WO2023272587A1 - 一种实现co2地下封存的煤炭流态化开采方法 - Google Patents

一种实现co2地下封存的煤炭流态化开采方法 Download PDF

Info

Publication number
WO2023272587A1
WO2023272587A1 PCT/CN2021/103578 CN2021103578W WO2023272587A1 WO 2023272587 A1 WO2023272587 A1 WO 2023272587A1 CN 2021103578 W CN2021103578 W CN 2021103578W WO 2023272587 A1 WO2023272587 A1 WO 2023272587A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
filling
equipment
bin
mining equipment
Prior art date
Application number
PCT/CN2021/103578
Other languages
English (en)
French (fr)
Inventor
鞠杨
刘鹏
费宇
聂晓东
朱彦
Original Assignee
中国矿业大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京) filed Critical 中国矿业大学(北京)
Priority to CA3206583A priority Critical patent/CA3206583C/en
Priority to US18/277,925 priority patent/US20240035382A1/en
Priority to CN202180099673.5A priority patent/CN117545909A/zh
Priority to PCT/CN2021/103578 priority patent/WO2023272587A1/zh
Priority to AU2021454472A priority patent/AU2021454472A1/en
Publication of WO2023272587A1 publication Critical patent/WO2023272587A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/16Modification of mine passages or chambers for storage purposes, especially for liquids or gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/005Methods or devices for placing filling-up materials in underground workings characterised by the kind or composition of the backfilling material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the technical field of mining of mineral resources, in particular to a coal fluidized mining method for realizing CO2 underground sequestration.
  • the coal in-situ fluidized mining technology is different from the traditional solid energy mining method, and realizes the underground unmanned and intelligent mining of energy.
  • the present invention provides a coal fluidized mining method for realizing CO 2 underground sequestration, so as to realize CO 2 underground sequestration.
  • the present invention provides the following technical solutions:
  • a coal fluidized mining method for realizing CO Underground sequestration comprising the steps of:
  • an energy transmission pipeline for delivering energy to the mining equipment and at the same time capable of transporting the electric energy obtained by the mining equipment through coal conversion to the ground;
  • the mining equipment carries out full-section excavation and mining along the mining strip, and the mining equipment transmits the converted electric energy to the ground through the energy transmission pipeline, and at the same time, the main shaft transports the electric energy to the mining equipment.
  • the mining equipment fills and supports at least one of the two adjacent mining strips in the goaf located at the rear end of the mining equipment to form filling Supporting walls, a space for sealing the CO 2 and waste gas emitted by the mining equipment during the power generation process and artificially injected CO 2 is formed between adjacent filling and supporting walls, and the filling and supporting walls can absorb the CO2 gas;
  • the material used for filling and supporting in the step 4) includes coarse aggregate, mixing material, quick-setting agent, calcium carbonate and the described
  • the gangue sorted out by the mining equipment, the coarse aggregate, mixing material, quick-setting agent and calcium carbonate are transported to the filling and supporting bin of the mining equipment through the main shaft, the coarse aggregate, the mixing The aggregate, the quick-setting agent, the calcium carbonate and the gangue are stirred in the filling support bin, and pumped to the filling position through the delivery pipeline of the filling support bin.
  • the step 4) is specifically:
  • the mining equipment mines in layers from bottom to top in the coal seam.
  • the mining equipment transmits the converted electric energy to the ground through the energy transmission pipeline.
  • the mining equipment fills and supports all the mining strips of the lower and middle layers of the coal seam at the goaf at the rear end of the mining equipment,
  • the mining equipment fills and supports at least one of the two adjacent mining strips on the upper layer of the coal seam in the goaf located at the rear end of the mining equipment to form a filling support wall, and the adjacent filling support wall A space is formed between the CO 2 and waste gas discharged in situ during the power generation process of the mining equipment and the artificially injected CO 2 , and the filling support wall can absorb the CO 2 gas.
  • step 7 after the step 6), the mining equipment seals the main well.
  • the mining equipment includes a first mining bin, a first sorting bin, a first conversion bin, a first energy storage bin, The support bin, the second energy storage bin, the second conversion bin, the second sorting bin and the second mining bin are filled, and the mining equipment can be excavated along the mining direction of the first mining bin or the second mining bin.
  • the shield cutter head of the first mining bin of the mining equipment is closed, and all the shield cutter heads of the second mining bin on the other side of the mining equipment are opened. the shield cutter head and adjust the tunneling direction of the shield cutter head, and carry out tunneling and mining on the adjacent mining strips to be tunneled;
  • step 8 after all the mining strips in the mining area have been mined and filled, set the main mining area in the mining area.
  • the position of the well is provided with an impermeable wall.
  • the coal fluidized mining method for realizing CO underground sequestration includes mining area division, tunneling and mining, filling support, roof and floor sealing, and boundary surrounding rock sealing.
  • the filling and supporting can form a high-strength supporting wall, which not only has an effective supporting effect on the roof and floor rock, but also forms a filling structure.
  • Support walls, adjacent filling support walls form an underground space for CO2 storage, and the mining equipment also seals the roof and floor of the goaf, and seals the boundary surrounding rock of the mine field, so that the entire mine field can be recovered after mining is completed.
  • a closed space for underground storage of CO2 is formed, and the waste gas such as CO2 generated during the power generation process of mining equipment is directly discharged in situ, and stored in the above space, so as to realize the underground storage of CO2 and ensure that the polluted gas emitted by mining equipment does not go out of the ground , to reduce the harm of carbon emissions to the environment.
  • Fig. 1 is the structural schematic diagram of the mine field division that the embodiment of the present invention provides
  • Fig. 2 is a schematic structural view of the mining equipment provided by the embodiment of the present invention.
  • Fig. 3 is a structural schematic diagram of the filling support provided by the embodiment of the present invention.
  • Fig. 4 is the structural representation of the strip filling support of a certain mining area provided by the first embodiment of the present invention
  • Fig. 5 is the structural representation of the strip filling support of a certain mining area provided by the second embodiment of the present invention.
  • Fig. 6 is the structural representation of the strip filling support of a certain mining area provided by the third embodiment of the present invention.
