подготовки к обогащению труднообогатимых углей
CN204746555U (zh) * 2015-05-29 2015-11-11 天地科技股份有限公司 一种煤矿井下双洗选系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE, HEPING ET AL.: "Theoretical and Technological Conception of The Fluidization Mining for Deep Coal Resources", JOURNAL OF CHINA COAL SOCIETY, vol. 42, no. 03, 31 March 2017 (2017-03-31), pages 548 - 551 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878706A (zh) * 2019-12-16 2020-03-13 徐永佳 一种煤矿快速掘进矸石运输系统
CN113217089A (zh) * 2021-06-27 2021-08-06 中国矿业大学 一种深部煤炭流态化开采装备自主行走机构
CN113338934A (zh) * 2021-07-07 2021-09-03 中国矿业大学 一种深部煤炭流态化开采原位气化装置
CN113338934B (zh) * 2021-07-07 2023-12-08 中国矿业大学 一种深部煤炭流态化开采原位气化装置

Also Published As

Publication number Publication date
US20210340870A1 (en) 2021-11-04
US11391151B2 (en) 2022-07-19
CA3050034C (en) 2022-02-01
CA3050034A1 (en) 2019-09-23

Similar Documents

Publication Publication Date Title
WO2019178835A1 (zh) 一种自动化采煤机以及流态化采煤方法
CN110656937B (zh) 一种流态化煤气同采系统及其同采方法
CN1932240B (zh) 一次全高、后退、分体移动、全跨落综合机械化采煤方法
AU2019439785B2 (en) Pressed coal filling mining system and process for end slope of open pit
WO2020062432A1 (zh) 近距离煤层群井下采选充协同开采方法
WO2019178838A1 (zh) 一种适用于煤炭资源流态化开采的井田布局方法
CN111691885B (zh) 一种特厚煤层高效充填开采方法
CN105421198B (zh) 一种露天煤矿修筑斜坡道的方法
CN105298496A (zh) 设置预留工作面煤柱的全采全充采煤方法
AU2014202712C1 (en) Ore removal production line, twin ramps and ground support installation method
CN210422616U (zh) 海域块状天然气水合物开采及采空区回填装置
WO2020243919A1 (zh) 适用于矿体流态化开采的采掘机及开采方法
CN113404490B (zh) 一种深部煤炭流态化管道输送系统
CN103867203B (zh) 矿山井巷链锯式硬岩掘进机
CN102777184B (zh) 矿山的开采系统和方法
CN201027540Y (zh) 一种装煤、运煤和锚杆支护机械一体化装置
CN210464975U (zh) 一种用于煤矿的采样装置
CN215565940U (zh) 一种矿用岩巷掘进机
WO2023272587A1 (zh) 一种实现co2地下封存的煤炭流态化开采方法
CN111364994B (zh) 一种综采转充填连续推进协同开采方法
CN210977580U (zh) 一种煤矿坍塌巷道用顶管救援装备
CN102367725A (zh) 大孔径螺旋深孔钻机
CN215213493U (zh) 一种用于煤矿开采的运输装置
CN111946393B (zh) 一种超长固体充填工作面采煤系统及方法
CN212272289U (zh) “三下”压煤区域充填置换开采设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910383

Country of ref document: EP

Kind code of ref document: A1