WO2019176833A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2019176833A1
WO2019176833A1 PCT/JP2019/009605 JP2019009605W WO2019176833A1 WO 2019176833 A1 WO2019176833 A1 WO 2019176833A1 JP 2019009605 W JP2019009605 W JP 2019009605W WO 2019176833 A1 WO2019176833 A1 WO 2019176833A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
semiconductor device
protective layer
film
Prior art date
Application number
PCT/JP2019/009605
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 浩一郎
宗弘 多田
直樹 伴野
井口 憲幸
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2019176833A1 publication Critical patent/WO2019176833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a semiconductor device including a resistance change element and a manufacturing method thereof.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor
  • FPGA Field Programmable Gate Array
  • the customer himself can perform an arbitrary circuit configuration on the manufactured chip.
  • a variable resistance nonvolatile element also referred to as a variable resistance element
  • the connection portion of the wiring so that the customer himself can set the electrical connection of the desired wiring. If FPGA is used, the freedom degree of a circuit can be improved.
  • Resistance change element is a general term for elements that store information according to a change in resistance state.
  • a resistance change element used in an FPGA has a three-layer structure in which a resistance change layer is sandwiched between a lower electrode and an upper electrode, and changes the resistance state of the resistance change layer by applying a voltage between both electrodes. be able to.
  • the resistance change element there are a ReRAM (Resistive Random Access Memory) using a metal oxide as a resistance change layer, a solid electrolyte switch element using a solid electrolyte, and the like.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a resistance change phenomenon using a chalcogenide compound as a solid electrolyte material.
  • Patent Document 1 discloses an example of a memory element using a solid electrolyte.
  • the memory element of Patent Document 1 has a configuration in which a memory layer in which a resistance change layer and an ion source layer are stacked is provided between a lower electrode and an upper electrode.
  • the resistance change layer corresponds to a solid electrolyte layer
  • the ion source layer corresponds to an electrode that supplies metal ions.
  • the memory element of Patent Document 1 has a configuration in which the upper and lower structures of the above solid electrolyte switch element are reversed.
  • Patent Document 2 and Patent Document 3 disclose a two-terminal solid electrolyte switch element provided in a copper multilayer wiring structure on a CMOS substrate and a method for manufacturing the same.
  • Non-Patent Document 3 in the stacking of solid electrolyte switch elements, in order to prevent oxidation of the copper surface, the free energy of oxidation is negatively larger than copper between copper as the lower electrode and the solid electrolyte layer.
  • a method of depositing metal as a valve metal is disclosed. According to the method of Non-Patent Document 3, the element can be provided with a buffer structure in which oxidation of copper is suppressed by oxidizing the valve metal.
  • Patent Document 3 in the process of manufacturing a solid electrolyte switch element, after the switch element laminated structure is etched, the surface of copper is covered with a protective film such as silicon nitride (SiN) having a high chemical barrier property. Techniques to do this are disclosed.
  • JP 2011-187925 A International Publication No. 2010/0779816 JP 2011-091317 A
  • An object of the present invention is to provide a semiconductor device in which moisture absorption to a resistance change layer included in a resistance change element is suppressed and variation in set voltage is suppressed in order to solve the above-described problem.
  • a semiconductor device of one embodiment of the present invention includes a first electrode, a first insulating layer that is disposed on the first electrode and has at least one opening formed thereon, and is disposed on the first insulating layer and has an opening.
  • a variable resistance layer connected to the first electrode in the inside of the unit; a second electrode disposed on the variable resistance layer; a first protective layer covering a side surface of the variable resistance layer; and a first protective layer A second protective layer.
  • the first electrode is formed on the substrate, the first insulating layer is formed on the upper surface of the first electrode, and the opening exposing a part of the upper surface of the first electrode Is formed on the first insulating layer, the buffer layer is formed on the upper surface of the first insulating layer including the inside of the opening, the solid electrolyte layer is formed on the upper surface of the buffer layer, and the second layer is formed on the upper surface of the solid electrolyte layer.
  • the electrode is formed, at least one patterning mask is formed on the upper surface of the upper electrode, and the second electrode, the solid electrolyte layer, and the buffer layer are sequentially etched, and at the same time, the patterning mask, the buffer layer, and the solid electrolyte are etched.
  • the first protective layer is formed on at least the exposed surfaces of the solid electrolyte layer and the buffer layer among the exposed surfaces formed on the layer and the second electrode, and the second protective layer is formed on the surface of the first protective layer.
  • the present invention it is possible to provide a semiconductor device in which moisture absorption to the variable resistance layer included in the variable resistance element is suppressed and variation in set voltage is suppressed.
  • FIG. 1 is a partial cross-sectional view showing a configuration example of the semiconductor device 1 of the present embodiment.
  • the semiconductor device 1 includes a lower electrode 11, an upper electrode 12, a resistance change layer 13, an insulating barrier layer 14, a first protective layer 15, and a second protective layer 16.
  • Lower electrode 11, upper electrode 12, and resistance change layer 13 constitute resistance change element 10.
  • the resistance change layer 13 includes a solid electrolyte layer 131 and a buffer layer 132.
  • the first protective layer 15 and the second protective layer 16 are collectively referred to as a protective layer.
  • the resistance change element 10 is a kind of solid electrolyte switch element, and has a structure in which a solid electrolyte layer (resistance change layer 13) is sandwiched between two electrodes (lower electrode 11 and upper electrode 12).
  • a solid electrolyte layer resistance change layer 13
  • One of the two electrodes (lower electrode 11) is made of a metal that is chemically active and can be easily oxidized and reduced by voltage application.
  • a chemically inert metal material is used for the other (upper electrode 12) of the two electrodes.
  • the lower electrode 11 (also referred to as a first electrode) is one of the two electrodes of the resistance change element 10.
  • the lower electrode 11 is an active electrode.
  • the lower electrode 11 is preferably composed of a material containing Cu.
  • the lower electrode 11 may also serve as a wiring on the semiconductor substrate.
  • the process of manufacturing the resistance change element 10 on the semiconductor substrate can be simplified.
  • the semiconductor substrate includes a substrate on which a semiconductor element including a MOS (Metal Oxide Semiconductor) transistor and a resistance element, and a semiconductor device in which these semiconductor elements are combined is configured.
  • a substrate such as a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin Film Transistor) substrate, or a liquid crystal manufacturing substrate may be used.
  • the upper electrode 12 (also referred to as a second electrode) is the other of the two electrodes of the resistance change element 10.
  • the upper electrode 12 is an inert electrode.
  • the upper electrode 12 is provided on the resistance change layer 13.
  • the upper electrode 12 is preferably made of a material containing at least one of iridium Ir, palladium Pd, platinum Pt, ruthenium Ru, tantalum Ta, and titanium Ti.
  • the upper electrode 12 may be composed of two or more metal layers made of different materials.
  • the metal layer in contact with the solid electrolyte layer 131 is composed of a metal layer containing at least one of Ir, Pd, Pt, Ru, Ta, and Ti. It is preferable.
  • the resistance change layer 13 is provided between the lower electrode 11 and the upper electrode 12.
  • the resistance change layer 13 has a structure in which a solid electrolyte layer 131 and a buffer layer 132 are stacked.
  • the solid electrolyte layer 131 is in contact with the upper electrode 12.
  • the solid electrolyte layer 131 is a material containing at least one of tantalum Ta, nickel Ni, titanium Ti, zirconium Zr, hafnium Hf, silicon Si, aluminum Al, iron Fe, vanadium V, manganese Mn, cobalt Co, and tungsten W. Can be configured.
  • a metal oxide film containing these elements, a carbon-doped silicon oxide film (SiOCH film), a chalcogenide film, or a laminated film thereof can be applied.
  • SiOCH film carbon-doped silicon oxide film
  • chalcogenide film a chalcogenide film
  • the buffer layer 132 is in contact with the lower electrode 11.
  • the buffer layer 132 is preferably made of a material made of an oxide containing at least one of a metal having a negative free energy of oxidation larger than that of Cu or a nonmetal belonging to a Group 14 element. More preferably, the buffer layer 132 is preferably made of an oxide containing at least one of aluminum Al, hafnium Hf, niobium Nb, silicon Si, tantalum Ta, titanium Ti, and zirconium Zr. These oxides can be stably formed without causing an interface reaction with the solid electrolyte layer 131, the lower electrode 11, and the upper electrode 12, and moisture absorption of the solid electrolyte layer 131 can be effectively suppressed. In addition, these oxides have good compatibility with general semiconductor manufacturing processes.
  • the resistance change element 10 When the resistance change element 10 is in the off state (high resistance state), if the lower electrode 11 is grounded and a negative voltage is applied to the upper electrode 12, the metal atoms constituting the lower electrode 11 are ionized to form the resistance change layer 13. A metal bridge eluting into and having conductivity is formed between the electrodes. When both electrodes are electrically connected by the metal bridge formed in the resistance change layer 13, the resistance change element 10 is turned on (low resistance state). In this way, an operation of changing from an off state to an on state by voltage application is referred to as a set.
  • variable resistance element 10 when the variable resistance element 10 is in the on state (low resistance state), when the lower electrode 11 is grounded and a positive voltage is applied to the upper electrode 12, the metal bridge that bridges between the two electrodes dissolves and the metal atoms are dissolved. It is pulled back to the lower electrode 11. As a result, both electrodes are electrically insulated, and the variable resistance element 10 changes to an off state (high resistance state). In this manner, an operation of changing from an on state to an off state by applying a positive voltage is referred to as reset.
  • the set and reset are collectively called programming.
  • the solid electrolyte switch element including the resistance change element 10 it is nonvolatile between the on state and the off state and can be repeatedly programmed.
  • the solid electrolyte switch element can be applied to a nonvolatile memory or a nonvolatile switch.
  • the insulating barrier layer 14 (also referred to as a first insulating layer) is formed on the lower electrode 11. At least one opening 140 is formed in a part of the insulating barrier layer 14. The surface of the lower electrode 11 exposed in the opening 140 is in contact with the buffer layer 132 of the resistance change layer 13 through the opening 140. When the surface of the lower electrode 11 exposed at the bottom of the opening 140 is in contact with the buffer layer 132 of the resistance change layer 13 through the opening 140, affinity for a general semiconductor manufacturing process can be improved.
  • the insulating barrier layer 14 is formed on the upper surface of the Cu wiring.
  • the insulating barrier layer 14 has a function of preventing Cu oxidation and diffusion of Cu into the insulating film, and a function as an etching stopper layer during processing.
  • a silicon carbide film (SiC film), a silicon nitride carbide film (SiCN film), a silicon nitride film (SiN film), a laminated film of these films, or the like is used for the insulating barrier layer 14.
  • the first protective layer 15 covers at least a part of the side surface of the resistance change layer 13 and the side surface of the upper electrode 12. At least a part of the first protective layer 15 is covered with the second protective layer 16.
  • the first protective layer 15 serves to protect the side portions exposed during the processes of the resistance change layer 13 and the upper electrode 12. For example, the first protective layer 15 covers the entire side of the variable resistance layer 13 and the entire side of the upper electrode 12. For example, the first protective layer 15 covers the entire side of the variable resistance layer 13 and a part of the side of the upper electrode 12. For example, the first protective layer 15 covers a part of the side of the resistance change layer 13 and a part of the side of the upper electrode 12.
  • the first protective layer 15 is made of a material having higher chemical stability than the material constituting the resistance change layer 13 and the upper electrode 12. Similar to the buffer layer 132, the first protective layer 15 is made of a material made of an oxide containing at least one of a metal having a negative free energy of oxidation larger than that of Cu or a nonmetal belonging to the Group 14 element. It is preferable. More preferably, the first protective layer 15 is preferably made of an oxide containing at least one of Al, Hf, Nb, Si, Ta, Ti, and Zr. These oxides can be stably formed without causing an interface reaction with the solid electrolyte layer 131, the lower electrode 11, and the upper electrode 12, and moisture absorption of the solid electrolyte layer 131 can be effectively suppressed. In addition, these oxides have good compatibility with general semiconductor manufacturing processes.
  • the first protective layer 15 is preferably made of the same material as the buffer layer 132. With such a material structure, the first protective layer 15 can be formed by being in close contact with the exposed side walls of the solid electrolyte layer 131, the buffer layer 132, and the upper electrode 12 at the same time as the buffer layer 132 is etched. As a result, it is possible to efficiently suppress the processing moisture absorption of the sidewalls of the buffer layer 132, the solid electrolyte layer 131, and the upper electrode 12 that are exposed when the buffer layer 132 is etched. Further, if the first protective layer 15 and the buffer layer 132 are made of the same material, the adhesive property with the upper electrode 12 is ensured while maintaining the operation characteristics as the variable resistance element 10, and the solid electrolyte layer 131. Can be more effectively suppressed.
  • one end of the first protective layer 15 is preferably in contact with the side surface of the buffer layer 132.
  • the first protective layer 15 is formed on the sidewalls of the resistance change layer 13 and the upper electrode 12 simultaneously with the element lamination etching process. can do. Therefore, moisture absorption of the resistance change layer 13 and the upper electrode 12 can be suppressed, and variation in the set voltage of the resistance change element 10 due to oxidation of the resistance change layer 13 and the upper electrode 12 can be reduced.
  • the film thickness of the first protective layer 15 is preferably smaller than the film thickness of the buffer layer 132. If the first protective layer 15 is made thinner than the buffer layer 132, the chemical composition in the film thickness direction is homogenized in the first protective layer 15 formed simultaneously with the etching process of the buffer layer 132. The moisture absorption resistance can be improved.
  • the second protective layer 16 covers at least a part of the first protective layer 15. As shown in FIG. 1, the second protective layer 16 is preferably configured to cover all of the exposed portion including the side surface and the upper side of the first protective layer 15.
  • the second protective layer 16 is preferably composed of at least one of SiCN, SiN, and SiC. If these materials are used for the second protective layer 16, the adhesion with the lower insulating barrier layer 14 made of a similar material is improved, and the moisture absorption resistance can be further improved. Moreover, the 2nd protective layer 16 is not limited to being comprised by one layer containing one of these materials, You may be comprised by two or more layers which consist of two or more of these materials.
  • the semiconductor device of this embodiment includes the first electrode, the second electrode, the resistance change layer, and the first insulating layer.
  • the first insulating layer is disposed on the first electrode, and at least one opening is formed.
  • the variable resistance layer is disposed on the first insulating layer and connected to the first electrode inside the opening.
  • the second electrode is disposed on the resistance change layer. The side surfaces of the first protective layer and the resistance change layer are covered.
  • the second protective layer covers the first protective layer.
  • the side surface of the resistance change layer is covered with the first protective layer, and further, the first protective layer is covered with the second protective layer, so that moisture absorption of the resistance change layer to the solid electrolyte layer is suppressed. Is done.
  • variation in element operation due to moisture absorption by the solid electrolyte layer is reduced, and variation in set voltage is suppressed. That is, according to the semiconductor device of the present embodiment, variation in set voltage can be improved while suppressing moisture absorption to the solid electrolyte layer.
  • the thickness and material of each of the first protective layer and the second protective layer of the present embodiment can be confirmed with various measuring instruments.
  • the film thickness, material dimensions, constituent elements, and chemical composition of each of the first protective layer and the second protective layer can be analyzed by a transmission electron microscope.
  • the film thickness and material of each of the first protective layer and the second protective layer can be analyzed by an analysis method such as energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
  • FIG. 2 is a partial cross-sectional view showing a configuration example of the semiconductor device 1-1 of the first modification.
  • the semiconductor device 1-1 includes an interlayer insulating film 17 and a barrier metal 18.
  • the opening 140 of the insulating barrier layer 14 includes a first opening region 141 and a second opening region 142.
  • the lower electrode 11 of the semiconductor device 1-1 of Modification 1 is formed inside the interlayer insulating film 17 and has a configuration exposed to part of the opening 140. A plurality of lower electrodes 11 may be configured to be exposed in one opening 140.
  • the interlayer insulating film 17 is provided below the insulating barrier layer 14.
  • the interlayer insulating film 17 is in contact with the solid electrolyte layer 131 in the second opening region 142 in the opening 140.
  • the barrier metal 18 is provided between the lower electrode 11 and the interlayer insulating film 17. Barrier metal 18 and lower electrode 11 are in contact with solid electrolyte layer 131 in first opening region 141 in opening 140.
  • the barrier metal 18 is a conductive film having a barrier property for covering the side and bottom surfaces of the wiring in order to prevent the metal elements constituting the wiring from diffusing into the interlayer insulating film and the lower layer.
  • the material constituting the wiring is a metal having Cu as a main component, a high melting point metal such as tantalum Ta, a nitride such as tantalum nitride TaN or titanium nitride TiN, or a single nitride carbide such as tungsten carbonitride WCN.
  • a layer film can be used as the barrier metal 18.
  • a laminated film of these refractory metals, nitrides, and nitrocarbides can be used as a barrier metal.
  • the film of the material mentioned here can be easily processed by dry etching, and has good consistency with the LSI (Large Scale Integration) manufacturing process before Cu is used as a wiring material.
  • the semiconductor device 1 (FIG. 1) has a structure in which the lower electrode 11 and the buffer layer 132 are in contact with each other over the entire surface of the opening 140.
  • the semiconductor device 1-1 (FIG. 2) has a structure in which the lower electrode 11 and the buffer layer 132 are in contact with each other in part of the opening 140.
  • FIG. 3 is a partial cross-sectional view illustrating a configuration example of the semiconductor device 1-2 according to the second modification. As shown in FIG. 3, in the semiconductor device 1-2 of Modification 2, the first protective layer 15 is covered with the second protective layer 16. In the configuration of Modification 2 (FIG. 3), a part of the upper electrode 12 and the insulating barrier layer 14 is exposed.
  • FIG. 4 is a partial cross-sectional view illustrating a configuration example of the semiconductor device 1-3 according to the third modification. As shown in FIG. 4, in the semiconductor device 1-3 of the third modification, a hard mask layer 19 for processing a resistance change element pattern is formed on the upper surface of the upper electrode 12.
  • the first protective layer 15 may be in contact with the side surface of the hard mask layer 19.
  • the second protective layer 16 is continuous including the side surfaces of the upper electrode 12 and the resistance change layer 13 covered with the first protective layer 15, the upper surface of the insulating barrier layer 14, and the upper surface and side surfaces of the hard mask layer 19. And may be coated.
  • the semiconductor devices 1-1 to 3 of Modifications 1 to 3 shown in FIGS. 2 to 4 are configuration examples of the first embodiment together with the semiconductor device 1 of FIG. Therefore, according to the semiconductor devices 1-1 to 3 of Modifications 1 to 3 shown in FIGS. 2 to 4, like the semiconductor device 1 shown in FIG. 1, the set voltage is suppressed while the moisture absorption to the solid electrolyte layer is suppressed. Can be improved.
  • the first protective layer covers the side surface of the second electrode.
  • the second protective layer is continuously coated from above the second electrode to the upper surface of the first insulating layer.
  • the semiconductor device of this embodiment includes a second insulating layer that is disposed below the first insulating layer and in which a wiring trench is formed.
  • the first electrode is embedded in the wiring groove formed in the second insulating layer, and is connected to the resistance change layer at the opening.
  • the resistance change layer includes a buffer layer disposed from the inside to the periphery of the opening, and a solid electrolyte layer disposed on the buffer layer.
  • one end of the first protective layer is connected to the side surface of the buffer layer.
  • the first protective layer is made of the same material as the buffer layer.
  • the buffer layer and the first protective layer are made of an oxide material containing at least one of a metal element having a negative energy larger than that of the material constituting the first electrode and a non-metal element belonging to Group 14 Is done.
  • the semiconductor device of this embodiment has a configuration in which the variable resistance element of the first embodiment is provided inside a multilayer wiring structure formed on a semiconductor substrate.
  • a configuration in which the variable resistance element according to Modification 3 of the first embodiment is provided in the multilayer wiring structure will be described as an example.
  • FIG. 5 is a partial cross-sectional view showing a configuration example of the semiconductor device 2. As shown in FIG. 5, the semiconductor device 2 is formed on the semiconductor substrate 201.
  • the semiconductor device 2 includes a lower electrode 21, an upper electrode 22, a resistance change layer 23, a first protective layer 25, and a second protective layer 26.
  • the lower electrode 21, the upper electrode 22, and the resistance change layer 23 constitute the resistance change element 20.
  • the resistance change layer 23 includes a solid electrolyte layer 231 and a buffer layer 232.
  • the upper electrode 22 includes a first upper electrode 221 and a second upper electrode 222.
  • the semiconductor device 2 includes a first interlayer insulating film 202, a second interlayer insulating film 203, a first cap insulating film 204, a first barrier metal 205, a first insulating barrier film 206, a second hard mask layer 208, and A third hard mask layer 209 is provided.
  • the semiconductor device 2 includes the first via interlayer insulating film 210, the third interlayer insulating film 211, the second cap insulating film 212, the second barrier metal 213, the via plug 214, the upper wiring 215, and the second insulating barrier film 216.
  • an opening 240, a wiring groove 250, a via hole 260, and a wiring groove 270 are formed in the semiconductor device 2.
  • the first hard mask layer 207 is formed in the manufacturing process of the semiconductor device 2, it is not shown in FIG. 5 (shown in FIG. 9) because it is removed during the manufacturing.
  • the lower electrode 21 corresponds to the lower electrode 11.
  • the solid electrolyte layer 231 corresponds to the solid electrolyte layer 131.
  • the buffer layer 232 corresponds to the buffer layer 132.
  • the upper electrode 22 including the first upper electrode 221 and the second upper electrode 222 corresponds to the upper electrode 12.
  • the first insulating barrier film 206 corresponds to the insulating barrier layer 14.
  • the combined structure of the second hard mask layer 208 and the third hard mask layer 209 corresponds to the hard mask layer 19.
  • Each of the first protective layer 25 and the second protective layer 26 corresponds to each of the first protective layer 15 and the second protective layer 16. Unless otherwise specified, the components having the above-described correspondence can be made of the same material.
  • Resistance change element 20 First, the configuration of the resistance change element 20 will be described. Since the resistance change element 20 can be configured in the same manner as the resistance change element 10 of the first embodiment, the overlapping description may be omitted.
  • the resistance change element 20 is formed on the first interlayer insulating film 202.
  • the resistance change element 20 includes a lower electrode 21, an upper electrode 22, and a resistance change layer 23.
  • the lower electrode 21 (also referred to as a first electrode) is one of the two electrodes of the resistance change element 20.
  • the lower electrode 21 is an active electrode.
  • the lower electrode 21 is made of a metal material whose main component is Cu.
  • the lower electrode 21 is included in a first barrier metal 205 formed on the first interlayer insulating film 202.
  • the lower electrode 21 is formed so as to be buried in the wiring trench 250 formed in the second interlayer insulating film 203 and the first cap insulating film 204 through the first barrier metal 205. Further, the lower electrode 21 is in contact with the buffer layer 232 over the entire inside of the opening 240 of the first insulating barrier film 206.
  • the lower electrode 21 is in contact with the buffer layer 232 through the opening 240 provided in the first insulating barrier film 206, and on the semiconductor substrate 201. Also serves as wiring. Therefore, a Cu electrode serving also as a Cu wiring can be applied to the lower electrode 21, and the resistance change element 20 using the Cu electrode can be formed in the multilayer wiring structure on the CMOS substrate. If the lower electrode 21 of the variable resistance element 20 is configured to also serve as a wiring on the semiconductor substrate 201, the process of manufacturing the variable resistance element 20 on the semiconductor substrate 201 can be simplified. With the configuration as shown in FIG. 5, Cu atoms in the lower electrode 21 can be ionized and eluted into the solid electrolyte layer 231.
  • the upper electrode 22 (also referred to as a second electrode) is the other of the two electrodes of the resistance change element 20.
  • the upper electrode 22 is an inert electrode.
  • the upper electrode 22 is provided on the resistance change layer 23.
  • the upper electrode 22 includes a first upper electrode 221 and a second upper electrode 222.
  • the first upper electrode 221 is formed on the solid electrolyte layer 231.
  • a second upper electrode 222 is formed on the first upper electrode 221.
  • the first upper electrode 221 is in contact with the solid electrolyte layer 231 and the second upper electrode 222. Further, the side portion of the first upper electrode 221 is in contact with the first protective layer 25.
  • Ru 0.5 Ti 0.5 having a film thickness of 10 nanometers can be applied to the first upper electrode 221.
  • the second upper electrode 222 is formed on the first upper electrode 221.
  • a second hard mask layer 208 is formed on the second upper electrode 222.
  • the second upper electrode 222 is in contact with the first upper electrode 221 and the second hard mask layer 208. Further, the side portion of the second upper electrode 222 is in contact with the first protective layer 25.
  • a second barrier metal 213 and a via plug 214 are formed above the second upper electrode 222.
  • the second upper electrode 222 is in contact with the second barrier metal 213 in the opening (via hole 260) formed in the second hard mask layer 208.
  • the second upper electrode 222 is electrically connected to the upper wiring 215 via the second barrier metal 213 and the via plug 214.
  • the second upper electrode 222 is a conductive film having a barrier property.
  • the second upper electrode 222 is formed in order to prevent the metal contained in the first upper electrode 221 in the immediately lower layer from diffusing into the via plug 214 or the like.
  • Ta having a film thickness of 25 nanometers can be applied to the second upper electrode 222.
  • the resistance change layer 23 is provided between the lower electrode 21 and the upper electrode 22.
  • the solid electrolyte layer 231 and the buffer layer 232 are in contact with each other.
  • the solid electrolyte layer 231 is in contact with the first upper electrode 221.
  • the buffer layer 232 is in contact with the lower electrode 21.
  • Each of the solid electrolyte layer 231 and the buffer layer 232 can be made of the same material as each of the solid electrolyte layer 131 and the buffer layer 132 of the first embodiment.
  • a SiOCH film having a thickness of 6 nanometers can be applied to the solid electrolyte layer 231.
  • a titanium oxide TiO y1 film having a thickness of 1.2 nm can be applied to the buffer layer 232.
  • the oxygen composition y1 of the TiO y1 film applied to the buffer layer 232 is preferably 1.5 or more and 2.0 or less.
  • the first protective layer 25 covers at least a part of the side surface of the resistance change layer 23 and the side surface of the upper electrode 22.
  • the first protective layer 25 covers the side surfaces of the first upper electrode 221, the second upper electrode 222, the solid electrolyte layer 231, and the buffer layer 232.
  • At least a part of the first protective layer 25 is covered with the second protective layer 26.
  • the first protective layer 25 serves to protect the side portions exposed during the process of the resistance change layer 23 and the upper electrode 22.
  • the first protective layer 25 covers the entire side of the resistance change layer 23 and the entire side of the upper electrode 22.
  • the first protective layer 25 covers the entire side of the resistance change layer 23 and a part of the side of the upper electrode 22.
  • the first protective layer 25 covers a part of the side of the resistance change layer 23 and a part of the side of the upper electrode 22.
  • one end (the lower end in FIG. 5) of the first protective layer 25 is preferably in contact with the side surface of the buffer layer 232.
  • the 1st protective layer 25 can be comprised with the material similar to the 1st protective layer 15 of 1st Embodiment.
  • the covering state of the buffer layer 232, the solid electrolyte layer 231, the first upper electrode 221, and the second upper electrode 222 by the first protective layer 25 is not limited to those described here.
  • a titanium oxide TiO y1 film having a thickness of 0.8 nanometer can be applied to the first protective layer 25.
  • the oxygen composition y1 of TiO y1 is preferably 1.5 or more and 2.0 or less.
  • the first protective layer 25 is preferably composed of a film having the same composition as the buffer layer 232.
  • the second protective layer 26 collectively covers the surface of the first protective layer 25, the side surfaces of the second hard mask layer 208, the side surfaces and the upper surface of the third hard mask layer 209, and the surface of the first insulating barrier film 206. To do. As shown in FIG. 5, the second protective layer 26 is preferably configured to cover all of the exposed portion including the side surface and the upper side of the first protective layer 25.