  • Fig. 7 is a structural schematic diagram of the strip filling support of a certain mining area provided by the fourth embodiment of the present invention.
  • Fig. 8 is a structural schematic diagram of filling support when the thickness of the coal seam exceeds the excavation section of the mining equipment provided by the embodiment of the present invention
  • Fig. 9 is the flow chart of the coal fluidized mining method that realizes CO underground sequestration provided by the first embodiment of the present invention.
  • Fig. 10 is a flowchart of a coal fluidized mining method for realizing CO 2 underground sequestration provided by the second embodiment of the present invention.
  • Mining area 1. Mining area, 2. Mining strip, 3. Main well, 4. Energy transmission pipeline, 5. Mining equipment, 51. First mining bin, 52. First sorting bin, 53. First conversion bin, 54 , the first energy storage bin, 55, the second energy storage bin, 56, the second conversion bin, 57, the second sorting bin, 58, the second mining bin, 59, the filling support bin, 6, the filling support wall .
  • the invention discloses a coal fluidized mining method for realizing CO2 underground sequestration, so as to realize CO2 underground sequestration.
  • the invention discloses a coal fluidized mining method for realizing CO underground sequestration, comprising the following steps:
  • An energy transmission pipeline is set on each mining strip for delivering energy to the mining equipment and at the same time can transmit the electric energy obtained by the mining equipment using coal conversion to the ground;
  • the excavation equipment carries out full-section excavation and mining along the excavation strip.
  • the excavation equipment transmits the converted electric energy to the ground through the energy transmission pipeline.
  • the main shaft transports the materials for filling and support to the excavation equipment.
  • the mined-out area at the back end of the equipment is filled and supported to form a filling and supporting wall, and the mining equipment 5 is used to fill and support at least one of the two adjacent mining strips 2, and a wall is formed between adjacent filling and supporting walls to seal the excavation.
  • Equipment 5 is a space for in-situ emission of CO 2 and waste gas and artificially injected CO 2 during the power generation process.
  • the mining strips 2 in each mining area 1 are filled and supported at intervals. Specifically, one of the two adjacent mining strips can be filled. Filling support can also be carried out at intervals of two excavation strips, or at intervals of three or more excavation strips.
  • the interval filling support can be equal intervals of filling support, or it can be Filling support with unequal intervals, the final result is that not all mining strips in a certain mining area are filled and supported, and at least one mining strip in a certain mining area is not filled and supported, and it can be used in the mining area.
  • a space is formed for storing the CO2 and waste gas discharged in situ during the power generation process of the mining equipment 5, as well as the artificially injected CO2 space, and the specific location of the filling support is determined according to the mining conditions of different sites;
  • Step 1) is the step of dividing the well field, and the division of the well field can facilitate mining equipment to excavate and mine in the well field.
  • the minefield is divided into at least one quadrangular mining area, the long side of the quadrangular mining area extends along the direction of the coal seam, and the short side of the quadrangular mining area extends along the direction of the coal seam.
  • Mine field division also includes dividing each mining area, dividing each mining area into a plurality of mining strips with equal width, and the multiple mining strips are parallel to the broad side of the mining area and distributed along the length direction of the mining area.
  • the appropriate mining equipment is selected according to the size of the mining strip in the mining area, and the section size of the mining equipment is approximately the same as the size of the mining strip.
  • the main well is drilled, and the main well extends to the well field.
  • the main well is used to transport the mining equipment, and to transport the materials used for filling support and sealing of the roof, floor and boundary surrounding rock to the mining equipment during the mining process.
  • the number of main wells in this scheme is two, and the two main wells are set on the boundary of the well field and are respectively set at two diagonal positions of the well field.
  • the well field is divided into two quadrangular mining areas, and the two quadrangular mining areas form a large quadrangular well field, and the two main wells are respectively set at two diagonal positions of the large quadrilateral well field.
  • One of the main wells in the two main wells is used as the starting point of tunneling mining, and the other main shaft is used as the end point of tunneling mining.
  • Each mining strip is provided with an energy transmission pipeline, and the energy transmission pipeline is used to transmit energy to the mining equipment and at the same time can transmit the electric energy converted by the mining equipment to the ground.
  • step 4 the excavation equipment performs full-face excavation along the length extension direction of the excavation strip, and the excavation equipment transmits the converted electric energy to the ground through the energy transmission pipeline.
  • the material used for filling and supporting in this scheme is a material capable of adsorbing CO 2 gas, which has high strength after solidification and can absorb CO 2 gas.
  • the filling support is described here.
  • the filling support is supported along the length direction of the mining strip.
  • the filling support can be a section-by-section structure along the length extension direction of the mining strip, or it can be filled with the entire mining strip. However, at least one of the two adjacent excavation strips is filled and supported, and the other can be filled and supported, or not. However, there must be excavation after the excavation of the entire mining area is completed.
  • the last mining strip is not filled and supported, and the space of the goafed mining strip that is not filled and supported can be used to store the CO2 and waste gas emitted in situ during the power generation process of the mining equipment 5 and the artificially injected CO2 . space.
  • each section of filling support forms a filling support wall, and the adjacent filling support walls It includes not only adjacent filling and supporting structures located in the same mining strip, but also adjacent filling and supporting structures along the direction perpendicular to the length of the mining strip.
  • the filling and supporting structures in the mining area The support structure forms a maze-like structure.
  • the adjacent filling support walls are located close to two along the direction perpendicular to the length of the excavation strip. Fill support structure.
  • the space between adjacent filling retaining walls 6 forms a space for sequestering the CO 2 and waste gas discharged in situ during the power generation process of the mining equipment, as well as the artificially injected CO 2 , and the filling retaining walls 6 can also adsorb CO 2 .
