JP4984447B2 - Manufacturing method of low YR ERW steel pipe for line pipe - Google Patents

Manufacturing method of low YR ERW steel pipe for line pipe Download PDF

Info

Publication number
JP4984447B2
JP4984447B2 JP2005201466A JP2005201466A JP4984447B2 JP 4984447 B2 JP4984447 B2 JP 4984447B2 JP 2005201466 A JP2005201466 A JP 2005201466A JP 2005201466 A JP2005201466 A JP 2005201466A JP 4984447 B2 JP4984447 B2 JP 4984447B2
Authority
JP
Japan
Prior art keywords
pipe
less
condition
length direction
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005201466A
Other languages
Japanese (ja)
Other versions
JP2007015008A (en
Inventor
泰康 横山
能知 岡部
一仁 剣持
竜男 小出
基明 江木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005201466A priority Critical patent/JP4984447B2/en
Publication of JP2007015008A publication Critical patent/JP2007015008A/en
Application granted granted Critical
Publication of JP4984447B2 publication Critical patent/JP4984447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ラインパイプ向け低YR電縫鋼管の製造方法に関し、詳しくは、パイプラインとして敷設される際に座屈が発生し難く、敷設後の耐震性に優れるラインパイプ向け低YR電縫鋼管の製造方法に関する。
ここで、YRは降伏比であり、これは、引張試験により測定された降伏強さ(YS)の対引張強さ(TS)比(=YS/TS)で定義される。但しYSは、下降伏点応力(LYS)、オフセット法による0.2%耐力(0.2%PS)、アンダーロード法(全伸び法)による0.5%耐力(0.5%PS)の内の何れか1種であり、特にパイプの場合、前記引張試験は、API,JIS,ASTM等の鋼管に関する各種工業規格に定められる管長(パイプの長手(L))方向の全厚試験片を用いて行うものである。又、本発明にいう、「低YR電縫鋼管」とは、製品の全周、全長の何れの位置においても、YRが0.90以下(百分率表示では90%以下)である電縫鋼管を意味する。
The present invention relates to a method for manufacturing a low YR electric resistance welded steel pipe for line pipes, and more specifically, low YR electric resistance welded steel pipe for line pipes that is less likely to buckle when laid as a pipeline and has excellent earthquake resistance after laying. It relates to the manufacturing method.
Here, YR is the yield ratio, which is defined by the yield strength (YS) to tensile strength (TS) ratio (= YS / TS) measured by a tensile test. However, YS is one of the following: yield stress (LYS), 0.2% yield strength (0.2% PS) by the offset method, 0.5% yield strength (0.5% PS) by the underload method (full elongation method). In particular, in the case of pipes, the tensile test is performed using full-thickness test pieces in the pipe length (pipe length (L)) direction defined in various industrial standards related to steel pipes such as API, JIS, and ASTM. In addition, the “low YR electric resistance welded pipe” referred to in the present invention means an electric resistance welded pipe having a YR of 0.90 or less (90% or less in percentage display) at any position on the entire circumference or the entire length of the product. .

敷設時に曲げ、曲げ戻しされるリールバージ向けのラインパイプには、従来、品質、強度の面からシームレス鋼管が多用されてきたが、近年品質および強度の問題が解消され、コストダウンを図る意味から電縫鋼管を使用する試みがなされるようになった。こういったリールバージ向けの電縫鋼管では、敷設する場合の曲げ歪みによる局部座屈発生と、これを起点とするパイプの破壊が問題となっている。またΦ200mmを超えるサイズの電縫鋼管は、リールバージ向け以外にも、UOE鋼管の代替として広く用いられるようになっており、敷設後の地震等の地盤変動による歪みで局部座屈が発生し、これを起点としてパイプが破断することが近年問題となっている。そこで、局部座屈による破断を防止するためのパイプの材質設計として、L方向引張特性におけるYRを下げることが要求されてきており、近年ではYR≦90%を満足することが必要となっている。   Traditionally, seamless steel pipes have been used for reel barge line pipes that are bent and unbent at the time of laying in terms of quality and strength. Attempts have been made to use ERW steel pipes. In such ERW steel pipes for reel barges, local buckling due to bending strain when laying and the breakage of pipes starting from this are problems. In addition to reel barges, ERW steel pipes with a size exceeding Φ200mm are widely used as alternatives to UOE steel pipes, and local buckling occurs due to distortion caused by ground fluctuations such as earthquakes after laying. It has become a problem in recent years that the pipe breaks starting from this. Therefore, as a material design of a pipe for preventing breakage due to local buckling, it has been required to lower YR in the L direction tensile properties, and in recent years, it is necessary to satisfy YR ≦ 90%. .

然し、電縫鋼管は、その造管成形段階においてL方向への引張歪が付与されるため、L方向YRは高くなる傾向にある。特に近年では対サワー性能の一層の向上が要求されているため、過去の電縫鋼管と比較して低C系の組成となり、素材段階のYRが著しく高く(80%以上)、その結果、造管後のYR≦90%を満足することが困難となりつつある。
尚、ラインパイプ向けの低YR鋼管では、例えばリールバージ向けに、特許文献1に示されたように実質的に炭素量を0.1%以上とする方法が知られている。一方、UOE鋼管では、溶接後の拡管によりL方向の圧縮歪みを付与して低YR化する手法が用いられている(例えば特許文献2)。
特開平3−211255号公報 特開平10−310821号公報
However, since the ERW steel pipe is given tensile strain in the L direction at the time of pipe forming, the L direction YR tends to increase. In particular, in recent years, there has been a demand for further improvement in sour performance, resulting in a low-C composition compared to past ERW steel pipes, and a significantly higher YR at the material stage (80% or more). It is becoming difficult to satisfy YR ≦ 90% after the tube.
In addition, in the low YR steel pipe for line pipes, for example, for reel barge, a method of substantially setting the carbon amount to 0.1% or more as shown in Patent Document 1 is known. On the other hand, in the UOE steel pipe, a technique of applying a compressive strain in the L direction by expanding the pipe after welding and reducing the YR is used (for example, Patent Document 2).
JP-A-3-21255 Japanese Patent Laid-Open No. 10-310821