  • the second protective layer 26 can be made of the same material as the second protective layer 16 of the first embodiment.
  • the second protective layer 26 is an insulating film disposed so as not to damage the resistance change element 20 whose side surface is exposed.
  • the second protective layer 26 has a function of preventing the constituent atoms of the variable resistance element 20 from diffusing into the first via interlayer insulating film 210.
  • a SiN film, a SiCN film, or the like can be used for the second protective layer 26.
  • the semiconductor substrate 201 is a substrate of the semiconductor device 2.
  • a first interlayer insulating film 202 is formed on the semiconductor substrate 201.
  • the first interlayer insulating film 202 is an insulating film formed on the semiconductor substrate 201.
  • a second interlayer insulating film 203 is formed on the first interlayer insulating film 202.
  • a first barrier metal 205 including the lower electrode 21 is formed on the first interlayer insulating film 202 via a wiring groove 250 formed in the second interlayer insulating film 203. In the configuration of FIG. 5, the lower part of the first barrier metal 205 is reduced to the upper part of the first interlayer insulating film 202.
  • the second interlayer insulating film 203 is an insulating film formed on the first interlayer insulating film 202.
  • a first cap insulating film 204 is formed on the second interlayer insulating film 203.
  • a wiring groove 250 is formed in the second interlayer insulating film 203.
  • the first cap insulating film 204 is an insulating film formed on the second interlayer insulating film 203.
  • a first insulating barrier film 206 is formed on the first cap insulating film 204.
  • a wiring groove 250 is formed in the first cap insulating film 204.
  • the wiring trench 250 penetrates the second interlayer insulating film 203 and the first cap insulating film 204, and a part of the upper surface of the first interlayer insulating film 202 is a bottom surface.
  • a first barrier metal 205 is formed on the inner surface of the wiring groove 250.
  • the second interlayer insulating film 203 and the first cap insulating film 204 in which the wiring trench 250 is formed are collectively referred to as a second insulating layer.
  • the first barrier metal 205 is a conductive film having a barrier property.
  • the first barrier metal 205 is used to prevent the metal contained in the lower electrode 21 from diffusing into the first interlayer insulating film 202, the second interlayer insulating film 203, and the first cap insulating film 204. Cover side and bottom.
  • the first barrier metal 205 includes a refractory metal such as Ta, TaN, TiN, and WCN, nitrides thereof, or a laminated film thereof. Is preferred.
  • the first barrier metal 205 is formed on the second interlayer insulating film 203 and the first cap insulating film 204, and covers the inner surface of the wiring trench 250 having a part of the upper surface of the first interlayer insulating film 202 as the bottom surface.
  • a lower electrode 21 is formed inside the first barrier metal 205.
  • the variable resistance element 20 and the first insulating barrier film 206 are formed on the first barrier metal 205.
  • the first insulating barrier film 206 is formed on the lower electrode 21, the first cap insulating film 204, and the first barrier metal 205. On the first insulating barrier film 206, the variable resistance element 20, the first protective layer 25, and the second protective layer 26 are formed. At least one opening 240 is formed in a part of the first insulating barrier film 206. In the first insulating barrier film 206, the buffer layer 232 is disposed on the inner surface of the opening 240 and a part of the upper surface including the periphery of the opening 240. A first protective layer 25 is formed on the upper surface of the first insulating barrier film 206 so as to surround the buffer layer 232. Further, the second protective layer 26 is formed on the remaining portion of the upper surface of the first insulating barrier film 206 so as to surround the first protective layer 25.
  • the first insulating barrier film 206 is an insulating film having a function of preventing metal diffusion.
  • the lower electrode 21 and the buffer layer 232 of the resistance change layer 23 are in contact with each other.
  • the affinity for a general semiconductor manufacturing process is improved. it can.
  • the solid electrolyte layer 231 and the lower electrode 21 are connected through the opening 240 of the first insulating barrier film 206 with the buffer layer 232 interposed therebetween.
  • the lateral width of the lower electrode 21 connected to the solid electrolyte layer 231 with the buffer layer 232 interposed therebetween is preferably larger than the diameter of the opening 240 of the first insulating barrier film 206.
  • the second hard mask layer 208 is formed on the second upper electrode 222.
  • a third hard mask layer 209 is formed on the second hard mask layer 208.
  • a via hole 260 passes through the second hard mask layer 208.
  • the side portion of the second hard mask layer 208 is covered with the second protective layer 26.
  • the third hard mask layer 209 is formed on the second hard mask layer 208.
  • a first via interlayer insulating film 210 is formed on the third hard mask layer 209.
  • a via hole 260 passes through the third hard mask layer 209. Side portions and an upper portion of the third hard mask layer 209 are covered with the second protective layer 26.
  • the third hard mask layer 209 is a film that serves as a hard mask when the second hard mask layer 208 is etched.
  • the second hard mask layer 208 is preferably a different type of film from the third hard mask layer 209.
  • the second hard mask layer 208 is a SiCN film
  • a SiO 2 film different from the SiCN film may be used for the third hard mask layer 209.
  • the first via interlayer insulating film 210 is an insulating film formed on the second protective layer 26.
  • a third interlayer insulating film 211 is formed on the first via interlayer insulating film 210.
  • a via hole 260 passes through the first via interlayer insulating film 210.
  • a part of the second barrier metal 213 is reduced above the first via interlayer insulating film 210.
  • the via hole 260 penetrates the second hard mask layer 208, the third hard mask layer 209, and the first via interlayer insulating film 210, and a part of the upper surface of the second upper electrode 222 is a bottom surface.
  • a second barrier metal 213 that includes the via plug 214 is disposed inside the via hole 260.
  • the third interlayer insulating film 211 is an insulating film formed on the first via interlayer insulating film 210.
  • a second cap insulating film 212 is formed on the third interlayer insulating film 211.
  • a wiring trench 270 passes through the third interlayer insulating film 211.
  • the second cap insulating film 212 is an insulating film formed on the third interlayer insulating film 211.
  • a second insulating barrier film 216 is formed on the second cap insulating film 212.
  • a wiring groove 270 passes through the second cap insulating film 212.
  • the wiring trench 270 penetrates the third interlayer insulating film 211 and the second cap insulating film 212, and a part of the upper surface of the first via interlayer insulating film 210 is a bottom surface.
  • a second barrier metal 213 that encloses the upper wiring 215 is disposed inside the wiring groove 270.
  • the wiring groove 270 has a larger opening area than the via hole 260.
  • the via plug 214 disposed inside the via hole 260 and the second barrier metal 213 disposed inside the wiring groove 270 are integrally formed.
  • the second barrier metal 213 is formed on the inner surfaces of the via hole 260 and the wiring groove 270.
  • An upper wiring 215 is formed inside the second barrier metal 213.
  • a second insulating barrier film 216 is formed on the second barrier metal 213.
  • the second barrier metal 213 is a conductive film having the same barrier properties as the first barrier metal 205.
  • the second barrier metal 213 covers the side surfaces and the bottom surface of the upper wiring 215 and the via plug 214.
  • the second barrier metal 213 prevents the metal contained in the via plug 214 and the upper wiring 215 from diffusing into the first via interlayer insulating film 210, the third interlayer insulating film 211, and the second cap insulating film 212.
  • the second barrier metal 213 includes a refractory metal such as Ta, TaN, TiN, and WCN, and its nitride, as in the first barrier metal 205. A thing etc. or those laminated films are used.
  • the second barrier metal 213 is preferably made of the same material as the second upper electrode 222 that is a part of the configuration of the resistance change element 20 from the viewpoint of reducing contact resistance.
  • the second upper electrode 222 is Ta, it is preferable to use Ta for the second barrier metal 213 in contact with the upper portion thereof.
  • the via plug 214 is included in the second barrier metal 213 disposed inside the via hole 260. That is, the via plug 214 is embedded in the prepared holes formed in the second protective layer 26, the second hard mask layer 208, and the third hard mask layer 209 via the second barrier metal 213.
  • the via plug 214 is formed integrally with the upper wiring 215 disposed inside the wiring groove 270.
  • the upper wiring 215 is included in the second barrier metal 213 disposed on the inner surface of the wiring groove 270. That is, the upper wiring 215 is a wiring embedded in the wiring groove 270 formed in the third interlayer insulating film 211 and the second cap insulating film 212 via the second barrier metal 213. The upper wiring 215 is formed integrally with the via plug 214 disposed inside the wiring groove 270.
  • the via plug 214 and the upper wiring 215 are electrically connected to the resistance change element 20 via the second barrier metal 213.
  • a material containing Cu is used for the upper wiring 215 and the via plug 214.
  • the second insulating barrier film 216 is formed on the second cap insulating film 212, the second barrier metal 213, and the upper wiring 215.
  • the second insulating barrier film 216 is an insulating film having a function of preventing metal diffusion.
  • the first protective layer and the second protective layer are provided, the side surfaces of the resistance change layer are covered with the first protective layer, and the first protection is further performed. Since the layer is covered with the second protective layer, moisture absorption of the variable resistance layer to the solid electrolyte layer is suppressed. As a result, according to the semiconductor device of the present embodiment, variation in element operation due to moisture absorption by the solid electrolyte layer is reduced, and variation in set voltage is suppressed. That is, according to the semiconductor device of the present embodiment, moisture absorption of the variable resistance layer to the solid electrolyte layer can be suppressed, and variation in set voltage can be reduced.
  • 6 to 19 are schematic views for explaining a method for manufacturing the semiconductor device 2. 6 to 19 are partial cross-sectional views of the semiconductor device 2 in the manufacturing process.
  • the manufacturing method of the semiconductor device 2 includes a process A, a process B, and a process C.
  • Step A includes step A1 to step A5.
  • Process A is a process from the formation of the first interlayer insulating film 202 on the semiconductor substrate 201 to the formation of the opening 240 in the first insulating barrier film 206.
  • a first interlayer insulating film 202, a second interlayer insulating film 203, and a first cap insulating film 204 are sequentially stacked on a semiconductor substrate 201 (step A1).
  • the semiconductor substrate 201 may be the substrate itself or a substrate on which a semiconductor element (not shown) is formed on the substrate surface.
  • the first interlayer insulating film 202 can be a 300 nm thick SiO 2 film.
  • a SiOCH film having a thickness of 150 nm can be used for the second interlayer insulating film 203.
  • the first cap insulating film 204 can be a SiO 2 film having a thickness of 100 nanometers.
  • a wiring trench 250 is formed in the laminated film of the first cap insulating film 204, the second interlayer insulating film 203, and the first interlayer insulating film 202 by using a lithography method (step A2). .
  • the lithography method includes a photoresist formation process, a dry etching process, and a resist removal process.
  • the photoresist forming process is a process of forming a resist with a predetermined pattern on the first cap insulating film 204.
  • the dry etching process is a process of performing anisotropic etching on the laminated film using a resist as a mask.
  • the resist removal process is a process of removing the resist after forming the wiring groove 250 by etching.
  • the first barrier metal 205 is formed on the inner surface of the wiring groove 250, and the lower electrode 21 is formed by embedding the metal in the first barrier metal 205 (step A3).
  • a stacked structure of TaN (film thickness 5 nanometers) / Ta (film thickness 5 nanometers) can be used for the first barrier metal 205.
  • Cu can be used for the lower electrode 21.
  • a first insulating barrier film 206 and a first hard mask layer 207 are sequentially stacked on the lower electrode 21, the first barrier metal 205, and the first cap insulating film 204 (see FIG. 9). Step A4).
  • the first insulating barrier film 206 a SiCN film having a thickness of 30 nanometers can be used.
  • the first hard mask layer 207 is preferably made of a material different from that of the first insulating barrier film 206 from the viewpoint of maintaining a high etching selectivity in the dry etching process.
  • the first hard mask layer 207 can be a SiO 2 film having a deposited film thickness of 40 nanometers.
  • a photoresist having a predetermined opening pattern is formed on the first insulating barrier film 206, and dry etching is performed to form an opening in the first insulating barrier film 206 (not shown).
  • the photoresist is removed by O 2 plasma ashing or the like.
  • step A5 by etching back the first insulating barrier film 206 exposed at the bottom of the opening of the first hard mask layer 207, the opening where a part of the upper surface of the lower electrode 21 is exposed as shown in FIG. 240 is formed (step A5).
  • the first hard mask layer 207 is etched away during etch back if the film thickness is set to 40 nanometers. After the etch back, the surface of the lower electrode 21 exposed from the opening 240 is cleaned by plasma irradiation using an organic solvent, hydrogen gas, inert gas, or the like.
  • first insulating barrier film 206 is a SiN film or a SiCN film
  • plasma containing CF 4 can be used for etch back when the opening 240 of the first insulating barrier film 206 is formed.
  • set the CF 4 / Ar gas flow rate to 25/50 sccm (Standard Cubic Centimeter per Minute), the pressure to 0.53 Pascal, the source power to 400 watts, and the substrate bias power to 90 watts. That's fine.
  • the ionicity at the time of etching is improved by reducing the source power or increasing the substrate bias, so that the opening surface of the first insulating barrier film 206 is improved.
  • the first hard mask layer 207 can be removed by etching back.
  • Step B includes Steps B1 to B5.
  • Process B is a process until the resistance change element 20 is formed and the formed resistance change element 20 is covered with the second protective layer.
  • a buffer layer 232 is formed on the first insulating barrier film 206 including the inner surface of the opening 240 from which the lower electrode 21 is exposed (step B1).
  • the buffer layer 232 can be a titanium oxide TiO y1 film having a thickness of 1.2 nanometers.
  • the oxygen composition y1 of TiO y1 is preferably 1.5 or more and 2.0 or less.
  • oxidation treatment is performed by irradiation with a gas containing O 2 under reduced pressure without being exposed to the atmosphere. Do. Then, by performing vacuum heat treatment at a temperature higher than the film formation temperature under reduced pressure, the buffer layer 232 can be formed as shown in FIG.
  • the formation method of the buffer layer 232 mentioned here is an example, and the formation method of the buffer layer 232 is not limited.
  • the metal layer for forming the buffer layer 232 can be deposited by resistance heating of a metal raw material, an evaporation method using electron beam irradiation or laser irradiation, a direct current (DC) sputtering method, or the like.
  • the buffer layer 232 is a titanium oxide TiO y1 film
  • the buffer is formed by DC sputtering using Ti as a target, sputtering power of 100 W, substrate temperature at room temperature, Ar flow rate of 20 sccm, and pressure of 0.5 Pa.
  • Layer 232 can be deposited.
  • step B2 the solid electrolyte layer 231, the first upper electrode 221, and the second upper electrode 222 are sequentially stacked on the buffer layer 232 (step B2).
  • a SiOCH film having a thickness of 6 nm is used for the solid electrolyte layer 231.
  • the solid electrolyte layer 231 is deposited by a plasma CVD (Chemical Vapor Deposition) method, and then an inert gas plasma treatment is performed.
  • the plasma CVD method is a method of forming a continuous film on a substrate.
  • a raw material obtained by vaporizing a gas raw material or a liquid raw material is continuously supplied to a reaction chamber under reduced pressure, molecules are excited by plasma energy, and the substrate is subjected to a gas phase reaction or a substrate surface reaction. A continuous film is formed.
  • the solid electrolyte layer 231 can be formed by a plasma CVD method under the following conditions.
  • the raw material liquid SiOCH monomer molecules are used.
  • the substrate temperature is 400 ° C. or lower
  • the flow rate of helium He is 500 to 2000 sccm
  • the raw material flow rate is 0.1 to 0.8 g / min
  • the plasma CVD chamber pressure is 360 to 700 Pascal
  • the RF (Radio Frequency) output is 20 to Set to 100 watts.
  • the substrate temperature is set to 350 ° C.
  • the He flow rate is set to 1500 sccm
  • the raw material flow rate is set to 0.75 g / min
  • the plasma CVD chamber pressure is set to 470 Pascals
  • the RF output is set to 50 Watts.
  • the inert plasma treatment after depositing the solid electrolyte layer 231 uses He as an inert gas
  • the substrate temperature is 400 ° C. or lower
  • the He flow rate is 500-1500 sccm
  • the plasma chamber pressure is 2.7-3.
  • Set 5 Torr RF power to 20-200 Watts. More specifically, the substrate temperature is set to 350 ° C.
  • the He flow rate is set to 1000 sccm
  • the plasma chamber pressure is set to 360 Pascals
  • the RF output is set to 50 Watts. If inert plasma processing is used, adhesiveness with the 1st upper electrode 221 formed on the solid electrolyte layer 231 can be improved.
  • the first upper electrode 221 and the second upper electrode 222 are sequentially formed on the solid electrolyte layer 231 by DC sputtering.
  • the first upper electrode 221 is a ruthenium titanium alloy Ru 0.5 Ti 0.5 having a thickness of 10 nanometers.
  • the second upper electrode 222 is Ta having a film thickness of 25 nanometers.
  • the first upper electrode 221 is made of Ru or a Ru alloy, the second upper electrode is continuously exposed without being exposed to the atmosphere after the first upper electrode 221 is deposited in order to prevent surface oxidation of the first upper electrode 221.
  • Preferably 222 is deposited.
  • the substrate temperature is set to room temperature
  • the Ru sputtering output is set to 120 watts
  • the Ti sputtering output is set to 150 watts
  • the Ar flow rate is set to 20 sccm
  • the pressure is set to 0.5 Pa.
  • DC sputtering using Ta as a target may be used. In that case, the substrate temperature is set to room temperature, the sputtering output is set to 300 watts, the Ar flow rate is set to 25 sccm, and the pressure is set to 0.5 Pascal.
  • the lower electrode 21, the buffer layer 232, the solid electrolyte layer 231, the first upper electrode 221, and the second upper electrode 222 constitute a stacked body that becomes the resistance change element 20.
  • the second hard mask layer 208 and the third hard mask layer 209 are sequentially stacked on the second upper electrode 222 (step B3).
  • the second hard mask layer 208 is preferably made of the same material as the first insulating barrier film 206 from the viewpoint of adhesion.
  • a SiCN film having a thickness of 30 nanometers is used for the second hard mask layer 208.
  • a SiO 2 film having a thickness of 100 nanometers is used as the third hard mask layer 209.
  • the second hard mask layer 208 and the third hard mask layer 209 can be formed using a plasma CVD method.
  • the film formation temperature may be selected in the range of 200 ° C. to 400 ° C. More specifically, the film forming temperature is preferably set to 350 ° C.
  • the third hard mask layer 209 is dry-etched until the second hard mask layer 208 is exposed (the figure is shown). (Omitted). The photoresist is removed by an O 2 plasma ashing process.
  • the second hard mask layer 208, the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231 and the buffer layer 232 are successively formed using the third hard mask layer 209 as a mask. Dry etching is performed (step B4).
  • the dry etching of the third hard mask layer 209 is preferably stopped on the upper surface or inside the second hard mask layer 208.
  • the variable resistance element 20 is covered with the second hard mask layer 208, it is not exposed to O 2 plasma.
  • the first upper electrode 221 containing Ru is not exposed to O 2 plasma, the occurrence of side etching on the first upper electrode 221 can be suppressed.
  • a parallel plate type dry etching apparatus can be used for dry etching of the third hard mask layer 209.
  • the etching of the second hard mask layer 208, the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231, and the buffer layer 232 is also performed collectively using a parallel plate type dry etcher. Can do.
  • the flow rate of CF 4 / Ar gas is 25/50 sccm
  • the pressure is 0.53 Pascal
  • the source output is 400 watts
  • the substrate bias output is 90 watts. .
  • the substrate temperature is set to 90 ° C.
  • the chlorine Cl 2 gas flow rate is set to 50 sccm
  • the pressure is set to 0.53 Pascal
  • the source output is set to 400 watts
  • the substrate bias output is set to 60 watts. That's fine.
  • the substrate temperature is set to room temperature
  • the flow rate of O 2 / Cl 2 gas is 160/30 sccm
  • the pressure is 0.53 Pascal
  • the source output is 300 to 600. What is necessary is just to set watt and a substrate bias output to 100-300W.
  • the same conditions may be set as when Ru 0.5 Ti 0.5 is used for the first upper electrode 221.
  • the solid electrolyte layer 231 can be etched together with the first upper electrode 221.
  • the same conditions as those for the first upper electrode 221 may be set in the same manner as the solid electrolyte layer 231 when Ru 0.5 Ti 0.5 is used for the first upper electrode 221.
  • the buffer layer 232 can be etched together with the first upper electrode 221 and the solid electrolyte layer 231.
  • the first protective layer 25 is formed on the side surfaces of the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231, and the buffer layer 232 (step B5).
  • the first protective layer 25 titanium Ti is deposited on the side surfaces of the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231, and the buffer layer 232, and then under reduced pressure.
  • the oxidation treatment is performed by irradiation with a gas containing O 2 without being exposed to the atmosphere.
  • the buffer layer 232 can be formed as shown in FIG.
  • the formation method of the buffer layer 232 mentioned here is an example, and the formation method of the buffer layer 232 is not limited.
  • the first protective layer 25 is made of the same material as the buffer layer 232, the buffer layer 232 is etched, and at the same time, the exposed solid electrolyte layer 231, buffer layer 232, second upper electrode 222, first upper electrode 221 are etched.
  • the first protective layer 25 can be formed in close contact with the side surfaces of the first protective layer 25.
  • the second electrolyte electrode 231 is etched on the side surfaces of the second upper electrode 222, the first upper electrode 221, and the solid electrolyte layer 231 after etching the solid electrolyte layer 231 in Step B 4.
  • One protective layer 25 may be formed.
  • the second protective layer 26 is formed on the top and side surfaces of the third hard mask layer 209, the second hard mask layer 208, the first protective layer 25, and the first insulating barrier film 206. (Step B6).
  • the second protective layer 26 is preferably made of the same material as the first insulating barrier film 206 and the second hard mask layer 208.
  • a SiCN film having a thickness of 30 nanometers is used for the second protective layer 26.
  • the second protective layer 26 can be formed by using plasma CVD method with tetramethylsilane and ammonia as source gases and a substrate temperature of 200 ° C. If the first insulating barrier film 206, the second protective layer 26, and the second hard mask layer 208 are made of the same material (for example, a SiCN film), the periphery of the resistance change element 20 can be integrated and protected. Interfacial adhesion can be improved. As a result, hygroscopicity, water resistance and oxygen desorption resistance can be improved, and the yield and reliability of the device can be improved.
  • Step C Third, step C of the method for manufacturing the semiconductor device 2 will be described with reference to FIGS.
  • Step C includes steps C1 to C4.
  • Step C forms a via hole 260 and a wiring groove 270 in a laminated structure in which the first via interlayer insulating film 210, the third interlayer insulating film 211, and the second cap insulating film 212 are formed on the second protective layer 26. It is a process until.
  • a first via interlayer insulating film 210 is deposited on the upper surface and side surfaces of the second protective layer 26 (step C1).
  • the first via interlayer insulating film 210 is deposited on the upper surface and side surfaces of the second protective layer 26 using a plasma CVD method.
  • the first via interlayer insulating film 210 may be a SiO 2 film having a thickness of 210 nanometers.
  • the deposited first via interlayer insulating film 210 is planarized using a CMP method (Chemical Mechanical Polishing).
  • the CMP method is a method of flattening the unevenness of the wafer surface that occurs during the multilayer wiring formation process by contacting the polishing surface with a polishing pad that is rotated while flowing a polishing liquid on the wafer surface for polishing.
  • the CMP method is used not only for polishing and planarizing an interlayer insulating film, but also for forming a buried wiring called a damascene wiring.
  • copper Cu is used as the wiring material, Cu is formed on the insulating film in which the groove is formed in advance, and then the Cu embedded in the groove is left by CMP, and excess Cu on the insulating film is polished and removed.
  • a damascene wiring in which Cu is embedded in the groove can be formed.
  • the first via interlayer insulating film 210 when a SiO 2 film having a thickness of 210 nanometers is planarized as the first via interlayer insulating film 210, if about 100 nanometers are scraped from the top surface of the first via interlayer insulating film 210, about 110 nanometers are obtained.
  • the first via interlayer insulating film 210 can be formed.
  • CMP can be performed using colloidal silica or ceria-based slurry.
  • a third interlayer insulating film 211 and a second cap insulating film 212 are sequentially deposited on the planarized upper surface of the first via interlayer insulating film 210 (step C2).
  • a material different from that of the first via interlayer insulating film 210 is used for the third interlayer insulating film 211 in order to use the first via interlayer insulating film 210 in contact with the lower surface as an etching stopper layer.
  • a SiOCH film having a thickness of 150 nanometers is used as the third interlayer insulating film 211.
  • the third interlayer insulating film 211 and the second cap insulating film 212 can be deposited using a plasma CVD method.
  • step C3 a via hole 260 extending from the second cap insulating film 212 to the upper surface of the second upper electrode 222 is formed.
  • the via hole 260 is formed using a via first method which is a kind of dual damascene method.
  • a photoresist having a pattern of via holes 260 is formed on the second cap insulating film 212.
  • via holes 260 penetrating through the second cap insulating film 212, the third interlayer insulating film 211, the first via interlayer insulating film 210, the second protective layer 26, and the third hard mask layer 209 are formed by dry etching. To do. Thereafter, the photoresist is removed by performing plasma ashing including H 2 gas and organic peeling.
  • an antireflection film may be embedded on the via hole 260.
  • an antireflection film By embedding an antireflection film on the via hole 260, the bottom of the via hole 260 can be prevented from being scraped when the wiring groove 270 is formed by dry etching.
  • step C4 a wiring groove 270 extending from the second cap insulating film 212 to the upper surface of the first via interlayer insulating film 210 is formed.
  • the wiring trench 270 is formed by using the via first method, similarly to the via hole 260. First, a photoresist having a pattern of the wiring trench 270 is formed on the second cap insulating film 212. Next, a wiring groove 270 is formed in the second cap insulating film 212 and the third interlayer insulating film 211 by dry etching. Thereafter, the photoresist is removed by performing plasma ashing including H 2 gas and organic peeling.
  • the upper surface of the second upper electrode 222 is exposed from the via hole 260 by etching the second hard mask layer 208 remaining at the bottom of the via hole 260.
  • the second barrier metal 213 is formed on the inner surfaces of the via hole 260 and the wiring groove 270, and the upper wiring 215 and the via plug 214 are simultaneously formed therein.
  • Ta having a thickness of 10 nanometers can be used for the second barrier metal 213.
  • a metal containing Cu can be used for the upper wiring 215 and the via plug 214.
  • the upper wiring can be formed by the same process as the lower electrode 21.
  • the diameter of the bottom surface of the via plug 214 is preferably smaller than the diameter of the opening of the first insulating barrier film 206.
  • the diameter of the bottom surface of the via plug 214 can be set to 60 nanometers, and the diameter of the opening of the first insulating barrier film 206 can be set to 100 nanometers.
  • the contact resistance between the via plug 214 and the second upper electrode 222 is reduced, and the resistance of the resistance change element 10 in the on state is reduced. Can be reduced. As a result, the element performance of the resistance change element 20 can be improved.
  • the second insulating barrier film 216 is deposited on the upper surface of the second cap insulating film 212 including the upper wiring 215, whereby the semiconductor device 2 of FIG. 5 can be manufactured.
  • a 50 nanometer SiCN film can be used for the second insulating barrier film 216.
  • the manufacturing method of the semiconductor device 2 described above is an example, and a plurality of processes may be integrated into one, unnecessary processes may be deleted, processes may be replaced, or new processes may be added. .
  • the first electrode is formed on the substrate.
  • a first insulating layer is formed on the upper surface of the first electrode, and an opening exposing a part of the upper surface of the first electrode is formed in the first insulating layer.
  • a buffer layer is formed on the upper surface of the first insulating layer including the inside of the opening, a solid electrolyte layer is formed on the upper surface of the buffer layer, and a second electrode is formed on the upper surface of the solid electrolyte layer.
  • at least one patterning mask is formed on the upper surface of the second electrode, and the second electrode, the solid electrolyte layer, and the buffer layer are sequentially etched.
  • the first protective layer is formed on at least the exposed surfaces of the solid electrolyte layer and the buffer layer among the exposed surfaces formed on the patterning mask, the buffer layer, the solid electrolyte layer, and the second electrode by etching. Then, a second protective layer is formed on the surface of the first protective layer.
  • the semiconductor device of this embodiment includes a three-terminal variable resistance element including two variable resistance elements in which two lower electrodes are configured with respect to one upper electrode.
  • FIG. 21 is a partial cross-sectional view showing a configuration example of the semiconductor device 3. As shown in FIG. 21, the semiconductor device 3 is formed on the semiconductor substrate 301.
  • the semiconductor device 3 includes a first lower electrode 31a, a second lower electrode 31b, an upper electrode 32, a resistance change layer 33, a first protective layer 35, and a second protective layer 36.
  • the first lower electrode 31a, the upper electrode 32, and the resistance change layer 33 constitute a first resistance change element 30a.
  • the second lower electrode 31b, the upper electrode 32, and the resistance change layer 33 constitute a second resistance change element 30b.
  • the resistance change layer 33 includes a solid electrolyte layer 331 and a buffer layer 332.
  • the upper electrode 32 includes a first upper electrode 321 and a second upper electrode 322.
  • the semiconductor device 3 includes a first interlayer insulating film 302, a second interlayer insulating film 303, a first cap insulating film 304, a first barrier metal 305a, a third barrier metal 305b, a first insulating barrier film 306, a second A hard mask layer 308 and a third hard mask layer 309 are provided.
  • the semiconductor device 3 includes a first via interlayer insulating film 310, a third interlayer insulating film 311, a second cap insulating film 312, a second barrier metal 313, a via plug 314, an upper wiring 315, and a second insulating barrier film 316. Prepare.
  • the first lower electrode 31 a and the second lower electrode 31 b correspond to the lower electrode 21.
  • the upper electrode 32, the resistance change layer 33, the first protective layer 35, and the second protective layer 36 correspond to the upper electrode 22, the resistance change layer 23, the first protective layer 25, and the second protective layer 26, respectively.
  • the resistance change element 30 corresponds to the resistance change element 20.
  • Each of the solid electrolyte layer 331 and the buffer layer 332 corresponds to each of the solid electrolyte layer 231 and the buffer layer 232.
  • Each of the first upper electrode 321 and the second upper electrode 322 corresponds to each of the first upper electrode 221 and the second upper electrode 222.
  • the first interlayer insulating film 302, the second interlayer insulating film 303, and the first cap insulating film 304 correspond to the first interlayer insulating film 202, the second interlayer insulating film 203, and the first cap insulating film 204, respectively.
  • the first barrier metal 305 a and the third barrier metal 305 b correspond to the first barrier metal 205.
  • the first insulating barrier film 306, the second hard mask layer 308, and the third hard mask layer 309 are respectively the first insulating barrier film 206, the second hard mask layer 208, and the third hard mask layer 209.
  • the first via interlayer insulating film 310, the third interlayer insulating film 311, and the second cap insulating film 312 are respectively the first via interlayer insulating film 210, the third interlayer insulating film 211, and the second cap insulating film 212.
  • the second barrier metal 313, the via plug 314, the upper wiring 315, and the second insulating barrier film 316 correspond to the second barrier metal 213, the via plug 214, the upper wiring 215, and the second insulating barrier film 216, respectively. To do.
  • the first resistance change element 30 a and the second resistance change element 30 b are formed on the first interlayer insulating film 302.
  • the first resistance change element 30 a includes a first lower electrode 31 a, an upper electrode 32, and a resistance change layer 33.
  • the second resistance change element 30 b is configured by the second lower electrode 31 b, the upper electrode 32, and the resistance change layer 33.
  • the semiconductor device 3 includes a first barrier metal 305a and a third barrier metal 305b.
  • the first barrier metal 305a and the third barrier metal 305b are electrically insulated via the second interlayer insulating film 303 and the first cap insulating film 304.
  • the first lower electrode 31a (also referred to as a first electrode) is one of the two electrodes of the first resistance change element 30a.
  • the first lower electrode 31a is an active electrode.
  • the first lower electrode 31a is made of a metal material whose main component is Cu.
  • the first lower electrode 31 a is included in a first barrier metal 305 a formed on the first interlayer insulating film 302.
  • the first lower electrode 31a is formed so as to be buried in the wiring trench formed in the second interlayer insulating film 303 and the first cap insulating film 304 via the first barrier metal 305a.
  • the second lower electrode 31b (also referred to as a third electrode) is one of the two electrodes of the second resistance change element 30b.
  • the second lower electrode 31b is an active electrode.
  • the second lower electrode 31b is made of a metal material whose main component is Cu.
  • the second lower electrode 31 b is included in a third barrier metal 305 b formed on the first interlayer insulating film 302.
  • the second lower electrode 31b is formed so as to be embedded in the wiring trench formed in the second interlayer insulating film 303 and the first cap insulating film 304 via the third barrier metal 305b.
  • the first lower electrode 31a is in contact with the buffer layer 332 at a part inside the opening of the first insulating barrier film 306 (first region 340a).
  • the second lower electrode 31b is in contact with the buffer layer 332 in a part (second region 340b) inside the opening of the first insulating barrier film 306.
  • the first lower electrode 31a is in contact with the buffer layer 332 in the first region 340a of the opening provided in the first insulating barrier film 306, and also serves as a wiring on the semiconductor substrate 301.
  • the second lower electrode 31 b is in contact with the buffer layer 332 in the second region 340 b of the opening provided in the first insulating barrier film 306 and also serves as a wiring on the semiconductor substrate 301. Therefore, a Cu electrode serving as a Cu wiring can be applied to the first lower electrode 31a and the second lower electrode 31b, and the first resistance change element 30a and the second resistance change using the Cu electrode in the multilayer wiring structure on the CMOS substrate.
  • the element 30b can be formed.
  • the process of manufacturing the first resistance change element 30a and the second resistance change element 30b on the semiconductor substrate 301 can be simplified.
  • Cu atoms in the first lower electrode 31 a and the second lower electrode 31 b can be ionized and eluted into the solid electrolyte layer 331.
  • the first resistance change element 30a and the second resistance change element 30b constitute a three-terminal resistance change switch that shares the upper electrode 32 and the resistance change layer 33 and uses the upper electrode 32 as a shared node. To do.
  • the resistance state of the first variable resistance element 30a depends on the voltage applied to the wiring connected to the first lower electrode 31a and the voltage applied to the wiring connected to the upper electrode 32 via the upper wiring 315. Change.
  • the resistance state of the second variable resistance element 30b depends on the voltage applied to the wiring connected to the second lower electrode 31b and the voltage applied to the wiring connected to the upper electrode 32 via the upper wiring 315. The resistance state changes. That is, the resistance states of the first variable resistance element 30a and the second variable resistance element 30b that constitute the three-terminal variable resistance switch can be controlled independently of each other.
  • the first lower electrode 31a and the second lower electrode 31b are provided as the lower electrodes.
  • a part of the upper surface of the first lower electrode 31a is in contact with the buffer layer 332 in the first region 340a.
  • a part of the upper surface of the second lower electrode 31b is in contact with the buffer layer 332 in the second region 340b.
  • Part of the upper surface of each of the first lower electrode 31a and the second lower electrode 31b is separated from each other through the first cap insulating film 304 in the opening formed in the first insulating barrier film 306.
  • both the first lower electrode 31a and the second lower electrode 31b are made of a material containing Cu, the same structure as that of the lower electrode 21 of the semiconductor device 2 shown in FIG. Therefore, the first lower electrode 31 a and the second lower electrode 31 b can be formed by the same method as the lower electrode 21. If the first lower electrode 31a is the first electrode and the second lower electrode 31b is the third electrode, the first electrode and the third electrode are formed in the same layer, which is different from the first electrode and the third electrode. A second electrode can be formed on the layer.
  • the two insulating trenches are formed in the second insulating layer.
  • the first electrode is embedded in one of the two wiring grooves formed in the second insulating layer.
  • a third electrode is embedded in the other of the two wiring grooves formed in the second insulating layer.
  • the first electrode and the third electrode are spaced apart from each other across the second insulating layer in the opening, and are connected to the buffer layer.
  • the first protective layer and the second protective layer are provided, the side surface of the variable resistance layer is covered with the first protective layer, and the first protective layer is further covered with the second protective layer. Moisture absorption into the solid electrolyte layer is suppressed.
  • the semiconductor device of the present embodiment variation in element operation due to moisture absorption by the solid electrolyte layer is reduced, and variation in set voltage is suppressed. That is, according to the present embodiment, it is possible to provide a semiconductor device including a three-terminal variable resistance element in which moisture absorption of the variable resistance layer to the solid electrolyte layer is suppressed and variation in set voltage is reduced.
  • CMOS circuit a semiconductor device having a CMOS circuit
  • CMOS circuit an example in which a solid electrolyte switch element is formed in a multilayer wiring structure on a semiconductor substrate has been described.
  • the semiconductor device of each embodiment can also be applied to semiconductor products having memory circuits such as DRAM, SRAM (Static RAM), flash memory, FeRAM (Ferro-Electric RAM), capacitor, and bipolar transistor.
  • the semiconductor device of each embodiment can also be applied to a semiconductor product having a logic circuit such as a microprocessor.
  • the semiconductor device of each embodiment can be applied to a metal wiring forming process of a board or package on which these semiconductor products are mounted.
  • each embodiment can also be applied to a wiring formation process for connecting a semiconductor device to an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro-Electro-Mechanical Systems), or the like.
  • a semiconductor device to an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro-Electro-Mechanical Systems), or the like.

Abstract

In order to suppress moisture absorption in a variable resistance layer included in a variable resistance element and to reduce variations in set voltage, this semiconductor device is provided with: a first electrode; a first insulation layer which is disposed on the first electrode and which has at least one opening; a variable resistance layer which is disposed on the first insulation layer and which is connected to the first electrode at a portion inside the opening; a second electrode disposed on the variable resistance layer; a first protection layer which covers lateral surfaces of the variable resistance layer; and a second protection layer which covers the first protection layer.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、抵抗変化素子を含む半導体装置およびその製造方法に関する。 The present invention relates to a semiconductor device including a resistance change element and a manufacturing method thereof.
 半導体デバイスは、微細化によってデバイスの集積化・低電力化が進められてきた。特に、シリコンデバイスは、スケーリング則(Mooreの法則)に従うように、3年で集積度が4倍になるペースで開発が進められてきた。それに伴って、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート長は20ナノメートル以下になった。その結果、リソグラフィプロセスで使用される装置やマスクセットの価格が高騰し、デバイス寸法の動作やばらつきが物理的限界に到達している。そのため、これまでのスケーリング則とは異なるアプローチによるデバイス性能の改善が求められる。 Semiconductor devices have been integrated and reduced in power by miniaturization. In particular, silicon devices have been developed at a pace where the integration degree is quadrupled in three years so as to follow the scaling law (Moore's law). Along with this, the gate length of MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor) has become 20 nanometers or less. As a result, the price of the apparatus and mask set used in the lithography process has soared, and the operation and variation of device dimensions have reached physical limits. Therefore, improvement of device performance by an approach different from the conventional scaling law is required.
 ゲートアレイとスタンダードセルの中間的な位置づけとして、FPGA(Field Programmable Gate Array)と呼ばれるデバイスが開発されている。FPGAでは、顧客自身が、製造後のチップに任意の回路構成を行うことができる。FPGAに含まれるプログラマブル素子は、抵抗変化型不揮発素子(抵抗変化素子とも呼ぶ)などを配線の接続部に介在させており、顧客自身が所望の配線の電気的接続を設定できる。FPGAを用いれば、回路の自由度を向上できる。 A device called FPGA (Field Programmable Gate Array) has been developed as an intermediate position between the gate array and the standard cell. In the FPGA, the customer himself can perform an arbitrary circuit configuration on the manufactured chip. In the programmable element included in the FPGA, a variable resistance nonvolatile element (also referred to as a variable resistance element) or the like is interposed in the connection portion of the wiring, so that the customer himself can set the electrical connection of the desired wiring. If FPGA is used, the freedom degree of a circuit can be improved.
 抵抗変化素子とは、抵抗状態の変化によって情報を記憶する素子の総称である。FPGAに用いられる抵抗変化素子は、下部電極と上部電極とによって抵抗変化層を挟んだ3層構造を有しており、両電極間に電圧を印加することによって抵抗変化層の抵抗状態を変化させることができる。例えば、抵抗変化素子としては、抵抗変化層として金属酸化物を用いたReRAM(Resistive Random Access Memory)や、固体電解質を用いた固体電解質スイッチ素子などがある。非特許文献1および非特許文献2には、固体電解質材料としてカルコゲナイド化合物を用いた抵抗変化現象が開示されている。 Resistance change element is a general term for elements that store information according to a change in resistance state. A resistance change element used in an FPGA has a three-layer structure in which a resistance change layer is sandwiched between a lower electrode and an upper electrode, and changes the resistance state of the resistance change layer by applying a voltage between both electrodes. be able to. For example, as the resistance change element, there are a ReRAM (Resistive Random Access Memory) using a metal oxide as a resistance change layer, a solid electrolyte switch element using a solid electrolyte, and the like. Non-Patent Document 1 and Non-Patent Document 2 disclose a resistance change phenomenon using a chalcogenide compound as a solid electrolyte material.
 特許文献1には、固体電解質を利用した記憶素子の一例が開示されている。特許文献1の記憶素子は、下部電極と上部電極との間に、抵抗変化層およびイオン源層が積層された記憶層が設けられた構成を有する。特許文献1の記憶素子の構成を上記の固体電解質スイッチ素子の構成と対比すると、抵抗変化層は固体電解質層に相当し、イオン源層は金属イオンを供給する電極に相当する。特許文献1の記憶素子は、上記の固体電解質スイッチ素子と上下の構造が逆になった構成を有する。 Patent Document 1 discloses an example of a memory element using a solid electrolyte. The memory element of Patent Document 1 has a configuration in which a memory layer in which a resistance change layer and an ion source layer are stacked is provided between a lower electrode and an upper electrode. When the configuration of the memory element of Patent Document 1 is compared with the configuration of the solid electrolyte switch element described above, the resistance change layer corresponds to a solid electrolyte layer, and the ion source layer corresponds to an electrode that supplies metal ions. The memory element of Patent Document 1 has a configuration in which the upper and lower structures of the above solid electrolyte switch element are reversed.
 特許文献2および特許文献3には、CMOS基板上の銅多層配線構造の内部に設けられた2端子型固体電解質スイッチ素子と、その製造方法について開示されている。特許文献2および特許文献3の手法では、CMOS基板上の銅多層配線構造の内部において、絶縁層の一部を開口加工して露出した銅配線そのものを活性電極とする2端子型固体電解質スイッチ素子を作製する。 Patent Document 2 and Patent Document 3 disclose a two-terminal solid electrolyte switch element provided in a copper multilayer wiring structure on a CMOS substrate and a method for manufacturing the same. In the methods of Patent Document 2 and Patent Document 3, a two-terminal type solid electrolyte switch element in which an active electrode is a copper wiring itself exposed by opening a part of an insulating layer in a copper multilayer wiring structure on a CMOS substrate. Is made.
 固体電解質スイッチ素子の不揮発性メモリおよび不揮発性スイッチへの応用においては、多数の固体電解質スイッチ素子間の諸特性ばらつきを抑制することが求められる。例えば、固体電解質スイッチ素子をセットするために必要な電圧(セット電圧)においては、素子同士のばらつきが小さいほど、プログラム電圧を印加した際のセット歩留まりを改善できる。 In application of a solid electrolyte switch element to a nonvolatile memory and a nonvolatile switch, it is required to suppress variations in characteristics among a large number of solid electrolyte switch elements. For example, in the voltage (set voltage) necessary for setting the solid electrolyte switch element, the set yield when the program voltage is applied can be improved as the variation between the elements is smaller.
 固体電解質スイッチ素子を製造する際に、下部電極として銅電極を用いる場合、銅電極の表面が酸化すると、オフ状態におけるリーク電流ばらつきが増大する。銅電極の表面が酸化し、オフ状態におけるリーク電流ばらつきが増大すると、リセット時の絶縁破壊電圧が低下する。 When using a copper electrode as a lower electrode when manufacturing a solid electrolyte switch element, if the surface of the copper electrode is oxidized, the variation in leakage current in the off state increases. When the surface of the copper electrode is oxidized and the variation in leakage current in the off state increases, the dielectric breakdown voltage at the time of reset decreases.
 非特許文献3には、固体電解質スイッチ素子の積層において、銅表面の酸化を防止するために、下部電極である銅と固体電解質層との間に、銅よりも酸化の自由エネルギーが負に大きい金属をバルブメタルとして堆積する方法が開示されている。非特許文献3の方法によれば、バルブメタルが酸化されることによって銅の酸化が抑制されるバッファ構造を素子に設けることができる。 In Non-Patent Document 3, in the stacking of solid electrolyte switch elements, in order to prevent oxidation of the copper surface, the free energy of oxidation is negatively larger than copper between copper as the lower electrode and the solid electrolyte layer. A method of depositing metal as a valve metal is disclosed. According to the method of Non-Patent Document 3, the element can be provided with a buffer structure in which oxidation of copper is suppressed by oxidizing the valve metal.
 特許文献3には、固体電解質スイッチ素子を製造する工程において、スイッチ素子積層構造のエッチング加工を実施した後に、化学的なバリア性の高い窒化ケイ素(SiN)等の保護膜で銅の表面を被覆する技術が開示されている。 In Patent Document 3, in the process of manufacturing a solid electrolyte switch element, after the switch element laminated structure is etched, the surface of copper is covered with a protective film such as silicon nitride (SiN) having a high chemical barrier property. Techniques to do this are disclosed.
特開2011-187925号公報JP 2011-187925 A 国際公開第2010/079816号International Publication No. 2010/0779816 特開2011-091317号公報JP 2011-091317 A
 一般的な銅多層配線層内の固体電解質スイッチ素子の製造工程においては、積層構造をエッチング加工する際に、上部電極および固体電解質層の側面が露出する。そのとき、露出した側面から固体電解質層への吸湿に伴う劣化を生じ、素子動作のばらつきが増加するという問題点があった。 In the manufacturing process of a solid electrolyte switch element in a general copper multilayer wiring layer, the side surfaces of the upper electrode and the solid electrolyte layer are exposed when the laminated structure is etched. At that time, there is a problem that deterioration due to moisture absorption from the exposed side surface to the solid electrolyte layer occurs, and variation in device operation increases.
 特許文献3の技術によれば、積層構造のエッチング加工後、SiN等の化学的にバリア性の高い保護絶縁膜で被覆することによって、抵抗変化層への吸湿を抑制できる。しかしながら、特許文献3の技術には、エッチング加工によって抵抗変化層の側壁が露出してから保護絶縁膜で被覆するまでに時間を要するという問題点があった。 According to the technique of Patent Document 3, moisture absorption to the resistance change layer can be suppressed by coating the laminated structure with a protective insulating film having a chemically high barrier property such as SiN. However, the technique of Patent Document 3 has a problem that it takes time until the side wall of the resistance change layer is exposed by etching and is covered with the protective insulating film.
 本発明の目的は、上述した課題を解決するために、抵抗変化素子に含まれる抵抗変化層への吸湿が抑制され、セット電圧ばらつきが抑制された半導体装置を提供することにある。 An object of the present invention is to provide a semiconductor device in which moisture absorption to a resistance change layer included in a resistance change element is suppressed and variation in set voltage is suppressed in order to solve the above-described problem.
 本発明の一態様の半導体装置は、第1電極と、第1電極の上に配置され、少なくとも一つの開口部が形成される第1絶縁層と、第1絶縁層の上に配置され、開口部の内部において第1電極に接続される抵抗変化層と、抵抗変化層の上に配置される第2電極と、抵抗変化層の側面を被覆する第1保護層と、第1保護層を被覆する第2保護層と、を備える。 A semiconductor device of one embodiment of the present invention includes a first electrode, a first insulating layer that is disposed on the first electrode and has at least one opening formed thereon, and is disposed on the first insulating layer and has an opening. A variable resistance layer connected to the first electrode in the inside of the unit; a second electrode disposed on the variable resistance layer; a first protective layer covering a side surface of the variable resistance layer; and a first protective layer A second protective layer.
 本発明の一態様の半導体装置製造方法においては、第1電極を基板上に形成し、第1電極の上面に第1絶縁層を形成し、第1電極の上面の一部を露出させる開口部を第1絶縁層に形成し、開口部の内部を含めて、第1絶縁層の上面にバッファ層を形成し、バッファ層の上面に固体電解質層を形成し、固体電解質層の上面に第2電極を形成し、上部電極の上面に少なくとも1層のパターニングマスクを形成し、第2電極、固体電解質層、およびバッファ層を順番にエッチング加工すると同時に、エッチング加工によってパターニングマスク、バッファ層、固体電解質層、および第2電極に形成される露出面のうち少なくとも固体電解質層およびバッファ層の露出面に第1保護層を形成し、第1保護層の表面に第2保護層を形成する。 In the semiconductor device manufacturing method of one embodiment of the present invention, the first electrode is formed on the substrate, the first insulating layer is formed on the upper surface of the first electrode, and the opening exposing a part of the upper surface of the first electrode Is formed on the first insulating layer, the buffer layer is formed on the upper surface of the first insulating layer including the inside of the opening, the solid electrolyte layer is formed on the upper surface of the buffer layer, and the second layer is formed on the upper surface of the solid electrolyte layer. The electrode is formed, at least one patterning mask is formed on the upper surface of the upper electrode, and the second electrode, the solid electrolyte layer, and the buffer layer are sequentially etched, and at the same time, the patterning mask, the buffer layer, and the solid electrolyte are etched. The first protective layer is formed on at least the exposed surfaces of the solid electrolyte layer and the buffer layer among the exposed surfaces formed on the layer and the second electrode, and the second protective layer is formed on the surface of the first protective layer.
 本発明によれば、抵抗変化素子に含まれる抵抗変化層への吸湿が抑制され、セット電圧ばらつきが抑制された半導体装置を提供することが可能になる。 According to the present invention, it is possible to provide a semiconductor device in which moisture absorption to the variable resistance layer included in the variable resistance element is suppressed and variation in set voltage is suppressed.
本発明の第1の実施形態に係る半導体装置の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a semiconductor device concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る変形例1の半導体装置の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a semiconductor device of modification 1 concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る変形例2の半導体装置の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a semiconductor device of modification 2 concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る変形例3の半導体装置の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a semiconductor device of modification 3 concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程A1について説明するための部分断面図である。It is a fragmentary sectional view for explaining process A1 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程A2について説明するための部分断面図である。It is a fragmentary sectional view for explaining process A2 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程A3について説明するための部分断面図である。It is a fragmentary sectional view for explaining process A3 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程A4について説明するための部分断面図である。It is a fragmentary sectional view for explaining process A4 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程A5について説明するための部分断面図である。It is a fragmentary sectional view for explaining process A5 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程B1について説明するための部分断面図である。It is a fragmentary sectional view for explaining process B1 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程B2について説明するための部分断面図である。It is a fragmentary sectional view for explaining process B2 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程B3について説明するための部分断面図である。It is a fragmentary sectional view for explaining process B3 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程B4について説明するための部分断面図である。It is a fragmentary sectional view for explaining process B4 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程B5について説明するための部分断面図である。It is a fragmentary sectional view for explaining process B5 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程B6について説明するための部分断面図である。It is a fragmentary sectional view for explaining process B6 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程C1について説明するための部分断面図である。It is a fragmentary sectional view for explaining process C1 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程C2について説明するための部分断面図である。It is a fragmentary sectional view for explaining process C2 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程C3について説明するための部分断面図である。It is a fragmentary sectional view for explaining process C3 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る半導体装置の製造方法に含まれる工程C4について説明するための部分断面図である。It is a fragmentary sectional view for explaining process C4 included in the manufacturing method of the semiconductor device concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る半導体装置の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a semiconductor device concerning a 3rd embodiment of the present invention.
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。また、以下の実施形態の説明に用いる全図においては、断面を示すために、ハッチングを施した箇所もあるが、ハッチングを省略した箇所もある。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following. In addition, in all the drawings used for description of the following embodiments, the same reference numerals are given to the same parts unless there is a particular reason. In the following embodiments, repeated description of similar configurations and operations may be omitted. Moreover, in all the drawings used for description of the following embodiments, there are places where hatching is performed to show a cross section, but there are also places where hatching is omitted.
 (第1の実施形態)
 まず、本発明の第1の実施形態に係る半導体装置について図面を参照しながら説明する。
(First embodiment)
First, a semiconductor device according to a first embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態の半導体装置1の一構成例を示す部分断面図である。図1のように、半導体装置1は、下部電極11、上部電極12、抵抗変化層13、絶縁性バリア層14、第1保護層15、および第2保護層16を備える。下部電極11、上部電極12、および抵抗変化層13は、抵抗変化素子10を構成する。また、抵抗変化層13は、固体電解質層131とバッファ層132とを含む。また、第1保護層15と第2保護層16とをまとめて保護層とも呼ぶ。 FIG. 1 is a partial cross-sectional view showing a configuration example of the semiconductor device 1 of the present embodiment. As shown in FIG. 1, the semiconductor device 1 includes a lower electrode 11, an upper electrode 12, a resistance change layer 13, an insulating barrier layer 14, a first protective layer 15, and a second protective layer 16. Lower electrode 11, upper electrode 12, and resistance change layer 13 constitute resistance change element 10. The resistance change layer 13 includes a solid electrolyte layer 131 and a buffer layer 132. Further, the first protective layer 15 and the second protective layer 16 are collectively referred to as a protective layer.
 抵抗変化素子10は、固体電解質スイッチ素子の一種であり、2つの電極(下部電極11および上部電極12)によって固体電解質層(抵抗変化層13)を挟んだ構造を有する。2つの電極のうち一方(下部電極11)には、化学的に活性であり、電圧印加により容易に酸化および還元が可能な金属が用いられる。2つの電極のうち他方(上部電極12)には、化学的に不活性な金属材料が用いられる。 The resistance change element 10 is a kind of solid electrolyte switch element, and has a structure in which a solid electrolyte layer (resistance change layer 13) is sandwiched between two electrodes (lower electrode 11 and upper electrode 12). One of the two electrodes (lower electrode 11) is made of a metal that is chemically active and can be easily oxidized and reduced by voltage application. A chemically inert metal material is used for the other (upper electrode 12) of the two electrodes.
 下部電極11(第1電極とも呼ぶ)は、抵抗変化素子10の二つの電極の一方である。下部電極11は、活性電極である。例えば、下部電極11は、Cuを含む材料で構成することが好ましい。例えば、下部電極11は、半導体基板上の配線を兼ねてもよい。下部電極11が半導体基板上の配線を兼ねる構成にすると、半導体基板上に抵抗変化素子10を製造するプロセスを簡便化できる。 The lower electrode 11 (also referred to as a first electrode) is one of the two electrodes of the resistance change element 10. The lower electrode 11 is an active electrode. For example, the lower electrode 11 is preferably composed of a material containing Cu. For example, the lower electrode 11 may also serve as a wiring on the semiconductor substrate. When the lower electrode 11 also serves as a wiring on the semiconductor substrate, the process of manufacturing the resistance change element 10 on the semiconductor substrate can be simplified.
 例えば、半導体基板は、MOS(Metal Oxide Semiconductor)トランジスタおよび抵抗素子を含む半導体素子、ならびにこれらの半導体素子が組み合わされた半導体装置が構成された基板を含む。また、半導体基板には、単結晶基板や、SOI(Silicon on Insulator)基板、TFT(Thin Film Transistor)基板、液晶製造用基板などの基板を用いてもよい。 For example, the semiconductor substrate includes a substrate on which a semiconductor element including a MOS (Metal Oxide Semiconductor) transistor and a resistance element, and a semiconductor device in which these semiconductor elements are combined is configured. Further, as the semiconductor substrate, a substrate such as a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin Film Transistor) substrate, or a liquid crystal manufacturing substrate may be used.
 上部電極12(第2電極とも呼ぶ)は、抵抗変化素子10の二つの電極の他方である。上部電極12は、不活性電極である。上部電極12は、抵抗変化層13の上部に設けられる。 The upper electrode 12 (also referred to as a second electrode) is the other of the two electrodes of the resistance change element 10. The upper electrode 12 is an inert electrode. The upper electrode 12 is provided on the resistance change layer 13.
 例えば、上部電極12は、イリジウムIr、パラジウムPd、白金Pt、ルテニウムRu、タンタルTa、およびチタンTiのうち少なくともいずれか1つを含む材料で構成することが好ましい。また、上部電極12は、材料の異なる2層以上の金属層で構成されていてもよい。上部電極12を2層以上の金属層で構成する場合、固体電解質層131に接する金属層をIr、Pd、Pt、Ru、Ta、およびTiのうち少なくともいずれか1つを含む金属層で構成することが好ましい。 For example, the upper electrode 12 is preferably made of a material containing at least one of iridium Ir, palladium Pd, platinum Pt, ruthenium Ru, tantalum Ta, and titanium Ti. The upper electrode 12 may be composed of two or more metal layers made of different materials. When the upper electrode 12 is composed of two or more metal layers, the metal layer in contact with the solid electrolyte layer 131 is composed of a metal layer containing at least one of Ir, Pd, Pt, Ru, Ta, and Ti. It is preferable.
 抵抗変化層13は、下部電極11と上部電極12との間に設けられる。抵抗変化層13は、固体電解質層131とバッファ層132とが積層された構造を有する。 The resistance change layer 13 is provided between the lower electrode 11 and the upper electrode 12. The resistance change layer 13 has a structure in which a solid electrolyte layer 131 and a buffer layer 132 are stacked.
 固体電解質層131は、上部電極12と接する。固体電解質層131は、タンタルTa、ニッケルNi、チタンTi、ジルコニウムZr、ハフニウムHf、ケイ素Si、アルミニウムAl、鉄Fe、バナジウムV、マンガンMn、コバルトCo、タングステンWのうち少なくとも1つを含む材料で構成できる。固体電解質層131には、これらの元素を含む金属酸化物膜や、カーボンドープシリコン酸化膜(SiOCH膜)、およびカルコゲナイド膜、またはそれらの積層膜などを適用できる。例えば、固体電解質層131として、膜厚7ナノメートルのSiOCH膜を適用できる。 The solid electrolyte layer 131 is in contact with the upper electrode 12. The solid electrolyte layer 131 is a material containing at least one of tantalum Ta, nickel Ni, titanium Ti, zirconium Zr, hafnium Hf, silicon Si, aluminum Al, iron Fe, vanadium V, manganese Mn, cobalt Co, and tungsten W. Can be configured. For the solid electrolyte layer 131, a metal oxide film containing these elements, a carbon-doped silicon oxide film (SiOCH film), a chalcogenide film, or a laminated film thereof can be applied. For example, as the solid electrolyte layer 131, a 7-nm-thick SiOCH film can be applied.
 バッファ層132は、下部電極11と接する。バッファ層132は、Cuよりも酸化の自由エネルギーが負に大きい金属、もしくは第14族元素に属する非金属の少なくとも1つを含む酸化物からなる材料で構成することが好ましい。より好ましくは、バッファ層132は、アルミニウムAl、ハフニウムHf、ニオブNb、ケイ素Si、タンタルTa、チタンTi、ジルコニウムZrのうち少なくともいずれか1つを含む酸化物からなることが好ましい。これらの酸化物は、固体電解質層131、下部電極11、および上部電極12との界面反応を生じず安定に形成でき、固体電解質層131の吸湿を効果的に抑制できる。また、これらの酸化物は、一般的な半導体製造プロセスとの親和性もよい。 The buffer layer 132 is in contact with the lower electrode 11. The buffer layer 132 is preferably made of a material made of an oxide containing at least one of a metal having a negative free energy of oxidation larger than that of Cu or a nonmetal belonging to a Group 14 element. More preferably, the buffer layer 132 is preferably made of an oxide containing at least one of aluminum Al, hafnium Hf, niobium Nb, silicon Si, tantalum Ta, titanium Ti, and zirconium Zr. These oxides can be stably formed without causing an interface reaction with the solid electrolyte layer 131, the lower electrode 11, and the upper electrode 12, and moisture absorption of the solid electrolyte layer 131 can be effectively suppressed. In addition, these oxides have good compatibility with general semiconductor manufacturing processes.
 抵抗変化素子10がオフ状態(高抵抗状態)のときに、下部電極11を接地し、上部電極12に負電圧を印加すると、下部電極11を構成する金属原子がイオン化して抵抗変化層13の中に溶出し、導電性を有する金属架橋が両電極間に形成される。抵抗変化層13の中に形成された金属架橋により両電極が電気的に接続されることによって、抵抗変化素子10がオン状態(低抵抗状態)に変化する。このように、電圧印加によってオフ状態からオン状態へ変化させる動作をセットと呼ぶ。 When the resistance change element 10 is in the off state (high resistance state), if the lower electrode 11 is grounded and a negative voltage is applied to the upper electrode 12, the metal atoms constituting the lower electrode 11 are ionized to form the resistance change layer 13. A metal bridge eluting into and having conductivity is formed between the electrodes. When both electrodes are electrically connected by the metal bridge formed in the resistance change layer 13, the resistance change element 10 is turned on (low resistance state). In this way, an operation of changing from an off state to an on state by voltage application is referred to as a set.
 一方、抵抗変化素子10がオン状態(低抵抗状態)のときに、下部電極11を接地し、上部電極12に正電圧を印加すると、両電極間を架橋する金属架橋が溶解して金属原子が下部電極11に引き戻される。その結果、両電極が電気的に絶縁され、抵抗変化素子10がオフ状態(高抵抗状態)に変化する。このように、正電圧印加によってオン状態からオフ状態へ変化させる動作をリセットと呼ぶ。セットとリセットとを合わせてプログラミングと呼ぶ。 On the other hand, when the variable resistance element 10 is in the on state (low resistance state), when the lower electrode 11 is grounded and a positive voltage is applied to the upper electrode 12, the metal bridge that bridges between the two electrodes dissolves and the metal atoms are dissolved. It is pulled back to the lower electrode 11. As a result, both electrodes are electrically insulated, and the variable resistance element 10 changes to an off state (high resistance state). In this manner, an operation of changing from an on state to an off state by applying a positive voltage is referred to as reset. The set and reset are collectively called programming.
 このように、抵抗変化素子10を含む固体電解質スイッチ素子においては、オン状態とオフ状態との間を不揮発で、かつ繰り返しプログラミング動作が可能である。この特性を利用することによって、固体電解質スイッチ素子は、不揮発性メモリあるいは不揮発性スイッチに適用できる。 As described above, in the solid electrolyte switch element including the resistance change element 10, it is nonvolatile between the on state and the off state and can be repeatedly programmed. By utilizing this characteristic, the solid electrolyte switch element can be applied to a nonvolatile memory or a nonvolatile switch.
 絶縁性バリア層14(第1絶縁層とも呼ぶ)は、下部電極11上に形成される。絶縁性バリア層14の一部には、少なくとも1つの開口部140が形成される。開口部140において露出した下部電極11の表面と、抵抗変化層13のバッファ層132とは、開口部140を介して接する。開口部140の底に露出した下部電極11の表面と、抵抗変化層13のバッファ層132とが開口部140を介して接する構成にすると、一般的な半導体製造プロセスに対する親和性を向上できる。 The insulating barrier layer 14 (also referred to as a first insulating layer) is formed on the lower electrode 11. At least one opening 140 is formed in a part of the insulating barrier layer 14. The surface of the lower electrode 11 exposed in the opening 140 is in contact with the buffer layer 132 of the resistance change layer 13 through the opening 140. When the surface of the lower electrode 11 exposed at the bottom of the opening 140 is in contact with the buffer layer 132 of the resistance change layer 13 through the opening 140, affinity for a general semiconductor manufacturing process can be improved.
 例えば、絶縁性バリア層14は、Cu配線の上面に形成される。絶縁性バリア層14は、Cuの酸化や絶縁膜中へのCuの拡散を防ぐ機能と、加工時におけるエッチングストッパ層としての機能とを有する。例えば、絶縁性バリア層14には、炭化ケイ素膜(SiC膜)や窒炭化ケイ素膜(SiCN膜)、窒化ケイ素膜(SiN膜)、これらの膜の積層膜などが用いられる。 For example, the insulating barrier layer 14 is formed on the upper surface of the Cu wiring. The insulating barrier layer 14 has a function of preventing Cu oxidation and diffusion of Cu into the insulating film, and a function as an etching stopper layer during processing. For example, a silicon carbide film (SiC film), a silicon nitride carbide film (SiCN film), a silicon nitride film (SiN film), a laminated film of these films, or the like is used for the insulating barrier layer 14.
 第1保護層15は、抵抗変化層13の側面および上部電極12の側面の少なくとも一部を被覆する。第1保護層15の少なくとも一部は、第2保護層16によって被覆される。第1保護層15は、抵抗変化層13および上部電極12のプロセス中に露出する側部を保護する役目を果たす。例えば、第1保護層15は、抵抗変化層13の側方の全体と、上部電極12の側方の全体とを被覆する。また、例えば、第1保護層15は、抵抗変化層13の側方の全体と、上部電極12の側方の一部とを被覆する。例えば、第1保護層15は、抵抗変化層13の側方の一部と、上部電極12の側方の一部とを被覆する。 The first protective layer 15 covers at least a part of the side surface of the resistance change layer 13 and the side surface of the upper electrode 12. At least a part of the first protective layer 15 is covered with the second protective layer 16. The first protective layer 15 serves to protect the side portions exposed during the processes of the resistance change layer 13 and the upper electrode 12. For example, the first protective layer 15 covers the entire side of the variable resistance layer 13 and the entire side of the upper electrode 12. For example, the first protective layer 15 covers the entire side of the variable resistance layer 13 and a part of the side of the upper electrode 12. For example, the first protective layer 15 covers a part of the side of the resistance change layer 13 and a part of the side of the upper electrode 12.
 第1保護層15は、抵抗変化層13および上部電極12を構成する材料よりも化学安定性が高い材料で構成する。第1保護層15は、バッファ層132と同様に、Cuよりも酸化の自由エネルギーが負に大きい金属、もしくは第14族元素に属する非金属の少なくとも1つを含む酸化物からなる材料で構成することが好ましい。より好ましくは、第1保護層15は、Al、Hf、Nb、Si、Ta、Ti、Zrのうち少なくともいずれか1つを含む酸化物からなることが好ましい。これらの酸化物は、固体電解質層131、下部電極11、および上部電極12との界面反応を生じず安定に形成でき、固体電解質層131の吸湿を効果的に抑制できる。また、これらの酸化物は、一般的な半導体製造プロセスとの親和性もよい。 The first protective layer 15 is made of a material having higher chemical stability than the material constituting the resistance change layer 13 and the upper electrode 12. Similar to the buffer layer 132, the first protective layer 15 is made of a material made of an oxide containing at least one of a metal having a negative free energy of oxidation larger than that of Cu or a nonmetal belonging to the Group 14 element. It is preferable. More preferably, the first protective layer 15 is preferably made of an oxide containing at least one of Al, Hf, Nb, Si, Ta, Ti, and Zr. These oxides can be stably formed without causing an interface reaction with the solid electrolyte layer 131, the lower electrode 11, and the upper electrode 12, and moisture absorption of the solid electrolyte layer 131 can be effectively suppressed. In addition, these oxides have good compatibility with general semiconductor manufacturing processes.
 第1保護層15は、バッファ層132と同一の材料からなることが好ましい。このような材料構成とすることで、バッファ層132をエッチング加工すると同時に、露出した固体電解質層131、バッファ層132、および上部電極12の各側壁に密着させて第1保護層15を形成できる。その結果、バッファ層132のエッチングに伴って露出するバッファ層132、固体電解質層131、および上部電極12の各側壁の加工吸湿を効率よく抑制できる。また、第1保護層15とバッファ層132とを同一の材料で構成すれば、抵抗変化素子10としての動作特性を維持しつつ、上部電極12との密着性を確保し、固体電解質層131への吸湿をより効果的に抑制できる。 The first protective layer 15 is preferably made of the same material as the buffer layer 132. With such a material structure, the first protective layer 15 can be formed by being in close contact with the exposed side walls of the solid electrolyte layer 131, the buffer layer 132, and the upper electrode 12 at the same time as the buffer layer 132 is etched. As a result, it is possible to efficiently suppress the processing moisture absorption of the sidewalls of the buffer layer 132, the solid electrolyte layer 131, and the upper electrode 12 that are exposed when the buffer layer 132 is etched. Further, if the first protective layer 15 and the buffer layer 132 are made of the same material, the adhesive property with the upper electrode 12 is ensured while maintaining the operation characteristics as the variable resistance element 10, and the solid electrolyte layer 131. Can be more effectively suppressed.
 また、第1保護層15の一端は、バッファ層132の側面と接することが好ましい。第1保護層15とバッファ層132とを接触させ、バッファ層132の側面と第1保護層15との隙間をふさぐことによって、固体電解質層131への吸湿をより低減できる。 In addition, one end of the first protective layer 15 is preferably in contact with the side surface of the buffer layer 132. By bringing the first protective layer 15 and the buffer layer 132 into contact with each other and closing the gap between the side surface of the buffer layer 132 and the first protective layer 15, moisture absorption to the solid electrolyte layer 131 can be further reduced.
 また、第1保護層15上に第2保護層16を堆積した二重構成とすることによって、素子積層エッチング加工と同時に、抵抗変化層13および上部電極12の側壁に第1保護層15を形成することができる。そのため、抵抗変化層13および上部電極12の吸湿を抑制でき、抵抗変化層13および上部電極12の酸化に起因する抵抗変化素子10のセット電圧のばらつきを低減できる。 Further, by forming a double structure in which the second protective layer 16 is deposited on the first protective layer 15, the first protective layer 15 is formed on the sidewalls of the resistance change layer 13 and the upper electrode 12 simultaneously with the element lamination etching process. can do. Therefore, moisture absorption of the resistance change layer 13 and the upper electrode 12 can be suppressed, and variation in the set voltage of the resistance change element 10 due to oxidation of the resistance change layer 13 and the upper electrode 12 can be reduced.
 また、第1保護層15の膜厚は、バッファ層132の膜厚よりも薄いことが好ましい。バッファ層132よりも第1保護層15の膜厚を薄くする膜厚構成とすれば、バッファ層132のエッチング加工と同時に形成する第1保護層15において、膜厚方向の化学組成を均質化し、吸湿耐性を向上できる。 The film thickness of the first protective layer 15 is preferably smaller than the film thickness of the buffer layer 132. If the first protective layer 15 is made thinner than the buffer layer 132, the chemical composition in the film thickness direction is homogenized in the first protective layer 15 formed simultaneously with the etching process of the buffer layer 132. The moisture absorption resistance can be improved.
 第2保護層16は、第1保護層15の少なくとも一部を被覆する。図1のように、第2保護層16は、第1保護層15の側面および上方を含む露出部分の全てを被覆するように構成することが好ましい。 The second protective layer 16 covers at least a part of the first protective layer 15. As shown in FIG. 1, the second protective layer 16 is preferably configured to cover all of the exposed portion including the side surface and the upper side of the first protective layer 15.
 第2保護層16は、SiCN、SiN、およびSiCのうち少なくともいずれか1層によって構成することが好ましい。第2保護層16にこれらの材料を用いれば、類似する材料で構成する下層の絶縁性バリア層14との密着性が向上し、吸湿耐性をより向上できる。また、第2保護層16は、これらの材料のうち1つを含む1層で構成されることに限定されず、これらの材料のうち2つ以上からなる2層以上で構成されてもよい。 The second protective layer 16 is preferably composed of at least one of SiCN, SiN, and SiC. If these materials are used for the second protective layer 16, the adhesion with the lower insulating barrier layer 14 made of a similar material is improved, and the moisture absorption resistance can be further improved. Moreover, the 2nd protective layer 16 is not limited to being comprised by one layer containing one of these materials, You may be comprised by two or more layers which consist of two or more of these materials.
 以上のように、本実施形態の半導体装置は、第1電極、第2電極、抵抗変化層、および第1絶縁層を備える。第1絶縁層は、第1電極の上に配置され、少なくとも一つの開口部が形成される。抵抗変化層は、第1絶縁層の上に配置され、開口部の内部において第1電極に接続される。第2電極は、抵抗変化層の上に配置される。第1保護層と、抵抗変化層の側面を被覆する。第2保護層は、第1保護層を被覆する。 As described above, the semiconductor device of this embodiment includes the first electrode, the second electrode, the resistance change layer, and the first insulating layer. The first insulating layer is disposed on the first electrode, and at least one opening is formed. The variable resistance layer is disposed on the first insulating layer and connected to the first electrode inside the opening. The second electrode is disposed on the resistance change layer. The side surfaces of the first protective layer and the resistance change layer are covered. The second protective layer covers the first protective layer.
 本実施形態の半導体装置においては、抵抗変化層の側面を第1保護層で被覆し、さらに第1保護層を第2保護層で被覆するため、抵抗変化層の固体電解質層への吸湿が抑制される。その結果、本実施形態の半導体装置によれば、固体電解質層が吸湿することに起因する素子動作のばらつきが低減されるので、セット電圧のばらつきが抑制される。すなわち、本実施形態の半導体装置によれば、固体電解質層への吸湿を抑制しつつ、セット電圧のばらつきを改善できる。 In the semiconductor device of this embodiment, the side surface of the resistance change layer is covered with the first protective layer, and further, the first protective layer is covered with the second protective layer, so that moisture absorption of the resistance change layer to the solid electrolyte layer is suppressed. Is done. As a result, according to the semiconductor device of the present embodiment, variation in element operation due to moisture absorption by the solid electrolyte layer is reduced, and variation in set voltage is suppressed. That is, according to the semiconductor device of the present embodiment, variation in set voltage can be improved while suppressing moisture absorption to the solid electrolyte layer.
 例えば、本実施形態の第1保護層および第2保護層のそれぞれの膜厚および材料は、種々の測定器で確認できる。また、第1保護層および第2保護層のそれぞれの膜厚および材料の寸法や構成元素、化学組成は、透過型電子線顕微鏡によって分析できる。また、第1保護層および第2保護層のそれぞれの膜厚および材料は、エネルギー分散型X線分光法や電子エネルギー損失分光法などの分析法によって分析できる。 For example, the thickness and material of each of the first protective layer and the second protective layer of the present embodiment can be confirmed with various measuring instruments. In addition, the film thickness, material dimensions, constituent elements, and chemical composition of each of the first protective layer and the second protective layer can be analyzed by a transmission electron microscope. Moreover, the film thickness and material of each of the first protective layer and the second protective layer can be analyzed by an analysis method such as energy dispersive X-ray spectroscopy or electron energy loss spectroscopy.
 (変形例)
 ここで、第1の実施形態の半導体装置1の変形例について図面を参照しながら説明する。なお、以下の変形例において、第1の実施形態の半導体装置1と同様の構成については同じ符号を付す。
(Modification)
Here, a modification of the semiconductor device 1 of the first embodiment will be described with reference to the drawings. Note that, in the following modification, the same reference numerals are given to the same configurations as those of the semiconductor device 1 of the first embodiment.
 〔変形例1〕
 図2は、変形例1の半導体装置1-1の一構成例を示す部分断面図である。図2のように、半導体装置1-1は、層間絶縁膜17およびバリアメタル18を備える。変形例1の半導体装置1-1において、絶縁性バリア層14の開口部140は、第1開口領域141と第2開口領域142とを含む。変形例1の半導体装置1-1の下部電極11は、層間絶縁膜17の内部に形成され、開口部140内の一部に露出する構成を有する。なお、複数の下部電極11が、1つの開口部140内に露出するように構成してもよい。
[Modification 1]
FIG. 2 is a partial cross-sectional view showing a configuration example of the semiconductor device 1-1 of the first modification. As shown in FIG. 2, the semiconductor device 1-1 includes an interlayer insulating film 17 and a barrier metal 18. In the semiconductor device 1-1 of Modification 1, the opening 140 of the insulating barrier layer 14 includes a first opening region 141 and a second opening region 142. The lower electrode 11 of the semiconductor device 1-1 of Modification 1 is formed inside the interlayer insulating film 17 and has a configuration exposed to part of the opening 140. A plurality of lower electrodes 11 may be configured to be exposed in one opening 140.
 層間絶縁膜17は、絶縁性バリア層14の下方に設けられる。層間絶縁膜17は、開口部140内の第2開口領域142において、固体電解質層131と接する。 The interlayer insulating film 17 is provided below the insulating barrier layer 14. The interlayer insulating film 17 is in contact with the solid electrolyte layer 131 in the second opening region 142 in the opening 140.
 バリアメタル18は、下部電極11と層間絶縁膜17との間に設けられる。バリアメタル18および下部電極11は、開口部140内の第1開口領域141において、固体電解質層131と接する。 The barrier metal 18 is provided between the lower electrode 11 and the interlayer insulating film 17. Barrier metal 18 and lower electrode 11 are in contact with solid electrolyte layer 131 in first opening region 141 in opening 140.
 バリアメタル18は、配線を構成する金属元素が層間絶縁膜や下層へ拡散することを防止するために、配線の側面および底面を被覆するためのバリア性を有する導電性膜である。例えば、配線を構成する材料がCuを主成分とする金属である場合、タンタルTaなどの高融点金属や、窒化タンタルTaNや窒化チタンTiNなどの窒化物、炭窒化タングステンWCNなどの窒炭化物の単層膜をバリアメタル18として使用できる。また、それらの高融点金属や窒化物、窒炭化物の積層膜をバリアメタルとして使用できる。ここで挙げた材料の膜は、ドライエッチングによる加工が容易であり、Cuが配線材料として使用される以前のLSI(Large Scale Integration)製造プロセスとの整合性がよい。 The barrier metal 18 is a conductive film having a barrier property for covering the side and bottom surfaces of the wiring in order to prevent the metal elements constituting the wiring from diffusing into the interlayer insulating film and the lower layer. For example, when the material constituting the wiring is a metal having Cu as a main component, a high melting point metal such as tantalum Ta, a nitride such as tantalum nitride TaN or titanium nitride TiN, or a single nitride carbide such as tungsten carbonitride WCN. A layer film can be used as the barrier metal 18. In addition, a laminated film of these refractory metals, nitrides, and nitrocarbides can be used as a barrier metal. The film of the material mentioned here can be easily processed by dry etching, and has good consistency with the LSI (Large Scale Integration) manufacturing process before Cu is used as a wiring material.
 半導体装置1(図1)は、開口部140内の全面において、下部電極11とバッファ層132とが接する構造を有する。それに対し、半導体装置1-1(図2)は、開口部140の一部において、下部電極11とバッファ層132とが接する構造を有する。 The semiconductor device 1 (FIG. 1) has a structure in which the lower electrode 11 and the buffer layer 132 are in contact with each other over the entire surface of the opening 140. On the other hand, the semiconductor device 1-1 (FIG. 2) has a structure in which the lower electrode 11 and the buffer layer 132 are in contact with each other in part of the opening 140.
 〔変形例2〕
 図3は、変形例2の半導体装置1-2の一構成例を示す部分断面図である。図3のように、変形例2の半導体装置1-2においては、第1保護層15を第2保護層16で被覆する。変形例2(図3)の構成では、上部電極12および絶縁性バリア層14の一部が露出する。
[Modification 2]
FIG. 3 is a partial cross-sectional view illustrating a configuration example of the semiconductor device 1-2 according to the second modification. As shown in FIG. 3, in the semiconductor device 1-2 of Modification 2, the first protective layer 15 is covered with the second protective layer 16. In the configuration of Modification 2 (FIG. 3), a part of the upper electrode 12 and the insulating barrier layer 14 is exposed.
 変形例2(図3)の構成においては、上部電極12、固体電解質層131、およびバッファ層132の端部に関しては、第1保護層15によって被覆されるため、酸化抑制効果が得られる。しかし、変形例2(図3)の構成では、上部電極12および絶縁性バリア層14の一部に関しては、第2保護層16によって被覆されないため、酸化抑制効果が得られない。そのため、実用的には、第1の実施形態(図1)の半導体装置1のように、上部電極12および絶縁性バリア層14の全てを第2保護層16で被覆することが好ましい。 In the configuration of Modification 2 (FIG. 3), the end portions of the upper electrode 12, the solid electrolyte layer 131, and the buffer layer 132 are covered with the first protective layer 15, so that an oxidation suppressing effect is obtained. However, in the configuration of the modified example 2 (FIG. 3), the upper electrode 12 and a part of the insulating barrier layer 14 are not covered with the second protective layer 16, so that the oxidation suppressing effect cannot be obtained. Therefore, practically, it is preferable to cover all of the upper electrode 12 and the insulating barrier layer 14 with the second protective layer 16 as in the semiconductor device 1 of the first embodiment (FIG. 1).
 〔変形例3〕
 図4は、変形例3の半導体装置1-3の一構成例を示す部分断面図である。図4のように、変形例3の半導体装置1-3においては、抵抗変化素子パターン加工用のハードマスク層19が上部電極12の上面に形成されている。
[Modification 3]
FIG. 4 is a partial cross-sectional view illustrating a configuration example of the semiconductor device 1-3 according to the third modification. As shown in FIG. 4, in the semiconductor device 1-3 of the third modification, a hard mask layer 19 for processing a resistance change element pattern is formed on the upper surface of the upper electrode 12.
 例えば、第1保護層15は、ハードマスク層19の側面に接してもよい。例えば、第2保護層16は、第1保護層15で被覆された上部電極12および抵抗変化層13の側面、絶縁性バリア層14の上面、ハードマスク層19の上面および側面を含めて連続して被覆されていてもよい。 For example, the first protective layer 15 may be in contact with the side surface of the hard mask layer 19. For example, the second protective layer 16 is continuous including the side surfaces of the upper electrode 12 and the resistance change layer 13 covered with the first protective layer 15, the upper surface of the insulating barrier layer 14, and the upper surface and side surfaces of the hard mask layer 19. And may be coated.
 図2~図4に示す変形例1~3の半導体装置1-1~3は、図1の半導体装置1とともに、第1の実施形態の構成例である。そのため、図2~図4に示す変形例1~3の半導体装置1-1~3によれば、図1に示す半導体装置1と同様に、固体電解質層への吸湿を抑制しつつ、セット電圧のばらつきを改善できる。 The semiconductor devices 1-1 to 3 of Modifications 1 to 3 shown in FIGS. 2 to 4 are configuration examples of the first embodiment together with the semiconductor device 1 of FIG. Therefore, according to the semiconductor devices 1-1 to 3 of Modifications 1 to 3 shown in FIGS. 2 to 4, like the semiconductor device 1 shown in FIG. 1, the set voltage is suppressed while the moisture absorption to the solid electrolyte layer is suppressed. Can be improved.
 例えば、第1保護層は、第2電極の側面を被覆する。 For example, the first protective layer covers the side surface of the second electrode.
 例えば、第2保護層は、第2電極の上方から第1絶縁層の上面にかけて連続的に被覆する。 For example, the second protective layer is continuously coated from above the second electrode to the upper surface of the first insulating layer.
 例えば、本実施形態の半導体装置は、第1絶縁層の下部に配置され、配線溝が形成される第2絶縁層を備える。そして、第1電極は、第2絶縁層に形成される配線溝の内部に埋め込まれ、開口部において抵抗変化層に接続される。 For example, the semiconductor device of this embodiment includes a second insulating layer that is disposed below the first insulating layer and in which a wiring trench is formed. The first electrode is embedded in the wiring groove formed in the second insulating layer, and is connected to the resistance change layer at the opening.
 例えば、抵抗変化層は、開口部の内部から周辺にかけて配置されるバッファ層と、バッファ層の上に配置される固体電解質層と、を有する。例えば、第1保護層の一端は、バッファ層の側面に接続される。例えば、第1保護層は、バッファ層と同じ材料で構成される。例えば、バッファ層および第1保護層は、第1電極を構成する材料よりも自由エネルギーが負に大きい金属元素、および第14族に属する非金属元素のうち少なくとも1つを含む酸化物材料によって構成される。 For example, the resistance change layer includes a buffer layer disposed from the inside to the periphery of the opening, and a solid electrolyte layer disposed on the buffer layer. For example, one end of the first protective layer is connected to the side surface of the buffer layer. For example, the first protective layer is made of the same material as the buffer layer. For example, the buffer layer and the first protective layer are made of an oxide material containing at least one of a metal element having a negative energy larger than that of the material constituting the first electrode and a non-metal element belonging to Group 14 Is done.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る半導体装置について図面を参照しながら説明する。本実施形態の半導体装置は、半導体基板上に形成された多層配線構造の内部に、第1の実施形態の抵抗変化素子が設けられた構成を有する。特に、本実施形態では、多層配線構造の内部に、第1の実施形態の変形例3の抵抗変化素子が設けられた構成を例に挙げて説明する。
(Second Embodiment)
Next, a semiconductor device according to a second embodiment of the present invention will be described with reference to the drawings. The semiconductor device of this embodiment has a configuration in which the variable resistance element of the first embodiment is provided inside a multilayer wiring structure formed on a semiconductor substrate. In particular, in the present embodiment, a configuration in which the variable resistance element according to Modification 3 of the first embodiment is provided in the multilayer wiring structure will be described as an example.
 図5は、半導体装置2の一構成例を示す部分断面図である。図5のように、半導体装置2は、半導体基板201の上に形成される。 FIG. 5 is a partial cross-sectional view showing a configuration example of the semiconductor device 2. As shown in FIG. 5, the semiconductor device 2 is formed on the semiconductor substrate 201.
 半導体装置2は、下部電極21、上部電極22、抵抗変化層23、第1保護層25、および第2保護層26を備える。下部電極21、上部電極22、および抵抗変化層23は、抵抗変化素子20を構成する。また、抵抗変化層23は、固体電解質層231とバッファ層232とを含む。また、上部電極22は、第1上部電極221および第2上部電極222を含む。 The semiconductor device 2 includes a lower electrode 21, an upper electrode 22, a resistance change layer 23, a first protective layer 25, and a second protective layer 26. The lower electrode 21, the upper electrode 22, and the resistance change layer 23 constitute the resistance change element 20. The resistance change layer 23 includes a solid electrolyte layer 231 and a buffer layer 232. The upper electrode 22 includes a first upper electrode 221 and a second upper electrode 222.
 また、半導体装置2は、第1層間絶縁膜202、第2層間絶縁膜203、第1キャップ絶縁膜204、第1バリアメタル205、第1絶縁性バリア膜206、第2ハードマスク層208、および第3ハードマスク層209を備える。また、半導体装置2は、第1ビア層間絶縁膜210、第3層間絶縁膜211、第2キャップ絶縁膜212、第2バリアメタル213、ビアプラグ214、上部配線215、第2絶縁性バリア膜216を備える。さらに、半導体装置2には、開口部240、配線溝250、ビア穴260、および配線溝270が形成される。なお、半導体装置2の製造工程において、第1ハードマスク層207が形成されるが、製造中に除去されてしまうので、図5には図示しない(図9に図示)。 The semiconductor device 2 includes a first interlayer insulating film 202, a second interlayer insulating film 203, a first cap insulating film 204, a first barrier metal 205, a first insulating barrier film 206, a second hard mask layer 208, and A third hard mask layer 209 is provided. In addition, the semiconductor device 2 includes the first via interlayer insulating film 210, the third interlayer insulating film 211, the second cap insulating film 212, the second barrier metal 213, the via plug 214, the upper wiring 215, and the second insulating barrier film 216. Prepare. Furthermore, an opening 240, a wiring groove 250, a via hole 260, and a wiring groove 270 are formed in the semiconductor device 2. Although the first hard mask layer 207 is formed in the manufacturing process of the semiconductor device 2, it is not shown in FIG. 5 (shown in FIG. 9) because it is removed during the manufacturing.
 ここで、本実施形態の半導体装置2(図5)の構成と、第1の実施形態に係る変形例3の半導体装置1-3(図4)の構成要素との対応関係についてまとめる。下部電極21は、下部電極11に相当する。固体電解質層231は、固体電解質層131に相当する。バッファ層232は、バッファ層132に相当する。第1上部電極221と第2上部電極222とを含む上部電極22は、上部電極12に相当する。第1絶縁性バリア膜206は、絶縁性バリア層14に相当する。第2ハードマスク層208と第3ハードマスク層209とを合わせた構成は、ハードマスク層19に相当する。第1保護層25および第2保護層26のそれぞれは、第1保護層15および第2保護層16のそれぞれに相当する。特に断らない限り、上記の対応関係にある構成要素は、同様の材料で構成できる。 Here, the correspondence relationship between the configuration of the semiconductor device 2 (FIG. 5) of the present embodiment and the components of the semiconductor device 1-3 (FIG. 4) of Modification 3 according to the first embodiment will be summarized. The lower electrode 21 corresponds to the lower electrode 11. The solid electrolyte layer 231 corresponds to the solid electrolyte layer 131. The buffer layer 232 corresponds to the buffer layer 132. The upper electrode 22 including the first upper electrode 221 and the second upper electrode 222 corresponds to the upper electrode 12. The first insulating barrier film 206 corresponds to the insulating barrier layer 14. The combined structure of the second hard mask layer 208 and the third hard mask layer 209 corresponds to the hard mask layer 19. Each of the first protective layer 25 and the second protective layer 26 corresponds to each of the first protective layer 15 and the second protective layer 16. Unless otherwise specified, the components having the above-described correspondence can be made of the same material.
 〔抵抗変化素子〕
 まず、抵抗変化素子20の構成について説明する。抵抗変化素子20は、第1の実施形態の抵抗変化素子10と同様に構成できるため、重複する説明については省略する場合がある。
[Resistance change element]
First, the configuration of the resistance change element 20 will be described. Since the resistance change element 20 can be configured in the same manner as the resistance change element 10 of the first embodiment, the overlapping description may be omitted.
 抵抗変化素子20は、第1層間絶縁膜202の上に形成される。抵抗変化素子20は、下部電極21、上部電極22、および抵抗変化層23によって構成される。 The resistance change element 20 is formed on the first interlayer insulating film 202. The resistance change element 20 includes a lower electrode 21, an upper electrode 22, and a resistance change layer 23.
 下部電極21(第1電極とも呼ぶ)は、抵抗変化素子20の二つの電極の一方である。下部電極21は、活性電極である。例えば、下部電極21は、Cuを主成分とする金属材料で構成される。下部電極21は、第1層間絶縁膜202の上に形成された第1バリアメタル205に内包される。下部電極21は、第2層間絶縁膜203および第1キャップ絶縁膜204に形成された配線溝250に、第1バリアメタル205を介して埋め込まれるように形成される。また、下部電極21は、第1絶縁性バリア膜206の開口部240の内側の全体に亘ってバッファ層232と接する。 The lower electrode 21 (also referred to as a first electrode) is one of the two electrodes of the resistance change element 20. The lower electrode 21 is an active electrode. For example, the lower electrode 21 is made of a metal material whose main component is Cu. The lower electrode 21 is included in a first barrier metal 205 formed on the first interlayer insulating film 202. The lower electrode 21 is formed so as to be buried in the wiring trench 250 formed in the second interlayer insulating film 203 and the first cap insulating film 204 through the first barrier metal 205. Further, the lower electrode 21 is in contact with the buffer layer 232 over the entire inside of the opening 240 of the first insulating barrier film 206.
 下部電極21は、第1の実施形態の下部電極11(図2)と同様に、第1絶縁性バリア膜206に設けられた開口部240を介してバッファ層232と接し、半導体基板201上の配線を兼ねる。そのため、Cu配線を兼ねるCu電極を下部電極21に適用でき、CMOS基板上多層配線構造内にCu電極を用いた抵抗変化素子20を形成できる。抵抗変化素子20の下部電極21が半導体基板201上の配線を兼ねる構成にすると、半導体基板201上に抵抗変化素子20を製造するプロセスを簡便化できる。図5のような構成によって、下部電極21内のCu原子をイオン化して固体電解質層231中へ溶出させることができる。 Similar to the lower electrode 11 (FIG. 2) of the first embodiment, the lower electrode 21 is in contact with the buffer layer 232 through the opening 240 provided in the first insulating barrier film 206, and on the semiconductor substrate 201. Also serves as wiring. Therefore, a Cu electrode serving also as a Cu wiring can be applied to the lower electrode 21, and the resistance change element 20 using the Cu electrode can be formed in the multilayer wiring structure on the CMOS substrate. If the lower electrode 21 of the variable resistance element 20 is configured to also serve as a wiring on the semiconductor substrate 201, the process of manufacturing the variable resistance element 20 on the semiconductor substrate 201 can be simplified. With the configuration as shown in FIG. 5, Cu atoms in the lower electrode 21 can be ionized and eluted into the solid electrolyte layer 231.
 上部電極22(第2電極とも呼ぶ)は、抵抗変化素子20の二つの電極の他方である。上部電極22は、不活性電極である。上部電極22は、抵抗変化層23の上に設けられる。上部電極22は、第1上部電極221および第2上部電極222を含む。 The upper electrode 22 (also referred to as a second electrode) is the other of the two electrodes of the resistance change element 20. The upper electrode 22 is an inert electrode. The upper electrode 22 is provided on the resistance change layer 23. The upper electrode 22 includes a first upper electrode 221 and a second upper electrode 222.
 第1上部電極221は、固体電解質層231の上に形成される。第1上部電極221の上には、第2上部電極222が形成される。第1上部電極221は、固体電解質層231および第2上部電極222に接する。また、第1上部電極221の側部は、第1保護層25に接する。例えば、第1上部電極221には、膜厚10ナノメートルのRu0.5Ti0.5を適用できる。 The first upper electrode 221 is formed on the solid electrolyte layer 231. A second upper electrode 222 is formed on the first upper electrode 221. The first upper electrode 221 is in contact with the solid electrolyte layer 231 and the second upper electrode 222. Further, the side portion of the first upper electrode 221 is in contact with the first protective layer 25. For example, Ru 0.5 Ti 0.5 having a film thickness of 10 nanometers can be applied to the first upper electrode 221.
 第2上部電極222は、第1上部電極221の上に形成される。第2上部電極222の上には、第2ハードマスク層208が形成される。第2上部電極222は、第1上部電極221および第2ハードマスク層208が接する。また、第2上部電極222の側部は、第1保護層25に接する。 The second upper electrode 222 is formed on the first upper electrode 221. A second hard mask layer 208 is formed on the second upper electrode 222. The second upper electrode 222 is in contact with the first upper electrode 221 and the second hard mask layer 208. Further, the side portion of the second upper electrode 222 is in contact with the first protective layer 25.
 また、第2上部電極222の上方には、第2バリアメタル213およびビアプラグ214が形成される。第2上部電極222は、第2ハードマスク層208に形成された開口(ビア穴260)において、第2バリアメタル213に接する。第2上部電極222は、第2バリアメタル213およびビアプラグ214を介して、上部配線215と電気的に接続される。 Further, a second barrier metal 213 and a via plug 214 are formed above the second upper electrode 222. The second upper electrode 222 is in contact with the second barrier metal 213 in the opening (via hole 260) formed in the second hard mask layer 208. The second upper electrode 222 is electrically connected to the upper wiring 215 via the second barrier metal 213 and the via plug 214.
 第2上部電極222は、バリア性を有する導電性膜である。第2上部電極222は、直下層の第1上部電極221に含まれる金属がビアプラグ214などに拡散することを防止するために形成される。例えば、第2上部電極222には、膜厚25ナノメートルのTaを適用できる。 The second upper electrode 222 is a conductive film having a barrier property. The second upper electrode 222 is formed in order to prevent the metal contained in the first upper electrode 221 in the immediately lower layer from diffusing into the via plug 214 or the like. For example, Ta having a film thickness of 25 nanometers can be applied to the second upper electrode 222.
 抵抗変化層23は、下部電極21と上部電極22との間に設けられる。抵抗変化層23において、固体電解質層231とバッファ層232とは互いに接する。固体電解質層231は、第1上部電極221と接する。バッファ層232は、下部電極21と接する。固体電解質層231およびバッファ層232のそれぞれは、第1の実施形態の固体電解質層131およびバッファ層132のそれぞれと同様の材料で構成できる。 The resistance change layer 23 is provided between the lower electrode 21 and the upper electrode 22. In the resistance change layer 23, the solid electrolyte layer 231 and the buffer layer 232 are in contact with each other. The solid electrolyte layer 231 is in contact with the first upper electrode 221. The buffer layer 232 is in contact with the lower electrode 21. Each of the solid electrolyte layer 231 and the buffer layer 232 can be made of the same material as each of the solid electrolyte layer 131 and the buffer layer 132 of the first embodiment.
 例えば、固体電解質層231には、膜厚6ナノメートルのSiOCH膜を適用できる。例えば、バッファ層232には、膜厚1.2ナノメートルの酸化チタンTiOy1膜を適用できる。例えば、バッファ層232に適用されるTiOy1膜の酸素組成y1は、1.5以上2.0以下が好適である。 For example, a SiOCH film having a thickness of 6 nanometers can be applied to the solid electrolyte layer 231. For example, a titanium oxide TiO y1 film having a thickness of 1.2 nm can be applied to the buffer layer 232. For example, the oxygen composition y1 of the TiO y1 film applied to the buffer layer 232 is preferably 1.5 or more and 2.0 or less.
 〔保護層〕
 次に、半導体装置2に含まれる第1保護層25および第2保護層26について説明する。
[Protective layer]
Next, the first protective layer 25 and the second protective layer 26 included in the semiconductor device 2 will be described.
 第1保護層25は、抵抗変化層23の側面および上部電極22の側面の少なくとも一部を被覆する。言い換えると、第1保護層25は、第1上部電極221、第2上部電極222、固体電解質層231、およびバッファ層232の各側面を被覆する。第1保護層25の少なくとも一部は、第2保護層26によって被覆される。第1保護層25は、抵抗変化層23および上部電極22のプロセス中に露出する側部を保護する役目を果たす。 The first protective layer 25 covers at least a part of the side surface of the resistance change layer 23 and the side surface of the upper electrode 22. In other words, the first protective layer 25 covers the side surfaces of the first upper electrode 221, the second upper electrode 222, the solid electrolyte layer 231, and the buffer layer 232. At least a part of the first protective layer 25 is covered with the second protective layer 26. The first protective layer 25 serves to protect the side portions exposed during the process of the resistance change layer 23 and the upper electrode 22.
 例えば、第1保護層25は、抵抗変化層23の側方の全体と、上部電極22の側方の全体とを被覆する。また、例えば、第1保護層25は、抵抗変化層23の側方の全体と、上部電極22の側方の一部とを被覆する。例えば、第1保護層25は、抵抗変化層23の側方の一部と、上部電極22の側方の一部とを被覆する。なお、第1保護層25の一端(図5では下端)は、バッファ層232の側面と接することが好ましい。第1保護層25とバッファ層232とを接触させ、バッファ層232の側面と第1保護層25との隙間をふさぐことによって、固体電解質層231への吸湿をより低減できる。第1保護層25は、第1の実施形態の第1保護層15と同様の材料で構成できる。ただし、第1保護層25によるバッファ層232、固体電解質層231、第1上部電極221、および第2上部電極222の被覆の状態に関しては、ここで挙げたものに限定されない。 For example, the first protective layer 25 covers the entire side of the resistance change layer 23 and the entire side of the upper electrode 22. For example, the first protective layer 25 covers the entire side of the resistance change layer 23 and a part of the side of the upper electrode 22. For example, the first protective layer 25 covers a part of the side of the resistance change layer 23 and a part of the side of the upper electrode 22. Note that one end (the lower end in FIG. 5) of the first protective layer 25 is preferably in contact with the side surface of the buffer layer 232. By bringing the first protective layer 25 and the buffer layer 232 into contact with each other and closing the gap between the side surface of the buffer layer 232 and the first protective layer 25, moisture absorption into the solid electrolyte layer 231 can be further reduced. The 1st protective layer 25 can be comprised with the material similar to the 1st protective layer 15 of 1st Embodiment. However, the covering state of the buffer layer 232, the solid electrolyte layer 231, the first upper electrode 221, and the second upper electrode 222 by the first protective layer 25 is not limited to those described here.
 例えば、第1保護層25には、膜厚0.8ナノメートルの酸化チタンTiOy1膜を適用できる。例えば、TiOy1の酸素組成y1は、1.5以上2.0以下が好適である。第1保護層25は、バッファ層232と同じ組成の膜で構成することが好ましい。 For example, a titanium oxide TiO y1 film having a thickness of 0.8 nanometer can be applied to the first protective layer 25. For example, the oxygen composition y1 of TiO y1 is preferably 1.5 or more and 2.0 or less. The first protective layer 25 is preferably composed of a film having the same composition as the buffer layer 232.
 第2保護層26は、第1保護層25の表面、第2ハードマスク層208の側面、第3ハードマスク層209の側面および上面、および第1絶縁性バリア膜206の表面を一括して被覆する。図5のように、第2保護層26は、第1保護層25の側面および上方を含む露出部分の全てを被覆するように構成することが好ましい。第2保護層26は、第1の実施形態の第2保護層16と同様の材料で構成できる。 The second protective layer 26 collectively covers the surface of the first protective layer 25, the side surfaces of the second hard mask layer 208, the side surfaces and the upper surface of the third hard mask layer 209, and the surface of the first insulating barrier film 206. To do. As shown in FIG. 5, the second protective layer 26 is preferably configured to cover all of the exposed portion including the side surface and the upper side of the first protective layer 25. The second protective layer 26 can be made of the same material as the second protective layer 16 of the first embodiment.
 第2保護層26は、側面が露出した抵抗変化素子20にダメージを与えないために配置される絶縁膜である。また、第2保護層26は、抵抗変化素子20の構成原子が第1ビア層間絶縁膜210に拡散することを防ぐ機能を有する。例えば、第2保護層26には、SiN膜やSiCN膜等を用いることができる。 The second protective layer 26 is an insulating film disposed so as not to damage the resistance change element 20 whose side surface is exposed. The second protective layer 26 has a function of preventing the constituent atoms of the variable resistance element 20 from diffusing into the first via interlayer insulating film 210. For example, a SiN film, a SiCN film, or the like can be used for the second protective layer 26.
 〔周辺構成〕
 次に、抵抗変化素子20の周辺の構成について説明する。
[Peripheral configuration]
Next, the configuration around the resistance change element 20 will be described.
 半導体基板201は、半導体装置2の基板である。半導体基板201の上には、第1層間絶縁膜202が形成される。 The semiconductor substrate 201 is a substrate of the semiconductor device 2. A first interlayer insulating film 202 is formed on the semiconductor substrate 201.
 第1層間絶縁膜202は、半導体基板201の上に形成される絶縁膜である。第1層間絶縁膜202の上には、第2層間絶縁膜203が形成される。また、第1層間絶縁膜202の上には、第2層間絶縁膜203に形成される配線溝250を介して、下部電極21を内包する第1バリアメタル205が形成される。図5の構成では、第1バリアメタル205の下部が第1層間絶縁膜202の上部に減り込んでいる。 The first interlayer insulating film 202 is an insulating film formed on the semiconductor substrate 201. A second interlayer insulating film 203 is formed on the first interlayer insulating film 202. In addition, a first barrier metal 205 including the lower electrode 21 is formed on the first interlayer insulating film 202 via a wiring groove 250 formed in the second interlayer insulating film 203. In the configuration of FIG. 5, the lower part of the first barrier metal 205 is reduced to the upper part of the first interlayer insulating film 202.
 第2層間絶縁膜203は、第1層間絶縁膜202の上に形成される絶縁膜である。第2層間絶縁膜203の上には、第1キャップ絶縁膜204が形成される。第2層間絶縁膜203には、配線溝250が形成される。 The second interlayer insulating film 203 is an insulating film formed on the first interlayer insulating film 202. A first cap insulating film 204 is formed on the second interlayer insulating film 203. A wiring groove 250 is formed in the second interlayer insulating film 203.
 第1キャップ絶縁膜204は、第2層間絶縁膜203の上に形成される絶縁膜である。第1キャップ絶縁膜204の上には、第1絶縁性バリア膜206が形成される。第1キャップ絶縁膜204には、配線溝250が形成される。 The first cap insulating film 204 is an insulating film formed on the second interlayer insulating film 203. A first insulating barrier film 206 is formed on the first cap insulating film 204. A wiring groove 250 is formed in the first cap insulating film 204.
 配線溝250は、第2層間絶縁膜203および第1キャップ絶縁膜204を貫通し、第1層間絶縁膜202の上面の一部を底面とする。配線溝250の内面には、第1バリアメタル205が形成される。なお、配線溝250が形成される第2層間絶縁膜203および第1キャップ絶縁膜204のことをまとめて第2絶縁層とも呼ぶ。 The wiring trench 250 penetrates the second interlayer insulating film 203 and the first cap insulating film 204, and a part of the upper surface of the first interlayer insulating film 202 is a bottom surface. A first barrier metal 205 is formed on the inner surface of the wiring groove 250. The second interlayer insulating film 203 and the first cap insulating film 204 in which the wiring trench 250 is formed are collectively referred to as a second insulating layer.
 第1バリアメタル205は、第2上部電極222と同様に、バリア性を有する導電性膜である。第1バリアメタル205は、下部電極21に含まれる金属が第1層間絶縁膜202、第2層間絶縁膜203、および第1キャップ絶縁膜204へ拡散することを防止するために、下部電極21の側面および底面を被覆する。例えば、下部電極21がCuを主成分とする金属元素からなる場合、第1バリアメタル205には、Ta、TaN、TiN、WCNのような高融点金属やその窒化物等、またはそれらの積層膜が好適である。 As with the second upper electrode 222, the first barrier metal 205 is a conductive film having a barrier property. The first barrier metal 205 is used to prevent the metal contained in the lower electrode 21 from diffusing into the first interlayer insulating film 202, the second interlayer insulating film 203, and the first cap insulating film 204. Cover side and bottom. For example, when the lower electrode 21 is made of a metal element whose main component is Cu, the first barrier metal 205 includes a refractory metal such as Ta, TaN, TiN, and WCN, nitrides thereof, or a laminated film thereof. Is preferred.
 第1バリアメタル205は、第2層間絶縁膜203および第1キャップ絶縁膜204に形成され、第1層間絶縁膜202の上面の一部を底面とする配線溝250の内面を被覆する。第1バリアメタル205の内部には、下部電極21が形成される。第1バリアメタル205の上には、抵抗変化素子20および第1絶縁性バリア膜206が形成される。 The first barrier metal 205 is formed on the second interlayer insulating film 203 and the first cap insulating film 204, and covers the inner surface of the wiring trench 250 having a part of the upper surface of the first interlayer insulating film 202 as the bottom surface. A lower electrode 21 is formed inside the first barrier metal 205. On the first barrier metal 205, the variable resistance element 20 and the first insulating barrier film 206 are formed.
 第1絶縁性バリア膜206は、下部電極21、第1キャップ絶縁膜204、および第1バリアメタル205の上に形成される。第1絶縁性バリア膜206の上には、抵抗変化素子20、第1保護層25、および第2保護層26が形成される。第1絶縁性バリア膜206の一部には、少なくとも1つの開口部240が形成される。第1絶縁性バリア膜206には、開口部240の内面と、開口部240の周辺を含む位置の上面の一部とに、バッファ層232が配される。また、第1絶縁性バリア膜206の上面には、バッファ層232を囲むように第1保護層25が形成される。さらに、第1絶縁性バリア膜206の上面の残部には、第1保護層25を囲むように第2保護層26が形成される。第1絶縁性バリア膜206は、金属の拡散を防ぐ機能を有する絶縁膜である。 The first insulating barrier film 206 is formed on the lower electrode 21, the first cap insulating film 204, and the first barrier metal 205. On the first insulating barrier film 206, the variable resistance element 20, the first protective layer 25, and the second protective layer 26 are formed. At least one opening 240 is formed in a part of the first insulating barrier film 206. In the first insulating barrier film 206, the buffer layer 232 is disposed on the inner surface of the opening 240 and a part of the upper surface including the periphery of the opening 240. A first protective layer 25 is formed on the upper surface of the first insulating barrier film 206 so as to surround the buffer layer 232. Further, the second protective layer 26 is formed on the remaining portion of the upper surface of the first insulating barrier film 206 so as to surround the first protective layer 25. The first insulating barrier film 206 is an insulating film having a function of preventing metal diffusion.
 第1絶縁性バリア膜206の開口部240においては、下部電極21と、抵抗変化層23のバッファ層232とが接する。開口部240の底に部分的に露出した下部電極21の表面と、抵抗変化層23のバッファ層232とが開口部240を介して接する構成にすると、一般的な半導体製造プロセスに対する親和性を向上できる。 In the opening 240 of the first insulating barrier film 206, the lower electrode 21 and the buffer layer 232 of the resistance change layer 23 are in contact with each other. When the surface of the lower electrode 21 partially exposed at the bottom of the opening 240 is in contact with the buffer layer 232 of the resistance change layer 23 through the opening 240, the affinity for a general semiconductor manufacturing process is improved. it can.
 また、固体電解質層231と下部電極21とは、バッファ層232を挟んで、第1絶縁性バリア膜206の開口部240にて接続される。バッファ層232を挟んで固体電解質層231と接続される下部電極21の横幅は、第1絶縁性バリア膜206の開口部240の直径よりも大きいことが好ましい。 Further, the solid electrolyte layer 231 and the lower electrode 21 are connected through the opening 240 of the first insulating barrier film 206 with the buffer layer 232 interposed therebetween. The lateral width of the lower electrode 21 connected to the solid electrolyte layer 231 with the buffer layer 232 interposed therebetween is preferably larger than the diameter of the opening 240 of the first insulating barrier film 206.
 第2ハードマスク層208は、第2上部電極222の上に形成される。第2ハードマスク層208の上には、第3ハードマスク層209が形成される。第2ハードマスク層208には、ビア穴260が貫通する。第2ハードマスク層208の側部は、第2保護層26によって被覆される。 The second hard mask layer 208 is formed on the second upper electrode 222. A third hard mask layer 209 is formed on the second hard mask layer 208. A via hole 260 passes through the second hard mask layer 208. The side portion of the second hard mask layer 208 is covered with the second protective layer 26.
 第3ハードマスク層209は、第2ハードマスク層208の上に形成される。第3ハードマスク層209の上には、第1ビア層間絶縁膜210が形成される。第3ハードマスク層209には、ビア穴260が貫通する。第3ハードマスク層209の側部および上部は、第2保護層26によって被覆される。 The third hard mask layer 209 is formed on the second hard mask layer 208. A first via interlayer insulating film 210 is formed on the third hard mask layer 209. A via hole 260 passes through the third hard mask layer 209. Side portions and an upper portion of the third hard mask layer 209 are covered with the second protective layer 26.
 第3ハードマスク層209は、第2ハードマスク層208をエッチングする際のハードマスクとなる膜である。第2ハードマスク層208は、第3ハードマスク層209と異なる種類の膜であることが好ましい。例えば、第2ハードマスク層208がSiCN膜であれば、第3ハードマスク層209には、SiCN膜とは異なるSiO2膜を用いればよい。 The third hard mask layer 209 is a film that serves as a hard mask when the second hard mask layer 208 is etched. The second hard mask layer 208 is preferably a different type of film from the third hard mask layer 209. For example, if the second hard mask layer 208 is a SiCN film, a SiO 2 film different from the SiCN film may be used for the third hard mask layer 209.
 第1ビア層間絶縁膜210は、第2保護層26の上に形成される絶縁膜である。第1ビア層間絶縁膜210の上には、第3層間絶縁膜211が形成される。第1ビア層間絶縁膜210には、ビア穴260が貫通する。図5の構成では、第2バリアメタル213の一部が第1ビア層間絶縁膜210の上部に減り込んでいる。 The first via interlayer insulating film 210 is an insulating film formed on the second protective layer 26. A third interlayer insulating film 211 is formed on the first via interlayer insulating film 210. A via hole 260 passes through the first via interlayer insulating film 210. In the configuration of FIG. 5, a part of the second barrier metal 213 is reduced above the first via interlayer insulating film 210.
 ビア穴260は、第2ハードマスク層208、第3ハードマスク層209、および第1ビア層間絶縁膜210を貫通し、第2上部電極222の上面の一部を底面とする。ビア穴260の内部には、ビアプラグ214を内包する第2バリアメタル213が配される。 The via hole 260 penetrates the second hard mask layer 208, the third hard mask layer 209, and the first via interlayer insulating film 210, and a part of the upper surface of the second upper electrode 222 is a bottom surface. A second barrier metal 213 that includes the via plug 214 is disposed inside the via hole 260.
 第3層間絶縁膜211は、第1ビア層間絶縁膜210の上に形成される絶縁膜である。第3層間絶縁膜211の上には、第2キャップ絶縁膜212が形成される。第3層間絶縁膜211には、配線溝270が貫通する。 The third interlayer insulating film 211 is an insulating film formed on the first via interlayer insulating film 210. A second cap insulating film 212 is formed on the third interlayer insulating film 211. A wiring trench 270 passes through the third interlayer insulating film 211.
 第2キャップ絶縁膜212は、第3層間絶縁膜211の上に形成される絶縁膜である。第2キャップ絶縁膜212の上には、第2絶縁性バリア膜216が形成される。第2キャップ絶縁膜212には、配線溝270が貫通する。 The second cap insulating film 212 is an insulating film formed on the third interlayer insulating film 211. A second insulating barrier film 216 is formed on the second cap insulating film 212. A wiring groove 270 passes through the second cap insulating film 212.
 配線溝270は、第3層間絶縁膜211および第2キャップ絶縁膜212を貫通し、第1ビア層間絶縁膜210の上面の一部を底面とする。配線溝270の内部には、上部配線215を内包する第2バリアメタル213が配される。図5の例では、配線溝270の方が、ビア穴260よりも開口面積は大きい。ビア穴260の内部に配されるビアプラグ214と、配線溝270の内部に配される第2バリアメタル213とは、一体として形成される。 The wiring trench 270 penetrates the third interlayer insulating film 211 and the second cap insulating film 212, and a part of the upper surface of the first via interlayer insulating film 210 is a bottom surface. A second barrier metal 213 that encloses the upper wiring 215 is disposed inside the wiring groove 270. In the example of FIG. 5, the wiring groove 270 has a larger opening area than the via hole 260. The via plug 214 disposed inside the via hole 260 and the second barrier metal 213 disposed inside the wiring groove 270 are integrally formed.
 第2バリアメタル213は、ビア穴260および配線溝270の内面に形成される。第2バリアメタル213の内部には、上部配線215が形成される。第2バリアメタル213の上には、第2絶縁性バリア膜216が形成される。 The second barrier metal 213 is formed on the inner surfaces of the via hole 260 and the wiring groove 270. An upper wiring 215 is formed inside the second barrier metal 213. A second insulating barrier film 216 is formed on the second barrier metal 213.
 第2バリアメタル213は、第1バリアメタル205と同様のバリア性を有する導電性膜である。第2バリアメタル213は、上部配線215およびビアプラグ214の側面および底面を被覆する。第2バリアメタル213は、ビアプラグ214および上部配線215に含まれる金属が第1ビア層間絶縁膜210、第3層間絶縁膜211および第2キャップ絶縁膜212へ拡散することを防止する。 The second barrier metal 213 is a conductive film having the same barrier properties as the first barrier metal 205. The second barrier metal 213 covers the side surfaces and the bottom surface of the upper wiring 215 and the via plug 214. The second barrier metal 213 prevents the metal contained in the via plug 214 and the upper wiring 215 from diffusing into the first via interlayer insulating film 210, the third interlayer insulating film 211, and the second cap insulating film 212.
 例えば、ビアプラグ214および上部配線215がCuを主成分とする場合、第2バリアメタル213には、第1バリアメタル205と同様に、TaやTaN、TiN、WCNのような高融点金属やその窒化物等、またはそれらの積層膜が用いられる。また、第2バリアメタル213は、接触抵抗を低減する観点から、抵抗変化素子20の構成の一部である第2上部電極222と同一材料であることが好ましい。例えば、第2上部電極222がTaである場合、その上部に接触する第2バリアメタル213にはTaを用いることが好ましい。 For example, when the via plug 214 and the upper wiring 215 are mainly composed of Cu, the second barrier metal 213 includes a refractory metal such as Ta, TaN, TiN, and WCN, and its nitride, as in the first barrier metal 205. A thing etc. or those laminated films are used. The second barrier metal 213 is preferably made of the same material as the second upper electrode 222 that is a part of the configuration of the resistance change element 20 from the viewpoint of reducing contact resistance. For example, when the second upper electrode 222 is Ta, it is preferable to use Ta for the second barrier metal 213 in contact with the upper portion thereof.
 ビアプラグ214は、ビア穴260の内部に配された第2バリアメタル213に内包される。すなわち、ビアプラグ214は、第2保護層26、第2ハードマスク層208、および第3ハードマスク層209に形成された下穴に第2バリアメタル213を介して埋め込まれている。ビアプラグ214は、配線溝270の内部に配される上部配線215と一体として形成される。 The via plug 214 is included in the second barrier metal 213 disposed inside the via hole 260. That is, the via plug 214 is embedded in the prepared holes formed in the second protective layer 26, the second hard mask layer 208, and the third hard mask layer 209 via the second barrier metal 213. The via plug 214 is formed integrally with the upper wiring 215 disposed inside the wiring groove 270.
 上部配線215は、配線溝270の内面に配された第2バリアメタル213に内包される。すなわち、上部配線215は、第3層間絶縁膜211および第2キャップ絶縁膜212に形成された配線溝270に第2バリアメタル213を介して埋め込まれた配線である。上部配線215は、配線溝270の内部に配されるビアプラグ214と一体として形成される。 The upper wiring 215 is included in the second barrier metal 213 disposed on the inner surface of the wiring groove 270. That is, the upper wiring 215 is a wiring embedded in the wiring groove 270 formed in the third interlayer insulating film 211 and the second cap insulating film 212 via the second barrier metal 213. The upper wiring 215 is formed integrally with the via plug 214 disposed inside the wiring groove 270.
 ビアプラグ214および上部配線215は、第2バリアメタル213を介して抵抗変化素子20と電気的に接続される。例えば、上部配線215およびビアプラグ214には、Cuを含む材料が用いられる。 The via plug 214 and the upper wiring 215 are electrically connected to the resistance change element 20 via the second barrier metal 213. For example, a material containing Cu is used for the upper wiring 215 and the via plug 214.
 第2絶縁性バリア膜216は、第2キャップ絶縁膜212、第2バリアメタル213、および上部配線215の上に形成される。第2絶縁性バリア膜216は、金属の拡散を防ぐ機能を有する絶縁膜である。 The second insulating barrier film 216 is formed on the second cap insulating film 212, the second barrier metal 213, and the upper wiring 215. The second insulating barrier film 216 is an insulating film having a function of preventing metal diffusion.
 以上のように、本実施形態においては、第1の実施形態と同様に、第1保護層および第2保護層を設け、抵抗変化層の側面を第1保護層で被覆し、さらに第1保護層を第2保護層で被覆するため、抵抗変化層の固体電解質層への吸湿が抑制される。その結果、本実施形態の半導体装置によれば、固体電解質層が吸湿することに起因する素子動作のばらつきが低減されるので、セット電圧のばらつきが抑制される。すなわち、本実施形態の半導体装置によれば、抵抗変化層の固体電解質層への吸湿を抑制させ、セット電圧のばらつきを低減できる。 As described above, in the present embodiment, as in the first embodiment, the first protective layer and the second protective layer are provided, the side surfaces of the resistance change layer are covered with the first protective layer, and the first protection is further performed. Since the layer is covered with the second protective layer, moisture absorption of the variable resistance layer to the solid electrolyte layer is suppressed. As a result, according to the semiconductor device of the present embodiment, variation in element operation due to moisture absorption by the solid electrolyte layer is reduced, and variation in set voltage is suppressed. That is, according to the semiconductor device of the present embodiment, moisture absorption of the variable resistance layer to the solid electrolyte layer can be suppressed, and variation in set voltage can be reduced.
 〔製造方法〕
 次に、本実施形態の半導体装置2の製造方法について図面を参照しながら説明する。なお、以下に示す半導体装置2の製造方法は、一例であって、半導体装置2の製造方法を限定するものではない。また、以下に示す半導体装置2の製造方法においては、いくつかの工程をまとめたり、具体的な処理を簡略化したりする場合がある。
〔Production method〕
Next, a method for manufacturing the semiconductor device 2 of the present embodiment will be described with reference to the drawings. Note that the manufacturing method of the semiconductor device 2 described below is an example, and the manufacturing method of the semiconductor device 2 is not limited. Moreover, in the manufacturing method of the semiconductor device 2 shown below, some processes may be put together or a specific process may be simplified.
 図6~図19は、半導体装置2の製造方法について説明するための模式図である。図6~図19は、製造過程における半導体装置2の部分断面図である。半導体装置2の製造方法は、工程A、工程B、および工程Cを含む。 6 to 19 are schematic views for explaining a method for manufacturing the semiconductor device 2. 6 to 19 are partial cross-sectional views of the semiconductor device 2 in the manufacturing process. The manufacturing method of the semiconductor device 2 includes a process A, a process B, and a process C.
 〔工程A〕
 第1に、図6~図10を用いて、半導体装置2の製造方法の工程Aについて説明する。工程Aは、工程A1~工程A5を含む。工程Aは、半導体基板201上に第1層間絶縁膜202を形成してから、第1絶縁性バリア膜206に開口部240を形成するまでの工程である。
[Process A]
First, step A of the method for manufacturing the semiconductor device 2 will be described with reference to FIGS. Step A includes step A1 to step A5. Process A is a process from the formation of the first interlayer insulating film 202 on the semiconductor substrate 201 to the formation of the opening 240 in the first insulating barrier film 206.
 まず、図6のように、半導体基板201の上に、第1層間絶縁膜202、第2層間絶縁膜203、および第1キャップ絶縁膜204を順番に積層する(工程A1)。 First, as shown in FIG. 6, a first interlayer insulating film 202, a second interlayer insulating film 203, and a first cap insulating film 204 are sequentially stacked on a semiconductor substrate 201 (step A1).
 半導体基板201は、基板そのものであってもよく、基板表面に半導体素子(図示しない)が形成されている基板であってもよい。例えば、第1層間絶縁膜202には、膜厚300ナノメートルのSiO2膜を用いることができる。また、例えば、第2層間絶縁膜203には、膜厚150ナノメートルのSiOCH膜を用いることができる。また、例えば、第1キャップ絶縁膜204には、膜厚100ナノメートルのSiO2膜を用いることができる。 The semiconductor substrate 201 may be the substrate itself or a substrate on which a semiconductor element (not shown) is formed on the substrate surface. For example, the first interlayer insulating film 202 can be a 300 nm thick SiO 2 film. Further, for example, a SiOCH film having a thickness of 150 nm can be used for the second interlayer insulating film 203. For example, the first cap insulating film 204 can be a SiO 2 film having a thickness of 100 nanometers.
 次に、図7のように、リソグラフィ法を用いて、第1キャップ絶縁膜204、第2層間絶縁膜203、および第1層間絶縁膜202の積層膜に配線溝250を形成する(工程A2)。 Next, as shown in FIG. 7, a wiring trench 250 is formed in the laminated film of the first cap insulating film 204, the second interlayer insulating film 203, and the first interlayer insulating film 202 by using a lithography method (step A2). .
 リソグラフィ法は、フォトレジスト形成処理、ドライエッチング処理、およびレジスト除去処理を含む。フォトレジスト形成処理は、第1キャップ絶縁膜204の上に所定のパターンのレジストを形成する処理である。ドライエッチング処理は、積層膜に対してレジストをマスクにして異方性エッチングを行う処理である。レジスト除去処理は、エッチングにより配線溝250を形成した後にレジストを除去する処理である。 The lithography method includes a photoresist formation process, a dry etching process, and a resist removal process. The photoresist forming process is a process of forming a resist with a predetermined pattern on the first cap insulating film 204. The dry etching process is a process of performing anisotropic etching on the laminated film using a resist as a mask. The resist removal process is a process of removing the resist after forming the wiring groove 250 by etching.
 次に、図8のように、配線溝250の内面に第1バリアメタル205を形成し、その第1バリアメタル205に金属を埋め込んで下部電極21を形成する(工程A3)。 Next, as shown in FIG. 8, the first barrier metal 205 is formed on the inner surface of the wiring groove 250, and the lower electrode 21 is formed by embedding the metal in the first barrier metal 205 (step A3).
 例えば、第1バリアメタル205には、TaN(膜厚5ナノメートル)/Ta(膜厚5ナノメートル)の積層構造を用いることができる。例えば、下部電極21には、Cuを用いることができる。 For example, a stacked structure of TaN (film thickness 5 nanometers) / Ta (film thickness 5 nanometers) can be used for the first barrier metal 205. For example, Cu can be used for the lower electrode 21.
 次に、図9のように、下部電極21、第1バリアメタル205、および第1キャップ絶縁膜204の上に、第1絶縁性バリア膜206および第1ハードマスク層207を順番に積層する(工程A4)。 Next, as shown in FIG. 9, a first insulating barrier film 206 and a first hard mask layer 207 are sequentially stacked on the lower electrode 21, the first barrier metal 205, and the first cap insulating film 204 (see FIG. 9). Step A4).
 例えば、第1絶縁性バリア膜206には、膜厚30ナノメートルのSiCN膜を用いることができる。また、第1ハードマスク層207は、ドライエッチング加工におけるエッチング選択比を大きく保つ観点から、第1絶縁性バリア膜206とは異なる材料であることが好ましい。例えば、第1ハードマスク層207には、堆積膜厚が膜厚40ナノメートルのSiO2膜を用いることができる。 For example, as the first insulating barrier film 206, a SiCN film having a thickness of 30 nanometers can be used. Further, the first hard mask layer 207 is preferably made of a material different from that of the first insulating barrier film 206 from the viewpoint of maintaining a high etching selectivity in the dry etching process. For example, the first hard mask layer 207 can be a SiO 2 film having a deposited film thickness of 40 nanometers.
 次に、第1絶縁性バリア膜206の上に、所定の開口部パターンを有するフォトレジストを形成し、ドライエッチングを行って第1絶縁性バリア膜206に開口部を形成する(図は省略)。例えば、フォトレジストは、O2プラズマアッシング等によって剥離する。 Next, a photoresist having a predetermined opening pattern is formed on the first insulating barrier film 206, and dry etching is performed to form an opening in the first insulating barrier film 206 (not shown). . For example, the photoresist is removed by O 2 plasma ashing or the like.
 次に、第1ハードマスク層207の開口部の底部に露出する第1絶縁性バリア膜206をエッチバックすることにより、図10のように、下部電極21の上面の一部が露出する開口部240を形成する(工程A5)。 Next, by etching back the first insulating barrier film 206 exposed at the bottom of the opening of the first hard mask layer 207, the opening where a part of the upper surface of the lower electrode 21 is exposed as shown in FIG. 240 is formed (step A5).
 例えば、第1ハードマスク層207は、膜厚を40ナノメートルに設定すれば、エッチバック中にエッチング除去される。エッチバック後、開口部240から露出する下部電極21の表面は、有機溶剤や、水素ガス、不活性ガスなどを用いたプラズマ照射によって清浄化する。 For example, the first hard mask layer 207 is etched away during etch back if the film thickness is set to 40 nanometers. After the etch back, the surface of the lower electrode 21 exposed from the opening 240 is cleaned by plasma irradiation using an organic solvent, hydrogen gas, inert gas, or the like.
 例えば、第1絶縁性バリア膜206がSiN膜あるいはSiCN膜である場合、第1絶縁性バリア膜206の開口部240を形成する際のエッチバックには、CF4を含むプラズマを用いることができる。CF4を含むプラズマを用いる場合、CF4/Arのガス流量を25/50sccm(Standard Cubic Centimeter per Minute)、圧力を0.53パスカル、ソースパワーを400ワット、基板バイアスパワーを90ワットに設定すればよい。第1絶縁性バリア膜206をエッチバックする際には、ソースパワーを低下させたり、基板バイアスを大きくしたりすることによってエッチング時のイオン性を向上させ、第1絶縁性バリア膜206の開口面を傾斜させたテーパー形状に形成できる。また、エッチバックによって、第1ハードマスク層207をエッチング除去できる。 For example, when the first insulating barrier film 206 is a SiN film or a SiCN film, plasma containing CF 4 can be used for etch back when the opening 240 of the first insulating barrier film 206 is formed. . When using a plasma containing CF 4 , set the CF 4 / Ar gas flow rate to 25/50 sccm (Standard Cubic Centimeter per Minute), the pressure to 0.53 Pascal, the source power to 400 watts, and the substrate bias power to 90 watts. That's fine. When the first insulating barrier film 206 is etched back, the ionicity at the time of etching is improved by reducing the source power or increasing the substrate bias, so that the opening surface of the first insulating barrier film 206 is improved. Can be formed into a tapered shape. Further, the first hard mask layer 207 can be removed by etching back.
 以上が、半導体装置2の製造方法の工程Aについての説明である。 This completes the description of the process A of the method for manufacturing the semiconductor device 2.
 〔工程B〕
 第2に、図11~図15を用いて、半導体装置2の製造方法の工程Bについて説明する。工程Bは、工程B1~工程B5を含む。工程Bは、抵抗変化素子20を形成し、形成した抵抗変化素子20を第2保護層によって被覆するまでの工程である。
[Process B]
Secondly, step B of the method for manufacturing the semiconductor device 2 will be described with reference to FIGS. Step B includes Steps B1 to B5. Process B is a process until the resistance change element 20 is formed and the formed resistance change element 20 is covered with the second protective layer.
 まず、図11のように、下部電極21が露出した開口部240の内面を含む第1絶縁性バリア膜206の上に、バッファ層232を形成する(工程B1)。 First, as shown in FIG. 11, a buffer layer 232 is formed on the first insulating barrier film 206 including the inner surface of the opening 240 from which the lower electrode 21 is exposed (step B1).
 例えば、バッファ層232には、膜厚1.2ナノメートルの酸化チタンTiOy1膜を用いることができる。例えば、TiOy1の酸素組成y1は、1.5以上2.0以下が好適である。バッファ層232として酸化チタンTiOy1膜を用いる場合、チタンTiを第1絶縁性バリア膜206の上に堆積後、減圧下にて、大気に暴露することなくO2を含むガス照射によって酸化処理を行う。そして、減圧下にて、成膜温度より高い温度で真空加熱処理を行うことによって、図11のように、バッファ層232を形成できる。ただし、ここで挙げたバッファ層232の形成方法は一例であって、バッファ層232の形成方法を限定するものではない。 For example, the buffer layer 232 can be a titanium oxide TiO y1 film having a thickness of 1.2 nanometers. For example, the oxygen composition y1 of TiO y1 is preferably 1.5 or more and 2.0 or less. When a titanium oxide TiO y1 film is used as the buffer layer 232, after titanium Ti is deposited on the first insulating barrier film 206, oxidation treatment is performed by irradiation with a gas containing O 2 under reduced pressure without being exposed to the atmosphere. Do. Then, by performing vacuum heat treatment at a temperature higher than the film formation temperature under reduced pressure, the buffer layer 232 can be formed as shown in FIG. However, the formation method of the buffer layer 232 mentioned here is an example, and the formation method of the buffer layer 232 is not limited.
 例えば、バッファ層232を形成させるための金属層は、金属原料の抵抗加熱や、電子線照射、レーザー照射などによる蒸着法、DC(Direct Current)スパッタリング法などによって堆積することもできる。例えば、バッファ層232が酸化チタンTiOy1膜の場合、DCスパッタリング法により、Tiをターゲットとして、スパッタパワー100W、基板温度は室温にて、Ar流量20sccm、圧力0.5Paの条件を用いることでバッファ層232を堆積できる。 For example, the metal layer for forming the buffer layer 232 can be deposited by resistance heating of a metal raw material, an evaporation method using electron beam irradiation or laser irradiation, a direct current (DC) sputtering method, or the like. For example, when the buffer layer 232 is a titanium oxide TiO y1 film, the buffer is formed by DC sputtering using Ti as a target, sputtering power of 100 W, substrate temperature at room temperature, Ar flow rate of 20 sccm, and pressure of 0.5 Pa. Layer 232 can be deposited.
 次に、図12のように、バッファ層232の上に、固体電解質層231、第1上部電極221、および第2上部電極222を順番に積層する(工程B2)。 Next, as shown in FIG. 12, the solid electrolyte layer 231, the first upper electrode 221, and the second upper electrode 222 are sequentially stacked on the buffer layer 232 (step B2).
 例えば、固体電解質層231には、膜厚6ナノメートルのSiOCH膜が用いられる。固体電解質層231にSiOCH膜を用いる場合、固体電解質層231をプラズマCVD(Chemical Vapor Deposition)法によって堆積し、続いて不活性ガスプラズマ処理を行う。 For example, a SiOCH film having a thickness of 6 nm is used for the solid electrolyte layer 231. When a SiOCH film is used for the solid electrolyte layer 231, the solid electrolyte layer 231 is deposited by a plasma CVD (Chemical Vapor Deposition) method, and then an inert gas plasma treatment is performed.
 プラズマCVD法とは、基板上に連続膜を形成する手法である。プラズマCVD法では、気体原料または液体原料を気化させた原料を減圧下の反応室に連続的に供給し、プラズマエネルギーによって分子を励起状態にして、気相反応や基板表面反応などによって基板上に連続膜を形成する。 The plasma CVD method is a method of forming a continuous film on a substrate. In the plasma CVD method, a raw material obtained by vaporizing a gas raw material or a liquid raw material is continuously supplied to a reaction chamber under reduced pressure, molecules are excited by plasma energy, and the substrate is subjected to a gas phase reaction or a substrate surface reaction. A continuous film is formed.
 固体電解質層231にSiOCH膜を用いる場合、次のような条件で、プラズマCVD法によって固体電解質層231を形成できる。原料には、液体SiOCHモノマー分子を用いる。そして、基板温度は400℃以下、ヘリウムHeを流量500~2000sccm、原料流量を0.1~0.8グラム/分、プラズマCVDチャンバー圧力を360~700パスカル、RF(Radio Frequency)出力を20~100ワットに設定する。より具体的には、基板温度を350℃、He流量を1500sccm、原料流量を0.75グラム/分、プラズマCVDチャンバー圧力を470パスカル、RF出力を50ワットに設定する。 When a SiOCH film is used for the solid electrolyte layer 231, the solid electrolyte layer 231 can be formed by a plasma CVD method under the following conditions. As the raw material, liquid SiOCH monomer molecules are used. The substrate temperature is 400 ° C. or lower, the flow rate of helium He is 500 to 2000 sccm, the raw material flow rate is 0.1 to 0.8 g / min, the plasma CVD chamber pressure is 360 to 700 Pascal, and the RF (Radio Frequency) output is 20 to Set to 100 watts. More specifically, the substrate temperature is set to 350 ° C., the He flow rate is set to 1500 sccm, the raw material flow rate is set to 0.75 g / min, the plasma CVD chamber pressure is set to 470 Pascals, and the RF output is set to 50 Watts.
 例えば、固体電解質層231を堆積させた後の不活性プラズマ処理は、不活性ガスとしてHeを用い、基板温度を400℃以下、He流量を500~1500sccm、プラズマチャンバー圧力を2.7~3.5トール、RF出力を20~200ワットに設定する。より具体的には、基板温度を350℃、He流量を1000sccm、プラズマチャンバー圧力を360パスカル、RF出力を50ワットに設定する。不活性プラズマ処理を用いれば、固体電解質層231の上に形成する第1上部電極221との密着性を改善できる。 For example, the inert plasma treatment after depositing the solid electrolyte layer 231 uses He as an inert gas, the substrate temperature is 400 ° C. or lower, the He flow rate is 500-1500 sccm, and the plasma chamber pressure is 2.7-3. Set 5 Torr, RF power to 20-200 Watts. More specifically, the substrate temperature is set to 350 ° C., the He flow rate is set to 1000 sccm, the plasma chamber pressure is set to 360 Pascals, and the RF output is set to 50 Watts. If inert plasma processing is used, adhesiveness with the 1st upper electrode 221 formed on the solid electrolyte layer 231 can be improved.
 例えば、第1上部電極221および第2上部電極222は、DCスパッタリング法によって固体電解質層231上に順番に形成する。例えば、第1上部電極221は、膜厚10ナノメートルのルテニウムチタン合金Ru0.5Ti0.5である。例えば、第2上部電極222は、膜厚25ナノメートルのTaである。なお、第1上部電極221がRuあるいはRu合金である場合、第1上部電極221の表面酸化を防止するために、第1上部電極221の堆積後に大気暴露することなく連続して第2上部電極222を堆積することが好ましい。 For example, the first upper electrode 221 and the second upper electrode 222 are sequentially formed on the solid electrolyte layer 231 by DC sputtering. For example, the first upper electrode 221 is a ruthenium titanium alloy Ru 0.5 Ti 0.5 having a thickness of 10 nanometers. For example, the second upper electrode 222 is Ta having a film thickness of 25 nanometers. When the first upper electrode 221 is made of Ru or a Ru alloy, the second upper electrode is continuously exposed without being exposed to the atmosphere after the first upper electrode 221 is deposited in order to prevent surface oxidation of the first upper electrode 221. Preferably 222 is deposited.
 例えば、第1上部電極221としてRu0.5Ti0.5を形成する場合、RuおよびTiをターゲットとした同時DCスパッタリングを用いればよい。その場合、基板温度を室温に設定し、Ruのスパッタ出力を120ワット、Tiのスパッタ出力を150ワット、Arの流量を20sccm、圧力を0.5Paに設定すればよい。また、第2上部電極222として膜厚25ナノメートルのTaを形成する場合、TaをターゲットとしたDCスパッタリングを用いればよい。その場合、基板温度を室温に設定し、スパッタ出力を300ワット、Ar流量を25sccm、圧力を0.5パスカルに設定すればよい。 For example, when forming Ru 0.5 Ti 0.5 as the first upper electrode 221, simultaneous DC sputtering using Ru and Ti as targets may be used. In this case, the substrate temperature is set to room temperature, the Ru sputtering output is set to 120 watts, the Ti sputtering output is set to 150 watts, the Ar flow rate is set to 20 sccm, and the pressure is set to 0.5 Pa. Further, when forming Ta with a thickness of 25 nanometers as the second upper electrode 222, DC sputtering using Ta as a target may be used. In that case, the substrate temperature is set to room temperature, the sputtering output is set to 300 watts, the Ar flow rate is set to 25 sccm, and the pressure is set to 0.5 Pascal.
 下部電極21、バッファ層232、固体電解質層231、第1上部電極221、および第2上部電極222は、抵抗変化素子20となる積層体を構成する。 The lower electrode 21, the buffer layer 232, the solid electrolyte layer 231, the first upper electrode 221, and the second upper electrode 222 constitute a stacked body that becomes the resistance change element 20.
 次に、図13のように、第2上部電極222上に、第2ハードマスク層208、および第3ハードマスク層209を順番に積層する(工程B3)。 Next, as shown in FIG. 13, the second hard mask layer 208 and the third hard mask layer 209 are sequentially stacked on the second upper electrode 222 (step B3).
 例えば、第2ハードマスク層208は、密着性の観点から、第1絶縁性バリア膜206と同一材料を用いることが好ましい。例えば、第2ハードマスク層208には、膜厚30ナノメートルのSiCN膜を用いる。例えば、第3ハードマスク層209には、膜厚100ナノメートルのSiO2膜を用いる。 For example, the second hard mask layer 208 is preferably made of the same material as the first insulating barrier film 206 from the viewpoint of adhesion. For example, a SiCN film having a thickness of 30 nanometers is used for the second hard mask layer 208. For example, as the third hard mask layer 209, a SiO 2 film having a thickness of 100 nanometers is used.
 例えば、第2ハードマスク層208および第3ハードマスク層209は、プラズマCVD法を用いて形成できる。成膜温度には、200℃~400℃の範囲を選択すればよい。より具体的には、成膜温度は350℃に設定するのが好ましい。 For example, the second hard mask layer 208 and the third hard mask layer 209 can be formed using a plasma CVD method. The film formation temperature may be selected in the range of 200 ° C. to 400 ° C. More specifically, the film forming temperature is preferably set to 350 ° C.
 次に、第3ハードマスク層209の上に抵抗変化素子20の加工パターンを有するフォトレジストを形成後、第2ハードマスク層208が露出するまで第3ハードマスク層209をドライエッチングする(図は省略)。フォトレジストは、O2プラズマアッシング処理によって除去する。 Next, after forming a photoresist having a processing pattern of the resistance change element 20 on the third hard mask layer 209, the third hard mask layer 209 is dry-etched until the second hard mask layer 208 is exposed (the figure is shown). (Omitted). The photoresist is removed by an O 2 plasma ashing process.
 次に、図14のように、第3ハードマスク層209をマスクとして、第2ハードマスク層208、第2上部電極222、第1上部電極221、固体電解質層231およびバッファ層232を連続的にドライエッチングする(工程B4)。 Next, as shown in FIG. 14, the second hard mask layer 208, the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231 and the buffer layer 232 are successively formed using the third hard mask layer 209 as a mask. Dry etching is performed (step B4).
 例えば、第3ハードマスク層209のドライエッチングは、第2ハードマスク層208の上面または内部で停止させることが好ましい。この場合、抵抗変化素子20は、第2ハードマスク層208によって被覆されているため、O2プラズマ中に暴露されることはない。また、Ruを含む第1上部電極221についても、O2プラズマに暴露されることがないため、第1上部電極221に対するサイドエッチの発生を抑制することができる。例えば、第3ハードマスク層209のドライエッチングには、平行平板型のドライエッチング装置を用いることができる。 For example, the dry etching of the third hard mask layer 209 is preferably stopped on the upper surface or inside the second hard mask layer 208. In this case, since the variable resistance element 20 is covered with the second hard mask layer 208, it is not exposed to O 2 plasma. Further, since the first upper electrode 221 containing Ru is not exposed to O 2 plasma, the occurrence of side etching on the first upper electrode 221 can be suppressed. For example, a parallel plate type dry etching apparatus can be used for dry etching of the third hard mask layer 209.
 また、第2ハードマスク層208、第2上部電極222、第1上部電極221、固体電解質層231、およびバッファ層232の各エッチングについても、平行平板型のドライエッチャーを用いて一括して行うことができる。 Further, the etching of the second hard mask layer 208, the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231, and the buffer layer 232 is also performed collectively using a parallel plate type dry etcher. Can do.
 例えば、第2ハードマスク層208にSiCNを用いる場合、CF4/Arガスの流量を25/50sccm、圧力を0.53パスカル、ソース出力を400ワット、基板バイアス出力を90ワットに設定すればよい。 For example, when SiCN is used for the second hard mask layer 208, the flow rate of CF 4 / Ar gas is 25/50 sccm, the pressure is 0.53 Pascal, the source output is 400 watts, and the substrate bias output is 90 watts. .
 例えば、第2上部電極222にTaを用いる場合、基板温度を90℃、塩素Cl2ガスの流量を50sccm、圧力を0.53パスカル、ソース出力を400ワット、基板バイアス出力を60ワットに設定すればよい。 For example, when Ta is used for the second upper electrode 222, the substrate temperature is set to 90 ° C., the chlorine Cl 2 gas flow rate is set to 50 sccm, the pressure is set to 0.53 Pascal, the source output is set to 400 watts, and the substrate bias output is set to 60 watts. That's fine.
 例えば、第1上部電極221にRu0.5Ti0.5を用いる場合、基板温度を室温に設定し、O2/Cl2ガスの流量を160/30sccm、圧力を0.53パスカル、ソース出力を300~600ワット、基板バイアス出力を100~300Wに設定すればよい。 For example, when Ru 0.5 Ti 0.5 is used for the first upper electrode 221, the substrate temperature is set to room temperature, the flow rate of O 2 / Cl 2 gas is 160/30 sccm, the pressure is 0.53 Pascal, and the source output is 300 to 600. What is necessary is just to set watt and a substrate bias output to 100-300W.
 例えば、固体電解質層231にSiOCHを用いる場合、第1上部電極221にRu0.5Ti0.5を用いる場合と同条件に設定すればよい。その場合、固体電解質層231は、第1上部電極221と一括してエッチングできる。 For example, when SiOCH is used for the solid electrolyte layer 231, the same conditions may be set as when Ru 0.5 Ti 0.5 is used for the first upper electrode 221. In that case, the solid electrolyte layer 231 can be etched together with the first upper electrode 221.
 例えば、バッファ層232にTiOy1を用いる場合、第1上部電極221にRu0.5Ti0.5を用いる場合の固体電解質層231と同様に、第1上部電極221と同条件に設定すればよい。その場合、バッファ層232は、第1上部電極221および固体電解質層231と一括してエッチングできる。 For example, when TiO y1 is used for the buffer layer 232, the same conditions as those for the first upper electrode 221 may be set in the same manner as the solid electrolyte layer 231 when Ru 0.5 Ti 0.5 is used for the first upper electrode 221. In that case, the buffer layer 232 can be etched together with the first upper electrode 221 and the solid electrolyte layer 231.
 次に、図15のように、第2上部電極222、第1上部電極221、固体電解質層231、およびバッファ層232の側面に第1保護層25を形成する(工程B5)。 Next, as shown in FIG. 15, the first protective layer 25 is formed on the side surfaces of the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231, and the buffer layer 232 (step B5).
 例えば、第1保護層25に酸化チタンTiOy1膜を用いる場合、第2上部電極222、第1上部電極221、固体電解質層231、バッファ層232の側面にチタンTiを堆積後、減圧下にて、大気に暴露することなくO2を含むガス照射によって酸化処理を行う。そして、減圧下にて、成膜温度より高い温度で真空加熱処理を行うことによって、図11のように、バッファ層232を形成できる。ただし、ここで挙げたバッファ層232の形成方法は一例であって、バッファ層232の形成方法を限定するものではない。 For example, when a titanium oxide TiO y1 film is used for the first protective layer 25, titanium Ti is deposited on the side surfaces of the second upper electrode 222, the first upper electrode 221, the solid electrolyte layer 231, and the buffer layer 232, and then under reduced pressure. The oxidation treatment is performed by irradiation with a gas containing O 2 without being exposed to the atmosphere. Then, by performing vacuum heat treatment at a temperature higher than the film formation temperature under reduced pressure, the buffer layer 232 can be formed as shown in FIG. However, the formation method of the buffer layer 232 mentioned here is an example, and the formation method of the buffer layer 232 is not limited.
 例えば、第1保護層25をバッファ層232と同一の材料とすれば、バッファ層232をエッチング加工すると同時に、露出した固体電解質層231、バッファ層232、第2上部電極222、第1上部電極221の側面に密着させて第1保護層25を形成できる。第1保護層25をバッファ層232と同時にエッチングする場合は、工程B4において、固体電解質層231をエッチングした後に、第2上部電極222、第1上部電極221、および固体電解質層231の側面に第1保護層25を形成させればよい。 For example, if the first protective layer 25 is made of the same material as the buffer layer 232, the buffer layer 232 is etched, and at the same time, the exposed solid electrolyte layer 231, buffer layer 232, second upper electrode 222, first upper electrode 221 are etched. The first protective layer 25 can be formed in close contact with the side surfaces of the first protective layer 25. In the case where the first protective layer 25 is etched simultaneously with the buffer layer 232, the second electrolyte electrode 231 is etched on the side surfaces of the second upper electrode 222, the first upper electrode 221, and the solid electrolyte layer 231 after etching the solid electrolyte layer 231 in Step B 4. One protective layer 25 may be formed.
 次に、図16のように、第3ハードマスク層209、第2ハードマスク層208、第1保護層25、および第1絶縁性バリア膜206の上面および側面に第2保護層26を形成する(工程B6)。 Next, as shown in FIG. 16, the second protective layer 26 is formed on the top and side surfaces of the third hard mask layer 209, the second hard mask layer 208, the first protective layer 25, and the first insulating barrier film 206. (Step B6).
 第2保護層26は、第1絶縁性バリア膜206および第2ハードマスク層208と同一材料を用いることが好ましい。例えば、第2保護層26には、膜厚30ナノメートルのSiCN膜を用いる。 The second protective layer 26 is preferably made of the same material as the first insulating barrier film 206 and the second hard mask layer 208. For example, a SiCN film having a thickness of 30 nanometers is used for the second protective layer 26.
 例えば、第2保護層26にSiCN膜を用いる場合、テトラメチルシランとアンモニアを原料ガスとし、基板温度を200℃に設定し、プラズマCVD法を用いて第2保護層26を形成できる。第1絶縁性バリア膜206、第2保護層26、および第2ハードマスク層208を同一の材料(例えば、SiCN膜)とすれば、抵抗変化素子20の周囲を一体化して保護できるため、接合界面の密着性を向上できる。その結果、吸湿性や耐水性、酸素脱離耐性を向上でき、素子の歩留まりおよび信頼性を向上できる。 For example, when a SiCN film is used for the second protective layer 26, the second protective layer 26 can be formed by using plasma CVD method with tetramethylsilane and ammonia as source gases and a substrate temperature of 200 ° C. If the first insulating barrier film 206, the second protective layer 26, and the second hard mask layer 208 are made of the same material (for example, a SiCN film), the periphery of the resistance change element 20 can be integrated and protected. Interfacial adhesion can be improved. As a result, hygroscopicity, water resistance and oxygen desorption resistance can be improved, and the yield and reliability of the device can be improved.
 以上が、半導体装置2の製造方法の工程Bについての説明である。 This completes the description of the process B of the method for manufacturing the semiconductor device 2.
 〔工程C〕
 第3に、図17~図20を用いて、半導体装置2の製造方法の工程Cについて説明する。工程Cは、工程C1~工程C4を含む。工程Cは、第2保護層26の上に第1ビア層間絶縁膜210、第3層間絶縁膜211、および第2キャップ絶縁膜212を形成した積層構造にビア穴260および配線溝270を形成するまでの工程である。
[Process C]
Third, step C of the method for manufacturing the semiconductor device 2 will be described with reference to FIGS. Step C includes steps C1 to C4. Step C forms a via hole 260 and a wiring groove 270 in a laminated structure in which the first via interlayer insulating film 210, the third interlayer insulating film 211, and the second cap insulating film 212 are formed on the second protective layer 26. It is a process until.
 まず、図17のように、第2保護層26の上面および側面に第1ビア層間絶縁膜210を堆積させる(工程C1)。 First, as shown in FIG. 17, a first via interlayer insulating film 210 is deposited on the upper surface and side surfaces of the second protective layer 26 (step C1).
 例えば、第1ビア層間絶縁膜210は、プラズマCVD法を用いて、第2保護層26の上面および側面に堆積させる。例えば、第1ビア層間絶縁膜210には、膜厚210ナノメートルのSiO2膜を用いることができる。堆積させた第1ビア層間絶縁膜210は、CMP法(Chemical Mechanical Polishing)を用いて平坦化する。 For example, the first via interlayer insulating film 210 is deposited on the upper surface and side surfaces of the second protective layer 26 using a plasma CVD method. For example, the first via interlayer insulating film 210 may be a SiO 2 film having a thickness of 210 nanometers. The deposited first via interlayer insulating film 210 is planarized using a CMP method (Chemical Mechanical Polishing).
 CMP法とは、ウェハ表面に研磨液を流しながら回転させた研磨パッドに接触させて研磨することによって、多層配線形成プロセス中に生じるウェハ表面の凹凸を平坦化する方法である。CMP法は、層間絶縁膜を研磨して平坦化する場合の他、ダマシン配線と呼ばれる埋め込み配線の形成にも用いられる。配線材料に銅Cuを用いる場合、予め溝が形成された絶縁膜上にCuを形成した後、CMP法によって溝に埋め込まれたCuを残し、絶縁膜上の余剰のCuを研磨して除去することによって、溝にCuが埋め込まれたダマシン配線を形成できる。 The CMP method is a method of flattening the unevenness of the wafer surface that occurs during the multilayer wiring formation process by contacting the polishing surface with a polishing pad that is rotated while flowing a polishing liquid on the wafer surface for polishing. The CMP method is used not only for polishing and planarizing an interlayer insulating film, but also for forming a buried wiring called a damascene wiring. When copper Cu is used as the wiring material, Cu is formed on the insulating film in which the groove is formed in advance, and then the Cu embedded in the groove is left by CMP, and excess Cu on the insulating film is polished and removed. Thus, a damascene wiring in which Cu is embedded in the groove can be formed.
 例えば、第1ビア層間絶縁膜210として膜厚210ナノメートルのSiO2膜を平坦化する場合、第1ビア層間絶縁膜210の頂面から約100ナノメートルを削り取れば、約110ナノメートルの第1ビア層間絶縁膜210を形成できる。第1ビア層間絶縁膜210としてSiO2膜を用いる場合、CMPでは、コロイダルシリカやセリア系のスラリーを用いて研磨することができる。 For example, when a SiO 2 film having a thickness of 210 nanometers is planarized as the first via interlayer insulating film 210, if about 100 nanometers are scraped from the top surface of the first via interlayer insulating film 210, about 110 nanometers are obtained. The first via interlayer insulating film 210 can be formed. In the case where a SiO 2 film is used as the first via interlayer insulating film 210, CMP can be performed using colloidal silica or ceria-based slurry.
 次に、図18のように、平坦化された第1ビア層間絶縁膜210の上面に、第3層間絶縁膜211および第2キャップ絶縁膜212を順番に堆積させる(工程C2)。 Next, as shown in FIG. 18, a third interlayer insulating film 211 and a second cap insulating film 212 are sequentially deposited on the planarized upper surface of the first via interlayer insulating film 210 (step C2).
 例えば、第3層間絶縁膜211には、下面で接する第1ビア層間絶縁膜210をエッチングストッパ層とするために、第1ビア層間絶縁膜210とは異なる材料が用いられる。例えば、第3層間絶縁膜211には、膜厚150ナノメートルのSiOCH膜を用いる。第3層間絶縁膜211および第2キャップ絶縁膜212は、プラズマCVD法を用いて堆積させることができる。 For example, a material different from that of the first via interlayer insulating film 210 is used for the third interlayer insulating film 211 in order to use the first via interlayer insulating film 210 in contact with the lower surface as an etching stopper layer. For example, as the third interlayer insulating film 211, a SiOCH film having a thickness of 150 nanometers is used. The third interlayer insulating film 211 and the second cap insulating film 212 can be deposited using a plasma CVD method.
 次に、図19のように、第2キャップ絶縁膜212から第2上部電極222の上面まで至るビア穴260を形成する(工程C3)。 Next, as shown in FIG. 19, a via hole 260 extending from the second cap insulating film 212 to the upper surface of the second upper electrode 222 is formed (step C3).
 例えば、ビア穴260は、デュアルダマシン法の一種であるビアファースト法を用いて形成する。まず、第2キャップ絶縁膜212の上に、ビア穴260のパターンを有するフォトレジストを形成する。次に、ドライエッチングにより、第2キャップ絶縁膜212、第3層間絶縁膜211、第1ビア層間絶縁膜210、第2保護層26、および第3ハードマスク層209を貫通するビア穴260を形成する。その後、H2ガスを含むプラズマアッシングと有機剥離とを行うことによってフォトレジストを除去する。 For example, the via hole 260 is formed using a via first method which is a kind of dual damascene method. First, a photoresist having a pattern of via holes 260 is formed on the second cap insulating film 212. Next, via holes 260 penetrating through the second cap insulating film 212, the third interlayer insulating film 211, the first via interlayer insulating film 210, the second protective layer 26, and the third hard mask layer 209 are formed by dry etching. To do. Thereafter, the photoresist is removed by performing plasma ashing including H 2 gas and organic peeling.
 例えば、ビア穴260を形成後、ビア穴260の上に反射防止膜を埋め込んでおくとよい。ビア穴260の上に反射防止膜を埋め込んでおけば、ドライエッチングによる配線溝270の形成時に、ビア穴260の底部が削られることを防止できる。 For example, after forming the via hole 260, an antireflection film may be embedded on the via hole 260. By embedding an antireflection film on the via hole 260, the bottom of the via hole 260 can be prevented from being scraped when the wiring groove 270 is formed by dry etching.
 次に、図20のように、第2キャップ絶縁膜212から第1ビア層間絶縁膜210の上面まで至る配線溝270を形成する(工程C4)。 Next, as shown in FIG. 20, a wiring groove 270 extending from the second cap insulating film 212 to the upper surface of the first via interlayer insulating film 210 is formed (step C4).
 例えば、配線溝270は、ビア穴260と同様に、ビアファースト法を用いて形成する。まず、第2キャップ絶縁膜212の上に、配線溝270のパターンを有するフォトレジストを形成する。次に、ドライエッチングにより、第2キャップ絶縁膜212および第3層間絶縁膜211に配線溝270を形成する。その後、H2ガスを含むプラズマアッシングと有機剥離とを行うことによってフォトレジストを除去する。 For example, the wiring trench 270 is formed by using the via first method, similarly to the via hole 260. First, a photoresist having a pattern of the wiring trench 270 is formed on the second cap insulating film 212. Next, a wiring groove 270 is formed in the second cap insulating film 212 and the third interlayer insulating film 211 by dry etching. Thereafter, the photoresist is removed by performing plasma ashing including H 2 gas and organic peeling.
 以上が、半導体装置2の製造方法の工程Cについての説明である。以下の工程に関しては、図面を省略する。 This completes the description of the process C of the method for manufacturing the semiconductor device 2. The drawings are omitted for the following steps.
 工程Cでビア穴260および配線溝270を形成させた後、ビア穴260の底部に残る第2ハードマスク層208をエッチングすることによって、ビア穴260から第2上部電極222の上面を露出させる。 After forming the via hole 260 and the wiring groove 270 in Step C, the upper surface of the second upper electrode 222 is exposed from the via hole 260 by etching the second hard mask layer 208 remaining at the bottom of the via hole 260.
 その後、ビア穴260および配線溝270の内面に第2バリアメタル213を形成し、その内部に上部配線215およびビアプラグ214を同時に形成する。例えば、第2バリアメタル213には、膜厚10ナノメートルのTaを用いることができる。また、上部配線215およびビアプラグ214には、Cuを含む金属を用いることができる。 Thereafter, the second barrier metal 213 is formed on the inner surfaces of the via hole 260 and the wiring groove 270, and the upper wiring 215 and the via plug 214 are simultaneously formed therein. For example, Ta having a thickness of 10 nanometers can be used for the second barrier metal 213. For the upper wiring 215 and the via plug 214, a metal containing Cu can be used.
 例えば、上部配線は、下部電極21と同様のプロセスによって形成できる。このとき、ビアプラグ214の底面の口径は、第1絶縁性バリア膜206の開口部の口径よりも小さくしておくことが好ましい。例えば、ビアプラグ214の底面の直径は60ナノメートル、第1絶縁性バリア膜206の開口部の直径は100ナノメートルに設定できる。 For example, the upper wiring can be formed by the same process as the lower electrode 21. At this time, the diameter of the bottom surface of the via plug 214 is preferably smaller than the diameter of the opening of the first insulating barrier film 206. For example, the diameter of the bottom surface of the via plug 214 can be set to 60 nanometers, and the diameter of the opening of the first insulating barrier film 206 can be set to 100 nanometers.
 例えば、第2バリアメタル213と第2上部電極222とを同一材料とすれば、ビアプラグ214と第2上部電極222との間の接触抵抗を低減し、オン状態にある抵抗変化素子10の抵抗を低減できる。その結果、抵抗変化素子20の素子性能を向上できる。 For example, if the second barrier metal 213 and the second upper electrode 222 are made of the same material, the contact resistance between the via plug 214 and the second upper electrode 222 is reduced, and the resistance of the resistance change element 10 in the on state is reduced. Can be reduced. As a result, the element performance of the resistance change element 20 can be improved.
 その後、上部配線215を含む第2キャップ絶縁膜212の上面に第2絶縁性バリア膜216を堆積させることによって、図5の半導体装置2を製造することができる。例えば、第2絶縁性バリア膜216には、50ナノメートルのSiCN膜)を用いることができる。 Thereafter, the second insulating barrier film 216 is deposited on the upper surface of the second cap insulating film 212 including the upper wiring 215, whereby the semiconductor device 2 of FIG. 5 can be manufactured. For example, a 50 nanometer SiCN film) can be used for the second insulating barrier film 216.
 以上が、半導体装置2の製造方法についての説明である。なお、上記の半導体装置2の製造方法は一例であって、複数の工程を一つにまとめたり、不要な工程を削除したり、工程を入れ替えたり、新たな工程を追加したりしてもよい。 This completes the description of the method for manufacturing the semiconductor device 2. In addition, the manufacturing method of the semiconductor device 2 described above is an example, and a plurality of processes may be integrated into one, unnecessary processes may be deleted, processes may be replaced, or new processes may be added. .
 以上のように、本実施形態の半導体装置を製造する際には、まず、第1電極を基板上に形成する。次に、第1電極の上面に第1絶縁層を形成し、第1電極の上面の一部を露出させる開口部を前記第1絶縁層に形成する。次に、開口部の内部を含めて、第1絶縁層の上面にバッファ層を形成し、バッファ層の上面に固体電解質層を形成し、固体電解質層の上面に第2電極を形成する。次に、第2電極の上面に少なくとも1層のパターニングマスクを形成し、第2電極、固体電解質層、およびバッファ層を順番にエッチング加工する。このとき、同時に、エッチング加工によってパターニングマスク、バッファ層、固体電解質層、および第2電極に形成される露出面のうち少なくとも固体電解質層およびバッファ層の露出面に第1保護層を形成する。そして、第1保護層の表面に第2保護層を形成する。 As described above, when manufacturing the semiconductor device of this embodiment, first, the first electrode is formed on the substrate. Next, a first insulating layer is formed on the upper surface of the first electrode, and an opening exposing a part of the upper surface of the first electrode is formed in the first insulating layer. Next, a buffer layer is formed on the upper surface of the first insulating layer including the inside of the opening, a solid electrolyte layer is formed on the upper surface of the buffer layer, and a second electrode is formed on the upper surface of the solid electrolyte layer. Next, at least one patterning mask is formed on the upper surface of the second electrode, and the second electrode, the solid electrolyte layer, and the buffer layer are sequentially etched. At the same time, the first protective layer is formed on at least the exposed surfaces of the solid electrolyte layer and the buffer layer among the exposed surfaces formed on the patterning mask, the buffer layer, the solid electrolyte layer, and the second electrode by etching. Then, a second protective layer is formed on the surface of the first protective layer.
 (第3の実施形態)
 次に、本発明の第3の実施形態に係る半導体装置について図面を参照しながら説明する。本実施形態の半導体装置は、一つの上部電極に対して二つの下部電極を構成させた二つの抵抗変化素子を含む3端子型抵抗変化素子を備える。
(Third embodiment)
Next, a semiconductor device according to a third embodiment of the present invention will be described with reference to the drawings. The semiconductor device of this embodiment includes a three-terminal variable resistance element including two variable resistance elements in which two lower electrodes are configured with respect to one upper electrode.
 図21は、半導体装置3の一構成例を示す部分断面図である。図21のように、半導体装置3は、半導体基板301の上に形成される。 FIG. 21 is a partial cross-sectional view showing a configuration example of the semiconductor device 3. As shown in FIG. 21, the semiconductor device 3 is formed on the semiconductor substrate 301.
 図21のように、半導体装置3は、第1下部電極31a、第2下部電極31b、上部電極32、抵抗変化層33、第1保護層35、および第2保護層36を備える。第1下部電極31a、上部電極32、および抵抗変化層33は、第1抵抗変化素子30aを構成する。第2下部電極31b、上部電極32、および抵抗変化層33は、第2抵抗変化素子30bを構成する。また、抵抗変化層33は、固体電解質層331とバッファ層332とを含む。また、上部電極32は、第1上部電極321および第2上部電極322を含む。 As shown in FIG. 21, the semiconductor device 3 includes a first lower electrode 31a, a second lower electrode 31b, an upper electrode 32, a resistance change layer 33, a first protective layer 35, and a second protective layer 36. The first lower electrode 31a, the upper electrode 32, and the resistance change layer 33 constitute a first resistance change element 30a. The second lower electrode 31b, the upper electrode 32, and the resistance change layer 33 constitute a second resistance change element 30b. The resistance change layer 33 includes a solid electrolyte layer 331 and a buffer layer 332. The upper electrode 32 includes a first upper electrode 321 and a second upper electrode 322.
 また、半導体装置3は、第1層間絶縁膜302、第2層間絶縁膜303、第1キャップ絶縁膜304、第1バリアメタル305a、第3バリアメタル305b、第1絶縁性バリア膜306、第2ハードマスク層308、および第3ハードマスク層309を備える。また、半導体装置3は、第1ビア層間絶縁膜310、第3層間絶縁膜311、第2キャップ絶縁膜312、第2バリアメタル313、ビアプラグ314、上部配線315、第2絶縁性バリア膜316を備える。 In addition, the semiconductor device 3 includes a first interlayer insulating film 302, a second interlayer insulating film 303, a first cap insulating film 304, a first barrier metal 305a, a third barrier metal 305b, a first insulating barrier film 306, a second A hard mask layer 308 and a third hard mask layer 309 are provided. The semiconductor device 3 includes a first via interlayer insulating film 310, a third interlayer insulating film 311, a second cap insulating film 312, a second barrier metal 313, a via plug 314, an upper wiring 315, and a second insulating barrier film 316. Prepare.
 ここで、第2の実施形態の半導体装置2の構成要素と、本実施形態の半導体装置3の構成要素との対応関係を示す。 Here, the correspondence between the constituent elements of the semiconductor device 2 of the second embodiment and the constituent elements of the semiconductor device 3 of the present embodiment is shown.
 第1下部電極31aおよび第2下部電極31bは、下部電極21に対応する。上部電極32、抵抗変化層33、第1保護層35、および第2保護層36のそれぞれは、上部電極22、抵抗変化層23、第1保護層25、および第2保護層26のそれぞれに対応する。抵抗変化素子30は、抵抗変化素子20に対応する。固体電解質層331およびバッファ層332のそれぞれは、固体電解質層231およびバッファ層232のそれぞれに対応する。第1上部電極321および第2上部電極322のそれぞれは、第1上部電極221および第2上部電極222のそれぞれに対応する。第1層間絶縁膜302、第2層間絶縁膜303、および第1キャップ絶縁膜304のそれぞれは、第1層間絶縁膜202、第2層間絶縁膜203、および第1キャップ絶縁膜204のそれぞれに対応する。第1バリアメタル305aおよび第3バリアメタル305bは、第1バリアメタル205に対応する。第1絶縁性バリア膜306、第2ハードマスク層308、および第3ハードマスク層309のそれぞれは、第1絶縁性バリア膜206、第2ハードマスク層208、および第3ハードマスク層209のそれぞれに対応する。第1ビア層間絶縁膜310、第3層間絶縁膜311、および第2キャップ絶縁膜312のそれぞれは、第1ビア層間絶縁膜210、第3層間絶縁膜211、および第2キャップ絶縁膜212のそれぞれに対応する。第2バリアメタル313、ビアプラグ314、上部配線315、および第2絶縁性バリア膜316のそれぞれは、第2バリアメタル213、ビアプラグ214、上部配線215、および第2絶縁性バリア膜216のそれぞれに対応する。 The first lower electrode 31 a and the second lower electrode 31 b correspond to the lower electrode 21. The upper electrode 32, the resistance change layer 33, the first protective layer 35, and the second protective layer 36 correspond to the upper electrode 22, the resistance change layer 23, the first protective layer 25, and the second protective layer 26, respectively. To do. The resistance change element 30 corresponds to the resistance change element 20. Each of the solid electrolyte layer 331 and the buffer layer 332 corresponds to each of the solid electrolyte layer 231 and the buffer layer 232. Each of the first upper electrode 321 and the second upper electrode 322 corresponds to each of the first upper electrode 221 and the second upper electrode 222. The first interlayer insulating film 302, the second interlayer insulating film 303, and the first cap insulating film 304 correspond to the first interlayer insulating film 202, the second interlayer insulating film 203, and the first cap insulating film 204, respectively. To do. The first barrier metal 305 a and the third barrier metal 305 b correspond to the first barrier metal 205. The first insulating barrier film 306, the second hard mask layer 308, and the third hard mask layer 309 are respectively the first insulating barrier film 206, the second hard mask layer 208, and the third hard mask layer 209. Corresponding to The first via interlayer insulating film 310, the third interlayer insulating film 311, and the second cap insulating film 312 are respectively the first via interlayer insulating film 210, the third interlayer insulating film 211, and the second cap insulating film 212. Corresponding to The second barrier metal 313, the via plug 314, the upper wiring 315, and the second insulating barrier film 316 correspond to the second barrier metal 213, the via plug 214, the upper wiring 215, and the second insulating barrier film 216, respectively. To do.
 以下においては、主に、第2の実施形態の半導体装置2との相違点(抵抗変化素子)について説明する。 Hereinafter, differences (resistance change elements) from the semiconductor device 2 of the second embodiment will be mainly described.
 〔抵抗変化素子〕
 ここで、第1抵抗変化素子30aおよび第2抵抗変化素子30bの構成について説明する。第1抵抗変化素子30aおよび第2抵抗変化素子30bは、第2の実施形態の抵抗変化素子20と同様に構成できるため、重複する説明については省略する場合がある。
[Resistance change element]
Here, the configuration of the first variable resistance element 30a and the second variable resistance element 30b will be described. Since the first variable resistance element 30a and the second variable resistance element 30b can be configured in the same manner as the variable resistance element 20 of the second embodiment, overlapping description may be omitted.
 第1抵抗変化素子30aおよび第2抵抗変化素子30bは、第1層間絶縁膜302の上に形成される。第1抵抗変化素子30aは、第1下部電極31a、上部電極32、および抵抗変化層33によって構成される。第2抵抗変化素子30bは、第2下部電極31b、上部電極32、および抵抗変化層33によって構成される。 The first resistance change element 30 a and the second resistance change element 30 b are formed on the first interlayer insulating film 302. The first resistance change element 30 a includes a first lower electrode 31 a, an upper electrode 32, and a resistance change layer 33. The second resistance change element 30 b is configured by the second lower electrode 31 b, the upper electrode 32, and the resistance change layer 33.
 半導体装置3は、第1バリアメタル305aと第3バリアメタル305bとを備える。第1バリアメタル305aと第3バリアメタル305bとは、第2層間絶縁膜303および第1キャップ絶縁膜304を介して電気的に絶縁される。 The semiconductor device 3 includes a first barrier metal 305a and a third barrier metal 305b. The first barrier metal 305a and the third barrier metal 305b are electrically insulated via the second interlayer insulating film 303 and the first cap insulating film 304.
 第1下部電極31a(第1電極とも呼ぶ)は、第1抵抗変化素子30aの二つの電極の一方である。第1下部電極31aは、活性電極である。例えば、第1下部電極31aは、Cuを主成分とする金属材料で構成される。第1下部電極31aは、第1層間絶縁膜302の上に形成された第1バリアメタル305aに内包される。第1下部電極31aは、第2層間絶縁膜303および第1キャップ絶縁膜304に形成された配線溝に、第1バリアメタル305aを介して埋め込まれるように形成される。 The first lower electrode 31a (also referred to as a first electrode) is one of the two electrodes of the first resistance change element 30a. The first lower electrode 31a is an active electrode. For example, the first lower electrode 31a is made of a metal material whose main component is Cu. The first lower electrode 31 a is included in a first barrier metal 305 a formed on the first interlayer insulating film 302. The first lower electrode 31a is formed so as to be buried in the wiring trench formed in the second interlayer insulating film 303 and the first cap insulating film 304 via the first barrier metal 305a.
 第2下部電極31b(第3電極とも呼ぶ)は、第2抵抗変化素子30bの二つの電極の一方である。第2下部電極31bは、活性電極である。例えば、第2下部電極31bは、Cuを主成分とする金属材料で構成される。第2下部電極31bは、第1層間絶縁膜302の上に形成された第3バリアメタル305bに内包される。第2下部電極31bは、第2層間絶縁膜303および第1キャップ絶縁膜304に形成された配線溝に、第3バリアメタル305bを介して埋め込まれるように形成される。 The second lower electrode 31b (also referred to as a third electrode) is one of the two electrodes of the second resistance change element 30b. The second lower electrode 31b is an active electrode. For example, the second lower electrode 31b is made of a metal material whose main component is Cu. The second lower electrode 31 b is included in a third barrier metal 305 b formed on the first interlayer insulating film 302. The second lower electrode 31b is formed so as to be embedded in the wiring trench formed in the second interlayer insulating film 303 and the first cap insulating film 304 via the third barrier metal 305b.
 第1下部電極31aは、第1絶縁性バリア膜306の開口部の内側の一部(第1領域340a)においてバッファ層332と接する。一方、第2下部電極31bは、第1絶縁性バリア膜306の開口部の内側の一部(第2領域340b)においてバッファ層332と接する。 The first lower electrode 31a is in contact with the buffer layer 332 at a part inside the opening of the first insulating barrier film 306 (first region 340a). On the other hand, the second lower electrode 31b is in contact with the buffer layer 332 in a part (second region 340b) inside the opening of the first insulating barrier film 306.
 第1下部電極31aは、第1絶縁性バリア膜306に設けられた開口部の第1領域340aにおいてバッファ層332と接し、半導体基板301上の配線を兼ねる。同様に、第2下部電極31bは、第1絶縁性バリア膜306に設けられた開口部の第2領域340bにおいてバッファ層332と接し、半導体基板301上の配線を兼ねる。そのため、第1下部電極31aおよび第2下部電極31bには、Cu配線を兼ねるCu電極を適用でき、CMOS基板上多層配線構造内にCu電極を用いた第1抵抗変化素子30aおよび第2抵抗変化素子30bを形成できる。第1下部電極31aおよび第2下部電極31bが半導体基板201上の配線を兼ねる構成にすると、半導体基板301上に第1抵抗変化素子30aおよび第2抵抗変化素子30bを製造するプロセスを簡便化できる。図21のような構成によって、第1下部電極31aおよび第2下部電極31b内のCu原子をイオン化して固体電解質層331中へ溶出させることができる。 The first lower electrode 31a is in contact with the buffer layer 332 in the first region 340a of the opening provided in the first insulating barrier film 306, and also serves as a wiring on the semiconductor substrate 301. Similarly, the second lower electrode 31 b is in contact with the buffer layer 332 in the second region 340 b of the opening provided in the first insulating barrier film 306 and also serves as a wiring on the semiconductor substrate 301. Therefore, a Cu electrode serving as a Cu wiring can be applied to the first lower electrode 31a and the second lower electrode 31b, and the first resistance change element 30a and the second resistance change using the Cu electrode in the multilayer wiring structure on the CMOS substrate. The element 30b can be formed. When the first lower electrode 31a and the second lower electrode 31b also serve as wiring on the semiconductor substrate 201, the process of manufacturing the first resistance change element 30a and the second resistance change element 30b on the semiconductor substrate 301 can be simplified. . With the configuration as shown in FIG. 21, Cu atoms in the first lower electrode 31 a and the second lower electrode 31 b can be ionized and eluted into the solid electrolyte layer 331.
 図21のように、第1抵抗変化素子30aと第2抵抗変化素子30bとは、上部電極32および抵抗変化層33を共有し、上部電極32を共有ノードとする3端子型抵抗変化スイッチを構成する。 As shown in FIG. 21, the first resistance change element 30a and the second resistance change element 30b constitute a three-terminal resistance change switch that shares the upper electrode 32 and the resistance change layer 33 and uses the upper electrode 32 as a shared node. To do.
 第1抵抗変化素子30aの抵抗状態は、第1下部電極31aが接続される配線に印加される電圧と、上部配線315を介して上部電極32に接続される配線に印加される電圧とに応じて変化する。第2抵抗変化素子30bの抵抗状態は、第2下部電極31bが接続される配線に印加される電圧と、上部配線315を介して上部電極32に接続される配線に印加される電圧とに応じて抵抗状態が変化する。すなわち、3端子型抵抗変化スイッチを構成する第1抵抗変化素子30aおよび第2抵抗変化素子30bの抵抗状態は、互いに独立して制御できる。 The resistance state of the first variable resistance element 30a depends on the voltage applied to the wiring connected to the first lower electrode 31a and the voltage applied to the wiring connected to the upper electrode 32 via the upper wiring 315. Change. The resistance state of the second variable resistance element 30b depends on the voltage applied to the wiring connected to the second lower electrode 31b and the voltage applied to the wiring connected to the upper electrode 32 via the upper wiring 315. The resistance state changes. That is, the resistance states of the first variable resistance element 30a and the second variable resistance element 30b that constitute the three-terminal variable resistance switch can be controlled independently of each other.
 図21のように、第1抵抗変化素子30aおよび第2抵抗変化素子30bを含む3端子型抵抗変化素子においては、第1下部電極31aおよび第2下部電極31bが下部電極として設けられる。第1下部電極31aの上面の一部は、第1領域340aにおいてバッファ層332に接触する。第2下部電極31bの上面の一部は、第2領域340bにおいてバッファ層332に接触する。第1下部電極31aおよび第2下部電極31bのそれぞれの上面の一部は、第1絶縁性バリア膜306に形成された開口部において、第1キャップ絶縁膜304を挟んで互いに離間する。 As shown in FIG. 21, in the three-terminal variable resistance element including the first variable resistance element 30a and the second variable resistance element 30b, the first lower electrode 31a and the second lower electrode 31b are provided as the lower electrodes. A part of the upper surface of the first lower electrode 31a is in contact with the buffer layer 332 in the first region 340a. A part of the upper surface of the second lower electrode 31b is in contact with the buffer layer 332 in the second region 340b. Part of the upper surface of each of the first lower electrode 31a and the second lower electrode 31b is separated from each other through the first cap insulating film 304 in the opening formed in the first insulating barrier film 306.
 例えば、第1下部電極31aおよび第2下部電極31bの両方がCuを含む材料で構成される場合、図5に示す半導体装置2の下部電極21と同様の構成にできる。そのため、第1下部電極31aおよび第2下部電極31bは、下部電極21と同様の方法で形成できる。第1下部電極31aを第1電極とし、第2下部電極31bを第3電極とすれば、第1電極と第3電極とを同一レイヤーに形成し、第1電極および第3電極とは別のレイヤーに第2電極を形成できる。 For example, when both the first lower electrode 31a and the second lower electrode 31b are made of a material containing Cu, the same structure as that of the lower electrode 21 of the semiconductor device 2 shown in FIG. Therefore, the first lower electrode 31 a and the second lower electrode 31 b can be formed by the same method as the lower electrode 21. If the first lower electrode 31a is the first electrode and the second lower electrode 31b is the third electrode, the first electrode and the third electrode are formed in the same layer, which is different from the first electrode and the third electrode. A second electrode can be formed on the layer.
 以上のように、本実施形態の半導体装置において、第2絶縁層には、二つの前記配線溝が形成される。第2絶縁層に形成される二つの配線溝のうち一方の内部に第1電極が埋め込まれる。第2絶縁層に形成される二つの配線溝のうち他方の内部に第3電極が埋め込まれる。第1電極および第3電極は、開口部において、第2絶縁層を挟んで離間され、バッファ層に接続される。 As described above, in the semiconductor device of this embodiment, the two insulating trenches are formed in the second insulating layer. The first electrode is embedded in one of the two wiring grooves formed in the second insulating layer. A third electrode is embedded in the other of the two wiring grooves formed in the second insulating layer. The first electrode and the third electrode are spaced apart from each other across the second insulating layer in the opening, and are connected to the buffer layer.
 本実施形態においては、第1保護層および第2保護層を設け、抵抗変化層の側面を第1保護層で被覆し、さらに第1保護層を第2保護層で被覆するため、抵抗変化層の固体電解質層への吸湿が抑制される。その結果、本実施形態の半導体装置によれば、固体電解質層が吸湿することに起因する素子動作のばらつきが低減されるので、セット電圧のばらつきが抑制される。すなわち、本実施形態によれば、抵抗変化層の固体電解質層への吸湿を抑制させ、セット電圧のばらつきが低減された3端子型抵抗変化素子を含む半導体装置を提供できる。 In the present embodiment, the first protective layer and the second protective layer are provided, the side surface of the variable resistance layer is covered with the first protective layer, and the first protective layer is further covered with the second protective layer. Moisture absorption into the solid electrolyte layer is suppressed. As a result, according to the semiconductor device of the present embodiment, variation in element operation due to moisture absorption by the solid electrolyte layer is reduced, and variation in set voltage is suppressed. That is, according to the present embodiment, it is possible to provide a semiconductor device including a three-terminal variable resistance element in which moisture absorption of the variable resistance layer to the solid electrolyte layer is suppressed and variation in set voltage is reduced.
 上記の各実施形態では、CMOS回路を有する半導体装置に関して説明し、半導体基板上の多層配線構造内に固体電解質スイッチ素子を形成する例について説明した。各実施形態の半導体装置は、DRAMや、SRAM(Static RAM)、フラッシュメモリ、FeRAM(Ferro-Electric RAM)、キャパシタ、バイポーラトランジスタなどのメモリ回路を有する半導体製品にも適用できる。また、各実施形態の半導体装置は、マイクロプロセッサなどの論理回路を有する半導体製品にも適用できる。また、各実施形態の半導体装置は、それらの半導体製品を併せて搭載したボードやパッケージの金属配線形成工程にも適用できる。また、各実施形態の技術は、電子回路装置や光回路装置、量子回路装置、マイクロマシン、MEMS(Micro-Electro-Mechanical Systems)などに半導体装置を接続する配線形成工程にも適用できる。 In each of the above embodiments, a semiconductor device having a CMOS circuit has been described, and an example in which a solid electrolyte switch element is formed in a multilayer wiring structure on a semiconductor substrate has been described. The semiconductor device of each embodiment can also be applied to semiconductor products having memory circuits such as DRAM, SRAM (Static RAM), flash memory, FeRAM (Ferro-Electric RAM), capacitor, and bipolar transistor. The semiconductor device of each embodiment can also be applied to a semiconductor product having a logic circuit such as a microprocessor. In addition, the semiconductor device of each embodiment can be applied to a metal wiring forming process of a board or package on which these semiconductor products are mounted. The technology of each embodiment can also be applied to a wiring formation process for connecting a semiconductor device to an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro-Electro-Mechanical Systems), or the like.
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2018年3月13日に出願された日本出願特願2018-044852を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-044852 filed on Mar. 13, 2018, the entire disclosure of which is incorporated herein.
 1、2、3  半導体装置
 10  抵抗変化素子
 11、21  下部電極
 12、22、32  上部電極
 13、23、33  抵抗変化層
 14  絶縁性バリア層
 15、25、35  第1保護層
 16、26、36  第2保護層
 17  層間絶縁膜
 18  バリアメタル
 19  ハードマスク層
 30a  第1抵抗変化素子
 30b  第2抵抗変化素子
 31a  第1下部電極
 31b  第2下部電極
 131、231、331  固体電解質層
 132、232、332  バッファ層
 201、301  半導体基板
 202、302  第1層間絶縁膜
 203、303  第2層間絶縁膜
 204、304  第1キャップ絶縁膜
 205  第1バリアメタル
 206、306  第1絶縁性バリア膜
 207  第1ハードマスク層
 208、308  第2ハードマスク層
 209、309  第3ハードマスク層
 210、310  第1ビア層間絶縁膜
 211、311  第3層間絶縁膜
 212、312  第2キャップ絶縁膜
 213、313  第2バリアメタル
 214、314  ビアプラグ
 215、315  上部配線
 216、316  第2絶縁性バリア膜
 221、321  第1上部電極
 222、322  第2上部電極
 305a  第1バリアメタル
 305b  第3バリアメタル
1, 2, 3 Semiconductor device 10 Resistance change element 11, 21 Lower electrode 12, 22, 32 Upper electrode 13, 23, 33 Resistance change layer 14 Insulating barrier layer 15, 25, 35 First protective layer 16, 26, 36 Second protective layer 17 Interlayer insulating film 18 Barrier metal 19 Hard mask layer 30a First resistance change element 30b Second resistance change element 31a First lower electrode 31b Second lower electrode 131, 231, 331 Solid electrolyte layer 132, 232, 332 Buffer layer 201, 301 Semiconductor substrate 202, 302 First interlayer insulating film 203, 303 Second interlayer insulating film 204, 304 First cap insulating film 205 First barrier metal 206, 306 First insulating barrier film 207 First hard mask Layer 208, 308 Second hard mask layer 209, 309 Third hard Disc layer 210, 310 First via interlayer insulation film 211, 311 Third interlayer insulation film 212, 312 Second cap insulation film 213, 313 Second barrier metal 214, 314 Via plug 215, 315 Upper wiring 216, 316 Second insulation Barrier films 221 and 321 First upper electrode 222 and 322 Second upper electrode 305a First barrier metal 305b Third barrier metal

Claims (10)

  1.  第1電極と、
     前記第1電極の上に配置され、少なくとも一つの開口部が形成される第1絶縁層と、
     前記第1絶縁層の上に配置され、前記開口部の内部において前記第1電極に接続される抵抗変化層と、
     前記抵抗変化層の上に配置される第2電極と、
     前記抵抗変化層の側面を被覆する第1保護層と、
     前記第1保護層を被覆する第2保護層と、を備える半導体装置。
    A first electrode;
    A first insulating layer disposed on the first electrode and having at least one opening formed therein;
    A variable resistance layer disposed on the first insulating layer and connected to the first electrode inside the opening;
    A second electrode disposed on the variable resistance layer;
    A first protective layer covering a side surface of the variable resistance layer;
    A semiconductor device comprising: a second protective layer that covers the first protective layer.
  2.  前記第1保護層は、
     前記第2電極の側面を被覆する請求項1に記載の半導体装置。
    The first protective layer includes
    The semiconductor device according to claim 1, wherein a side surface of the second electrode is covered.
  3.  前記第2保護層は、
     前記第2電極の上方から前記第1絶縁層の上面にかけて連続的に被覆する請求項1または2に記載の半導体装置。
    The second protective layer is
    The semiconductor device according to claim 1, wherein the semiconductor device is continuously covered from above the second electrode to an upper surface of the first insulating layer.
  4.  前記第1絶縁層の下部に配置され、配線溝が形成される第2絶縁層を備え、
     前記第1電極は、
     前記第2絶縁層に形成される前記配線溝の内部に埋め込まれ、前記開口部において前記抵抗変化層に接続される請求項1乃至3のいずれか一項に記載の半導体装置。
    A second insulating layer disposed under the first insulating layer and having a wiring groove formed thereon;
    The first electrode is
    4. The semiconductor device according to claim 1, embedded in the wiring groove formed in the second insulating layer, and connected to the resistance change layer in the opening. 5.
  5.  前記抵抗変化層は、
     前記開口部の内部から周辺にかけて配置されるバッファ層と、
     前記バッファ層の上に配置される固体電解質層と、を有する請求項4に記載の半導体装置。
    The resistance change layer includes:
    A buffer layer disposed from the inside to the periphery of the opening,
    The semiconductor device according to claim 4, further comprising: a solid electrolyte layer disposed on the buffer layer.
  6.  前記第1保護層の一端は、前記バッファ層の側面に接続される請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein one end of the first protective layer is connected to a side surface of the buffer layer.
  7.  前記第1保護層は、
     前記バッファ層と同じ材料で構成される請求項5または6に記載の半導体装置。
    The first protective layer includes
    The semiconductor device according to claim 5, comprising the same material as the buffer layer.
  8.  前記バッファ層および前記第1保護層は、
     前記第1電極を構成する材料よりも自由エネルギーが負に大きい金属元素、および第14族に属する非金属元素のうち少なくとも1つを含む酸化物材料によって構成される請求項7に記載の半導体装置。
    The buffer layer and the first protective layer are:
    8. The semiconductor device according to claim 7, wherein the semiconductor device is formed of an oxide material containing at least one of a metal element having a negative energy larger than that of the material forming the first electrode and a nonmetal element belonging to Group 14. .
  9.  前記第2絶縁層には、二つの前記配線溝が形成され、
     前記第2絶縁層に形成される二つの前記配線溝のうち一方の内部に前記第1電極が埋め込まれ、
     前記第2絶縁層に形成される二つの前記配線溝のうち他方の内部に第3電極が埋め込まれ、
     前記第1電極および前記第3電極は、
     前記開口部において、前記第2絶縁層を挟んで離間され、前記バッファ層に接続される請求項5乃至8のいずれか一項に記載の半導体装置。
    Two wiring grooves are formed in the second insulating layer,
    The first electrode is embedded in one of the two wiring grooves formed in the second insulating layer;
    A third electrode embedded in the other of the two wiring grooves formed in the second insulating layer;
    The first electrode and the third electrode are:
    The semiconductor device according to claim 5, wherein the opening is spaced apart with the second insulating layer interposed therebetween and connected to the buffer layer.
  10.  第1電極を基板上に形成し、
     前記第1電極の上面に第1絶縁層を形成し、
     前記第1電極の上面の一部を露出させる開口部を前記第1絶縁層に形成し、
     前記開口部の内部を含めて、前記第1絶縁層の上面にバッファ層を形成し、
     前記バッファ層の上面に固体電解質層を形成し、
     前記固体電解質層の上面に第2電極を形成し、
     前記第2電極の上面に少なくとも1層のパターニングマスクを形成し、
     前記第2電極、前記固体電解質層、および前記バッファ層を順番にエッチング加工すると同時に、エッチング加工によって前記パターニングマスク、前記バッファ層、前記固体電解質層、および前記第2電極に形成される露出面のうち少なくとも前記固体電解質層および前記バッファ層の露出面に第1保護層を形成し、
     前記第1保護層の表面に第2保護層を形成する半導体装置の製造方法。
    Forming a first electrode on the substrate;
    Forming a first insulating layer on the upper surface of the first electrode;
    Forming an opening in the first insulating layer to expose a portion of the upper surface of the first electrode;
    Forming a buffer layer on the upper surface of the first insulating layer, including the inside of the opening,
    Forming a solid electrolyte layer on the upper surface of the buffer layer;
    Forming a second electrode on the upper surface of the solid electrolyte layer;
    Forming at least one patterning mask on the upper surface of the second electrode;
    Etching the second electrode, the solid electrolyte layer, and the buffer layer in order, and simultaneously exposing the exposed surface formed on the patterning mask, the buffer layer, the solid electrolyte layer, and the second electrode by etching. Forming a first protective layer on at least the exposed surfaces of the solid electrolyte layer and the buffer layer,
    A method of manufacturing a semiconductor device, wherein a second protective layer is formed on a surface of the first protective layer.
PCT/JP2019/009605 2018-03-13 2019-03-11 Semiconductor device and method for manufacturing same WO2019176833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018044852 2018-03-13
JP2018-044852 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176833A1 true WO2019176833A1 (en) 2019-09-19

Family

ID=67908214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009605 WO2019176833A1 (en) 2018-03-13 2019-03-11 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2019176833A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021750A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Resistance change element, method for manufacturing the same, and resistance change memory using the same element
JP2012195530A (en) * 2011-03-18 2012-10-11 Toshiba Corp Nonvolatile semiconductor memory device and method of manufacturing nonvolatile semiconductor memory device
WO2014030393A1 (en) * 2012-08-20 2014-02-27 日本電気株式会社 Resistance changing element, and method for manufacturing resistance changing element
JP2016192510A (en) * 2015-03-31 2016-11-10 日本電気株式会社 Resistance change element and formation method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021750A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Resistance change element, method for manufacturing the same, and resistance change memory using the same element
JP2012195530A (en) * 2011-03-18 2012-10-11 Toshiba Corp Nonvolatile semiconductor memory device and method of manufacturing nonvolatile semiconductor memory device
WO2014030393A1 (en) * 2012-08-20 2014-02-27 日本電気株式会社 Resistance changing element, and method for manufacturing resistance changing element
JP2016192510A (en) * 2015-03-31 2016-11-10 日本電気株式会社 Resistance change element and formation method therefor

Similar Documents

Publication Publication Date Title
JP5382001B2 (en) Semiconductor device and manufacturing method thereof
JP6056868B2 (en) Wiring formation method
US9431604B2 (en) Resistive random access memory (RRAM) and method of making
CN106252505B (en) RRAM device and method
JP5692297B2 (en) Semiconductor device and manufacturing method thereof
JP5863302B2 (en) Two-terminal resistive switching device structure and manufacturing method thereof
US8963114B2 (en) One transistor and one resistive (1T1R) random access memory (RRAM) structure with dual spacers
TW201731089A (en) Resistive random access memory
JP6901686B2 (en) Switching elements, semiconductor devices and their manufacturing methods
JP5799504B2 (en) Semiconductor device and manufacturing method thereof
JP6665776B2 (en) Switching element and method of manufacturing switching element
WO2016203751A1 (en) Rectifying element, switching element, and method for manufacturing rectifying element
JP5527321B2 (en) Resistance change element and manufacturing method thereof
US11145811B2 (en) Resistive memory with core and shell oxides and interface dipoles
JP2016192510A (en) Resistance change element and formation method therefor
WO2013103122A1 (en) Switching element and manufacturing method thereof
WO2011158691A1 (en) Variable resistance element and method for manufacturing the same
WO2019176833A1 (en) Semiconductor device and method for manufacturing same
JP2015065240A (en) Current control element and method for manufacturing the same
JP2018174227A (en) Method for manufacturing variable-resistance element in copper wiring layer
US9905758B2 (en) Semiconductor device and method for manufacturing same
WO2018181019A1 (en) Semiconductor device and manufacturing method therefor
JP2014216386A (en) Resistance change element and formation method therefor
JP2009065019A (en) Wiring structure, memory element and its fabrication method, and storage device
JP2009065018A (en) Wiring structure, memory element and its fabrication method, and storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP