WO2024053169A1 - Square steel pipe, manufacturing method for same, and building structure using square steel pipe - Google Patents

Square steel pipe, manufacturing method for same, and building structure using square steel pipe Download PDF

Info

Publication number
WO2024053169A1
WO2024053169A1 PCT/JP2023/019016 JP2023019016W WO2024053169A1 WO 2024053169 A1 WO2024053169 A1 WO 2024053169A1 JP 2023019016 W JP2023019016 W JP 2023019016W WO 2024053169 A1 WO2024053169 A1 WO 2024053169A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
square steel
flat plate
yield strength
Prior art date
Application number
PCT/JP2023/019016
Other languages
French (fr)
Japanese (ja)
Inventor
晃英 松本
直道 岩田
昌士 松本
信介 井手
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023551772A priority Critical patent/JP7380962B1/en
Publication of WO2024053169A1 publication Critical patent/WO2024053169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/30Finishing tubes, e.g. sizing, burnishing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a rectangular steel pipe with excellent buckling resistance that is suitably used as a pillar material in buildings, a method for manufacturing the same, and a building structure using such a rectangular steel pipe.
  • Roll-formed square steel pipes are widely used as square steel pipes for building pillars.
  • Roll-formed square steel pipes are made by cold roll-forming a steel strip (hereinafter referred to as "steel plate") into a cylindrical open pipe shape, and after welding the butt portions of the open pipes by electric resistance welding, they are arranged vertically and horizontally. It is manufactured by applying a drawing in the axial direction of the tube while maintaining the cylindrical shape using rolled rolls to form it into a square shape. In the electric resistance welding described above, the abutted portions are heated and melted, and are pressed and solidified to complete the joining.
  • Patent Documents 1 and 2 propose square steel pipes with improved ductility and toughness at corners by appropriately controlling chemical components and microstructures.
  • Patent Document 3 a steel plate is bent and then welded to form a semi-formed square steel tube, and the half-formed square steel tube is heated and hot-formed, and then cooled to improve the ductility and toughness of the corners.
  • a rectangular steel pipe has been proposed.
  • the present invention has been made in view of the above circumstances, and provides a square steel pipe with excellent buckling resistance, a method for manufacturing the same, and a building structure using such a square steel pipe with excellent seismic performance.
  • excellent buckling resistance means that the cumulative plastic deformation magnification of the square steel pipe in both the 0 degree bending test and the 45 degree bending test is 28 or more.
  • the present invention was completed based on this knowledge and further studies. That is, the gist of the present invention is as follows.
  • a square steel pipe having a plurality of flat plate parts and corner parts alternately in the pipe circumferential direction and having a welded part extending in the pipe axial direction,
  • the yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more and 1.20 times or less of the yield strength of the flat plate portion in the tube axis direction
  • a square steel pipe, wherein the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more and 1.30 times or less the yield strength of the flat plate portion in the tube axis direction.
  • the component composition further includes, in mass%, Ti: 0.100% or less, Nb: 0.100% or less, V: 0.100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Cu: 1.00% or less, Ni: 1.00% or less, 3.
  • the method for manufacturing a square steel pipe according to any one of 1 to 4 above, A pipe-making process in which a steel plate is formed into a cylindrical shape by cold roll forming, and the circumferential ends of the cylindrical shape are abutted against each other and welded by electric resistance welding;
  • the flatness of the flat plate part is -10.0 mm or more and -4.0 mm or less by the square forming stand performed after the pipe making process, and the radius of curvature of the corner part is 1.0 times or more and 2.5 times the wall thickness of the flat plate part.
  • an internal pressure loading step to form a square steel pipe in which the radius of curvature of the corner portion is 2.0 times or more and 4.0 times or less the wall thickness of the flat plate portion;
  • An architectural structure comprising the square steel pipe according to any one of 1 to 4 above as a column material.
  • a building structure using the square steel pipe of the present invention as a column material can obtain better seismic performance than a building structure using a conventional cold-formed square steel pipe.
  • FIG. 1 is a schematic diagram showing a cross section perpendicular to the tube axis direction of a square steel pipe (or a square steel pipe material) of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method for measuring flatness. It is a schematic diagram showing a corner forming stand.
  • 1 is a schematic diagram showing an example of an architectural structure of the present invention.
  • FIG. 2 is a schematic diagram showing the sampling position of a tube axial direction tensile test piece of a flat plate portion of a square steel pipe material.
  • FIG. 2 is a schematic diagram showing the sampling positions of circumferential direction tensile test pieces of a flat plate portion and a corner portion of a square steel pipe, respectively.
  • FIG. 1 is a schematic diagram showing a cross section perpendicular to the tube axis direction of a square steel pipe (or a square steel pipe material) of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method for measuring flatness. It is a
  • FIG. 2 is a schematic diagram showing the sampling position of a tensile test piece at a corner of a square steel pipe. It is a schematic diagram of a 0 degree bending test of a square steel pipe. It is a schematic diagram of a 45 degree bending test of a square steel pipe.
  • the square steel pipe of the present invention has a plurality of flat plate parts and corner parts alternately in the pipe circumferential direction, so that the cross section of the steel pipe is not only rectangular (quadrilateral) but also triangular and polygonal with pentagon or more. There is. Furthermore, the square steel pipe has a welded portion extending in the tube axis direction, and the yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more the yield strength of the flat plate portion in the tube axis direction. .20 times or less, and the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more and 1.30 times or less of the yield strength of the flat plate portion in the tube axis direction.
  • Yield strength in the tube circumferential direction of the flat plate portion 0.83 times or more and 1.20 times or less than the yield strength in the tube axis direction of the flat plate portion. If it is less than 0.83 times, the flat plate part on the inside of the bend is likely to be plastically deformed in 0 degree bending, and the flat plate part on the inside of the bend is likely to dent toward the inner surface of the tube, resulting in a decrease in buckling resistance. Therefore, the yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the flat plate portion in the tube circumferential direction is preferably 0.85 times or more, more preferably 0.87 times or more, the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the flat plate part in the circumferential direction is more than 1.20 times the yield strength of the flat plate part in the tube axis direction, the ductility of the flat plate part decreases, resulting in uneven deformation of the flat plate part in 0 degree bending. occurs early, resulting in a decrease in buckling resistance. Moreover, breakage on the outside of bending is likely to occur.
  • the yield strength of the flat plate portion in the tube circumferential direction is 1.20 times or less than the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the flat plate portion in the tube circumferential direction is preferably 1.15 times or less, more preferably 1.10 times or less, the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the flat plate portion in the tube circumferential direction was about 0.80 times the yield strength of the flat plate portion in the tube axis direction.
  • the flat plate portion refers to a range excluding the corner portions described below, and each of the both ends (connection points (points A, A', etc. shown in FIG.
  • FIG. 1 is a schematic diagram showing a cross section perpendicular to the tube axis direction of the square steel pipe of the present invention.
  • Yield strength in the circumferential direction of the corner 0.90 times or more and 1.30 times or less the yield strength in the tube axis direction of the flat plate portion. If it is less than 0.90 times, the corner on the inner side of the bend tends to be plastically deformed during 45-degree bending, and the radius of curvature of the corner on the inner side of the bend tends to increase, resulting in a decrease in buckling resistance. Therefore, the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the corner portion in the tube circumferential direction is preferably 0.95 times or more, more preferably 1.00 times or more, the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the corner in the tube circumferential direction is more than 1.30 times the yield strength of the flat plate in the tube axis direction, the ductility of the flat plate decreases and uneven deformation of the corner occurs during 45 degree bending. Since this occurs early, buckling resistance performance deteriorates. Moreover, breakage on the outside of bending is likely to occur. Therefore, the yield strength of the corner portion in the tube circumferential direction is 1.30 times or less than the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the corner portion in the tube circumferential direction is preferably 1.25 times or less, more preferably 1.20 times or less, the yield strength of the flat plate portion in the tube axis direction.
  • the yield strength of the corner portion in the tube circumferential direction was approximately 0.85 times the yield strength of the flat plate portion in the tube axis direction.
  • a corner is a portion of a curved surface having a predetermined radius of curvature, which will be described later.
  • the flat plate portion has a yield strength of 295 MPa or more in the tube axis direction. Note that the above yield strength is obtained by conducting a tensile test in accordance with the regulations of JIS Z 2241 2011.
  • the residual stress in the tube circumferential direction on the outer surface of the flat plate portion is ⁇ 200 MPa or more and 150 MPa or less.
  • the residual stress when it is a positive value, it represents tensile stress, and when it is a negative value, it represents compressive stress.
  • the residual stress in the tube circumferential direction on the outer surface of the flat plate part is -200 MPa or more, compressive deformation of the flat plate outer surface is promoted in 0 degree bending, and the flat plate part on the inside of the bend tends to dent toward the tube inner surface. It is possible to suppress such problems and maintain good buckling resistance.
  • the residual stress is more preferably -190 MPa or more, and still more preferably -180 MPa or more.
  • the value of the residual stress in the tube circumferential direction on the outer surface of the flat plate part is 150 MPa or less, tensile deformation of the flat plate outer surface is promoted in 0 degree bending, and the flat plate parts on both sides of the flat plate part on the inner side of the bending are It is possible to suppress problems such as easy swelling. As a result, denting of the flat plate portion on the inner side of the bending toward the inner surface of the tube is also suppressed, and buckling resistance can be maintained satisfactorily.
  • the residual stress is more preferably 140 MPa or less, still more preferably 130 MPa or less. Note that the residual stress in the present invention can be measured by X-ray diffraction.
  • the square steel pipe of the present invention has a mass percentage of C: 0.020-0.350%, Si: 0.01 to 0.65%, Mn: 0.30-2.50%, P: 0.050% or less, S: 0.0500% or less, It is preferable to have a component composition containing Al: 0.005 to 0.100% and N: 0.0100% or less, with the balance being Fe and inevitable impurities.
  • % indicating the steel composition is “% by mass”.
  • the following composition can also be said to be the composition of the flat plate part and the corner part of the square steel pipe excluding the welded part.
  • C 0.020% or more and 0.350% or less
  • C is an element that increases the strength of steel through solid solution strengthening. Further, C is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature. In order to obtain these effects, it is preferable to contain 0.020% or more of C.
  • C is an element that promotes the formation of pearlite, improves hardenability, contributes to the formation of martensite, and contributes to the stabilization of austenite, and therefore also contributes to the formation of a hard phase. However, if the C content exceeds 0.350%, the ratio of the hard phase increases, ductility decreases, and buckling resistance may decrease. Furthermore, weldability may also deteriorate.
  • the C content is in the range of 0.020% or more and 0.350% or less.
  • the C content is more preferably 0.030% or more, and even more preferably 0.040% or more.
  • the C content is more preferably 0.330% or less, still more preferably 0.310% or less.
  • Si 0.01% or more and 0.65% or less Si is an element that increases the strength of steel through solid solution strengthening. In order to obtain such an effect, it is preferable to contain 0.01% or more of Si. On the other hand, if the Si content exceeds 0.65%, oxides are likely to be generated in the electric resistance welded part, and the properties of the welded part may deteriorate. Furthermore, the ductility of the base metal portion other than the electric resistance welded portion may be reduced, and buckling resistance may be reduced. From the above, it is preferable that the Si content is in the range of 0.01% or more and 0.65% or less. The Si content is more preferably 0.02% or more, and still more preferably 0.03% or more. On the other hand, the Si content is more preferably 0.63% or less, still more preferably 0.61% or less.
  • Mn 0.30% or more and 2.50% or less
  • Mn is an element that increases the strength of steel through solid solution strengthening. Furthermore, Mn is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature. In order to obtain these effects, it is preferable to contain Mn in an amount of 0.30% or more. On the other hand, when the Mn content exceeds 2.50%, oxides are likely to be generated in the electric resistance welded part, and there is a possibility that the properties of the welded part may deteriorate. In addition, due to solid solution strengthening and microstructural refinement, ductility may decrease and buckling resistance may decrease. From the above, it is preferable that the Mn content is in the range of 0.30% or more and 2.50% or less. The Mn content is more preferably 0.40% or more, and even more preferably 0.50% or more. On the other hand, the Mn content is more preferably 2.30% or less, even more preferably 2.10% or less.
  • P 0.050% or less P segregates at grain boundaries and causes material inhomogeneity, so it is preferable to reduce it as much as possible. For this reason, the P content is preferably 0.050% or less.
  • the P content is more preferably 0.040% or less, and still more preferably 0.030% or less.
  • S 0.0500% or less
  • S usually exists as MnS in steel, but MnS is stretched thin during the hot rolling process, reducing ductility and buckling resistance. Therefore, in the present invention, it is preferable to reduce S as much as possible. Therefore, the S content in the present invention is preferably 0.0500% or less.
  • the S content is more preferably 0.0300% or less, and still more preferably 0.0100% or less. There is no particular lower limit to S (usually over 0%), but excessive reduction will lead to a rise in smelting costs, so S is preferably 0.0002% or more.
  • Al 0.005% or more and 0.100% or less
  • Al is an element that acts as a strong deoxidizing agent. In order to obtain such an effect, it is preferable to contain 0.005% or more of Al.
  • the Al content is preferably in the range of 0.005% or more and 0.100% or less.
  • the Al content is more preferably 0.010% or more, and even more preferably 0.015% or more.
  • the Al content is more preferably 0.080% or less, still more preferably 0.060% or less.
  • N 0.0100% or less
  • N is an element that firmly fixes the movement of dislocations, thereby reducing ductility and reducing buckling resistance.
  • the N content is preferably 0.0100% or less.
  • the N content is more preferably 0.0080% or less.
  • N is preferably 0.0010% or more.
  • the above-mentioned composition of the square steel pipe of the present invention further includes, in mass %, Ti: (more than 0%) 0.100% or less, Nb: (more than 0%) 0.100% or less, V: (more than 0%) 0.100% or less, Cr: (more than 0%) 1.00% or less, Mo: (more than 0%) 1.00% or less, Cu: (more than 0%) 1.00% or less, Ni: (more than 0%) 1.00% or less, It may contain one or more selected from Ca: (more than 0%) 0.0100% or less and B: (more than 0%) 0.0100% or less.
  • the Ti content is preferably 0.100% or less.
  • the Ti content is more preferably 0.090% or less, still more preferably 0.080% or less.
  • Ti is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel.
  • the Ti content is preferably 0.001% or more.
  • the Ti content is more preferably 0.002% or more, and still more preferably 0.005% or more.
  • the Nb content is preferably 0.100% or less.
  • the Nb content is more preferably 0.090% or less, still more preferably 0.080% or less.
  • Nb contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and also contributes to the refinement of the structure by suppressing the coarsening of austenite during hot rolling. It is an element that In order to obtain the above effects, the Nb content is preferably 0.001% or more.
  • the Nb content is more preferably 0.002% or more, and still more preferably 0.005% or more.
  • V 0.100% or less If the V content exceeds 0.100%, ductility may decrease and buckling resistance may decrease. Therefore, the V content is preferably 0.100% or less.
  • the V content is more preferably 0.090% or less, still more preferably 0.080% or less.
  • V is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel. In order to obtain the above effects, it is preferable to contain 0.001% or more of V.
  • the V content is more preferably 0.002% or more, and still more preferably 0.005% or more.
  • the Cr content is preferably 1.00% or less.
  • the Cr content is more preferably 0.80% or less, still more preferably 0.60% or less.
  • Cr is an element that improves the hardenability of steel and increases the strength of steel. In order to obtain the above effects, the Cr content is preferably 0.01% or more.
  • the Cr content is more preferably 0.02% or more, and even more preferably 0.05% or more.
  • Mo 1.00% or less If the Mo content exceeds 1.00%, ductility may decrease and buckling resistance may decrease. Therefore, the Mo content is preferably 1.00% or less. The Mo content is more preferably 0.80% or less, still more preferably 0.60% or less. On the other hand, Mo is an element that improves the hardenability of steel and increases the strength of steel. In order to obtain the above effects, the Mo content is preferably 0.01% or more. The Mo content is more preferably 0.02% or more, and still more preferably 0.05% or more.
  • the Cu content is preferably 1.00% or less.
  • the Cu content is more preferably 0.80% or less, and still more preferably 0.60% or less.
  • Cu is an element that increases the strength of steel through solid solution strengthening. In order to obtain the above effects, the Cu content is preferably 0.01% or more.
  • the Cu content is more preferably 0.02% or more, and still more preferably 0.05% or more.
  • Ni 1.00% or less If the Ni content exceeds 1.00%, ductility may decrease and buckling resistance may decrease. Therefore, the Ni content is preferably 1.00% or less. The Ni content is more preferably 0.80% or less, and still more preferably 0.60% or less. On the other hand, Ni is an element that increases the strength of steel through solid solution strengthening. In order to obtain the above effects, the Ni content is preferably 0.01% or more. The Ni content is more preferably 0.02% or more, and still more preferably 0.05% or more.
  • Ca 0.0100% or less
  • the Ca content is more preferably 0.0080% or less, still more preferably 0.0060% or less.
  • Ca is an element that contributes to improving the ductility of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process. In order to obtain the above effects, it is preferable to contain 0.0002% or more of Ca.
  • the Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more.
  • B 0.0100% or less If the B content exceeds 0.0100%, ductility may decrease and buckling resistance may decrease. Therefore, the B content is preferably 0.0100% or less.
  • the B content is more preferably 0.0080% or less, still more preferably 0.0060% or less, and even more preferably 0.0040% or less.
  • B is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature, and can be included as necessary. In order to obtain the above effects, it is preferable to contain 0.0001% or more of B.
  • the B content is more preferably 0.0005% or more, and still more preferably 0.0008% or more.
  • the remainder is Fe and inevitable impurities.
  • Unavoidable impurities in the remainder include, for example, Sn, As, Sb, Bi, Co, Pb, Zn and O.
  • it contains 0.10% or less of Sn, 0.050% or less of each of As, Sb, and Co, and 0.0050% or less of each of Bi, Pb, Zn, and O. It's not something I refuse to do.
  • O refers to total oxygen including O as an oxide.
  • a method for manufacturing a square steel pipe according to the present invention will be described.
  • a steel plate is formed into a cylindrical shape by cold roll forming, both circumferential ends of the cylindrical shape are abutted and electrical resistance welded (pipe making process), and then a square forming stand is used to form the steel plate into a cylindrical shape.
  • a square steel pipe material whose flat plate part has a flatness of -10.0 mm or more and -4.0 mm or less, and a corner radius of curvature is 1.0 times or more and 2.5 times or less than the wall thickness of the flat plate part (
  • an internal pressure p (MPa) that satisfies the following equation (1) is applied to the inner surface of the square steel pipe material, and the flatness of the flat part of the square steel pipe material is adjusted to -3.0 mm or more3. 0 mm or less, and the radius of curvature of the corners is 2.0 times or more and 4.0 times or less than the wall thickness of the flat plate portion (internal pressure loading process).
  • N (wall thickness of square steel pipe material (mm) / side length of square steel pipe material (mm)) x yield strength in the pipe circumferential direction of the flat plate part of square steel pipe material (MPa)
  • the said cylindrical shape refers to a pipe circumferential section having a "C" shape.
  • t 1 and t 2 are two flat plate parts 11 (indicated by I in the figure) that are adjacent to each other with a corner 12 in between, including a welded part (ERW welded part) 13 (represented by I in the figure).
  • This is the wall thickness (mm) at the center in the circumferential direction of each tube (indicated as III in the figure).
  • t3 is the center in the tube circumferential direction (denoted as V in the figure) of the flat plate part 11 (denoted as IV in the figure) facing the flat plate part 11 including the welded part (ERW welded part) 13.
  • the wall thickness of the square steel pipe material is determined by averaging t 1 (mm), t 2 (mm), and t 3 (mm).
  • H 1 Vertical side length (mm)
  • H 2 Horizontal side length (mm).
  • the flatness of the flat plate portion in the present invention is defined as the amount of bulge or dent with respect to a straight line passing through two points at both circumferential ends of the outer surface of the flat plate portion.
  • the amount of bulge is a positive value
  • the amount of dent is a negative value
  • the circumferential ends are the boundary points between the contact portion and the non-contact portion with the roll of the square forming stand, and are angular points where the radius of curvature changes on the outer circumferential surface of the tube.
  • the radius of curvature of the corner in the present invention is a straight line (extended line) extending from the outer surface of the flat plate portion 11 on both sides adjacent to the corner 12 (the upper right corner in the example of FIG. 1).
  • the radius of curvature is defined as the radius of curvature at the intersection B of a straight line L passing through the intersection P of L1 and L2 and forming a 45° angle with the extension line L1 or L2, and a curved line outside the corner 12.
  • the radius of curvature is measured when the connection points between the extension lines L1 and L2 and the flat plate part 11 and the corner part 12 (points A and A' shown in FIG. 1) and the outer surface of the corner part 12 are circular arcs, and the center is on the straight line L. In the fan shape with a central angle of 90° that exists in the area, the test is performed within a range of a central angle of 65° centered on the intersection B of the straight line L and the outer surface of the corner 12.
  • a method for measuring the radius of curvature includes, for example, a method of measuring the radius of curvature using a radial gauge that closely matches the arc in the range of the central angle of 65 degrees.
  • the internal pressure can be applied by, for example, sealing the end of the tube with a rubber packing and applying water pressure to the inside of the tube.
  • a mold with a predetermined shape can be used as the outer frame if necessary.
  • a typical roll-formed square steel pipe is manufactured by forming a cylindrical shape into a square shape with a flat plate part using a square-forming stand.
  • the square steel pipe of the present invention is formed using a square forming stand so that the flat plate portion is once recessed toward the inner surface of the tube.
  • an ERW steel pipe 7 obtained by ERW welding is formed by a group of square forming rolls 9 after a sizing roll 8 so that the flat plate part is recessed toward the inner surface of the tube.
  • a square steel pipe material 10' is obtained.
  • the square steel pipe of the present invention is obtained by applying internal pressure to the inner surface of the tube to inflate the flat plate portion toward the outer surface of the tube, making the flat plate portion flat, and increasing the radius of curvature of the corner portion.
  • the final stand in the corner forming stand has four rolls, that a flat plate part is formed in the contact area between the roll and the steel pipe, and a corner part is formed in the non-contact area.
  • the roll hole shape of the final stand in the square forming stand is made to have the same shape as the outer circumferential cross-sectional shape (for example, approximately square shape) of the desired square steel pipe material, and the roll gap is adjusted as necessary.
  • the radius of curvature (mm) of the roll hole shape is preferably H 2 /100 or more and H 2 /30 or less, where the target side length of the square steel pipe material is H (mm).
  • the outer peripheral cross-sectional shape of the desired square steel pipe material means that the flatness of the flat plate part is -10.0 mm or more and -4.0 mm or less, and the radius of curvature of the corner part is 1.0 times or more the wall thickness of the flat plate part. An example is 2.5 times or less.
  • the roll gap of the final stand in the square forming stand By reducing the roll gap of the final stand in the square forming stand, it is possible to reduce the radius of curvature of the corner of the square steel pipe material, and it is also possible to reduce the flatness of the flat plate portion (increase the amount of dent). .
  • the roll gap of the final stand in such a square forming stand is increased, the radius of curvature of the corner of the square steel pipe material can be increased, and the flatness of the flat plate portion can be increased (reduced amount of dent). Can be done. Therefore, by adjusting the roll gap of the final stand in the square forming stand, the radius of curvature of the corner of the square steel pipe material can be set to a desired value. Further, by adjusting the radius of curvature of the roll hole shape and the roll gap, the flatness of the square steel pipe material can be set to a desired value.
  • the present invention repeatedly bends and deforms the flat plate portion of a square steel pipe in the circumferential direction, the yield strength of the flat plate portion in the circumferential direction can be increased compared to a normal square steel pipe.
  • the corners of the square steel pipe are also repeatedly bent and deformed in the circumferential direction, work hardening of the corners in the circumferential direction can be appropriately increased compared to ordinary square steel pipes. That is, the circumferential yield strength of the corners can be increased.
  • Flatness of the flat part of the square steel pipe material by the square forming stand -10.0 mm or more and -4.0 mm or less If the flatness of the flat part of the square steel pipe material by the square forming stand is less than -10.0 mm, when internal pressure is applied The amount of deformation of the flat plate portion increases, the amount of work hardening of the flat plate portion increases, and the circumferential yield strength of the flat plate portion becomes too high, resulting in a decrease in buckling resistance in 0 degree bending.
  • the flatness is preferably -9.5 mm or more, more preferably -9.0 mm or more.
  • the flatness of the flat plate part of the square steel pipe material by the square forming stand is larger than -4.0 mm, the amount of deformation of the flat plate part when internal pressure is applied is small, the amount of work hardening of the flat plate part is small, and the flat plate part Since the yield strength in the circumferential direction of the part becomes too low, the buckling resistance in 0 degree bending decreases. Furthermore, since the absolute value of the residual stress in the circumferential direction on the outer surface of the flat plate portion becomes too large, the buckling resistance in 0 degree bending deteriorates.
  • the flatness is preferably ⁇ 4.5 mm or less, more preferably ⁇ 5.0 mm or less.
  • the radius of curvature of the corner of the square steel pipe material by the square forming stand 1.0 times or more and 2.5 times or less the wall thickness of the flat plate part.
  • the radius of curvature of the corner part of the square steel pipe material by the square forming stand If it is less than 1.0 times, the amount of deformation of the corner portion when internal pressure is applied will increase, the amount of work hardening of the corner portion will increase, and the yield strength of the corner portion in the circumferential direction will become too high.
  • the buckling resistance is reduced.
  • the radius of curvature is preferably 1.1 times or more the thickness of the flat plate portion, more preferably 1.2 times or more the thickness of the flat plate portion.
  • the radius of curvature of the corner of the square steel pipe material formed by the square forming stand is more than 2.5 times the wall thickness of the flat plate part, the amount of deformation of the corner when internal pressure is applied becomes small, resulting in work hardening of the corner. Since the amount becomes small and the yield strength in the circumferential direction of the corner becomes too low, the buckling resistance in 45-degree bending decreases.
  • the radius of curvature is preferably 2.4 times or less the thickness of the flat plate portion, more preferably 2.3 times or less the thickness of the flat plate portion.
  • the flatness of the flat plate part of the square steel pipe after applying internal pressure to the inner surface of the tube -3.0 mm or more and 3.0 mm or less
  • the flatness of the flat plate part of the square steel pipe after applying internal pressure to the inner surface of the tube is -3.0 mm, respectively If it is smaller than , the amount of deformation of the flat plate part under internal pressure load will be small, the amount of work hardening of the flat plate part will be small, and the yield strength of the flat plate part in the circumferential direction will be too low, so the buckling resistance in 0 degree bending will be reduced. Performance decreases.
  • the outer peripheral cross section of the flat plate portion has a large curvature, it is difficult to weld the flat plate portion to the diaphragm or the beam. Furthermore, the absolute value of the residual stress in the circumferential direction on the outer surface of the flat plate portion increases, and the buckling resistance in 0 degree bending may decrease.
  • the flatness is preferably -2.9 mm or more, more preferably -2.8 mm or more.
  • the flatness of the flat plate part of the square steel pipe after applying internal pressure to the inner surface of the tube is larger than 3.0 mm, the amount of deformation of the flat plate part when the internal pressure is applied increases, and the amount of work hardening of the flat plate part increases.
  • the flatness is preferably 2.7 mm or less, more preferably 2.5 mm or less.
  • Radius of curvature of the corner of a square steel pipe after applying internal pressure to the inner surface of the pipe 2.0 times or more and less than 4.0 times the wall thickness of the flat plate Curvature of the corner of a square steel pipe after applying internal pressure to the inner surface of the pipe If the radius is less than 2.0 times the wall thickness of the flat plate part, the amount of deformation of the corner part under internal pressure load will be small, the amount of work hardening of the corner part will be small, and the circumferential yield strength of the corner part will be If it becomes too low, the buckling resistance in 45 degree bending will deteriorate.
  • the radius of curvature is preferably at least 2.1 times the thickness of the flat plate portion, more preferably at least 2.2 times the thickness of the flat plate portion.
  • the radius of curvature of the corner of a square steel pipe after applying internal pressure to the inner surface of the pipe is more than 4.0 times the wall thickness of the flat plate part, the amount of deformation of the corner when internal pressure is applied increases, The amount of work hardening at the corners becomes large, and the yield strength in the circumferential direction of the corners becomes too high, resulting in a decrease in buckling resistance in 45-degree bending.
  • the radius of curvature is preferably 3.9 times or less the thickness of the flat plate portion, more preferably 3.8 times or less the thickness of the flat plate portion. Note that the wall thickness of the flat plate portion of the square steel pipe after applying internal pressure to the inner surface of the tube is substantially unchanged from the wall thickness of the flat plate portion of the square steel pipe material before applying internal pressure to the inner surface of the tube.
  • the tensile stress generated in the circumferential direction of the pipe becomes lower than the yield strength of the flat plate portion in the circumferential direction, and the amount of deformation of the flat plate portion becomes small.
  • the amount of work hardening of the flat plate portion becomes small, and the circumferential yield strength of the flat plate portion becomes too low, resulting in a decrease in buckling resistance in 0 degree bending.
  • the absolute value of the residual stress in the circumferential direction on the outer surface of the flat plate portion may increase, and the buckling resistance in 0 degree bending may deteriorate.
  • the yield strength of the corner portion in the circumferential direction becomes too low, resulting in a decrease in buckling resistance in 45-degree bending.
  • the internal pressure p (MPa) exceeds N ⁇ 1.5 in the above formula (1), the tensile stress generated in the circumferential direction of the pipe becomes too high, and the amount of deformation of the flat plate portion becomes large.
  • the amount of work hardening of the flat plate portion increases, and the circumferential yield strength of the flat plate portion becomes too high, resulting in a decrease in buckling resistance in 0 degree bending.
  • the amount of deformation of the corner portion increases, the amount of work hardening of the corner portion increases, and the yield strength of the corner portion in the circumferential direction becomes too high, resulting in a decrease in buckling resistance in 45-degree bending.
  • the square steel pipe of the present invention preferably has a wall thickness of 6 mm or more in order to ensure sufficient strength and buckling resistance as a building structure. Further, from the viewpoint of suppressing the amount of deformation of the outer surface of the tube from becoming too large during bending deformation when internal pressure is applied, it is preferable that the wall thickness is 40 mm or less.
  • the building structure of the present invention includes the above-described square steel pipe 10 of the present invention as a column material.
  • FIG. 4 is a schematic diagram showing an example of the architectural structure 100 of the present invention.
  • a through diaphragm 17 and a square steel pipe 10 are welded together, and the square steel pipe 10 is used as a column material.
  • the building structure 100 is formed of a large beam 18, a small beam 19, and a stud 20, and may also be formed using known members.
  • the square steel pipe 10 has excellent buckling resistance, as described above. Therefore, the building structure 100 of the present invention using this square steel pipe 10 as a column material exhibits excellent seismic performance.
  • the steel plate thus obtained was formed into a cylindrical shape by cold roll forming, and both ends of the cylindrical shape in the circumferential direction were butted together and electrical resistance welded. Thereafter, a square steel pipe material having four flat plate portions and four corner portions was formed using a square forming stand. Thereafter, both ends of the square steel pipe material were sealed with rubber packing, the inside of the pipe was filled with water, and an internal pressure p (MPa) was applied to form a square steel pipe.
  • MPa internal pressure
  • the maximum amount of bulge and the maximum amount of concavity with respect to a straight line passing through two points at both circumferential ends of the outer surface of each flat plate are measured, and the maximum amount of bulge at each measurement point is determined.
  • the maximum value F of the absolute value of the maximum amount of depression was determined. If F is the amount of bulge, the value of flatness is F, if F is the amount of dent, the value of flatness is -F, and if there is no bulge or dent, the value of flatness is was set to 0.
  • the radius of curvature at was measured as the radius of curvature on the outside of the corner (Fig. 1).
  • the radius of curvature is measured in a fan shape with a center angle of 90°, which consists of the connection points (A, A') between the flat plate part and the corner part and the outer surface of the corner part, and whose center lies on the above-mentioned L.
  • the radius of curvature was measured using a radial gauge that most coincided with the outer surface of the corner in the range of 65 degrees with the center angle centered around the intersection of the outer surfaces of the corner (FIG. 1).
  • tensile test pieces were taken from the rectangular steel pipe material and the rectangular steel pipe, and the yield strength was measured.
  • a tensile test piece a JIS No. 5 tensile test piece was taken from the flat plate part of the square steel pipe material 10' so that the tensile direction was parallel to the tube axis direction, as shown in W in FIG.
  • a JIS No. 5 tensile test piece was taken from the flat plate part of the square steel pipe 10 so that the tensile direction was parallel to the pipe circumferential direction.
  • tensile test piece was taken from the corner of the square steel pipe 10.
  • the test piece taken from the flat plate part was a full-thickness test piece, and the test piece taken from the corner part was ground to a thickness of 1/2 of the wall thickness. More specifically, as shown in Z in FIG. 7, the tensile test piece at the corner part is tested so that the longitudinal center of the parallel length of the test piece passes through the intersection of the respective extensions of the outer surfaces of the flat plate parts on both sides adjacent to the corner part, and The samples were taken so as to be located on a line making a 45° angle with each of the outer surfaces of the flat plate parts. Note that the bent gripping portion was flattened by press straightening.
  • test pieces Using these test pieces, a tensile test was conducted in accordance with the provisions of JIS Z 2241, and the yield strength in the tube axis direction of the flat plate portion LYS f , the yield strength in the tube circumferential direction of the flat plate portion CYS f , and the tube circumference of the corner portion were determined.
  • the yield strength CYS c in each direction was determined.
  • the number of test pieces was two each, and each measured value was calculated by calculating their average value.
  • the cumulative plastic deformation magnification is the value obtained by dividing the sum of plastic rotation angles until the test specimen undergoes local buckling or rupture and the yield strength suddenly decreases by the reference rotation angle corresponding to the total plastic moment.
  • the larger this value the better the deformation performance when used as a pillar material (column member), which means the higher the energy absorption capacity during an earthquake.
  • the residual stress in the circumferential direction on the outer surface was measured by X-ray diffraction method. Specifically, residual stress in the tube circumferential direction was measured in the electrolytically polished region of the test piece shown below using the measuring equipment and under the following measurement conditions. Note that the circumferential residual stress was measured in all the flat plate parts, and the average value of the circumferential residual stress obtained in each flat plate part was taken as the circumferential residual stress of the rectangular steel pipe.
  • ⁇ Measuring equipment Portable X-ray residual stress measuring device manufactured by Pulstec Industries (model ⁇ -X360n)
  • -Measurement conditions The X-rays used were Cr-K ⁇ rays, the tube voltage was 30 kV, and the measurements were performed using the cos ⁇ method.
  • the measurement lattice plane was bcc-Fe (211), the Poisson's ratio was 0.280, and the elastic constant was 224000 MPa.
  • - Test piece A rectangular steel pipe with a tube axial length of 1000 mm was taken, and the outer surface of the tube was electrolytically polished by 100 ⁇ m at the center of the flat plate portion in the circumferential direction of the tube.
  • the yield strength in the tube circumferential direction (CYS f ) of the flat plate portion is 0.83 to 1.20 times the yield strength (LYS f ) of the flat plate portion in the tube axis direction.
  • the yield strength of the corner portion in the tube circumferential direction ( CYSC ) was 0.90 times or more and 1.30 times or less of the yield strength of the flat plate portion in the tube axis direction (LYS f ).
  • Comparative example No. 7 is because the internal pressure p (MPa) in the internal pressure loading process exceeded the range of formula (1), so the flatness of the square steel pipe became a value larger than 3.0 mm, and the radius of curvature of the corner part was larger than the wall thickness of the flat plate part. It was more than 4.0 times that of the previous year.
  • both the yield strength of the flat plate part in the tube circumferential direction and the yield strength of the corner part in the tube circumferential direction exceed the range of the present invention, and the cumulative The plastic deformation magnification and the cumulative plastic deformation magnification in 45-degree bending did not reach the respective desired values (cumulative plastic deformation magnification: 28 or more in both 0-degree bending and 45-degree bending).