  • the coal fluidized mining method for realizing CO 2 underground sequestration disclosed in this proposal includes mining area division, tunneling mining, filling support, roof and bottom plate sealing, and boundary surrounding rock sealing. In this scheme, filling and supporting is carried out on the goaf formed by excavation equipment along the mining strip.
  • the filling and supporting can form a high-strength supporting wall, which not only has an effective supporting effect on the roof and floor rock, but also forms a
  • the continuous filling retaining walls 6 parallel to the excavation strips form a space for underground storage of CO2 between adjacent filling retaining walls 6.
  • the mining equipment also seals the roof and floor of the goaf, and the boundary of the mine field is sealed.
  • the surrounding rock is sealed, so that the entire well field forms a closed space for storing CO 2 underground after the mining is completed.
  • the waste gas such as CO 2 generated during the power generation process of mining equipment is directly discharged in situ and the artificially injected CO 2 is sealed in the above space. , realize the underground storage of CO2, ensure that the polluted gas emitted by mining equipment does not leave the ground, and reduce the harm of carbon emissions to the environment.
  • Step 5) is used to realize the sealing of the roof and the bottom plate
  • step 6) is used to realize the sealing of the boundary surrounding rock, so that the entire mining area forms a closed space.
  • the sealing of the roof and floor of the excavation strip with filling and retaining walls is carried out during the support and filling process of the excavation strip.
  • Separate sealing measures; the sealing of the roof and floor of the mining strip without filling retaining walls is the sealing of the roof and floor of the goaf located at the back end of the mining equipment during the mining process by the mining equipment.
  • the sealing of the boundary surrounding rock is also carried out during the excavation process of the mining strip. As long as the boundary surrounding rock is encountered during the mining process, the sealing measures for the boundary surrounding rock mining area will be taken to reduce CO2 gas overflowing the mining area through the boundary surrounding rock. amount.
  • Steps 4), 5) and 6) in this scheme are not a limitation to the order of operation steps, and the order of steps 4), 5) and 6) can be adjusted according to actual needs, so that the mining area forms a storage area for underground CO 2 space.
  • the sealing system of the mining equipment is used to spray or install the anti-permeability sealing material transported from the ground into the mining bin to the surface of the overlying stratum, floor and surrounding rock of the goaf , and ensure that the plugging material can closely adhere to the surface of the overlying rock strata, floor and surrounding rock, improve the permeability of the roof and floor of the goaf, and ensure that CO 2 gas will not flow along the upper surface when CO 2 is sequestered later. Leakage and filtration occurred in overlying strata, floor and surrounding rock.
  • the materials for filling and supporting in step 4) include coarse aggregate, mixing material, quick-setting agent, calcium carbonate and gangue sorted out by the mining equipment.
  • Coarse aggregate, mixing material, quick-setting agent and calcium carbonate are transported from the ground to the filling support bin of the mining equipment through the main shaft, and are fully mixed with the gangue sorted out by the sorting bin of the mining equipment to prepare a quick-setting Condensed and high-strength filling slurry.
  • the material has high initial setting strength, and contains calcium sources such as calcium carbonate, which can chemically react with CO2 after solidification, and absorb CO2 gas in the mining area.
  • the filling slurry is quickly pumped to the filling position through the transportation pipeline of the filling support bin for unloading and compaction.
  • a high-strength support wall will be formed, which can not only effectively support the roof and bottom plate, but also effectively absorb CO. 2 and other exhaust gas.
  • the transportation distance of the filling slurry is greatly shortened. Therefore, the selection of quick-setting filling slurry will not cause the problem of blocked pipes and difficult transportation, and can ensure that the filling slurry can be Quickly solidify to reach the support strength, and achieve the purpose of filling with mining.
  • Filling and supporting at intervals in mining strips can also improve the economic benefits in the mining process and provide more sufficient underground space for CO 2 storage.
  • the specific filling support scheme is determined according to the stress conditions of the surrounding rock. It is necessary to ensure that the strength and spacing of the filling support can meet the requirements of roof control and ensure that the key layer does not fracture and sink. In this scheme, the filling support operation and coal seam excavation are carried out at the same time.
  • the strip mining scheme is still adopted, and the division of the mining strips is in accordance with the division structure in step 1), but the interval mining strips are no longer implemented between adjacent mining strips Instead, all mining strips are filled and supported to ensure that the entire goaf is filled with filling and supporting materials, and the goaf is completely filled and supported.
  • the above method is still adopted.
  • the space filling support scheme described in the article is used for support.
  • the fluidized coal mining method for CO 2 underground sequestration disclosed in this solution also includes step 7) closing the main well 3 after step 6), so that the entire mining area forms a closed space.
  • the mining equipment disclosed in this solution includes a first mining bin 51, a first sorting bin 52, a first conversion bin 53, a first energy storage bin 54, a filling support bin 59, a second energy storage bin 55,
  • the second conversion bin 56, the second sorting bin 57, and the second mining bin 58 cooperate with each other based on systematic and intelligent control, and work together to realize a coal mining and utilization mode that integrates resource mining, conversion and utilization, and filling and support.
  • Coal mining operations are mainly carried out by the first mining bin and the second mining bin, using the shield mining method to complete the mining of the full-section coal seam.
  • the mining equipment is arranged in a symmetrical structure, and the first mining chamber and the second mining chamber are set.
  • step 4 when the excavation equipment 5 carries out full-face excavation and mining along the excavation strip 2, it is specifically:
  • the front end of the shield cutter head can be equipped with auxiliary rock-breaking devices such as microwave radiation or water jets.
  • auxiliary rock-breaking devices such as microwave radiation or water jets.
  • the coal fluidized mining method for CO2 underground sequestration disclosed in this program also includes step 8) After all the mining strips in the mining area have been mined and filled, an anti-seepage wall is set at the position where the main shaft is set in the mining area , so that the mining area forms a confined space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

