WO2019178827A1 - 无人机的通信控制方法、系统和无人机 - Google Patents

无人机的通信控制方法、系统和无人机 Download PDF

Info

Publication number
WO2019178827A1
WO2019178827A1 PCT/CN2018/080160 CN2018080160W WO2019178827A1 WO 2019178827 A1 WO2019178827 A1 WO 2019178827A1 CN 2018080160 W CN2018080160 W CN 2018080160W WO 2019178827 A1 WO2019178827 A1 WO 2019178827A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication link
information
communication
drone
load device
Prior art date
Application number
PCT/CN2018/080160
Other languages
English (en)
French (fr)
Inventor
杨勇
陈汉平
熊川樘
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880032204.XA priority Critical patent/CN110622486A/zh
Priority to PCT/CN2018/080160 priority patent/WO2019178827A1/zh
Publication of WO2019178827A1 publication Critical patent/WO2019178827A1/zh
Priority to US17/029,884 priority patent/US20210005079A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the embodiment of the invention relates to the technical field of drones, and in particular to a communication control method, system and drone of a drone.
  • the drone can be equipped with load devices manufactured by third-party manufacturers, including but not limited to: cameras, environmental detectors, lights, speakers, and the like.
  • the camera can take pictures of the drone during flight
  • the environmental detector can detect the environmental parameters of the flight position of the drone. Therefore, a drone equipped with a load device can perform various functions. Since the load device is mounted on the drone, and the drone is controlled by the remote control at the ground end, the load device can transmit data with the remote controller at the ground end by communicating with the drone, wherein the prior art
  • the load device in the communication device is connected to the UAV through the network port, that is, the data transmitted between the load device and the remote controller is transmitted through the network port (that is, the same communication channel).
  • the data transmitted includes control commands, emergency alarm information of the load device, sensor data of the load device, etc.
  • the control command and the emergency alarm information are more important than the sensor data, if the data is transmitted through the same communication channel at the same time. , may cause control commands and emergency alert information, these important data transmission failures.
  • Embodiments of the present invention provide a communication control method, system, and drone for a drone, which are used to improve information transmission success rate.
  • an embodiment of the present invention provides a communication control method for a drone, including:
  • the drone transmits the first information to the load device through the first communication link
  • the drone transmits the second information to the load device through the second communication link
  • the security of the first communication link is higher than the security of the second communication link, and the bandwidth of the first communication link is lower than the bandwidth of the second communication link.
  • an embodiment of the present invention provides a drone, including: a controller, a first communication interface, and a second communication interface;
  • the first communication interface is configured to establish a first communication link
  • the second communication interface is configured to establish a second communication link
  • the controller is configured to control the first communication interface to transmit the first information to the load device by using the first communication link;
  • the security of the first communication link is higher than the security of the second communication link, and the bandwidth of the first communication link is lower than the bandwidth of the second communication link.
  • an embodiment of the present invention provides a communication control system for a drone, including: a drone and a remote control device;
  • the drone is configured to receive first information from the remote control device, and send the first information to the load device through the first communication link when the first information indication is sent to the load device; and/or, Receiving first information from the load device over a first communication link and transmitting the first information to the remote control device;
  • the security of the first communication link is higher than the security of the second communication link, and the bandwidth of the first communication link is lower than the bandwidth of the second communication link.
  • an embodiment of the present invention provides a readable storage medium, where the readable storage medium stores a computer program; when the computer program is executed, the first aspect of the present invention is implemented as described in the embodiment of the present invention. Human-machine communication control method.
  • the UAV transmits information to the load device through two communication links respectively, because the security and bandwidth of the two communication links are different, therefore,
  • the information matching the communication link can be transmitted through different communication links, so the drone transmits a part of the information to the load device through the first communication link, and transmits another part of the information to the load device through the second communication link, thereby Improves the transmission success rate of information between the drone and the load device.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system in accordance with an embodiment of the present invention
  • FIG. 2 is a flowchart of a communication control method of a drone according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an application scenario of a communication control method for a drone according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an application scenario of a communication control method for a drone according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication control system of a drone according to an embodiment of the present invention.
  • Embodiments of the present invention provide a communication control method, system, and drone of a drone.
  • the drone involved therein may be a rotorcraft, for example, a multi-rotor aircraft driven by air by a plurality of urging means, and embodiments of the present invention are not limited thereto.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system in accordance with an embodiment of the present invention. This embodiment is described by taking a rotorcraft unmanned aerial vehicle as an example.
  • the unmanned aerial vehicle system 100 can include an unmanned aerial vehicle 110, a pan/tilt head 120, a display device 130, and a control device 140.
  • the unmanned aerial vehicle 110 may include a power system 150, a flight control system 160, and a rack.
  • the UAV 110 can be in wireless communication with the control device 140 and the display device 130.
  • the rack can include a fuselage and a tripod (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
  • the stand is coupled to the fuselage for supporting when the UAV 110 is landing.
  • Power system 150 may include one or more electronic governors (referred to as ESCs) 151, one or more propellers 153, and one or more electric machines 152 corresponding to one or more propellers 153, wherein motor 152 is coupled Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are disposed on the arm of the unmanned aerial vehicle 110; the electronic governor 151 is configured to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal. Current is supplied to the motor 152 to control the rotational speed of the motor 152. Motor 152 is used to drive propeller rotation to power the flight of unmanned aerial vehicle 110, which enables unmanned aerial vehicle 110 to achieve one or more degrees of freedom of motion.
  • ESCs electronic governors
  • the UAV 110 can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 152 can be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the unmanned aerial vehicle, that is, the position information and state information of the UAV 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • Sensing system 162 can include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system can be a Global Positioning System (GPS).
  • GPS Global Positioning System
  • the flight controller 161 is used to control the flight of the unmanned aerial vehicle 110, for example, the flight of the unmanned aerial vehicle 110 can be controlled based on the attitude information measured by the sensing system 162. It should be understood that the flight controller 161 may control the UAV 110 in accordance with pre-programmed program instructions, or may control the UAV 110 in response to one or more control commands from the control device 140.
  • the pan/tilt 120 can include a motor 122.
  • the pan/tilt is used to carry the imaging device 123.
  • the flight controller 161 can control the motion of the platform 120 via the motor 122.
  • the platform 120 may further include a controller for controlling the motion of the platform 120 by controlling the motor 122.
  • the platform 120 can be independent of the UAV 110 or a portion of the UAV 110.
  • the motor 122 can be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the pan/tilt can be located at the top of the UAV or at the bottom of the UAV.
  • the imaging device 123 may be, for example, a device for capturing an image such as a camera or a video camera, and the imaging device 123 may communicate with the flight controller and perform shooting under the control of the flight controller.
  • the imaging device 123 of the present embodiment includes at least a photosensitive element, such as a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • Display device 130 is located at the ground end of unmanned aerial vehicle system 100, can communicate with unmanned aerial vehicle 110 wirelessly, and can be used to display attitude information for unmanned aerial vehicle 110. In addition, an image taken by the imaging device can also be displayed on the display device 130. It should be understood that the display device 130 may be a stand-alone device or may be integrated in the control device 140.
  • the control device 140 is located at the ground end of the unmanned aerial vehicle system 100 and can communicate with the unmanned aerial vehicle 110 in a wireless manner for remote manipulation of the unmanned aerial vehicle 110.
  • FIG. 2 is a flowchart of a communication control method of a drone according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the UAV transmits the first information to the load device by using the first communication link.
  • the UAV transmits the second information to the load device by using the second communication link.
  • the drone transmits the first information to the load device through the first communication link
  • the UAV can also transmit the second information to the load device through the second communication link.
  • the first communication link and the second communication link are different links, and the security of the first communication link is higher than the security of the second communication link, and the bandwidth of the first communication link Lower than the bandwidth of the second communication link.
  • the security of the first communication link is higher than the security of the second communication link
  • the importance of the first information may be higher than the second information, so the information transmitted between the drone and the load device may be important according to Differently, they are transmitted through different communication links (the first communication link described above or the second communication link described above). Since the bandwidth of the first communication link is smaller than the bandwidth of the second communication link, the data amount of the first information may be smaller than the data amount of the second information, so the information transmitted between the UAV and the load device may be based on the amount of data. Differently, it is transmitted through different communication links (the first communication link described above or the second communication link described above).
  • the execution sequence between S201 and S202 is not limited in this embodiment.
  • the drone transmits information to the load device through two communication links respectively. Since the security and bandwidth of the two communication links are different, the communication link can be transmitted through different communication links. Matching information, so the drone transmits a part of the information to the load device through the first communication link, and transmits another part of the information to the load device through the second communication link, thereby improving the transmission of information between the drone and the load device. Success rate.
  • the drone transmits the first information to the load device via the first communication link, including: the drone transmits the first information to the load device through the first communication link, and/or the drone
  • the first information is received from the load device over the first communication link.
  • the information transmitted by the drone through the first communication link and the load device is collectively referred to as the first information.
  • the information and the drone that the drone transmits to the load device through the first communication link is collectively referred to as the first information.
  • the information received from the load device over the first communication link may be different.
  • the first information that the drone transmits to the load device through the first communication link includes: a control command for controlling the load device.
  • the first information received by the drone from the load device over the first communication link includes alarm information.
  • the remote control device (for example, the control device 140 shown in FIG. 1) transmits the first information to the drone, wherein the remote control device communicates with the drone (hereinafter referred to as the third communication link) Road) sends the first message to the drone.
  • the remote control device may, for example, send the first information to the drone according to the user's operation.
  • the drone After receiving the first information sent by the remote control device through the third communication link, determining whether the first information is sent to the load device, and when the first information indication is sent to the load device, the drone passes the The first communication link transmits the first information to a load device, which may include, for example, a control command for controlling the load device.
  • the drone transmits the first information to the flight controller of the drone.
  • the first information includes a field for identifying the receiving end of the first information. If the receiving end of the first information is a drone, the first information indicating that the first information is sent to the drone, if the field identifier
  • the receiving end of the first information is a load device, indicating that the first information indication is sent to the load device. Therefore, this embodiment can implement the remote control device to control the load device.
  • the drone receives the first information from the load device through the first communication link.
  • the load device sends the first information to the drone, and the drone receives the first information sent by the load device through the first communication link, and then the first information that the drone receives from the load device is sent to the remote control device, where
  • the drone can transmit the first information to the remote control device through a communication link with the remote control device (hereinafter referred to as a third communication link).
  • the first information received by the drone from the load device through the first communication link may include alarm information, for example, the alarm information is alarm information that the temperature of the load device is too high.
  • the alarm information can be output, for example, by the output device, such as by the display device.
  • the drone transmits the second information to the load device over the second communication link, including: the drone receiving the second from the load device over the second communication link information.
  • the load device sends the second information to the drone, and the second information may include, for example, sensor data (such as image data, environment detection parameters, etc.), and the drone receives the load transmission through the second communication link.
  • the second information is then sent to the remote control device, wherein the drone can transmit the second information through a communication link (referred to as a fourth communication link) with the remote control device.
  • the second information may be output, for example, by the output device, such as displaying the second information by the display device.
  • the drone and the remote control device can communicate wirelessly, so that the drone establishes a communication link with the remote control device through the antenna before communicating with the remote control device, wherein none
  • the human machine can be connected to the remote control device through the first antenna to establish a third communication link, and can also be connected to the remote control device through the second antenna to establish a fourth communication link.
  • the third communication link and the fourth communication link can be the same communication link.
  • the first antenna and the second antenna are the same antenna, that is, the drone is connected to the remote control device through the antenna to establish a communication link, wherein the antenna has a transceiving function.
  • the third communication link and the fourth communication link can be different communication links.
  • the first antenna and the second antenna are different antennas.
  • the security of the third communication link is higher than the security of the fourth communication link, and the bandwidth of the third communication link is lower than the bandwidth of the fourth communication link.
  • the third communication link corresponds to the first communication link, and the information received by the drone from the first communication link is sent to the remote control device through the third communication link, and the drone will be from the third communication link. The received information is sent to the load device over the first communication link.
  • the fourth communication link corresponds to the second communication link, and the drone transmits the information received from the second communication link to the remote control device through the fourth communication link.
  • the third communication link is a command channel and the fourth communication link is a picture transmission channel.
  • the first communication link is a command channel and the second communication link is a picture transmission channel.
  • the drone since the drone and the load device transmit information through two communication links, the drone can be connected to the load device through two communication interfaces, and the two communication interfaces can be the first communication interface. And a second communication interface.
  • the drone and the load device can be directly connected.
  • the drone can identify the communication protocol of the load device, and the load device can also identify the communication protocol of the drone.
  • the drone Before the drone communicates with the load device, the drone is connected to the load device through the first communication interface to establish a first communication link, and the drone is also connected to the load device through the second communication interface to establish a second communication link.
  • the drone and the load device need to be connected by the transit device, for example, as shown in FIG. 4, that is, the transit device is connected between the drone and the load device, and the load device cannot recognize the communication of the drone. Protocol, but the transit device can identify the communication protocol of the load device and the communication protocol of the drone.
  • the drone before the drone communicates with the load device, the drone is connected to the transit device through the first communication interface to establish a first communication link, and is connected to the transit device through the second communication interface to establish a second communication. link.
  • the switching device includes a third communication interface and a fourth communication interface, and the switching device is connected to the load device through the third communication interface, and the switching device is further connected to the load device through the fourth communication interface, wherein the third communication interface is The fourth communication interface is not the same interface, so two communication links are also established between the transit device and the load device, one communication link corresponds to the third communication interface, and the other communication link corresponds to the fourth communication interface.
  • the drone transmits the first information to the switching device through the first communication link; the switching device sends the first information received through the first communication link to the load through the third communication interface.
  • the load device may send the first information to the switching device through a communication link corresponding to the third communication interface, and after receiving the first information through the third communication interface, the switching device forwards the first information through the first communication link.
  • the load device may also send the second information to the switching device through the communication link corresponding to the fourth communication interface, and after receiving the second information through the fourth communication interface, the switching device passes the second information through the second communication link. Forward to the drone.
  • FIG. 3 and FIG. 4 are examples in which the communication modules in the drone are respectively communicated with the load device and the remote control device.
  • the communication protocol of the load device is the first communication protocol