Abstract

Provided is a square steel pipe having excellent buckling resistance. In this square steel pipe, which has a plurality of flat portions and corner portions alternating in the pipe circumference direction, the yield strength of the flat portions in the pipe circumference direction is set to be 0.83-1.20 times the yield strength of the flat portions in the pipe axial direction, and the yield strength of the corner portions in the pipe circumference direction is set to be 0.90-1.30 times the yield strength of the flat portions in the pipe axial direction.

Description

角形鋼管およびその製造方法並びに角形鋼管を用いた建築構造物Square steel pipes, their manufacturing methods, and building structures using square steel pipes
 本発明は、建築物の柱材として好適に用いられる、耐座屈性能に優れた角形鋼管およびその製造方法並びにかかる角形鋼管を用いた建築構造物に関する。 The present invention relates to a rectangular steel pipe with excellent buckling resistance that is suitably used as a pillar material in buildings, a method for manufacturing the same, and a building structure using such a rectangular steel pipe.
 建築物の柱材として用いられる角形鋼管には、ロール成形角形鋼管が広く用いられている。
 ロール成形角形鋼管は、鋼帯(以下、「鋼板」と表記する。)を冷間ロール成形により円筒状のオープン管形状とし、そのオープン管の突合せ部分を電縫溶接した後、上下左右に配置されたロールにより円筒状のまま管軸方向に絞りを加えて角形に成形することで製造される。前記した電縫溶接においては、突合せ部分が加熱されて溶融し、圧接されて凝固することで接合が完了する。
Roll-formed square steel pipes are widely used as square steel pipes for building pillars.
Roll-formed square steel pipes are made by cold roll-forming a steel strip (hereinafter referred to as "steel plate") into a cylindrical open pipe shape, and after welding the butt portions of the open pipes by electric resistance welding, they are arranged vertically and horizontally. It is manufactured by applying a drawing in the axial direction of the tube while maintaining the cylindrical shape using rolled rolls to form it into a square shape. In the electric resistance welding described above, the abutted portions are heated and melted, and are pressed and solidified to complete the joining.
 ロール成形した角形鋼管には、耐震性の観点から、曲げ変形時の高い耐座屈性能が要求される。しかし、ロール成形した角形鋼管は、製造時に平板部および角部が大きく加工硬化するため、角部の延性および/または靭性が低下してしまい、耐座屈性能が低下しやすかった。 From the perspective of earthquake resistance, roll-formed square steel pipes are required to have high buckling resistance during bending deformation. However, in roll-formed square steel pipes, the flat plate portions and corner portions undergo significant work hardening during manufacture, resulting in a decrease in ductility and/or toughness of the corner portions, and the buckling resistance tends to decrease.
 この課題を解決するために、平板部および角部における特性を向上させた角形鋼管が種々提案されている。 In order to solve this problem, various square steel pipes have been proposed that have improved properties at the flat plate portion and corner portions.
 例えば、特許文献1および2では、化学成分およびミクロ組織を適切に制御することにより、角部の延性および靭性を向上させた角形鋼管が提案されている。 For example, Patent Documents 1 and 2 propose square steel pipes with improved ductility and toughness at corners by appropriately controlling chemical components and microstructures.
 また、特許文献3では、鋼板を折り曲げ加工したのち溶接して半成形角形鋼管とし、この半成形角形鋼管を加熱して熱間成形した後、冷却することにより、角部の延性および靭性を向上させた角形鋼管が提案されている。 In addition, in Patent Document 3, a steel plate is bent and then welded to form a semi-formed square steel tube, and the half-formed square steel tube is heated and hot-formed, and then cooled to improve the ductility and toughness of the corners. A rectangular steel pipe has been proposed.
特開2011-094214号公報Japanese Patent Application Publication No. 2011-094214 特開2018-053281号公報JP2018-053281A 特開2004-330222号公報Japanese Patent Application Publication No. 2004-330222
 ここで、角形鋼管の曲げ変形時の耐座屈性能に関しては、平板部に垂直な方向から荷重を受ける場合(0度曲げ)、および角部頂点方向から荷重を受ける場合(45度曲げ)の両方に対し、性能を検討する必要がある。
 なお、0度曲げの場合は、曲げ内側の平板部が管内面に向かって凹むことによって座屈が生じる。また、45度曲げの場合は、曲げ内側の角部の曲率半径が大きくなることによって座屈が生じる。
Regarding the buckling resistance during bending deformation of square steel pipes, we will examine the buckling performance when the load is applied from the direction perpendicular to the flat plate part (0 degree bending) and when the load is applied from the corner apex direction (45 degree bending). Performance needs to be considered for both.
In addition, in the case of 0 degree bending, buckling occurs because the flat plate part on the inside of the bend is recessed toward the inner surface of the tube. Furthermore, in the case of 45-degree bending, buckling occurs due to the increased radius of curvature of the corner on the inside of the bend.
 角形鋼管の耐座屈性能を向上させるためには、前記した座屈の前駆現象である平板部の変形および角部の変形を抑制することが有効であると考えられる。しかし、従来はこうした観点からの検討はなされていなかった。 In order to improve the buckling resistance of a square steel pipe, it is considered effective to suppress the deformation of the flat plate portion and the deformation of the corner portion, which are the precursor phenomena of buckling described above. However, conventional studies have not been conducted from this perspective.
 本発明は上記の事情を鑑みてなされたものであって、耐座屈性能に優れた角形鋼管およびその製造方法、並びにかかる角形鋼管を用いることで優れた耐震性能を有する建築構造物を提供することを目的とする。
 なお、本発明において、耐座屈性能に優れるとは、前記角形鋼管の0度曲げ試験および45度曲げ試験における累積塑性変形倍率がいずれも28以上であることを指す。
The present invention has been made in view of the above circumstances, and provides a square steel pipe with excellent buckling resistance, a method for manufacturing the same, and a building structure using such a square steel pipe with excellent seismic performance. The purpose is to
In the present invention, "excellent buckling resistance" means that the cumulative plastic deformation magnification of the square steel pipe in both the 0 degree bending test and the 45 degree bending test is 28 or more.
 本発明者らが前記課題を解決すべく鋭意検討を行った結果、前記角形鋼管の平板部および角部の管周方向の降伏強度を適切に制御することにより、前記した座屈の前駆現象となる平板部の変形および/または角部の変形を効果的に抑制し、耐座屈性能を向上させることができることを見出した。 As a result of intensive studies by the present inventors to solve the above-mentioned problem, it was found that by appropriately controlling the yield strength in the circumferential direction of the flat plate portion and the corner portion of the square steel pipe, the above-mentioned precursor phenomenon of buckling can be prevented. It has been found that the deformation of the flat plate portion and/or the corner portion can be effectively suppressed and the buckling resistance can be improved.
 また、前記平板部の管周方向の残留応力を適切に制御することにより、前記した座屈の前駆現象である平板部の変形を抑制し、0度方向の耐座屈性能をさらに向上させることができることを併せて見出した。 Furthermore, by appropriately controlling the residual stress in the circumferential direction of the flat plate portion, deformation of the flat plate portion, which is a precursor phenomenon of buckling, can be suppressed, and the buckling resistance performance in the 0 degree direction can be further improved. We also discovered what can be done.
 本発明は、かかる知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。 The present invention was completed based on this knowledge and further studies. That is, the gist of the present invention is as follows.
1.管周方向に複数の平板部および角部を交互に有し、かつ管軸方向に延びる溶接部を有する角形鋼管であって、
 前記平板部の管周方向の降伏強度が、前記平板部の管軸方向の降伏強度の0.83倍以上1.20倍以下であり、
 前記角部の管周方向の降伏強度が、前記平板部の管軸方向の降伏強度の0.90倍以上1.30倍以下である、角形鋼管。
1. A square steel pipe having a plurality of flat plate parts and corner parts alternately in the pipe circumferential direction and having a welded part extending in the pipe axial direction,
The yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more and 1.20 times or less of the yield strength of the flat plate portion in the tube axis direction,
A square steel pipe, wherein the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more and 1.30 times or less the yield strength of the flat plate portion in the tube axis direction.
2.前記平板部の外表面における管周方向の残留応力が、-200MPa以上150MPa以下である、前記1に記載の角形鋼管。
 ただし、前記残留応力は、正の値の場合は引張、負の値の場合は圧縮の応力をそれぞれ表す。
2. 2. The square steel pipe according to 1, wherein the residual stress in the circumferential direction on the outer surface of the flat plate portion is -200 MPa or more and 150 MPa or less.
However, when the residual stress is a positive value, it represents tensile stress, and when it is a negative value, it represents compressive stress.
3.質量%で、
C:0.020~0.350%、
Si:0.01~0.65%、
Mn:0.30~2.50%、
P:0.050%以下、
S:0.0500%以下、
Al:0.005~0.100%および
N:0.0100%以下
を含み、残部がFeおよび不可避的不純物である成分組成を有する、前記1または2に記載の角形鋼管。
3. In mass%,
C: 0.020-0.350%,
Si: 0.01 to 0.65%,
Mn: 0.30-2.50%,
P: 0.050% or less,
S: 0.0500% or less,
3. The square steel pipe according to 1 or 2 above, which has a composition comprising Al: 0.005 to 0.100% and N: 0.0100% or less, with the balance being Fe and inevitable impurities.
4.前記成分組成が、さらに、質量%で、
Ti:0.100%以下、
Nb:0.100%以下、
V:0.100%以下、
Cr:1.00%以下、
Mo:1.00%以下、
Cu:1.00%以下、
Ni:1.00%以下、
Ca:0.0100%以下および
B:0.0100%以下から選んだ1種または2種以上を含む、前記3に記載の角形鋼管。
4. The component composition further includes, in mass%,
Ti: 0.100% or less,
Nb: 0.100% or less,
V: 0.100% or less,
Cr: 1.00% or less,
Mo: 1.00% or less,
Cu: 1.00% or less,
Ni: 1.00% or less,
3. The square steel pipe according to 3 above, containing one or more selected from Ca: 0.0100% or less and B: 0.0100% or less.
5.前記1~4のいずれか一つに記載の角形鋼管の製造方法であって、
 鋼板を冷間ロール成形により円筒状に成形し、該円筒状の周方向端部を相互に突合せて電縫溶接する造管工程と、
 該造管工程後に行われる、角成形スタンドによって平板部の平坦度が-10.0mm以上-4.0mm以下、さらに角部の曲率半径が平板部の肉厚の1.0倍以上2.5倍以下である角形鋼管素材にする角成形工程と、
 引続き、前記角形鋼管素材の内面に対し以下の(1)式を満たす内圧p(MPa)を負荷して、かかる角形鋼管素材の平板部の平坦度を-3.0mm以上3.0mm以下としつつ、角部の曲率半径を平板部の肉厚の2.0倍以上4.0倍以下とする角形鋼管にする内圧負荷工程と、
を含む、角形鋼管の製造方法。
         N(MPa)<p≦N×1.5(MPa) ・・・(1)
 ただし、N=(角形鋼管素材の肉厚(mm)/角形鋼管素材の辺長(mm))×角形鋼管素材の平板部の管周方向の降伏強度(MPa)
5. The method for manufacturing a square steel pipe according to any one of 1 to 4 above,
A pipe-making process in which a steel plate is formed into a cylindrical shape by cold roll forming, and the circumferential ends of the cylindrical shape are abutted against each other and welded by electric resistance welding;
The flatness of the flat plate part is -10.0 mm or more and -4.0 mm or less by the square forming stand performed after the pipe making process, and the radius of curvature of the corner part is 1.0 times or more and 2.5 times the wall thickness of the flat plate part. A square forming process to make a square steel pipe material that is less than double the size of the square steel pipe;
Subsequently, an internal pressure p (MPa) satisfying the following formula (1) is applied to the inner surface of the square steel pipe material, and the flatness of the flat part of the square steel pipe material is set to -3.0 mm or more and 3.0 mm or less. , an internal pressure loading step to form a square steel pipe in which the radius of curvature of the corner portion is 2.0 times or more and 4.0 times or less the wall thickness of the flat plate portion;
A method of manufacturing a square steel pipe, including:
N(MPa)<p≦N×1.5(MPa)...(1)
However, N = (wall thickness of square steel pipe material (mm) / side length of square steel pipe material (mm)) x yield strength in the pipe circumferential direction of the flat plate part of square steel pipe material (MPa)
6.前記1~4のいずれか一つに記載の角形鋼管を、柱材として備える建築構造物。 6. An architectural structure comprising the square steel pipe according to any one of 1 to 4 above as a column material.
 本発明によれば、耐座屈性能に優れた角形鋼管およびその製造方法を提供することが可能となる。
 また、本発明の角形鋼管を柱材として使用した建築構造物は、従来の冷間成形角形鋼管を使用した建築構造物と比べて、より優れた耐震性能を得ることができる。
According to the present invention, it is possible to provide a square steel pipe with excellent buckling resistance and a method for manufacturing the same.
Moreover, a building structure using the square steel pipe of the present invention as a column material can obtain better seismic performance than a building structure using a conventional cold-formed square steel pipe.
本発明の角形鋼管(または角形鋼管素材)の管軸方向に対して垂直な断面を示す概略図である。FIG. 1 is a schematic diagram showing a cross section perpendicular to the tube axis direction of a square steel pipe (or a square steel pipe material) of the present invention. 平坦度の測定方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method for measuring flatness. 角成形スタンドを示す概略図である。It is a schematic diagram showing a corner forming stand. 本発明の建築構造物の一例を示す模式図である。1 is a schematic diagram showing an example of an architectural structure of the present invention. 角形鋼管素材の平板部の管軸方向引張試験片の採取位置を示す概略図である。FIG. 2 is a schematic diagram showing the sampling position of a tube axial direction tensile test piece of a flat plate portion of a square steel pipe material. 角形鋼管の平板部および角部の管周方向引張試験片の採取位置をそれぞれ示す概略図である。FIG. 2 is a schematic diagram showing the sampling positions of circumferential direction tensile test pieces of a flat plate portion and a corner portion of a square steel pipe, respectively. 角形鋼管の角部の引張試験片の採取位置を示す概略図である。FIG. 2 is a schematic diagram showing the sampling position of a tensile test piece at a corner of a square steel pipe. 角形鋼管の0度曲げ試験の概要図である。It is a schematic diagram of a 0 degree bending test of a square steel pipe. 角形鋼管の45度曲げ試験の概要図である。It is a schematic diagram of a 45 degree bending test of a square steel pipe.
 本発明の角形鋼管は、管周方向に複数の平板部および角部を交互に有することで、鋼管の断面は、矩形(四角形)のほか、三角形および五角形以上の多角形のいずれかになっている。さらに、上記角形鋼管は、管軸方向に延びた溶接部が形成されていて、前記平板部の管周方向の降伏強度が、前記平板部の管軸方向の降伏強度の0.83倍以上1.20倍以下であり、前記角部の管周方向の降伏強度が、前記平板部の管軸方向の降伏強度の0.90倍以上1.30倍以下である。 The square steel pipe of the present invention has a plurality of flat plate parts and corner parts alternately in the pipe circumferential direction, so that the cross section of the steel pipe is not only rectangular (quadrilateral) but also triangular and polygonal with pentagon or more. There is. Furthermore, the square steel pipe has a welded portion extending in the tube axis direction, and the yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more the yield strength of the flat plate portion in the tube axis direction. .20 times or less, and the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more and 1.30 times or less of the yield strength of the flat plate portion in the tube axis direction.
平板部の管周方向の降伏強度:平板部の管軸方向の降伏強度の0.83倍以上1.20倍以下
 平板部の管周方向の降伏強度が、平板部の管軸方向の降伏強度の0.83倍未満である場合、0度曲げにおいて曲げ内側の平板部が塑性変形しやすく、曲げ内側の平板部が管内面に向かって凹みやすいため、耐座屈性能が低下する。よって、平板部の管周方向の降伏強度は、平板部の管軸方向の降伏強度の0.83倍以上とする。なお、前記平板部の管周方向の降伏強度は、好ましくは平板部の管軸方向の降伏強度の0.85倍以上であり、より好ましくは0.87倍以上である。
 一方、平板部の管周方向の降伏強度が、平板部の管軸方向の降伏強度の1.20倍超である場合、平板部の延性が低下し、0度曲げにおいて平板部の不均一変形が早期に発生するため、耐座屈性能が低下する。また、曲げ外側の破断が生じやすくなる。よって、平板部の管周方向の降伏強度は、平板部の管軸方向の降伏強度の1.20倍以下とする。なお、前記平板部の管周方向の降伏強度は、好ましくは平板部の管軸方向の降伏強度の1.15倍以下であり、より好ましくは1.10倍以下である。
 なお、従来の製法では、平板部の管周方向の降伏強度は、平板部の管軸方向の降伏強度の0.80倍程度であった。
 また、本発明において平板部とは、後述する角部を除く範囲であって、かかる平板部の両端のそれぞれ(接続点(図1に示す点A、A’等))は異なる角部と接続し、後述する平坦度を有する部位である。なお、図1は、本発明の角形鋼管の管軸方向に対して垂直な断面を示す概略図である。
Yield strength in the tube circumferential direction of the flat plate portion: 0.83 times or more and 1.20 times or less than the yield strength in the tube axis direction of the flat plate portion. If it is less than 0.83 times, the flat plate part on the inside of the bend is likely to be plastically deformed in 0 degree bending, and the flat plate part on the inside of the bend is likely to dent toward the inner surface of the tube, resulting in a decrease in buckling resistance. Therefore, the yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more the yield strength of the flat plate portion in the tube axis direction. The yield strength of the flat plate portion in the tube circumferential direction is preferably 0.85 times or more, more preferably 0.87 times or more, the yield strength of the flat plate portion in the tube axis direction.
On the other hand, if the yield strength of the flat plate part in the circumferential direction is more than 1.20 times the yield strength of the flat plate part in the tube axis direction, the ductility of the flat plate part decreases, resulting in uneven deformation of the flat plate part in 0 degree bending. occurs early, resulting in a decrease in buckling resistance. Moreover, breakage on the outside of bending is likely to occur. Therefore, the yield strength of the flat plate portion in the tube circumferential direction is 1.20 times or less than the yield strength of the flat plate portion in the tube axis direction. The yield strength of the flat plate portion in the tube circumferential direction is preferably 1.15 times or less, more preferably 1.10 times or less, the yield strength of the flat plate portion in the tube axis direction.
In addition, in the conventional manufacturing method, the yield strength of the flat plate portion in the tube circumferential direction was about 0.80 times the yield strength of the flat plate portion in the tube axis direction.
In addition, in the present invention, the flat plate portion refers to a range excluding the corner portions described below, and each of the both ends (connection points (points A, A', etc. shown in FIG. 1)) of the flat plate portion is connected to a different corner portion. However, this is a portion having flatness, which will be described later. Note that FIG. 1 is a schematic diagram showing a cross section perpendicular to the tube axis direction of the square steel pipe of the present invention.
角部の管周方向の降伏強度:平板部の管軸方向の降伏強度の0.90倍以上1.30倍以下
 角部の管周方向の降伏強度が平板部の管軸方向の降伏強度の0.90倍未満である場合、45度曲げにおいて曲げ内側の角部が塑性変形しやすく、曲げ内側の角部の曲率半径が大きくなりやすいため、耐座屈性能が低下する。よって、角部の管周方向の降伏強度は、平板部の管軸方向の降伏強度の0.90倍以上とする。なお、前記角部の管周方向の降伏強度は、好ましくは、平板部の管軸方向の降伏強度の0.95倍以上であり、より好ましくは1.00倍以上である。
 一方、角部の管周方向の降伏強度が平板部の管軸方向の降伏強度の1.30倍超である場合、平板部の延性が低下し、45度曲げにおいて角部の不均一変形が早期に発生するため、耐座屈性能が低下する。また、曲げ外側の破断が生じやすくなる。よって、角部の管周方向の降伏強度は、平板部の管軸方向の降伏強度の1.30倍以下とする。なお、前記角部の管周方向の降伏強度は、好ましくは平板部の管軸方向の降伏強度の1.25倍以下であり、より好ましくは1.20倍以下である。
 なお、従来の製法では、角部の管周方向の降伏強度は、平板部の管軸方向の降伏強度の0.85倍程度であった。
 また、本発明において角部とは、後述する所定の曲率半径を有する曲面の部位である。
Yield strength in the circumferential direction of the corner: 0.90 times or more and 1.30 times or less the yield strength in the tube axis direction of the flat plate portion. If it is less than 0.90 times, the corner on the inner side of the bend tends to be plastically deformed during 45-degree bending, and the radius of curvature of the corner on the inner side of the bend tends to increase, resulting in a decrease in buckling resistance. Therefore, the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more the yield strength of the flat plate portion in the tube axis direction. The yield strength of the corner portion in the tube circumferential direction is preferably 0.95 times or more, more preferably 1.00 times or more, the yield strength of the flat plate portion in the tube axis direction.
On the other hand, if the yield strength of the corner in the tube circumferential direction is more than 1.30 times the yield strength of the flat plate in the tube axis direction, the ductility of the flat plate decreases and uneven deformation of the corner occurs during 45 degree bending. Since this occurs early, buckling resistance performance deteriorates. Moreover, breakage on the outside of bending is likely to occur. Therefore, the yield strength of the corner portion in the tube circumferential direction is 1.30 times or less than the yield strength of the flat plate portion in the tube axis direction. The yield strength of the corner portion in the tube circumferential direction is preferably 1.25 times or less, more preferably 1.20 times or less, the yield strength of the flat plate portion in the tube axis direction.
In addition, in the conventional manufacturing method, the yield strength of the corner portion in the tube circumferential direction was approximately 0.85 times the yield strength of the flat plate portion in the tube axis direction.
Furthermore, in the present invention, a corner is a portion of a curved surface having a predetermined radius of curvature, which will be described later.
 本発明の角形鋼管は、建築構造物としての十分な強度および耐座屈性能を確保するために、前記平板部の管軸方向の降伏強度が295MPa以上であることが好ましい。
 なお、上記の降伏強度は、JIS Z 2241 2011年の規定に準拠して引張試験を実施することで得られる。
In order to ensure sufficient strength and buckling resistance for the square steel pipe of the present invention as a building structure, it is preferable that the flat plate portion has a yield strength of 295 MPa or more in the tube axis direction.
Note that the above yield strength is obtained by conducting a tensile test in accordance with the regulations of JIS Z 2241 2011.
 本発明の角形鋼管は、0度方向の耐座屈性能を向上させるために、前記平板部の外表面における管周方向の残留応力が、-200MPa以上150MPa以下であることが好ましい。ただし、前記残留応力は、正の値の場合は引張、負の値の場合は圧縮の応力をそれぞれ表す。 In the square steel pipe of the present invention, in order to improve the buckling resistance in the 0 degree direction, it is preferable that the residual stress in the tube circumferential direction on the outer surface of the flat plate portion is −200 MPa or more and 150 MPa or less. However, when the residual stress is a positive value, it represents tensile stress, and when it is a negative value, it represents compressive stress.
 平板部の外表面における管周方向の残留応力の値が-200MPa以上であれば、0度曲げにおいて平板部外面の圧縮変形が促進され、曲げ内側の平板部が管内面に向かって凹みやすくなるといった不具合を抑制し、耐座屈性能を良好に維持することができる。前記残留応力は、より好ましくは-190MPa以上であり、さらに好ましくは-180MPa以上である。 If the value of residual stress in the tube circumferential direction on the outer surface of the flat plate part is -200 MPa or more, compressive deformation of the flat plate outer surface is promoted in 0 degree bending, and the flat plate part on the inside of the bend tends to dent toward the tube inner surface. It is possible to suppress such problems and maintain good buckling resistance. The residual stress is more preferably -190 MPa or more, and still more preferably -180 MPa or more.
 一方、平板部の外表面における管周方向の残留応力の値が150MPa以下であれば、0度曲げにおいて平板部外面の引張変形が促進され、曲げ内側の平板部の両隣の平板部が管外面に膨らみやすくなるといった不具合を抑制することができる。その結果、曲げ内側の平板部の管内面への凹みも抑制され、耐座屈性能を良好に維持することができる。前記残留応力は、より好ましくは140MPa以下であり、さらに好ましくは130MPa以下である。
 なお、本発明における残留応力は、X線回折法により測定することができる。
On the other hand, if the value of the residual stress in the tube circumferential direction on the outer surface of the flat plate part is 150 MPa or less, tensile deformation of the flat plate outer surface is promoted in 0 degree bending, and the flat plate parts on both sides of the flat plate part on the inner side of the bending are It is possible to suppress problems such as easy swelling. As a result, denting of the flat plate portion on the inner side of the bending toward the inner surface of the tube is also suppressed, and buckling resistance can be maintained satisfactorily. The residual stress is more preferably 140 MPa or less, still more preferably 130 MPa or less.
Note that the residual stress in the present invention can be measured by X-ray diffraction.
 本発明の角形鋼管は、建築構造物として十分な強度および溶接性を確保するために、質量%で、
C:0.020~0.350%、
Si:0.01~0.65%、
Mn:0.30~2.50%、
P:0.050%以下、
S:0.0500%以下、
Al:0.005~0.100%および
N:0.0100%以下
を含み、残部がFeおよび不可避的不純物である成分組成を有することが好ましい。
In order to ensure sufficient strength and weldability as a building structure, the square steel pipe of the present invention has a mass percentage of
C: 0.020-0.350%,
Si: 0.01 to 0.65%,
Mn: 0.30-2.50%,
P: 0.050% or less,
S: 0.0500% or less,
It is preferable to have a component composition containing Al: 0.005 to 0.100% and N: 0.0100% or less, with the balance being Fe and inevitable impurities.
 以下、特に断りがない限り、鋼組成を示す「%」は「質量%」である。また、以下の成分組成は、角形鋼管の溶接部を除いた平板部および角部の成分組成ということもできる。 Hereinafter, unless otherwise specified, "%" indicating the steel composition is "% by mass". Moreover, the following composition can also be said to be the composition of the flat plate part and the corner part of the square steel pipe excluding the welded part.
C:0.020%以上0.350%以下
 Cは、固溶強化により鋼の強度を上昇させる元素である。また、Cは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。これらの効果を得るためには、0.020%以上のCを含有することが好ましい。一方、Cは、パーライトの生成を促進し、焼入れ性を高めてマルテンサイトの生成に寄与し、オーステナイトの安定化に寄与することから、硬質相の形成にも寄与する元素である。ただし、C含有量が0.350%を超えると、硬質相の割合が高くなり延性が低下し、耐座屈性能が低下するおそれがある。また溶接性も悪化するおそれがある。
 以上より、C含有量は0.020%以上0.350%以下の範囲とすることが好ましい。C含有量は、より好ましくは0.030%以上であり、さらに好ましくは0.040%以上である。一方、C含有量は、より好ましくは0.330%以下であり、さらに好ましくは0.310%以下である。
C: 0.020% or more and 0.350% or less C is an element that increases the strength of steel through solid solution strengthening. Further, C is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature. In order to obtain these effects, it is preferable to contain 0.020% or more of C. On the other hand, C is an element that promotes the formation of pearlite, improves hardenability, contributes to the formation of martensite, and contributes to the stabilization of austenite, and therefore also contributes to the formation of a hard phase. However, if the C content exceeds 0.350%, the ratio of the hard phase increases, ductility decreases, and buckling resistance may decrease. Furthermore, weldability may also deteriorate.
From the above, it is preferable that the C content is in the range of 0.020% or more and 0.350% or less. The C content is more preferably 0.030% or more, and even more preferably 0.040% or more. On the other hand, the C content is more preferably 0.330% or less, still more preferably 0.310% or less.
Si:0.01%以上0.65%以下
 Siは、固溶強化により鋼の強度を上昇させる元素である。このような効果を得るためには、0.01%以上のSiを含有することが好ましい。一方、Si含有量が0.65%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下するおそれがある。また、電縫溶接部以外の母材部の延性が低下し、耐座屈性能が低下するおそれがある。
 以上より、Si含有量は0.01%以上0.65%以下の範囲とすることが好ましい。Si含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。一方、Si含有量は、より好ましくは0.63%以下であり、さらに好ましくは0.61%以下である。
Si: 0.01% or more and 0.65% or less Si is an element that increases the strength of steel through solid solution strengthening. In order to obtain such an effect, it is preferable to contain 0.01% or more of Si. On the other hand, if the Si content exceeds 0.65%, oxides are likely to be generated in the electric resistance welded part, and the properties of the welded part may deteriorate. Furthermore, the ductility of the base metal portion other than the electric resistance welded portion may be reduced, and buckling resistance may be reduced.
From the above, it is preferable that the Si content is in the range of 0.01% or more and 0.65% or less. The Si content is more preferably 0.02% or more, and still more preferably 0.03% or more. On the other hand, the Si content is more preferably 0.63% or less, still more preferably 0.61% or less.
Mn:0.30%以上2.50%以下
 Mnは、固溶強化により鋼の強度を上昇させる元素である。また、Mnはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。これらの効果を得るためには、0.30%以上のMnを含有することが好ましい。一方、Mn含有量が2.50%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下するおそれがある。また、固溶強化および組織の微細化のため、延性が低下し、耐座屈性能が低下するおそれがある。
 以上より、Mn含有量は0.30%以上2.50%以下の範囲とすることが好ましい。Mn含有量は、より好ましくは0.40%以上であり、さらに好ましくは0.50%以上である。一方、Mn含有量は、より好ましくは2.30%以下であり、さらに好ましくは2.10%以下である。
Mn: 0.30% or more and 2.50% or less Mn is an element that increases the strength of steel through solid solution strengthening. Furthermore, Mn is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature. In order to obtain these effects, it is preferable to contain Mn in an amount of 0.30% or more. On the other hand, when the Mn content exceeds 2.50%, oxides are likely to be generated in the electric resistance welded part, and there is a possibility that the properties of the welded part may deteriorate. In addition, due to solid solution strengthening and microstructural refinement, ductility may decrease and buckling resistance may decrease.
From the above, it is preferable that the Mn content is in the range of 0.30% or more and 2.50% or less. The Mn content is more preferably 0.40% or more, and even more preferably 0.50% or more. On the other hand, the Mn content is more preferably 2.30% or less, even more preferably 2.10% or less.
P:0.050%以下
 Pは、粒界に偏析し材料の不均質を招くため、できるだけ低減することが好ましい。このため、P含有量は0.050%以下とすることが好ましい。P含有量は、より好ましくは0.040%以下であり、さらに好ましくは0.030%以下である。特にPの下限は規定しない(通常は0%超えである)が、過度の低減は製錬コストの高騰を招くため、P含有量は0.002%以上とすることが好ましい。
P: 0.050% or less P segregates at grain boundaries and causes material inhomogeneity, so it is preferable to reduce it as much as possible. For this reason, the P content is preferably 0.050% or less. The P content is more preferably 0.040% or less, and still more preferably 0.030% or less. There is no particular lower limit for P (usually it is over 0%), but excessive reduction will lead to a rise in smelting costs, so it is preferable for the P content to be 0.002% or more.
S:0.0500%以下
 Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性を低下させ、耐座屈性能を低下させる。このため、本発明ではSをできるだけ低減することが好ましい。よって、本発明でのS含有量は0.0500%以下とすることが好ましい。S含有量は、より好ましくは0.0300%以下であり、さらに好ましくは0.0100%以下である。特にSの下限は規定しない(通常は0%超えである)が、過度の低減は製錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。
S: 0.0500% or less S usually exists as MnS in steel, but MnS is stretched thin during the hot rolling process, reducing ductility and buckling resistance. Therefore, in the present invention, it is preferable to reduce S as much as possible. Therefore, the S content in the present invention is preferably 0.0500% or less. The S content is more preferably 0.0300% or less, and still more preferably 0.0100% or less. There is no particular lower limit to S (usually over 0%), but excessive reduction will lead to a rise in smelting costs, so S is preferably 0.0002% or more.
Al:0.005%以上0.100%以下
 Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、0.005%以上のAlを含有することが好ましい。一方、Al含有量が0.100%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなって、表面性状が悪化するおそれがある。
 従って、Al含有量は0.005%以上0.100%以下の範囲とすることが好ましい。Al含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.015%以上である。一方、Al含有量は、より好ましくは0.080%以下であり、さらに好ましくは0.060%以下である。
Al: 0.005% or more and 0.100% or less Al is an element that acts as a strong deoxidizing agent. In order to obtain such an effect, it is preferable to contain 0.005% or more of Al. On the other hand, when the Al content exceeds 0.100%, weldability deteriorates and alumina-based inclusions increase, which may deteriorate the surface quality.
Therefore, the Al content is preferably in the range of 0.005% or more and 0.100% or less. The Al content is more preferably 0.010% or more, and even more preferably 0.015% or more. On the other hand, the Al content is more preferably 0.080% or less, still more preferably 0.060% or less.
N:0.0100%以下
 Nは、転位の運動を強固に固着することで延性を低下させ、耐座屈性能を低下させる作用を有する元素である。本発明では、Nはできるだけ低減することが望ましい。このため、N含有量は0.0100%以下とすることが好ましい。N含有量は、より好ましくは0.0080%以下である。特にNの下限は規定しない(通常は0%超えである)が、過度の低減は製錬コストの高騰を招くため、Nは0.0010%以上とすることが好ましい。
N: 0.0100% or less N is an element that firmly fixes the movement of dislocations, thereby reducing ductility and reducing buckling resistance. In the present invention, it is desirable to reduce N as much as possible. For this reason, the N content is preferably 0.0100% or less. The N content is more preferably 0.0080% or less. There is no particular lower limit to N (usually it is over 0%), but excessive reduction will lead to a rise in smelting costs, so N is preferably 0.0010% or more.
 また、本発明の角形鋼管の上記成分組成は、さらに、質量%で、
Ti:(0%超)0.100%以下、
Nb:(0%超)0.100%以下、
V:(0%超)0.100%以下、
Cr:(0%超)1.00%以下、
Mo:(0%超)1.00%以下、
Cu:(0%超)1.00%以下、
Ni:(0%超)1.00%以下、
Ca:(0%超)0.0100%以下および
B:(0%超)0.0100%以下
から選んだ1種または2種以上を含んでもよい。
Moreover, the above-mentioned composition of the square steel pipe of the present invention further includes, in mass %,
Ti: (more than 0%) 0.100% or less,
Nb: (more than 0%) 0.100% or less,
V: (more than 0%) 0.100% or less,
Cr: (more than 0%) 1.00% or less,
Mo: (more than 0%) 1.00% or less,
Cu: (more than 0%) 1.00% or less,
Ni: (more than 0%) 1.00% or less,
It may contain one or more selected from Ca: (more than 0%) 0.0100% or less and B: (more than 0%) 0.0100% or less.
Ti:0.100%以下
 Ti含有量が0.100%を超えると延性が低下し、耐座屈性能が低下するおそれがある。このため、Ti含有量は0.100%以下が好ましい。Ti含有量は、より好ましくは0.090%以下であり、さらに好ましくは0.080%以下である。一方、Tiは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素である。また、Nとの親和性が高いため鋼中のNを窒化物として無害化し、鋼の延性向上にも寄与する元素である。上記した効果を得るため、Tiの含有量は、0.001%以上にすることが好ましい。Ti含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。
Ti: 0.100% or less If the Ti content exceeds 0.100%, ductility may decrease and buckling resistance may decrease. Therefore, the Ti content is preferably 0.100% or less. The Ti content is more preferably 0.090% or less, still more preferably 0.080% or less. On the other hand, Ti is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel. Furthermore, since it has a high affinity with N, it is an element that renders N in steel harmless as a nitride and contributes to improving the ductility of steel. In order to obtain the above effects, the Ti content is preferably 0.001% or more. The Ti content is more preferably 0.002% or more, and still more preferably 0.005% or more.
Nb:0.100%以下
 Nb含有量が0.100%を超えると延性が低下し、耐座屈性能が低下するおそれがある。このため、Nb含有量は0.100%以下が好ましい。Nb含有量は、より好ましくは0.090%以下であり、さらに好ましくは0.080%以下である。一方、Nbは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与し、また、熱間圧延中のオーステナイトの粗大化を抑制することで組織の微細化にも寄与する元素である。上記した効果を得るため、Nbの含有量は、0.001%以上にすることが好ましい。Nb含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。
Nb: 0.100% or less If the Nb content exceeds 0.100%, ductility may decrease and buckling resistance may decrease. Therefore, the Nb content is preferably 0.100% or less. The Nb content is more preferably 0.090% or less, still more preferably 0.080% or less. On the other hand, Nb contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and also contributes to the refinement of the structure by suppressing the coarsening of austenite during hot rolling. It is an element that In order to obtain the above effects, the Nb content is preferably 0.001% or more. The Nb content is more preferably 0.002% or more, and still more preferably 0.005% or more.
V:0.100%以下
 V含有量が0.100%を超えると延性が低下し、耐座屈性能が低下するおそれがある。このため、V含有量は0.100%以下とすることが好ましい。V含有量は、より好ましくは0.090%以下であり、さらに好ましくは0.080%以下である。一方、Vは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素である。上記した効果を得るため、0.001%以上のVを含有することが好ましい。V含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。
V: 0.100% or less If the V content exceeds 0.100%, ductility may decrease and buckling resistance may decrease. Therefore, the V content is preferably 0.100% or less. The V content is more preferably 0.090% or less, still more preferably 0.080% or less. On the other hand, V is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel. In order to obtain the above effects, it is preferable to contain 0.001% or more of V. The V content is more preferably 0.002% or more, and still more preferably 0.005% or more.
Cr:1.00%以下
 Cr含有量が1.00%を超えると延性が低下し、耐座屈性能が低下するおそれがある。よって、Cr含有量は1.00%以下とすることが好ましい。Cr含有量は、より好ましくは0.80%以下であり、さらに好ましくは0.60%以下である。一方、Crは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素である。上記した効果を得るため、Cr含有量は0.01%以上とすることが好ましい。Cr含有量は、より好ましくは0.02%以上であり、さらに好ましくは、0.05%以上である。
Cr: 1.00% or less If the Cr content exceeds 1.00%, ductility may decrease and buckling resistance may decrease. Therefore, the Cr content is preferably 1.00% or less. The Cr content is more preferably 0.80% or less, still more preferably 0.60% or less. On the other hand, Cr is an element that improves the hardenability of steel and increases the strength of steel. In order to obtain the above effects, the Cr content is preferably 0.01% or more. The Cr content is more preferably 0.02% or more, and even more preferably 0.05% or more.
Mo:1.00%以下
 Mo含有量が1.00%を超えると延性が低下し、耐座屈性能が低下するおそれがある。よって、Mo含有量は1.00%以下とすることが好ましい。Mo含有量は、より好ましくは0.80%以下であり、さらに好ましくは0.60%以下である。一方、Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素である。上記した効果を得るため、Mo含有量は0.01%以上とすることが好ましい。Mo含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。
Mo: 1.00% or less If the Mo content exceeds 1.00%, ductility may decrease and buckling resistance may decrease. Therefore, the Mo content is preferably 1.00% or less. The Mo content is more preferably 0.80% or less, still more preferably 0.60% or less. On the other hand, Mo is an element that improves the hardenability of steel and increases the strength of steel. In order to obtain the above effects, the Mo content is preferably 0.01% or more. The Mo content is more preferably 0.02% or more, and still more preferably 0.05% or more.
Cu:1.00%以下
 Cu含有量が1.00%を超えると延性が低下し、耐座屈性能が低下するおそれがある。よって、Cu含有量は1.00%以下とすることが好ましい。Cu含有量は、より好ましくは0.80%以下であり、さらに好ましくは0.60%以下である。一方、Cuは、固溶強化により鋼の強度を上昇させる元素である。上記した効果を得るため、Cu含有量は0.01%以上とすることが好ましい。Cu含有量は、より好ましくは、0.02%以上であり、さらに好ましくは、0.05%以上である。
Cu: 1.00% or less If the Cu content exceeds 1.00%, ductility may decrease and buckling resistance may decrease. Therefore, the Cu content is preferably 1.00% or less. The Cu content is more preferably 0.80% or less, and still more preferably 0.60% or less. On the other hand, Cu is an element that increases the strength of steel through solid solution strengthening. In order to obtain the above effects, the Cu content is preferably 0.01% or more. The Cu content is more preferably 0.02% or more, and still more preferably 0.05% or more.
Ni:1.00%以下
 Ni含有量が1.00%を超えると延性が低下し、耐座屈性能が低下するおそれがある。よって、Ni含有量は1.00%以下とすることが好ましい。Ni含有量は、より好ましくは0.80%以下であり、さらに好ましくは、0.60%以下である。一方、Niは、固溶強化により鋼の強度を上昇させる元素である。上記した効果を得るため、Ni含有量は0.01%以上とすることが好ましい。Ni含有量は、より好ましくは、0.02%以上であり、さらに好ましくは、0.05%以上である。
Ni: 1.00% or less If the Ni content exceeds 1.00%, ductility may decrease and buckling resistance may decrease. Therefore, the Ni content is preferably 1.00% or less. The Ni content is more preferably 0.80% or less, and still more preferably 0.60% or less. On the other hand, Ni is an element that increases the strength of steel through solid solution strengthening. In order to obtain the above effects, the Ni content is preferably 0.01% or more. The Ni content is more preferably 0.02% or more, and still more preferably 0.05% or more.
Ca:0.0100%以下
 Ca含有量が0.0100%を超えると鋼中にCa酸化物クラスターが形成され、延性が低下し、耐座屈性能が低下するおそれがある。このため、Ca含有量は0.0100%以下とすることが好ましい。Ca含有量は、より好ましくは0.0080%以下であり、さらに好ましくは0.0060%以下である。一方、Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の延性向上に寄与する元素である。上記した効果を得るため、0.0002%以上のCaを含有することが好ましい。Ca含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。
Ca: 0.0100% or less When the Ca content exceeds 0.0100%, Ca oxide clusters are formed in the steel, which may reduce ductility and reduce buckling resistance. For this reason, the Ca content is preferably 0.0100% or less. The Ca content is more preferably 0.0080% or less, still more preferably 0.0060% or less. On the other hand, Ca is an element that contributes to improving the ductility of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process. In order to obtain the above effects, it is preferable to contain 0.0002% or more of Ca. The Ca content is more preferably 0.0005% or more, and still more preferably 0.0010% or more.
B:0.0100%以下
 B含有量が0.0100%を超えると延性が低下し、耐座屈性能が低下するおそれがある。このため、B含有量は0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0080%以下であり、さらに好ましくは0.0060%以下であって、さらにより好ましくは0.0040%以下である。一方、Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素であり、必要に応じて含有することができる。上記した効果を得るため、0.0001%以上のBを含有することが好ましい。B含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。
B: 0.0100% or less If the B content exceeds 0.0100%, ductility may decrease and buckling resistance may decrease. Therefore, the B content is preferably 0.0100% or less. The B content is more preferably 0.0080% or less, still more preferably 0.0060% or less, and even more preferably 0.0040% or less. On the other hand, B is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature, and can be included as necessary. In order to obtain the above effects, it is preferable to contain 0.0001% or more of B. The B content is more preferably 0.0005% or more, and still more preferably 0.0008% or more.
 上記成分組成において、残部はFeおよび不可避的不純物である。残部における不可避的不純物としては、例えば、Sn、As、Sb、Bi、Co、Pb、ZnおよびOが挙げられる。ただし、本発明の効果を損なわない範囲においては、Snを0.10%以下、As、SbおよびCoをそれぞれ0.050%以下、Bi、Pb、ZnおよびOをそれぞれ0.0050%以下含有することを拒むものではない。
 なお、上記Oは、酸化物としてのOを含むトータル酸素のことを指す。
In the above component composition, the remainder is Fe and inevitable impurities. Unavoidable impurities in the remainder include, for example, Sn, As, Sb, Bi, Co, Pb, Zn and O. However, within a range that does not impair the effects of the present invention, it contains 0.10% or less of Sn, 0.050% or less of each of As, Sb, and Co, and 0.0050% or less of each of Bi, Pb, Zn, and O. It's not something I refuse to do.
Note that the above O refers to total oxygen including O as an oxide.
 次に、本発明の角形鋼管の製造方法について述べる。
 本発明の角形鋼管の製造方法では、鋼板を冷間ロール成形により円筒状に成形し、該円筒状の周方向両端部を突合せて電縫溶接し(造管工程)、その後、角成形スタンドによって平板部の平坦度が-10.0mm以上-4.0mm以下であって、かつ角部の曲率半径が平板部の肉厚の1.0倍以上2.5倍以下である角形鋼管素材とし(角形成工程)、その後、前記角形鋼管素材の内面に対し以下の(1)式を満たす内圧p(MPa)を負荷して、かかる角形鋼管素材の平板部の平坦度を-3.0mm以上3.0mm以下としつつ、角部の曲率半径を平板部の肉厚の2.0倍以上4.0倍以下とする角形鋼管にする(内圧負荷工程)。
         N(MPa)<p≦N×1.5(MPa) ・・・(1)
 ただし、N=(角形鋼管素材の肉厚(mm)/角形鋼管素材の辺長(mm))×角形鋼管素材の平板部の管周方向の降伏強度(MPa)
 なお、前記円筒状とは、管周断面が「C」形状であることを指す。
Next, a method for manufacturing a square steel pipe according to the present invention will be described.
In the method for manufacturing a square steel pipe of the present invention, a steel plate is formed into a cylindrical shape by cold roll forming, both circumferential ends of the cylindrical shape are abutted and electrical resistance welded (pipe making process), and then a square forming stand is used to form the steel plate into a cylindrical shape. A square steel pipe material whose flat plate part has a flatness of -10.0 mm or more and -4.0 mm or less, and a corner radius of curvature is 1.0 times or more and 2.5 times or less than the wall thickness of the flat plate part ( After that, an internal pressure p (MPa) that satisfies the following equation (1) is applied to the inner surface of the square steel pipe material, and the flatness of the flat part of the square steel pipe material is adjusted to -3.0 mm or more3. 0 mm or less, and the radius of curvature of the corners is 2.0 times or more and 4.0 times or less than the wall thickness of the flat plate portion (internal pressure loading process).
N(MPa)<p≦N×1.5(MPa)...(1)
However, N = (wall thickness of square steel pipe material (mm) / side length of square steel pipe material (mm)) x yield strength in the pipe circumferential direction of the flat plate part of square steel pipe material (MPa)
In addition, the said cylindrical shape refers to a pipe circumferential section having a "C" shape.
 図1中、tおよびtは、溶接部(電縫溶接部)13を含む平板部11(図中、Iとする)に対して角部12を挟んで隣接する2つの平板部11(図中、IIとする)それぞれの管周方向中央(図中、IIIとする)における肉厚(mm)である。また、図1中、tは、溶接部(電縫溶接部)13を含む平板部11に対向する平板部11(図中、IVとする)の管周方向中央(図中、Vとする)における肉厚(mm)である。そして、角形鋼管素材の肉厚は、かかるt(mm)、t(mm)、およびt(mm)を加算平均して求められる。 In FIG. 1, t 1 and t 2 are two flat plate parts 11 (indicated by I in the figure) that are adjacent to each other with a corner 12 in between, including a welded part (ERW welded part) 13 (represented by I in the figure). This is the wall thickness (mm) at the center in the circumferential direction of each tube (indicated as III in the figure). In addition, in FIG. 1, t3 is the center in the tube circumferential direction (denoted as V in the figure) of the flat plate part 11 (denoted as IV in the figure) facing the flat plate part 11 including the welded part (ERW welded part) 13. ) is the wall thickness (mm). The wall thickness of the square steel pipe material is determined by averaging t 1 (mm), t 2 (mm), and t 3 (mm).
 角形鋼管素材の辺長は、溶接部(電縫溶接部)13を上にして置いたときに、図1に示したH:縦の辺長(mm)、およびH:横の辺長(mm)を加算平均して求められる。 When the square steel pipe material is placed with the welded part (ERW welded part) 13 facing up, the side lengths of the square steel pipe material are as shown in Fig. 1: H 1 : Vertical side length (mm), H 2 : Horizontal side length (mm).
 本発明における平板部の平坦度は、図2に示すように、平板部外面の周方向両端の2点を通る直線に対する膨らみ量または凹み量とする。ただし、膨らみ量は正の値、凹み量は負の値とし、膨らみまたは凹みが存在しなかった場合は、値を0とする。また、前記周方向両端とは、角成形スタンドのロールとの接触部と非接触部の境界点であり、管外周面において曲率半径が変化する角状の点である。 As shown in FIG. 2, the flatness of the flat plate portion in the present invention is defined as the amount of bulge or dent with respect to a straight line passing through two points at both circumferential ends of the outer surface of the flat plate portion. However, the amount of bulge is a positive value, the amount of dent is a negative value, and if there is no bulge or dent, the value is 0. Further, the circumferential ends are the boundary points between the contact portion and the non-contact portion with the roll of the square forming stand, and are angular points where the radius of curvature changes on the outer circumferential surface of the tube.
 本発明における角部の曲率半径は、図1に示すように、角部12(図1の例では右上側の角部)に隣接する両側の平板部11の外面から引き延ばした直線(延長線)L1およびL2の交点Pを通り、延長線L1またはL2と45°の角をなす直線Lと、角部12の外側の曲線との交点Bにおける曲率半径とする。 As shown in FIG. 1, the radius of curvature of the corner in the present invention is a straight line (extended line) extending from the outer surface of the flat plate portion 11 on both sides adjacent to the corner 12 (the upper right corner in the example of FIG. 1). The radius of curvature is defined as the radius of curvature at the intersection B of a straight line L passing through the intersection P of L1 and L2 and forming a 45° angle with the extension line L1 or L2, and a curved line outside the corner 12.
 前記曲率半径の測定は、延長線L1、L2と平板部11、角部12との接続点(図1に示す点A、A’)および角部12の外面を円弧とし、中心が直線L上に存在する中心角90°の扇形において、直線Lと角部12の外面の交点Bを中心とした中心角65°の範囲で行う。曲率半径の測定方法は、例えば、前記した中心角65°の範囲において前記円弧とよく一致するラジアルゲージから曲率半径を計測する方法が挙げられる。 The radius of curvature is measured when the connection points between the extension lines L1 and L2 and the flat plate part 11 and the corner part 12 (points A and A' shown in FIG. 1) and the outer surface of the corner part 12 are circular arcs, and the center is on the straight line L. In the fan shape with a central angle of 90° that exists in the area, the test is performed within a range of a central angle of 65° centered on the intersection B of the straight line L and the outer surface of the corner 12. A method for measuring the radius of curvature includes, for example, a method of measuring the radius of curvature using a radial gauge that closely matches the arc in the range of the central angle of 65 degrees.
 また、前記内圧の負荷は、例えば、ゴム素材のパッキンで管端を封じて管内部に水圧を負荷することにより実施できる。さらに、形状を安定化させるために、必要に応じて外枠として所定形状の金型を使用することもできる。 Further, the internal pressure can be applied by, for example, sealing the end of the tube with a rubber packing and applying water pressure to the inside of the tube. Furthermore, in order to stabilize the shape, a mold with a predetermined shape can be used as the outer frame if necessary.
 通常のロール成形角形鋼管は、角成形スタンドにより円筒形状から平板部が平坦な角形状に成形することによって製造される。
 これに対して、本発明の角形鋼管は、角成形スタンドによって、一旦平板部が管内面側に凹むように成形する。具体的に、例えば図3に示すように、電縫溶接して得た電縫鋼管7を、サイジングロール8の後の角成形ロール群9によって、一旦平板部が管内面側に凹むように成形し、角形鋼管素材10’を得る。その上で、管内面に内圧を負荷することで平板部を管外面に膨らませて平板部を平坦にし、かつ角部の曲率半径を大きくすることによって、本発明の角形鋼管が得られる。
A typical roll-formed square steel pipe is manufactured by forming a cylindrical shape into a square shape with a flat plate part using a square-forming stand.
In contrast, the square steel pipe of the present invention is formed using a square forming stand so that the flat plate portion is once recessed toward the inner surface of the tube. Specifically, as shown in FIG. 3, for example, an ERW steel pipe 7 obtained by ERW welding is formed by a group of square forming rolls 9 after a sizing roll 8 so that the flat plate part is recessed toward the inner surface of the tube. Then, a square steel pipe material 10' is obtained. Then, the square steel pipe of the present invention is obtained by applying internal pressure to the inner surface of the tube to inflate the flat plate portion toward the outer surface of the tube, making the flat plate portion flat, and increasing the radius of curvature of the corner portion.
 なお、角成形スタンドにおける最終スタンドのロールは4ロールとし、ロールと鋼管の接触部において平板部を成形し、非接触部において角部を成形することが好ましい。 Note that it is preferable that the final stand in the corner forming stand has four rolls, that a flat plate part is formed in the contact area between the roll and the steel pipe, and a corner part is formed in the non-contact area.
 角形鋼管素材の平板部が管内面側に凹むように成形するために、従来よりも孔形の曲率半径が小さいロールを用いつつ、ロールギャップを調整する必要がある。
 よって、角成形スタンドにおける最終スタンドのロール孔形は、所望の角形鋼管素材の外周断面形状(例えば、略正方形形状)と同形状としつつ、必要に応じてロールギャップを調整する。ロール孔形の曲率半径(mm)は、角形鋼管素材の狙い辺長をH(mm)として、H/100以上H/30以下とすることが好ましい。
 なお、前記所望の角形鋼管素材の外周断面形状とは、平板部の平坦度が-10.0mm以上-4.0mm以下、さらに角部の曲率半径が平板部の肉厚の1.0倍以上2.5倍以下が例示される。
In order to form the flat plate part of the square steel pipe material so that it is concave toward the inner surface of the tube, it is necessary to use rolls whose hole-shaped curvature radius is smaller than conventional ones and to adjust the roll gap.
Therefore, the roll hole shape of the final stand in the square forming stand is made to have the same shape as the outer circumferential cross-sectional shape (for example, approximately square shape) of the desired square steel pipe material, and the roll gap is adjusted as necessary. The radius of curvature (mm) of the roll hole shape is preferably H 2 /100 or more and H 2 /30 or less, where the target side length of the square steel pipe material is H (mm).
In addition, the outer peripheral cross-sectional shape of the desired square steel pipe material means that the flatness of the flat plate part is -10.0 mm or more and -4.0 mm or less, and the radius of curvature of the corner part is 1.0 times or more the wall thickness of the flat plate part. An example is 2.5 times or less.
 前記角成形スタンドにおける最終スタンドのロールギャップを小さくすれば、角形鋼管素材の角部の曲率半径を小さくすることができ、また、平板部の平坦度を小さく(凹み量を大きく)することができる。一方、かかる角成形スタンドにおける最終スタンドのロールギャップを大きくすれば、角形鋼管素材の角部の曲率半径を大きくすることができ、また、平板部の平坦度を大きく(凹み量を小さく)することができる。
 よって、角成形スタンドにおける最終スタンドのロールギャップを調整することにより、角形鋼管素材の角部の曲率半径を所望の値とすることができる。また、ロール孔形の曲率半径およびロールギャップを調整することにより、角形鋼管素材の平坦度を所望の値とすることができる。
By reducing the roll gap of the final stand in the square forming stand, it is possible to reduce the radius of curvature of the corner of the square steel pipe material, and it is also possible to reduce the flatness of the flat plate portion (increase the amount of dent). . On the other hand, if the roll gap of the final stand in such a square forming stand is increased, the radius of curvature of the corner of the square steel pipe material can be increased, and the flatness of the flat plate portion can be increased (reduced amount of dent). Can be done.
Therefore, by adjusting the roll gap of the final stand in the square forming stand, the radius of curvature of the corner of the square steel pipe material can be set to a desired value. Further, by adjusting the radius of curvature of the roll hole shape and the roll gap, the flatness of the square steel pipe material can be set to a desired value.
 本発明は、角形鋼管の平板部を周方向に繰り返し曲げ変形するため、通常の角形鋼管と比較して平板部の周方向の降伏強度を高くすることができる。 Since the present invention repeatedly bends and deforms the flat plate portion of a square steel pipe in the circumferential direction, the yield strength of the flat plate portion in the circumferential direction can be increased compared to a normal square steel pipe.
 また、本発明は、角形鋼管の角部も同様に周方向に繰り返し曲げ変形するため、通常の角形鋼管と比較して角部の周方向の加工硬化を適度に大きくすることができる。すなわち、角部の周方向の降伏強度を高くすることができる。 Furthermore, in the present invention, since the corners of the square steel pipe are also repeatedly bent and deformed in the circumferential direction, work hardening of the corners in the circumferential direction can be appropriately increased compared to ordinary square steel pipes. That is, the circumferential yield strength of the corners can be increased.
角成形スタンドによる角形鋼管素材の平板部の平坦度:-10.0mm以上-4.0mm以下
 角成形スタンドによる角形鋼管素材の平板部の平坦度が-10.0mmよりも小さい場合、内圧負荷時の平板部の変形量が大きくなって、平板部の加工硬化量が大きくなり、平板部の周方向の降伏強度が高くなり過ぎるので、0度曲げにおける耐座屈性能が低下する。前記平坦度は、好ましくは-9.5mm以上であり、より好ましくは-9.0mm以上である。
 一方、角成形スタンドによる角形鋼管素材の平板部の平坦度が-4.0mmよりも大きい場合、内圧負荷時の平板部の変形量が小さくなって、平板部の加工硬化量が小さくなり、平板部の周方向の降伏強度が低くなり過ぎるので、0度曲げにおける耐座屈性能が低下する。また、平板部の外表面における管周方向の残留応力の絶対値が大きくなり過ぎるので、0度曲げにおける耐座屈性能が低下する。前記平坦度は、好ましくは-4.5mm以下であり、より好ましくは-5.0mm以下である。
Flatness of the flat part of the square steel pipe material by the square forming stand: -10.0 mm or more and -4.0 mm or less If the flatness of the flat part of the square steel pipe material by the square forming stand is less than -10.0 mm, when internal pressure is applied The amount of deformation of the flat plate portion increases, the amount of work hardening of the flat plate portion increases, and the circumferential yield strength of the flat plate portion becomes too high, resulting in a decrease in buckling resistance in 0 degree bending. The flatness is preferably -9.5 mm or more, more preferably -9.0 mm or more.
On the other hand, if the flatness of the flat plate part of the square steel pipe material by the square forming stand is larger than -4.0 mm, the amount of deformation of the flat plate part when internal pressure is applied is small, the amount of work hardening of the flat plate part is small, and the flat plate part Since the yield strength in the circumferential direction of the part becomes too low, the buckling resistance in 0 degree bending decreases. Furthermore, since the absolute value of the residual stress in the circumferential direction on the outer surface of the flat plate portion becomes too large, the buckling resistance in 0 degree bending deteriorates. The flatness is preferably −4.5 mm or less, more preferably −5.0 mm or less.
角成形スタンドによる角形鋼管素材の角部の曲率半径:平板部の肉厚の1.0倍以上2.5倍以下
 角成形スタンドによる角形鋼管素材の角部の曲率半径が平板部の肉厚の1.0倍未満である場合、内圧負荷時の角部の変形量が大きくなって、角部の加工硬化量が大きくなり、角部の周方向の降伏強度が高くなり過ぎるので、45度曲げにおける耐座屈性能が低下する。前記曲率半径は、好ましくは平板部の肉厚の1.1倍以上であり、より好ましくは平板部の肉厚の1.2倍以上である。
 一方、角成形スタンドによる角形鋼管素材の角部の曲率半径が平板部の肉厚の2.5倍超である場合、内圧負荷時の角部の変形量が小さくなって、角部の加工硬化量が小さくなり、角部の周方向の降伏強度が低くなり過ぎるので、45度曲げにおける耐座屈性能が低下する。前記曲率半径は、好ましくは平板部の肉厚の2.4倍以下であり、より好ましくは平板部の肉厚の2.3倍以下である。
The radius of curvature of the corner of the square steel pipe material by the square forming stand: 1.0 times or more and 2.5 times or less the wall thickness of the flat plate part The radius of curvature of the corner part of the square steel pipe material by the square forming stand If it is less than 1.0 times, the amount of deformation of the corner portion when internal pressure is applied will increase, the amount of work hardening of the corner portion will increase, and the yield strength of the corner portion in the circumferential direction will become too high. The buckling resistance is reduced. The radius of curvature is preferably 1.1 times or more the thickness of the flat plate portion, more preferably 1.2 times or more the thickness of the flat plate portion.
On the other hand, if the radius of curvature of the corner of the square steel pipe material formed by the square forming stand is more than 2.5 times the wall thickness of the flat plate part, the amount of deformation of the corner when internal pressure is applied becomes small, resulting in work hardening of the corner. Since the amount becomes small and the yield strength in the circumferential direction of the corner becomes too low, the buckling resistance in 45-degree bending decreases. The radius of curvature is preferably 2.4 times or less the thickness of the flat plate portion, more preferably 2.3 times or less the thickness of the flat plate portion.
管内面に内圧を負荷した後の角形鋼管の平板部の平坦度:-3.0mm以上3.0mm以下
 管内面に内圧を負荷した後の角形鋼管の平板部の平坦度がそれぞれ-3.0mmよりも小さい場合、内圧負荷時の平板部の変形量が小さくなって、平板部の加工硬化量が小さくなり、平板部の周方向の降伏強度が低くなり過ぎるので、0度曲げにおける耐座屈性能が低下する。また、平板部の外周断面の湾曲が大きいため、ダイアフラムまたは梁との溶接接合に困難が生じる。さらに、平板部の外表面における管周方向の残留応力の絶対値が大きくなり、0度曲げにおける耐座屈性能が低下する場合がある。前記平坦度は、好ましくは-2.9mm以上であり、より好ましくは-2.8mm以上である。
 一方、管内面に内圧を負荷した後の角形鋼管の平板部の平坦度がそれぞれ3.0mmよりも大きい場合、内圧負荷時の平板部の変形量が大きくなって、平板部の加工硬化量が大きくなり、平板部の周方向の降伏強度が高くなり過ぎるので、0度曲げにおける耐座屈性能が低下する。また、平板部の外周断面の湾曲が大きいため、ダイアフラムまたは梁との溶接接合に困難が生じる。前記平坦度は、好ましくは2.7mm以下であり、より好ましくは2.5mm以下である。
The flatness of the flat plate part of the square steel pipe after applying internal pressure to the inner surface of the tube: -3.0 mm or more and 3.0 mm or less The flatness of the flat plate part of the square steel pipe after applying internal pressure to the inner surface of the tube is -3.0 mm, respectively If it is smaller than , the amount of deformation of the flat plate part under internal pressure load will be small, the amount of work hardening of the flat plate part will be small, and the yield strength of the flat plate part in the circumferential direction will be too low, so the buckling resistance in 0 degree bending will be reduced. Performance decreases. Further, since the outer peripheral cross section of the flat plate portion has a large curvature, it is difficult to weld the flat plate portion to the diaphragm or the beam. Furthermore, the absolute value of the residual stress in the circumferential direction on the outer surface of the flat plate portion increases, and the buckling resistance in 0 degree bending may decrease. The flatness is preferably -2.9 mm or more, more preferably -2.8 mm or more.
On the other hand, if the flatness of the flat plate part of the square steel pipe after applying internal pressure to the inner surface of the tube is larger than 3.0 mm, the amount of deformation of the flat plate part when the internal pressure is applied increases, and the amount of work hardening of the flat plate part increases. As the yield strength in the circumferential direction of the flat plate portion becomes too high, the buckling resistance in 0 degree bending deteriorates. Further, since the outer peripheral cross section of the flat plate portion has a large curvature, it is difficult to weld the flat plate portion to the diaphragm or the beam. The flatness is preferably 2.7 mm or less, more preferably 2.5 mm or less.
管内面に内圧を負荷した後の角形鋼管の角部の曲率半径:平板部の肉厚の2.0倍以上4.0倍以下
 管内面に内圧を負荷した後の角形鋼管の角部の曲率半径が平板部の肉厚の2.0倍未満である場合、内圧負荷時の角部の変形量が小さくなって、角部の加工硬化量が小さくなり、角部の周方向の降伏強度が低くなり過ぎるので、45度曲げにおける耐座屈性能が低下する。前記曲率半径は、好ましくは平板部の肉厚の2.1倍以上であり、より好ましくは平板部の肉厚の2.2倍以上である。
 一方、管内面に内圧を負荷した後の角形鋼管の角部の曲率半径が平板部の肉厚の4.0倍超である場合、内圧負荷時の角部の変形量が大きくなって、角部の加工硬化量が大きくなり、角部の周方向の降伏強度が高くなり過ぎるので、45度曲げにおける耐座屈性能が低下する。前記曲率半径は、好ましくは平板部の肉厚の3.9倍以下であり、より好ましくは平板部の肉厚の3.8倍以下である。
 なお、管内面に内圧を負荷した後の角形鋼管の平板部の肉厚は、管内面に内圧を負荷する前の角形鋼管素材の平板部の肉厚から、実質的に不変である。
Radius of curvature of the corner of a square steel pipe after applying internal pressure to the inner surface of the pipe: 2.0 times or more and less than 4.0 times the wall thickness of the flat plate Curvature of the corner of a square steel pipe after applying internal pressure to the inner surface of the pipe If the radius is less than 2.0 times the wall thickness of the flat plate part, the amount of deformation of the corner part under internal pressure load will be small, the amount of work hardening of the corner part will be small, and the circumferential yield strength of the corner part will be If it becomes too low, the buckling resistance in 45 degree bending will deteriorate. The radius of curvature is preferably at least 2.1 times the thickness of the flat plate portion, more preferably at least 2.2 times the thickness of the flat plate portion.
On the other hand, if the radius of curvature of the corner of a square steel pipe after applying internal pressure to the inner surface of the pipe is more than 4.0 times the wall thickness of the flat plate part, the amount of deformation of the corner when internal pressure is applied increases, The amount of work hardening at the corners becomes large, and the yield strength in the circumferential direction of the corners becomes too high, resulting in a decrease in buckling resistance in 45-degree bending. The radius of curvature is preferably 3.9 times or less the thickness of the flat plate portion, more preferably 3.8 times or less the thickness of the flat plate portion.
Note that the wall thickness of the flat plate portion of the square steel pipe after applying internal pressure to the inner surface of the tube is substantially unchanged from the wall thickness of the flat plate portion of the square steel pipe material before applying internal pressure to the inner surface of the tube.
 内圧p(MPa)が前記(1)式のN以下である場合、管周方向に発生する引張応力が平板部の管周方向の降伏強度を下回ってしまい、平板部の変形量が小さくなる。その結果、平板部の加工硬化量が小さくなり、平板部の周方向の降伏強度が低くなり過ぎるので、0度曲げにおける耐座屈性能が低下する。また、平板部の外表面における管周方向の残留応力の絶対値が大きくなり、0度曲げにおける耐座屈性能が低下する場合がある。さらに、角部の変形量が小さくなって、角部の加工硬化量が小さくなると、角部の周方向の降伏強度が低くなり過ぎるので、45度曲げにおける耐座屈性能が低下する。
 一方、内圧p(MPa)が前記(1)式のN×1.5超である場合、管周方向に発生する引張応力が高くなり過ぎてしまい、平板部の変形量が大きくなる。その結果、平板部の加工硬化量が大きくなり、平板部の周方向の降伏強度が高くなり過ぎるので、0度曲げにおける耐座屈性能が低下する。また、角部の変形量が大きくなって、角部の加工硬化量が大きくなり、角部の周方向の降伏強度が高くなり過ぎるので、45度曲げにおける耐座屈性能が低下する。
If the internal pressure p (MPa) is equal to or less than N in equation (1), the tensile stress generated in the circumferential direction of the pipe becomes lower than the yield strength of the flat plate portion in the circumferential direction, and the amount of deformation of the flat plate portion becomes small. As a result, the amount of work hardening of the flat plate portion becomes small, and the circumferential yield strength of the flat plate portion becomes too low, resulting in a decrease in buckling resistance in 0 degree bending. Further, the absolute value of the residual stress in the circumferential direction on the outer surface of the flat plate portion may increase, and the buckling resistance in 0 degree bending may deteriorate. Further, when the amount of deformation of the corner portion becomes smaller and the amount of work hardening of the corner portion becomes smaller, the yield strength of the corner portion in the circumferential direction becomes too low, resulting in a decrease in buckling resistance in 45-degree bending.
On the other hand, if the internal pressure p (MPa) exceeds N×1.5 in the above formula (1), the tensile stress generated in the circumferential direction of the pipe becomes too high, and the amount of deformation of the flat plate portion becomes large. As a result, the amount of work hardening of the flat plate portion increases, and the circumferential yield strength of the flat plate portion becomes too high, resulting in a decrease in buckling resistance in 0 degree bending. Further, the amount of deformation of the corner portion increases, the amount of work hardening of the corner portion increases, and the yield strength of the corner portion in the circumferential direction becomes too high, resulting in a decrease in buckling resistance in 45-degree bending.
 本発明の角形鋼管は、建築構造物としての十分な強度および耐座屈性能を確保するために、肉厚が6mm以上であることが好ましい。また、内圧負荷時の曲げ変形における管外表面の変形量が大きくなり過ぎるのを抑制する観点から、肉厚が40mm以下であることが好ましい。 The square steel pipe of the present invention preferably has a wall thickness of 6 mm or more in order to ensure sufficient strength and buckling resistance as a building structure. Further, from the viewpoint of suppressing the amount of deformation of the outer surface of the tube from becoming too large during bending deformation when internal pressure is applied, it is preferable that the wall thickness is 40 mm or less.
 本発明の建築構造物は、前述した本発明の角形鋼管10を、柱材として備える。
 図4は、本発明の建築構造物100の一例を示す模式図である。
 本発明の建築構造物100は、通しダイアフラム17と角形鋼管10とが溶接され、角形鋼管10は柱材として用いられる。その他、図4に示すように、建築構造物100は、大梁18、小梁19、間柱20により形成され、さらに公知の部材を用いて形成してもよい。
 ここで、角形鋼管10は、前述したように、耐座屈性能に優れる。そのため、この角形鋼管10を柱材として使用した本発明の建築構造物100は、優れた耐震性能を発揮する。
The building structure of the present invention includes the above-described square steel pipe 10 of the present invention as a column material.
FIG. 4 is a schematic diagram showing an example of the architectural structure 100 of the present invention.
In the architectural structure 100 of the present invention, a through diaphragm 17 and a square steel pipe 10 are welded together, and the square steel pipe 10 is used as a column material. In addition, as shown in FIG. 4, the building structure 100 is formed of a large beam 18, a small beam 19, and a stud 20, and may also be formed using known members.
Here, the square steel pipe 10 has excellent buckling resistance, as described above. Therefore, the building structure 100 of the present invention using this square steel pipe 10 as a column material exhibits excellent seismic performance.
 前述されていない角形鋼管にかかる製造方法の各種条件に関しては、いずれも常法に依ることができる。また、前述されていない角形鋼管および建築構造物の構成等に関しては、いずれも公知の構成等を用いることができる。 Regarding the various conditions of the manufacturing method for square steel pipes that are not mentioned above, conventional methods can be used. In addition, as for the configurations of the square steel pipe and the building structure that are not described above, known configurations can be used.
 以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す成分組成を有する溶鋼を溶製し、スラブを得た。得られたスラブを熱間圧延し、鋼板を得た。
Hereinafter, the present invention will be further described in detail based on Examples. Note that the present invention is not limited to the following examples.
Molten steel having the composition shown in Table 1 was melted to obtain a slab. The obtained slab was hot rolled to obtain a steel plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 かようにして得られた鋼板を、冷間ロール成形により円筒状に成形し、該円筒状の周方向両端部を突合せて電縫溶接した。その後、角成形スタンドによって4箇所の平板部と4箇所の角部を有する角形鋼管素材とした。その後、前記角形鋼管素材の両管端をゴム素材のパッキンで封じて、管内部を水で満たして内圧p(MPa)を負荷し、角形鋼管とした。 The steel plate thus obtained was formed into a cylindrical shape by cold roll forming, and both ends of the cylindrical shape in the circumferential direction were butted together and electrical resistance welded. Thereafter, a square steel pipe material having four flat plate portions and four corner portions was formed using a square forming stand. Thereafter, both ends of the square steel pipe material were sealed with rubber packing, the inside of the pipe was filled with water, and an internal pressure p (MPa) was applied to form a square steel pipe.
(平板部の平坦度の測定)
 かくして得られた角形鋼管素材および角形鋼管の管軸方向の任意の位置5箇所において、それぞれ平板部のすべての箇所すなわち4箇所の平坦度をそれぞれ測定し、それら計20箇所の測定値の加算平均値を、角形鋼管素材および角形鋼管それぞれの平坦度とした。
(Measurement of flatness of flat plate part)
At five arbitrary positions in the tube axis direction of the square steel pipe material and the square steel pipe obtained in this way, the flatness of all points of the flat plate portion, that is, four points, was measured, and the average of the measured values of the total of 20 points was calculated. The values were taken as the flatness of the square steel pipe material and the square steel pipe.
 平坦度の測定においては、まず、図2に示すように、各平板部外面の周方向両端の2点を通る直線に対する最大膨らみ量及び最大凹み量をそれぞれ測定し、各測定箇所における最大膨らみ量または最大凹み量の絶対値の最大値Fを求めた。そして、Fが膨らみ量の場合は平坦度の値をFとし、Fが凹み量の場合は平坦度の値を-Fとし、膨らみまたは凹みがいずれも存在しなかった場合は、平坦度の値を0とした。 To measure the flatness, first, as shown in Figure 2, the maximum amount of bulge and the maximum amount of concavity with respect to a straight line passing through two points at both circumferential ends of the outer surface of each flat plate are measured, and the maximum amount of bulge at each measurement point is determined. Alternatively, the maximum value F of the absolute value of the maximum amount of depression was determined. If F is the amount of bulge, the value of flatness is F, if F is the amount of dent, the value of flatness is -F, and if there is no bulge or dent, the value of flatness is was set to 0.
(角部の曲率半径の測定)
 前述した角形鋼管素材および角形鋼管の管軸方向の任意の位置5箇所において、角部すべての箇所すなわち4箇所の外面(角部外側)の曲率半径をそれぞれ測定し、それら計20箇所の測定値の加算平均値を、角形鋼管素材および角形鋼管それぞれの角部の曲率半径とした。
 角部の曲率半径測定にはラジアルゲージを使用した。曲率半径の測定方法については、角部に隣接する両側の平板部外面をそれぞれ含む2本の直線L1およびL2の交点Pを通り、L1またはL2と45°をなす直線Lと角部外側の交点における曲率半径を角部外側の曲率半径として測定した(図1)。
 具体的に、曲率半径の測定は、平板部と角部の接続点(A、A’)および角部外面からなり、中心が前記L上に存在する中心角90°の扇形において、前記Lと角部外面の交点を中心とした中心角65°の範囲で行い、前記中心角65°の範囲において角部外面と最も一致するラジアルゲージより曲率半径を計測した(図1)。
(Measurement of corner radius of curvature)
At five arbitrary positions in the tube axis direction of the square steel pipe material and the square steel pipe described above, the radius of curvature of all corners, that is, the outer surface (outside of the corner) at four locations, was measured, and the measured values at a total of 20 locations were determined. The average value of was taken as the radius of curvature of each corner of the square steel pipe material and the square steel pipe.
A radial gauge was used to measure the radius of curvature of the corners. To measure the radius of curvature, pass through the intersection P of the two straight lines L1 and L2 that include the outer surfaces of the flat plate on both sides adjacent to the corner, and then pass through the intersection P of the straight line L making a 45° angle with L1 or L2 and the intersection of the outside of the corner. The radius of curvature at was measured as the radius of curvature on the outside of the corner (Fig. 1).
Specifically, the radius of curvature is measured in a fan shape with a center angle of 90°, which consists of the connection points (A, A') between the flat plate part and the corner part and the outer surface of the corner part, and whose center lies on the above-mentioned L. The radius of curvature was measured using a radial gauge that most coincided with the outer surface of the corner in the range of 65 degrees with the center angle centered around the intersection of the outer surfaces of the corner (FIG. 1).
(降伏強度の測定)
 また、角形鋼管素材および角形鋼管から引張試験片を採取し、降伏強度の測定を行った。引張試験片として、図5のWに示すとおり、引張方向が管軸方向と平行になるように、角形鋼管素材10’の平板部からJIS5号引張試験片を採取した。また、図6のXに示すとおり、引張方向が管周方向と平行になるように、角形鋼管10の平板部からJIS5号引張試験片を採取した。また、図6のYに示すとおり、角形鋼管10の角部からJIS5号引張試験片の1/5の寸法の引張試験片を採取した。なお、平板部から採取する試験片は全厚試験片とし、角部から採取する試験片は研削により肉厚の1/2の厚さとした。
 角部の引張試験片は、より詳細には、図7のZに示すとおり、試験片の平行部長手中心が、該角部に隣接する両側の平板部外面をそれぞれ延長した交点を通りかつ前記平板部外面それぞれと45°をなす線上に位置するように採取した。なお、屈曲したつかみ部はプレス矯正により平坦にした。
 これら試験片を用いてJIS Z 2241の規定に準拠して引張試験を実施し、平板部の管軸方向の降伏強度LYS、平板部の管周方向の降伏強度CYS、角部の管周方向の降伏強度CYSをそれぞれ求めた。試験片本数は各2本とし、それらの平均値を算出して各測定値を算出した。
(Measurement of yield strength)
In addition, tensile test pieces were taken from the rectangular steel pipe material and the rectangular steel pipe, and the yield strength was measured. As a tensile test piece, a JIS No. 5 tensile test piece was taken from the flat plate part of the square steel pipe material 10' so that the tensile direction was parallel to the tube axis direction, as shown in W in FIG. Moreover, as shown in X of FIG. 6, a JIS No. 5 tensile test piece was taken from the flat plate part of the square steel pipe 10 so that the tensile direction was parallel to the pipe circumferential direction. Further, as shown in Y in FIG. 6, a tensile test piece having a size of 1/5 of the JIS No. 5 tensile test piece was taken from the corner of the square steel pipe 10. Note that the test piece taken from the flat plate part was a full-thickness test piece, and the test piece taken from the corner part was ground to a thickness of 1/2 of the wall thickness.
More specifically, as shown in Z in FIG. 7, the tensile test piece at the corner part is tested so that the longitudinal center of the parallel length of the test piece passes through the intersection of the respective extensions of the outer surfaces of the flat plate parts on both sides adjacent to the corner part, and The samples were taken so as to be located on a line making a 45° angle with each of the outer surfaces of the flat plate parts. Note that the bent gripping portion was flattened by press straightening.
Using these test pieces, a tensile test was conducted in accordance with the provisions of JIS Z 2241, and the yield strength in the tube axis direction of the flat plate portion LYS f , the yield strength in the tube circumferential direction of the flat plate portion CYS f , and the tube circumference of the corner portion were determined. The yield strength CYS c in each direction was determined. The number of test pieces was two each, and each measured value was calculated by calculating their average value.
(累積塑性変形倍率の測定)
 また、角形鋼管について、0度曲げ試験および45度曲げ試験を行った。具体的に、図8および図9に示すように、角形鋼管1の長手方向の中央位置に通しダイアフラム2を溶接して試験体とした。試験体の両端を支持材3でピン支持(回転支持)し、水平方向と垂直方向の移動が固定されるようにして、矢印の位置において0度方向(図8)または45度方向(図9)にそれぞれ載荷した繰り返し曲げ試験を行い、累積塑性変形倍率を求めた。
 なお、累積塑性変形倍率とは、試験体が局部座屈または破断して急激に耐力が低下するまでの塑性回転角の総和を、全塑性モーメントに対応する基準回転角で除した値である。この値が大きいほど柱材(柱部材)として用いた場合の変形性能に優れており、地震時のエネルギー吸収能力が高いことを意味する。
(Measurement of cumulative plastic deformation magnification)
In addition, a 0 degree bending test and a 45 degree bending test were conducted on the square steel pipe. Specifically, as shown in FIGS. 8 and 9, a diaphragm 2 was welded through the square steel pipe 1 at the center in the longitudinal direction to prepare a test specimen. Both ends of the test specimen are pin-supported (rotationally supported) with support members 3, so that movement in the horizontal and vertical directions is fixed, and the specimen is moved in the 0 degree direction (Fig. 8) or the 45 degree direction (Fig. 9) at the position of the arrow. ) was subjected to a repeated bending test, and the cumulative plastic deformation magnification was determined.
Incidentally, the cumulative plastic deformation magnification is the value obtained by dividing the sum of plastic rotation angles until the test specimen undergoes local buckling or rupture and the yield strength suddenly decreases by the reference rotation angle corresponding to the total plastic moment. The larger this value, the better the deformation performance when used as a pillar material (column member), which means the higher the energy absorption capacity during an earthquake.
(外表面における管周方向残留応力の測定)
 また、外表面における管周方向残留応力を、X線回折法により測定した。
 具体的には、下記の試験片における電解研磨した領域において、下記の測定機器・測定条件の下で、管周方向残留応力を測定した。なお、管周方向残留応力の測定は全ての平板部において実施し、各平板部において得られた管周方向残留応力の平均値を、角形鋼管の管周方向残留応力とした。
・測定機器:パルステック工業社製ポータブルX線残留応力測定装置(型式μ-X360n)
・測定条件:使用X線はCr-Kα線、管電圧は30kVとし、cosα法で測定した。測定格子面はbcc-Fe(211)、ポアソン比は0.280、弾性定数は224000MPaとした。
・試験片:管軸方向長さ:1000mmの角形鋼管を採取し、その長さ方向中央部における、平板部の管周方向中央において、管外表面を100μm電解研磨した。
(Measurement of circumferential residual stress on the outer surface)
Further, the residual stress in the circumferential direction on the outer surface was measured by X-ray diffraction method.
Specifically, residual stress in the tube circumferential direction was measured in the electrolytically polished region of the test piece shown below using the measuring equipment and under the following measurement conditions. Note that the circumferential residual stress was measured in all the flat plate parts, and the average value of the circumferential residual stress obtained in each flat plate part was taken as the circumferential residual stress of the rectangular steel pipe.
・Measuring equipment: Portable X-ray residual stress measuring device manufactured by Pulstec Industries (model μ-X360n)
-Measurement conditions: The X-rays used were Cr-Kα rays, the tube voltage was 30 kV, and the measurements were performed using the cosα method. The measurement lattice plane was bcc-Fe (211), the Poisson's ratio was 0.280, and the elastic constant was 224000 MPa.
- Test piece: A rectangular steel pipe with a tube axial length of 1000 mm was taken, and the outer surface of the tube was electrolytically polished by 100 μm at the center of the flat plate portion in the circumferential direction of the tube.
 各種条件および得られた結果を、表2および表3に示す。 Various conditions and obtained results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および表3中、No.1~6は本発明例、No.7~14は比較例である。
 本発明例の角形鋼管は、いずれも平板部の管周方向の降伏強度(CYS)が、平板部の管軸方向の降伏強度(LYS)の0.83倍以上1.20倍以下であり、角部の管周方向の降伏強度(CYS)が、平板部の管軸方向の降伏強度(LYS)の0.90倍以上1.30倍以下であった。
In Tables 2 and 3, No. 1 to 6 are examples of the present invention, No. 7 to 14 are comparative examples.
In all of the square steel pipes of the present invention, the yield strength in the tube circumferential direction (CYS f ) of the flat plate portion is 0.83 to 1.20 times the yield strength (LYS f ) of the flat plate portion in the tube axis direction. The yield strength of the corner portion in the tube circumferential direction ( CYSC ) was 0.90 times or more and 1.30 times or less of the yield strength of the flat plate portion in the tube axis direction (LYS f ).
 比較例のNo.7は、内圧負荷工程における内圧p(MPa)が式(1)の範囲を上回ったため、角形鋼管の平坦度が3.0mmよりも大きい値となり、かつ角部の曲率半径が平板部の肉厚の4.0倍超となった。そのため、平板部の管軸方向の降伏強度に対する、平板部の管周方向の降伏強度および角部の管周方向の降伏強度のいずれもが本発明の範囲を上回ってしまい、0度曲げにおける累積塑性変形倍率および45度曲げにおける累積塑性変形倍率がそれぞれ所望の値(0度曲げ、45度曲げ共に、累積塑性変形倍率:28以上)に達しなかった。 Comparative example No. 7 is because the internal pressure p (MPa) in the internal pressure loading process exceeded the range of formula (1), so the flatness of the square steel pipe became a value larger than 3.0 mm, and the radius of curvature of the corner part was larger than the wall thickness of the flat plate part. It was more than 4.0 times that of the previous year. Therefore, with respect to the yield strength of the flat plate part in the tube axis direction, both the yield strength of the flat plate part in the tube circumferential direction and the yield strength of the corner part in the tube circumferential direction exceed the range of the present invention, and the cumulative The plastic deformation magnification and the cumulative plastic deformation magnification in 45-degree bending did not reach the respective desired values (cumulative plastic deformation magnification: 28 or more in both 0-degree bending and 45-degree bending).
 比較例のNo.8は、角形鋼管素材の曲率半径が平板部の肉厚の2.5倍超であった。そのため、平板部の管軸方向の降伏強度に対する角部の管周方向の降伏強度が本発明の範囲を下回ってしまい、45度曲げにおける累積塑性変形倍率が所望の値に達しなかった。 Comparative example No. In No. 8, the radius of curvature of the square steel pipe material was more than 2.5 times the wall thickness of the flat plate portion. Therefore, the yield strength in the tube circumferential direction of the corner portion with respect to the yield strength in the tube axis direction of the flat plate portion fell below the range of the present invention, and the cumulative plastic deformation magnification in 45 degree bending did not reach the desired value.
 比較例のNo.9は、内圧負荷工程における内圧p(MPa)が式(1)の範囲を下回った。そのため、角形鋼管の平板部の平坦度が-3.0mmよりも小さい値となり、平板部の管軸方向の降伏強度に対する平板部の管周方向の降伏強度が本発明の範囲を下回ってしまい、0度曲げにおける累積塑性変形倍率が所望の値に達しなかった。また、外表面における管周方向残留応力が-200MPaよりも小さい値となった。 Comparative example No. In No. 9, the internal pressure p (MPa) in the internal pressure loading step was below the range of formula (1). Therefore, the flatness of the flat plate part of the square steel pipe becomes a value smaller than -3.0 mm, and the yield strength in the circumferential direction of the flat plate part with respect to the yield strength in the tube axis direction of the flat plate part falls below the range of the present invention. The cumulative plastic deformation magnification in 0 degree bending did not reach the desired value. Further, the residual stress in the circumferential direction on the outer surface was smaller than -200 MPa.
 比較例のNo.10は、内圧負荷工程における内圧p(MPa)が式(1)の範囲を上回ったため、角形鋼管の角部の曲率半径が平板部の肉厚の4.0倍超となった。そのため、平板部の管軸方向の降伏強度に対する角部の管周方向の降伏強度が本発明の範囲を上回ってしまい、45度曲げにおける累積塑性変形倍率が所望の値に達しなかった。 Comparative example No. In No. 10, the internal pressure p (MPa) in the internal pressure loading process exceeded the range of formula (1), so the radius of curvature of the corner of the square steel pipe was more than 4.0 times the wall thickness of the flat plate part. Therefore, the yield strength in the tube circumferential direction of the corner portion with respect to the yield strength in the tube axis direction of the flat plate portion exceeded the range of the present invention, and the cumulative plastic deformation magnification in 45 degree bending did not reach the desired value.
 比較例のNo.11は、内圧負荷工程における内圧p(MPa)が式(1)の範囲を下回った。そのため、平板部の管軸方向の降伏強度に対する、平板部の管周方向の降伏強度および角部の管周方向の降伏強度のいずれもが本発明の範囲を下回ってしまい、0度曲げにおける累積塑性変形倍率および45度曲げにおける累積塑性変形倍率がそれぞれ所望の値に達しなかった。また、外表面における管周方向残留応力が150MPaよりも大きい値となった。 Comparative example No. In No. 11, the internal pressure p (MPa) in the internal pressure loading step was below the range of formula (1). Therefore, with respect to the yield strength of the flat plate part in the tube axis direction, both the yield strength of the flat plate part in the circumferential direction and the yield strength of the corner part in the circumferential direction fall below the range of the present invention, and the cumulative The plastic deformation magnification and the cumulative plastic deformation magnification in 45-degree bending did not reach desired values. Further, the residual stress in the circumferential direction on the outer surface was larger than 150 MPa.
 比較例のNo.12は、角形鋼管素材の平板部の平坦度が-10.0mmよりも小さい値であったため、平板部の管軸方向の降伏強度に対する平板部の管周方向の降伏強度が本発明の範囲を上回ってしまい、0度曲げにおける累積塑性変形倍率が所望の値に達しなかった。 Comparative example No. In No. 12, the flatness of the flat plate part of the square steel pipe material was less than -10.0 mm, so the yield strength in the circumferential direction of the flat plate part was beyond the scope of the present invention compared to the yield strength in the tube axis direction of the flat plate part. Therefore, the cumulative plastic deformation magnification in 0 degree bending did not reach the desired value.
 比較例のNo.13は、角形鋼管素材の平板部の平坦度が-4.0mmよりも大きな値であった。そのため、平板部の管軸方向の降伏強度に対する平板部の管周方向の降伏強度が本発明の範囲を下回ってしまい、0度曲げにおける累積塑性変形倍率が所望の値に達しなかった。また、外表面における管周方向残留応力が-200MPaよりも小さい値となった。 Comparative example No. In No. 13, the flatness of the flat plate portion of the square steel pipe material was greater than -4.0 mm. Therefore, the yield strength in the tube circumferential direction of the flat plate portion relative to the yield strength in the tube axis direction of the flat plate portion fell below the range of the present invention, and the cumulative plastic deformation magnification in 0 degree bending did not reach the desired value. Further, the residual stress in the circumferential direction on the outer surface was smaller than -200 MPa.
 比較例のNo.14は、内圧負荷工程における内圧p(MPa)が式(1)の範囲を下回り、角形鋼管の角部の曲率半径が平板部の肉厚の2.0倍よりも小さい値であった。そのため、平板部の管軸方向の降伏強度に対する角部の管周方向の降伏強度が本発明の範囲を下回ってしまい、45度曲げにおける累積塑性変形倍率が所望の値に達しなかった。 Comparative example No. In No. 14, the internal pressure p (MPa) in the internal pressure loading step was below the range of formula (1), and the radius of curvature of the corner of the square steel pipe was smaller than 2.0 times the wall thickness of the flat plate portion. Therefore, the yield strength in the tube circumferential direction of the corner portion with respect to the yield strength in the tube axis direction of the flat plate portion fell below the range of the present invention, and the cumulative plastic deformation magnification in 45 degree bending did not reach the desired value.
 1  角形鋼管
 2  通しダイアフラム
 3  支持材
 7  電縫鋼管
 8  サイジングロール
 9  角成形ロール群
 10 角形鋼管
 10’角形鋼管素材
 11 平板部
 12 角部
 13 溶接部(電縫溶接部)
 17 通しダイアフラム
 18 大梁
 19 小梁
 20 間柱
 100 建築構造物
1 Square steel pipe 2 Through diaphragm 3 Support material 7 ERW steel pipe 8 Sizing roll 9 Square forming roll group 10 Square steel pipe 10' square steel pipe material 11 Flat plate part 12 Corner part 13 Welded part (ERW welded part)
17 Through diaphragm 18 Large beam 19 Small beam 20 Stud 100 Architectural structure

Claims (8)

  1.  管周方向に複数の平板部および角部を交互に有し、かつ管軸方向に延びる溶接部を有する角形鋼管であって、
     前記平板部の管周方向の降伏強度が、前記平板部の管軸方向の降伏強度の0.83倍以上1.20倍以下であり、
     前記角部の管周方向の降伏強度が、前記平板部の管軸方向の降伏強度の0.90倍以上1.30倍以下である、角形鋼管。
    A square steel pipe having a plurality of flat plate parts and corner parts alternately in the pipe circumferential direction and having a welded part extending in the pipe axial direction,
    The yield strength of the flat plate portion in the tube circumferential direction is 0.83 times or more and 1.20 times or less of the yield strength of the flat plate portion in the tube axis direction,
    A square steel pipe, wherein the yield strength of the corner portion in the tube circumferential direction is 0.90 times or more and 1.30 times or less the yield strength of the flat plate portion in the tube axis direction.
  2.  前記平板部の外表面における管周方向の残留応力が、-200MPa以上150MPa以下である、請求項1に記載の角形鋼管。
     ただし、前記残留応力は、正の値の場合は引張、負の値の場合は圧縮の応力をそれぞれ表す。
    The rectangular steel pipe according to claim 1, wherein residual stress in the circumferential direction on the outer surface of the flat plate portion is -200 MPa or more and 150 MPa or less.
    However, when the residual stress is a positive value, it represents tensile stress, and when it is a negative value, it represents compressive stress.
  3.  質量%で、
    C:0.020~0.350%、
    Si:0.01~0.65%、
    Mn:0.30~2.50%、
    P:0.050%以下、
    S:0.0500%以下、
    Al:0.005~0.100%および
    N:0.0100%以下
    を含み、残部がFeおよび不可避的不純物である成分組成を有する、請求項1に記載の角形鋼管。
    In mass%,
    C: 0.020-0.350%,
    Si: 0.01 to 0.65%,
    Mn: 0.30-2.50%,
    P: 0.050% or less,
    S: 0.0500% or less,
    The square steel pipe according to claim 1, having a composition comprising Al: 0.005 to 0.100% and N: 0.0100% or less, with the balance being Fe and inevitable impurities.
  4.  質量%で、
    C:0.020~0.350%、
    Si:0.01~0.65%、
    Mn:0.30~2.50%、
    P:0.050%以下、
    S:0.0500%以下、
    Al:0.005~0.100%および
    N:0.0100%以下
    を含み、残部がFeおよび不可避的不純物である成分組成を有する、請求項2に記載の角形鋼管。
    In mass%,
    C: 0.020-0.350%,
    Si: 0.01 to 0.65%,
    Mn: 0.30-2.50%,
    P: 0.050% or less,
    S: 0.0500% or less,
    The rectangular steel pipe according to claim 2, having a composition comprising Al: 0.005 to 0.100% and N: 0.0100% or less, with the balance being Fe and inevitable impurities.
  5.  前記成分組成が、さらに、質量%で、
    Ti:0.100%以下、
    Nb:0.100%以下、
    V:0.100%以下、
    Cr:1.00%以下、
    Mo:1.00%以下、
    Cu:1.00%以下、
    Ni:1.00%以下、
    Ca:0.0100%以下および
    B:0.0100%以下
    から選んだ1種または2種以上を含む、請求項3に記載の角形鋼管。
    The component composition further includes, in mass%,
    Ti: 0.100% or less,
    Nb: 0.100% or less,
    V: 0.100% or less,
    Cr: 1.00% or less,
    Mo: 1.00% or less,
    Cu: 1.00% or less,
    Ni: 1.00% or less,
    The square steel pipe according to claim 3, containing one or more selected from Ca: 0.0100% or less and B: 0.0100% or less.
  6.  前記成分組成が、さらに、質量%で、
    Ti:0.100%以下、
    Nb:0.100%以下、
    V:0.100%以下、
    Cr:1.00%以下、
    Mo:1.00%以下、
    Cu:1.00%以下、
    Ni:1.00%以下、
    Ca:0.0100%以下および
    B:0.0100%以下
    から選んだ1種または2種以上を含む、請求項4に記載の角形鋼管。
    The component composition further includes, in mass%,
    Ti: 0.100% or less,
    Nb: 0.100% or less,
    V: 0.100% or less,
    Cr: 1.00% or less,
    Mo: 1.00% or less,
    Cu: 1.00% or less,
    Ni: 1.00% or less,
    The square steel pipe according to claim 4, containing one or more selected from Ca: 0.0100% or less and B: 0.0100% or less.
  7.  請求項1~6のいずれかに記載の角形鋼管の製造方法であって、
     鋼板を冷間ロール成形により円筒状に成形し、該円筒状の周方向端部を相互に突合せて電縫溶接する造管工程と、
     該造管工程後に行われる、角成形スタンドによって平板部の平坦度が-10.0mm以上-4.0mm以下、さらに角部の曲率半径が平板部の肉厚の1.0倍以上2.5倍以下である角形鋼管素材にする角成形工程と、
     引続き、前記角形鋼管素材の内面に対し以下の(1)式を満たす内圧p(MPa)を負荷して、かかる角形鋼管素材の平板部の平坦度を-3.0mm以上3.0mm以下としつつ、角部の曲率半径を平板部の肉厚の2.0倍以上4.0倍以下とする角形鋼管にする内圧負荷工程と、
    を含む、角形鋼管の製造方法。
             N(MPa)<p≦N×1.5(MPa) ・・・(1)
     ただし、N=(角形鋼管素材の肉厚(mm)/角形鋼管素材の辺長(mm))×角形鋼管素材の平板部の管周方向の降伏強度(MPa)
    A method for manufacturing a square steel pipe according to any one of claims 1 to 6,
    A pipe-making process in which a steel plate is formed into a cylindrical shape by cold roll forming, and the circumferential ends of the cylindrical shape are abutted against each other and welded by electric resistance welding;
    The flatness of the flat plate part is -10.0 mm or more and -4.0 mm or less by the square forming stand performed after the pipe making process, and the radius of curvature of the corner part is 1.0 times or more and 2.5 times the wall thickness of the flat plate part. A square forming process to make a square steel pipe material that is less than double the size of the square steel pipe;
    Subsequently, an internal pressure p (MPa) satisfying the following formula (1) is applied to the inner surface of the square steel pipe material, and the flatness of the flat part of the square steel pipe material is set to -3.0 mm or more and 3.0 mm or less. , an internal pressure loading step to form a square steel pipe in which the radius of curvature of the corner portion is 2.0 times or more and 4.0 times or less the wall thickness of the flat plate portion;
    A method of manufacturing a square steel pipe, including:
    N(MPa)<p≦N×1.5(MPa)...(1)
    However, N = (wall thickness of square steel pipe material (mm) / side length of square steel pipe material (mm)) x yield strength in the pipe circumferential direction of the flat plate part of square steel pipe material (MPa)
  8.  請求項1~6のいずれかに記載の角形鋼管を、柱材として備える建築構造物。
     
     
     
    An architectural structure comprising the square steel pipe according to any one of claims 1 to 6 as a column material.


PCT/JP2023/019016 2022-09-09 2023-05-22 Square steel pipe, manufacturing method for same, and building structure using square steel pipe WO2024053169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551772A JP7380962B1 (en) 2022-09-09 2023-05-22 Square steel pipes, their manufacturing methods, and building structures using square steel pipes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144156 2022-09-09
JP2022144156 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053169A1 true WO2024053169A1 (en) 2024-03-14

Family

ID=90192198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019016 WO2024053169A1 (en) 2022-09-09 2023-05-22 Square steel pipe, manufacturing method for same, and building structure using square steel pipe

Country Status (1)

Country Link
WO (1) WO2024053169A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328715A (en) * 1994-06-06 1995-12-19 Kawasaki Steel Corp Manufacture of square steel pipe
WO2017213104A1 (en) * 2016-06-07 2017-12-14 新日鐵住金株式会社 Metal pipe, and vehicular structure member using metal pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328715A (en) * 1994-06-06 1995-12-19 Kawasaki Steel Corp Manufacture of square steel pipe
WO2017213104A1 (en) * 2016-06-07 2017-12-14 新日鐵住金株式会社 Metal pipe, and vehicular structure member using metal pipe

Similar Documents

Publication Publication Date Title
US9862014B2 (en) Method for electric resistance welded steel tube
JP5011773B2 (en) Manufacturing method of low yield ratio ERW steel pipe with excellent low temperature toughness
JP6816827B2 (en) Manufacturing method of square steel pipe and square steel pipe
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
JP6631758B1 (en) ERW steel pipe, hollow stabilizer, and method for manufacturing hollow stabilizer for manufacturing hollow stabilizer
JP2006299414A (en) Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
WO2020170774A1 (en) Rectangular steel tube and method for manufacturing same, and building structure
JP7259917B2 (en) Square steel pipes and building structures
JP2019116659A (en) Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP5399681B2 (en) High workability and high strength steel pipe excellent in chemical conversion and process for producing the same
WO2020170775A1 (en) Square steel pipe, method for manufacturing same, and building structure
JP7380962B1 (en) Square steel pipes, their manufacturing methods, and building structures using square steel pipes
WO2009119570A1 (en) Uoe steel tube for linepipes and process for production thereof
WO2024053169A1 (en) Square steel pipe, manufacturing method for same, and building structure using square steel pipe
JP6885472B2 (en) Electric pipe for manufacturing hollow stabilizers and its manufacturing method
JP6332432B2 (en) Method for manufacturing ERW steel pipe with small pipe-forming distortion
JP7314863B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
JP7306494B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
JP7314862B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
TW202410985A (en) Square steel pipes and manufacturing methods thereof and building structures using square steel pipes
JP5353760B2 (en) ERW steel pipe excellent in deformation characteristics and manufacturing method thereof
WO2023276644A1 (en) Square steel tube, method for manufacturing same, and building structure
JP6222126B2 (en) ERW steel pipe and manufacturing method thereof
WO2013111902A1 (en) Pipeline and manufacturing method thereof
JP2018047506A (en) Electroseamed steel pipe and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862714

Country of ref document: EP

Kind code of ref document: A1