公开了一种实现CO 2地下封存的煤炭流态化开采方法,包括采区划分、掘进开采、充填支护、顶板和底板密封、以及边界围岩密封;通过对采掘设备沿采掘条带(2)掘进开采后形成的采空区进行充填支护,充填支护能够形成高强度支撑墙体,不仅对顶板和底板岩起到有效的支撑效果,而且形成充填支护墙体,相邻充填支护墙体之间形成用于地下封存CO 2的空间,同时采掘设备还对采空区的顶板和底板进行密封,对井田的边界围岩进行密封,使得整个井田在开采完成后整个形成一个地下封存CO 2的封闭空间,采掘设备发电过程中产生的CO 2等废气直接原位排放,且封存上述空间内,实现CO 2的地下封存,保证采掘设备排放的污染气体不出地面,减轻碳排放对环境的危害。

Description

一种实现CO2地下封存的煤炭流态化开采方法 技术领域
本发明涉及矿产资源开采技术领域,特别涉及一种实现CO2地下封存的煤炭流态化开采方法。
背景技术
煤炭原位流态化开采技术不同于传统固体能源开采方式,实现了能源的地下无人化、智能化开采。
化石能源在开发利用过程中,会有大量碳排放,引发一系列的环境问题。如何减轻碳排放对环境的危害,成为当下能源开发利用的一个关键问题。其中,安全有效地实现CO 2的地下封存便是其中一个重要的途径,且相比于地下盐水层的CO 2封存方法,充分利用地下采空区对CO 2进行地下封存的潜力巨大。
因此,如何设计一种可实现CO 2地下封存的流态化开采方法,成为本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明提供了一种实现CO 2地下封存的煤炭流态化开采方法,以实现CO 2地下封存。
为实现上述目的,本发明提供如下技术方案:
一种实现CO 2地下封存的煤炭流态化开采方法,包括步骤:
1)划分井田为至少一个采区,并将所述采区划分为多个宽度相等的采掘条带;
2)钻设延伸至所述井田的主井,并通过所述主井安装采掘设备;
3)在每个所述采掘条带上设置用于向采掘设备输送能源同时能够将所述采掘设备利用煤炭转化得到的电能输送至地面的输能管线;
4)所述采掘设备沿所述采掘条带进行全断面掘进开采,所述采掘设备通过所述输能管线将转化生产的电能输送至地面,同时所述主井向所述采掘设备内输送用于充填支护以及密封顶板、底板和边界围岩的物料,所述采掘设备对相邻两条所述采掘条带中的至少一条位于所述采掘设备后端的采空区进行充填支护形成充填支护墙,相邻充填支护墙之间形成用于封存所述采掘设备在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间,所述充填支护墙能够吸附所述CO 2气体;
5)对所述采掘设备后端的采空区的顶板和底板采取封堵措施;
6)对所述井田的边界围岩采取封堵措施。
优选的,在上述实现CO 2地下封存的煤炭流态化开采方法中,所述步骤4)中用于充填支护的物料包括粗骨料、拌合料、速凝剂、碳酸钙和所述采掘设备分选出的矸石,所述粗骨料、拌合料、速凝剂和碳酸钙通过所述主井输送至所述采掘设备的充填支护仓,所述粗骨料、所述拌合料、所述速凝剂、所述碳酸钙和所述矸石在所述充填支护仓内搅拌,并通过所述充填支护仓的输送管路泵送至充填位置。
优选的,在上述实现CO 2地下封存的煤炭流态化开采方法中,在所述采掘条带煤层厚度大于所述采掘设备的掘进断面时,所述步骤4)具体为:
所述采掘设备在所述煤层内自下而上分层进行开采,所述采掘设备通过所述输能管线将转化生产的电能输送至地面,所述采掘设备依次在所述煤层的下 层、中层和上层按照所述步骤1)中划分的所述采掘条带进行全断面掘进开采,
同时所述采掘设备对所述煤层的下层和中层的所有采掘条带位于所述采掘设备后端的采空区进行充填支护,
所述采掘设备对所述煤层的上层的相邻两条所述采掘条带中的至少一条位于所述采掘设备后端的采空区进行充填支护形成充填支护墙,相邻充填支护墙之间形成用于封存所述采掘设备在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间,所述充填支护墙能够吸附所述CO 2气体。
优选的,在上述实现CO 2地下封存的煤炭流态化开采方法中,还包括位于所述步骤6)之后的步骤7)采掘设备封闭所述主井。
优选的,在上述实现CO 2地下封存的煤炭流态化开采方法中,所述采掘设备包括依次串联连接的第一采掘仓、第一分选仓、第一转化仓、第一储能仓、充填支护仓、第二储能仓、第二转化仓、第二分选仓和第二采掘仓,所述采掘设备能够沿第一采掘仓或者第二采掘仓的采掘方向掘进。
优选的,在上述实现CO 2地下封存的煤炭流态化开采方法中,所述步骤4)中,所述采掘设备沿所述采掘条带进行全断面掘进开采时具体为:
开启所述采掘设备一侧的所述第一采掘仓的所述盾构刀盘,对一条所述采掘条带进行采掘;
在完成所述采掘条带的采掘施工后,关闭所述采掘设备的所述第一采掘仓的所述盾构刀盘,开启所述采掘设备的另一侧的所述第二采掘仓的所述盾构刀盘并调整所述盾构刀盘的掘进方向,对相邻待掘进的所述采掘条带进行掘进开采;
重复上述过程至所述采区的所有采掘条带掘进开采完成。
优选的,在上述实现CO 2地下封存的煤炭流态化开采方法中,还包括步骤8)在所述采区的所有采掘条带开采完成且充填完成后,在所述采区设置所述主井的位置设置抗渗墙体。
从上述技术方案可以看出,本发明提供的实现CO 2地下封存的煤炭流态化开采方法,包括采区划分、掘进开采、充填支护、顶板和底板密封、以及边界围岩密封。本方案中对采掘设备沿采掘条带掘进开采后形成的采空区进行充填支护,充填支护能够形成高强度支撑墙体,不仅对顶板和底板岩起到有效的支撑效果,而且形成充填支护墙,相邻充填支护墙之间形成地下封存CO 2的空间,同时采掘设备还对采空区的顶板和底板进行密封,对井田的边界围岩进行密封,使得整个井田在开采完成后整个形成一个地下封存CO 2的封闭空间,采掘设备发电过程中产生的CO 2等废气直接原位排放,且封存上述空间内,实现CO2的地下封存,保证采掘设备排放的污染气体不出地面,减轻碳排放对环境的危害。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的井田划分的结构示意图;