  • the communication protocol of the drone is the second communication protocol, wherein the first communication protocol is different from the second communication protocol.
  • the switching device can receive the first information based on the first communication protocol sent by the load device through the third communication interface, and then convert the first information based on the first communication protocol into the first information based on the second communication protocol, and then pass The first communication link transmits first information based on the second communication protocol to the drone.
  • the switching device may receive the first information based on the second communication protocol sent by the UAV through the second communication link, and then convert the first information based on the second communication protocol into the first information based on the first communication protocol, and then The first information based on the first communication protocol is sent to the load device through the third communication interface.
  • the switching device may receive the second information based on the first communication protocol sent by the load device through the fourth communication interface, and then convert the second information based on the first communication protocol into the second information based on the second communication protocol, and then pass The second communication link transmits the second information based on the second communication protocol to the drone.
  • the third communication interface is a Controller Area Network (CAN) interface, or a Universal Asynchronous Receiver/Transmitter (UART) interface, or a recommended standard (recommended) Standard, RS) 232 interface, or RS485 interface, or RS422 interface; however, the embodiment is not limited thereto.
  • the fourth communication interface is a network port, and the embodiment is not limited thereto.
  • the drone 500 of the present embodiment may include: a controller 501, a first communication interface 502, and a second communication interface 503;
  • the controller 501, the first communication interface 502, and the second communication interface 503 can be communicatively connected.
  • the first communication interface 502 is configured to establish a first communication link.
  • the second communication interface 503 is configured to establish a second communication link.
  • the controller 501 is configured to control the first communication interface 502 to transmit first information with a load device through a first communication link; and control the second communication interface 503 to pass the second communication link with the The load device transmits the second information.
  • the security of the first communication link is higher than the security of the second communication link, and the bandwidth of the first communication link is lower than the bandwidth of the second communication link.
  • the drone of the embodiment may further include: a first antenna 504.
  • the first antenna 504 is configured to establish a third communication link with the remote control device.
  • the controller 501 is further configured to control the first antenna 504 to pass the third communication before controlling the first communication interface 502 to transmit the first information to the load device by using the first communication link.
  • the link receives the first information from the remote control device.
  • the controller 501 is specifically configured to: when the first information indication is sent to the load device, control the The first communication interface 502 sends the first information to the load device over the first communication link.
  • the first information includes a control command for controlling the load device.
  • the controller 501 is configured to: control the first communication interface 502 to pass the first when controlling the first communication interface 502 to transmit the first information to the load device by using the first communication link.
  • a communication link receives the first information from the load device.
  • the controller 501 is further configured to control the first antenna 504 to shake through the third communication link after controlling the first communication interface 502 to transmit the first information to the load device by using the first communication link.
  • the control device sends the first information.
  • the first information includes alarm information.
  • the drone of this embodiment may further include: a second antenna 505.
  • the second antenna 505 is configured to establish a fourth communication link with the remote control device.
  • the controller 501 controls the second communication interface 503 to transmit the second information to the load device by using the second communication link
  • the controller 501 is specifically configured to: control the second communication interface 503 to pass the second communication link.
  • the load device receives the second information.
  • the controller 501 is further configured to control the second antenna 505 to pass through the fourth communication link after controlling the second communication interface 503 to transmit the second information to the load device by using the second communication link.
  • the remote control device sends the second information.
  • the second information comprises sensor data.
  • the first communication link is a command channel.
  • the second communication link is a picture transmission channel.
  • the third communication link is a command channel.
  • the fourth communication link is a picture transmission channel.
  • the first communication interface 502 is configured to connect with the load device to establish a first communication link.
  • the second communication interface 503 is configured to connect with the load device to establish a second communication link
  • the first communication interface 502 is different from the second communication interface 503.
  • the first communication interface 502 is configured to connect with the transit device to establish the first communication link
  • the second communication interface 503 is configured to be connected to the switching device to establish the second communication link
  • the switching device includes a third communication interface and a fourth communication interface, and the third communication interface and the fourth communication interface are respectively connected to the load device;
  • the third communication interface is configured to forward the first information.
  • the fourth communication interface is configured to forward the second information.
  • the third communication interface is a CAN interface or a UART interface or an RS232 interface or an RS485 interface or an RS422 interface;
  • the fourth communication interface is a network port.
  • the UAV of the present embodiment can be used to implement the technical solution of the UAV in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a communication control system of a drone according to an embodiment of the present invention.
  • the communication control system of the drone of the embodiment may include: a drone 601 and a remote control device 602. .
  • the UAV 601 is configured to receive first information from the remote control device 602, and send the first information to the load device by using the first communication link when the first information indication is sent to the load device; And/or receiving first information from the load device over a first communication link and transmitting the first information to the remote control device 602;
  • the second information is received from the load device over a second communication link and the second information is transmitted to the remote control device 602.
  • the remote control device 602 is configured to send the first information to the drone 601 and/or receive the first information from the drone 601;
  • the second information is received from the drone 601.
  • the security of the first communication link is higher than the security of the second communication link, and the bandwidth of the first communication link is lower than the bandwidth of the second communication link.
  • the drone 601 is configured to receive first information from the remote control device 602 over a third communication link, and/or to the remote control device 602 via a third communication link. Sending the first information;
  • the security of the third communication link is higher than the security of the fourth communication link, and the bandwidth of the third communication link is lower than the bandwidth of the fourth communication link.
  • the first information received by the drone from the remote control device includes a control command for controlling the load device
  • the first information received by the drone from the load device includes alarm information.
  • the second information comprises sensor data.
  • the first communication link is a command channel.
  • the second communication link is a picture transmission channel.
  • the third communication link is a command channel.
  • the fourth communication link is a picture transmission channel.
  • the drone 601 is configured to connect with the load device through a first communication interface to establish a first communication link; and connect to the load device through a second communication interface to establish a second Communication link
  • the first communication interface is different from the second communication interface.
  • the communication control system of the drone of the embodiment may further include: a transit device 603.
  • the UAV 601 is further configured to connect with the switching device 603 through a first communication interface to establish a first communication link; and connect to the switching device 603 through a second communication interface to establish a second communication link. ;
  • the switching device 603 includes a third communication interface and a fourth communication interface, where the third communication interface and the fourth communication interface are respectively connected to the load device;
  • the switching device is configured to forward the first information by using the third communication interface; and forward the second information by using the fourth communication interface.
  • the third communication interface is a CAN interface or a UART interface or an RS232 interface or an RS485 interface or an RS422 interface;
  • the fourth communication interface is a network port.
  • the drone 601 is further configured to connect to the remote control device 602 through a first antenna to establish the third communication link, and to the remote control device 602 through the second antenna. Connected to establish the fourth communication link.
  • the UAV 601 can adopt the structure of the device embodiment shown in FIG. 5.
  • the system in this embodiment can be implemented in the technical solution of any of the foregoing embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明实施例提供一种无人机的通信控制方法、系统和无人机,此方法包括:无人机通过第一通信链路与负载设备传输第一信息;以及无人机通过第二通信链路与所述负载设备传输第二信息;其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。无人机通过两条通信链路分别与负载设备传输信息,由于两条通信链路的安全性与带宽不同,因此,可以通过不同的通信链路来传输与通信链路相匹配的信息,所以无人机通过第一通信链路与负载设备传输一部分信息,通过第二通信链路与负载设备传输另一部分信息,从而提高了信息在无人机与负载设备之间的传输成功率。

Description

无人机的通信控制方法、系统和无人机 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种无人机的通信控制方法、系统和无人机。
背景技术
目前,无人机上可以搭载第三方厂商制造的负载设备,负载设备包括但不限于:相机、环境检测器、灯光、扬声器等。例如:相机可以拍摄无人机飞行过程中的画面,环境检测器可以检测无人机飞行位置的环境参数等。因此,搭载有负载设备的无人机可以实现多种功能。由于负载设备是搭载在无人机上,而且无人机是由地面端的摇控器来控制,因此负载设备可以通过与无人机的通信来与地面端的摇控器传输数据,其中,现有技术中的负载设备通过网口与无人机通信连接,即负载设备与摇控器之间传输的数据均通过该网口(即同一通信通道)来传递。其中传输的数据包括控制命令、负载设备的紧急报警信息、负载设备的传感器数据等,相对来说,控制命令和紧急报警信息比传感器数据更重要,若这些数据同时均通过该同一通信通道来传输,可能造成控制命令和紧急报警信息这些重要数据传输失败。
发明内容
本发明实施例提供一种无人机的通信控制方法、系统和无人机,用于提高信息的传输成功率。
第一方面,本发明实施例提供一种无人机的通信控制方法,包括:
无人机通过第一通信链路与负载设备传输第一信息;以及
无人机通过第二通信链路与所述负载设备传输第二信息;
其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
第二方面,本发明实施例提供一种无人机,包括:控制器、第一通信接口和第二通信接口;
所述第一通信接口,用于建立第一通信链路;
所述第二通信接口,用于建立第二通信链路;
所述控制器,用于控制所述第一通信接口通过第一通信链路与负载设备传输第一信息;以及
控制所述第二通信接口通过所述第二通信链路与所述负载设备传输第二信息;
其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
第三方面,本发明实施例提供一种无人机的通信控制系统,包括:无人机和摇控设备;
所述无人机,用于从所述摇控设备接收第一信息,在所述第一信息指示发送给负载设备时,通过第一通信链路向负载设备发送第一信息;和/或,通过第一通信链路从所述负载设备接收第一信息,并向所述摇控设备发送所述第一信息;以及
通过第二通信链路从所述负载设备接收第二信息,并向所述摇控设备发送所述第二信息;
其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
第四方面,本发明实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现如第一方面本发明实施例所述的无人机的通信控制方法。
本实施例提供的无人机的通信控制方法、系统和无人机,无人机通过两条通信链路分别与负载设备传输信息,由于两条通信链路的安全性与带宽不同,因此,可以通过不同的通信链路来传输与通信链路相匹配的信息,所以无人机通过第一通信链路与负载设备传输一部分信息,通过第二通信链路与负载设备传输另一部分信息,从而提高了信息在无人机与负载设备之间的传输成功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的无人飞行系统的示意性架构图;
图2为本发明一实施例提供的无人机的通信控制方法的流程图;
图3为本发明一实施例提供的无人机的通信控制方法的应用场景示意图;
图4为本发明另一实施例提供的无人机的通信控制方法的应用场景示意图;
图5为本发明一实施例提供的无人机的结构示意图;
图6为本发明一实施例提供的无人机的通信控制系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了无人机的通信控制方法、系统和无人机。其中涉及的无人机可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此。
图1是根据本发明的实施例的无人飞行系统的示意性架构图。本实施例以旋翼无人飞行器为例进行说明。
无人飞行系统100可以包括无人飞行器110、云台120、显示设备130和控制装置140。其中,无人飞行器110可以包括动力系统150、飞行控制系统160和机架。无人飞行器110可以与控制装置140和显示设备130进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人飞行器110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人飞行器110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人飞行器110的飞行提供动力,该动力使得无人飞行器110能够实现一个或多个自由度的运动。在某些实施例中,无人飞行器110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人飞行器的姿态信息,即无人飞行器110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人飞行器110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人飞行器110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人飞行器110进行控制,也可以通过响应来自控制装置140的一个或多个控制指令对无人飞行器110进行控制。
云台120可以包括电机122。云台用于携带成像装置123。飞行控制器161可以通过电机122控制云台120的运动。可选地,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人飞行器110,也可以为无人飞行器110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人飞行器的顶部,也可以位于无人飞行器的底部。
成像装置123例如可以是照相机或摄像机等用于捕获图像的设备,成像 装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的成像装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,并且可以用于显示无人飞行器110的姿态信息。另外,还可以在显示设备130上显示成像装置拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制装置140中。
控制装置140位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,用于对无人飞行器110进行远程操纵。
图2为本发明一实施例提供的无人机的通信控制方法的流程图,如图2所示,本实施例的方法可以包括:
S201、无人机通过第一通信链路与负载设备传输第一信息。
S202、无人机通过第二通信链路与所述负载设备传输第二信息。
本实施例中,无人机通过第一通信链路与负载设备传输第一信息,另外,无人机还可以通过第二通信链路与所述负载设备传输第二信息。其中,第一通信链路与第二通信链路为不同的链路,而且第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
由于第一通信链路的安全性高于第二通信链路的安全性,因此,第一信息的重要性可以高于第二信息,所以无人机与负载设备之间传输的信息可以根据重要性不同,通过不同的通信链路(上述的第一通信链路或上述第二通信链路)来传输。由于第一通信链路的带宽小于第二通信链路的带宽,因此,第一信息的数据量可以小于第二信息的数据量,所以无人机与负载设备之间传输的信息可以根据数据量不同,通过不同的通信链路(上述的第一通信链路或上述第二通信链路)来传输。
其中,本实施例对S201与S202之间的执行顺序不做限定。
本实施例中,无人机通过两条通信链路分别与负载设备传输信息,由于两条通信链路的安全性与带宽不同,因此,可以通过不同的通信链路来传输与通信链路相匹配的信息,所以无人机通过第一通信链路与负载设备传输一 部分信息,通过第二通信链路与负载设备传输另一部分信息,从而提高了信息在无人机与负载设备之间的传输成功率。
在一些实施例中,上述无人机通过第一通信链路与负载设备传输第一信息,包括:无人机通过第一通信链路向负载设备发送第一信息,和/或,无人机通过第一通信链路从负载设备接收第一信息。本实施例中将无人机通过第一通信链路与负载设备传输的信息统称为第一信息,在实际应用中,无人机通过第一通信链路向负载设备发送的信息与无人机通过第一通信链路从负载设备接收的信息可能不同。例如:无人机通过第一通信链路向负载设备发送的第一信息包括:用于控制所述负载设备的控制命令。无人机通过第一通信链路从负载设备接收的第一信息包括报警信息。
下面对无人机通过第一通信链路向负载设备发送第一信息为例进行说明。摇控设备(例如可以是图1中所示的控制装置140)向无人机发送第一信息,其中,摇控设备通过与无人机之间的通信链路(以下称为第三通信链路)向无人机发送第一信息。该摇控设备例如可以是根据用户的操作向无人机发送第一信息。无人机通过第三通信链路接收摇控设备发送的第一信息后,确定该第一信息是否指示发送给负载设备,在该第一信息指示发送给负载设备时,该无人机再通过第一通信链路向负载设备发送所述第一信息,该第一信息例如可以包括用于控制所述负载设备的控制命令。在该第一信息指示发送给无人机时,该无人机再将该第一信息发送给无人机的飞行控制器。其中,第一信息中包括用于标识第一信息的接收端的字段,若该字段标识第一信息的接收端为无人机,则说明该第一信息指示发送给无人机,若该字段标识第一信息的接收端为负载设备,则说明该第一信息指示发送给负载设备。因此,本实施例可以实现摇控设备控制负载设备。
下面对无人机通过第一通信链路从负载设备接收第一信息为例进行说明。负载设备向无人机发送第一信息,无人机通过第一通信链路接收负载设备发送的第一信息,然后无人机将从负载设备接收的第一信息发送给摇控设备,其中,无人机可以通过与摇控设备之间的通信链路(以下称为第三通信链路)向摇控设备发送第一信息。可选地,无人机通过第一通信链路从负载设备接收的第一信息可以包括报警信息,例如:报警信息为该负载设备的温度过高的报警信息。摇控设备通过第三通信链路接收到报警信息之后,例如可以通 过输出设备输出该报警信息,如通过显示装置显示该报警信息。
在一些实施例中,无人机通过第二通信链路与所述负载设备传输第二信息,包括:所述无人机通过所述第二通信链路从所述负载设备接收所述第二信息。本实施例中,负载设备向无人机发送第二信息,该第二信息例如可以包括传感器数据(如图像数据、环境检测参数等),无人机通过第二通信链路接收负载发送的第二信息,然后向摇控设备发送第二信息,其中,无人机可以通过与摇控设备之间的通信链路(称为第四通信链路)发送第二信息。摇控设备通过第四通信链路接收第二信息后,例如可以通过输出设备输出该第二信息,如通过显示装置显示该第二信息。
在一些实施例中,无人机与摇控设备可以通过无线的方式进行通信,因此无人机在与摇控设备通信之前,无人机通过天线与摇控设备建立通信链路,其中,无人机可以通过第一天线与摇控设备连接以建立第三通信链路,还可以通过第二天线与摇控设备连接以建立第四通信链路。
在一些实施例中,第三通信链路与第四通信链路可以为同一通信链路。在这种情况下,上述的第一天线与第二天线为同一天线,即无人机通过天线与摇控设备连接以建立一个通信链路,其中,该天线具有收发功能。
在一些实施例中,第三通信链路与第四通信链路可以为不同的通信链路。相应地,上述的第一天线与第二天线为不同的天线。可选地,第三通信链路的安全性高于所述第四通信链路的安全性,所述第三通信链路的带宽低于所述第四通信链路的带宽。其中,第三通信链路与第一通信链路对应,无人机将从第一通信链路接收的信息通过第三通信链路发送给摇控设备,无人机将从第三通信链路接收的信息通过第一通信链路发送给负载设备。第四通信链路与第二通信链路对应,无人机将从第二通信链路接收的信息通过第四通信链路发送给摇控设备。在一些实施例中,第三通信链路为命令通道,第四通信链路为图传通道。
在一些实施例中,第一通信链路为命令通道,第二通信链路为图传通道。
在一些实施例中,由于无人机与负载设备通过两条通信链路进行信息传输,因此,无人机可以通过两个通信接口与负载设备连接,该两个通信接口可以为第一通信接口和第二通信接口。
在一些实施例中,无人机与负载设备可以直接连接,例如如图3所示, 无人机可以识别负载设备的通信协议,负载设备也可以识别无人机的通信协议,本实施例在无人机与负载设备通信之前,无人机通过第一通信接口与负载设备连接以建立第一通信链路,无人机还通过第二通信接口与负载设备连接以建立第二通信链路。
在一些实施例中,无人机与负载设备需要通过转接设备连接,例如如图4所示,即转接设备连接在无人机与负载设备之间,负载设备不能识别无人机的通信协议,但转接设备可以识别负载设备的通信协议和无人机的通信协议。本实施例在无人机与负载设备通信之前,无人机通过第一通信接口与转接设备连接以建立第一通信链路,以及通过第二通信接口与转接设备连接以建立第二通信链路。另外,转接设备包括第三通信接口和第四通信接口,转接设备通过第三通信接口与负载设备连接,转接设备还通过第四通信接口与负载设备连接,其中,第三通信接口与第四通信接口不是同一接口,因此转接设备与负载设备之间也会建立两个通信链路,一个通信链路对应第三通信接口,另一个通信链路对应第四通信接口。
在信息传输过程中,无人机将第一信息通过第一通信链路发送给转接设备;转接设备再将通过第一通信链路接收的第一信息,通过第三通信接口发送给负载设备。负载设备可以将第一信息通过与第三通信接口对应的通信链路发送给转接设备,转接设备通过第三通信接口接收到第一信息后,将第一信息通过第一通信链路转发给无人机。负载设备还可以将第二信息通过与第四通信接口对应的通信链路发送给转接设备,转接设备通过第四通信接口接收到第二信息后,将第二信息通过第二通信链路转发给无人机。
需要说明的是,图3和图4是以无人机中的通信模块分别与负载设备和摇控设备通信为例子示出。
在一些实施例中,若负载设备的通信协议为第一通信协议,无人机的通信协议为第二通信协议,其中,第一通信协议与第二通信协议不同。
转接设备可以通过第三通信接口接收到负载设备发送的基于第一通信协议的第一信息,再将基于第一通信协议的第一信息转换为基于第二通信协议的第一信息,再通过第一通信链路向无人机发送基于第二通信协议的第一信息。
转接设备可以通过第二通信链路接收无人机发送的基于第二通信协议的 第一信息,再将基于第二通信协议的第一信息转换为基于第一通信协议的第一信息,再通过第三通信接口向负载设备发送基于第一通信协议的第一信息。
转接设备可以通过第四通信接口接收到负载设备发送的基于第一通信协议的第二信息,再将基于第一通信协议的第二信息转换为基于第二通信协议的第二信息,再通过第二通信链路向无人机发送基于第二通信协议的第二信息。
在一些实施例中,上述的第三通信接口为控制器局域网络(Controller Area Network,CAN)接口,或者,通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART)接口,或者,推荐标准(recommended standard,RS)232接口,或者,RS485接口,或者,RS422接口;但本实施例并不限于此。上述的第四通信接口为网口,本实施例也不限于此。
图5为本发明一实施例提供的无人机的结构示意图,如图5所示,本实施例的无人机500可以包括:控制器501、第一通信接口502和第二通信接口503;其中,控制器501、第一通信接口502和第二通信接口503可以通信连接。
所述第一通信接口502,用于建立第一通信链路。
所述第二通信接口503,用于建立第二通信链路。
所述控制器501,用于控制所述第一通信接口502通过第一通信链路与负载设备传输第一信息;以及控制所述第二通信接口503通过所述第二通信链路与所述负载设备传输第二信息。
其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
在一些实施例,本实施例的无人机还可以包括:第一天线504。第一天线504,用于与摇控设备建立第三通信链路。
可选地,所述控制器501,还用于在控制所述第一通信接口502通过第一通信链路与负载设备传输第一信息之前,控制所述第一天线504通过所述第三通信链路从摇控设备接收第一信息。所述控制器501在控制所述第一通信接口502通过第一通信链路与负载设备传输第一信息时,具体用于:在所述第一信息指示发送给所述负载设备时,控制所述第一通信接口502通过所 述第一通信链路向所述负载设备发送所述第一信息。可选地,所述第一信息包括用于控制所述负载设备的控制命令。
可选地,所述控制器501在控制所述第一通信接口502通过第一通信链路与负载设备传输第一信息时,具体用于:控制所述第一通信接口502通过所述第一通信链路从所述负载设备接收所述第一信息。所述控制器501,还用于在控制所述第一通信接口502通过第一通信链路与负载设备传输第一信息之后,控制所述第一天线504通过所述第三通信链路向摇控设备发送所述第一信息。可选地,所述第一信息包括报警信息。
可选地,本实施例的无人机还可以包括:第二天线505。
第二天线505,用于与摇控设备建立第四通信链路。
所述控制器501在控制第二通信接口503通过第二通信链路与所述负载设备传输第二信息时,具体用于:控制所述第二通信接口503通过所述第二通信链路从所述负载设备接收所述第二信息。所述控制器501还用于在控制所述第二通信接口503通过第二通信链路与所述负载设备传输第二信息之后,控制所述第二天线505通过所述第四通信链路向摇控设备发送所述第二信息。
可选地,所述第二信息包括传感器数据。
在一些实施例中,所述第一通信链路为命令通道。
在一些实施例中,所述第二通信链路为图传通道。
在一些实施例中,所述第三通信链路为命令通道。
在一些实施例中,所述第四通信链路为图传通道。
在一些实施例中,所述第一通信接口502,用于与所述负载设备连接以建立第一通信链路。
所述第二通信接口503,用于与所述负载设备连接以建立第二通信链路;
其中,所述第一通信接口502与所述第二通信接口503不同。
在一些实施例中,所述第一通信接口502,用于与转接设备连接以建立所述第一通信链路;
所述第二通信接口503,用于与所述转接设备连接以建立所述第二通信链路;
其中,所述转接设备包括第三通信接口和第四通信接口,所述第三通信接口和所述第四通信接口分别与所述负载设备连接;
其中,所述第三通信接口,用于转发所述第一信息;
所述第四通信接口,用于转发所述第二信息。
可选地,所述第三通信接口为CAN接口或者UART接口或者RS232接口或者RS485接口或者RS422接口;
所述第四通信接口为网口。
本实施例的无人机,可以用于执行上述任一方法实施例中无人机的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本发明一实施例提供的无人机的通信控制系统的结构示意图,如图6所示,本实施例的无人机的通信控制系统可以包括:无人机601和摇控设备602。
所述无人机601,用于从所述摇控设备602接收第一信息,在所述第一信息指示发送给所述负载设备时,通过第一通信链路向负载设备发送第一信息;和/或,通过第一通信链路从所述负载设备接收第一信息,并向所述摇控设备602发送所述第一信息;以及
通过第二通信链路从所述负载设备接收第二信息,并向所述摇控设备602发送所述第二信息。
摇控设备602,用于向无人机601发送第一信息和/或从所述无人机601接收第一信息;以及
从所述无人机601接收第二信息。
其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
在一些实施例中,所述无人机601,用于通过第三通信链路从所述摇控设备602接收第一信息,和/或,通过第三通信链路向所述摇控设备602发送所述第一信息;以及
通过第四通信链路向所述摇控设备602发送所述第二信息;
其中,第三通信链路的安全性高于所述第四通信链路的安全性,所述第三通信链路的带宽低于所述第四通信链路的带宽。
在一些实施例中,所述无人机从所述摇控设备接收的所述第一信息包括用于控制所述负载设备的控制命令;
所述无人机从所述负载设备接收的所述第一信息包括报警信息。
在一些实施例中,所述第二信息包括传感器数据。
在一些实施例中,所述第一通信链路为命令通道。
在一些实施例中,所述第二通信链路为图传通道。
在一些实施例中,所述第三通信链路为命令通道。
在一些实施例中,所述第四通信链路为图传通道。
在一些实施例中,所述无人机601,用于通过第一通信接口与所述负载设备连接以建立第一通信链路;以及通过第二通信接口与所述负载设备连接以建立第二通信链路;
所述第一通信接口与所述第二通信接口不同。
在一些实施例中,本实施例的无人机的通信控制系统还可以包括:转接设备603。
所述无人机601,还用于通过第一通信接口与转接设备603连接以建立第一通信链路;以及通过第二通信接口与所述转接设备603连接以建立第二通信链路;
其中,所述转接设备603包括第三通信接口和第四通信接口,所述第三通信接口和所述第四通信接口分别与所述负载设备连接;
所述转接设备,用于通过所述第三通信接口转发所述第一信息;以及通过所述第四通信接口转发所述第二信息。
在一些实施例中,所述第三通信接口为CAN接口或者UART接口或者RS232接口或者RS485接口或者RS422接口;
所述第四通信接口为网口。
在一些实施例中,所述无人机601,还用于通过第一天线与所述摇控设备602连接以建立所述第三通信链路,以及通过第二天线与所述摇控设备602连接以建立所述第四通信链路。
其中,无人机601可以采用图5所示装置实施例的结构,本实施例的系统可以上述任一实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述 的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (41)

  1. 一种无人机的通信控制方法,其特征在于,包括:
    无人机通过第一通信链路与负载设备传输第一信息;以及
    无人机通过第二通信链路与所述负载设备传输第二信息;
    其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
  2. 根据权利要求1所述的方法,其特征在于,所述无人机通过第一通信链路与负载设备传输第一信息之前,还包括:所述无人机通过第三通信链路从摇控设备接收第一信息;
    所述无人机通过第一通信链路与负载设备传输第一信息,包括:在所述第一信息指示发送给所述负载设备时,所述无人机通过所述第一通信链路向所述负载设备发送所述第一信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括用于控制所述负载设备的控制命令。
  4. 根据权利要求1所述的方法,其特征在于,所述无人机通过第一通信链路与负载设备传输第一信息,包括:所述无人机通过所述第一通信链路从所述负载设备接收所述第一信息;
    所述无人机通过第一通信链路与负载设备传输第一信息之后,还包括:
    所述无人机通过第三通信链路向摇控设备发送所述第一信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息包括报警信息。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,还包括:
    所述无人机通过第一天线与所述摇控设备连接以建立所述第三通信链路。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述第三通信链路为命令通道。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述无人机通过第二通信链路与所述负载设备传输第二信息,包括:
    所述无人机通过所述第二通信链路从所述负载设备接收所述第二信息;
    所述无人机通过第二通信链路与所述负载设备传输第二信息之后,还包括:
    所述无人机通过第四通信链路向摇控设备发送所述第二信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信息包括传感器数据。
  10. 根据权利要求8或9所述的方法,其特征在于,还包括:
    所述无人机通过第二天线与所述摇控设备连接以建立第四通信链路。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述第四通信链路为图传通道。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一通信链路为命令通道。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第二通信链路为图传通道。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,还包括:
    所述无人机通过第一通信接口与所述负载设备连接以建立第一通信链路;以及
    所述无人机通过第二通信接口与所述负载设备连接以建立第二通信链路;
    所述第一通信接口与所述第二通信接口不同。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,还包括:
    所述无人机通过第一通信接口与转接设备连接以建立第一通信链路;以及
    所述无人机通过第二通信接口与所述转接设备连接以建立第二通信链路;
    其中,所述转接设备包括第三通信接口和第四通信接口,所述第三通信接口和所述第四通信接口分别与所述负载设备连接;
    所述无人机通过第一通信链路与负载设备传输第一信息,包括:所述无人机通过所述第一通信链路以及所述转接设备的第三通信接口,与所述负载设备传输所述第一信息;
    所述无人机通过第二通信链路与所述负载设备传输第二信息,包括:所述无人机通过所述第二通信链路以及所述转接设备的第四通信接口,与所述负载设备传输所述第二信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第三通信接口为CAN接口或者UART接口或者RS232接口或者RS485接口或者RS422接口;
    所述第四通信接口为网口。
  17. 一种无人机,其特征在于,包括:控制器、第一通信接口和第二通信接口;
    所述第一通信接口,用于建立第一通信链路;
    所述第二通信接口,用于建立第二通信链路;
    所述控制器,用于控制所述第一通信接口通过第一通信链路与负载设备传输第一信息;以及
    控制所述第二通信接口通过所述第二通信链路与所述负载设备传输第二信息;
    其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
  18. 根据权利要求17所述的无人机,其特征在于,还包括:第一天线;
    第一天线,用于与摇控设备建立第三通信链路;
    所述控制器,还用于在控制所述第一通信接口通过第一通信链路与负载设备传输第一信息之前,控制所述第一天线通过所述第三通信链路从摇控设备接收第一信息;
    所述控制器在控制所述第一通信接口通过第一通信链路与负载设备传输第一信息时,具体用于:在所述第一信息指示发送给所述负载设备时,控制所述第一通信接口通过所述第一通信链路向所述负载设备发送所述第一信息。
  19. 根据权利要求18所述的无人机,其特征在于,所述第一信息包括用于控制所述负载设备的控制命令。
  20. 根据权利要求17所述的无人机,其特征在于,还包括:第一天线;
    第一天线,用于与摇控设备建立第三通信链路;
    所述控制器在控制所述第一通信接口通过第一通信链路与负载设备传输第一信息时,具体用于:所述控制器控制所述第一通信接口通过所述第一通信链路从所述负载设备接收所述第一信息;
    所述控制器,还用于在控制所述第一通信接口通过第一通信链路与负载设备传输第一信息之后,控制所述第一天线通过所述第三通信链路向摇控设备发送所述第一信息。
  21. 根据权利要求20所述的无人机,其特征在于,所述第一信息包括报 警信息。
  22. 根据权利要求18-21任一项所述的无人机,其特征在于,所述第三通信链路为命令通道。
  23. 根据权利要求17-22任一项所述的无人机,其特征在于,还包括:
    第二天线,用于与摇控设备建立第四通信链路;
    所述控制器在控制第二通信接口通过第二通信链路与所述负载设备传输第二信息时,具体用于:控制所述第二通信接口通过所述第二通信链路从所述负载设备接收所述第二信息;
    所述控制器还用于在控制所述第二通信接口通过第二通信链路与所述负载设备传输第二信息之后,控制所述第二天线通过所述第四通信链路向摇控设备发送所述第二信息。
  24. 根据权利要求23所述的无人机,其特征在于,所述第二信息包括传感器数据。
  25. 根据权利要求23或24所述的无人机,其特征在于,所述第四通信链路为图传通道。
  26. 根据权利要求17-25任一项所述的无人机,其特征在于,所述第一通信链路为命令通道。
  27. 根据权利要求17-26任一项所述的无人机,其特征在于,所述第二通信链路为图传通道。
  28. 根据权利要求17-27任一项所述的无人机,其特征在于,
    所述第一通信接口,用于与所述负载设备连接以建立第一通信链路;
    所述第二通信接口,用于与所述负载设备连接以建立第二通信链路;
    其中,所述第一通信接口与所述第二通信接口不同。
  29. 根据权利要求17-27任一项所述的无人机,其特征在于,
    所述第一通信接口,用于与转接设备连接以建立所述第一通信链路;
    所述第二通信接口,用于与所述转接设备连接以建立所述第二通信链路;
    其中,所述转接设备包括第三通信接口和第四通信接口,所述第三通信接口和所述第四通信接口分别与所述负载设备连接;
    其中,所述第三通信接口,用于转发所述第一信息;
    所述第四通信接口,用于转发所述第二信息。
  30. 一种无人机的通信控制系统,其特征在于,包括:无人机和摇控设备;
    所述无人机,用于接收所述摇控设备发送的第一信息,在所述第一信息指示发送给负载设备时,通过第一通信链路向所述负载设备发送第一信息;和/或,通过第一通信链路从所述负载设备接收第一信息,并向所述摇控设备发送所述第一信息;以及
    通过第二通信链路从所述负载设备接收第二信息,并向所述摇控设备发送所述第二信息;
    其中,第一通信链路的安全性高于所述第二通信链路的安全性,所述第一通信链路的带宽低于所述第二通信链路的带宽。
  31. 根据权利要求30所述的系统,其特征在于,所述无人机,用于通过第三通信链路从所述摇控设备接收第一信息,和/或,通过第三通信链路向所述摇控设备发送所述第一信息;以及
    通过第四通信链路向所述摇控设备发送所述第二信息;
    其中,第三通信链路的安全性高于所述第四通信链路的安全性,所述第三通信链路的带宽低于所述第四通信链路的带宽。
  32. 根据权利要求31所述的系统,其特征在于,
    所述无人机,还用于通过第一天线与所述摇控设备连接以建立所述第三通信链路,以及通过第二天线与所述摇控设备连接以建立所述第四通信链路。
  33. 根据权利要求31或32所述的系统,其特征在于,所述第三通信链路为命令通道。
  34. 根据权利要求31-33任一项所述的系统,其特征在于,所述第四通信链路为图传通道。
  35. 根据权利要求31-34任一项所述的系统,其特征在于,所述无人机从所述摇控设备接收的所述第一信息包括用于控制所述负载设备的控制命令;
    所述无人机从所述负载设备接收的所述第一信息包括报警信息。
  36. 根据权利要求31-34任一项所述的系统,其特征在于,所述第二信息包括传感器数据。
  37. 根据权利要求31-36任一项所述的系统,其特征在于,所述第一通信链路为命令通道。
  38. 根据权利要求31-37任一项所述的系统,其特征在于,所述第二通信链路为图传通道。
  39. 根据权利要求31-38任一项所述的系统,其特征在于,所述无人机,用于通过第一通信接口与所述负载设备连接以建立第一通信链路;以及通过第二通信接口与所述负载设备连接以建立第二通信链路;
    所述第一通信接口与所述第二通信接口不同。
  40. 根据权利要求31-38任一项所述的系统,其特征在于,还包括:转接设备;
    所述无人机,还用于通过第一通信接口与转接设备连接以建立第一通信链路;以及通过第二通信接口与所述转接设备连接以建立第二通信链路;
    其中,所述转接设备包括第三通信接口和第四通信接口,所述第三通信接口和所述第四通信接口分别与所述负载设备连接;
    所述转接设备,用于通过所述第三通信接口转发所述第一信息;以及通过所述第四通信接口转发所述第二信息。
  41. 根据权利要求40所述的系统,其特征在于,所述第三通信接口为CAN接口或者UART接口或者RS232接口或者RS485接口或者RS422接口;
    所述第四通信接口为网口。
PCT/CN2018/080160 2018-03-23 2018-03-23 无人机的通信控制方法、系统和无人机 WO2019178827A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880032204.XA CN110622486A (zh) 2018-03-23 2018-03-23 无人机的通信控制方法、系统和无人机
PCT/CN2018/080160 WO2019178827A1 (zh) 2018-03-23 2018-03-23 无人机的通信控制方法、系统和无人机
US17/029,884 US20210005079A1 (en) 2018-03-23 2020-09-23 Uav communication control method and system, and uav

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/080160 WO2019178827A1 (zh) 2018-03-23 2018-03-23 无人机的通信控制方法、系统和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/029,884 Continuation US20210005079A1 (en) 2018-03-23 2020-09-23 Uav communication control method and system, and uav

Publications (1)

Publication Number Publication Date
WO2019178827A1 true WO2019178827A1 (zh) 2019-09-26

Family

ID=67988110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080160 WO2019178827A1 (zh) 2018-03-23 2018-03-23 无人机的通信控制方法、系统和无人机

Country Status (3)

Country Link
US (1) US20210005079A1 (zh)
CN (1) CN110622486A (zh)
WO (1) WO2019178827A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111022B2 (ja) * 2019-02-18 2022-08-02 トヨタ自動車株式会社 管制装置
WO2023100187A2 (en) * 2021-12-02 2023-06-08 Xtend Reality Expansion Ltd. Systems and methods for managing unmanned vehicle interactions with various payloads

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052203A (zh) * 2014-02-10 2015-11-11 深圳市大疆创新科技有限公司 自适应通信模式切换
CN105490729A (zh) * 2015-11-26 2016-04-13 中国航天空气动力技术研究院 一种基于卫星链路的一对多数据传输系统及方法
CN106255230A (zh) * 2016-07-29 2016-12-21 广东美的厨房电器制造有限公司 数据传输方法及数据传输装置
CN106331613A (zh) * 2016-08-22 2017-01-11 天津航天中为数据系统科技有限公司 一种基于无人机的通信方法及系统
CN206250389U (zh) * 2016-12-19 2017-06-13 广东容祺智能科技有限公司 一种无人机通讯链路天线随动系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9836047B2 (en) * 2015-06-10 2017-12-05 Kespry, Inc. Aerial vehicle data communication system
CN205103662U (zh) * 2015-11-13 2016-03-23 南京衡创天伟无人机技术有限公司 一种无人机航拍系统
CN205336281U (zh) * 2015-12-31 2016-06-22 中国国土资源航空物探遥感中心 一种空中中继装置、数据链路系统和应急监测系统
CN105836153A (zh) * 2016-03-17 2016-08-10 北京大工科技有限公司 一种无人机系留系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052203A (zh) * 2014-02-10 2015-11-11 深圳市大疆创新科技有限公司 自适应通信模式切换
CN105490729A (zh) * 2015-11-26 2016-04-13 中国航天空气动力技术研究院 一种基于卫星链路的一对多数据传输系统及方法
CN106255230A (zh) * 2016-07-29 2016-12-21 广东美的厨房电器制造有限公司 数据传输方法及数据传输装置
CN106331613A (zh) * 2016-08-22 2017-01-11 天津航天中为数据系统科技有限公司 一种基于无人机的通信方法及系统
CN206250389U (zh) * 2016-12-19 2017-06-13 广东容祺智能科技有限公司 一种无人机通讯链路天线随动系统

Also Published As

Publication number Publication date
US20210005079A1 (en) 2021-01-07
CN110622486A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
US11233943B2 (en) Multi-gimbal assembly
WO2021008628A1 (zh) 飞行器控制方法及飞行器
JP6671375B2 (ja) 無人機の飛行補助方法
WO2020143677A1 (zh) 一种飞行控制方法及飞行控制系统
WO2021013228A1 (zh) 无线通信方法、装置、无人机以及无人机控制系统
US11958604B2 (en) Unmanned aerial vehicle and method for controlling gimbal thereof
JP6281720B2 (ja) 撮像システム
WO2019227289A1 (zh) 延时拍摄控制方法和设备
CN108780321B (zh) 用于设备姿态调整的方法、设备、系统和计算机可读存储介质
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
WO2019104583A1 (zh) 最高温度点跟踪方法、装置和无人机
WO2021168819A1 (zh) 无人机的返航控制方法和设备
WO2019023906A1 (zh) 同步方法、设备和系统
WO2016011590A1 (zh) 一种数据处理方法、装置及飞行器
US20210005079A1 (en) Uav communication control method and system, and uav
WO2020154942A1 (zh) 无人机的控制方法和无人机
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2019227287A1 (zh) 无人机的数据处理方法和设备
US20210160662A1 (en) Method, device and system for supervision control of movable platform
CN110785720A (zh) 信息处理装置、信息提示指示方法、程序以及记录介质
JP6910785B2 (ja) 移動撮像装置およびその制御方法、ならびに撮像装置およびその制御方法、無人機、プログラム、記憶媒体
WO2021168821A1 (zh) 可移动平台的控制方法和设备
WO2022027337A1 (zh) 可移动平台的控制系统、控制方法、设备及存储介质
WO2020237429A1 (zh) 遥控设备的控制方法和遥控设备
WO2020062255A1 (zh) 拍摄控制方法和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910979

Country of ref document: EP

Kind code of ref document: A1