WO2019176979A1 - Method for manufacturing square steel tube, and square steel tube - Google Patents

Method for manufacturing square steel tube, and square steel tube Download PDF

Info

Publication number
WO2019176979A1
WO2019176979A1 PCT/JP2019/010151 JP2019010151W WO2019176979A1 WO 2019176979 A1 WO2019176979 A1 WO 2019176979A1 JP 2019010151 W JP2019010151 W JP 2019010151W WO 2019176979 A1 WO2019176979 A1 WO 2019176979A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
square
corner
square steel
forming
Prior art date
Application number
PCT/JP2019/010151
Other languages
French (fr)
Japanese (ja)
Inventor
昌士 松本
晃英 松本
井手 信介
岡部 能知
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019526015A priority Critical patent/JP6816827B2/en
Priority to KR1020207026506A priority patent/KR102400687B1/en
Priority to CN201980018424.1A priority patent/CN111836688B/en
Publication of WO2019176979A1 publication Critical patent/WO2019176979A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/155Making tubes with non circular section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/10Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes
    • B21D5/12Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes making use of forming-rollers

Abstract

The purpose of the present invention is to provide a method that can be used to easily manufacture a square steel tube having excellent dimensional precision for the radius of curvature of the corners, and to provide a square steel tube. The square steel tube is characterized in that the Vickers hardness at the corners thereof satisfies a prescribed formula, and the radius of curvature of the corners satisfies a prescribed formula.

Description

角鋼管の製造方法および角鋼管Square steel pipe manufacturing method and square steel pipe
 本発明は鋼管から角鋼管を製造する方法において、角鋼管の角部を目標値通りに制御し、寸法精度に優れた角鋼管を得る技術に関する。 The present invention relates to a technique for controlling a corner portion of a square steel pipe according to a target value and obtaining a square steel pipe excellent in dimensional accuracy in a method for producing a square steel pipe from a steel pipe.
 従来、建築用の角鋼管は、厚肉の鋼板をプレス機により角形状にプレス成形した後、溶接する方法(BCP法)により製造していた。一方、近年、生産性の低いBCP法に代わって、コストダウンを図る点から、ロール成形した後、溶接し、角成形して角鋼管を得る方法(BCR法)により、角鋼管を製造する試みがなされるようになった。また、建築物の階層に応じて角鋼管の寸法が定められているため、近年増加している高層建造物について、建築材料をBCR(「BCR」は日本鉄鋼連盟の登録商標)で統一するために、角鋼管の厚肉化が求められている。 Conventionally, square steel pipes for construction have been manufactured by a method (BCP method) in which a thick steel plate is press-formed into a square shape by a press and then welded. On the other hand, in recent years, instead of the low-productivity BCP method, from the viewpoint of cost reduction, an attempt to manufacture a square steel pipe by a method of forming a square steel pipe by roll forming, welding and square forming (BCR method) Has come to be made. In addition, because the dimensions of square steel pipes are determined according to the level of the building, in order to unify building materials with BCR (“BCR” is a registered trademark of the Japan Iron and Steel Federation) for high-rise buildings that have increased in recent years. In addition, thickening of the square steel pipe is required.
 角鋼管は用途上、角部の曲率半径(コーナーR)はサイズ毎に所定の値が要求される。また、耐震性や局部座屈防止の観点から、寸法精度の高い角鋼管が求められている。ロール成形方式により鋼管から角鋼管を製造する場合、複数段のロール群に鋼管を通し、鋼管外面側に四方からロールを押し当てて円筒部分を直線化し、正方形または矩形断面形状に成形させることで角鋼管を得ている。しかし、成形条件が適正に設定されていない場合、角鋼管の四隅の角部の曲率半径が大きくなるといった問題や、角鋼管の辺に含まれる直線部が凹凸形状になるといった寸法不良の問題、さらに余剰な加工硬化による角部の脆化の問題があった。 For square steel pipes, a predetermined value is required for each corner radius of curvature (corner R) for use. In addition, from the viewpoint of earthquake resistance and prevention of local buckling, a square steel pipe with high dimensional accuracy is required. When manufacturing square steel pipes from steel pipes by the roll forming method, the steel pipes are passed through a multi-stage roll group, the rolls are pressed against the outer surface side of the steel pipes to straighten the cylindrical part, and formed into a square or rectangular cross-sectional shape. A square steel pipe is obtained. However, if the molding conditions are not set properly, the problem is that the radius of curvature of the corners of the four corners of the square steel pipe is large, and the problem of dimensional defects such that the straight part included in the sides of the square steel pipe is uneven. Furthermore, there was a problem of embrittlement of corners due to excessive work hardening.
 このような角鋼管の寸法精度の問題に対して、特許文献1では、肉厚/外径比が大きくなるにつれてロールカリバーを小さくして(凹型から凸型にして)成形することにより、平坦部の反りを一定範囲内におさめた、寸法精度の高い角鋼管の製造方法が開示されている。 With respect to the problem of dimensional accuracy of such a square steel pipe, in Patent Document 1, a flat portion is obtained by forming a roll caliber with a smaller thickness (from a concave shape to a convex shape) as the thickness / outer diameter ratio increases. A method for manufacturing a square steel pipe with a high dimensional accuracy in which the warpage of the above is kept within a certain range is disclosed.
 また、特許文献2では、所定の素管の外径、肉厚、成形ロールの最大カリバー高さにて定まる設定押込み率を制御することによって、用途に応じた形状をもつ角鋼管を製造することができるとしている。 Further, in Patent Document 2, a square steel pipe having a shape corresponding to the application is manufactured by controlling a set indentation rate determined by an outer diameter, a wall thickness, and a maximum caliber height of a forming roll. I can do it.
特開平4-224023号公報Japanese Patent Laid-Open No. 4-224023 特許第3197661号公報Japanese Patent No. 3197661
 特許文献1、2のように、断面形状の寸法精度を改善するために、ロールカリバーや設定押込み率を制御することは有効である。しかしながら、ロールカリバーや設定押込み率は、辺に含まれる直線部の変形に効果があるため、角部の曲率半径については効果が小さい。特に厚肉の角鋼管の場合、断面の剛性が増加するため、角部はますます曲げ変形しにくくなり、角部の曲率半径が目標値を超過する。目標の曲率半径を得るためには、角鋼管の辺に含まれる直線部に対するロールの押込み量を増加させる必要がある。しかしながら、ロールの押込み量を増加させた場合、辺に含まれる直線部を中心に大きく押し込まれるため、結果として辺に含まれる直線部が凹形状となり、寸法不良となる。 As in Patent Documents 1 and 2, it is effective to control the roll caliber and the set indentation rate in order to improve the dimensional accuracy of the cross-sectional shape. However, the roll caliber and the set indentation rate have an effect on the deformation of the straight portion included in the side, and thus the effect on the curvature radius of the corner is small. In particular, in the case of a thick square steel pipe, since the rigidity of the cross section increases, the corner becomes more difficult to bend and deform, and the radius of curvature of the corner exceeds the target value. In order to obtain the target radius of curvature, it is necessary to increase the amount of pushing of the roll with respect to the straight portion included in the side of the square steel pipe. However, when the pressing amount of the roll is increased, the straight portion included in the side is largely pressed, and as a result, the straight portion included in the side becomes a concave shape, resulting in a defective dimension.
 本発明は、かかる事情に鑑みてなされたものであり、角部の曲率半径の寸法精度に優れた角鋼管を、簡便に製造できる方法および角鋼管を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method and a square steel pipe that can easily manufacture a square steel pipe excellent in dimensional accuracy of the radius of curvature of the corner.
 本発明者らは、角鋼管における角部の曲率半径に影響を及ぼす各種要因について、鋭意検討を行った。その結果、次のことが分かった。
(1)円筒状の素管である鋼管を角鋼管に成形する場合、上述したように、複数段のロール群に鋼管を通すことで、徐々に円筒形から角形に角成形を施す。ここで角成形において、辺に含まれる直線部の曲げ戻し、角部の曲げおよび周方向の絞り変形が発生する。特に角部周辺は、ロールがほぼ接触することなく角成形が完了する。すなわち、角成形において、角部は自由変形により張り出すことにより、鋼管から角部が形成される。
(2)角部は角成形直前の鋼管の周長に対して、角成形における周方向絞りの余剰分から形成される。本発明では、角成形直前の鋼管の周長と角成形直後の鋼管の周長の比が特定の範囲となることで、角部の曲率半径の寸法精度に優れた角鋼管を得ることができる。
(3)角成形直前の鋼管の周長と角成形直後の鋼管の周長の比は、角鋼管の肉厚と対向する辺の外表面間距離の関係式で表すことができる。また、角成形直前のサイジングスタンドのギャップを制御することにより、角成形直前の鋼管の周長と角成形直後の鋼管の周長の比を、特定の範囲に制御することができる。
The present inventors diligently studied various factors that affect the radius of curvature of the corner of the square steel pipe. As a result, the following was found.
(1) When forming a steel pipe, which is a cylindrical raw pipe, into a square steel pipe, as described above, the steel pipe is passed through a plurality of stages of rolls, so that the square is gradually formed from a cylindrical shape to a square shape. Here, in the corner forming, the straight portion included in the side is bent back, the corner is bent, and the circumferential drawing is deformed. In particular, corner forming is completed in the vicinity of the corner portion without almost contacting the roll. That is, in the corner forming, the corner portion is formed from the steel pipe by protruding by free deformation.
(2) The corner portion is formed from a surplus of the circumferential drawing in the corner forming with respect to the circumference of the steel pipe immediately before the corner forming. In the present invention, the ratio of the circumferential length of the steel pipe immediately before the square forming and the circumferential length of the steel pipe immediately after the square forming is in a specific range, so that a square steel pipe excellent in dimensional accuracy of the curvature radius of the corner can be obtained. .
(3) The ratio of the circumferential length of the steel pipe immediately before the square forming and the circumferential length of the steel pipe immediately after the square forming can be expressed by a relational expression of the distance between the outer surfaces of the sides facing the thickness of the square steel pipe. Further, by controlling the gap of the sizing stand immediately before the square forming, the ratio of the circumferential length of the steel pipe immediately before the square forming and the circumferential length of the steel pipe immediately after the square forming can be controlled within a specific range.
 本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]角鋼管の角部におけるビッカース硬さが下記式(2)を満たし、かつ、
前記角部の曲率半径が、下記式(3)を満たす角鋼管。
10≦HV―HV≦80      ・・・(2)
max-Rmin≦0.25×t    ・・・(3)
なお、式(2)、式(3)において、
HV:角鋼管の角部における鋼管外面側から1±0.2mmの範囲の位置におけるビッカース硬さ(HV)
HV:角鋼管の角部における鋼管内面側から1±0.2mmの範囲の位置におけるビッカース硬さ(HV)
max:鋼管軸方向に対して任意の垂直断面における、角部の曲率半径の最大値(mm)
min:鋼管軸方向に対して任意の垂直断面における、角部の曲率半径の最小値(mm)
t:肉厚(mm)
である。
[2]角鋼管の角部におけるビッカース硬さが下記式(4)を満たす[1]に記載の角鋼管。
290×t/H-3.2≦HV―HV≦579×t/H+33.7   ・・・(4)
[3]前記肉厚が25~30mmである[1]または[2]に記載の角鋼管。
[4]素材としての鋼板をロール成形し、次いで、ロール成形した鋼板を電縫溶接して電縫鋼管とした後、前記電縫鋼管を複数段のサイジングスタンドにて成形し、次いで複数段の角成形スタンドにて角成形して角鋼管を製造する方法であって、
下記式(1)を満たすように、角成形直前のサイジングスタンドのギャップを制御する角鋼管の製造方法。
IN/COUT≧0.50×t/H+0.99    ・・・(1)
なお、式(1)において、
IN:第一段目の角成形スタンド入側における鋼管の周長(mm)
OUT:最終段の角成形スタンド出側における鋼管の周長(mm)
t:肉厚(mm)
H:対向する辺の外表面間距離(mm)
である。
[5]前記肉厚が25~30mmである[4]に記載の角鋼管の製造方法。
The present invention is based on the above findings, and the features thereof are as follows.
[1] The Vickers hardness at the corner of the square steel pipe satisfies the following formula (2), and
A square steel pipe in which the radius of curvature of the corner satisfies the following formula (3).
10 ≦ HV I −HV O ≦ 80 (2)
R max −R min ≦ 0.25 × t (3)
In the formulas (2) and (3),
HV O : Vickers hardness (HV) at a position in the range of 1 ± 0.2 mm from the outer surface side of the steel pipe at the corner of the square steel pipe
HV I : Vickers hardness (HV) at a position in the range of 1 ± 0.2 mm from the inner surface of the steel pipe at the corner of the square steel pipe
R max : Maximum value of the radius of curvature of the corner (mm) in any vertical cross section with respect to the steel pipe axis direction
R min : Minimum value (mm) of the radius of curvature of the corner in an arbitrary vertical cross section with respect to the steel pipe axis direction
t: Wall thickness (mm)
It is.
[2] The square steel pipe according to [1], wherein the Vickers hardness at the corner of the square steel pipe satisfies the following formula (4).
290 × t / H−3.2 ≦ HV I −HV O ≦ 579 × t / H + 33.7 (4)
[3] The square steel pipe according to [1] or [2], wherein the wall thickness is 25 to 30 mm.
[4] Roll forming a steel plate as a raw material, and then forming the electric resistance welded steel pipe by electro-welding the roll formed steel sheet, and then forming the electric resistance welded steel pipe in a plurality of sizing stands, A method of manufacturing a square steel pipe by forming a square steel tube with a square forming stand,
A method of manufacturing a square steel pipe that controls a gap of a sizing stand immediately before square forming so as to satisfy the following formula (1).
C IN / C OUT ≧ 0.50 × t / H + 0.99 (1)
In formula (1),
C IN : Perimeter of steel pipe (mm) on the entrance side of the first stage square forming stand
C OUT : Peripheral length of the steel pipe on the exit side of the last-stage square forming stand (mm)
t: Wall thickness (mm)
H: Distance between outer surfaces of opposing sides (mm)
It is.
[5] The method for manufacturing a square steel pipe according to [4], wherein the thickness is 25 to 30 mm.
 本発明によれば、寸法精度が高い角鋼管を製造することができる。 According to the present invention, a square steel pipe with high dimensional accuracy can be manufactured.
図1は、電縫鋼管の製造設備の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a production facility for ERW steel pipes. 図2は、角鋼管の成形過程を示す模式図である。FIG. 2 is a schematic view showing a forming process of a square steel pipe. 図3は、角鋼管の断面を示す模式図である。FIG. 3 is a schematic diagram showing a cross section of a square steel pipe. 図4は、第一段目の角成形スタンド入側における鋼管の周長CINと最終段の角成形スタンド出側における鋼管の周長COUTとの比、および、肉厚tと対向する辺の外表面間距離Hとの比の関係を示すグラフである。4, the ratio of the circumference C OUT of the steel tube at the corner molding stand delivery side of the circumference C IN and final stage of the steel pipe in the first stage of the corner molding stand entry side, and a wall thickness t and opposite sides It is a graph which shows the relationship of ratio with the distance H between outer surfaces.
 本発明の角鋼管の製造方法について、図面に基づいて説明する。 The manufacturing method of the square steel pipe of the present invention will be described based on the drawings.
 まず、図1は、電縫鋼管の製造設備の一例を示す模式図である。電縫鋼管の素材である鋼帯1は、例えばレベラー2による入側矯正を施した後、複数のロールからなるケージロール群3で中間成形されてオープン管とされた後、複数のロールからなるフィンパスロール群4で仕上げ成形される。仕上げ成形の後は、スクイズロール5で圧接しながら鋼帯1の幅端部を溶接機6で電気抵抗溶接して、電縫鋼管7となる。また、本発明では、電縫鋼管7の製造設備は図1のような造管工程に限定されない。 First, FIG. 1 is a schematic view showing an example of a production facility for ERW steel pipes. The steel strip 1 which is the material of the electric resistance steel pipe is made of a plurality of rolls after being subjected to entry-side correction by, for example, a leveler 2 and then intermediately formed by a cage roll group 3 composed of a plurality of rolls to form an open pipe. Finishing is performed by the fin pass roll group 4. After finish forming, the width end portion of the steel strip 1 is subjected to electric resistance welding with the welding machine 6 while being pressed with the squeeze roll 5, so that the ERW steel pipe 7 is obtained. Moreover, in this invention, the manufacturing equipment of the ERW steel pipe 7 is not limited to a pipe making process like FIG.
 図2は、本発明の一実施形態における、角鋼管の成形過程を示す模式図である。図2に示すように、電縫鋼管7は複数のロールからなるサイジングロール群(複数段のサイジングスタンド)8によって円筒形状のまま縮径された後、複数のロールからなる角成形ロール群(複数段の角成形スタンド)9によって、順次R1、R2、R3のような形状に成形され、角鋼管10となる。なお、サイジングロール群8および角成形ロール群9のスタンド数は特に制限されない。また、サイジングロール群8もしくは角成形ロール群9のカリバー曲率は、1条件が好ましい。 FIG. 2 is a schematic diagram showing a forming process of a square steel pipe in one embodiment of the present invention. As shown in FIG. 2, the ERW steel pipe 7 is reduced in diameter by a sizing roll group (a plurality of sizing stands) 8 composed of a plurality of rolls, and then is formed into a square forming roll group (a plurality of rolls composed of a plurality of rolls). A square steel tube 10 is formed in the shape of R1, R2, and R3 sequentially by a stepped square forming stand) 9. The number of stands of the sizing roll group 8 and the square forming roll group 9 is not particularly limited. The caliber curvature of the sizing roll group 8 or the square forming roll group 9 is preferably one condition.
 図3は、角鋼管10の管軸方向に対して垂直な断面を示す断面図である。図3に示すように、鋼管の溶接部(シーム部)を0°と基準として、45°、135°、225°、315°の位置をそれぞれ角部中央とした場合、角部の曲率半径は、図3に示すように、管の中心を起点とし隣り合う辺と45°をなす線(L)と角部外側の交点での曲率半径をいう。角部の曲率半径は、上記L上に中心を置き、平坦部(対向する辺の外表面間距離における、辺の直線部)と円弧部との接続点(A、A’)に向かって引かれる線で定まる中心角が65°となるような扇形の半径とする。なお、曲率半径の算出方法としては、例えば、3点(角部外側の交点、および、平坦部と円弧部との接続点である2点)の距離関係の測定結果から正弦定理を用いて曲率半径を算出する方法や、前記3点の領域内のコーナー部とよく一致するラジアルゲージから曲率半径を計測する方法などがあるが、この限りではない。 FIG. 3 is a cross-sectional view showing a cross section perpendicular to the tube axis direction of the square steel pipe 10. As shown in FIG. 3, when the positions of 45 °, 135 °, 225 °, and 315 ° are the center of each corner with respect to the welded portion (seam portion) of the steel pipe as 0 °, the radius of curvature of the corner is As shown in FIG. 3, the radius of curvature at the intersection of the corner (outside) and the line (L) forming 45 ° with the adjacent side starting from the center of the tube. The radius of curvature of the corner portion is centered on the above L and drawn toward the connection point (A, A ′) between the flat portion (the straight portion of the side at the distance between the outer surfaces of the opposing sides) and the arc portion. The sector radius is such that the central angle determined by the line to be drawn is 65 °. In addition, as a calculation method of a curvature radius, for example, a curvature is calculated using a sine theorem based on a measurement result of a distance relationship between three points (a crossing point outside the corner part and two points that are connection points between the flat part and the arc part). There are a method of calculating the radius and a method of measuring the radius of curvature from a radial gauge that is well matched with the corner portion in the three-point region, but this is not restrictive.
 BCR法にて得られる角鋼管について、角部の曲率半径は、(2.5±0.5)×t(t:肉厚)と規定されている。すなわち、管軸方向に対して垂直な断面における、角部の曲率半径の最大値Rmaxと最小値Rminとの差は、最大で肉厚相当まで許容されることになる。 Regarding the square steel pipe obtained by the BCR method, the radius of curvature of the corner is defined as (2.5 ± 0.5) × t (t: wall thickness). That is, the difference between the maximum value Rmax and the minimum value Rmin of the radius of curvature of the corner in the cross section perpendicular to the tube axis direction is allowed up to the maximum thickness.
 しかしながら、角部の曲率半径の最大値Rmaxと最小値Rminとの差が肉厚程度の値の場合、大きな寸法誤差が生じていることとなる。そうすると、裏当金取り付けの際に手入れが必要となるため、施工性に弊害が生じる。また、曲率半径が極度に小さい角部が存在すると、角部に隣接する平坦部が長くなる。その結果、十分な寸法精度が得られなくなり、局部座屈の発生原因となる。 However, when the difference between the maximum value R max and the minimum value R min of the radius of curvature at the corner is a value of about the wall thickness, a large dimensional error has occurred. If it does so, since a maintenance is needed at the time of backing metal attachment, a bad effect arises in workability. In addition, when a corner having an extremely small curvature radius exists, a flat portion adjacent to the corner becomes long. As a result, sufficient dimensional accuracy cannot be obtained, causing local buckling.
 本発明者らが鋭意検討した結果、任意の垂直断面における、曲率半径の最大値Rmaxと最小値Rminとの差が肉厚の25%以下であれば、溶接接合の施工性や耐局部座屈性に影響が無いことを見出した。 The present inventors have studied intensively, in any vertical section, if the difference between the maximum value R max and the minimum value R min of the radius of curvature is less than 25% of the wall thickness, workability and resistance to localized portions of the weld joint It was found that there is no effect on buckling.
 次に、本発明者らは、任意の垂直断面における、曲率半径の最大値Rmaxと最小値Rminとの差が肉厚の25%以下を満たす角鋼管の製造方法について鋭意検討した。 Next, the inventors diligently studied a method for manufacturing a square steel pipe in which the difference between the maximum value Rmax and the minimum value Rmin of the radius of curvature in an arbitrary vertical section satisfies 25% or less of the wall thickness.
 前述したように、特に厚肉の角鋼管の場合、断面の剛性が増加するため、角部はますます曲げ変形しにくくなり、角部の曲率半径が目標値を超過する。この断面の剛性の増加は、肉厚tの増加または対向する辺の外表面間距離Hの減少により生じると考えられる。 As mentioned above, especially in the case of thick-walled square steel pipes, the rigidity of the cross section increases, so that the corners become more difficult to bend and deform, and the curvature radius of the corners exceeds the target value. This increase in the rigidity of the cross section is considered to be caused by an increase in the wall thickness t or a decrease in the distance H between the outer surfaces of the opposing sides.
 円筒状の素管である鋼管を角鋼管に成形する場合、上述したように、複数段のロール群に鋼管を通すことで、徐々に円筒形から角形に成形を施す。このような角成形においては、辺に含まれる直線部の曲げ戻し、角部の曲げおよび周方向の絞り変形が発生する。本発明者らは、角成形において、特に角部周辺ではロールがほぼ接触することなく角成形が完了することに着目した。 When forming a steel pipe, which is a cylindrical base pipe, into a square steel pipe, as described above, the steel pipe is passed through a plurality of stages of rolls, so that the cylindrical pipe is gradually shaped into a square. In such corner forming, the straight portion included in the side is bent back, the corner is bent, and circumferential drawing deformation occurs. The inventors of the present invention have focused on the fact that corner forming is completed without substantially contacting the roll, particularly in the vicinity of the corner.
 すなわち、角成形において、角部は自由変形により張り出すことで形成される。本発明者らは、角部は角成形直前の鋼管の周長に対して、角成形における周方向絞りの余剰分から形成されると考え、角成形直前の鋼管の周長と角成形直後の鋼管の周長との関係性、および、肉厚tと対向する辺の外表面間距離Hとの関係性について検討することとした。 That is, in the corner forming, the corner portion is formed by protruding by free deformation. The present inventors consider that the corner is formed from the excess of the circumferential drawing in the square forming relative to the circumference of the steel pipe immediately before the square forming, and the steel pipe immediately after the square forming and the steel pipe immediately after the square forming. And the relationship between the thickness t and the distance H between the outer surfaces of the sides facing each other.
 まず、BCR法にて得られた角鋼管について、任意の断面における曲率半径の最大値Rmaxと最小値Rminとの差が肉厚の25%以下を満たす角鋼管を合格(○)、差が25%超えを不合格(×)と評価した。次に、評価した各々の角鋼管について、角成形直前の鋼管の周長(第一段目の角成形スタンド入側における鋼管の周長、以下、「CIN」と称する。)と角成形直後の鋼管の周長(最終段の角成形スタンド出側における鋼管の周長、以下「COUT」と称する。)との比、および、肉厚tと対向する辺の外表面間距離Hとの比の関係について検討した。 First, for a square steel pipe obtained by the BCR method, a square steel pipe in which the difference between the maximum value R max and the minimum value R min of the radius of curvature in an arbitrary cross section satisfies 25% or less of the wall thickness is passed (◯), the difference Of over 25% was evaluated as a failure (x). Next, for each of the evaluated square steel pipes, the circumference of the steel pipe immediately before the square forming (the circumference of the steel pipe on the first-stage square forming stand entrance side, hereinafter referred to as “C IN ”) and immediately after the square forming. Ratio of the outer circumference of the steel pipe (the circumference of the steel pipe on the exit side of the final angle forming stand, hereinafter referred to as “C OUT ”), and the distance H between the outer surfaces of the sides facing the wall thickness t. The relationship of the ratio was examined.
 図4に結果を示す。図4に示すように、CIN/COUTが下記式(1)を満たすことで、角部の曲率半径の寸法精度に優れた角鋼管を簡便に得ることができることがわかった。
IN/COUT≧0.50×t/H+0.99    ・・・(1)
なお、式(1)において、
IN:第一段目の角成形スタンド入側における鋼管の周長(mm)
OUT:最終段の角成形スタンド出側における鋼管の周長(mm)
t:肉厚(mm)
H:対向する辺の外表面間距離(mm)
である。
The results are shown in FIG. As shown in FIG. 4, it was found that when C IN / C OUT satisfies the following formula (1), a square steel pipe excellent in dimensional accuracy of the curvature radius of the corner can be easily obtained.
C IN / C OUT ≧ 0.50 × t / H + 0.99 (1)
In formula (1),
C IN : Perimeter of steel pipe (mm) on the entrance side of the first stage square forming stand
C OUT : Peripheral length of the steel pipe on the exit side of the last-stage square forming stand (mm)
t: Wall thickness (mm)
H: Distance between outer surfaces of opposing sides (mm)
It is.
 本発明者らは、式(1)を満たすような、CIN/COUTを制御する方法について検討した。その結果、角成形直前のサイジングスタンドのギャップを制御することにより、式(1)を満たす角鋼管を得られることがわかった。 The present inventors examined a method for controlling C IN / C OUT so as to satisfy the formula (1). As a result, it was found that a square steel pipe satisfying the formula (1) can be obtained by controlling the gap of the sizing stand immediately before the square forming.
 本発明では、カリバーロールの凹部間ギャップについて、角成形直前のサイジングスタンドのギャップと角成形スタンドのギャップとの差が、70t/H~180t/H(mm)となるように角成形直前のサイジングスタンドのギャップを調整することが好ましい。70t/H未満であるとCINが式(1)を満たす十分な長さが得られなくなり、また180t/H超えでは角成形スタンドの押し出し量が大きくなるため、外面キズなどの問題が発生する。 In the present invention, with respect to the gap between the recesses of the caliber roll, the sizing immediately before the square forming so that the difference between the gap of the sizing stand immediately before the square forming and the gap of the square forming stand is 70 t / H to 180 t / H (mm). It is preferable to adjust the gap of the stand. C IN is less than 70 t / H is not long enough to obtain satisfying the formula (1), and because the extrusion amount of the angular shaped stand is increased by more than 180 t / H, problems such as the outer surface flaw is generated .
 なお、第一段目の角成形スタンド入側における鋼管の周長CINを測定する位置は、例えば、角成形直前のサイジングスタンドと第1の角成形スタンドの中間位置を測定すればよい。また、最終段の角成形スタンド出側における鋼管の周長COUTを測定する位置は、角成形最終スタンドのロール直下から1m後方の位置にある鋼管周長を測定すればよい。なお、周長の測定方法は鋼管に巻尺を巻きつける方法などがあるが、これに限らない。 The position for measuring the circumferential length C IN of the steel pipe in the first stage of the corner molding stand entry side, for example, may be measured intermediate position sizing stand and the first corner molding stand just before the corner molding. The position for measuring the circumferential length C OUT of the steel tube at the corner molding stand delivery side of the final stage, may be measured steel pipe circumferential length from the roll immediately below the corner molding the final stand 1m rearward position. In addition, although the measuring method of a circumference includes the method of winding a tape measure around a steel pipe, it is not restricted to this.
 次に本発明の製造方法により得られる角鋼管について説明する。 Next, the square steel pipe obtained by the production method of the present invention will be described.
 本発明の角鋼管は、角鋼管の角部におけるビッカース硬さが下記式(2)を満たし、かつ、前記角部の曲率半径が、下記式(3)を満たすことを特徴とする。
10≦HV―HV≦80      ・・・(2)
max-Rmin≦0.25×t    ・・・(3)
なお、式(2)、式(3)において、
HV:角鋼管の角部における鋼管外面側から1±0.2mmの範囲の位置におけるビッカース硬さ(HV)
HV:角鋼管の角部における鋼管内面側から1±0.2mmの範囲の位置におけるビッカース硬さ(HV)
max:鋼管軸方向に対して任意の垂直断面における、角部の曲率半径の最大値(mm)
min:鋼管軸方向に対して任意の垂直断面における、角部の曲率半径の最小値(mm)
t:肉厚(mm)
である。
The square steel pipe of the present invention is characterized in that the Vickers hardness at the corner of the square steel pipe satisfies the following formula (2), and the radius of curvature of the corner satisfies the following formula (3).
10 ≦ HV I −HV O ≦ 80 (2)
R max −R min ≦ 0.25 × t (3)
In the formulas (2) and (3),
HV O : Vickers hardness (HV) at a position in the range of 1 ± 0.2 mm from the outer surface side of the steel pipe at the corner of the square steel pipe
HV I : Vickers hardness (HV) at a position in the range of 1 ± 0.2 mm from the inner surface of the steel pipe at the corner of the square steel pipe
R max : Maximum value of the radius of curvature of the corner (mm) in any vertical cross section with respect to the steel pipe axis direction
R min : Minimum value (mm) of the radius of curvature of the corner in an arbitrary vertical cross section with respect to the steel pipe axis direction
t: Wall thickness (mm)
It is.
 BCR法により成形される角鋼管は、鋼板から一度、円筒形状に成形された後、角型形状へと成形される。このようなBCR法では、周方向の曲げ変形だけではなく、絞り変形による長手方向のひずみが発生するため、結果として周方向の曲げの中立軸が外面側へと移動し、内面側の方の硬さが大きくなる。鋼管外面側と鋼管内面側のビッカース硬さの差が10HV未満の場合、外面側の加工硬化が進行しているため、角部の延性が著しく悪化する。ビッカース硬さの差が80HV超えの場合、角部内面側の加工度が進展しており、角部内面の残留応力が顕著になるため、後処理で施すめっきの割れなどに悪影響を及ぼす。好ましくは、ビッカース硬さの差が30~60HVである。 A square steel pipe formed by the BCR method is once formed from a steel plate into a cylindrical shape and then into a square shape. In such a BCR method, not only circumferential bending deformation but also longitudinal distortion due to drawing deformation occurs, and as a result, the neutral axis of circumferential bending moves to the outer surface side, and toward the inner surface side. Hardness increases. When the difference in Vickers hardness between the outer surface side of the steel pipe and the inner surface side of the steel pipe is less than 10 HV, work hardening on the outer surface side is progressing, so the ductility of the corners is significantly deteriorated. When the difference in Vickers hardness exceeds 80 HV, the degree of processing on the inner surface side of the corner portion is progressing, and the residual stress on the inner surface of the corner portion becomes significant. Preferably, the difference in Vickers hardness is 30 to 60 HV.
 また、上述したように、本発明の角鋼管は、任意の垂直断面における、曲率半径の最大値Rmaxと最小値Rminとの差が肉厚の25%以下を満たす。すなわち、本発明の角鋼管は、角部の曲率半径が上記式(3)を満たすことを特徴とする。上記式(3)を満たすことにより、溶接接合の施工性や耐局部座屈性に影響が無い。 Further, as described above, in the square steel pipe of the present invention, the difference between the maximum value Rmax and the minimum value Rmin of the radius of curvature in an arbitrary vertical cross section satisfies 25% or less of the wall thickness. That is, the square steel pipe of the present invention is characterized in that the radius of curvature of the corner portion satisfies the above formula (3). By satisfy | filling said Formula (3), there is no influence on the construction property of welding joining, and local buckling resistance.
 また、本発明では、角鋼管の角部におけるビッカース硬さが下記式(4)を満たすことが好ましい。
290×t/H-3.2≦HV―HV≦579×t/H+33.7   ・・・(4)
上述したように、BCR法では、周方向の曲げ変形だけではなく、絞り変形による長手方向のひずみが発生するため、結果として周方向の曲げの中立軸が外面側へと移動し、内面側の方の硬さが大きくなる。このとき、角鋼管の肉厚が増加すると剛性が増加し、成形に要するひずみが増加する。また、角鋼管の肉厚と対向する辺の外表面間距離の比t/Hが大きくなると、絞り変形による成形ひずみが増加し、角鋼管の肉厚全体の硬さが増加する。したがって、t/Hが大きい角鋼管では角部の加工硬化がより顕著になる。このため、本発明者らは、角部の硬さと角鋼管のt/Hには関係があると考えた。本発明者らが鋭意検討した結果、上記式(4)を満たすことにより、角部の加工硬化の影響(延性悪化や溶接部の止端割れ)を抑制することができる。鋼管外面側と鋼管内面側のビッカース硬さの差が290×t/H+3.2HV未満の場合、外面側の加工硬化が進行しているため、角部の延性が著しく悪化する。ビッカース硬さの差が579×t/H+33.7HV超えの場合、角部内面側の加工度が進展しており、角部内面の残留応力が顕著になるため、後処理で施すめっきの割れなどに悪影響を及ぼす。
Moreover, in this invention, it is preferable that the Vickers hardness in the corner | angular part of a square steel pipe satisfy | fills following formula (4).
290 × t / H−3.2 ≦ HV I −HV O ≦ 579 × t / H + 33.7 (4)
As described above, in the BCR method, not only circumferential bending deformation but also longitudinal strain due to diaphragm deformation occurs, and as a result, the neutral axis of circumferential bending moves to the outer surface side, and the inner surface side The hardness of the direction increases. At this time, when the thickness of the square steel pipe increases, the rigidity increases and the strain required for forming increases. Further, when the ratio t / H of the distance between the outer surfaces of the opposite sides to the thickness of the square steel pipe increases, the forming strain due to the drawing deformation increases, and the hardness of the entire thickness of the square steel pipe increases. Therefore, the work hardening of the corner becomes more remarkable in the square steel pipe having a large t / H. For this reason, the present inventors considered that there is a relationship between the hardness of the corner and the t / H of the square steel pipe. As a result of intensive studies by the present inventors, satisfying the above formula (4) can suppress the effects of work hardening at the corners (deterioration of ductility and toe cracks in the welded portion). When the difference in Vickers hardness between the outer surface side of the steel pipe and the inner surface side of the steel pipe is less than 290 × t / H + 3.2 HV, work hardening on the outer surface side proceeds, so that the ductility of the corners is significantly deteriorated. When the difference in Vickers hardness exceeds 579 × t / H + 33.7HV, the degree of processing on the inner surface of the corner is progressing, and the residual stress on the inner surface of the corner becomes significant, so that the cracks in the plating applied in post-processing, etc. Adversely affect.
 なお、本発明の角鋼管における角部とは、図3に示すように、管の中心を起点とし隣り合う辺と45°をなす線(L)上に中心を置き、平坦部と円弧部との接続点(A、A’)に向かって引かれる線で定まる中心角が65°となるような扇形の半径の範囲内をいう。 In addition, as shown in FIG. 3, the corner | angular part in the square steel pipe of this invention puts a center on the line (L) which makes a 45 degree and the edge | side which adjoins the center of a pipe, a flat part and a circular arc part. The range of the fan-shaped radius such that the central angle determined by the line drawn toward the connection point (A, A ′) is 65 °.
 本発明において、板厚tは、25~30mmであることが好ましい。 In the present invention, the plate thickness t is preferably 25 to 30 mm.
 本発明における鋼管の成分組成としては特に制限されないが、質量%で、C:0.04~0.50%、Si:2.0%以下、Mn:0.3~3.0%、P:0.10%以下、S:0.050%以下、Al:0.005~0.10%、N:0.010%以下を含有し、残部Feおよび不可避的不純物からなる成分組成であることが好ましい。以下に、各成分の限定理由を述べる。 The component composition of the steel pipe in the present invention is not particularly limited, but in mass%, C: 0.04 to 0.50%, Si: 2.0% or less, Mn: 0.3 to 3.0%, P: It contains 0.10% or less, S: 0.050% or less, Al: 0.005 to 0.10%, N: 0.010% or less, and has a component composition consisting of the balance Fe and inevitable impurities. preferable. The reasons for limiting each component will be described below.
 C:0.04~0.50%
 Cは、固溶強化により鋼板の強度を増加させるとともに、第二相の一つであるパーライトの形成に寄与する元素である。Cは、さらに焼入れ性を高めてマルテンサイトの生成に寄与し、オーステナイトの安定化に寄与する元素であることから、硬質相の形成にも寄与する元素である。したがって、所望の引張特性、靭性、さらに所望の鋼板組織を確保するためには、0.04%以上の含有であることが好ましい。一方、0.50%を超える含有は、硬質相の割合が高くなり靱性が低下し、また角形鋼管の溶接時(例えば、角形鋼管同士の溶接時)にマルテンサイト組織が生成し溶接割れの原因となる懸念がある。このため、Cは0.04~0.50%の範囲であることが好ましく、0.07~0.20%がより好ましい。さらに好ましくは、0.12%超0.25%以下である。
C: 0.04 to 0.50%
C is an element that contributes to the formation of pearlite, which is one of the second phases, while increasing the strength of the steel sheet by solid solution strengthening. C is an element that contributes to the formation of a hard phase because it further enhances the hardenability and contributes to the formation of martensite and contributes to the stabilization of austenite. Therefore, in order to secure desired tensile properties, toughness, and a desired steel sheet structure, the content is preferably 0.04% or more. On the other hand, if the content exceeds 0.50%, the ratio of the hard phase increases and the toughness decreases, and a martensitic structure is formed during welding of square steel pipes (for example, when welding square steel pipes), causing weld cracking. There is concern to become. Therefore, C is preferably in the range of 0.04 to 0.50%, more preferably 0.07 to 0.20%. More preferably, it is more than 0.12% and 0.25% or less.
 Si:2.0%以下
 Siは、固溶強化で鋼板の強度増加に寄与する元素であり、所望の鋼板強度を確保するために、必要に応じて含有できる。このような効果を得るためには、0.01%以上のSiの含有が望ましい。一方、Si含有量が2.0%を超えると溶接性が悪化する。このため、Si含有量は2.0%以下とすることが好ましく、0.5%以下とすることがより好ましい。なお、0.4%以上の含有は、鋼板表面に赤スケールと称するファイアライトが形成しやすくなり、表面の外観性状が低下する場合が多くなる。このため、含有する場合には、0.4%未満とすることがさらに好ましい。なお、特にSiを添加しない場合は、Siは不可避的不純物として、そのレベルは0.01%未満である。
Si: 2.0% or less Si is an element that contributes to an increase in the strength of the steel sheet by solid solution strengthening, and can be contained as necessary in order to ensure a desired steel sheet strength. In order to obtain such an effect, the Si content is desirably 0.01% or more. On the other hand, if the Si content exceeds 2.0%, the weldability deteriorates. For this reason, the Si content is preferably 2.0% or less, and more preferably 0.5% or less. In addition, the content of 0.4% or more facilitates the formation of a firelight called red scale on the steel sheet surface, and the appearance quality of the surface often decreases. For this reason, when it contains, it is more preferable to set it as less than 0.4%. In particular, when Si is not added, Si is an inevitable impurity, and its level is less than 0.01%.
 Mn:0.3~3.0%
 Mnは、固溶強化を介して鋼板の強度を増加させる元素であり、またフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。0.3%未満の含有では、フェライト変態開始温度の上昇を招き、組織が過度に粗大化しやすい。また、所望の鋼板強度および組織を確保するために、Mnは0.3%以上の含有であることが好ましい。しかしながら、Mn含有量が3.0%を超えると溶接性が悪化する。このため、Mn含有量は0.3~3.0%とすることが好ましい。なお、2.0%を超えて含有すると、中心偏析部の硬度が上昇し、角形鋼管の現場溶接時の割れの原因となる懸念がある。このため、Mnは0.3~2.0%であることがさらに好ましい。最も好ましくは、0.5~2.0%である。
Mn: 0.3 to 3.0%
Mn is an element that increases the strength of the steel sheet through solid solution strengthening, and is an element that contributes to refinement of the structure by lowering the ferrite transformation start temperature. If the content is less than 0.3%, the ferrite transformation start temperature rises and the structure tends to become excessively coarse. Moreover, in order to ensure desired steel plate intensity | strength and structure | tissue, it is preferable that Mn contains 0.3% or more. However, if the Mn content exceeds 3.0%, the weldability deteriorates. For this reason, the Mn content is preferably 0.3 to 3.0%. If the content exceeds 2.0%, the hardness of the central segregation part increases, which may cause cracks during field welding of the square steel pipe. Therefore, Mn is more preferably 0.3 to 2.0%. Most preferably, it is 0.5 to 2.0%.
 P:0.10%以下
 Pは、フェライト粒界に偏析して、靭性を低下させる作用を有する元素であり、本発明では、不純物としてできるだけ低減することが望ましい。しかし、過度の低減は、精錬コストの高騰を招くため、0.002%以上とすることが好ましい。なお、0.10%までは許容できる。このため、Pは0.10%以下であることが好ましい。Pは、より好ましくは0.03%以下であり、さらに好ましくは0.025%以下である。
P: 0.10% or less P is an element that has the effect of segregating at the ferrite grain boundaries and reducing toughness. In the present invention, P is preferably reduced as much as possible. However, excessive reduction leads to an increase in refining costs, so 0.002% or more is preferable. In addition, up to 0.10% is acceptable. For this reason, it is preferable that P is 0.10% or less. P is more preferably 0.03% or less, and still more preferably 0.025% or less.
 S:0.050%以下
 Sは、鋼中では硫化物として存在し、本発明の組成範囲であれば、主としてMnSとして存在する。MnSは、熱延工程で薄く延伸され、延性、靭性に悪影響を及ぼすため、本発明ではできるだけMnSは低減することが望ましい。しかし、過度の低減は、精錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。なお、0.050%までは許容できる。このため、Sは0.050%以下であることが好ましい。Sは、より好ましくは0.015%であり、さらに好ましくは0.010%以下である。
S: 0.050% or less S is present as sulfide in steel, and is mainly present as MnS within the composition range of the present invention. Since MnS is thinly stretched in the hot rolling step and adversely affects ductility and toughness, it is desirable to reduce MnS as much as possible in the present invention. However, excessive reduction leads to an increase in refining costs, so S is preferably 0.0002% or more. In addition, up to 0.050% is acceptable. For this reason, it is preferable that S is 0.050% or less. S is more preferably 0.015%, and still more preferably 0.010% or less.
 Al:0.005~0.10%
 Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素である。このような効果を得るためには、0.005%以上の含有を必要とする。0.005%未満では、Si無添加の場合に脱酸力が不足し、酸化物系介在物が増加し、鋼板の清浄度が低下する。一方、0.10%を超える含有は、固溶Al量が増加し、角形鋼管の長手溶接時(角形鋼管の製造時の溶接時)に、特に大気中での溶接の場合に、溶接部に酸化物を形成させる危険性が高くなり、角形鋼管溶接部の靭性が低下するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。このため、Alは0.005~0.10%であることが好ましい。Alは0.01~0.06%であることがより好ましい。
Al: 0.005 to 0.10%
Al is an element that acts as a deoxidizer and has the effect of fixing N as AlN. In order to acquire such an effect, 0.005% or more of content is required. If it is less than 0.005%, the deoxidizing power is insufficient when Si is not added, the oxide inclusions increase, and the cleanliness of the steel sheet decreases. On the other hand, if the content exceeds 0.10%, the amount of solute Al increases, and when welding square steel pipes in the longitudinal direction (when welding square steel pipes), especially in the atmosphere, The risk of forming an oxide increases, the toughness of the welded portion of the square steel pipe decreases, and the amount of alumina inclusions increases, resulting in deterioration of the surface properties. Therefore, Al is preferably 0.005 to 0.10%. More preferably, Al is 0.01 to 0.06%.
 N:0.010%以下
 Nは、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましく、0.010%までは許容できる。このため、Nは0.010%以下であることが好ましい。Nは、より好ましくは0.0080%以下であり、さらに好ましくは0.006%以下であり、最も好ましくは0.005%以下である。
N: 0.010% or less N is an element having an effect of lowering toughness by firmly fixing dislocation movement. In the present invention, it is desirable to reduce N as an impurity as much as possible, and it is acceptable up to 0.010%. For this reason, it is preferable that N is 0.010% or less. N is more preferably 0.0080% or less, still more preferably 0.006% or less, and most preferably 0.005% or less.
 上記の成分が本発明における電縫鋼管の鋼素材の基本の成分組成である。本発明では上記成分に加えてさらに、Nb:0.005~0.150%、Ti:0.005~0.150%、V:0.005~0.150%のうちから選ばれた1種または2種以上を含有させてもよい。 The above components are the basic component composition of the steel material of the ERW steel pipe in the present invention. In the present invention, in addition to the above components, Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, V: 0.005 to 0.150% Or you may contain 2 or more types.
 Nb:0.005~0.150%、Ti:0.005~0.150%、V:0.005~0.150%のうちから選ばれた1種または2種以上
 Nb、Ti、Vは、いずれも鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、Nb:0.005%以上、Ti:0.005%以上、V:0.005%以上の含有が必要である。一方で、過度の含有は降伏比の上昇および靱性の低下を招く。このためNb、Ti、Vの含有量は、Nb:0.005~0.150%、Ti:0.005~0.150%、V:0.005~0.150%とすることが好ましい。より好ましくは、Nb:0.008~0.10%、Ti:0.008~0.10%、V:0.008~0.10%である。
One or more selected from Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, V: 0.005 to 0.150% Nb, Ti and V are These are elements that form fine carbides and nitrides in steel and contribute to improving the strength of steel through precipitation strengthening, and can be contained as required. In order to obtain such an effect, it is necessary to contain Nb: 0.005% or more, Ti: 0.005% or more, and V: 0.005% or more. On the other hand, excessive inclusion causes an increase in yield ratio and a decrease in toughness. Therefore, the contents of Nb, Ti, and V are preferably Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, and V: 0.005 to 0.150%. More preferably, Nb is 0.008 to 0.10%, Ti is 0.008 to 0.10%, and V is 0.008 to 0.10%.
 本発明では、上記成分に加えてさらに、Cr:0.01~1.0%、Mo:0.01~1.0%、Cu:0.01~0.50%、Ni:0.01~0.30%、Ca:0.001~0.010%、B:0.0005~0.010%のうちから選ばれた1種または2種以上を含有させてもよい。 In the present invention, in addition to the above components, Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to One or more selected from 0.30%, Ca: 0.001 to 0.010%, and B: 0.0005 to 0.010% may be contained.
 Cr:0.01~1.0%、Mo:0.01~1.0%、Cu:0.01~0.50%、Ni:0.01~0.30%
 Cr、Mo、Cu、Niは、固溶強化により鋼の強度を上昇させる元素であり、またいずれも鋼の焼入れ性を高め、オーステナイトの安定化に寄与する元素であることから、硬質なマルテンサイトおよびオーステナイトの形成に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、Cr:0.01%以上、Mo:0.01%以上、Cu:0.01%以上、Ni:0.01%以上の含有が必要である。一方で、過度の含有は靱性の低下および溶接性の悪化を招く。このためCr、Mo、Cu、Niの含有量は、Cr:0.01~1.0%、Mo:0.01~1.0%、Cu:0.01~0.50%、Ni:0.01~0.30%とすることが好ましい。より好ましくは、Cr:0.1~1.0%、Mo:0.1~1.0%、Cu:0.1~0.50%、Ni:0.1~0.30%である。
Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.30%
Cr, Mo, Cu, and Ni are elements that increase the strength of the steel by solid solution strengthening, and all of them are elements that increase the hardenability of the steel and contribute to the stabilization of austenite. And an element that contributes to the formation of austenite, and can be contained if necessary. In order to obtain such an effect, it is necessary to contain Cr: 0.01% or more, Mo: 0.01% or more, Cu: 0.01% or more, and Ni: 0.01% or more. On the other hand, excessive inclusion causes a decrease in toughness and a deterioration in weldability. Therefore, the contents of Cr, Mo, Cu, and Ni are as follows: Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Cu: 0.01 to 0.50%, Ni: 0 It is preferable that the content be 0.01% to 0.30%. More preferably, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, Cu: 0.1 to 0.50%, Ni: 0.1 to 0.30%.
 Ca:0.001~0.010%
 Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.001%以上のCaを含有することが好ましい。しかし、Ca含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され靱性が悪化する場合がある。このため、Ca含有量は0.001~0.010%とすることが好ましい。より好ましくは、Ca含有量は0.001~0.0050%である。
Ca: 0.001 to 0.010%
Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process, and can be contained as necessary. In order to acquire such an effect, it is preferable to contain 0.001% or more of Ca. However, if the Ca content exceeds 0.010%, Ca oxide clusters may be formed in the steel and the toughness may deteriorate. Therefore, the Ca content is preferably 0.001 to 0.010%. More preferably, the Ca content is 0.001 to 0.0050%.
 B:0.0005~0.010%
 Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るためには、0.0005%以上のBを含有することを必要とする。しかしながら、B含有量が0.010%を超えると降伏比が上昇する。このため、B含有量は0.0005~0.010%とすることが好ましい。より好ましくは、B含有量は0.0005~0.0050%である。
B: 0.0005 to 0.010%
B is an element that contributes to refinement of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, it is necessary to contain 0.0005% or more of B. However, when the B content exceeds 0.010%, the yield ratio increases. Therefore, the B content is preferably 0.0005 to 0.010%. More preferably, the B content is 0.0005 to 0.0050%.
 残部はFeおよび不可避的不純物からなる。 The balance consists of Fe and inevitable impurities.
 表1に示す成分組成を有する熱延鋼板を、ケージロール群およびフィンパスロール群により楕円形断面のオープン管に連続成形し、次いでオープン管の相対する端面を高周波誘導加熱または高周波抵抗加熱で融点以上に加熱し、スクイズロールで圧接し、電縫鋼管の素管とした。得られた電縫鋼管に対して、2スタンドのサイジングロール群で円筒状に成形した後、4スタンドの角成形ロール群で角成形を行い、表2に示すような種々のBCR295の角鋼管を得た。なお、第一段目の角成形スタンド入側における鋼管の周長CINについては、角成形直前のサイジングスタンドと第1の角成形スタンドの中間位置を巻尺で測定し、鋼管周長CINとした。最終段の角成形スタンド出側における鋼管の周長COUTについては、角成形ロール群の4スタンド目のロール直下から1m位置を巻尺で測定し、鋼管周長COUTとした。 A hot-rolled steel sheet having the composition shown in Table 1 is continuously formed into an open tube having an elliptical cross section by a cage roll group and a fin pass roll group, and then the opposite end faces of the open tube are melted by high frequency induction heating or high frequency resistance heating. It heated above and pressure-contacted with the squeeze roll, and it was set as the elementary pipe of the ERW steel pipe. The resulting ERW steel pipe was formed into a cylindrical shape with a 2-stand sizing roll group, then square-formed with a 4-stand square forming roll group, and various BCR295 square steel pipes as shown in Table 2 were formed. Obtained. Note that the circumferential length C IN of the steel pipe in the first stage of the corner molding stand entry side, the intermediate position of the sizing stand and the first corner molding stand just before the corner molding measured by tape measure, a steel pipe circumference C IN did. Regarding the circumference C OUT of the steel pipe on the exit side of the final square forming stand, the steel pipe circumference C OUT was measured by measuring the 1 m position from directly below the fourth roll of the square forming roll group with a tape measure.
 また、前記鋼管周長CIN、COUTが得られたときの、角成形直前のサイジングスタンドのギャップと最初の角成形スタンドのカリバーロールの凹部間ギャップの差を、製品の肉厚tと対向する辺の外表面間距離Hの比t/Hで除した、係数G(mm)を算出した。 Further, the difference between the gap of the sizing stand immediately before the square forming and the gap between the concave portions of the caliber roll of the first square forming stand when the steel pipe peripheral lengths C IN and C OUT are obtained is opposed to the product thickness t. The coefficient G (mm) divided by the ratio t / H of the distance H between the outer surfaces of the sides to be calculated was calculated.
 種々の角鋼管に対して、管軸方向に対して垂直な断面10点を任意で切出し、垂直断面の4隅にある角部の曲率半径を測定した。角部の曲率半径測定にはラジアルゲージを使用し、具体的には、図3に示すような、角部外側の交点での距離を曲率半径として測定した。任意の垂直断面の10点で測定した結果、10点の断面すべてにおいて、曲率半径の最大値Rmaxと最小値Rminとの差が肉厚の25%以下のものであれば○として評価した。一方で、10点の断面のうち1点でも最大値Rmaxと最小値Rminとの差が肉厚の25%超えものがあれば×として評価した。 For various square steel pipes, 10 cross sections perpendicular to the pipe axis direction were arbitrarily cut out, and the radius of curvature of the corners at the four corners of the vertical cross section was measured. A radius gauge was used to measure the radius of curvature of the corner, and specifically, the distance at the intersection outside the corner as shown in FIG. 3 was measured as the radius of curvature. As a result of measurement at 10 points on an arbitrary vertical cross section, if the difference between the maximum value R max and the minimum value R min of the radius of curvature was 25% or less of the wall thickness in all the 10 cross sections, it was evaluated as ○. . On the other hand, if the difference between the maximum value R max and the minimum value R min exceeds 25% of the wall thickness even at one point out of 10 cross sections, it was evaluated as x.
 また、種々の角鋼管に対して、鋼管内面側の角部のビッカース硬さと、鋼管外面側の角部のビッカース硬さを測定し、その差を求めた。具体的には、マイクロビッカース硬さ試験(JIS Z2244:2009)で角部から1mm内側の位置を試験力9.8Nとしたものである。 Also, for various square steel pipes, the Vickers hardness at the corner on the inner side of the steel pipe and the Vickers hardness at the corner on the outer side of the steel pipe were measured, and the difference was obtained. Specifically, in the micro Vickers hardness test (JIS Z2244: 2009), the position 1 mm inside from the corner is a test force of 9.8 N.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、発明例はいずれも角部の寸法精度に優れている。
Figure JPOXMLDOC01-appb-T000002
From the results of Table 2, all of the inventive examples are excellent in the dimensional accuracy of the corners.
 1  鋼帯
 2  レベラー
 3  ケージロール群
 4  フィンパスロール群
 5  スクイズロール
 6  溶接機
 7  電縫鋼管
 8  サイジングロール群
 9  角成形ロール群
 10 角鋼管
 R1~R3 (鋼管の)形状
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Leveler 3 Cage roll group 4 Fin pass roll group 5 Squeeze roll 6 Welding machine 7 ERW steel pipe 8 Sizing roll group 9 Square forming roll group 10 Square steel pipe R1-R3 (steel pipe) shape

Claims (5)

  1.  角鋼管の角部におけるビッカース硬さが下記式(2)を満たし、かつ、
    前記角部の曲率半径が、下記式(3)を満たす角鋼管。
    10≦HV―HV≦80      ・・・(2)
    max-Rmin≦0.25×t    ・・・(3)
    なお、式(2)、式(3)において、
    HV:角鋼管の角部における鋼管外面側から1±0.2mmの範囲の位置におけるビッカース硬さ(HV)
    HV:角鋼管の角部における鋼管内面側から1±0.2mmの範囲の位置におけるビッカース硬さ(HV)
    max:鋼管軸方向に対して任意の垂直断面における、角部の曲率半径の最大値(mm)
    min:鋼管軸方向に対して任意の垂直断面における、角部の曲率半径の最小値(mm)
    t:肉厚(mm)
    である。
    The Vickers hardness at the corner of the square steel pipe satisfies the following formula (2), and
    A square steel pipe in which the radius of curvature of the corner satisfies the following formula (3).
    10 ≦ HV I −HV O ≦ 80 (2)
    R max −R min ≦ 0.25 × t (3)
    In the formulas (2) and (3),
    HV O : Vickers hardness (HV) at a position in the range of 1 ± 0.2 mm from the outer surface side of the steel pipe at the corner of the square steel pipe
    HV I : Vickers hardness (HV) at a position in the range of 1 ± 0.2 mm from the inner surface of the steel pipe at the corner of the square steel pipe
    R max : Maximum value of the radius of curvature of the corner (mm) in any vertical cross section with respect to the steel pipe axis direction
    R min : Minimum value (mm) of the radius of curvature of the corner in an arbitrary vertical cross section with respect to the steel pipe axis direction
    t: Wall thickness (mm)
    It is.
  2.  角鋼管の角部におけるビッカース硬さが下記式(4)を満たす請求項1に記載の角鋼管。
    290×t/H-3.2≦HV―HV≦579×t/H+33.7   ・・・(4)
    The square steel pipe according to claim 1, wherein the Vickers hardness at the corner of the square steel pipe satisfies the following formula (4).
    290 × t / H−3.2 ≦ HV I −HV O ≦ 579 × t / H + 33.7 (4)
  3.  前記肉厚が25~30mmである請求項1または2に記載の角鋼管。 The square steel pipe according to claim 1 or 2, wherein the wall thickness is 25 to 30 mm.
  4.  素材としての鋼板をロール成形し、次いで、ロール成形した鋼板を電縫溶接して電縫鋼管とした後、前記電縫鋼管を複数段のサイジングスタンドにて成形し、次いで複数段の角成形スタンドにて角成形して角鋼管を製造する方法であって、
    下記式(1)を満たすように、角成形直前のサイジングスタンドのギャップを制御する角鋼管の製造方法。
    IN/COUT≧0.50×t/H+0.99    ・・・(1)
    なお、式(1)において、
    IN:第一段目の角成形スタンド入側における鋼管の周長(mm)
    OUT:最終段の角成形スタンド出側における鋼管の周長(mm)
    t:肉厚(mm)
    H:対向する辺の外表面間距離(mm)
    である。
    The steel sheet as a raw material is roll-formed, and then the roll-formed steel sheet is electro-welded to form an electric-welded steel pipe, and then the electric-welded steel pipe is formed in a multi-stage sizing stand, and then a multi-stage square forming stand A method of manufacturing a square steel pipe by forming a square with
    A method of manufacturing a square steel pipe that controls a gap of a sizing stand immediately before square forming so as to satisfy the following formula (1).
    C IN / C OUT ≧ 0.50 × t / H + 0.99 (1)
    In formula (1),
    C IN : Perimeter of steel pipe (mm) on the entrance side of the first stage square forming stand
    C OUT : Peripheral length of the steel pipe on the exit side of the last-stage square forming stand (mm)
    t: Wall thickness (mm)
    H: Distance between outer surfaces of opposing sides (mm)
    It is.
  5.  前記肉厚が25~30mmである請求項4に記載の角鋼管の製造方法。 The method for manufacturing a square steel pipe according to claim 4, wherein the wall thickness is 25 to 30 mm.
PCT/JP2019/010151 2018-03-16 2019-03-13 Method for manufacturing square steel tube, and square steel tube WO2019176979A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019526015A JP6816827B2 (en) 2018-03-16 2019-03-13 Manufacturing method of square steel pipe and square steel pipe
KR1020207026506A KR102400687B1 (en) 2018-03-16 2019-03-13 Manufacturing method of each steel pipe and each steel pipe
CN201980018424.1A CN111836688B (en) 2018-03-16 2019-03-13 Method for manufacturing square steel pipe and square steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048679 2018-03-16
JP2018-048679 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019176979A1 true WO2019176979A1 (en) 2019-09-19

Family

ID=67907875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010151 WO2019176979A1 (en) 2018-03-16 2019-03-13 Method for manufacturing square steel tube, and square steel tube

Country Status (5)

Country Link
JP (1) JP6816827B2 (en)
KR (1) KR102400687B1 (en)
CN (1) CN111836688B (en)
TW (1) TWI700136B (en)
WO (1) WO2019176979A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048663A (en) * 2020-08-07 2020-12-08 山东钢铁股份有限公司 Production method of low-cost high-strength rectangular steel pipe
JP2021188104A (en) * 2020-06-03 2021-12-13 Jfeスチール株式会社 Rectangular steel tube and its manufacturing method, as well as building structure
JP2021188105A (en) * 2020-06-03 2021-12-13 Jfeスチール株式会社 Rectangular steel tube and its manufacturing method, as well as building structure
WO2023276644A1 (en) * 2021-07-02 2023-01-05 Jfeスチール株式会社 Square steel tube, method for manufacturing same, and building structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187115A1 (en) * 2020-03-16 2021-09-23 Jfeスチール株式会社 Square steel pipe for beam-column joint, beam-column joint structure using same, and method for manufacturing square steel pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266913A (en) * 1988-04-18 1989-10-24 Kawasaki Steel Corp Manufacture of square steel pipe excellent in corner shape
JPH04165020A (en) * 1990-10-25 1992-06-10 Nkk Corp Manufacture of square steel tube
JPH05309412A (en) * 1992-05-08 1993-11-22 Nakajima Kokan Kk Forming method for large diameter square steel tube
JPH08243646A (en) * 1995-03-07 1996-09-24 Kawasaki Steel Corp Manufacture of square steel tube
JPH11156435A (en) * 1997-11-25 1999-06-15 Kawasaki Steel Corp Manufacture of square steel tube
JP2008184686A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method for manufacturing low yr square steel tube for building

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224023A (en) 1990-12-27 1992-08-13 Nippon Steel Corp Formation of square steel tube
JPH08246095A (en) * 1995-03-07 1996-09-24 Nkk Corp Low yield ratio and high toughness steel for square steel pipe and its production
TW302309B (en) * 1995-04-25 1997-04-11 Nakazima Kokan Kk The manufacturing method for square and round steel pipe
CN1066075C (en) * 1995-07-28 2001-05-23 中岛钢管株式会社 Mfg. method for square steel pipe and mfg. method for circular steel pipe
JP3888279B2 (en) * 2002-10-07 2007-02-28 Jfeスチール株式会社 Manufacturing method of low yield ratio electric resistance welded steel pipe and square column for construction
JP2004204286A (en) * 2002-12-25 2004-07-22 Nippon Steel Corp High impact resistant square steel pipe, and production method therefor
JP5368820B2 (en) * 2008-03-27 2013-12-18 株式会社神戸製鋼所 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
TWM483198U (en) 2014-03-14 2014-08-01 Coplus Inc Compound type vehicle lamp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266913A (en) * 1988-04-18 1989-10-24 Kawasaki Steel Corp Manufacture of square steel pipe excellent in corner shape
JPH04165020A (en) * 1990-10-25 1992-06-10 Nkk Corp Manufacture of square steel tube
JPH05309412A (en) * 1992-05-08 1993-11-22 Nakajima Kokan Kk Forming method for large diameter square steel tube
JPH08243646A (en) * 1995-03-07 1996-09-24 Kawasaki Steel Corp Manufacture of square steel tube
JPH11156435A (en) * 1997-11-25 1999-06-15 Kawasaki Steel Corp Manufacture of square steel tube
JP2008184686A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Method for manufacturing low yr square steel tube for building

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188104A (en) * 2020-06-03 2021-12-13 Jfeスチール株式会社 Rectangular steel tube and its manufacturing method, as well as building structure
JP2021188105A (en) * 2020-06-03 2021-12-13 Jfeスチール株式会社 Rectangular steel tube and its manufacturing method, as well as building structure
JP7314863B2 (en) 2020-06-03 2023-07-26 Jfeスチール株式会社 Rectangular steel pipe, manufacturing method thereof, and building structure
JP7314862B2 (en) 2020-06-03 2023-07-26 Jfeスチール株式会社 Rectangular steel pipe, manufacturing method thereof, and building structure
CN112048663A (en) * 2020-08-07 2020-12-08 山东钢铁股份有限公司 Production method of low-cost high-strength rectangular steel pipe
CN112048663B (en) * 2020-08-07 2022-04-22 山东钢铁股份有限公司 Production method of low-cost high-strength rectangular steel pipe
WO2023276644A1 (en) * 2021-07-02 2023-01-05 Jfeスチール株式会社 Square steel tube, method for manufacturing same, and building structure
JP7375946B2 (en) 2021-07-02 2023-11-08 Jfeスチール株式会社 Square steel pipes, their manufacturing methods, and architectural structures

Also Published As

Publication number Publication date
TW201940259A (en) 2019-10-16
CN111836688A (en) 2020-10-27
JPWO2019176979A1 (en) 2020-04-23
KR102400687B1 (en) 2022-05-20
KR20200118873A (en) 2020-10-16
TWI700136B (en) 2020-08-01
JP6816827B2 (en) 2021-01-20
CN111836688B (en) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2019176979A1 (en) Method for manufacturing square steel tube, and square steel tube
JP4442541B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
WO2015151469A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP2022033802A (en) Square steel tube and building structure
JP4984447B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
JP6332432B2 (en) Method for manufacturing ERW steel pipe with small pipe-forming distortion
JP6658385B2 (en) Manufacturing method of steel pipe
US10449636B2 (en) Pipeline and manufacturing method thereof
JP6222126B2 (en) ERW steel pipe and manufacturing method thereof
JP7375946B2 (en) Square steel pipes, their manufacturing methods, and architectural structures
JP2018047506A (en) Electroseamed steel pipe and manufacturing method thereof
JP7380962B1 (en) Square steel pipes, their manufacturing methods, and building structures using square steel pipes
JP7306494B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
WO2024053169A1 (en) Square steel pipe, manufacturing method for same, and building structure using square steel pipe
JP2013185164A (en) Method for manufacturing steel tube
TW202410985A (en) Square steel pipes and manufacturing methods thereof and building structures using square steel pipes
JP2020110840A (en) Electroseamed steel pipe and method for manufacture thereof
WO2019151046A1 (en) Steel material for line pipes, production method for same, and production method for line pipe

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526015

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207026506

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766513

Country of ref document: EP

Kind code of ref document: A1