图2为本发明实施例提供的采掘设备的结构示意图;
图3为本发明实施例提供的充填支护的结构示意图;
图4为本发明第一个实施例提供的某个采区的采掘条带充填支护的结构示意图;
图5为本发明第二个实施例提供的某个采区的采掘条带充填支护的结构示意图;
图6为本发明第三个实施例提供的某个采区的采掘条带充填支护的结构示意图;
图7为本发明第四个实施例提供的某个采区的采掘条带充填支护的结构示意图;
图8为本发明实施例提供的煤层厚度超过采掘设备掘进断面时充填支护的结构示意图;
图9为本发明第一个实施例提供的实现CO 2地下封存的煤炭流态化开采方法的流程图;
图10为本发明第二个实施例提供的实现CO 2地下封存的煤炭流态化开采方法的流程图。
其中,
1、采区,2、采掘条带,3、主井,4、输能管线,5、采掘设备,51、第一采掘仓,52、第一分选仓,53、第一转化仓,54、第一储能仓,55、第二储能仓,56、第二转化仓,57、第二分选仓,58、第二采掘仓,59、充填支护仓,6、充填支护墙。
具体实施方式
本发明公开了一种实现CO 2地下封存的煤炭流态化开采方法,以实现CO 2 地下封存。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-图10。
本发明公开了一种实现CO 2地下封存的煤炭流态化开采方法,包括如下步骤:
1)划分井田为至少一个采区,并将采区划分为多个宽度相等的采掘条带;
2)钻设延伸至井田的主井,并通过主井安装采掘设备;
3)在每个采掘条带上设置用于向所述采掘设备输送能源同时能够将采掘设备利用煤炭转化得到的电能输送至地面的输能管线;
4)采掘设备沿采掘条带进行全断面掘进开采,采掘设备通过输能管线将转化生产的电能输送至地面,同时主井向采掘设备内输送用于充填支护的物料,采掘设备对位于采掘设备后端的采空区进行充填支护形成充填支护墙,采掘设备5对相邻两条采掘条带2中的至少一条进行填充支护,相邻充填支护墙之间形成用于封存采掘设备5在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间。
此处需要说明的是,每个采区1内的采掘条带2进行间隔充填支护,具体的,可以是相邻两条采掘条带中有一条进行填充,此时是间隔一个采掘条带进行填充支护,也可以是间隔两条采掘条带进行填充支护,也可以是间隔三条或者以上采掘条带进行填充支护,间隔填充支护可以是相等间隔的填充支护,也 可以是不相等间隔的填充支护,最终结果是,不是某一个采区内所有采掘条带都进行充填支护,某一个采区内至少有一条采掘条带不进行充填支护,能够在采区内形成用于封存采掘设备5在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间,而具体的填充支护的位置根据不同现场的开采条件决定;
5)对采掘设备5后端的采空区的顶板和底板采取封堵措施;
6)对井田的边界围岩采取封堵措施。
步骤1)为井田的划分步骤,井田划分能够方便采掘设备在井田内掘进开采。在本方案的一个具体实施例中,将井田划分为至少一个四边形采区,四边形采区的长边沿煤层的走向方向延伸,四边形采区的短边沿煤层的倾向方向延伸。
对于边界规则的井田可以只布置一个矩形采区覆盖井田的全部边界。对于边界不规则的井田,可以划分为两个采区,也可以划分为三个采区,甚至更多个采区,无论井田划分为几个采区,应尽可能覆盖井田全部范围。
井田划分还包括对每个采区进行划分,将每个采区划分为多个宽度相等的采掘条带,多个采掘条带与采区的宽边平行且沿着采区的长度方向分布。具体的,依据采区的采掘条带的尺寸选择合适的采掘设备,采掘设备的断面尺寸与采掘条带的尺寸大致相同。
钻设主井,主井延伸至井田,主井用于运输采掘设备,以及在采掘过程中向采掘设备内输送用于充填支护和顶板、底板以及边界围岩密封的物料。
本方案中主井的个数为两个,两个主井设置在井田的边界且分别设置在井田的两个对角位置。如图1所示,井田划分为两个四边形采区,两个四边形采 区构成一个大的四边形井田,两个主井分别设置的大的四边形井田的两个对角位置。
两个主井中的其中一个主井作为掘进开采的起点,另一个主井作为掘进开采的终点。
每个采掘条带上均设置有输能管线,输能管线用于向采掘设备输送能源同时能够将采掘设备利用煤炭转化得到的电能输送至地面。
步骤4)中采掘设备在沿采掘条带的长度延伸方向进行全断面掘进开采,采掘设备通过输能管线将转化生产的电能输送至地面。
在采掘设备掘进开采的同时,主井向采掘设备内输送用于充填支护的物料,采掘设备将物料泵送到位于采掘设备后端的采空区,对采空区进行充填支护。本方案中用于充填支护的物料为能够对CO 2气体进行吸附的物料,在物料凝固后具有较高的强度且能够吸附CO 2气体。
在采区完成充填支护、以及顶板、底板和边界围岩的密封后,需要封闭所有主井,保证地下采区为一个独立封闭的空间。
此处对充填支护进行说明,充填支护沿着采掘条带的长度方向进行支护,充填支护沿采掘条带的长度延伸方向可以是一段一段的结构,也可以是充满整条采掘条带的长条形结构,但是相邻两条采掘条带中至少有一条进行充填支护,另一条可以进行充填支护,也可以不进行充填支护,但是整个采区掘进完成后必然有采掘后的采掘条带没有被充填支护,没有被充填支护的采空的采掘条带的空间可以用作封存采掘设备5在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间。
在充填支护为沿着采掘条带的长度延伸方向为一段一段的结构的实施例 中,如图6和7所示,每一段充填支护形成一个充填支护墙,相邻充填支护墙既包括位于同一条采掘条带内的位置相邻的充填支护结构,也包括沿垂直于采掘条带的长度延伸方向上相邻的充填支护结构,该实施例中,采区内的充填支护结构形成类似迷宫的结构。