然しながら、特許文献1記載の技術では、成分調整により電縫溶接部の特性を向上させているものの、近年顧客から要求のある優れた耐サワー性については考慮されていない。又その実施例に示される引張特性は、円周溶接部を含む溶接継手引張試験の結果であり、母材の引張特性とは異なるものであるため、参考にならない。
一方、一般に拡管を行わない電縫鋼管製造にUOE鋼管製造における拡管工程を適用しようとするのは、拡管設備の追加を要することに加え、拡管工程は造管成形後に1本毎に行うバッチ処理であり、又熱処理が必要な場合もあるため、電縫鋼管のような高速溶接による製造では著しい生産能率の低下に繋がるという難点がある。
However, in the technique described in Patent Document 1, although the characteristics of the electric resistance welded portion are improved by adjusting the components, excellent sour resistance that has been requested by customers in recent years is not taken into consideration. Further, the tensile characteristics shown in the examples are the results of a tensile test of a welded joint including a circumferential weld, and are different from the tensile characteristics of the base material, and thus are not helpful.
On the other hand, in order to apply the pipe expansion process in UOE steel pipe manufacturing to ERW steel pipe manufacturing that generally does not perform pipe expansion, in addition to the need for additional pipe expansion equipment, the pipe expansion process is a batch process that is performed one by one after pipe forming In addition, since heat treatment may be necessary, the production by high-speed welding such as an ERW steel pipe has a drawback that it leads to a significant reduction in production efficiency.

本発明は、かかる状況に鑑み、ラインパイプ向けの低YR電縫鋼管を、設備の追加や生産能率の低下を伴わずして製造しうる、ラインパイプ向け低YR電縫鋼管の製造方法を提供することを目的とする。   In view of such circumstances, the present invention provides a method for producing a low YR electric-welded steel pipe for line pipes, which can produce a low-YR electric-welded steel pipe for line pipes without adding equipment or reducing production efficiency. The purpose is to do.

前記目的達成にのために、本発明者らは、造管成形後のラインパイプ向け電縫鋼管を低YR化する観点から、造管成形‐電縫溶接後に適宜行われる回転矯正工程における矯正処理条件について鋭意検討し、その結果、耐サワー性の確保に適合するよう成分設計した組成の素材を用い、前記回転矯正工程において、管厚方向に繰り返し曲げ歪を付与する、若しくは管長手方向に圧縮歪を付与することにより、優れた耐サワー性具有と造管成形後の低YR化とが一挙に達成できることを見出した。   In order to achieve the above-mentioned object, the present inventors have made correction processing in a rotation correction process that is appropriately performed after pipe forming and ERW welding from the viewpoint of reducing the YR of the ERW steel pipe for line pipe after pipe forming. As a result of diligent examination of the conditions, as a result, using a material with a composition designed to meet the sour resistance, repeatedly bending strain in the tube thickness direction or compressing in the tube longitudinal direction in the rotation correction process It has been found that by imparting strain, excellent sour resistance and low YR after pipe forming can be achieved at once.

更に具体的には、耐サワー性確保のため素材を低C系の特定の鋼組成のものとし、電縫溶接後の回転矯正工程において、管全体の曲げ‐曲げ戻しにより0.1〜7.0%の管厚方向平均歪を付与する条件(1)、管長方向の長さ増減無しの縮径により0.1〜7.0%の管長方向圧縮歪を付与する条件(2)、縮径無しの管長方向直接圧縮により0.1〜7.0%の管長方向圧縮歪を付与する条件(3)、縮径及び管長方向直接圧縮により0.1〜7.0%の管長方向圧縮歪を付与する条件(4)、条件(1)と条件(2)〜(4)の何れかとを組合せた条件(5)、の何れかが満たされるように回転矯正処理を施すことにより、その効果を最大限に発揮させ得るという知見を得た。   More specifically, the material is made of a specific steel composition of low C system to ensure sour resistance, and in the rotation correction process after ERW welding, 0.1-7.0% of the pipe is obtained by bending and unbending the entire pipe. Conditions (1) for imparting average strain in the thickness direction, conditions (2) for imparting compressive strain in the pipe length direction of 0.1 to 7.0% due to reduced diameter without increasing / decreasing the length in the pipe length direction, 0.1 by direct compression in the pipe length direction without reducing diameter Conditions to give pipe length direction compressive strain of ~ 7.0% (3), Conditions to give pipe length direction compressive strain of 0.1 to 7.0% by diameter reduction and pipe length direction direct compression (4), Condition (1) and Condition (2) The present inventors have found that the effect can be maximized by performing rotation correction processing so that any one of the conditions (5) in combination with any one of (4) is satisfied.

本発明は、上記知見に基づいて成されたものであり、その要旨は次の通りである。
[請求項1] 帯鋼を略円筒状のオープン管に連続成形し、該オープン管の円周方向端部同士を電縫溶接してなる管に上下一対のロールをそれらのロール軸が互いに交差し且つパスラインに対し斜角配置となる形態で保持するロールスタンドを複数タンデムに配列した回転矯正機を用いて、回転矯正処理を施して外形寸法形状を整える電縫鋼管の製造方法において、前記帯鋼の組成を、質量%で、C:0.02〜0.1%、Si:0.01〜0.5%、Mn:0.6〜2.3%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し、残部が実質的にFeからなる組成とし、管全体の繰り返し曲げ−曲げ戻し、管長方向の長さ増減無しの縮径、縮径無しの管長方向直接圧縮、縮径及び管長方向直接圧縮という何れかの回転矯正処理を、下記条件(2)〜(5)の何れか一つが満たされるように施すことを特徴とするラインパイプ向け低YR電縫鋼管の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[Claim 1] A steel strip is continuously formed into a substantially cylindrical open pipe, and a pair of upper and lower rolls are intersected with a pipe formed by electro-welding the circumferential ends of the open pipe with their roll axes intersecting each other. In addition, in the method for manufacturing an electric resistance welded steel pipe, the roll stand that is held in a slanted arrangement with respect to the pass line is arranged in a plurality of tandems, and the outer shape is adjusted by performing rotation correction processing. The composition of the steel strip is in mass%, C: 0.02 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.6 to 2.3%, P: 0.01% or less, S: 0.01% or less, Al: 0.1% or less The balance is essentially composed of Fe, and the entire tube is repeatedly bent and bent back, reduced in length without increasing or decreasing the length in the tube length, directly compressed in the tube length without shrinking, and directly compressed in the tube length direction. one of the rotation correction processing, the following condition (2) to (5) of any to one is satisfied Method of manufacturing a line pipe for low YR electric resistance welded steel pipe and wherein the subjecting.


条件(1):管全体の繰り返し曲げ‐曲げ戻しにより0.1〜7.0%の管厚方向平均歪を付与する条件。
条件(2):管長方向の長さ増減無しの縮径により0.1〜7.0%の管長方向圧縮歪を付与する条件。
条件(3):縮径無しの管長方向直接圧縮により0.1〜7.0%の管長方向圧縮歪を付与する条件。
条件(4):縮径及び管長方向直接圧縮により0.1〜7.0%の管長方向圧縮歪を付与する条件。
条件(5):条件(1)と条件(2)〜(4)の何れかとを組合せた条件。
Condition (1): A condition in which an average strain in the pipe thickness direction of 0.1 to 7.0% is given by repeated bending and unbending of the whole pipe.
Condition (2): A condition in which a compressive strain in the pipe length direction of 0.1 to 7.0% is imparted by a diameter reduction without increasing or decreasing the length in the pipe length direction.
Condition (3): A condition in which a compression strain in the tube length direction of 0.1 to 7.0% is imparted by direct compression in the tube length direction without reducing the diameter.
Condition (4): A condition in which a compression strain in the tube length direction of 0.1 to 7.0% is imparted by reducing the diameter and directly compressing in the tube length direction.
Condition (5): A condition in which the condition (1) is combined with any one of the conditions (2) to (4).

[請求項2] 前記組成を、下記式で定義される炭素当量Ceqが0.44%未満になる組成としたことを特徴とする請求項1記載のラインパイプ向け低YR電縫鋼管の製造方法。

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
但し、右辺の元素記号項は同号元素の鋼中成分含有量(質量%)であり、含有されない成分元素の項は無視する。
[Claim 2] The method for producing a low YR ERW steel pipe for a line pipe according to claim 1, wherein the composition has a carbon equivalent Ceq defined by the following formula of less than 0.44%.
Record
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol term on the right side is the component content (% by mass) in the steel of the same element, and the term of the component element not contained is ignored.

[請求項3] 前記Feの一部に代えて、質量%で、Cu:0.5%以下、Ni:0.5%以下の内から選ばれる1種又は2種を含有するとしたことを特徴とする請求項1又は2に記載のラインパイプ向け低YR電縫鋼管の製造方法。
[請求項4] 前記Feの一部に代えて、質量%で、Cr:0.5%以下、Mo:0.5%以下の内から選ばれる1種又は2種を含有するとしたことを特徴とする請求項1〜3の何れかに記載のラインパイプ向け低YR電縫鋼管の製造方法。
[Claim 3] Instead of a part of the Fe, one or two kinds selected from Cu: 0.5% or less and Ni: 0.5% or less are contained in mass%. The manufacturing method of the low YR ERW steel pipe for line pipes of 1 or 2.
[Claim 4] The present invention is characterized in that, instead of a part of the Fe, one or two elements selected from Cr: 0.5% or less and Mo: 0.5% or less are contained in mass%. The manufacturing method of the low YR ERW steel pipe for line pipes in any one of 1-3.

[請求項5] 前記Feの一部に代えて、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の内から選ばれる1種又は2種以上を含有するとしたことを特徴とする請求項1〜4の何れかに記載のラインパイプ向け低YR電縫鋼管の製造方法。
[請求項6] 前記Feの一部に代えて、質量%で、Ca:0.005%以下を含有するとしたことを特徴とする請求項1〜5の何れかに記載のラインパイプ向け低YR電縫鋼管の製造方法。
[Claim 5] Instead of a part of the Fe, by mass%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less selected from one or two or more selected from The manufacturing method of the low YR ERW steel pipe for line pipes in any one of Claims 1-4 characterized by the above-mentioned.
[Claim 6] The low YR electro-sewing for line pipes according to any one of claims 1 to 5, wherein Ca is contained in 0.005% or less by mass% instead of part of the Fe. Steel pipe manufacturing method.

本発明によれば、素材組成と回転矯正処理条件とを適正に組合せたことにより、設備追加を要さず生産能率の低下も伴わずに、ラインパイプ向け低YR電縫鋼管を製造することができる。   According to the present invention, it is possible to manufacture a low YR ERW steel pipe for line pipes by appropriately combining the material composition and rotation correction processing conditions without requiring additional equipment and without reducing the production efficiency. it can.

本発明は、帯鋼を略円筒状のオープン管に連続成形する造管成形工程と、該オープン管の円周方向端部同士を電縫溶接する接合工程と、該電縫溶接後の管に回転矯正処理を施して外形寸法形状を整える回転矯正工程とを有する。造管成形工程では、コイル状巻物から連続的に払い出した帯鋼を、ブレークダウンロール装置、ケージロール装置、フィンパスロール装置等を複数直列に配置したロール成形手段に通して略円筒状のオープン管に連続成形する。接合工程では、高周波通電(又は誘導)加熱装置及びスクイズロール装置からなる電縫溶接手段を用いて、オープン管のVシェイプ収束点を連続的に接合する。造管成形工程及び接合工程は、常法により実施すればよい。   The present invention provides a tube forming process for continuously forming a steel strip into a substantially cylindrical open pipe, a joining process for electrowelding the circumferential ends of the open pipe, and a pipe after the electrosealing welding. And a rotation correction process for adjusting the external dimensions by performing rotation correction processing. In the tube-forming process, the steel strip that has been continuously discharged from the coiled roll is passed through roll forming means in which a plurality of breakdown roll devices, cage roll devices, fin pass roll devices, etc. are arranged in series. Form continuously into a tube. In the joining step, the V-shaped convergence point of the open pipe is continuously joined by using an electric seam welding means including a high-frequency energization (or induction) heating device and a squeeze roll device. What is necessary is just to implement a pipe-forming shaping | molding process and a joining process by a conventional method.

本発明では、回転矯正工程を利用して低YR化を実現する点に大きな特徴がある。そこで、素材組成の説明に先立ち、回転矯正処理について説明する。回転矯正処理は、造管成形‐電縫溶接後の管1の外形寸法形状を整え、製品寸法精度を向上させるために、例えば図1に示すような回転矯正機を用いて行われる。これは、上下1対のロール2、2’をそれらのロール軸が互いに交差し且つパスラインに対し斜角配置となる形態で保持するロールスタンド3を複数タンデムに配列してなり、各ロールスタンド3,3,…,3間での縮径、曲げ‐曲げ戻しによる曲り矯正が可能に構成されている。図1のように、ロール2,2’を矢示4,4’方向に回転させると、管1は矢示6方向に回転しながら矢示5方向に搬送される。このときロール回転速度、ロールギャップ、パスライン高さ位置等の操作因子をロールスタンド3,3,…,3毎に設定操作することにより、縮径、曲げ‐曲げ戻し等の加工量を目標値に制御することができる。   The present invention has a great feature in that a low YR can be realized by using a rotation correction process. Therefore, the rotation correction process will be described prior to the description of the material composition. The rotation correction processing is performed using, for example, a rotation correction machine as shown in FIG. 1 in order to adjust the outer dimensions and shape of the tube 1 after pipe forming and electro-welding and improve the product dimensional accuracy. This is made up of a plurality of roll stands 3 arranged in tandem for holding a pair of upper and lower rolls 2 and 2 'in a form in which their roll axes cross each other and are obliquely arranged with respect to the pass line. 3, 3, 3, 3, 3, 3, and 3 can be corrected by bending and bending back. As shown in FIG. 1, when the rolls 2 and 2 'are rotated in the directions indicated by arrows 4 and 4', the tube 1 is conveyed in the direction indicated by arrows 5 while rotating in the direction indicated by arrows 6. At this time, by setting operation factors such as roll rotation speed, roll gap, pass line height position, etc. for each roll stand 3, 3,... Can be controlled.

従来、回転矯正処理は、製品寸法精度の向上のみを目的としたものであり、これを製品の材質制御に利用するという技術思想はなかった。これに対し本発明によれば、回転矯正処理の利用により製品のYRを有利に低減させることができるのである。その作用を説明する。
図1のような回転矯正機を用い、電縫溶接後の管に繰り返し曲げ歪を付与すると、バウシンガー効果により管長方向引張特性に係るYRの低減が発生する。又、管長方向長さを増減すること無く縮径を行うと、管周方向圧縮歪を受けて管長方向へ伸びようとする歪が抑制されることにより管長方向に圧縮歪が作用し、バウシンガー効果により管長方向引張特性に係るYRの低減が発生する。更に前記操作因子の設定操作方法によっては縮径を行わずに直接管長方向圧縮歪みを付与することも可能であり、この場合もバウシンガー効果による管長方向引張特性変化を介して低YR化が可能となる。
Conventionally, the rotation correction process is intended only for improving the dimensional accuracy of the product, and there has been no technical idea of using it for controlling the material of the product. On the other hand, according to the present invention, the YR of the product can be advantageously reduced by using the rotation correction process. The operation will be described.
When a rotational straightening machine as shown in FIG. 1 is used to repeatedly apply bending strain to a pipe after ERW welding, a YR related to tensile characteristics in the pipe length direction occurs due to the Bauschinger effect. In addition, when the diameter is reduced without increasing or decreasing the length in the tube length direction, the strain that is subjected to the compressive strain in the tube circumferential direction and tends to extend in the tube length direction is suppressed, so that the compressive strain acts in the tube length direction. The effect causes a reduction in YR related to tensile properties in the tube length direction. Furthermore, depending on the setting method of the operating factor, it is possible to directly apply compressive strain in the tube length direction without reducing the diameter, and in this case as well, low YR is possible through changes in the tube direction tensile properties due to the Bauschinger effect. It becomes.

管全体の繰り返し曲げ‐曲げ戻しにより付与される管厚方向平均歪は、0.1%以上であればYRを低減させるのに十分であり、一方7.0%を超えた場合加工硬化により管長方向のバウシンガー効果が相殺されるため、0.1〜7.0%とすることが肝要である。
又、管長方向圧縮歪みは、付与方法が縮径であるか管長方向直接圧縮であるかに拘らず、0.1%以上であればバウシンガー効果によりYRを低減させるのに十分であり、一方7.0%を超えた場合加工硬化により管長方向のバウシンガー効果が相殺されるため、0.1〜7.0%以下とすることが肝要である。
If the average strain in the tube thickness direction given by repeated bending and unbending of the entire tube is 0.1% or more, it is sufficient to reduce YR. On the other hand, if it exceeds 7.0%, the bausinger in the tube length direction by work hardening Since the effect is offset, it is important to set the content to 0.1 to 7.0%.
In addition, the compression strain in the tube length direction is 0.1% or more, regardless of whether the application method is reduced diameter or direct compression in the tube length direction, and is sufficient to reduce YR due to the Bauschinger effect, while 7.0% If it exceeds 1, the bausinger effect in the tube length direction is offset by work hardening, so it is important to set it to 0.1 to 7.0% or less.

繰り返し曲げ‐曲げ戻しによる管厚方向平均歪付与、縮径による管長方向圧縮歪付与、管長方向直接圧縮による管長方向圧縮歪付与は、個別に実施した場合も組合せて実施した場合も同様にYR低減の効果が得られる。
尚、管厚方向平均歪又は管長方向圧縮歪を目標値に制御するに必要な、これら制御量と前記操作因子の設定操作量との定量的関係は、管の弾塑性変形理論に基いて適宜のモデル式を作成し、これを実験により検証したものを用いて決定することができる。
Pipe thickness direction average strain imparted by repeated bending and unbending, pipe length direction compressive strain imparted by reduced diameter, and pipe length direction compressive strain imparted by direct compression in the pipe length direction are reduced YR both when performed individually and in combination. The effect is obtained.
The quantitative relationship between the control amount and the set operation amount of the operation factor necessary for controlling the tube thickness direction average strain or the tube length direction compression strain to the target value is appropriately determined based on the elasto-plastic deformation theory of the tube. This can be determined using a model formula that has been verified by experiment.

次に、素材の組成(化学成分)の限定理由を説明する。尚、化学成分含有量の単位には質量%を用いるが、以下では%と略記する。本発明か対象とするラインパイプ向け電縫鋼管は、種々の敷設環境での使用に耐え、特に近年顧客からの要求に応えるために、優れた耐サワー性を有する必要がある。従って本発明に係る素材組成は、耐サワー性適応組成を基本として成分設計された。   Next, the reason for limiting the composition (chemical component) of the material will be described. In addition, although mass% is used for the unit of chemical component content, it is abbreviated as% below. The electric resistance welded steel pipe for line pipes which is the subject of the present invention needs to have excellent sour resistance in order to withstand use in various laying environments and in particular to meet customer demands in recent years. Accordingly, the material composition according to the present invention was designed based on the sour resistant adaptive composition.

Cは0.02〜0.1%とする。Cは炭化物として析出強化に寄与する元素であるが、0.1%を超えるとパーライト、ベイナイト、マルテンサイト等の第二相の組織分率が増加し、ラインパイプとして必要な優れた耐サワー性を確保できなくなる。このため、Cは0.1%以下に限定した。一方、C含有量が0.02%未満では、ラインパイプとして十分な強度が確保できなくなる。このため、Cは0.02%以上含有するものとする。好ましくは0.02〜0.07%である。   C is 0.02 to 0.1%. C is an element that contributes to precipitation strengthening as a carbide. However, if it exceeds 0.1%, the fraction of the second phase of pearlite, bainite, martensite, etc. increases, ensuring the excellent sour resistance required for line pipes. become unable. For this reason, C was limited to 0.1% or less. On the other hand, if the C content is less than 0.02%, sufficient strength as a line pipe cannot be secured. For this reason, C is contained by 0.02% or more. Preferably it is 0.02 to 0.07%.

Siは0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると電縫溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
Mnは0.6〜2.3%とする。Mnは強度、靭性を確保するため添加するが、0.6%未満ではその効果が十分でなく、2.3%を超えると第二相分率が増加し、ラインパイプとして必要な優れた素材靭性を確保できないため、Mn含有量を0.6〜2.3%に規定する。
Si is 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the ERW weldability is deteriorated, so the Si content is specified to be 0.01 to 0.5%.
Mn is 0.6 to 2.3%. Mn is added to ensure strength and toughness, but if it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.3%, the second phase fraction increases and the excellent material toughness required as a line pipe cannot be secured. Therefore, the Mn content is specified to be 0.6 to 2.3%.

Pは0.01%以下とする。Pは電縫溶接性を劣化させる元素であるため、P含有量の上限を0.01%に規定する。
Sは0.01%以下とする。Sは一般的に鋼中においてはMnS介在物となり、水素誘起割れ(HIC)の起点となるため少ないほどよい。然し、0.01%以下であれば問題ないため、S含有量の上限を0.01%に規定する。
P is 0.01% or less. Since P is an element that degrades electroweldability, the upper limit of the P content is specified to be 0.01%.
S is 0.01% or less. S is generally better in the steel because it becomes MnS inclusions in steel and the origin of hydrogen-induced cracking (HIC). However, since there is no problem if it is 0.01% or less, the upper limit of the S content is specified as 0.01%.

一方、鋼材の溶接性の指標として、構造用鋼材の溶接熱影響部最高硬さに対する成分元素の影響に関する実験データ解析から導出された次式の炭素当量Ceqがよく用いられている。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
但し、右辺の元素記号項は同号元素の鋼中成分含有量(質量%)であり、含有されない成分元素の項は無視する。Ceqが0.44%未満であれば、電縫鋼管の各種溶接施工において割れ等の欠陥が生じ難いため、本発明では、Ceqを0.44%未満とすることが望ましい。尚、このCeq規制に係る実施形態は、後述の選択添加成分を含有する場合にも適用することが望ましい。
On the other hand, as an index of the weldability of steel materials, the carbon equivalent Ceq of the following formula derived from experimental data analysis on the influence of component elements on the maximum hardness of the weld heat affected zone of structural steel materials is often used.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol term on the right side is the component content (% by mass) in the steel of the same element, and the term of the component element not contained is ignored. If Ceq is less than 0.44%, defects such as cracks are unlikely to occur in various welding operations of ERW steel pipes. Therefore, in the present invention, Ceq is preferably less than 0.44%. It should be noted that the embodiment relating to the Ceq regulation is desirably applied even when it contains a selective additive component described later.

上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避的不純物をはじめ、他の微量添加元素を含有するものが本発明の範囲に含まれることを意味する。不可避的不純物の含有量は合計で0.05%以下であることが好ましい。他の微量添加元素の含有量は合計で5%以下であることが好ましい。
更に、本発明では、ラインパイプ向け電縫鋼管の強度や降伏比、靭性を更に改善する目的で、組成中のFeの一部に代えて、
・Cu:0.5%以下、Ni:0.5%以下の内から選ばれた1種又は2種、
・Cr:0.5%以下、Mo:0.5%以下の内から選ばれた1種または2種、
・Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の内から選ばれた1種又は2種以上、
・Ca:0.005%以下、
を選択添加し含有させることができる。
The remainder other than the above consists essentially of Fe. That the balance is substantially composed of Fe means that an element containing an inevitable impurity and other trace additive elements is included in the scope of the present invention unless the effects of the present invention are lost. The content of inevitable impurities is preferably 0.05% or less in total. The content of other trace additive elements is preferably 5% or less in total.
Furthermore, in the present invention, in order to further improve the strength and yield ratio of the ERW steel pipe for line pipe, toughness, instead of a part of Fe in the composition,
-Cu: 0.5% or less, Ni: 1 or 2 types selected from 0.5% or less,
・ One or two selected from Cr: 0.5% or less, Mo: 0.5% or less,
-Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less selected from the following,
・ Ca: 0.005% or less,
Can be added selectively.

Cuは0.5%以下がよい。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。好ましくは0.05〜0.5%である。
Niは0.5%以下がよい。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると硬化第二相が生成しやすくなり、耐サワー性の低下に繋がるため、添加する場合は0.5%を上限とする。好ましくは0.05〜0.5%である。
Cu should be 0.5% or less. Cu is an effective element for improving toughness and increasing strength, but if added in large quantities, weldability deteriorates, so when added, the upper limit is 0.5%. Preferably it is 0.05 to 0.5%.
Ni should be 0.5% or less. Ni is an element effective for improving toughness and increasing strength. However, if added in a large amount, a hardened second phase tends to be formed, leading to a decrease in sour resistance. Therefore, when added, the upper limit is 0.5%. Preferably it is 0.05 to 0.5%.

Crは0.5%以下がよい。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると第二相が生成しやすくなり耐サワー性を低下させるため、添加する場合は0.5%を上限とする。好ましくは0.1〜0.5%である。
Moは0.5%以下がよい。MoはMn、Crと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると第二相が生成しやすくなり耐サワー性を低下させるため、添加する場合は0.5%を上限とする。好ましくは0.05〜0.5%である。
Cr is preferably 0.5% or less. Like Mn, Cr is an element effective for obtaining sufficient strength even at low C. However, if added in a large amount, the second phase tends to form and the sour resistance is lowered. And Preferably it is 0.1 to 0.5%.
Mo should be 0.5% or less. Mo is an element effective for obtaining sufficient strength even at low C like Mn and Cr, but if added in a large amount, the second phase tends to form and lowers sour resistance, so 0.5% when added. Is the upper limit. Preferably it is 0.05 to 0.5%.