在充填支护为充满整条采掘条带的长条形结构实施例中,如图4和5所示,相邻充填支护墙为沿垂直于采掘条带的长度延伸方向上位置接近两个充填支护结构。
相邻充填支护墙6之间的空间形成用于封存采掘设备在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间,同时充填支护墙6还能够对CO 2进行吸附。本方案公开的实现CO 2地下封存的煤炭流态化开采方法,包括采区划分、掘进开采、充填支护、顶板和底板密封、以及边界围岩密封。本方案中对采掘设备沿采掘条带掘进开采后形成的采空区进行充填支护,充填支护能够形成高强度支撑墙体,不仅对顶板和底板岩起到有效的支撑效果,而且形成与采掘条带平行的连续充填支护墙6,相邻充填支护墙6之间形成用于地下封存CO 2的空间,同时采掘设备还对采空区的顶板和底板进行密封,对井田的边界围岩进行密封,使得整个井田在开采完成后整个形成一个地下封存CO 2的封闭空间,采掘设备发电过程中产生的CO 2等废气直接原位排放以及人工注入的CO 2,封存在上述空间内,实现CO2的地下封存,保证采掘设备排放的污染气体不出地面,减轻碳排放对环境的危害。
步骤5)用于实现对顶板和底板的封堵,步骤6)用于实现对边界围岩的封堵,使整个采区形成一个封闭空间。
对具有充填支护墙的采掘条带的顶板和底板的封堵是在采掘条带进行支 护充填的过程中进行,在填充支护的过程中完成对底板和顶板的封堵,不需要采取单独的封堵措施;对不具有填充支护墙的采掘条带的顶板和底板的封堵是采掘设备在采掘过程中对位于采掘设备后端的采空区的顶板和底板进行封堵。
边界围岩的封堵也是在采掘条带的掘进过程中进行,只要在采掘过程中遇到边界围岩,即对边界围岩采区封堵措施,减少CO 2气体通过边界围岩溢出采区的量。
本方案中步骤4)、5)和6)不是对操作步骤顺序的限定,可以根据实际需要调整步骤4)、5)和6)的顺序,以使采区形成一个用于地下封存CO 2的空间。
在采掘设备向前推进的过程中,利用采掘设备的封装系统,将从地面输送到采掘仓内的抗渗性封堵材料喷涂或者安装到采空区的上覆岩层、底板和围岩的表面,并保证封堵材料与上覆岩层、底板和围岩的表面之间可以紧密贴合,改善采空区顶、底板的渗透性,保证后期进行CO 2封存时,CO 2气体不会沿上覆岩层、底板和围岩发生泄漏滤失。
步骤4)中充填支护的物料包括粗骨料、拌合料、速凝剂、碳酸钙和所述采掘设备分选出的矸石。粗骨料、拌合料、速凝剂和碳酸钙通过主井从地面输送到采掘设备的充填支护仓内,并与采掘设备的分选仓分选出的矸石进行充分的拌和制备成速凝且高强度的充填浆液。物料具有较高的初凝强度,且其中具有碳酸钙等钙源,固化后可以与CO 2发生化学反应,吸附采区内的CO 2气体。
充填浆液通过充填支护仓的运输管路快速泵送到充填位置卸料夯实,在充填体固化后,会形成高强度支撑墙体,不仅可以对顶板和底板进行有效支撑,而且可以有效吸附CO 2等废气。
由于充填浆液的拌和是在采掘设备的充填支护仓内进行,大大缩短了充填浆液的运输距离,因此,选用速凝充填浆液既不会出现堵管难以输送的问题,又可以保证充填浆液可以迅速凝固达到支护强度,达到随采随填的目的。
采掘条带间隔进行充填支护还可以提高开采过程中的经济效益,同时为CO 2的封存提供更加充分的地下空间。
具体的充填支护方案依据围岩应力条件确定,需要确保充填支护的强度以及间距能够满足顶板控制的要求,保证关键层不发生断裂下沉。本方案中充填支护作业和煤层掘进开采用同时进行。
对于煤层厚度大于采掘设备的掘进断面时,需要采用自下而上的开采方案,该种开采方案能够保证开采的安全。
对于率先进行开采的下方煤层以及中间煤层,仍采用条带式采掘方案,且采掘条带的划分是按照步骤1)中的划分结构,但是相邻采掘条带之间不再实行间隔采掘条带充填支护的方案,而是采用所有采掘条带均进行充填支护,保障整个采空区充满充填支护物料,采空区被完全充填支护,对于最后开采的最上方的煤层仍然采用如上文所述的间隔充填支护的方案进行支护。
本方案中公开的实现CO 2地下封存的煤炭流态化开采方法还包括位于步骤6)之后的步骤7)封闭主井3,使整个采区形成一个封闭空间。
本方案公开的采掘设备包括依次串联连接的第一采掘仓51、第一分选仓52、第一转化仓53、第一储能仓54、充填支护仓59、第二储能仓55、第二转化仓56、第二分选仓57和第二采掘仓58,基于系统化、智能化控制相互配合,协同作业,实现资源采掘、转化利用、充填支护一体化的煤炭开采利用方式。
煤炭的采掘作业主要由第一采掘仓和第二采掘仓进行,利用盾构式采掘方 式完成全断面煤层的开采作用。
考虑到采掘设备的长度较长,转弯半径较大,无法掉头进行相邻采掘条带的回采,因此在采掘设备以对称结构设置,设置第一采掘仓和第二采掘仓。
步骤4)中,采掘设备5沿采掘条带2进行全断面掘进开采时具体为:
开启采掘设备5一侧的第一采掘仓51的盾构刀盘,对一条采掘条带2进行采掘;
在完成采掘条带2的采掘施工后,关闭采掘设备5的第一采掘仓51的盾构刀盘,开启采掘设备5的另一侧的第二采掘仓58的盾构刀盘并调整盾构刀盘的掘进方向,对相邻待掘进的采掘条带2进行掘进开采;
重复上述过程至采区的所有采掘条带2掘进开采完成。
采掘设备在掘进过程中,盾构刀盘的前端可设置微波辐射或者水射流等辅助破岩装置,在盾构刀盘割煤壁之前,在煤壁中制造人工裂缝,避免出现卡刀或者掘进迟滞的现象。
本方案公开的实现CO 2地下封存的煤炭流态化开采方法还包括步骤8)在采区的所有采掘条带开采完成且充填完成后,在采区的设置主井的位置设置抗渗墙体,使采区形成密闭空间。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种实现CO 2地下封存的煤炭流态化开采方法,其特征在于,包括步骤:
    1)划分井田为至少一个采区(1),并将所述采区(1)划分为多个宽度相等的采掘条带(2);