Nbは0.1%以下がよい。Nbは炭窒化物の微細析出と組織の微細粒化により強度と靭性を向上させる。然し、0.1%を超えると硬化した第二相が増加しやすくなり、耐サワー性が著しく劣化するため、添加する場合は0.1%以下に規定する。好ましくは0.01〜0.1%である。
Vは0.1%以下がよい。VはNbと同様に炭窒化物の微細析出により強度上昇に寄与する。然し、0.1%を超えるとNbと同様に硬化した第二相分率が増加し、耐サワー性が著しく劣化するため、添加する場合は0.1%以下に規定する。好ましくは0.05〜0.1%である。
Nb is preferably 0.1% or less. Nb improves strength and toughness by fine precipitation of carbonitride and fine graining of the structure. However, if it exceeds 0.1%, the cured second phase tends to increase, and sour resistance is remarkably deteriorated. Preferably it is 0.01 to 0.1%.
V should be 0.1% or less. V, like Nb, contributes to strength increase by fine precipitation of carbonitride. However, if it exceeds 0.1%, the cured second phase fraction increases in the same manner as Nb and the sour resistance is remarkably deteriorated. Preferably it is 0.05 to 0.1%.

Tiは0.1%以下がよい。TiもNb、Vと同様に炭窒化物の微細析出により強度上昇に寄与する。然し、0.1%を超えるとNbと同様に硬化した第二相分率が増加し、耐サワー性が著しく劣化するため、添加する場合は0.1%以下に規定する。好ましくは0.005〜0.1%である。
Caは0.005%以下がよい。Caは、水素誘起割れの起点となり易い伸長したMnSの形態制御に必要な元素である。然し、0.005%を超えて添加すると過剰なCa酸化物、硫化物が生成し、靭性劣化に繋がるため、添加する場合は0.005%以下に規定する。好ましくは0.002〜0.005%である。
Ti should be 0.1% or less. Ti, like Nb and V, contributes to strength increase by fine precipitation of carbonitride. However, if it exceeds 0.1%, the cured second phase fraction increases in the same manner as Nb and the sour resistance is remarkably deteriorated. Preferably it is 0.005-0.1%.
Ca is preferably 0.005% or less. Ca is an element necessary for controlling the morphology of elongated MnS, which tends to be the starting point of hydrogen-induced cracking. However, if added over 0.005%, excessive Ca oxides and sulfides are generated, leading to toughness deterioration. Therefore, when added, the content is specified to be 0.005% or less. Preferably it is 0.002 to 0.005%.

表1に示す組成、板厚、YS、TS、YRを有する帯鋼(コイル状熱延鋼板)を、前記造管成形工程及びこれに引続く前記接合工程(加熱方式は高周波通電加熱方式)により処理し、得られた管に、回転矯正機を用いて表2に示す内の何れかの条件で回転矯正処理を施し、外径18インチ(457mmφ)のX65電縫鋼管を製造した。尚、本実施例では、接合工程は高周波通電加熱方式で行ったが、高周波誘導加熱方式等の他の加熱方式も適用可能である。   A steel strip (coiled hot-rolled steel plate) having the composition, thickness, YS, TS, and YR shown in Table 1 is obtained by the tube forming step and the subsequent joining step (heating method is a high-frequency current heating method). The obtained tube was subjected to rotation correction treatment using a rotation straightening machine under any of the conditions shown in Table 2 to produce an X65 electric resistance steel tube having an outer diameter of 18 inches (457 mmφ). In the present embodiment, the joining process is performed by a high-frequency current heating method, but other heating methods such as a high-frequency induction heating method are also applicable.

Figure 0004984447
Figure 0004984447

Figure 0004984447
Figure 0004984447

得られた電縫鋼管(製品)のシーム部から円周方向に180度離れた位置から試験方向がL方向になるように採取したJIS5号全厚引張試験片を用い、JIS Z 2241の規定に準拠した引張試験を行ってYS(LYS若しくは0.2%PS)、TSを測定し、YSを算出した。そして、製造上のばらつきを考慮して、製品のYSが88%以下のものを低降伏比性に優れる点で合格(○)、残りを不合格(×)と評価した。   Using JIS No. 5 full-thickness tensile test specimens collected so that the test direction is the L direction from the position 180 degrees away from the seam portion of the obtained ERW steel pipe (product) in the circumferential direction, A YS (LYS or 0.2% PS) and TS were measured by performing a compliant tensile test, and YS was calculated. Then, in consideration of manufacturing variations, products having a YS of 88% or less were evaluated as pass (◯) in terms of excellent low yield ratio, and the rest were evaluated as fail (×).

又、製品から採取した腐食試験片(サイズ:20W×全厚×100L[mm])を用い、NACEStandard TM0284の規定に準拠したHIC試験を行い、浸漬終了後同規定に準拠して試験片を切断し研摩し、割れ長さを測定し、割れ長さ比(CLR)を求めた。そしてCLRが10%以下のものを耐サワー性に優れる点で合格(○)、残りを不合格(×)と評価した。   In addition, a corrosion test piece (size: 20W x total thickness x 100L [mm]) collected from the product is used to conduct an HIC test in accordance with the NACE Standard TM0284, and after immersion, the test piece is cut in accordance with the same. After polishing, the crack length was measured, and the crack length ratio (CLR) was determined. And the thing with CLR of 10% or less was evaluated by the point which is excellent in sour resistance ((circle)), and the remainder was rejected (x).

更に、低降伏比性、耐サワー性の総合評価として、これら双方が合格であるものを○、残りを×とした。得られた結果を表3に示す。   Furthermore, as a comprehensive evaluation of the low yield ratio and sour resistance, “good” indicates that both of these are acceptable and “×” indicates the rest. The obtained results are shown in Table 3.

Figure 0004984447
Figure 0004984447

表3より、C含有量が請求範囲外である帯鋼Aを素材とした鋼管(No.1〜5)は何れも、組織がフェライト‐ベイナイト系で低降伏比性には合格であるが耐サワー性には不合格である。Mn或いはNb含有量が請求範囲外である帯鋼B、Cを素材とした鋼管(鋼管No.6〜15)は何れも、耐サワー性のみならず、低降伏比性にも不合格である。
組成が請求範囲内である帯鋼D〜Jを素材とした鋼管(鋼管No.16〜41)の場合、耐サワー性には何れも合格である。然しながら、回転矯正処理を実施していない条件No.1、繰り返し曲げ‐曲げ戻しによる管厚方向平均歪が0.1%未満の条件No.2、該歪が7.0%超の条件No.3、管長方向の長さ増加無く縮径したが相対的に管長方向圧縮歪が0.1%未満の条件No.5、該歪が7.0%超の条件No.6、縮径無く管長方向直接圧縮したが管長方向圧縮歪が0.1%未満の条件No.8、該歪が7.0%超の条件No.9では、低降伏比性に不合格である。これに対し、回転矯正処理が請求範囲内である条件No.4,7,10,11,12,13では何れもYRが素材帯鋼よりも低減し、低降伏比性に合格している。
From Table 3, all steel pipes (No. 1 to 5) made of steel strip A whose C content is outside the claimed range are ferrite-bainite based on the structure and pass the low yield ratio. It does not accept sourness. Steel pipes (steel pipe Nos. 6 to 15) made of steel strips B and C whose Mn or Nb content is outside the scope of claims are not acceptable for not only sour resistance but also low yield ratio. .
In the case of steel pipes (steel pipes Nos. 16 to 41) made of steel strips D to J whose composition is within the claimed range, they all pass sour resistance. However, condition No. 1 in which rotation correction processing is not performed, condition No. 2 in which the average strain in the pipe thickness direction by repeated bending-bending is less than 0.1%, condition No. 3 in which the strain exceeds 7.0%, pipe length direction Although the diameter was reduced without increasing the length of the tube, the tube length direction compression strain was relatively less than 0.1%, condition No. 5, the strain was over 7.0%, condition No. 6, and the tube length direction compression was performed without shrinkage, but the tube length direction compression. In condition No. 8 in which the strain is less than 0.1% and condition No. 9 in which the strain exceeds 7.0%, the low yield ratio is not acceptable. On the other hand, in conditions No. 4, 7, 10, 11, 12, and 13 in which the rotation correction treatment is within the claimed range, YR is lower than that of the material strip steel, and the low yield ratio is passed.

回転矯正機の1例を示す概略図である。It is the schematic which shows one example of a rotation correction machine.

符号の説明Explanation of symbols

1 管
2、2’ ロール
3 ロールスタンド
4 ロール回転方向の矢示
5 管搬送方向の矢示
6 管回転方向の矢示
1 tube 2, 2 'roll 3 roll stand 4 arrow in the roll rotation direction 5 arrow in the tube transport direction 6 arrow in the tube rotation direction

Claims (6)

帯鋼を略円筒状のオープン管に連続成形し、該オープン管の円周方向端部同士を電縫溶接してなる管に上下一対のロールをそれらのロール軸が互いに交差し且つパスラインに対し斜角配置となる形態で保持するロールスタンドを複数タンデムに配列した回転矯正機を用いて、回転矯正処理を施して外形寸法形状を整える電縫鋼管の製造方法において、前記帯鋼の組成を、質量%で、C:0.02〜0.1%、Si:0.01〜0.5%、Mn:0.6〜2.3%、P:0.01%以下、S:0.01%以下、Al:0.1%以下を含有し、残部が実質的にFeからなる組成とし、管全体の繰り返し曲げ−曲げ戻し、管長方向の長さ増減無しの縮径、縮径無しの管長方向直接圧縮、縮径及び管長方向直接圧縮という何れかの回転矯正処理を、下記条件(2)〜(5)の何れか一つが満たされるように施すことを特徴とするラインパイプ向け低YR電縫鋼管の製造方法。

条件(1):管全体の繰り返し曲げ−曲げ戻しにより0.1〜7.0%の管厚方向平均歪を付与する条件。
条件(2):管長方向の長さ増減無しの縮径により0.1〜7.0%の管長方向圧縮歪を付与する条件。
条件(3):縮径無しの管長方向直接圧縮により0.1〜7.0%の管長方向圧縮歪を付与する条件。
条件(4):縮径及び管長方向直接圧縮により0.1〜7.0%の管長方向圧縮歪を付与する条件。
条件(5):条件(1)と条件(2)〜(4)の何れかとを組合せた条件。
A steel strip is continuously formed into a substantially cylindrical open pipe, and a pair of upper and lower rolls are joined to a pipe formed by electro-welding the circumferential ends of the open pipe with their roll axes crossing each other and passing lines. On the other hand, in a method of manufacturing an ERW steel pipe that uses a rotation straightening machine in which a plurality of roll stands that are held in an oblique arrangement are arranged in tandem, the rotation dimension is adjusted to adjust the outer shape and shape. , C: 0.02 to 0.1%, Si: 0.01 to 0.5%, Mn: 0.6 to 2.3%, P: 0.01% or less, S: 0.01% or less, Al: 0.1% or less, with the balance being substantially In general, the composition is composed of Fe, and the entire pipe is repeatedly bent and unbent, reduced in diameter in the tube length direction without any increase or decrease in length, directly compressed in the tube length direction without diameter reduction, and reduced in rotation or directly compressed in the tube length direction. The processing is performed so that any one of the following conditions (2) to (5) is satisfied. A manufacturing method of low YR ERW steel pipes for line pipes.
Condition (1): A condition in which an average strain in the tube thickness direction of 0.1 to 7.0% is given by repeated bending and unbending of the entire tube.
Condition (2): A condition in which a compressive strain in the pipe length direction of 0.1 to 7.0% is imparted by a diameter reduction without increasing or decreasing the length in the pipe length direction.
Condition (3): A condition in which a compression strain in the tube length direction of 0.1 to 7.0% is imparted by direct compression in the tube length direction without reducing the diameter.
Condition (4): A condition in which a compression strain in the tube length direction of 0.1 to 7.0% is imparted by reducing the diameter and directly compressing in the tube length direction.
Condition (5): A condition in which the condition (1) is combined with any one of the conditions (2) to (4).
前記組成を、下記式で定義される炭素当量Ceqが0.44%未満になる組成としたことを特徴とする請求項1記載のラインパイプ向け低YR電縫鋼管の製造方法。

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
但し、右辺の元素記号項は同号元素の鋼中成分含有量(質量%)であり、含有されない成分元素の項は無視する。
The method for producing a low YR electric resistance welded steel pipe for a line pipe according to claim 1, wherein the composition is such that the carbon equivalent Ceq defined by the following formula is less than 0.44%.
Record
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
However, the element symbol term on the right side is the component content (% by mass) in the steel of the same element, and the term of the component element not contained is ignored.
前記Feの一部に代えて、質量%で、Cu:0.5%以下、Ni:0.5%以下の内から選ばれる1種又は2種を含有するとしたことを特徴とする請求項1又は2に記載のラインパイプ向け低YR電縫鋼管の製造方法。   It replaces with a part of said Fe, and contained 1 type or 2 types chosen from Cu: 0.5% or less and Ni: 0.5% or less in the mass%, The Claim 1 or 2 characterized by the above-mentioned. Of low YR ERW steel pipes for line pipes. 前記Feの一部に代えて、質量%で、Cr:0.5%以下、Mo:0.5%以下の内から選ばれる1種又は2種を含有するとしたことを特徴とする請求項1〜3の何れかに記載のラインパイプ向け低YR電縫鋼管の製造方法。   4. Instead of a part of the Fe, one or two selected from Cr: 0.5% or less and Mo: 0.5% or less are contained by mass%. A method for producing a low YR electric resistance welded steel pipe for a line pipe according to claim 1. 前記Feの一部に代えて、質量%で、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の内から選ばれる1種又は2種以上を含有するとしたことを特徴とする請求項1〜4の何れかに記載のラインパイプ向け低YR電縫鋼管の製造方法。   Instead of a part of the Fe, it is characterized by containing one or more selected from the group consisting of Nb: 0.1% or less, V: 0.1% or less, Ti: 0.1% or less in mass%. The manufacturing method of the low YR ERW steel pipe for line pipes in any one of Claims 1-4. 前記Feの一部に代えて、質量%で、Ca:0.005%以下を含有するとしたことを特徴とする請求項1〜5の何れかに記載のラインパイプ向け低YR電縫鋼管の製造方法。   The method for producing a low YR ERW steel pipe for a line pipe according to any one of claims 1 to 5, wherein Ca is contained by 0.005% or less in mass% instead of a part of the Fe.
JP2005201466A 2005-07-11 2005-07-11 Manufacturing method of low YR ERW steel pipe for line pipe Active JP4984447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201466A JP4984447B2 (en) 2005-07-11 2005-07-11 Manufacturing method of low YR ERW steel pipe for line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201466A JP4984447B2 (en) 2005-07-11 2005-07-11 Manufacturing method of low YR ERW steel pipe for line pipe

Publications (2)

Publication Number Publication Date
JP2007015008A JP2007015008A (en) 2007-01-25
JP4984447B2 true JP4984447B2 (en) 2012-07-25

Family

ID=37752603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201466A Active JP4984447B2 (en) 2005-07-11 2005-07-11 Manufacturing method of low YR ERW steel pipe for line pipe

Country Status (1)

Country Link
JP (1) JP4984447B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298645B2 (en) * 2008-05-30 2013-09-25 Jfeスチール株式会社 A method for manufacturing ERW line pipes with excellent buckling resistance
JP5298646B2 (en) * 2008-05-30 2013-09-25 Jfeスチール株式会社 A method for manufacturing ERW line pipes with excellent buckling resistance
CN103909118B (en) * 2014-04-01 2017-02-15 太仓东青金属制品有限公司 Metal capillary tube straightening machine
EP3375900A4 (en) * 2016-03-22 2019-07-17 Nippon Steel Corporation Electric resistance welded steel tube for line pipe
CN109072379B (en) * 2016-07-06 2020-11-06 日本制铁株式会社 Electric resistance welded steel pipe for main line pipe
JP6213702B1 (en) * 2016-07-06 2017-10-18 新日鐵住金株式会社 ERW steel pipe for line pipe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927644B2 (en) * 1979-06-29 1984-07-07 住友金属工業株式会社 Manufacturing method for oil well steel pipes with high collapse strength
JPH05237547A (en) * 1992-02-28 1993-09-17 Nkk Corp Jig and method for straightening bend of different diameter tube
JPH1017980A (en) * 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd Welded steel pipe with low yield ratio, and its production
JPH10310821A (en) * 1997-05-12 1998-11-24 Nkk Corp Manufacture of high tensile strength steel tube for construction use
JPH11290947A (en) * 1998-04-15 1999-10-26 Showa Alum Corp Straightening method for round pipe or round bar
JP5157030B2 (en) * 2001-03-23 2013-03-06 Jfeスチール株式会社 Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP2003220420A (en) * 2002-01-28 2003-08-05 Nippon Steel Corp Method and device for forming plate

Also Published As

Publication number Publication date
JP2007015008A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4442541B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
JP5176271B2 (en) Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP5751012B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5751013B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
WO2015151469A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP4984447B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
TWI700136B (en) Square steel pipe manufacturing method and square steel pipe
JP6631758B1 (en) ERW steel pipe, hollow stabilizer, and method for manufacturing hollow stabilizer for manufacturing hollow stabilizer
WO2011042936A1 (en) High-strength steel pipe, steel plate for high-strength steel pipe, and processes for producing these
US10449636B2 (en) Pipeline and manufacturing method thereof
JP4466320B2 (en) Manufacturing method of low yield ratio ERW steel pipe for line pipe
JP5211843B2 (en) Welded steel pipe with excellent crush resistance and method for producing the same
JP4687268B2 (en) Manufacturing method of ERW steel pipe for high-strength thick-walled pipe with excellent weld toughness
JP5540646B2 (en) Low yield ratio high strength ERW steel pipe and method for producing the same
JP2006289482A (en) Manufacturing method of electric resistance welded steel pipe with low yield ratio for line pipe
JP2004143500A (en) High-strength steel pipe excellent in buckling resistance and its production method
JP6885472B2 (en) Electric pipe for manufacturing hollow stabilizers and its manufacturing method
JP6954504B1 (en) Electric resistance steel pipe, its manufacturing method and structural members for automobiles
JP6332432B2 (en) Method for manufacturing ERW steel pipe with small pipe-forming distortion
JP6658385B2 (en) Manufacturing method of steel pipe
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP5353760B2 (en) ERW steel pipe excellent in deformation characteristics and manufacturing method thereof
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JP2002206140A (en) Steel tube and production method therefor
JP2022552857A (en) Normalized UOE welded pipe and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250