    2)钻设延伸至所述井田的主井(3),并通过所述主井(3)安装采掘设备(5);
    3)在每个所述采掘条带(2)上设置用于向采掘设备(5)输送能源同时能够将所述采掘设备(5)利用煤炭转化得到的电能输送至地面的输能管线(4);
    4)所述采掘设备(5)沿所述采掘条带(2)进行全断面掘进开采,所述采掘设备(5)通过所述输能管线(4)将转化生产的电能输送至地面,同时所述主井(3)向所述采掘设备(5)内输送用于充填支护以及密封顶板、底板和边界围岩的物料,所述采掘设备(5)对相邻两条所述采掘条带中的至少一条位于所述采掘设备后端的采空区进行充填支护形成支护墙,
    相邻充填支护墙之间形成用于封存所述采掘设备在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间,所述充填支护墙能够吸附所述CO 2气体;
    5)对所述采掘设备(5)后端的采空区的顶板和底板采取封堵措施;
    6)对所述井田的边界围岩采取封堵措施。
  2. 根据权利要求1所述的实现CO 2地下封存的煤炭流态化开采方法,其特征在于,所述步骤4)中用于充填支护的物料包括粗骨料、拌合料、速凝剂、 碳酸钙和所述采掘设备(5)分选出的矸石,所述粗骨料、拌合料、速凝剂和碳酸钙通过所述主井(3)输送至所述采掘设备(5)的充填支护仓,所述粗骨料、所述拌合料、所述速凝剂、所述碳酸钙和所述矸石在所述充填支护仓内搅拌,并通过所述充填支护仓的输送管路泵送至充填位置。
  3. 根据权利要求1所述的实现CO 2地下封存的煤炭流态化开采方法,其特征在于,在所述采掘条带(2)煤层厚度大于所述采掘设备(5)的掘进断面时,所述步骤4)具体为:
    所述采掘设备(5)在所述煤层内自下而上分层进行开采,所述采掘设备(5)通过所述输能管线(4)将转化生产的电源输送至地面,所述采掘设备(5)在依次在所述煤层的下层、中层和上层按照所述步骤1)中划分的所述采掘条带(2)进行全断面掘进开采,
    同时所述采掘设备(5)对所述煤层的下层和中层的所有采掘条带(2)位于所述采掘设备后端的采空区进行充填支护,
    所述采掘设备对所述煤层的上层的相邻两条所述采掘条带(2)中的至少一条位于所述采掘设备后端的采空区进行充填支护形成充填支护墙,相邻充填支护墙之间形成用于封存所述采掘设备在发电过程中原位排放的CO 2和废气以及人工注入的CO 2的空间,所述充填支护墙能够吸附所述CO 2气体。
  4. 根据权利要求1所述的实现CO 2地下封存的煤炭流态化开采方法,其特征在于,还包括位于所述步骤6)之后的步骤7)采掘设备封闭所述主井(3)。
  5. 根据权利要求1所述的实现CO 2地下封存的煤炭流态化开采方法,其特征在于,所述采掘设备(5)包括依次串联连接的第一采掘仓(51)、第一分选仓(52)、第一转化仓(53)、第一储能仓(54)、充填支护仓(59)、第二储 能仓(55)、第二转化仓(56)、第二分选仓(57)和第二采掘仓(58),所述采掘设备(5)能够沿第一采掘仓(51)或者第二采掘仓(58)的采掘方向掘进。
  6. 根据权利要求5所述的实现CO 2地下封存的煤炭流态化开采方法,其特征在于,所述步骤4)中,所述采掘设备(5)沿所述采掘条带(2)进行全断面掘进开采时具体为:
    开启所述采掘设备(5)一侧的所述第一采掘仓(51)的所述盾构刀盘,对一条所述采掘条带(2)进行采掘;
    在完成所述采掘条带(2)的采掘施工后,关闭所述采掘设备(5)的所述第一采掘仓(51)的所述盾构刀盘,开启所述采掘设备(5)的另一侧的所述第二采掘仓(58)的所述盾构刀盘并调整所述盾构刀盘的掘进方向,对相邻待掘进的所述采掘条带(2)进行掘进开采;
    重复上述过程至所述采区的所有采掘条带(2)掘进开采完成。
  7. 根据权利要求1所述的实现CO 2地下封存的煤炭流态化开采方法,其特征在于,还包括步骤8)在所述采区(1)的所有采掘条带(2)开采完成且充填完成后,在所述采区(1)设置所述主井(3)的位置设置抗渗墙体。
PCT/CN2021/103578 2021-06-30 2021-06-30 一种实现co2地下封存的煤炭流态化开采方法 WO2023272587A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3206583A CA3206583C (en) 2021-06-30 2021-06-30 Fluidized coal mining method for implementing co2 underground storage
US18/277,925 US20240035382A1 (en) 2021-06-30 2021-06-30 Fluidized coal mining method for implementing co2 underground storage
CN202180099673.5A CN117545909A (zh) 2021-06-30 2021-06-30 一种实现co2地下封存的煤炭流态化开采方法
PCT/CN2021/103578 WO2023272587A1 (zh) 2021-06-30 2021-06-30 一种实现co2地下封存的煤炭流态化开采方法
AU2021454472A AU2021454472A1 (en) 2021-06-30 2021-06-30 Fluidized coal mining method for implementing co2 underground storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103578 WO2023272587A1 (zh) 2021-06-30 2021-06-30 一种实现co2地下封存的煤炭流态化开采方法

Publications (1)

Publication Number Publication Date
WO2023272587A1 true WO2023272587A1 (zh) 2023-01-05

Family

ID=84692398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103578 WO2023272587A1 (zh) 2021-06-30 2021-06-30 一种实现co2地下封存的煤炭流态化开采方法

Country Status (5)

Country Link
US (1) US20240035382A1 (zh)
CN (1) CN117545909A (zh)
AU (1) AU2021454472A1 (zh)
CA (1) CA3206583C (zh)
WO (1) WO2023272587A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117090550A (zh) * 2023-10-17 2023-11-21 太原理工大学 基于过热蒸汽及超临界水原位复合开采遗煤的装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115822697B (zh) * 2022-11-25 2024-04-26 华能煤炭技术研究有限公司 用于综放架后全断面就地膏体管注式充填系统布置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105160A1 (en) * 2010-05-19 2013-05-02 Schlumberger Technology Corporation Compositions and Methods for Well Treatment
US20170021207A1 (en) * 2015-07-22 2017-01-26 Engineering Projects Management International Ltd Terminating Expansion Of Underground Coal Fires And Protecting The Environment
CN111173554A (zh) * 2019-12-27 2020-05-19 中国矿业大学 一种基于四向布井的原位热解流态化瓦斯抽采方法
CN111188594A (zh) * 2020-02-22 2020-05-22 太原理工大学 一种老空区煤泥水气液流态化开采的装置及方法
CN112761634A (zh) * 2020-12-29 2021-05-07 中国矿业大学 一种深部煤层的煤炭自动化开采装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3050034C (en) * 2018-03-23 2022-02-01 China University Of Mining And Technology, Beijing Automatic coal mining machine and fluidized coal mining method
US10975694B2 (en) * 2018-03-23 2021-04-13 China University Of Mining And Technology, Beijing Mine field layout method suitable for fluidized mining of coal resources
US10960444B2 (en) * 2018-04-06 2021-03-30 Karl William Yost Closure methods for mines
CN116816439A (zh) * 2019-02-18 2023-09-29 河南理工大学 一种利用煤矿废弃矿井采空区封存co2的方法
CN110344877B (zh) * 2019-08-02 2021-04-06 新疆大学 在多孔介质充填的采空区内存储二氧化碳气体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105160A1 (en) * 2010-05-19 2013-05-02 Schlumberger Technology Corporation Compositions and Methods for Well Treatment
US20170021207A1 (en) * 2015-07-22 2017-01-26 Engineering Projects Management International Ltd Terminating Expansion Of Underground Coal Fires And Protecting The Environment
CN111173554A (zh) * 2019-12-27 2020-05-19 中国矿业大学 一种基于四向布井的原位热解流态化瓦斯抽采方法
CN111188594A (zh) * 2020-02-22 2020-05-22 太原理工大学 一种老空区煤泥水气液流态化开采的装置及方法
CN112761634A (zh) * 2020-12-29 2021-05-07 中国矿业大学 一种深部煤层的煤炭自动化开采装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117090550A (zh) * 2023-10-17 2023-11-21 太原理工大学 基于过热蒸汽及超临界水原位复合开采遗煤的装置及方法
CN117090550B (zh) * 2023-10-17 2024-02-02 太原理工大学 基于过热蒸汽及超临界水原位复合开采遗煤的装置及方法

Also Published As

Publication number Publication date
AU2021454472A1 (en) 2023-08-10
US20240035382A1 (en) 2024-02-01
CA3206583C (en) 2024-05-21
CN117545909A (zh) 2024-02-09
CA3206583A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
AU2013358812B2 (en) Solid-filling coal mining method with two pre-excavated tunnels for advancing
WO2023272587A1 (zh) 一种实现co2地下封存的煤炭流态化开采方法
US11578598B2 (en) Method for coal mining without reserving coal pillar and tunneling roadway in whole mining area
WO2014187163A1 (zh) 一种特厚煤层倾斜分层固体充填采煤方法
CN104405437A (zh) 一种固体充填与综采混合式工作面开采方法
CN109882239B (zh) 一种露天端帮压煤放射式充填开采方法
CN105298496A (zh) 设置预留工作面煤柱的全采全充采煤方法
AU2018431390A1 (en) Method for recovering room-type coal pillars by cemented filling of reserved roadways
CN102877848B (zh) 采煤与矸石胶结条带充填同步进行方法
CN110410076A (zh) 一种用于老房柱采空区遗留煤柱回收的充填开采方法
CN116163730A (zh) 一种薄煤层钻机双向前进充填开采及二氧化碳封存的方法
CN103953345A (zh) 一种沿空小断面留巷开采方法
CN113153295A (zh) 极厚硬煤开采方法
CN113653492B (zh) 一种充填开采防治冲击地压方法
CN108798770B (zh) 适用于短壁巷采水平工作面的矸石充填注浆施工方法
CN105971607A (zh) 一种中厚煤层沿空留巷方法
CN110714759B (zh) 一种开采遗失煤炭的方法
CN112963196B (zh) 巷间保护煤柱充填开采方法
CN111364994B (zh) 一种综采转充填连续推进协同开采方法
CN107237635A (zh) 一种一次采全厚的特厚固体钾盐矿开采方法
CN107091112B (zh) 一种适用于无损采矿的快速充填方法
CN113586053B (zh) 三位一体沿空留巷矸石充填采矿法
CN111946393B (zh) 一种超长固体充填工作面采煤系统及方法
CN111706329B (zh) 一种采掘运支通一体化智能开采工艺
CN108708725B (zh) 一种安全高效的缓倾斜矿体采矿法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3206583

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021454472

Country of ref document: AU

Date of ref document: 20210630

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18277925

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180099673.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE