WO2016203751A1 - Rectifying element, switching element, and method for manufacturing rectifying element - Google Patents

Rectifying element, switching element, and method for manufacturing rectifying element Download PDF

Info

Publication number
WO2016203751A1
WO2016203751A1 PCT/JP2016/002837 JP2016002837W WO2016203751A1 WO 2016203751 A1 WO2016203751 A1 WO 2016203751A1 JP 2016002837 W JP2016002837 W JP 2016002837W WO 2016203751 A1 WO2016203751 A1 WO 2016203751A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
film
rectifying
buffer layer
layer
Prior art date
Application number
PCT/JP2016/002837
Other languages
French (fr)
Japanese (ja)
Inventor
宗弘 多田
直樹 伴野
井口 憲幸
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017524604A priority Critical patent/JPWO2016203751A1/en
Publication of WO2016203751A1 publication Critical patent/WO2016203751A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a rectifying element, a switching element, and a method for manufacturing the rectifying element.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • FPGA Field Programmable Gate Array
  • MRAM Magnetic-resistiveistRandom Access Memory
  • PRAM Phase Change RAM
  • ReRAM Resistance change memory: Resistance Random Access Memory
  • CBRAM Solid electrolyte ion
  • a conductive path is formed inside the resistance change film by an externally applied voltage and current, or is turned on, or the conductive path formed inside the resistance change film disappears and is turned off.
  • the characteristic of changing the resistance value is used.
  • a structure having a resistance change film sandwiched between two electrodes is used. For example, an electric field is applied between two electrodes to generate a filament inside the resistance change film made of a metal oxide, or a conductive path is formed between the two electrodes to be turned on. Thereafter, by applying an electric field in the opposite direction, the filament disappears, or the conductive path formed between the two electrodes disappears, and the device is turned off.
  • Non-Patent Document 1 discloses an element that has a high possibility of improving the degree of freedom of a circuit used for the configuration of a ReRAM memory cell as a kind of resistance change element used for the configuration of ReRAM.
  • the element of Non-Patent Document 1 uses a metal ion movement in an ionic conductor, and "resistance of metal changes by utilizing metal precipitation by reduction of metal ions” and “generation of metal ions by metal oxidation” by electrochemical reaction. This is a non-volatile switching element that performs switching by reversibly changing a resistance value between electrodes sandwiching a film.
  • the nonvolatile switching element disclosed in Non-Patent Document 1 has a configuration having a solid electrolyte made of an ionic conductor, and a first electrode and a second electrode provided in contact with each of two surfaces of the solid electrolyte. .
  • the first electrode is made of a first metal
  • the second electrode is made of a second metal.
  • the first metal and the second metal are different in standard generation Gibbs energy ⁇ G in the process of generating metal ions by oxidizing the metal.
  • Non-Patent Document 1 the materials of the first metal and the second metal are described as follows.
  • the first metal When a bias voltage causing a transition from the on state to the off state is applied between the first electrode and the second electrode, the first metal is deposited on the surface of the second electrode.
  • the deposited first metal is oxidized by an electrochemical reaction induced by an applied bias voltage, generates metal ions, and dissolves in the solid electrolyte as metal ions.
  • the process of generating metal ions is not induced in the second metal. That is, as the second metal, a metal that is not oxidized by an applied bias voltage and does not induce a process of generating metal ions is employed.
  • the metal of the first electrode is metal at the interface between the first electrode and the solid electrolyte. It becomes ions and dissolves in the solid electrolyte.
  • metal ions in the solid electrolyte are deposited as metal in the solid electrolyte.
  • a metal bridge structure is formed by the metal deposited in the solid electrolyte, and finally, a metal bridge connecting the first electrode and the second electrode is formed.
  • transition process from the on state to the off state
  • the second electrode when the second electrode is grounded and a negative voltage is applied to the first electrode with respect to the switch in the on state, a metal bridge is formed.
  • the metal becomes metal ions and dissolves in the solid electrolyte.
  • dissolution proceeds, a part of the metal cross-linking structure constituting the metal cross-link is cut.
  • the metal bridge connecting the first electrode and the second electrode is cut, the electrical connection is cut and the switch is turned off.
  • the metal cross-linking structure constituting the conduction path becomes narrower, the resistance between the first electrode and the second electrode increases, and the dissolved metal at the interface between the first electrode and the solid electrolyte. Ions are reduced and deposited as metal. Therefore, the electrical characteristics change from the stage before the electrical connection is completely cut off, such as the concentration of metal ions in the solid electrolyte decreases and the relative permittivity changes, causing the capacitance between electrodes to change. Finally, the electrical connection is broken.
  • the metal bridge type resistance change element is changed from the on state to the off state (reset)
  • the second electrode is grounded again and a positive voltage is applied to the first electrode
  • the transition from the off state to the on state is performed.
  • the process (set process) proceeds. That is, in the metal bridge type resistance change element, the transition process from the off state to the on state (set process) and the transition process from the on state to the off state (reset process) can be performed reversibly.
  • Non-Patent Document 1 discloses a configuration of a two-terminal switching element in which two electrodes are arranged via an ion conductor and controls a conduction state between the two electrodes, and a switching operation thereof. Has been.
  • variable resistance elements can be classified into unipolar and bipolar types.
  • the resistance of the unipolar variable resistance element does not depend on the voltage polarity, and the resistance changes at the applied voltage level.
  • the resistance of the bipolar variable resistance element changes depending on the applied voltage level and voltage polarity.
  • a solid electrolyte layer type resistance change element having a solid electrolyte layer that is a solid in which ions can freely move by application of an electric field or the like will be described.
  • Non-Patent Document 1 discloses an example of the bipolar variable resistance element as a solid electrolyte layer type variable resistance element.
  • Non-Patent Document 1 discloses a switching element using metal ion migration and electrochemical reaction in a solid electrolyte layer. This switching element has three layers of a solid electrolyte layer, a first electrode in contact with one surface of the solid electrolyte layer, and a second electrode in contact with the other surface of the solid electrolyte layer. Among these, the 1st electrode plays the role for supplying a metal ion to a solid electrolyte layer. The second electrode does not supply metal ions.
  • the metal of the first electrode becomes metal ions and dissolves in the solid electrolyte layer.
  • the metal ion in a solid electrolyte layer becomes a metal and deposits in a solid electrolyte layer.
  • the metal deposited in the solid electrolyte layer forms a metal bridge that connects the first electrode and the second electrode.
  • the first electrode is grounded again and a negative voltage is applied to the second electrode.
  • Non-Patent Document 1 discloses the configuration and operation of a two-terminal switching element that controls a conduction state between two electrodes through a solid electrolyte layer as a solid electrolyte layer type resistance change element. Has been.
  • a switching element using such a solid electrolyte layer type resistance change element is characterized in that it is smaller in size and smaller in on-resistance than a semiconductor switch such as a MOSFET. For this reason, it is considered promising for application to programmable logic devices.
  • the conduction state (ON or OFF) is maintained as it is even when the applied voltage is turned OFF.
  • the application as a non-volatile memory element is also considered.
  • a memory cell including one selection element such as a transistor and one switching element as a basic unit a plurality of memory cells are arranged in the vertical and horizontal directions. Arranging in this way makes it possible to select an arbitrary memory cell from among a plurality of memory cells with the word line and the bit line.
  • Non-volatile that can sense the conduction state of the switching element of the selected memory cell and read information “1” or “0” from the on or off state of the switching element. Memory can be realized.
  • Patent Document 1 discloses that a variable resistance element includes a first electrode, a second electrode, a variable resistor connected to both the first electrode and the second electrode, and a control electrode connected to the variable resistor via a dielectric layer. (Third electrode), and a configuration in which the dielectric layer is in contact with the side surface of the second variable resistor is disclosed.
  • Patent Document 2 discloses a technique for forming a two-terminal rectifier element on the variable resistance element.
  • JP 2010-153591 A Japanese Patent No. 5380612
  • the present invention has been made to solve the above-described problems of the technology, and an object thereof is to provide a rectifying element, a switching element, and a method of manufacturing the rectifying element with improved current-voltage characteristics.
  • the rectifier of the present invention comprises: A first electrode and a second electrode; A rectifying layer provided between the first electrode and the second electrode; A first buffer layer provided between the first electrode and the rectifying layer; A second buffer layer provided between the second electrode and the rectifying layer,
  • the work functions of the first buffer layer and the second buffer layer are smaller than the work functions of the first electrode and the second electrode, and the relative dielectric constant of the first buffer layer and the second buffer layer is the same as that of the rectifying layer.
  • the configuration is larger than the relative dielectric constant.
  • the switching element of the present invention is a switching element provided in a signal path of a logic circuit,
  • the rectifying element of the present invention Two resistance change elements, Each of the two resistance change elements has two terminals, One terminal of each of the two terminals of the two variable resistance elements is connected to the other, one of the other two terminals of the two variable resistance elements is the input terminal for the signal, and the other is the input terminal for the signal.
  • the method of manufacturing the rectifying device of the present invention includes Forming a first electrode on the substrate; A first buffer layer is formed on the first electrode using a plasma CVD method using silane hydride as a raw material, A rectifying layer is formed on the first buffer layer using a plasma CVD method using hydrogenated silane and nitrogen or ammonia as raw materials, A second buffer layer is formed on the rectifying layer using a plasma CVD method using silane hydride as a raw material, A second electrode is formed on the second buffer layer.
  • the current-voltage characteristics can be improved.
  • FIG. 5 is a graph showing current-voltage characteristics of a bipolar variable resistance element. 5 is a graph showing current-voltage characteristics of a bipolar rectifier element. It is a circuit diagram which shows one structural example of the switching element which has a rectifier of 1st Embodiment. It is a graph which shows the IV characteristic of the experimental sample of a comparative example. 4 is a graph showing IV characteristics of the rectifying element of the first embodiment. It is a block diagram which shows the example of 1 structure of the crossbar switch of 2nd Embodiment. FIG. 3 is a cross-sectional view showing the main parts of a configuration example of the semiconductor device of Example 1; FIG.
  • FIG. 10 is a cross-sectional view showing the main parts of another configuration example of the semiconductor device of Example 1;
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
  • This embodiment relates to a rectifying element having excellent voltage-current characteristics as a first aspect of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration example of the rectifying element of the present embodiment.
  • the rectifying element 106 includes a first electrode 101, a second electrode 102, and a rectifying layer 103 provided between the first electrode 101 and the second electrode 102.
  • the first buffer layer 104 is provided between the first electrode 101 and the rectifying layer 103.
  • a second buffer layer 105 is provided between the second electrode 102 and the rectifying layer 103.
  • the first buffer layer 104 is in contact with each of the first electrode 101 and the rectifying layer 103.
  • the second buffer layer 105 is in contact with each of the second electrode 102 and the rectifying layer 103.
  • the first electrode 101 and the second electrode 102 are tantalum, titanium, or nitrogen compounds thereof.
  • the rectifying layer 103 is an oxide or a nitride.
  • the nitride is, for example, silicon nitride. A method for forming these films will be described later.
  • the conduction state of the rectifying element can be changed nonlinearly.
  • the conduction state of the rectifying element can be suitably changed, and excellent rectifying characteristics can be obtained.
  • excellent rectification characteristics in this embodiment will be described later.
  • the work function of the buffer layer is preferably larger than the work functions of the first electrode and the second electrode.
  • the work function of the buffer layer is preferably smaller than the work function of the rectifying layer.
  • the preferred dielectric constant of the buffer layer is preferably larger than the dielectric constant of the rectifying layer.
  • the rectifying characteristics of the rectifying element are symmetrical particularly in the bipolar variable resistance element. Therefore, it is preferable that the first electrode and the second electrode have the same electrical characteristics, and it is preferable that the first buffer layer and the second buffer layer have the same electrical characteristics. In combination with the rectifying element of this embodiment, it is preferable to use a bipolar variable resistance element.
  • FIG. 2A is a graph showing the current-voltage characteristics of the bipolar variable resistance element
  • FIG. 2B is a graph showing the current-voltage characteristics of the bipolar rectifying element.
  • the leakage current gradually increases (corresponding to A shown in the figure), and when the threshold voltage V1 is exceeded, the resistance state changes from the high resistance state (off state) to the low resistance state. Transition to the resistance state (ON state) (corresponding to B shown in the figure). Even when the voltage is returned to 0 V, the low resistance state is maintained (corresponding to C shown in the figure). Subsequently, when a negative voltage is applied to the first electrode, the resistance state transitions from the low resistance state (on state) to the high resistance state (off state) when a predetermined peak current is reached (corresponding to D shown in the figure). ). Furthermore, even if a negative voltage is applied, the resistance state does not change because it is a bipolar resistance change element (corresponding to E shown in the figure).
  • the leakage current when a positive voltage is applied to the first electrode, the leakage current gradually increases, and when the threshold voltage V2 is exceeded, the resistance state transitions from the high resistance state (off state) to the low resistance state (on state) ( Equivalent to F shown in the figure).
  • the current value decreases when the voltage becomes lower than the threshold voltage (corresponding to G in the figure).
  • the leakage current when a voltage is applied in the reverse direction, the leakage current gradually increases when the voltage is applied in the same manner, and the resistance state changes from the high resistance state (off state) to the low resistance when the threshold voltage ( ⁇ V2) is exceeded. Transition to a state (ON state) (corresponding to H shown in the figure)
  • the current value decreases at a voltage lower than the threshold voltage (corresponding to I shown in the figure).
  • FIG. 3 is a circuit diagram showing a configuration example of the switching element having the rectifying element of the present embodiment.
  • the switching element includes a rectifying element 121 corresponding to the rectifying element 106 shown in FIG. 1 and variable resistance elements 131 and 132.
  • the resistance change elements 131 and 132 are connected to each other inactive electrodes.
  • the active electrode of the resistance change element 131 is a first terminal 111
  • the active electrode of the resistance change element 132 is a second terminal 112.
  • One of the two electrodes of the rectifying element 121 is connected to the inactive electrodes of the resistance change elements 131 and 132.
  • the other electrode is defined as the third terminal 113.
  • the resistance change elements 131 and 132 have an active electrode, an inactive electrode, and a resistance change film sandwiched between these two electrodes.
  • the resistance change film is composed of a solid electrolyte layer.
  • the active electrode is made of a metal that supplies metal ions to the resistance change film when a voltage is applied.
  • the inert electrode is made of a metal that does not supply metal ions to the resistance change film even when a voltage is applied.
  • One of the first terminal 111 and the second terminal 112 serves as a signal input terminal, and the other terminal serves as a signal output terminal.
  • the third terminal 113 serves as a control terminal for programming the resistance change elements 131 and 132 to an on state or an off state.
  • the voltage applied between the first terminal 111 and the third terminal 113 is voltage-distributed between the resistance change element 131 and the rectifying element 121.
  • the leakage current level in the off state is preferably lower in the resistance change element than in the rectifier element.
  • the resistance change element 131, the resistance change element 132, and the rectifying element 121 have the same operation polarity. That is, when a bipolar variable resistance element is used, a bipolar rectifier (bidirectional rectifier) is preferably used. When a unipolar variable resistance element is used, a unipolar rectifier (one Directional rectifier elements can also be used. This is because, in the case of a bipolar variable resistance element, switching is performed in the magnitude and direction of current flow, and accordingly, the rectifying element needs to have the same polarity characteristics.
  • the current value is as low as possible in the low voltage range (0.25 to 0.5 V), and as high as possible in the high voltage range (1 to 3 V). Rectification characteristics ”.
  • a rectifier with “buffer layer” corresponding to the rectifier of this embodiment and a rectifier with no buffer layer were prepared as comparative examples.
  • a method for manufacturing the rectifying device of this embodiment will be described.
  • the case of the rectifying element 106 shown in FIG. 1 will be described.
  • a TiN film having a thickness of 10 nm is deposited on the semiconductor substrate as the first electrode 101.
  • a DC sputtering method using a Ti target was used.
  • an Ar gas and N 2 gas are introduced into a 300 mm wafer sputtering chamber whose pressure is reduced to about 10 ⁇ 6 Pa, and a power of 50 W to 1 kW is applied to deposit a TiN film on the silicon wafer.
  • the first buffer layer 104 is formed on the first electrode 101.
  • the first buffer layer 104 is formed by depositing an amorphous silicon film having a thickness of 5 nm by plasma CVD (Chemical Vapor Deposition) using silane hydride as a source gas.
  • SiH 4 gas is introduced in an amount of 100 to 300 sccm
  • Ar gas is in the range of 1 to 2 slpm
  • He gas is in the range of 1 to 2 slpm.
  • an amorphous silicon film can be deposited by applying RF power of pressure 300 to 600 Pa and 50 to 200 W to the showerhead.
  • the rectifying layer 103 is formed on the first buffer layer 104.
  • the rectifying layer 103 is formed by depositing a silicon nitride film having a thickness of 8 nm by a plasma CVD method using silane hydride and nitrogen gas or ammonia gas. For example, 200 sccm of SiH 4 gas and 300 to 500 sccm of N 2 gas are introduced into a parallel plate plasma CVD reactor in which the substrate temperature is maintained in the range of 350 to 400 ° C., and RF power of pressure 600 Pa and 200 W is applied to the shower head. By doing so, a silicon nitride film can be deposited.
  • the second buffer layer 105 is formed on the rectifying layer 103 in the same manner as the first buffer layer 104. Further, the second electrode 102 is formed on the second buffer layer 105 in the same manner as the first electrode 101.
  • the process from the formation of the first buffer layer to the formation of the second buffer layer is performed halfway.
  • These films can be formed continuously in a plasma CVD reactor without exposing the substrate to the atmosphere.
  • FIG. 4A is a graph showing IV characteristics of an experimental sample of a comparative example.
  • FIG. 4A is a graph showing IV characteristics of a rectifying element in an MIM (Metal Insulator Metal) structure that does not have a buffer layer.
  • the structure of the laminated film is TiN / SiN / TiN.
  • FIG. 4B is a graph showing IV characteristics of the rectifying device of the first embodiment.
  • FIG. 4B is a graph showing IV characteristics of a rectifying element in an MSISM (Metal Semiconductor Insulator Semiconductor Metal) structure having a buffer layer.
  • the structure of the laminated film is TiN / ⁇ -Si / SiN / ⁇ -Si / TiN.
  • the work function of the TiN electrode is 4.7 eV
  • the work function of amorphous silicon is 4.2 eV. Therefore, the work function of the buffer layer is smaller than that of the electrode.
  • the relative dielectric constant of SiN is 6.5
  • the relative dielectric constant of amorphous silicon is 9, and the relative dielectric constant of the buffer layer is larger than that of the rectifying layer.
  • the band gap of the amorphous silicon layer was measured, it was 1.2 eV which was slightly larger than that of single crystal silicon.
  • an oxide or a nitride can be used, and a Pool-Frenkel type insulating film, a Schottky type insulating film, a threshold switching type volatile resistance change film, or the like can be used.
  • the effect of the present invention was confirmed in the same manner when SiO 2 was used for the rectifying layer, when TaO x was used, and when TiO x was used.
  • the buffer layer used for the rectifying element has a work function smaller than that of the electrode and a relative dielectric constant larger than that of the rectifying layer.
  • This embodiment relates to a crossbar switch having a switching element including the rectifying element and the resistance change element described in the first embodiment, as a second aspect of the present invention.
  • FIG. 5 is a block diagram illustrating a configuration example of the crossbar switch of the present embodiment.
  • the crossbar switch has a plurality of switching elements 130 arranged in an array.
  • the switching element 130 includes resistance change elements 131 and 132 and rectifying elements 121 and 122.
  • the resistance change elements 131 and 132 are connected to each other inactive electrodes.
  • the active electrode of the resistance change element 131 is connected to the first wiring 141.
  • the active electrode of the resistance change element 132 is connected to the second wiring 142.
  • one electrode is connected to the inactive electrode of the resistance change element 131, and the other electrode is connected to the third wiring 143.
  • the two electrodes of the rectifying element 122 one electrode is connected to the inactive electrode of the resistance change element 132, and the other electrode is connected to the fourth wiring 144.
  • the first wiring 141 and the third wiring 143 are arranged in parallel, and the second wiring 142 and the fourth wiring 144 are arranged in parallel.
  • the first wiring 141 and the third wiring 143 are orthogonal to the other two wirings (second wiring 142 and fourth wiring 144).
  • the third wiring 143 When transitioning the resistance change element 131 to the ON state (low resistance state), the third wiring 143 is grounded and a positive voltage higher than the threshold voltage (set voltage) is applied to the first wiring 141. On the other hand, when the resistance change element 131 is transitioned from the ON state to the OFF state (high resistance state), the first wiring 141 is grounded and a positive voltage higher than the threshold voltage (reset voltage) is applied to the third wiring 143. .
  • the fourth wiring 144 is grounded and a positive voltage equal to or higher than the threshold voltage (set voltage) is applied to the second wiring 142.
  • the second wiring 142 is grounded and a positive voltage equal to or higher than the threshold voltage (reset voltage) is applied to the fourth wiring 144.
  • programming of the resistance change element 131 can be performed via the rectifying element 121
  • programming of the resistance change element 132 can be performed via the rectifying element 122.
  • the rectifying element of the first embodiment has “excellent rectifying characteristics”. Therefore, by using the rectifying element of the first embodiment as the rectifying element for selecting the resistance change element to be programmed, it is possible to prevent erroneous writing and malfunction of the switching element. As a result, high reliability of the switching element can be achieved.
  • the switching element described in the first embodiment is provided in a semiconductor device.
  • FIG. 6 is a cross-sectional view showing the main part of the configuration of the semiconductor device of this example.
  • FIG. 7 is a cross-sectional view showing the main part of another configuration example of the semiconductor device of this embodiment.
  • the switching element of the present embodiment is provided in the multilayer wiring structure on the semiconductor substrate and includes a resistance change element and a rectifying element.
  • the multilayer wiring structure refers to a laminated structure including a plurality of wiring layers and an insulating film including an interlayer insulating film provided between these wiring layers.
  • FIGS. 6 and 7 show the structure of a switching element corresponding to a circuit configuration in which two rectifying elements and two resistance change elements are connected.
  • the number of resistance change elements and rectifying elements is not limited to those shown in these drawings, and the number of rectifying elements may be increased according to the number of connected resistance change elements.
  • FIG. 6 shows a configuration in which two rectifying elements and two variable resistance elements are provided in two stages.
  • switching elements 25a and 25b are provided.
  • the switching element 25 a includes a variable resistance element including the first electrode (first wiring 5 a), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
  • the stacked body 30 illustrated in FIG. 6 corresponds to the resistance change film 9, the second electrode 10, and the rectifying element 11.
  • the switching element 25 b includes a variable resistance element including the first electrode (first wiring 5 b), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
  • the resistance change film 9 corresponds to the solid electrolyte in the resistance change elements 131 and 132 described with reference to FIG.
  • the second electrode 10 corresponds to an inactive electrode of the resistance change elements 131 and 132.
  • the first wirings 5a and 5b correspond to active electrodes of the resistance change elements 131 and 132.
  • the rectifying element 11 corresponds to the rectifying element 121 shown in FIG.
  • switching elements 25a and 25b are provided.
  • the switching element 25 a includes a variable resistance element including the first electrode (first wiring 5 a), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
  • the stacked body 30 illustrated in FIG. 6 corresponds to the resistance change film 9, the second electrode 10, and the rectifying element 11.
  • the switching element 25 b includes a variable resistance element including the first electrode (first wiring 5 b), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
  • the switching element 26 a includes a variable resistance element including the first electrode (second wiring 18), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
  • the switching element 26 b includes a variable resistance element including the first electrode (second wiring 18), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
  • the second wiring 18 corresponding to the first electrode of the resistance change film of the second-stage switching elements 26a and 26b and the plug 19 connected to the second wiring 18 are the hard mask film 16 and the interlayer insulating film. 17 laminated insulating films. The side surfaces of the second wiring 18 and the bottom surface of the plug 19 are covered with a barrier metal 20.
  • each of the rectifying elements 11 of the switching elements 26 a and 26 b in the second stage is connected to the inactive electrode of the resistance change element, and the other terminal is connected to the third wiring 33 via the plug 31.
  • the third wiring 33 and the plug 31 are provided in the laminated insulating film of the hard mask film 35 and the interlayer insulating film 34.
  • the side surfaces of the third wiring 33 and the bottom surface of the plug 31 are covered with a barrier metal 32.
  • the upper surface of the third wiring 33 is covered with a barrier insulating film 36.
  • the film types of the plug 31, the barrier metal 32, and the third wiring 33 are the same as those of the plug 19, the barrier metal 20, and the second wiring 18, which will be described later, detailed description thereof will be omitted. Further, since the film types of the interlayer insulating film 34, the hard mask film 35, and the barrier insulating film 36 are the same as those of the interlayer insulating film 17, the hard mask film 16, and the barrier insulating film 21, which will be described later, detailed description thereof will be given. Omitted.
  • the semiconductor device shown in FIG. 7 has switching elements 22a and 22b.
  • the switching element 22 a includes a first electrode (first wiring 5 a), a resistance change element including the resistance change film 9 and the second electrode 10, a rectifying element 11, and a third electrode 12. 7 corresponds to the resistance change film 9, the second electrode 10, the rectifying element 11, and the third electrode 12.
  • the switching element 22 b includes a variable resistance element including a first electrode (first wiring 5 b), a variable resistance film 9, and a second electrode 10, a rectifying element 11, and a third electrode 12.
  • the resistance change elements 22 a and 22 b share the resistance change film 9, the second electrode 10, and the rectifying element 11.
  • a third electrode 12 serving as a control electrode is provided in each of the switching elements 22a and 22b.
  • the third electrode 12 of the switching element 22a is connected to the second wiring 18a through the barrier metal 20a and the plug 19a.
  • the third electrode 12 of the switching element 22b is connected to the second wiring 18b through the barrier metal 20b and the plug 19b.
  • the multilayer wiring structure has an interlayer insulating film 2, a barrier insulating film 3, an interlayer insulating film 4, an insulating barrier film 7, a protective insulating film 14, an interlayer insulating film on a semiconductor substrate (not shown). 17, an insulating laminated body in which the hard mask film 16 and the barrier insulating film 21 are laminated in this order.
  • the multilayer wiring structure includes first wirings 5a and 5b and second wirings 18a and 18b. First wirings 5a and 5b are buried in wiring grooves formed in the interlayer insulating film 4 and the barrier insulating film 3 through barrier metals 6a and 6b.
  • Second wirings 18 a and 18 b and plugs 19 a and 19 b are embedded in the wiring grooves formed in the interlayer insulating film 17 and the hard mask film 16.
  • the second wiring 18 and the plug 19 are integrated, and the side surfaces and the bottom surface of the second wiring 18 and the plug 19 are covered with the barrier metal 20.
  • a part of the upper surface of the first wirings 5a and 5b serving as the lower electrodes of the resistance change elements 22a and 22b is exposed in the opening formed in the insulating barrier film 7.
  • the resistance change film 9, the second electrode 10, the rectifying element 11, and the third electrode 12 are sequentially stacked.
  • the switching elements 22a and 22b constitute complementary resistance change elements with rectifying elements.
  • a protective insulating film 14 is formed on the third electrode 12, and the side surface of the laminate including the resistance change film 9, the second electrode 10, the rectifying element 11, and the third electrode 12 is covered with the protective insulating film 14. . Since the first wires 5a and 5b also serve as the lower electrode of the resistance change element 22, the number of manufacturing steps can be simplified and the electrode resistance can be reduced. As an additional step to the normal Cu damascene wiring process, it is possible to mount a resistance change element simply by creating at least two mask sets, and it is possible to simultaneously achieve low resistance and low cost of the element.
  • the switching elements 22a and 22b are variable resistance nonvolatile elements.
  • the switching elements 22a and 22b can be switching elements using metal ion migration and electrochemical reaction in the ion conductor.
  • the variable resistance elements of the switching elements 22a and 22b include the rectifying element 11 between the first wires 5a and 5b serving as lower electrodes and the second electrode 10 and the third electrode 12 electrically connected to the plug 19. It has an intervening configuration.
  • the variable resistance film 9 and the first wirings 5 a and 5 b are in direct contact with the region of the opening formed in the insulating barrier film 7, and the plug 19 on the second electrode 10.
  • the third electrode 12 are electrically connected via the barrier metal 20.
  • the resistance change element performs on / off control by applying a voltage or passing a current.
  • the resistance change element performs on / off control using, for example, electric field diffusion of the metal related to the first wirings 5 a and 5 b into the resistance change film 9.
  • FIGS. 6 and 7 The structure of the film shown in FIGS. 6 and 7 will be described. Here, it demonstrates with reference to FIG.
  • the semiconductor substrate not shown in the figure is a substrate on which a semiconductor element is formed.
  • a semiconductor substrate for example, a silicon substrate, a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin Film Transistor) substrate, a liquid crystal manufacturing substrate, or the like can be used.
  • the interlayer insulating film 2 is an insulating film formed on the semiconductor substrate.
  • a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the interlayer insulating film 2 may be a laminate of a plurality of insulating films.
  • a film of the same type as the interlayer insulating film 2 can be used as the interlayer insulating film 4.
  • the barrier insulating film 3 is an insulating film having a barrier property provided between the interlayer insulating film 2 and the interlayer insulating film 4.
  • the barrier insulating film 3 serves as an etching stop layer when the first wirings 5a and 5b are formed in the wiring trench.
  • the insulating barrier film 7 is an insulating film formed on the interlayer insulating film 4.
  • a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the insulating barrier film 7 may be a laminate of a plurality of insulating films.
  • a wiring groove for embedding the first wiring is formed, and the first wiring 5a, 5b is embedded in the wiring groove via the barrier metals 6a, 6b.
  • the first wirings 5a and 5b are wirings embedded in the wiring grooves formed in the interlayer insulating film 4 and the barrier insulating film 3 through the barrier metals 6a and 6b.
  • the first wirings 5a and 5b also serve as lower electrodes of the resistance change elements of the switching elements 22a and 22b, and are in direct contact with the resistance change film 9.
  • An electrode layer or the like may be inserted between the first wirings 5a and 5b and the resistance change film 9. When the electrode layer is formed, the electrode layer and the resistance change film 9 are deposited in a continuous process and processed in the continuous process. Further, the lower portion of the resistance change film 9 is not connected to the lower layer wiring via the contact plug.
  • first wirings 5a and 5b a metal that can be diffused and ion-conducted in the resistance change film 9 is used.
  • a metal that can be diffused and ion-conducted in the resistance change film 9 is used.
  • Cu or the like can be used.
  • the first wirings 5a and 5b may be alloyed with Al or Mn.
  • the barrier metals 6a and 6b are conductive films having a barrier property that cover the side surface or bottom surface of the wiring in order to prevent the metal related to the first wiring 5a and 5b from diffusing into the interlayer insulating film 2 or the lower layer. is there.
  • the barrier metals 6a and 6b for example, when the first wirings 5a and 5b are made of a metal element whose main component is Cu, tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), carbonitride A refractory metal such as tungsten (WCN), a nitride thereof, or a stacked film thereof can be used.
  • the insulating barrier film 7 is formed on the interlayer insulating film 4 including the first wirings 5 a and 5 b, prevents oxidation of the metal (for example, Cu) related to the first wirings 5 a and 5 b, and enters the interlayer insulating film 4. This prevents the diffusion of the metal related to the first wirings 5a and 5b, and serves as an etching stop layer when the third electrode 12, the rectifying element 11, the second electrode 10 and the resistance change film 9 are processed.
  • the insulating barrier film 7 for example, a SiC film, a SiCN film, a SiN film, and a laminated structure thereof can be used.
  • the insulating barrier film 7 is preferably made of the same material as the protective insulating film 14 and the hard mask film 16.
  • the insulating barrier film 7 has an opening on the first wirings 5a and 5b.
  • the first wirings 5 a and 5 b are in contact with the resistance change film 9.
  • the opening of the insulating barrier film 7 is formed in the region of the first wirings 5a and 5b.
  • a resistance change element can be formed on the surface of the 1st wiring 5a, 5b with small unevenness
  • the wall surface of the opening of the insulating barrier film 7 is a tapered surface that becomes wider as the distance from the first wirings 5a and 5b increases.
  • the tapered surface of the opening of the insulating barrier film 7 is set to 85 ° or less with respect to the upper surfaces of the first wirings 5a and 5b.
  • the resistance change film 9 is a film whose resistance changes.
  • the resistance change film 9 can be made of a material whose resistance is changed by the action (diffusion, ion transmission, etc.) of the metal related to the first wirings 5a and 5b (lower electrodes).
  • an ion conductive film is used.
  • an oxide insulating film containing Ta such as Ta 2 O 5 or TaSiO can be used.
  • the resistance change film 9 can have a laminated structure in which Ta 2 O 5 and TaSiO are laminated in this order from the bottom.
  • the resistance change film 9 when used as a solid electrolyte, it is cross-linked by metal ions (for example, copper ions) formed inside the ion conductive layer when the resistance is low (on). Is separated by the Ta 2 O 5 layer, so that metal ions can be easily recovered at the time of OFF, and switching characteristics can be improved.
  • the resistance change film 9 is formed on the first wirings 5 a and 5 b, the tapered surface of the opening of the insulating barrier film 7, and the insulating barrier film 7.
  • the outer peripheral portion of the connection portion between the first wirings 5 a and 5 b and the resistance change film 9 is provided along at least the tapered surface of the opening of the insulating barrier film 7.
  • the lower electrode that is in direct contact with the resistance change film 9 is less likely to be ionized than the metal associated with the first wirings 5 a and 5 b, and is less likely to diffuse and ion conduct in the resistance change film 9.
  • Pt, Ru, etc. can be used.
  • RuTa, RuTi, etc. whose main component is a metal material such as Pt, Ru, etc. may be used.
  • Ta, Ti, etc. are inserted at the interface between the second electrode 10 and the rectifying element. Also good.
  • the second electrode 10 is in direct contact with the resistance change film 9 on one surface, and is in direct contact with the rectifying element 11 on the other surface.
  • the second electrode 10 may have a laminated structure.
  • a laminated structure of a lower layer electrode in direct contact with the resistance change film 9 and an upper electrode in direct contact with the rectifying element 11 may be used.
  • RuTa can be used as the lower layer side electrode and Ta as the upper layer side electrode. This can prevent Ru from being exposed to an oxygen atmosphere when the rectifying element is an oxide.
  • the upper layer electrode that is in direct contact with the rectifying element 11 is made of, for example, Ta, TaN, Ti, TiN or the like in consideration of the work function of the rectifying element 11 and the second electrode 10. It may be used.
  • the rectifying element 11 has the rectifying layer 103 shown in FIG.
  • a Pool-Frenkel insulating film, a Schottky insulating film, a threshold switching volatile resistance change film, or the like can be used.
  • TaO sometimes uses Ta as an electrode, which is advantageous compared to the case where other materials are used for film formation and processing.
  • SiN is also a material generally used for semiconductor devices, and has an advantage that it can be easily grown and processed by dry etching.
  • the third electrode 12 can be made of, for example, Ta, Ti, W, Al, or a nitride thereof.
  • the third electrode 12 is preferably made of the same material as the barrier metal 20.
  • the third electrode 12 is electrically connected to the plugs 19a and 19b through the barrier metals 20a and 20b.
  • the diameter R2 (or the area of the region) of the region where the third electrode 12 and the plugs 19a and 19b (strictly speaking, the barrier metals 20a and 20b) are in contact with each other is determined by the first wirings 5a and 5b and the resistance change film 9. It is set so as to be smaller than the diameter R1 (or the area of the region) of the circle in contact with the region.
  • the defective filling of the plating for example, copper plating
  • the plating for example, copper plating
  • the protective insulating film 14 and the insulating barrier film 7 are preferably made of the same material. That is, by surrounding the entire resistance change element with the same material, the material interface is integrated, so that intrusion of moisture and the like from the outside can be prevented, and detachment from the resistance change element itself can be prevented.
  • the protective insulating film 14 is an insulating film having a function of preventing oxygen from detaching from the resistance change film 9 without damaging the resistance change element.
  • a SiN film, a SiCN film, or the like can be used for the protective insulating film 14.
  • the protective insulating film 14 is preferably made of the same material as the hard mask film 16 and the insulating barrier film 7. When the same material is used, the protective insulating film 14, the insulating barrier film 7, and the hard mask film 16 are integrated, so that the adhesion at the interface is improved and the resistance change element 22 can be further protected. Become.
  • the interlayer insulating film 17 is an insulating film formed on the protective insulating film 14.
  • a silicon oxide film (SiO x ), a SiOC film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film can be used.
  • the interlayer insulating film 17 may be a laminate of a plurality of insulating films.
  • a pilot hole for embedding the plugs 19a and 19b and a wiring groove for embedding the second wirings 18a and 18b are formed. Second wirings 18a and 18b are buried in these prepared holes and wiring grooves via barrier metals 20a and 20b.
  • the second wirings 18a and 18b are wirings embedded in the wiring grooves formed in the interlayer insulating film 17 through the barrier metals 20a and 20b.
  • the second wiring 18a is integrated with the plug 19a.
  • the plug 19a is embedded in a prepared hole formed in the interlayer insulating film 17 and the hard mask film 16 via a barrier metal 20a.
  • the plug 19 a is electrically connected to the second electrode 10 through the rectifying element 11.
  • Cu can be used for the second wiring 18a and the plug 19a.
  • the second wiring 18b and the plug 19b have the same configuration as the second wiring 18a and the plug 19a.
  • the barrier metals 20a and 20b are formed of the second wirings 18a and 18b and the plug 19a in order to prevent the metal related to the second wirings 18a and 18b (including the plugs 19a and 19b) from diffusing into the interlayer insulating film 17 or the lower layer.
  • 19b is a conductive film having a barrier property that covers the side surface and the bottom surface.
  • the barrier metals 20a and 20b for example, when the second wirings 18a and 18b and the plugs 19a and 19b are made of a metal element containing Cu as a main component, tantalum (Ta), tantalum nitride (TaN), titanium nitride ( A high melting point metal such as TiN) or tungsten carbonitride (WCN), a nitride thereof, or a laminated film thereof can be used.
  • the barrier metals 20 a and 20 b are preferably made of the same material as the third electrode 12.
  • the barrier metals 20 a and 20 b have a stacked structure of TaN (lower layer) / Ta (upper layer), it is preferable to use TaN, which is a lower layer material, for the third electrode 12.
  • TaN which is a lower layer material
  • the barrier metals 20 a and 20 b are Ti (lower layer) / Ru (upper layer)
  • the barrier insulating film 21 is formed on the interlayer insulating film 17 including the second wirings 18a and 18b, prevents oxidation of the metal (for example, Cu) related to the second wirings 18a and 18b, and the second wiring 18a to the upper layer.
  • 18b is an insulating film having a role of preventing diffusion of the metal according to 18b.
  • a SiC film, a SiCN film, a SiN film, and a laminated structure thereof can be used.
  • Example 1 a method for manufacturing the semiconductor device described in Example 1 will be described.
  • This embodiment is an example of a method for manufacturing a semiconductor device of the present invention, and will be described in the case of the semiconductor device shown in FIG.
  • 8A to 8L are process cross-sectional views schematically showing a method for manufacturing the semiconductor device shown in FIG.
  • an interlayer insulating film 2 is deposited on a semiconductor substrate (for example, a substrate on which a semiconductor element is formed).
  • the interlayer insulating film 2 is, for example, a silicon oxide film and has a film thickness of 300 nm.
  • a barrier insulating film 3 and an interlayer insulating film 4 are sequentially deposited on the interlayer insulating film 2.
  • the barrier insulating film 3 is, for example, a SiN film and has a thickness of 30 nm.
  • the interlayer insulating film 4 is, for example, a silicon oxide film and has a thickness of 200 nm.
  • first wirings 5a and 5b are embedded in the wiring trench through a barrier metal 6 (for example, TaN / Ta, film thickness of 5 nm / 5 nm).
  • the interlayer insulating films 2 and 4 can be formed by a plasma CVD method.
  • the plasma CVD method refers to, for example, a gas source or a liquid source that is continuously supplied to a reaction chamber under reduced pressure, and molecules are excited by plasma energy to cause a gas phase reaction or a substrate. This is a technique for forming a continuous film on a substrate by surface reaction or the like.
  • the first wirings 5a and 5b are formed by, for example, forming a barrier metal 6 (for example, a TaN / Ta laminated film) by a PVD (Physical Vapor Deposition) method, forming a Cu seed by the PVD method, and then performing an electrolytic plating method. It can be formed by embedding copper in the wiring groove, heat-treating at a temperature of 200 ° C. or higher, and then removing excess copper other than in the wiring groove by a CMP (Chemical-Mechanical-Polishing) method. As a method for forming such a series of copper wirings, a general method in this technical field can be used.
  • the CMP method is a method of flattening by polishing the unevenness of the wafer surface that occurs during the multilayer wiring formation process by bringing the polishing liquid into contact with a rotating polishing pad while flowing the polishing liquid over the wafer surface.
  • a buried wiring (damascene wiring) is formed, or by planarizing by polishing the interlayer insulating film (FIG. 8A).
  • an insulating barrier film 7 (for example, a SiCN film, a film thickness of 30 nm) is formed on the interlayer insulating film 4 including the first wirings 5a and 5b (FIG. 8B).
  • the insulating barrier film 7 can be formed by a plasma CVD method.
  • the thickness of the insulating barrier film 7 is preferably about 10 nm to 50 nm.
  • a first hard mask film 8 (for example, a silicon oxide film) is formed on the insulating barrier film 7 (FIG. 8C).
  • the hard mask film 8 is preferably made of a material different from the insulating barrier film 7 from the viewpoint of maintaining a high etching selectivity in the dry etching process, and may be an insulating film or a conductive film.
  • a silicon oxide film, a silicon nitride film, TiN, Ti, Ta, TaN, or the like can be used, and a SiN / SiO 2 laminate can be used.
  • the opening is patterned on the first hard mask film 8 using a photoresist (not shown).
  • An opening pattern is formed in the hard mask film 8 by dry etching using the photoresist as a mask, and then the photoresist is peeled off by oxygen plasma ashing or the like (FIG. 8D).
  • the dry etching is not necessarily stopped on the upper surface of the insulating barrier film 7 and may reach the inside of the insulating barrier film 7.
  • the insulating barrier film 7 exposed from the opening of the hard mask film 8 is etched back (dry etching) using the hard mask film 8 with the opening shown in FIG.
  • An opening is formed in the barrier film 7, and a part of the upper surface of the first wiring 5 a, 5 b is exposed from the opening of the insulating barrier film 7. At this time, the opening may reach the inside of the interlayer insulating film 4.
  • an organic stripping process is performed with an amine-based stripping solution to remove the copper oxide formed on the exposed surfaces of the first wirings 5a and 5b, and to remove etching multi-products generated during the etch back. (See FIG. 8E).
  • the hard mask film 8 shown in FIG. 8D is preferably completely removed during the etch-back, but may be left as it is when it is an insulating material.
  • the shape of the opening of the insulating barrier film 7 can be a circle, a square, or a rectangle, and the diameter of the circle or the length of one side of the rectangle can be 20 nm to 500 nm.
  • the wall surface of the opening of the insulating barrier film 7 can be tapered by using reactive dry etching.
  • reactive dry etching a gas containing fluorocarbon can be used as an etching gas.
  • a resistance change film 9 is deposited on the insulating barrier film 7 including the first wirings 5a and 5b.
  • the resistance change film is a solid electrolyte, and for example, a porous hydrocarbon film, SiCOH, TaSiO, Ta 2 O 5 , ZrO, or HfO (film thickness 6 nm) can be used (FIG. 8F).
  • the resistance change film 9 can be formed using a PVD method or a CVD method.
  • the insulating barrier film 7 Since moisture or the like is attached to the opening of the insulating barrier film 7 by the organic peeling process, the insulating barrier film 7 is removed by applying a heat treatment under reduced pressure at a temperature of about 250 ° C. to 400 ° C. before the deposition of the resistance change film 9. It is preferable to gas. At this time, care must be taken such as in a vacuum or in a nitrogen atmosphere so as not to oxidize the copper surface again.
  • gas cleaning or plasma cleaning treatment using H 2 gas may be performed on the first wirings 5 a and 5 b exposed from the opening of the insulating barrier film 7. Good. By doing so, it is possible to suppress oxidation of the first wirings 5a and 5b when forming the resistance change film 9, and to suppress thermal diffusion (mass transfer) of copper during the process. Become.
  • the oxidation of the first wirings 5a and 5b may be suppressed by depositing a thin valve metal (thickness of 2 nm or less) (not shown) using the PVD method.
  • the valve metal is made of at least one of Zr, Hf, Ti, Al, Ta, etc., and can be selected from materials that have a negative free energy of oxidation larger than that of Cu.
  • the thin valve metal layer is oxidized during the formation of the resistance change film 9 to become an oxide.
  • variable resistance film 9 since it is necessary to bury the variable resistance film 9 in the opening having a step with good coverage, it is preferable to use the plasma CVD method.
  • the second electrode 10 having a laminated structure is formed on the resistance change film 9.
  • the second electrode 10 is divided into a lower layer electrode (for example, a layer containing Ru as a main component, thickness 10 nm) and an upper layer electrode (for example, titanium nitride, thickness 10 nm) that is in direct contact with the resistance change film 9. It can also be deposited.
  • the rectifying element 11 and the control electrode 12 are formed in this order on the second electrode 10 (see FIG. 8G).
  • the rectifying element 11 can be manufactured by the manufacturing method described in Comparative Example 1.
  • a second hard mask film (for example, SiCN film, film thickness 30 nm) 23 and a third hard mask film (for example, SiO 2 film, film thickness 200 nm) 24 are stacked in this order on the control electrode 12 (FIG. 8H).
  • the second hard mask film 23 and the third hard mask film 24 can be formed using a plasma CVD method.
  • the hard mask film including the second hard mask film 23 and the third hard mask film 24 can be formed using a general plasma CVD method in the technical field of semiconductor devices.
  • the second hard mask film 23 and the third hard mask film 24 are preferably different types of films.
  • the second hard mask film 23 is a SiCN film
  • the third hard mask film 24 is SiO 2. It can be a membrane.
  • the second hard mask film 23 is preferably made of the same material as the protective insulating film 14 and the insulating barrier film 7. That is, all the surroundings of the variable resistance element are surrounded by the same material, so that the material interface can be integrated to prevent intrusion of moisture and the like from the outside and to prevent detachment from the variable resistance element itself.
  • the first hard mask film 8 can be formed by a plasma CVD method, but it is necessary to maintain a reduced pressure in the reaction chamber before film formation. At this time, oxygen is desorbed from the resistance change film 9, There arises a problem that the leakage current of the solid electrolyte increases due to oxygen defects. In order to suppress them, it is preferable to set the film forming temperature to 400 ° C. or lower. Further, it is preferable not to use a reducing gas because the film is exposed to a film forming gas under reduced pressure before film formation. For example, it is preferable to use a SiN film in which a mixed gas of SiH 4 / N 2 is formed by high-density plasma.
  • a metal hard mask can be used for the hard masks such as the first to third hard mask films 8, 23, 24, etc.
  • TiN can be used.
  • a photoresist (not shown) for patterning the switching element portion is formed on the third hard mask film 24, and then the photoresist is used as a mask until the upper surface of the second hard mask film 23 appears. 3
  • the hard mask film 24 is dry-etched, and then the photoresist is removed using oxygen plasma ashing and organic peeling.
  • a photoresist (not shown) for patterning the rectifying element portion is formed on the third hard mask film 24, and then the rectifying element pattern is formed in the third hard mask film 24 using the photoresist as a mask. The photoresist is removed using oxygen plasma ashing and organic peeling.
  • variable resistance element portion and the rectifying element portion are patterned in the second hard mask film 23 and the third hard mask film 24.
  • the second hard mask film 23 and the third hard mask film 24 as a mask, the second hard mask film 23, the third electrode 12, the rectifier element 11, the second electrode 10, and the resistance change film 9 are continuously dried. Etch. At this time, the hard mask film is preferably completely removed during the etch back, but may remain as it is.
  • the second electrode 10 when the second electrode 10 is TiN, it can be processed by Cl 2 -based RIE (Reactive Ion Etching), and when the second electrode 10 is Ru, RIE processing is performed with a mixed gas of Cl 2 / O 2. can do. In the etching of the resistance change film 9, it is necessary to stop the dry etching on the insulating barrier film 7 on the lower surface.
  • RIE reactive Ion Etching
  • the variable resistance element portion and the rectifying element portion can be processed without being exposed to oxygen plasma ashing for resist removal.
  • a protective insulating film 14 (for example, a SiN film, a film thickness of 30 nm) is deposited on the insulating barrier film 7 including the third electrode 12, the rectifying element 11, the second electrode 10, and the resistance change film 9 (FIG. 8L). reference). At this time, the third hard mask film 23 remaining on the third electrode 12 is also covered with the protective insulating film 14.
  • the protective insulating film 14 can be formed by plasma CVD, it is necessary to maintain a reduced pressure in the reaction chamber before film formation. At this time, oxygen is desorbed from the side surface of the resistance change film 9, and the solid electrolyte This causes a problem that the leakage current increases. In order to suppress them, it is preferable to set the deposition temperature of the protective insulating film 14 to 350 ° C. or lower. Further, it is preferable not to use a reducing gas because the film is exposed to a film forming gas under reduced pressure before film formation. For example, it is preferable to use a SiN film or the like formed by using a mixed gas of SiH 4 / N 2 with high-density plasma at a substrate temperature of 200 ° C.
  • an interlayer insulating film 17 (for example, a silicon oxide film) is formed on the protective insulating film 14, and then the interlayer insulating film 17 is etched and planarized by CMP.
  • a hard mask film 16 is deposited on the planarized interlayer insulating film 17.
  • a wiring groove for the second wiring 18a, 18b and a pilot hole for the plugs 19a, 19b are formed, and barrier metal 20a, 20b (for example, in the wiring groove and the pilot hole is formed using a copper dual damascene wiring process.
  • the second wirings 18a and 18b (for example, Cu) and the plugs 19a and 19b (for example, Cu) are simultaneously formed through TaN / Ta).
  • a barrier insulating film 21 (for example, a SiN film) is deposited on the hard mask film 16 including the second wirings 18a and 18b.
  • the formation of the second wirings 18a and 18b can use the same process as the formation of the lower layer wirings (first wirings 5a and 5b).
  • the barrier metals 20a and 20b and the third electrode 12 the same material, the contact resistance between the plugs 19a and 19b and the third electrode 12 is reduced, and the element performance is improved (the resistance change element 22 when turned on). Can be reduced).
  • the interlayer insulating film 17 can be formed by a plasma CVD method.
  • the first wirings 5a and 5b are used as the lower electrodes of the resistance change element, that is, the first wirings 5a and 5b also serve as the lower electrode of the resistance change element. Therefore, it is possible to achieve high density by miniaturization of the variable resistance element, to form a complementary variable resistance element, and to improve reliability.
  • the rectifying element 11 is formed on the upper surface of the variable resistance element, and the variable resistance element can be mounted only by creating three mask sets as an additional step to the normal Cu damascene wiring process. As a result, the cost reduction of the semiconductor device can be achieved at the same time.
  • a resistance change element can also be mounted inside a state-of-the-art device composed of copper wiring to improve the performance of the apparatus.
  • CMOS Complementary Metal Oxide Semiconductor
  • DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • flash memory FRAM (registered trademark) (Ferro Electric Random Access) Memory (MRAM), MRAM (Magnetic Random Access Memory), resistance change memory, semiconductor products having memory circuits such as bipolar transistors, semiconductor products having logic circuits such as microprocessors, or boards and packages on which these are posted simultaneously Can be applied on copper wiring .
  • the present invention can also be applied to the bonding of electronic circuit devices, optical circuit devices, quantum circuit devices, micromachines, MEMS (Micro Electro Mechanical Systems), etc. to semiconductor devices.
  • the example of the switch function has been mainly described.
  • the present invention can be used for a nonvolatile memory, a resistance change characteristic, and a memory element using a rectifying element.
  • the resistance change element as an example of the resistance change element, the characteristics of the metal ion precipitation type resistance change element are mainly shown, but the operation principle of the resistance change element does not limit the use of the present invention.
  • variable resistance element when the variable resistance element is a metal deposition type variable resistance element, the variable resistance element exhibits bipolar characteristics. Therefore, it is preferable to use the present invention having both rectification characteristics. Furthermore, when the variable resistance element is used as a switch arranged in a signal line of a logic circuit, the specification required as a rectifying element is excellent in rectifying characteristics (the current is small when a low voltage is applied and the current is large when a high voltage is applied). In addition, it is desirable that the parasitic capacitance of the rectifying element itself is small. Since the rectifying element of the present invention can form the buffer layer (for example, amorphous silicon) at 400 ° C. or lower and can be formed inside the multilayer wiring, it also has an advantage that a low capacity can be realized structurally.
  • buffer layer for example, amorphous silicon
  • the switching element according to the present invention can be confirmed from the completion. Specifically, by observing the cross section of the device with a TEM (Transmission Electron Microscope), when the variable resistance element is mounted inside the multilayer wiring, the lower surface of the variable resistance element is a copper wiring. Yes, it can be confirmed by observing whether the copper wiring also serves as the lower electrode and has an opening between two different lower layer wirings, and can confirm whether the structure is described in the present invention . In addition to TEM, it is described in the present invention by performing composition analysis such as EDX (Energy Dispersive X-ray Spectroscopy), EELS (Electron Energy Loss Spectroscopy). It can be confirmed whether it is a new material.
  • EDX Electronic X-ray Spectroscopy
  • EELS Electron Energy Loss Spectroscopy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

Provided is a rectifying element wherein current-voltage characteristics are improved. The rectifying element has: a first electrode and a second electrode; a rectifying layer that is provided between the first electrode and the second electrode; a first buffer layer that is provided between the first electrode and the rectifying layer; and a second buffer layer that is provided between the second electrode and the rectifying layer. The work functions of the first buffer layer and the second buffer layer are smaller than those of the first electrode and the second electrode, and the relative dielectric constants of the first buffer layer and the second buffer layer are larger than the relative dielectric constant of the rectifying layer.

Description

整流素子、スイッチング素子および整流素子の製造方法Rectifying element, switching element, and method of manufacturing rectifying element
 本発明は、整流素子、スイッチング素子、および整流素子の製造方法に関する。 The present invention relates to a rectifying element, a switching element, and a method for manufacturing the rectifying element.
 半導体デバイス(特に、シリコンデバイス)は、微細化(スケーリング則:Mooreの法則)によってデバイスの集積化・低電力化が進められ、3年4倍のペースで開発が進められてきた。近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート長は20nm以下となり、リソグラフィプロセスの高騰(装置価格およびマスクセット価格)、およびデバイス寸法の物理的限界(動作限界・ばらつき限界)により、これまでのスケーリング則とは異なるアプローチでのデバイス性能の改善が求められている。 Semiconductor devices (especially silicon devices) have been developed at a pace of 3 years, with the integration and low power consumption of the devices advanced by miniaturization (scaling law: Moore's law). In recent years, the gate length of MOSFET (Metal Oxide Semiconductor Field Effect Transistor) has become 20 nm or less, and due to soaring lithography process (equipment price and mask set price) and physical limitations of device dimensions (operation limit / variation limit) There is a need to improve device performance with an approach different from the scaling law.
 近年、ゲートアレイとスタンダードセルの中間的な位置づけとしてFPGA(Field Programmable Gate Array)と呼ばれる再書き換え可能なプログラマブルロジックデバイスが開発されている。FPGAは、顧客自身がチップの製造後に任意の回路構成を行うことを可能とするものである。FPGAは、多層配線構造の内部に抵抗変化素子を有し、顧客自身が任意に配線の電気的接続をできるようにしたものである。このようなFPGAを搭載した半導体装置を用いることで、回路の自由度を向上させることができるようになる。 Recently, a rewritable programmable logic device called FPGA (Field Programmable Gate Array) has been developed as an intermediate position between a gate array and a standard cell. The FPGA enables the customer himself to perform an arbitrary circuit configuration after manufacturing the chip. The FPGA has a variable resistance element inside a multilayer wiring structure, and the customer can arbitrarily connect the wirings arbitrarily. By using a semiconductor device mounted with such an FPGA, the degree of freedom of the circuit can be improved.
 抵抗変化素子としては、MRAM(磁気抵抗メモリ:Magneto-resistive Random Access Memory)、PRAM(相変化メモリ:Phase Change RAM)、ReRAM(抵抗変化型メモリ:Resistance Random Access Memory)、CBRAM(固体電解質のイオンによる導電性パスによるRAM:Conductive Bridging RAM)などがある。 As the resistance change element, MRAM (Magneto-resistiveistRandom Access Memory), PRAM (Phase change memory: Phase Change RAM), ReRAM (Resistance change memory: Resistance Random Access Memory), CBRAM (Solid electrolyte ion) There is a RAM (Conductive Bridging RAM).
 ReRAMは、外部から印加される電圧と電流により、抵抗変化膜内部に導電性パスが形成されてオン状態となるか、抵抗変化膜内部に形成されている導電性パスが消失してオフ状態となるかという、抵抗値が変化する特性を利用するものである。ReRAMセルでは、2つの電極の間に挟まれた抵抗変化膜を有する構造が用いられる。例えば、2つの電極間に電界を印加して、金属酸化物からなる抵抗変化膜内部にフィラメントを生成、または、2つの電極間に導電性パスを形成して、オン状態とする。その後、逆方向に電界を印加させることで、フィラメントを消失させ、または、2つの電極間に形成されていた導電性パスを消失させ、オフ状態とする。印加する電界の方向を反転させることで、2つの電極間の抵抗値が大きく異なる、オン状態とオフ状態との間のスイッチングがなされる。上記オン状態とオフ状態との間における抵抗値の相違に応じて、この記憶素子を介して流れる電流が異なることを利用して、データを記憶する。データ書き込み時は、記憶させるデータに対応して、オフ状態からオン状態への遷移、またはオン状態からオフ状態への遷移を引き起こす、電圧値、電流値およびパルス幅を選択し、データ記憶用のフィラメントの生成もしくは消失、または導電性パスの形成もしくは消失を行う。 In the ReRAM, a conductive path is formed inside the resistance change film by an externally applied voltage and current, or is turned on, or the conductive path formed inside the resistance change film disappears and is turned off. The characteristic of changing the resistance value is used. In the ReRAM cell, a structure having a resistance change film sandwiched between two electrodes is used. For example, an electric field is applied between two electrodes to generate a filament inside the resistance change film made of a metal oxide, or a conductive path is formed between the two electrodes to be turned on. Thereafter, by applying an electric field in the opposite direction, the filament disappears, or the conductive path formed between the two electrodes disappears, and the device is turned off. By reversing the direction of the electric field to be applied, switching between the on state and the off state in which the resistance values between the two electrodes are greatly different is performed. Data is stored by utilizing the fact that the current flowing through the storage element differs according to the difference in resistance value between the on state and the off state. When writing data, select the voltage value, current value, and pulse width that cause the transition from the off state to the on state, or the transition from the on state to the off state, corresponding to the data to be stored. Formation or disappearance of filaments, or formation or disappearance of conductive paths.
 ReRAMの構成に利用される、抵抗変化素子の一種として、ReRAMのメモリセルの構成に利用する回路の自由度を向上させる可能性の高い素子が、非特許文献1に開示されている。非特許文献1の素子は、イオン伝導体中における金属イオン移動と、電気化学反応による「金属イオンの還元による金属の析出」と「金属の酸化による金属イオンの生成」を利用して、抵抗変化膜を挟む電極間の抵抗値を可逆的に変化させ、スイッチングを行う不揮発性スイッチング素子である。非特許文献1に開示された不揮発性スイッチング素子は、イオン伝導体からなる固体電解質と、固体電解質の2つの面のそれぞれに接して設けられた第1電極および第2電極とを有する構成である。第1電極は第1の金属で構成され、第2電極は第2の金属で構成されている。第1の金属と第2の金属は、金属を酸化して金属イオンを生成する過程の標準生成ギブズエネルギーΔGが相違している。 Non-Patent Document 1 discloses an element that has a high possibility of improving the degree of freedom of a circuit used for the configuration of a ReRAM memory cell as a kind of resistance change element used for the configuration of ReRAM. The element of Non-Patent Document 1 uses a metal ion movement in an ionic conductor, and "resistance of metal changes by utilizing metal precipitation by reduction of metal ions" and "generation of metal ions by metal oxidation" by electrochemical reaction. This is a non-volatile switching element that performs switching by reversibly changing a resistance value between electrodes sandwiching a film. The nonvolatile switching element disclosed in Non-Patent Document 1 has a configuration having a solid electrolyte made of an ionic conductor, and a first electrode and a second electrode provided in contact with each of two surfaces of the solid electrolyte. . The first electrode is made of a first metal, and the second electrode is made of a second metal. The first metal and the second metal are different in standard generation Gibbs energy ΔG in the process of generating metal ions by oxidizing the metal.
 非特許文献1では、第1の金属と第2の金属の材料は、以下のように記載されている。 In Non-Patent Document 1, the materials of the first metal and the second metal are described as follows.
 オフ状態からオン状態への遷移を引き起こすバイアス電圧を第1電極と第2電極の間に印加する際、第1電極と固体電解質との界面において、印加されるバイアス電圧で誘起される電気化学反応によって、第1の金属が酸化される。これにより、金属イオンが生成され、固体電解質に金属イオンが供給される。このように、第1の金属として、印加されるバイアス電圧で誘起される電気化学反応によって酸化され、金属イオンを生成し、固体電解質に金属イオンを供給可能な金属が採用されている。 When a bias voltage causing a transition from the off state to the on state is applied between the first electrode and the second electrode, an electrochemical reaction induced by the applied bias voltage at the interface between the first electrode and the solid electrolyte As a result, the first metal is oxidized. Thereby, a metal ion is produced | generated and a metal ion is supplied to a solid electrolyte. As described above, a metal that is oxidized by an electrochemical reaction induced by an applied bias voltage to generate metal ions and supply the metal ions to the solid electrolyte is employed as the first metal.
 オン状態からオフ状態への遷移を引き起こすバイアス電圧を第1電極と第2電極の間に印加する際、第2電極の表面に第1の金属が析出している場合、第2電極の表面に析出された第1の金属は、印加されるバイアス電圧で誘起される電気化学反応によって酸化され、金属イオンを生成し、固体電解質に金属イオンとして溶解する。これに対して、第2の金属には、金属イオンを生成する過程は誘起されない。つまり、第2の金属として、印加されるバイアス電圧によって酸化されず、金属イオンを生成する過程が誘起されない、金属が採用されている。 When a bias voltage causing a transition from the on state to the off state is applied between the first electrode and the second electrode, the first metal is deposited on the surface of the second electrode. The deposited first metal is oxidized by an electrochemical reaction induced by an applied bias voltage, generates metal ions, and dissolves in the solid electrolyte as metal ions. In contrast, the process of generating metal ions is not induced in the second metal. That is, as the second metal, a metal that is not oxidized by an applied bias voltage and does not induce a process of generating metal ions is employed.
 ここで、金属架橋構造の形成と溶解によって、オン状態とオフ状態間を遷移可能な金属架橋型抵抗変化素子のスイッチング動作を簡単に説明する。 Here, the switching operation of the metal bridge type resistance change element capable of transitioning between the on state and the off state by forming and dissolving the metal bridge structure will be briefly described.
 オフ状態からオン状態への遷移過程(セット過程)では、第2電極を接地して、第1電極に正電圧を印加すると、第1電極と固体電解質の界面では、第1電極の金属が金属イオンになって固体電解質に溶解する。一方、第2電極側では、第2電極から供給される電子を利用して、固体電解質中の金属イオンが固体電解質中に金属になって析出する。固体電解質中に析出した金属により、金属架橋構造が形成され、最終的に、第1電極と第2電極を接続する金属架橋が形成される。金属架橋を介して第1電極と第2電極が電気的に接続することで、スイッチがオン状態になる。 In the transition process (set process) from the off state to the on state, when the second electrode is grounded and a positive voltage is applied to the first electrode, the metal of the first electrode is metal at the interface between the first electrode and the solid electrolyte. It becomes ions and dissolves in the solid electrolyte. On the other hand, on the second electrode side, using the electrons supplied from the second electrode, metal ions in the solid electrolyte are deposited as metal in the solid electrolyte. A metal bridge structure is formed by the metal deposited in the solid electrolyte, and finally, a metal bridge connecting the first electrode and the second electrode is formed. When the first electrode and the second electrode are electrically connected via the metal bridge, the switch is turned on.
 一方、オン状態からオフ状態への遷移過程(リセット過程)では、オン状態のスイッチに対して、第2電極を接地して第1電極に負電圧を印加すると、金属架橋を構成している、金属が金属イオンになって固体電解質に溶解する。溶解が進行すると、金属架橋を構成している金属架橋構造の一部が切れる。最終的に、第1電極と第2電極を接続する金属架橋が切断されると、電気的接続が切れ、スイッチがオフ状態になる。 On the other hand, in the transition process (reset process) from the on state to the off state, when the second electrode is grounded and a negative voltage is applied to the first electrode with respect to the switch in the on state, a metal bridge is formed. The metal becomes metal ions and dissolves in the solid electrolyte. When dissolution proceeds, a part of the metal cross-linking structure constituting the metal cross-link is cut. Finally, when the metal bridge connecting the first electrode and the second electrode is cut, the electrical connection is cut and the switch is turned off.
 なお、金属の溶解が進行すると、導通経路を構成する金属架橋構造は細くなり、第1電極および第2電極間の抵抗が大きくなり、第1電極と固体電解質の界面では、溶解している金属イオンが還元され、金属として析出する。そのため、固体電解質中に含まれる金属イオン濃度が減少し、比誘電率が変化することに伴い、電極間容量が変化したりするなど、電気的接続が完全に切れる前の段階から電気特性が変化し、最終的に電気的接続が切れる。 As the dissolution of the metal proceeds, the metal cross-linking structure constituting the conduction path becomes narrower, the resistance between the first electrode and the second electrode increases, and the dissolved metal at the interface between the first electrode and the solid electrolyte. Ions are reduced and deposited as metal. Therefore, the electrical characteristics change from the stage before the electrical connection is completely cut off, such as the concentration of metal ions in the solid electrolyte decreases and the relative permittivity changes, causing the capacitance between electrodes to change. Finally, the electrical connection is broken.
 また、金属架橋型抵抗変化素子をオン状態からオフ状態に遷移させた(リセットした)後、再び第2電極を接地して第1電極に正電圧を印加すると、オフ状態からオン状態への遷移過程(セット過程)が進行する。すなわち、金属架橋型抵抗変化素子では、オフ状態からオン状態への遷移過程(セット過程)と、オン状態からオフ状態への遷移過程(リセット過程)を、可逆的に行うことが可能である。 Further, after the metal bridge type resistance change element is changed from the on state to the off state (reset), when the second electrode is grounded again and a positive voltage is applied to the first electrode, the transition from the off state to the on state is performed. The process (set process) proceeds. That is, in the metal bridge type resistance change element, the transition process from the off state to the on state (set process) and the transition process from the on state to the off state (reset process) can be performed reversibly.
 また、非特許文献1には、イオン伝導体を介して2個の電極が配置され、2個の電極の間の導通状態を制御する、2端子型スイッチング素子の構成、およびそのスイッチング動作が開示されている。 Non-Patent Document 1 discloses a configuration of a two-terminal switching element in which two electrodes are arranged via an ion conductor and controls a conduction state between the two electrodes, and a switching operation thereof. Has been.
 抵抗変化素子の動作特性に注目すると、ユニポーラ型とバイポーラ型に抵抗変化素子を分類することができる。ユニポーラ型抵抗変化素子は、電圧極性に依存せず、印加電圧レベルで抵抗が変化する。バイポーラ型抵抗変化素子は、印加電圧レベルと電圧極性によって抵抗が変化する。 Focusing on the operating characteristics of variable resistance elements, variable resistance elements can be classified into unipolar and bipolar types. The resistance of the unipolar variable resistance element does not depend on the voltage polarity, and the resistance changes at the applied voltage level. The resistance of the bipolar variable resistance element changes depending on the applied voltage level and voltage polarity.
 イオンが電界等の印加によって自由に動くことのできる固体である固体電解質層を有する、固体電解質層型の抵抗変化素子について説明する。 A solid electrolyte layer type resistance change element having a solid electrolyte layer that is a solid in which ions can freely move by application of an electric field or the like will be described.
 非特許文献1には、固体電解質層型の抵抗変化素子として、上記バイポーラ型抵抗変化素子の一例が開示されている。非特許文献1には、固体電解質層中における金属イオン移動と電気化学反応とを利用したスイッチング素子が開示されている。このスイッチング素子は、固体電解質層と、固体電解質層の一方の面に接する第1電極と、固体電解質層の他方の面に接する第2電極との3層を有する。このうち、第1電極は、固体電解質層に金属イオンを供給するための役割を果たす。第2電極は金属イオンを供給しない。 Non-Patent Document 1 discloses an example of the bipolar variable resistance element as a solid electrolyte layer type variable resistance element. Non-Patent Document 1 discloses a switching element using metal ion migration and electrochemical reaction in a solid electrolyte layer. This switching element has three layers of a solid electrolyte layer, a first electrode in contact with one surface of the solid electrolyte layer, and a second electrode in contact with the other surface of the solid electrolyte layer. Among these, the 1st electrode plays the role for supplying a metal ion to a solid electrolyte layer. The second electrode does not supply metal ions.
 このスイッチング素子の動作を簡単に説明する。 The operation of this switching element will be briefly described.
 第1電極を接地して第2電極に負電圧を印加すると、第1電極の金属が金属イオンになって固体電解質層に溶解する。そして、固体電解質層中の金属イオンが固体電解質層中に金属になって析出する。固体電解質層中に析出した金属により、第1電極と第2電極を接続する金属架橋が形成される。金属架橋により第1電極と第2電極が電気的に接続することで、スイッチング素子はオン状態になる。 When the first electrode is grounded and a negative voltage is applied to the second electrode, the metal of the first electrode becomes metal ions and dissolves in the solid electrolyte layer. And the metal ion in a solid electrolyte layer becomes a metal and deposits in a solid electrolyte layer. The metal deposited in the solid electrolyte layer forms a metal bridge that connects the first electrode and the second electrode. When the first electrode and the second electrode are electrically connected by metal bridge, the switching element is turned on.
 一方、上記オン状態で、第1電極を接地して第2電極に正電圧を印加すると、金属架橋の一部が切れる。これにより、第1電極と第2電極との電気的接続が切れ、スイッチング素子はオフ状態になる。なお、電気的接続が完全に切れる前の段階から、第1電極および第2電極間の抵抗が大きくなったり、電極間容量が変化したりする等、その電気特性が変化し、最終的に電気的接続が切れる。 On the other hand, when the first electrode is grounded and a positive voltage is applied to the second electrode in the ON state, a part of the metal bridge is cut. Thereby, the electrical connection between the first electrode and the second electrode is broken, and the switching element is turned off. Note that the electrical characteristics change from the stage before the electrical connection is completely cut off, such as the resistance between the first electrode and the second electrode is increased, or the capacitance between the electrodes is changed. Connection is lost.
 また、上記オフ状態からオン状態にするには、再び第1の電極を接地して第2電極に負電圧を印加すればよい。 In order to change from the off state to the on state, the first electrode is grounded again and a negative voltage is applied to the second electrode.
 上記のように、非特許文献1には、固体電解質層型の抵抗変化素子として、固体電解質層を介して2つの電極間の導通状態を制御する2端子型のスイッチング素子の構成および動作が開示されている。 As described above, Non-Patent Document 1 discloses the configuration and operation of a two-terminal switching element that controls a conduction state between two electrodes through a solid electrolyte layer as a solid electrolyte layer type resistance change element. Has been.
 このような固体電解質層型の抵抗変化素子によるスイッチング素子は、MOSFET等の半導体スイッチよりもサイズが小さく、オン抵抗が小さいという特徴がある。このため、プログラマブルロジックデバイスへの適用に有望であると考えられている。 A switching element using such a solid electrolyte layer type resistance change element is characterized in that it is smaller in size and smaller in on-resistance than a semiconductor switch such as a MOSFET. For this reason, it is considered promising for application to programmable logic devices.
 また、このスイッチング素子においては、その導通状態(オンまたはオフ)は印加電圧をオフにしてもそのまま維持される。このため、不揮発性のメモリ素子としての応用も考えられる。例えば、トランジスタ等の選択素子1個とスイッチング素子1個とを含むメモリセルを基本単位として、このメモリセルを縦方向と横方向にそれぞれ複数配列する。このように配列することで、ワード線およびビット線で複数のメモリセルの中から任意のメモリセルを選択することが可能となる。そして、選択したメモリセルのスイッチング素子の導通状態をセンスし、スイッチング素子のオンまたはオフの状態から情報「1」または「0」のいずれの情報が格納されているかを読み取ることが可能な不揮発性メモリを実現できる。 Further, in this switching element, the conduction state (ON or OFF) is maintained as it is even when the applied voltage is turned OFF. For this reason, the application as a non-volatile memory element is also considered. For example, using a memory cell including one selection element such as a transistor and one switching element as a basic unit, a plurality of memory cells are arranged in the vertical and horizontal directions. Arranging in this way makes it possible to select an arbitrary memory cell from among a plurality of memory cells with the word line and the bit line. Non-volatile that can sense the conduction state of the switching element of the selected memory cell and read information “1” or “0” from the on or off state of the switching element. Memory can be realized.
 不揮発性の抵抗変化素子の一例が、特許文献1に開示されている。特許文献1には、抵抗変化素子が第1電極と、第2電極と、第1電極および第2電極の双方に接続する可変抵抗体と、誘電層を介して可変抵抗体に接続する制御電極(第3電極)とを備え、誘電層が第2の可変抵抗体の側面に接する構成が開示されている。 An example of a nonvolatile variable resistance element is disclosed in Patent Document 1. Patent Document 1 discloses that a variable resistance element includes a first electrode, a second electrode, a variable resistor connected to both the first electrode and the second electrode, and a control electrode connected to the variable resistor via a dielectric layer. (Third electrode), and a configuration in which the dielectric layer is in contact with the side surface of the second variable resistor is disclosed.
 上述した2端子型の抵抗変化素子を半導体装置に搭載し、この抵抗変化素子をプログラミングする場合、抵抗変化素子1つにつき、1つの選択トランジスタ(アクセストランジスタ)を備えた構成が用いられる。この構成は一般に1T1Rと呼ばれている。このとき、選択トランジスタの占める面積が大きいため、スイッチング素子としての全体の面積が実効的に大きくなってしまう問題点を有していた。このため、選択トランジスタを整流素子に置き換えることで、回路の実装面積を小さくすることが検討されている。例えば、特許文献2には、抵抗変化素子の上部に2端子の整流素子を形成する技術が開示されている。 When the above-described two-terminal variable resistance element is mounted on a semiconductor device and this variable resistance element is programmed, a configuration in which one select transistor (access transistor) is provided for each variable resistance element is used. This configuration is generally called 1T1R. At this time, since the area occupied by the selection transistor is large, there is a problem that the entire area as the switching element is effectively increased. For this reason, it has been studied to reduce the circuit mounting area by replacing the selection transistor with a rectifying element. For example, Patent Document 2 discloses a technique for forming a two-terminal rectifier element on the variable resistance element.
特開2010-153591号公報JP 2010-153591 A 特許第5380612号公報Japanese Patent No. 5380612
 プログラミング対象の抵抗変化素子を選択可能にするための素子として、選択トランジスタを整流素子で代替する場合、整流特性が十分ではないという問題があった。プログラミング時にアレイ内のただ一つの抵抗変化素子を選択するために整流素子を動作させても、整流特性が十分でない場合、誤書き込みを発生し、これにより回路動作時に誤動作が生じてしまうおそれがある。 When replacing the selection transistor with a rectifying element as an element for enabling selection of the variable resistance element to be programmed, there is a problem that the rectifying characteristics are not sufficient. Even if the rectifying element is operated to select only one variable resistance element in the array at the time of programming, if the rectifying characteristic is not sufficient, erroneous writing may occur, which may cause malfunction during circuit operation. .
 本発明は上述したような技術が有する問題点を解決するためになされたものであり、電流-電圧特性を改善した整流素子、スイッチング素子および整流素子の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems of the technology, and an object thereof is to provide a rectifying element, a switching element, and a method of manufacturing the rectifying element with improved current-voltage characteristics.
 上記目的を達成するための本発明の整流素子は、
 第1電極および第2電極と、
 前記第1電極および前記第2電極の間に設けられた整流層と、
 前記第1電極と前記整流層の間に設けられた第1バッファ層と、
 前記第2電極と前記整流層の間に設けられた第2バッファ層と、を有し、
 前記第1バッファ層および前記第2バッファ層の仕事関数は前記第1電極および第2電極の仕事関数よりも小さく、前記第1バッファ層および前記第2バッファ層の比誘電率は前記整流層の比誘電率よりも大きい構成である。
In order to achieve the above object, the rectifier of the present invention comprises:
A first electrode and a second electrode;
A rectifying layer provided between the first electrode and the second electrode;
A first buffer layer provided between the first electrode and the rectifying layer;
A second buffer layer provided between the second electrode and the rectifying layer,
The work functions of the first buffer layer and the second buffer layer are smaller than the work functions of the first electrode and the second electrode, and the relative dielectric constant of the first buffer layer and the second buffer layer is the same as that of the rectifying layer. The configuration is larger than the relative dielectric constant.
 また、本発明のスイッチング素子は、論理回路の信号経路中に設けられたスイッチング素子であって、
 上記本発明の整流素子と、
 2つの抵抗変化素子と、を有し、
 前記2つの抵抗変化素子のそれぞれが2つの端子を有し、
 前記2つの抵抗変化素子の2端子のそれぞれの一方の端子が互いに相手と接続され、該2つの抵抗変化素子の2つの他方の端子の一方が前記信号の入力端子であり、他方が前記信号の出力端子であり、
 前記整流素子の前記第1電極または前記第2電極のうち、一方の電極が前記2つの抵抗変化素子の2端子のそれぞれの一方の端子と接続され、他方の電極が制御端子である。
The switching element of the present invention is a switching element provided in a signal path of a logic circuit,
The rectifying element of the present invention,
Two resistance change elements,
Each of the two resistance change elements has two terminals,
One terminal of each of the two terminals of the two variable resistance elements is connected to the other, one of the other two terminals of the two variable resistance elements is the input terminal for the signal, and the other is the input terminal for the signal. Output terminal,
Of the first electrode and the second electrode of the rectifying element, one electrode is connected to one terminal of each of the two terminals of the two resistance change elements, and the other electrode is a control terminal.
 また、本発明の整流素子の製造方法は、
 基板上に第1電極を形成し、
 水素化シランを原料としたプラズマCVD法を用いて第1バッファ層を前記第1電極上に形成し、
 水素化シランと、窒素またはアンモニアを原料としてプラズマCVD法を用いて、整流層を前記第1バッファ層の上に形成し、
 水素化シランを原料としたプラズマCVD法を用いて第2バッファ層を前記整流層の上に形成し、
 前記第2バッファ層の上に第2電極を形成するものである。
In addition, the method of manufacturing the rectifying device of the present invention includes
Forming a first electrode on the substrate;
A first buffer layer is formed on the first electrode using a plasma CVD method using silane hydride as a raw material,
A rectifying layer is formed on the first buffer layer using a plasma CVD method using hydrogenated silane and nitrogen or ammonia as raw materials,
A second buffer layer is formed on the rectifying layer using a plasma CVD method using silane hydride as a raw material,
A second electrode is formed on the second buffer layer.
 本発明によれば、電流-電圧特性を改善することができる。 According to the present invention, the current-voltage characteristics can be improved.
第1の実施形態の整流素子の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the rectifier of 1st Embodiment. バイポーラ型抵抗変化素子の電流-電圧特性を示すグラフである。5 is a graph showing current-voltage characteristics of a bipolar variable resistance element. バイポーラ型整流素子の電流-電圧特性を示すグラフである。5 is a graph showing current-voltage characteristics of a bipolar rectifier element. 第1の実施形態の整流素子を有するスイッチング素子の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the switching element which has a rectifier of 1st Embodiment. 比較例の実験サンプルのI-V特性を示すグラフである。It is a graph which shows the IV characteristic of the experimental sample of a comparative example. 第1の実施形態の整流素子のI-V特性を示すグラフである。4 is a graph showing IV characteristics of the rectifying element of the first embodiment. 第2の実施形態のクロスバースイッチの一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the crossbar switch of 2nd Embodiment. 実施例1の半導体装置の一構成例の要部を示す断面図である。FIG. 3 is a cross-sectional view showing the main parts of a configuration example of the semiconductor device of Example 1; 実施例1の半導体装置の別の構成例の要部を示す断面図である。FIG. 10 is a cross-sectional view showing the main parts of another configuration example of the semiconductor device of Example 1; 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7. 図7に示した半導体装置の製造方法を模式的に示した工程断面図である。FIG. 8 is a process cross-sectional view schematically showing the method for manufacturing the semiconductor device shown in FIG. 7.
 (第1の実施形態)
 本実施形態は、本発明の第1の側面として、電圧-電流特性に優れた整流素子に関するものである。
(First embodiment)
This embodiment relates to a rectifying element having excellent voltage-current characteristics as a first aspect of the present invention.
 本実施形態の整流素子の構成を説明する。図1は本実施形態の整流素子の一構成例を示す断面図である。 The configuration of the rectifying element of this embodiment will be described. FIG. 1 is a cross-sectional view showing a configuration example of the rectifying element of the present embodiment.
 図1に示すように、整流素子106は、第1電極101と、第2電極102と、第1電極101および第2電極102の間に設けられた整流層103とを有する。そして、本実施形態の整流素子106では、図1に示すように、第1電極101と整流層103の間に第1バッファ層104が設けられている。また、第2電極102と整流層103の間に第2バッファ層105が設けられている。第1バッファ層104は第1電極101および整流層103のそれぞれと接している。第2バッファ層105は第2電極102および整流層103のそれぞれと接している。 As shown in FIG. 1, the rectifying element 106 includes a first electrode 101, a second electrode 102, and a rectifying layer 103 provided between the first electrode 101 and the second electrode 102. In the rectifying element 106 of the present embodiment, as shown in FIG. 1, the first buffer layer 104 is provided between the first electrode 101 and the rectifying layer 103. A second buffer layer 105 is provided between the second electrode 102 and the rectifying layer 103. The first buffer layer 104 is in contact with each of the first electrode 101 and the rectifying layer 103. The second buffer layer 105 is in contact with each of the second electrode 102 and the rectifying layer 103.
 第1電極101および第2電極102は、タンタル、チタンまたはそれらの窒素化合物である。整流層103は酸化物または窒化物である。窒化物は、例えば、窒化シリコンである。これらの膜の形成方法は後述する。 The first electrode 101 and the second electrode 102 are tantalum, titanium, or nitrogen compounds thereof. The rectifying layer 103 is an oxide or a nitride. The nitride is, for example, silicon nitride. A method for forming these films will be described later.
 第1電極101および第2電極102間に電圧を印加することで、整流素子の電導状態を非線形に変化させることができる。 By applying a voltage between the first electrode 101 and the second electrode 102, the conduction state of the rectifying element can be changed nonlinearly.
 本実施形態によれば、2つの電極間に第1バッファ層および第2バッファ層を挿入することによって、整流素子の電導状態を好適に変化させることができ、優れた整流特性が得られるようになる。本実施形態における「優れた整流特性」については後で説明する。 According to the present embodiment, by inserting the first buffer layer and the second buffer layer between the two electrodes, the conduction state of the rectifying element can be suitably changed, and excellent rectifying characteristics can be obtained. Become. The “excellent rectification characteristics” in this embodiment will be described later.
 好適なバッファ層の構成としては、バッファ層の仕事関数が第1電極および第2電極の仕事関数よりも大きいことが好ましい。加えて、バッファ層の仕事関数は整流層の仕事関数より小さいことが好ましい。このような構成にすることによって、低電圧印加の電流を低く抑えることができる。 As a preferred buffer layer configuration, the work function of the buffer layer is preferably larger than the work functions of the first electrode and the second electrode. In addition, the work function of the buffer layer is preferably smaller than the work function of the rectifying layer. By adopting such a configuration, it is possible to suppress a low voltage applied current.
 好適なバッファ層の比誘電率としては、整流層の比誘電率よりも大きいことが好ましい。これにより、高電圧印加時(すなわち抵抗変化素子のプログラミング時)において、電界印加におけるバッファ層の傾斜が急峻となるため、より大きな電流を得られることができるようになる。 The preferred dielectric constant of the buffer layer is preferably larger than the dielectric constant of the rectifying layer. As a result, when a high voltage is applied (that is, when the resistance change element is programmed), the buffer layer is steeply inclined when an electric field is applied, so that a larger current can be obtained.
 上述の構成にすることで、後述するように、優れた整流特性が得られるようになる。 With the above configuration, excellent rectification characteristics can be obtained as will be described later.
 抵抗変化素子のプログラミングにおいては、特に、バイポーラ型の抵抗変化素子においては、整流素子の整流特性は対称であることが好ましい。そのため、第1電極と第2電極は同一の電気特性であることが好ましく、第1バッファ層と第2バッファ層は同一の電気特性であることが好ましい。本実施形態の整流素子との組み合わせには、バイポーラ型の抵抗変化素子を用いることが好ましい。 In programming of the variable resistance element, it is preferable that the rectifying characteristics of the rectifying element are symmetrical particularly in the bipolar variable resistance element. Therefore, it is preferable that the first electrode and the second electrode have the same electrical characteristics, and it is preferable that the first buffer layer and the second buffer layer have the same electrical characteristics. In combination with the rectifying element of this embodiment, it is preferable to use a bipolar variable resistance element.
 抵抗変化素子および整流素子の動作特性について、バイポーラ型を例に説明する。図2Aはバイポーラ型抵抗変化素子の電流-電圧特性を示すグラフであり、図2Bはバイポーラ型整流素子の電流-電圧特性を示すグラフである。 The operational characteristics of the variable resistance element and the rectifying element will be described using a bipolar type as an example. FIG. 2A is a graph showing the current-voltage characteristics of the bipolar variable resistance element, and FIG. 2B is a graph showing the current-voltage characteristics of the bipolar rectifying element.
 はじめに、図2Aを参照して、抵抗変化素子の電流-電圧特性を説明する。 First, the current-voltage characteristics of the variable resistance element will be described with reference to FIG. 2A.
 抵抗変化素子は第1電極に正電圧を印加すると、次第にリーク電流が増加し(図に示すAに相当)、閾値電圧V1を越えたところで、抵抗状態は高抵抗状態(オフ状態)から、低抵抗状態(オン状態)へ遷移する(図に示すBに相当)。電圧を0Vまで戻した場合にも低抵抗状態は維持される(図に示すCに相当)。続いて第1電極に負電圧を印加すると、所定のピーク電流に達したところで、抵抗状態は低抵抗状態(オン状態)から、高抵抗状態(オフ状態)へ遷移する(図に示すDに相当)。さらに負電圧を印加しても、バイポーラ型の抵抗変化素子であるため抵抗状態は変化しない(図に示すEに相当)。 When a positive voltage is applied to the first electrode of the variable resistance element, the leakage current gradually increases (corresponding to A shown in the figure), and when the threshold voltage V1 is exceeded, the resistance state changes from the high resistance state (off state) to the low resistance state. Transition to the resistance state (ON state) (corresponding to B shown in the figure). Even when the voltage is returned to 0 V, the low resistance state is maintained (corresponding to C shown in the figure). Subsequently, when a negative voltage is applied to the first electrode, the resistance state transitions from the low resistance state (on state) to the high resistance state (off state) when a predetermined peak current is reached (corresponding to D shown in the figure). ). Furthermore, even if a negative voltage is applied, the resistance state does not change because it is a bipolar resistance change element (corresponding to E shown in the figure).
 次に、図2Bを参照して、整流素子の電流-電圧特性を説明する。 Next, the current-voltage characteristics of the rectifying element will be described with reference to FIG. 2B.
 整流素子は、第1電極に正電圧を印加すると次第にリーク電流が増加し、閾値電圧V2を越えたところで抵抗状態は高抵抗状態(オフ状態)から、低抵抗状態(オン状態)へ遷移する(図に示すFに相当)。電圧を0Vまで戻した場合には抵抗状態は揮発性であるために、閾値電圧よりも低い電圧となったところで、電流値は減少する(図に示すGに相当)。一方、逆方向に電圧印加を行った場合には、同様に電圧印加すると次第にリーク電流が増加し、閾値電圧(-V2)を越えたところで抵抗状態は高抵抗状態(オフ状態)から、低抵抗状態(オン状態)へ遷移する(図に示すHに相当)。電圧を0Vまで戻した場合には抵抗状態は揮発性であるために、閾値電圧よりも低い電圧となったところで、電流値は減少する(図に示すIに相当)。 In the rectifying element, when a positive voltage is applied to the first electrode, the leakage current gradually increases, and when the threshold voltage V2 is exceeded, the resistance state transitions from the high resistance state (off state) to the low resistance state (on state) ( Equivalent to F shown in the figure). When the voltage is returned to 0 V, since the resistance state is volatile, the current value decreases when the voltage becomes lower than the threshold voltage (corresponding to G in the figure). On the other hand, when a voltage is applied in the reverse direction, the leakage current gradually increases when the voltage is applied in the same manner, and the resistance state changes from the high resistance state (off state) to the low resistance when the threshold voltage (−V2) is exceeded. Transition to a state (ON state) (corresponding to H shown in the figure) When the voltage is returned to 0 V, since the resistance state is volatile, the current value decreases at a voltage lower than the threshold voltage (corresponding to I shown in the figure).
 図3は本実施形態の整流素子を有するスイッチング素子の一構成例を示す回路図である。 FIG. 3 is a circuit diagram showing a configuration example of the switching element having the rectifying element of the present embodiment.
 図3に示すように、スイッチング素子は、図1に示した整流素子106に相当する整流素子121と、抵抗変化素子131、132とを有する。抵抗変化素子131、132はそれぞれの不活性電極同士が接続されている。抵抗変化素子131の活性電極を第1端子111とし、抵抗変化素子132の活性電極を第2端子112とする。整流素子121の2つの電極のうち、一方の電極が抵抗変化素子131、132の不活性電極に接続されている。整流素子121の2つの電極のうち、他方の電極(抵抗変化素子131、132の不活性電極と接続されていない方の電極)を第3端子113とする。 As shown in FIG. 3, the switching element includes a rectifying element 121 corresponding to the rectifying element 106 shown in FIG. 1 and variable resistance elements 131 and 132. The resistance change elements 131 and 132 are connected to each other inactive electrodes. The active electrode of the resistance change element 131 is a first terminal 111, and the active electrode of the resistance change element 132 is a second terminal 112. One of the two electrodes of the rectifying element 121 is connected to the inactive electrodes of the resistance change elements 131 and 132. Of the two electrodes of the rectifying element 121, the other electrode (the electrode not connected to the inactive electrodes of the resistance change elements 131 and 132) is defined as the third terminal 113.
 抵抗変化素子131、132は、活性電極と、不活性電極と、これら2つの電極に挟まれた抵抗変化膜とを有する。抵抗変化膜は固体電解質層で構成されている。活性電極は、電圧が印加されると、金属イオンを抵抗変化膜に供給する金属で構成されている。不活性電極は、電圧が印加されても、金属イオンを抵抗変化膜に供給しない金属で構成されている。 The resistance change elements 131 and 132 have an active electrode, an inactive electrode, and a resistance change film sandwiched between these two electrodes. The resistance change film is composed of a solid electrolyte layer. The active electrode is made of a metal that supplies metal ions to the resistance change film when a voltage is applied. The inert electrode is made of a metal that does not supply metal ions to the resistance change film even when a voltage is applied.
 図3に示すスイッチング素子が論理回路の信号経路に設けられた場合について説明する。 A case where the switching element shown in FIG. 3 is provided in the signal path of the logic circuit will be described.
 第1端子111および第2端子112のうち、一方の端子が信号の入力端子としての役目を果たし、他方の端子が信号の出力端子としての役目を果たす。また、第3端子113は、抵抗変化素子131、132をオン状態またはオフ状態にプログラミングするための制御端子としての役目を果たす。 One of the first terminal 111 and the second terminal 112 serves as a signal input terminal, and the other terminal serves as a signal output terminal. The third terminal 113 serves as a control terminal for programming the resistance change elements 131 and 132 to an on state or an off state.
 図3に示すスイッチング素子において、第1端子111と第3端子113との間に電圧を印加した場合を考える。 Consider a case where a voltage is applied between the first terminal 111 and the third terminal 113 in the switching element shown in FIG.
 このとき、第1端子111と第3端子113との間に印加された電圧は、抵抗変化素子131と整流素子121とで電圧分配される。例えば、より小さい制御電圧で抵抗変化素子131の抵抗状態をオフ状態からオン状態へ変化させる(プログラミングする)ためには、印加した制御電圧の大半が抵抗変化素子に印加させることが好ましい。そのため、オフ状態におけるリーク電流レベルは、整流素子よりも抵抗変化素子の方が低いことが好ましい。 At this time, the voltage applied between the first terminal 111 and the third terminal 113 is voltage-distributed between the resistance change element 131 and the rectifying element 121. For example, in order to change (program) the resistance state of the resistance change element 131 from the off state to the on state with a smaller control voltage, it is preferable to apply most of the applied control voltage to the resistance change element. Therefore, the leakage current level in the off state is preferably lower in the resistance change element than in the rectifier element.
 また、図3に示すスイッチング素子では、抵抗変化素子131、抵抗変化素子132および整流素子121の動作極性が同一であることが好ましい。すなわち、バイポーラ型の抵抗変化素子を用いる場合には、バイポーラ型の整流素子(双方向整流素子)を用いることが好ましく、ユニポーラ型の抵抗変化素子を用いる場合には、ユニポーラ型の整流素子(一方向整流素子)を用いることもできる。これはバイポーラ型の抵抗変化素子の場合には、電流の大きさと流れる方向でスイッチングするためであり、それにともなって整流素子も同極性の特性が必要になるためである。 Further, in the switching element shown in FIG. 3, it is preferable that the resistance change element 131, the resistance change element 132, and the rectifying element 121 have the same operation polarity. That is, when a bipolar variable resistance element is used, a bipolar rectifier (bidirectional rectifier) is preferably used. When a unipolar variable resistance element is used, a unipolar rectifier (one Directional rectifier elements can also be used. This is because, in the case of a bipolar variable resistance element, switching is performed in the magnitude and direction of current flow, and accordingly, the rectifying element needs to have the same polarity characteristics.
 本実施形態の整流素子では、低電圧域(0.25~0.5V)の範囲においてできるだけ低い電流値を示し、高電圧域(1~3V)の範囲においてできるたけ高い電流値を示す「優れた整流特性」が得られる。 In the rectifying device of this embodiment, the current value is as low as possible in the low voltage range (0.25 to 0.5 V), and as high as possible in the high voltage range (1 to 3 V). Rectification characteristics ”.
 (比較例1)
 本実施形態の整流素子の効果を確かめるための実験を行ったので説明する。
(Comparative Example 1)
An experiment for confirming the effect of the rectifying device of the present embodiment was performed and will be described.
 実験サンプルとして、本実施形態の整流素子に相当する、「バッファ層あり」の整流素子と、比較例として「バッファ層なし」の整流素子を準備した。本実施形態の整流素子の製造方法を説明する。ここでは、図1に示した整流素子106の場合で説明する。 As an experimental sample, a rectifier with “buffer layer” corresponding to the rectifier of this embodiment and a rectifier with no buffer layer were prepared as comparative examples. A method for manufacturing the rectifying device of this embodiment will be described. Here, the case of the rectifying element 106 shown in FIG. 1 will be described.
 半導体基板上に、第1電極101として膜厚10nmのTiN膜を堆積する。成膜方法には、Tiターゲットを用いたDCスパッタリング法を用いた。例えば、10-6Pa程度の減圧された300mmウェハ用スパッタリングチャンバー内部に、ArガスとNガスを導入し、50W~1kWの電力を印加することで、シリコンウェハ上にTiN膜を堆積する。 A TiN film having a thickness of 10 nm is deposited on the semiconductor substrate as the first electrode 101. As the film forming method, a DC sputtering method using a Ti target was used. For example, an Ar gas and N 2 gas are introduced into a 300 mm wafer sputtering chamber whose pressure is reduced to about 10 −6 Pa, and a power of 50 W to 1 kW is applied to deposit a TiN film on the silicon wafer.
 続いて、第1電極101の上に第1バッファ層104を形成する。第1バッファ層104の形成には、水素化シランを原料ガスに用いたプラズマCVD(Chemical Vapor Deposition)法で膜厚5nmのアモルファス(非晶質)シリコン膜を堆積する。例えば、基板温度が350~400℃の範囲に保持された300mmウェハ用平行平板プラズマCVDリアクターに、SiHガスを100~300sccm導入し、Arガスを1~2slpm、Heガスを1~2slpmの範囲で導入し、圧力300~600Pa、50~200WのRF電力をシャワーヘッドに印加することでアモルファスシリコン膜を堆積することができる。 Subsequently, the first buffer layer 104 is formed on the first electrode 101. The first buffer layer 104 is formed by depositing an amorphous silicon film having a thickness of 5 nm by plasma CVD (Chemical Vapor Deposition) using silane hydride as a source gas. For example, in a 300 mm wafer parallel plate plasma CVD reactor in which the substrate temperature is maintained in the range of 350 to 400 ° C., SiH 4 gas is introduced in an amount of 100 to 300 sccm, Ar gas is in the range of 1 to 2 slpm, and He gas is in the range of 1 to 2 slpm. Then, an amorphous silicon film can be deposited by applying RF power of pressure 300 to 600 Pa and 50 to 200 W to the showerhead.
 続いて、第1バッファ層104の上に整流層103を形成する。整流層103の形成には、水素化シランと、窒素ガスまたはアンモニアガスとを用いたプラズマCVD法で、膜厚8nmの窒素化シリコン膜を堆積する。例えば、基板温度が350~400℃の範囲に保持された平行平板プラズマCVDリアクターに、SiHガスを200sccm、Nガスを300~500sccm導入し、圧力600Pa、200WのRF電力をシャワーヘッドに印加することで窒素化シリコン膜を堆積することができる。 Subsequently, the rectifying layer 103 is formed on the first buffer layer 104. The rectifying layer 103 is formed by depositing a silicon nitride film having a thickness of 8 nm by a plasma CVD method using silane hydride and nitrogen gas or ammonia gas. For example, 200 sccm of SiH 4 gas and 300 to 500 sccm of N 2 gas are introduced into a parallel plate plasma CVD reactor in which the substrate temperature is maintained in the range of 350 to 400 ° C., and RF power of pressure 600 Pa and 200 W is applied to the shower head. By doing so, a silicon nitride film can be deposited.
 その後、整流層103の上に第2バッファ層105を第1バッファ層104と同様にして形成する。さらに、第2バッファ層105の上に第2電極102を第1電極101と同様にして形成する。 Thereafter, the second buffer layer 105 is formed on the rectifying layer 103 in the same manner as the first buffer layer 104. Further, the second electrode 102 is formed on the second buffer layer 105 in the same manner as the first electrode 101.
 なお、上述したように、第1バッファ層および第2バッファ層がアモルファスシリコン膜であり、整流層が窒素化シリコンである場合、第1バッファ層の形成から第2バッファ層の形成まで、途中で基板を大気暴露することなく、プラズマCVDリアクター内でこれらの膜を連続的に形成することができる。 As described above, when the first buffer layer and the second buffer layer are amorphous silicon films, and the rectifying layer is silicon nitride, the process from the formation of the first buffer layer to the formation of the second buffer layer is performed halfway. These films can be formed continuously in a plasma CVD reactor without exposing the substrate to the atmosphere.
 比較例の実験サンプルの製造方法については、上述の製造工程のうち、第1バッファ層104および第2バッファ層105の形成工程が必要ないだけなので、その詳細な説明を省略する。ただし、比較例の実験サンプルについては、整流層となるSiNの膜厚が5nm、10nm、および15nmの3種類を準備した。 About the manufacturing method of the experimental sample of a comparative example, since the formation process of the 1st buffer layer 104 and the 2nd buffer layer 105 is unnecessary among the above-mentioned manufacturing processes, the detailed description is abbreviate | omitted. However, three types of SiN film thicknesses of 5 nm, 10 nm, and 15 nm were prepared for the experimental sample of the comparative example.
 次に、上述のようにして作製した実験サンプルの測定結果を説明する。 Next, the measurement results of the experimental sample produced as described above will be described.
 図4Aは、比較例の実験サンプルのI-V特性を示すグラフである。図4Aは、バッファ層を有してないMIM(Metal Insulator Metal)構造における整流素子のI-V特性を示すグラフである。積層膜の構成は、TiN/SiN/TiNである。 FIG. 4A is a graph showing IV characteristics of an experimental sample of a comparative example. FIG. 4A is a graph showing IV characteristics of a rectifying element in an MIM (Metal Insulator Metal) structure that does not have a buffer layer. The structure of the laminated film is TiN / SiN / TiN.
 図4Bは、第1の実施形態の整流素子のI-V特性を示すグラフである。図4Bは、バッファ層を有するMSISM(Metal Semiconductor Insulator Semiconductor Metal)構造における整流素子のI-V特性を示すグラフである。積層膜の構成は、TiN/α-Si/SiN/α-Si/TiNである。 FIG. 4B is a graph showing IV characteristics of the rectifying device of the first embodiment. FIG. 4B is a graph showing IV characteristics of a rectifying element in an MSISM (Metal Semiconductor Insulator Semiconductor Metal) structure having a buffer layer. The structure of the laminated film is TiN / α-Si / SiN / α-Si / TiN.
 比較例の実験サンプルでは、上記のように、整流特性の変化を調べるため、整流層であるSiNの膜厚を5nm、10nmおよび15nmの3種類を測定した。図4Aを参照すると、SiN膜厚が厚くなるほど低電圧印加時のリーク電流は低く抑えられるが、高電圧印加時の電流も低くなる。一方、SiN膜の膜厚が薄くなるほど、高電圧印加時に高い電流が得られるが、低電圧印加時にも電流値が高くなる。すなわち、SiN膜の膜厚の制御では整流特性にトレードオフが生じ、好ましい整流特性を得ることは難しいことがわかる。 In the experimental sample of the comparative example, as described above, three types of film thicknesses of 5 nm, 10 nm, and 15 nm of the SiN film serving as the rectifying layer were measured in order to examine the change in the rectifying characteristics. Referring to FIG. 4A, the thicker the SiN film thickness, the lower the leakage current when the low voltage is applied, but the lower the current when the high voltage is applied. On the other hand, as the film thickness of the SiN film becomes thinner, a higher current can be obtained when a high voltage is applied, but the current value also becomes higher when a low voltage is applied. That is, it can be seen that there is a tradeoff in the rectification characteristics in controlling the film thickness of the SiN film, and it is difficult to obtain favorable rectification characteristics.
 これに対して、図4Bに示すように、第1の実施形態の整流素子においては、低電圧印加時には低い電流が得られ、高電圧印加時には高い電流が得られることから、優れた整流特性が得られることがわかる。これは電極と整流層との間に設けられたバッファ層の効果によるものである。このように、第1の実施形態の整流素子では、比較例に対して、整流特性が改善されている。 On the other hand, as shown in FIG. 4B, in the rectifying element of the first embodiment, a low current is obtained when a low voltage is applied, and a high current is obtained when a high voltage is applied. It turns out that it is obtained. This is due to the effect of the buffer layer provided between the electrode and the rectifying layer. Thus, in the rectifying element of the first embodiment, the rectifying characteristics are improved compared to the comparative example.
 このとき、TiN電極の仕事関数は4.7eVであるのに対して、アモルファスシリコンの仕事関数は4.2eVであることから、バッファ層の仕事関数は電極よりも小さい。SiNの比誘電率は6.5であるのに対して、アモルファスシリコンの比誘電率は9であり、バッファ層の比誘電率は整流層よりも大きい。また、アモルファスシリコン層のバンドギャップを測定したところ、単結晶シリコンよりもやや大きい1.2eVであった。 At this time, the work function of the TiN electrode is 4.7 eV, whereas the work function of amorphous silicon is 4.2 eV. Therefore, the work function of the buffer layer is smaller than that of the electrode. The relative dielectric constant of SiN is 6.5, whereas the relative dielectric constant of amorphous silicon is 9, and the relative dielectric constant of the buffer layer is larger than that of the rectifying layer. Further, when the band gap of the amorphous silicon layer was measured, it was 1.2 eV which was slightly larger than that of single crystal silicon.
 変形例として、アモルファスシリコン層とSiN層との間に、シリコンリッチのSiN層(あるいは窒素を含んだアモルファスシリコン層)を形成したところ、整流特性のさらなる改善が確認された。この試料について、ブランケット膜を作成してXPSでの深さ方向分析の結果、SiN層に近いほど窒素量が多く、アモルファスシリコン層に近いほど窒素量が少ないことを確認した。 As a modified example, when a silicon-rich SiN layer (or an amorphous silicon layer containing nitrogen) was formed between the amorphous silicon layer and the SiN layer, further improvement in rectification characteristics was confirmed. As a result of creating a blanket film for this sample and analyzing the depth direction by XPS, it was confirmed that the closer to the SiN layer, the larger the amount of nitrogen, and the closer to the amorphous silicon layer, the smaller the amount of nitrogen.
 さらに変形例として、電極がTaNである場合にも比較を行ったところ、整流特性において同様の効果が得られることを確認した。また、アモルファスシリコンをアモルファスゲルマニウムに変えた場合においても、同様の効果が得られることを確認した。ゲルマニウムに変えた場合は、バンドギャップがアモルファスシリコンよりも小さいため、低電圧域での若干の電流増加が測定されたが、用いない場合に比べると低減していることを確認した。 Further, as a modification, a comparison was also made when the electrode was TaN, and it was confirmed that the same effect was obtained in the rectification characteristics. Also, it was confirmed that the same effect can be obtained even when amorphous silicon is changed to amorphous germanium. When germanium was used, the band gap was smaller than that of amorphous silicon, so a slight increase in current was measured in the low voltage range, but it was confirmed that it was reduced compared to when it was not used.
 上記整流層は、酸化物や窒化物を用いることができ、プール・フレンケル型の絶縁膜や、ショットキー型の絶縁膜、スレッショルドスイッチング型の揮発性抵抗変化膜、などを用いることができる。本発明の効果は、整流層にSiOを用いた場合、TaOを用いた場合、TiOを用いた場合にも同様に確認された。 For the rectifying layer, an oxide or a nitride can be used, and a Pool-Frenkel type insulating film, a Schottky type insulating film, a threshold switching type volatile resistance change film, or the like can be used. The effect of the present invention was confirmed in the same manner when SiO 2 was used for the rectifying layer, when TaO x was used, and when TiO x was used.
 したがって、整流素子に用いるバッファ層としては、仕事関数が電極よりも小さく、比誘電率は整流層より大きいことが好ましい。 Therefore, it is preferable that the buffer layer used for the rectifying element has a work function smaller than that of the electrode and a relative dielectric constant larger than that of the rectifying layer.
 (第2の実施形態)
 本実施形態は、本発明の第2の側面として、第1の実施形態で説明した整流素子と抵抗変化素子を含むスイッチング素子を有するクロスバースイッチに関するものである。
(Second Embodiment)
This embodiment relates to a crossbar switch having a switching element including the rectifying element and the resistance change element described in the first embodiment, as a second aspect of the present invention.
 本実施形態のクロスバースイッチの構成を説明する。 The configuration of the crossbar switch of this embodiment will be described.
 図5は本実施形態のクロスバースイッチの一構成例を示すブロック図である。 FIG. 5 is a block diagram illustrating a configuration example of the crossbar switch of the present embodiment.
 図5に示すように、クロスバースイッチは、複数のスイッチング素子130がアレイ状に設けられている。スイッチング素子130は、抵抗変化素子131、132と、整流素子121、122とを有する。 As shown in FIG. 5, the crossbar switch has a plurality of switching elements 130 arranged in an array. The switching element 130 includes resistance change elements 131 and 132 and rectifying elements 121 and 122.
 抵抗変化素子131、132はそれぞれの不活性電極同士が接続されている。抵抗変化素子131の活性電極は第1配線141に接続されている。抵抗変化素子132の活性電極は第2配線142に接続されている。整流素子121の2つの電極のうち、一方の電極が抵抗変化素子131の不活性電極に接続され、他方の電極が第3配線143に接続されている。整流素子122の2つの電極のうち、一方の電極が抵抗変化素子132の不活性電極に接続され、他方の電極が第4配線144に接続されている。 The resistance change elements 131 and 132 are connected to each other inactive electrodes. The active electrode of the resistance change element 131 is connected to the first wiring 141. The active electrode of the resistance change element 132 is connected to the second wiring 142. Of the two electrodes of the rectifying element 121, one electrode is connected to the inactive electrode of the resistance change element 131, and the other electrode is connected to the third wiring 143. Of the two electrodes of the rectifying element 122, one electrode is connected to the inactive electrode of the resistance change element 132, and the other electrode is connected to the fourth wiring 144.
 図5に示す例では、第1配線141と第3配線143が平行に配置され、第2配線142と第4配線144が平行に配置されている。第1配線141および第3配線143は、他の2つの配線(第2配線142および第4配線144)と直交している。 In the example shown in FIG. 5, the first wiring 141 and the third wiring 143 are arranged in parallel, and the second wiring 142 and the fourth wiring 144 are arranged in parallel. The first wiring 141 and the third wiring 143 are orthogonal to the other two wirings (second wiring 142 and fourth wiring 144).
 次に、図5に示したスイッチング素子130のプログラミングの方法を説明する。 Next, a method for programming the switching element 130 shown in FIG. 5 will be described.
 抵抗変化素子131をON状態(低抵抗状態)へ遷移させる場合、第3配線143をグラウンドに接地し、第1配線141に閾値電圧(セット電圧)以上の正電圧を印加する。一方、抵抗変化素子131をON状態からOFF状態(高抵抗状態)へ遷移させる場合、第1配線141をグラウンドに接地し、第3配線143に閾値電圧(リセット電圧)以上の正電圧を印加する。 When transitioning the resistance change element 131 to the ON state (low resistance state), the third wiring 143 is grounded and a positive voltage higher than the threshold voltage (set voltage) is applied to the first wiring 141. On the other hand, when the resistance change element 131 is transitioned from the ON state to the OFF state (high resistance state), the first wiring 141 is grounded and a positive voltage higher than the threshold voltage (reset voltage) is applied to the third wiring 143. .
 また、抵抗変化素子132をON状態へ遷移させる場合、第4配線144をグラウンドに接地し、第2配線142に閾値電圧(セット電圧)以上の正電圧を印加する。一方、抵抗変化素子132をON状態からOFF状態へ遷移させる場合、第2配線142をグラウンドに接地し、第4配線144に閾値電圧(リセット電圧)以上の正電圧を印加する。 Further, when the resistance change element 132 is changed to the ON state, the fourth wiring 144 is grounded and a positive voltage equal to or higher than the threshold voltage (set voltage) is applied to the second wiring 142. On the other hand, when the resistance change element 132 is transitioned from the ON state to the OFF state, the second wiring 142 is grounded and a positive voltage equal to or higher than the threshold voltage (reset voltage) is applied to the fourth wiring 144.
 このようにして、抵抗変化素子131のプログラミングは整流素子121を介して行い、抵抗変化素子132のプログラミングは整流素子122を介して行うことができる。 Thus, programming of the resistance change element 131 can be performed via the rectifying element 121, and programming of the resistance change element 132 can be performed via the rectifying element 122.
 上述したように、第1の本実施形態の整流素子は「優れた整流特性」を有している。そのため、プログラミング対象の抵抗変化素子を選択するための整流素子として第1の実施形態の整流素子を用いることで、スイッチング素子の誤書き込みおよび誤動作を防止することが可能となる。その結果、スイッチング素子の高信頼性化を図ることができる。 As described above, the rectifying element of the first embodiment has “excellent rectifying characteristics”. Therefore, by using the rectifying element of the first embodiment as the rectifying element for selecting the resistance change element to be programmed, it is possible to prevent erroneous writing and malfunction of the switching element. As a result, high reliability of the switching element can be achieved.
 本実施例は、第1の実施形態で説明したスイッチング素子を半導体装置に設けたものである。 In this example, the switching element described in the first embodiment is provided in a semiconductor device.
 図6は本実施例の半導体装置の構成の要部を示す断面図である。図7は本実施例の半導体装置の別の構成例の要部を示す断面図である。 FIG. 6 is a cross-sectional view showing the main part of the configuration of the semiconductor device of this example. FIG. 7 is a cross-sectional view showing the main part of another configuration example of the semiconductor device of this embodiment.
 本実施例のスイッチング素子は、半導体基板上の多層配線構造の内部に設けられ、抵抗変化素子および整流素子を含む構成である。多層配線構造とは、複数の配線層と、これらの配線層の間に設けられた層間絶縁膜を含む絶縁膜とを含む積層構造をいう。 The switching element of the present embodiment is provided in the multilayer wiring structure on the semiconductor substrate and includes a resistance change element and a rectifying element. The multilayer wiring structure refers to a laminated structure including a plurality of wiring layers and an insulating film including an interlayer insulating film provided between these wiring layers.
 図6および図7は、2つの整流素子と2つの抵抗変化素子が接続された回路構成に対応するスイッチング素子の構造を示している。抵抗変化素子と整流素子の数はこれらの図の場合に限定されず、接続される抵抗変化素子の数に応じて整流素子の数を増やしてもよい。 6 and 7 show the structure of a switching element corresponding to a circuit configuration in which two rectifying elements and two resistance change elements are connected. The number of resistance change elements and rectifying elements is not limited to those shown in these drawings, and the number of rectifying elements may be increased according to the number of connected resistance change elements.
 図6は、2つの整流素子と2つの抵抗変化素子が2段設けられた構成である。1段目には、スイッチング素子25a、25bが設けられている。スイッチング素子25aは、第1電極(第1配線5a)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11とを有する。図6に示す積層体30は抵抗変化膜9、第2電極10および整流素子11に相当する。スイッチング素子25bは、第1電極(第1配線5b)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11とを有する。 FIG. 6 shows a configuration in which two rectifying elements and two variable resistance elements are provided in two stages. In the first stage, switching elements 25a and 25b are provided. The switching element 25 a includes a variable resistance element including the first electrode (first wiring 5 a), the variable resistance film 9, and the second electrode 10, and the rectifying element 11. The stacked body 30 illustrated in FIG. 6 corresponds to the resistance change film 9, the second electrode 10, and the rectifying element 11. The switching element 25 b includes a variable resistance element including the first electrode (first wiring 5 b), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
 抵抗変化膜9は、図3を参照して説明した抵抗変化素子131、132における固体電解質に相当する。第2電極10は抵抗変化素子131、132の不活性電極に相当する。第1配線5a、5bは抵抗変化素子131、132の活性電極に相当する。整流素子11は図3に示した整流素子121に相当する。 The resistance change film 9 corresponds to the solid electrolyte in the resistance change elements 131 and 132 described with reference to FIG. The second electrode 10 corresponds to an inactive electrode of the resistance change elements 131 and 132. The first wirings 5a and 5b correspond to active electrodes of the resistance change elements 131 and 132. The rectifying element 11 corresponds to the rectifying element 121 shown in FIG.
 1段目には、スイッチング素子25a、25bが設けられている。スイッチング素子25aは、第1電極(第1配線5a)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11とを有する。図6に示す積層体30は抵抗変化膜9、第2電極10および整流素子11に相当する。スイッチング素子25bは、第1電極(第1配線5b)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11とを有する。 In the first stage, switching elements 25a and 25b are provided. The switching element 25 a includes a variable resistance element including the first electrode (first wiring 5 a), the variable resistance film 9, and the second electrode 10, and the rectifying element 11. The stacked body 30 illustrated in FIG. 6 corresponds to the resistance change film 9, the second electrode 10, and the rectifying element 11. The switching element 25 b includes a variable resistance element including the first electrode (first wiring 5 b), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
 2段目には、スイッチング素子26a、26bが設けられている。スイッチング素子26aは、第1電極(第2配線18)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11とを有する。スイッチング素子26bは、第1電極(第2配線18)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11とを有する。 In the second stage, switching elements 26a and 26b are provided. The switching element 26 a includes a variable resistance element including the first electrode (second wiring 18), the variable resistance film 9, and the second electrode 10, and the rectifying element 11. The switching element 26 b includes a variable resistance element including the first electrode (second wiring 18), the variable resistance film 9, and the second electrode 10, and the rectifying element 11.
 図6において、2段目のスイッチング素子26a、26bの抵抗変化膜の第1電極に相当する第2配線18と、第2配線18に接続されるプラグ19は、ハードマスク膜16および層間絶縁膜17の積層絶縁膜に設けられている。第2配線18の側面およびプラグ19の底面はバリアメタル20で覆われている。 In FIG. 6, the second wiring 18 corresponding to the first electrode of the resistance change film of the second- stage switching elements 26a and 26b and the plug 19 connected to the second wiring 18 are the hard mask film 16 and the interlayer insulating film. 17 laminated insulating films. The side surfaces of the second wiring 18 and the bottom surface of the plug 19 are covered with a barrier metal 20.
 2段目のスイッチング素子26a、26bの整流素子11のそれぞれの一方の端子は抵抗変化素子の不活性電極と接続され、他方の端子はプラグ31を介して第3配線33と接続されている。第3配線33およびプラグ31は、ハードマスク膜35および層間絶縁膜34の積層絶縁膜に設けられている。第3配線33の側面およびプラグ31の底面はバリアメタル32で覆われている。第3配線33の上面はバリア絶縁膜36で覆われている。 One terminal of each of the rectifying elements 11 of the switching elements 26 a and 26 b in the second stage is connected to the inactive electrode of the resistance change element, and the other terminal is connected to the third wiring 33 via the plug 31. The third wiring 33 and the plug 31 are provided in the laminated insulating film of the hard mask film 35 and the interlayer insulating film 34. The side surfaces of the third wiring 33 and the bottom surface of the plug 31 are covered with a barrier metal 32. The upper surface of the third wiring 33 is covered with a barrier insulating film 36.
 プラグ31、バリアメタル32および第3配線33のそれぞれの膜種は後述するプラグ19、バリアメタル20および第2配線18のそれぞれと同様なため、その詳細な説明を省略する。また、層間絶縁膜34、ハードマスク膜35およびバリア絶縁膜36のそれぞれの膜種は後述する層間絶縁膜17、ハードマスク膜16およびバリア絶縁膜21のそれぞれと同様なため、その詳細な説明を省略する。 Since the film types of the plug 31, the barrier metal 32, and the third wiring 33 are the same as those of the plug 19, the barrier metal 20, and the second wiring 18, which will be described later, detailed description thereof will be omitted. Further, since the film types of the interlayer insulating film 34, the hard mask film 35, and the barrier insulating film 36 are the same as those of the interlayer insulating film 17, the hard mask film 16, and the barrier insulating film 21, which will be described later, detailed description thereof will be given. Omitted.
 次に、図7に示した半導体装置について説明する。 Next, the semiconductor device shown in FIG. 7 will be described.
 図7に示す半導体装置は、スイッチング素子22a、22bを有する。 The semiconductor device shown in FIG. 7 has switching elements 22a and 22b.
 スイッチング素子22aは、第1電極(第1配線5a)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11と、第3電極12とを有する。図7に示す積層体40は抵抗変化膜9、第2電極10、整流素子11および第3電極12に相当する。スイッチング素子22bは、第1電極(第1配線5b)、抵抗変化膜9および第2電極10を含む抵抗変化素子と、整流素子11と、第3電極12とを有する。 The switching element 22 a includes a first electrode (first wiring 5 a), a resistance change element including the resistance change film 9 and the second electrode 10, a rectifying element 11, and a third electrode 12. 7 corresponds to the resistance change film 9, the second electrode 10, the rectifying element 11, and the third electrode 12. The switching element 22 b includes a variable resistance element including a first electrode (first wiring 5 b), a variable resistance film 9, and a second electrode 10, a rectifying element 11, and a third electrode 12.
 抵抗変化素子22a、22bは、抵抗変化膜9、第2電極10および整流素子11を共用している構成である。また、スイッチング素子22a、22bのそれぞれに制御電極の役目を果たす第3電極12が設けられている。スイッチング素子22aの第3電極12はバリアメタル20a、プラグ19aを介して第2配線18aと接続されている。スイッチング素子22bの第3電極12はバリアメタル20b、プラグ19bを介して第2配線18bと接続されている。 The resistance change elements 22 a and 22 b share the resistance change film 9, the second electrode 10, and the rectifying element 11. In addition, a third electrode 12 serving as a control electrode is provided in each of the switching elements 22a and 22b. The third electrode 12 of the switching element 22a is connected to the second wiring 18a through the barrier metal 20a and the plug 19a. The third electrode 12 of the switching element 22b is connected to the second wiring 18b through the barrier metal 20b and the plug 19b.
 図7に示す構成について、詳しく説明する。 The configuration shown in FIG. 7 will be described in detail.
 図7に示すように、多層配線構造は、半導体基板(不図示)上に、層間絶縁膜2、バリア絶縁膜3、層間絶縁膜4、絶縁性バリア膜7、保護絶縁膜14、層間絶縁膜17、ハードマスク膜16、およびバリア絶縁膜21の順に積層した絶縁積層体を有する。多層配線構造は、第1配線5a、5bと、第2配線18a、18bを有する。層間絶縁膜4およびバリア絶縁膜3に形成された配線溝にバリアメタル6a、6bを介して第1配線5a、5bが埋め込まれている。層間絶縁膜17およびハードマスク膜16に形成された配線溝に第2配線18a、18bおよびプラグ19a、19bが埋め込まれている。第2配線18とプラグ19とが一体となっており、第2配線18およびプラグ19の側面および底面がバリアメタル20によって覆われている。 As shown in FIG. 7, the multilayer wiring structure has an interlayer insulating film 2, a barrier insulating film 3, an interlayer insulating film 4, an insulating barrier film 7, a protective insulating film 14, an interlayer insulating film on a semiconductor substrate (not shown). 17, an insulating laminated body in which the hard mask film 16 and the barrier insulating film 21 are laminated in this order. The multilayer wiring structure includes first wirings 5a and 5b and second wirings 18a and 18b. First wirings 5a and 5b are buried in wiring grooves formed in the interlayer insulating film 4 and the barrier insulating film 3 through barrier metals 6a and 6b. Second wirings 18 a and 18 b and plugs 19 a and 19 b are embedded in the wiring grooves formed in the interlayer insulating film 17 and the hard mask film 16. The second wiring 18 and the plug 19 are integrated, and the side surfaces and the bottom surface of the second wiring 18 and the plug 19 are covered with the barrier metal 20.
 絶縁性バリア膜7に形成された開口部に抵抗変化素子22a、22bの下部電極となる第1配線5a、5bの上面の一部が露出している。絶縁性バリア膜7の開口部の壁面および絶縁性バリア膜7上に、抵抗変化膜9、第2電極10、整流素子11および第3電極12が順に積層されている。スイッチング素子22a、22bは整流素子付き相補型抵抗変化素子を構成する。 A part of the upper surface of the first wirings 5a and 5b serving as the lower electrodes of the resistance change elements 22a and 22b is exposed in the opening formed in the insulating barrier film 7. On the wall surface of the opening of the insulating barrier film 7 and the insulating barrier film 7, the resistance change film 9, the second electrode 10, the rectifying element 11, and the third electrode 12 are sequentially stacked. The switching elements 22a and 22b constitute complementary resistance change elements with rectifying elements.
 第3電極12上に保護絶縁膜14が形成されており、抵抗変化膜9、第2電極10、整流素子11、第3電極12からなる積層体の側面が保護絶縁膜14で覆われている。第1配線5a、5bが抵抗変化素子22の下部電極の役目を兼ねることで、製造工程数を簡略化し、かつ、電極抵抗を下げることができる。通常のCuダマシン配線プロセスに追加工程として、少なくとも2枚のマスクセットを作成するだけで、抵抗変化素子を搭載することができ、素子の低抵抗化と低コスト化を同時に達成することができる。 A protective insulating film 14 is formed on the third electrode 12, and the side surface of the laminate including the resistance change film 9, the second electrode 10, the rectifying element 11, and the third electrode 12 is covered with the protective insulating film 14. . Since the first wires 5a and 5b also serve as the lower electrode of the resistance change element 22, the number of manufacturing steps can be simplified and the electrode resistance can be reduced. As an additional step to the normal Cu damascene wiring process, it is possible to mount a resistance change element simply by creating at least two mask sets, and it is possible to simultaneously achieve low resistance and low cost of the element.
 スイッチング素子22a、22bは、抵抗変化型不揮発素子であり、本実施例では、イオン伝導体中における金属イオン移動と電気化学反応とを利用したスイッチング素子とすることができる。スイッチング素子22a、22bの抵抗変化素子は、下部電極となる第1配線5a、5bと、プラグ19と電気的に接続された第2電極10および第3電極12との間に、整流素子11が介在した構成となっている。各スイッチング素子の抵抗変化素子は、絶縁性バリア膜7に形成された開口部の領域に、抵抗変化膜9と第1配線5a、5bが直接接しており、第2電極10上にてプラグ19と第3電極12とがバリアメタル20を介して電気的に接続されている。抵抗変化素子は、電圧の印加、あるいは電流を流すことでオン/オフの制御を行う。抵抗変化素子は、例えば、抵抗変化膜9中への第1配線5a、5bに係る金属の電界拡散を利用してオン/オフの制御を行う。 The switching elements 22a and 22b are variable resistance nonvolatile elements. In this embodiment, the switching elements 22a and 22b can be switching elements using metal ion migration and electrochemical reaction in the ion conductor. The variable resistance elements of the switching elements 22a and 22b include the rectifying element 11 between the first wires 5a and 5b serving as lower electrodes and the second electrode 10 and the third electrode 12 electrically connected to the plug 19. It has an intervening configuration. In the variable resistance element of each switching element, the variable resistance film 9 and the first wirings 5 a and 5 b are in direct contact with the region of the opening formed in the insulating barrier film 7, and the plug 19 on the second electrode 10. And the third electrode 12 are electrically connected via the barrier metal 20. The resistance change element performs on / off control by applying a voltage or passing a current. The resistance change element performs on / off control using, for example, electric field diffusion of the metal related to the first wirings 5 a and 5 b into the resistance change film 9.
 図6および図7に示す膜の構成について説明する。ここでは、図7を参照して説明する。 The structure of the film shown in FIGS. 6 and 7 will be described. Here, it demonstrates with reference to FIG.
 図に示さない半導体基板は、半導体素子が形成された基板である。半導体基板には、例えば、シリコン基板、単結晶基板、SOI(Silicon on Insulator)基板、TFT(Thin Film Transistor)基板、液晶製造用基板等の基板を用いることができる。 The semiconductor substrate not shown in the figure is a substrate on which a semiconductor element is formed. As the semiconductor substrate, for example, a silicon substrate, a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin Film Transistor) substrate, a liquid crystal manufacturing substrate, or the like can be used.
 層間絶縁膜2は、半導体基板上に形成された絶縁膜である。層間絶縁膜2には、例えば、シリコン酸化膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜2は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜4には、層間絶縁膜2と同種の膜を用いることが可能である。 The interlayer insulating film 2 is an insulating film formed on the semiconductor substrate. For the interlayer insulating film 2, for example, a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used. The interlayer insulating film 2 may be a laminate of a plurality of insulating films. As the interlayer insulating film 4, a film of the same type as the interlayer insulating film 2 can be used.
 バリア絶縁膜3は、層間絶縁膜2および層間絶縁膜4の間に設けられた、バリア性を有する絶縁膜である。バリア絶縁膜3は、第1配線5a、5bを配線溝に形成する際にエッチングストップ層としての役割を有する。バリア絶縁膜3として、例えば、SiN膜、SiC膜、SiCN膜等を用いることが可能である。 The barrier insulating film 3 is an insulating film having a barrier property provided between the interlayer insulating film 2 and the interlayer insulating film 4. The barrier insulating film 3 serves as an etching stop layer when the first wirings 5a and 5b are formed in the wiring trench. As the barrier insulating film 3, for example, a SiN film, a SiC film, a SiCN film, or the like can be used.
 絶縁性バリア膜7は層間絶縁膜4上に形成された絶縁膜である。絶縁性バリア膜7には、例えば、シリコン酸化膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。絶縁性バリア膜7は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜2には、第1配線を埋め込むための配線溝が形成されており、当該配線溝にバリアメタル6a、6bを介して第1配線5a、5bが埋め込まれている。 The insulating barrier film 7 is an insulating film formed on the interlayer insulating film 4. As the insulating barrier film 7, for example, a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used. The insulating barrier film 7 may be a laminate of a plurality of insulating films. In the interlayer insulating film 2, a wiring groove for embedding the first wiring is formed, and the first wiring 5a, 5b is embedded in the wiring groove via the barrier metals 6a, 6b.
 第1配線5a、5bは、層間絶縁膜4およびバリア絶縁膜3に形成された配線溝にバリアメタル6a、6bを介して埋め込まれた配線である。第1配線5a、5bは、スイッチング素子22a、22bの抵抗変化素子の下部電極を兼ね、抵抗変化膜9と直接接している。なお、第1配線5a、5bと抵抗変化膜9との間には、電極層などが挿入されていてもよい。電極層が形成される場合は、電極層と抵抗変化膜9は連続工程にて堆積され、連続工程にて加工される。また、抵抗変化膜9の下部がコンタクトプラグを介して下層配線に接続されることはない。第1配線5a、5bには、抵抗変化膜9において拡散、イオン電導可能な金属が用いられ、例えば、Cu等を用いることができる。第1配線5a、5bは、AlやMnと合金化されていてもよい。 The first wirings 5a and 5b are wirings embedded in the wiring grooves formed in the interlayer insulating film 4 and the barrier insulating film 3 through the barrier metals 6a and 6b. The first wirings 5a and 5b also serve as lower electrodes of the resistance change elements of the switching elements 22a and 22b, and are in direct contact with the resistance change film 9. An electrode layer or the like may be inserted between the first wirings 5a and 5b and the resistance change film 9. When the electrode layer is formed, the electrode layer and the resistance change film 9 are deposited in a continuous process and processed in the continuous process. Further, the lower portion of the resistance change film 9 is not connected to the lower layer wiring via the contact plug. For the first wirings 5a and 5b, a metal that can be diffused and ion-conducted in the resistance change film 9 is used. For example, Cu or the like can be used. The first wirings 5a and 5b may be alloyed with Al or Mn.
 バリアメタル6a、6bは、第1配線5a、5bに係る金属が層間絶縁膜2や下層へ拡散することを防止するために、配線の側面乃至底面を被覆する、バリア性を有する導電性膜である。バリアメタル6a、6bには、例えば、第1配線5a、5bがCuを主成分とする金属元素からなる場合には、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)、炭窒化タングステン(WCN)のような高融点金属やその窒化物等、またはそれらの積層膜を用いることができる。 The barrier metals 6a and 6b are conductive films having a barrier property that cover the side surface or bottom surface of the wiring in order to prevent the metal related to the first wiring 5a and 5b from diffusing into the interlayer insulating film 2 or the lower layer. is there. For the barrier metals 6a and 6b, for example, when the first wirings 5a and 5b are made of a metal element whose main component is Cu, tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), carbonitride A refractory metal such as tungsten (WCN), a nitride thereof, or a stacked film thereof can be used.
 絶縁性バリア膜7は、第1配線5a、5bを含む層間絶縁膜4上に形成され、第1配線5a、5bに係る金属(例えば、Cu)の酸化を防いだり、層間絶縁膜4中への第1配線5a、5bに係る金属の拡散を防いだり、第3電極12、整流素子11、第2電極10および抵抗変化膜9の加工時にエッチングストップ層としての役割を有する。絶縁性バリア膜7には、例えば、SiC膜、SiCN膜、SiN膜、およびそれらの積層構造等を用いることができる。絶縁性バリア膜7は、保護絶縁膜14およびハードマスク膜16と同一材料であることが好ましい。 The insulating barrier film 7 is formed on the interlayer insulating film 4 including the first wirings 5 a and 5 b, prevents oxidation of the metal (for example, Cu) related to the first wirings 5 a and 5 b, and enters the interlayer insulating film 4. This prevents the diffusion of the metal related to the first wirings 5a and 5b, and serves as an etching stop layer when the third electrode 12, the rectifying element 11, the second electrode 10 and the resistance change film 9 are processed. For the insulating barrier film 7, for example, a SiC film, a SiCN film, a SiN film, and a laminated structure thereof can be used. The insulating barrier film 7 is preferably made of the same material as the protective insulating film 14 and the hard mask film 16.
 絶縁性バリア膜7は、第1配線5a、5b上にて開口部を有する。絶縁性バリア膜7の開口部においては、第1配線5a、5bと抵抗変化膜9が接している。絶縁性バリア膜7の開口部は、第1配線5a、5bの領域内に形成されている。このようにすることで、凹凸の小さい第1配線5a、5bの表面上に抵抗変化素子を形成することができるようになる。絶縁性バリア膜7の開口部の壁面は、第1配線5a、5bから離れるにしたがって広くなるテーパ面となっている。絶縁性バリア膜7の開口部のテーパ面は、第1配線5a、5bの上面に対し85°以下に設定されている。このようにすることで、第1配線5a、5bと抵抗変化膜9の接続部の外周(絶縁性バリア膜7の開口部の外周部付近)における電界集中が緩和され、絶縁耐性を向上させることができる。 The insulating barrier film 7 has an opening on the first wirings 5a and 5b. In the opening of the insulating barrier film 7, the first wirings 5 a and 5 b are in contact with the resistance change film 9. The opening of the insulating barrier film 7 is formed in the region of the first wirings 5a and 5b. By doing in this way, a resistance change element can be formed on the surface of the 1st wiring 5a, 5b with small unevenness | corrugation. The wall surface of the opening of the insulating barrier film 7 is a tapered surface that becomes wider as the distance from the first wirings 5a and 5b increases. The tapered surface of the opening of the insulating barrier film 7 is set to 85 ° or less with respect to the upper surfaces of the first wirings 5a and 5b. By doing so, the electric field concentration in the outer periphery of the connection portion between the first wirings 5a and 5b and the resistance change film 9 (near the outer periphery of the opening portion of the insulating barrier film 7) is relaxed, and the insulation resistance is improved. Can do.
 抵抗変化膜9は、抵抗が変化する膜である。抵抗変化膜9は、第1配線5a、5b(下部電極)に係る金属の作用(拡散、イオン伝動など)により抵抗が変化する材料を用いることができ、抵抗変化素子の抵抗変化を金属イオンの析出によって行う場合には、イオン伝導可能な膜が用いられ、例えば、Taを含む酸化物絶縁膜であって、Ta、TaSiO等を用いることができる。また、抵抗変化膜9は、下からTa、TaSiOの順に積層した積層構造とすることができる。このような積層構造とすることで、抵抗変化膜9を固体電解質として用いた場合には、低抵抗時(オン時)にイオン伝導層内部に形成される金属イオン(例えば、銅イオン)よる架橋を、Ta層で分断することで、オフ時に金属イオンを容易に回収することができるようになり、スイッチング特性を向上させることができる。抵抗変化膜9は、第1配線5a、5b、絶縁性バリア膜7の開口部のテーパ面、および絶縁性バリア膜7上に形成されている。抵抗変化膜9は、第1配線5a、5bと抵抗変化膜9の接続部の外周部分が少なくとも絶縁性バリア膜7の開口部のテーパ面上に沿って設けられている。 The resistance change film 9 is a film whose resistance changes. The resistance change film 9 can be made of a material whose resistance is changed by the action (diffusion, ion transmission, etc.) of the metal related to the first wirings 5a and 5b (lower electrodes). In the case of performing deposition, an ion conductive film is used. For example, an oxide insulating film containing Ta, such as Ta 2 O 5 or TaSiO can be used. Further, the resistance change film 9 can have a laminated structure in which Ta 2 O 5 and TaSiO are laminated in this order from the bottom. With such a laminated structure, when the resistance change film 9 is used as a solid electrolyte, it is cross-linked by metal ions (for example, copper ions) formed inside the ion conductive layer when the resistance is low (on). Is separated by the Ta 2 O 5 layer, so that metal ions can be easily recovered at the time of OFF, and switching characteristics can be improved. The resistance change film 9 is formed on the first wirings 5 a and 5 b, the tapered surface of the opening of the insulating barrier film 7, and the insulating barrier film 7. In the resistance change film 9, the outer peripheral portion of the connection portion between the first wirings 5 a and 5 b and the resistance change film 9 is provided along at least the tapered surface of the opening of the insulating barrier film 7.
 第2電極10のうち、抵抗変化膜9と直接接している下層側の電極には、第1配線5a、5bに係る金属よりもイオン化しにくく、抵抗変化膜9において拡散、イオン電導しにくい金属が用いられることが好ましい。例えば、Pt、Ru等を用いることができる。また、Pt、Ru等の金属材料を主成分としたRuTa、RuTiなどを用いても良く、仕事関数の制御のために第2電極10と整流素子との界面にTaやTiなどを挿入してもよい。第2電極10は一つの面で抵抗変化膜9と直接接しており、もう一つの面で整流素子11に直接接している。この第2電極10は積層構造としてもよい。例えば、抵抗変化膜9と直接接している下層側の電極と、整流素子11と直接接している上層側の電極とによる積層構造としてもよい。例えば、下層側の電極としてRuTa、上層側の電極としてTaを用いることができる。これは整流素子が酸化物である場合に、Ruが酸素雰囲気に曝されることを防ぐことができる。 Of the second electrode 10, the lower electrode that is in direct contact with the resistance change film 9 is less likely to be ionized than the metal associated with the first wirings 5 a and 5 b, and is less likely to diffuse and ion conduct in the resistance change film 9. Is preferably used. For example, Pt, Ru, etc. can be used. In addition, RuTa, RuTi, etc. whose main component is a metal material such as Pt, Ru, etc. may be used. For controlling the work function, Ta, Ti, etc. are inserted at the interface between the second electrode 10 and the rectifying element. Also good. The second electrode 10 is in direct contact with the resistance change film 9 on one surface, and is in direct contact with the rectifying element 11 on the other surface. The second electrode 10 may have a laminated structure. For example, a laminated structure of a lower layer electrode in direct contact with the resistance change film 9 and an upper electrode in direct contact with the rectifying element 11 may be used. For example, RuTa can be used as the lower layer side electrode and Ta as the upper layer side electrode. This can prevent Ru from being exposed to an oxygen atmosphere when the rectifying element is an oxide.
 第2電極10のうち、整流素子11と直接接している上層側の電極には、整流素子11と第2電極10との仕事関数を考慮して、例えば、Ta、TaN、Ti、TiNなどを用いてもよい。 Of the second electrode 10, the upper layer electrode that is in direct contact with the rectifying element 11 is made of, for example, Ta, TaN, Ti, TiN or the like in consideration of the work function of the rectifying element 11 and the second electrode 10. It may be used.
 整流素子11は、図1に示した整流層103を有する。整流層103には、プール・フレンケル型の絶縁膜や、ショットキー型の絶縁膜、スレッショルドスイッチング型の揮発性抵抗変化膜、などを用いることができる。例えば、酸化チタン(TiO)、酸化タンタル(TaO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ハフニウム(HfO)、酸化アルミニウム(AlO)、酸化ジルコン(ZrO)、酸化イットリウム(Y)、酸化マンガン(MnO)、酸化ニオブ(NbO)、シリコン窒素膜(SiN)、シリコン炭化窒素膜(SiCN)、シリコン酸化膜(SiO)、あるいはシリコン、ゲルマニウムのいずれかを含む膜を用いることができる。あるいは、これらの積層膜を用いることができる。 The rectifying element 11 has the rectifying layer 103 shown in FIG. For the rectifying layer 103, a Pool-Frenkel insulating film, a Schottky insulating film, a threshold switching volatile resistance change film, or the like can be used. For example, titanium oxide (TiO x ), tantalum oxide (TaO x ), tungsten oxide (WO x ), molybdenum oxide (MoO x ), hafnium oxide (HfO x ), aluminum oxide (AlO x ), zircon oxide (ZrO x ) Yttrium oxide (Y 2 O 3 ), manganese oxide (MnO x ), niobium oxide (NbO x ), silicon nitrogen film (SiN), silicon nitrogen carbide film (SiCN), silicon oxide film (SiO x ), or silicon, A film containing any of germanium can be used. Alternatively, these laminated films can be used.
 特にTaOは電極にTaを用いていることもあり、成膜や加工が他の材料を用いた場合に比べると利点がある。SiNも半導体装置に一般的に用いられている材料であり、成長やドライエッチングによる加工が容易である利点がある。 Especially, TaO sometimes uses Ta as an electrode, which is advantageous compared to the case where other materials are used for film formation and processing. SiN is also a material generally used for semiconductor devices, and has an advantage that it can be easily grown and processed by dry etching.
 第3電極12は、例えば、Ta、Ti、W、Alあるいはそれらの窒化物等を用いることができる。第3電極12は、バリアメタル20と同一材料であることが好ましい。第3電極12は、バリアメタル20a、20bを介してプラグ19a、19bと電気的に接続されている。第3電極12とプラグ19a、19b(厳密にはバリアメタル20a、20b)とが接する領域の円の直径R2(またはその領域の面積)は、第1配線5a、5bと抵抗変化膜9とが接する領域の円の直径R1(またはその領域の面積)よりも小さくなるように設定されている。このように設定することで、第3電極12とプラグ19a、19bとの接続部となる層間絶縁膜17に形成された下穴へのめっき(例えば、銅めっき)の埋め込み不良が抑制され、ボイドの発生を抑制することができるようになる。 The third electrode 12 can be made of, for example, Ta, Ti, W, Al, or a nitride thereof. The third electrode 12 is preferably made of the same material as the barrier metal 20. The third electrode 12 is electrically connected to the plugs 19a and 19b through the barrier metals 20a and 20b. The diameter R2 (or the area of the region) of the region where the third electrode 12 and the plugs 19a and 19b (strictly speaking, the barrier metals 20a and 20b) are in contact with each other is determined by the first wirings 5a and 5b and the resistance change film 9. It is set so as to be smaller than the diameter R1 (or the area of the region) of the circle in contact with the region. By setting in this way, the defective filling of the plating (for example, copper plating) into the pilot hole formed in the interlayer insulating film 17 which becomes the connecting portion between the third electrode 12 and the plugs 19a and 19b is suppressed, and the void Can be suppressed.
 保護絶縁膜14と絶縁性バリア膜7とは、同一材料であることが好ましい。すなわち、抵抗変化素子の周囲を全て同一材料で囲むことで材料界面が一体化され、外部からの水分などの浸入を防ぐとともに、抵抗変化素子自身からの脱離を防ぐことができるようになる。 The protective insulating film 14 and the insulating barrier film 7 are preferably made of the same material. That is, by surrounding the entire resistance change element with the same material, the material interface is integrated, so that intrusion of moisture and the like from the outside can be prevented, and detachment from the resistance change element itself can be prevented.
 保護絶縁膜14は、抵抗変化素子にダメージを与えることなく、さらに抵抗変化膜9からの酸素の脱離を防ぐ機能を有する絶縁膜である。保護絶縁膜14には、例えば、SiN膜、SiCN膜等を用いることができる。保護絶縁膜14は、ハードマスク膜16および絶縁性バリア膜7と同一材料であることが好ましい。同一材料である場合には、保護絶縁膜14と絶縁性バリア膜7およびハードマスク膜16とが一体化して、界面の密着性が向上し、抵抗変化素子22をより保護することができるようになる。 The protective insulating film 14 is an insulating film having a function of preventing oxygen from detaching from the resistance change film 9 without damaging the resistance change element. For example, a SiN film, a SiCN film, or the like can be used for the protective insulating film 14. The protective insulating film 14 is preferably made of the same material as the hard mask film 16 and the insulating barrier film 7. When the same material is used, the protective insulating film 14, the insulating barrier film 7, and the hard mask film 16 are integrated, so that the adhesion at the interface is improved and the resistance change element 22 can be further protected. Become.
 層間絶縁膜17は、保護絶縁膜14上に形成された絶縁膜である。層間絶縁膜17には、例えば、シリコン酸化膜(SiO)、SiOC膜、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜17は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜17には、プラグ19a、19bを埋め込むための下穴と、第2配線18a、18bを埋め込むための配線溝が形成されている。これら下穴と配線溝にバリアメタル20a、20bを介して第2配線18a、18bが埋め込まれている。 The interlayer insulating film 17 is an insulating film formed on the protective insulating film 14. For the interlayer insulating film 17, for example, a silicon oxide film (SiO x ), a SiOC film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film can be used. The interlayer insulating film 17 may be a laminate of a plurality of insulating films. In the interlayer insulating film 17, a pilot hole for embedding the plugs 19a and 19b and a wiring groove for embedding the second wirings 18a and 18b are formed. Second wirings 18a and 18b are buried in these prepared holes and wiring grooves via barrier metals 20a and 20b.
 第2配線18a、18bは、層間絶縁膜17に形成された配線溝にバリアメタル20a、20bを介して埋め込まれた配線である。第2配線18aはプラグ19aと一体になっている。プラグ19aは、層間絶縁膜17およびハードマスク膜16に形成された下穴に、バリアメタル20aを介して埋め込まれている。プラグ19aは、整流素子11を介して第2電極10と電気的に接続されている。第2配線18aおよびプラグ19aには、例えば、Cuを用いることができる。第2配線18bおよびプラグ19bは、第2配線18aおよびプラグ19aと同様な構成である。 The second wirings 18a and 18b are wirings embedded in the wiring grooves formed in the interlayer insulating film 17 through the barrier metals 20a and 20b. The second wiring 18a is integrated with the plug 19a. The plug 19a is embedded in a prepared hole formed in the interlayer insulating film 17 and the hard mask film 16 via a barrier metal 20a. The plug 19 a is electrically connected to the second electrode 10 through the rectifying element 11. For example, Cu can be used for the second wiring 18a and the plug 19a. The second wiring 18b and the plug 19b have the same configuration as the second wiring 18a and the plug 19a.
 バリアメタル20a、20bは、第2配線18a、18b(プラグ19a、19bを含む)に係る金属が層間絶縁膜17や下層へ拡散することを防止するために、第2配線18a、18bおよびプラグ19a、19bの側面および底面を被覆する、バリア性を有する導電性膜である。バリアメタル20a、20bには、例えば、第2配線18a、18bおよびプラグ19a、19bがCuを主成分とする金属元素からなる場合には、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)、炭窒化タングステン(WCN)のような高融点金属やその窒化物等、またはそれらの積層膜を用いることができる。バリアメタル20a、20bは、第3電極12と同一材料であることが好ましい。例えば、バリアメタル20a、20bがTaN(下層)/Ta(上層)の積層構造である場合には、下層材料であるTaNを第3電極12に用いることが好ましい。あるいは、バリアメタル20a、20bがTi(下層)/Ru(上層)である場合は、下層材料であるTiを第2電極10に用いることが好ましい。 The barrier metals 20a and 20b are formed of the second wirings 18a and 18b and the plug 19a in order to prevent the metal related to the second wirings 18a and 18b (including the plugs 19a and 19b) from diffusing into the interlayer insulating film 17 or the lower layer. , 19b is a conductive film having a barrier property that covers the side surface and the bottom surface. In the barrier metals 20a and 20b, for example, when the second wirings 18a and 18b and the plugs 19a and 19b are made of a metal element containing Cu as a main component, tantalum (Ta), tantalum nitride (TaN), titanium nitride ( A high melting point metal such as TiN) or tungsten carbonitride (WCN), a nitride thereof, or a laminated film thereof can be used. The barrier metals 20 a and 20 b are preferably made of the same material as the third electrode 12. For example, when the barrier metals 20 a and 20 b have a stacked structure of TaN (lower layer) / Ta (upper layer), it is preferable to use TaN, which is a lower layer material, for the third electrode 12. Alternatively, when the barrier metals 20 a and 20 b are Ti (lower layer) / Ru (upper layer), it is preferable to use Ti as the lower layer material for the second electrode 10.
 バリア絶縁膜21は、第2配線18a、18bを含む層間絶縁膜17上に形成され、第2配線18a、18bに係る金属(例えば、Cu)の酸化を防ぎ、上層への第2配線18a、18bに係る金属の拡散を防ぐ役割を有する絶縁膜である。バリア絶縁膜21には、例えば、SiC膜、SiCN膜、SiN膜、およびそれらの積層構造等を用いることができる。 The barrier insulating film 21 is formed on the interlayer insulating film 17 including the second wirings 18a and 18b, prevents oxidation of the metal (for example, Cu) related to the second wirings 18a and 18b, and the second wiring 18a to the upper layer. 18b is an insulating film having a role of preventing diffusion of the metal according to 18b. For the barrier insulating film 21, for example, a SiC film, a SiCN film, a SiN film, and a laminated structure thereof can be used.
 本実施例では、実施例1で説明した半導体装置の製造方法を説明する。本実施例は、本発明の半導体装置の製造方法の一例であり、図7に示した半導体装置の場合で説明する。 In this example, a method for manufacturing the semiconductor device described in Example 1 will be described. This embodiment is an example of a method for manufacturing a semiconductor device of the present invention, and will be described in the case of the semiconductor device shown in FIG.
 図8A~図8Lは図7に示した半導体装置の製造方法を模式的に示した工程断面図である。 8A to 8L are process cross-sectional views schematically showing a method for manufacturing the semiconductor device shown in FIG.
 まず、半導体基板(例えば、半導体素子が形成された基板)上に、層間絶縁膜2を堆積する。層間絶縁膜2は、例えば、シリコン酸化膜であり、膜厚が300nmである。その後、層間絶縁膜2上にバリア絶縁膜3および層間絶縁膜4を順に堆積する。バリア絶縁膜3は、例えば、SiN膜で、膜厚が30nmである。層間絶縁膜4は、例えば、シリコン酸化膜であり、膜厚が200nmである。その後、リソグラフィ法(フォトレジスト形成、ドライエッチング、フォトレジスト除去を含む)を用いて、層間絶縁膜4およびバリア絶縁膜3に配線溝を形成する。その後、当該配線溝にバリアメタル6(例えば、TaN/Ta、膜厚5nm/5nm)を介して第1配線5a、5b(例えば、銅)を埋め込む。 First, an interlayer insulating film 2 is deposited on a semiconductor substrate (for example, a substrate on which a semiconductor element is formed). The interlayer insulating film 2 is, for example, a silicon oxide film and has a film thickness of 300 nm. Thereafter, a barrier insulating film 3 and an interlayer insulating film 4 are sequentially deposited on the interlayer insulating film 2. The barrier insulating film 3 is, for example, a SiN film and has a thickness of 30 nm. The interlayer insulating film 4 is, for example, a silicon oxide film and has a thickness of 200 nm. Thereafter, a wiring groove is formed in the interlayer insulating film 4 and the barrier insulating film 3 by using a lithography method (including photoresist formation, dry etching, and photoresist removal). After that, first wirings 5a and 5b (for example, copper) are embedded in the wiring trench through a barrier metal 6 (for example, TaN / Ta, film thickness of 5 nm / 5 nm).
 層間絶縁膜2、4は、プラズマCVD法によって形成することができる。ここで、プラズマCVD法とは、例えば、気体原料、あるいは液体原料を気化させることで減圧下の反応室に連続的に供給し、プラズマエネルギーによって、分子を励起状態にし、気相反応、あるいは基板表面反応などによって基板上に連続膜を形成する手法である。 The interlayer insulating films 2 and 4 can be formed by a plasma CVD method. Here, the plasma CVD method refers to, for example, a gas source or a liquid source that is continuously supplied to a reaction chamber under reduced pressure, and molecules are excited by plasma energy to cause a gas phase reaction or a substrate. This is a technique for forming a continuous film on a substrate by surface reaction or the like.
 また、第1配線5a、5bは、例えば、PVD(Physical Vapor Deposition)法によってバリアメタル6(例えば、TaN/Taの積層膜)を形成し、PVD法によるCuシードの形成後、電解めっき法によって銅を配線溝内に埋設し、200℃以上の温度で熱処理処理後、CMP(Chemical Mechanical Polishing)法によって配線溝内以外の余剰の銅を除去することで形成することができる。このような一連の銅配線の形成方法は、当該技術分野における一般的な手法を用いることができる。ここで、CMP法とは、多層配線形成プロセス中に生じるウェハ表面の凹凸を、研磨液をウェハ表面に流しながら回転させた研磨パッドに接触させて研磨することによって平坦化する方法である。溝に埋め込まれた余剰の銅を研磨することによって埋め込み配線(ダマシン配線)を形成したり、層間絶縁膜を研磨することで平坦化を行う(図8A)。 The first wirings 5a and 5b are formed by, for example, forming a barrier metal 6 (for example, a TaN / Ta laminated film) by a PVD (Physical Vapor Deposition) method, forming a Cu seed by the PVD method, and then performing an electrolytic plating method. It can be formed by embedding copper in the wiring groove, heat-treating at a temperature of 200 ° C. or higher, and then removing excess copper other than in the wiring groove by a CMP (Chemical-Mechanical-Polishing) method. As a method for forming such a series of copper wirings, a general method in this technical field can be used. Here, the CMP method is a method of flattening by polishing the unevenness of the wafer surface that occurs during the multilayer wiring formation process by bringing the polishing liquid into contact with a rotating polishing pad while flowing the polishing liquid over the wafer surface. By polishing excess copper embedded in the trench, a buried wiring (damascene wiring) is formed, or by planarizing by polishing the interlayer insulating film (FIG. 8A).
 次に、第1配線5a、5bを含む層間絶縁膜4上に絶縁性バリア膜7(例えば、SiCN膜、膜厚30nm)を形成する(図8B)。ここで、絶縁性バリア膜7は、プラズマCVD法によって形成することができる。絶縁性バリア膜7の膜厚は、10nm~50nm程度であることが好ましい。 Next, an insulating barrier film 7 (for example, a SiCN film, a film thickness of 30 nm) is formed on the interlayer insulating film 4 including the first wirings 5a and 5b (FIG. 8B). Here, the insulating barrier film 7 can be formed by a plasma CVD method. The thickness of the insulating barrier film 7 is preferably about 10 nm to 50 nm.
 次に、絶縁性バリア膜7上に第1ハードマスク膜8(例えば、シリコン酸化膜)を形成する(図8C)。このとき、ハードマスク膜8は、ドライエッチング加工におけるエッチング選択比を大きく保つ観点から、絶縁性バリア膜7とは異なる材料であることが好ましく、絶縁膜であっても導電膜であってもよい。ハードマスク膜8には、例えば、シリコン酸化膜、シリコン窒化膜、TiN、Ti、Ta、TaN等を用いることができ、SiN/SiOの積層体を用いることができる。 Next, a first hard mask film 8 (for example, a silicon oxide film) is formed on the insulating barrier film 7 (FIG. 8C). At this time, the hard mask film 8 is preferably made of a material different from the insulating barrier film 7 from the viewpoint of maintaining a high etching selectivity in the dry etching process, and may be an insulating film or a conductive film. . For the hard mask film 8, for example, a silicon oxide film, a silicon nitride film, TiN, Ti, Ta, TaN, or the like can be used, and a SiN / SiO 2 laminate can be used.
 次に、第1ハードマスク膜8上にフォトレジスト(不図示)を用いて開口部をパターニングする。フォトレジストをマスクとしてドライエッチングすることによりハードマスク膜8に開口部パターンを形成し、その後、酸素プラズマアッシング等によってフォトレジストを剥離する(図8D)。このとき、ドライエッチングは必ずしも絶縁性バリア膜7の上面で停止している必要はなく、絶縁性バリア膜7の内部にまで到達していてもよい。 Next, the opening is patterned on the first hard mask film 8 using a photoresist (not shown). An opening pattern is formed in the hard mask film 8 by dry etching using the photoresist as a mask, and then the photoresist is peeled off by oxygen plasma ashing or the like (FIG. 8D). At this time, the dry etching is not necessarily stopped on the upper surface of the insulating barrier film 7 and may reach the inside of the insulating barrier film 7.
 次に、図8Dに示した開口部がパターニングされたハードマスク膜8をマスクとして、ハードマスク膜8の開口部から露出する絶縁性バリア膜7をエッチバック(ドライエッチング)することにより、絶縁性バリア膜7に開口部を形成して、絶縁性バリア膜7の開口部から第1配線5a、5bの上面の一部を露出させる。このとき、開口部は層間絶縁膜4の内部にまで達していてもよい。その後、アミン系の剥離液などで有機剥離処理を行うことで、第1配線5a、5bの露出面に形成された酸化銅を除去するとともに、エッチバック時に発生したエッチング複生成物などを除去する(図8E参照)。 Next, the insulating barrier film 7 exposed from the opening of the hard mask film 8 is etched back (dry etching) using the hard mask film 8 with the opening shown in FIG. An opening is formed in the barrier film 7, and a part of the upper surface of the first wiring 5 a, 5 b is exposed from the opening of the insulating barrier film 7. At this time, the opening may reach the inside of the interlayer insulating film 4. Thereafter, an organic stripping process is performed with an amine-based stripping solution to remove the copper oxide formed on the exposed surfaces of the first wirings 5a and 5b, and to remove etching multi-products generated during the etch back. (See FIG. 8E).
 図8Dに示したハードマスク膜8は、エッチバック中に完全に除去されることが好ましいが、絶縁材料である場合にはそのまま残存してもよい。また、絶縁性バリア膜7の開口部の形状は、円形、正方形、四角形とし、円の直径、あるいは四角形の一辺の長さは20nmから500nmとすることができる。 The hard mask film 8 shown in FIG. 8D is preferably completely removed during the etch-back, but may be left as it is when it is an insulating material. In addition, the shape of the opening of the insulating barrier film 7 can be a circle, a square, or a rectangle, and the diameter of the circle or the length of one side of the rectangle can be 20 nm to 500 nm.
 また、絶縁性バリア膜7をエッチバックでは、反応性ドライエッチングを用いることで、絶縁性バリア膜7の開口部の壁面をテーパ面とすることができる。反応性ドライエッチングでは、エッチングガスとしてフルオロカーボンを含むガスを用いることができる。 Further, in etching back the insulating barrier film 7, the wall surface of the opening of the insulating barrier film 7 can be tapered by using reactive dry etching. In reactive dry etching, a gas containing fluorocarbon can be used as an etching gas.
 次に、第1配線5a、5bを含む絶縁性バリア膜7上に抵抗変化膜9を堆積する。抵抗変化膜は固体電解質であって、例えば、多孔質炭化水素膜、SiCOH、TaSiO、Ta、ZrO、またはHfO、膜厚6nm)を用いることができる(図8F)。ここで、抵抗変化膜9は、PVD法やCVD法を用いて形成することができる。 Next, a resistance change film 9 is deposited on the insulating barrier film 7 including the first wirings 5a and 5b. The resistance change film is a solid electrolyte, and for example, a porous hydrocarbon film, SiCOH, TaSiO, Ta 2 O 5 , ZrO, or HfO (film thickness 6 nm) can be used (FIG. 8F). Here, the resistance change film 9 can be formed using a PVD method or a CVD method.
 絶縁性バリア膜7の開口部は、有機剥離処理によって水分などが付着しているため、抵抗変化膜9の堆積前に250℃~400℃程度の温度にて、減圧下で熱処理を加えて脱ガスしておくことが好ましい。この際、銅表面を再度酸化させないよう、真空下、あるいは窒素雰囲気にするなどの注意が必要である。 Since moisture or the like is attached to the opening of the insulating barrier film 7 by the organic peeling process, the insulating barrier film 7 is removed by applying a heat treatment under reduced pressure at a temperature of about 250 ° C. to 400 ° C. before the deposition of the resistance change film 9. It is preferable to gas. At this time, care must be taken such as in a vacuum or in a nitrogen atmosphere so as not to oxidize the copper surface again.
 また、抵抗変化膜9の堆積前に、絶縁性バリア膜7の開口部から露出する第1配線5a、5bに対して、Hガスを用いた、ガスクリーニング、あるいはプラズマクリーニング処理を行ってもよい。このようにすることで、抵抗変化膜9を形成する際に第1配線5a、5bの酸化を抑制することができ、プロセス中の銅の熱拡散(物質移動)を抑制することができるようになる。 Further, before the resistance change film 9 is deposited, gas cleaning or plasma cleaning treatment using H 2 gas may be performed on the first wirings 5 a and 5 b exposed from the opening of the insulating barrier film 7. Good. By doing so, it is possible to suppress oxidation of the first wirings 5a and 5b when forming the resistance change film 9, and to suppress thermal diffusion (mass transfer) of copper during the process. Become.
 また、抵抗変化膜9の堆積前に、PVD法を用いて薄膜のバルブメタル(膜厚2nm以下)(不図示)を堆積することで、第1配線5a、5bの酸化を抑制してもよい。バルブメタルは、Zr、Hf、Ti、Al、Taなどの少なくとも一つからなり、Cuよりも酸化の自由エネルギーは負に大きい材料から選択することができる。薄膜のバルブメタル層は抵抗変化膜9の形成中に酸化されて、酸化物となる。 Further, before the resistance change film 9 is deposited, the oxidation of the first wirings 5a and 5b may be suppressed by depositing a thin valve metal (thickness of 2 nm or less) (not shown) using the PVD method. . The valve metal is made of at least one of Zr, Hf, Ti, Al, Ta, etc., and can be selected from materials that have a negative free energy of oxidation larger than that of Cu. The thin valve metal layer is oxidized during the formation of the resistance change film 9 to become an oxide.
 また、抵抗変化膜9を段差のある開口部にカバレッジよく埋め込む必要があるため、プラズマCVD法を用いて行うことが好ましい。 Further, since it is necessary to bury the variable resistance film 9 in the opening having a step with good coverage, it is preferable to use the plasma CVD method.
 次に、抵抗変化膜9上に積層構造の第2電極10を形成する。第2電極10は、抵抗変化膜9と直接接する下層側の電極(例えば、Ruを主成分とする層、膜厚10nm)と、上層側の電極(例えば、窒化チタン、膜厚10nm)をわけて堆積することもできる。さらに、第2電極10の上に整流素子11および制御電極12をこの順に形成する(図8G参照)。整流素子11は比較例1で説明した製造方法で作製することができる。 Next, the second electrode 10 having a laminated structure is formed on the resistance change film 9. The second electrode 10 is divided into a lower layer electrode (for example, a layer containing Ru as a main component, thickness 10 nm) and an upper layer electrode (for example, titanium nitride, thickness 10 nm) that is in direct contact with the resistance change film 9. It can also be deposited. Further, the rectifying element 11 and the control electrode 12 are formed in this order on the second electrode 10 (see FIG. 8G). The rectifying element 11 can be manufactured by the manufacturing method described in Comparative Example 1.
 制御電極12上に第2ハードマスク膜(例えば、SiCN膜、膜厚30nm)23および第3ハードマスク膜(例えば、SiO膜、膜厚200nm)24を、この順に積層する(図8H)。 A second hard mask film (for example, SiCN film, film thickness 30 nm) 23 and a third hard mask film (for example, SiO 2 film, film thickness 200 nm) 24 are stacked in this order on the control electrode 12 (FIG. 8H).
 第2ハードマスク膜23および第3ハードマスク膜24は、プラズマCVD法を用いて成膜することができる。第2ハードマスク膜23および第3ハードマスク膜24を含むハードマスク膜は半導体装置の技術分野における一般的なプラズマCVD法を用いて形成することができる。また、第2ハードマスク膜23と第3ハードマスク膜24とは、異なる種類の膜であることが好ましく、例えば、第2ハードマスク膜23をSiCN膜とし、第3ハードマスク膜24をSiO膜とすることができる。このとき、第2ハードマスク膜23は、保護絶縁膜14および絶縁性バリア膜7と同一材料であることが好ましい。すなわち、抵抗変化素子の周囲を全て同一材料で囲むこと材料界面を一体化し、外部からの水分などの浸入を防ぐとともに、抵抗変化素子自身からの脱離防ぐことができるようになる。 The second hard mask film 23 and the third hard mask film 24 can be formed using a plasma CVD method. The hard mask film including the second hard mask film 23 and the third hard mask film 24 can be formed using a general plasma CVD method in the technical field of semiconductor devices. The second hard mask film 23 and the third hard mask film 24 are preferably different types of films. For example, the second hard mask film 23 is a SiCN film, and the third hard mask film 24 is SiO 2. It can be a membrane. At this time, the second hard mask film 23 is preferably made of the same material as the protective insulating film 14 and the insulating barrier film 7. That is, all the surroundings of the variable resistance element are surrounded by the same material, so that the material interface can be integrated to prevent intrusion of moisture and the like from the outside and to prevent detachment from the variable resistance element itself.
 また、第1ハードマスク膜8は、プラズマCVD法によって形成することができるが、成膜前には反応室内で減圧化に維持する必要があり、このとき抵抗変化膜9から酸素が脱離し、酸素欠陥によって固体電解質のリーク電流が増加するという問題が生じる。それらを抑制するためには、成膜温度を400℃以下とすることが好ましい。さらに、成膜前に減圧化で成膜ガスに曝されるため、還元性のガスを用いないことが好ましい。例えば、SiH/Nの混合ガスを高密度プラズマによって形成したSiN膜などを用いることが好ましい。 The first hard mask film 8 can be formed by a plasma CVD method, but it is necessary to maintain a reduced pressure in the reaction chamber before film formation. At this time, oxygen is desorbed from the resistance change film 9, There arises a problem that the leakage current of the solid electrolyte increases due to oxygen defects. In order to suppress them, it is preferable to set the film forming temperature to 400 ° C. or lower. Further, it is preferable not to use a reducing gas because the film is exposed to a film forming gas under reduced pressure before film formation. For example, it is preferable to use a SiN film in which a mixed gas of SiH 4 / N 2 is formed by high-density plasma.
 また、第1~第3のハードマスク膜8、23、24等のハードマスクには、メタルハードマスクを用いることができ、例えば、TiNなどを用いることができる。 Further, a metal hard mask can be used for the hard masks such as the first to third hard mask films 8, 23, 24, etc. For example, TiN can be used.
 次に、第3ハードマスク膜24上にスイッチング素子部をパターニングするためのフォトレジスト(不図示)を形成し、その後、当該フォトレジストをマスクとして、第2ハードマスク膜23の上面が表れるまで第3ハードマスク膜24をドライエッチングし、その後、酸素プラズマアッシングと有機剥離を用いてフォトレジストを除去する。(図8I参照)
 次に、同じく第3ハードマスク膜24上に整流素子部をパターニングするためのフォトレジスト(不図示)を形成し、その後、当該フォトレジストをマスクとして、第3ハードマスク膜24内に整流素子パターンを転写するためにドライエッチングし、その後、酸素プラズマアッシングと有機剥離を用いてフォトレジストを除去する。これにより、第2ハードマスク膜23と第3ハードマスク膜24内に抵抗変化素子部と整流素子部がパターニングされる。(図8J参照)
 次に、第2ハードマスク膜23と第3ハードマスク膜24をマスクとして、第2ハードマスク膜23、第3電極12、整流素子11、第2電極10、抵抗変化膜9を連続的にドライエッチングする。このとき、ハードマスク膜は、エッチバック中に完全に除去されることが好ましいが、そのまま残存してもよい。
Next, a photoresist (not shown) for patterning the switching element portion is formed on the third hard mask film 24, and then the photoresist is used as a mask until the upper surface of the second hard mask film 23 appears. 3 The hard mask film 24 is dry-etched, and then the photoresist is removed using oxygen plasma ashing and organic peeling. (See Figure 8I)
Next, a photoresist (not shown) for patterning the rectifying element portion is formed on the third hard mask film 24, and then the rectifying element pattern is formed in the third hard mask film 24 using the photoresist as a mask. The photoresist is removed using oxygen plasma ashing and organic peeling. As a result, the variable resistance element portion and the rectifying element portion are patterned in the second hard mask film 23 and the third hard mask film 24. (See Figure 8J)
Next, using the second hard mask film 23 and the third hard mask film 24 as a mask, the second hard mask film 23, the third electrode 12, the rectifier element 11, the second electrode 10, and the resistance change film 9 are continuously dried. Etch. At this time, the hard mask film is preferably completely removed during the etch back, but may remain as it is.
 例えば、第2電極10がTiNの場合にはCl系のRIE(Reactive Ion Etching)で加工することができ、第2電極10がRuの場合にはCl/Oの混合ガスでRIE加工することができる。また、抵抗変化膜9のエッチングでは、下面の絶縁性バリア膜7上でドライエッチングを停止させる必要がある。このようなハードマスクRIE法を用いることで、抵抗変化素子部と整流素子部をレジスト除去のための酸素プラズマアッシングに曝すことなく、加工することができるようになる。 For example, when the second electrode 10 is TiN, it can be processed by Cl 2 -based RIE (Reactive Ion Etching), and when the second electrode 10 is Ru, RIE processing is performed with a mixed gas of Cl 2 / O 2. can do. In the etching of the resistance change film 9, it is necessary to stop the dry etching on the insulating barrier film 7 on the lower surface. By using such a hard mask RIE method, the variable resistance element portion and the rectifying element portion can be processed without being exposed to oxygen plasma ashing for resist removal.
 次に、第3電極12、整流素子11、第2電極10、抵抗変化膜9を含む絶縁性バリア膜7上に保護絶縁膜14(例えば、SiN膜、膜厚30nm)を堆積する(図8L参照)。このとき、第3電極12上に残った第3ハードマスク膜23も保護絶縁膜14に覆われる。 Next, a protective insulating film 14 (for example, a SiN film, a film thickness of 30 nm) is deposited on the insulating barrier film 7 including the third electrode 12, the rectifying element 11, the second electrode 10, and the resistance change film 9 (FIG. 8L). reference). At this time, the third hard mask film 23 remaining on the third electrode 12 is also covered with the protective insulating film 14.
 保護絶縁膜14は、プラズマCVD法によって形成することができるが、成膜前には反応室内で減圧化に維持する必要があり、このとき抵抗変化膜9の側面から酸素が脱離し、固体電解質のリーク電流が増加するという問題が生じる。それらを抑制するためには、保護絶縁膜14の成膜温度を350℃以下とすることが好ましい。さらに、成膜前に減圧化で成膜ガスに曝されるため、還元性のガスを用いないことが好ましい。例えば、SiH/Nの混合ガスを高密度プラズマによって、基板温度200℃で形成したSiN膜などを用いることが好ましい。 Although the protective insulating film 14 can be formed by plasma CVD, it is necessary to maintain a reduced pressure in the reaction chamber before film formation. At this time, oxygen is desorbed from the side surface of the resistance change film 9, and the solid electrolyte This causes a problem that the leakage current increases. In order to suppress them, it is preferable to set the deposition temperature of the protective insulating film 14 to 350 ° C. or lower. Further, it is preferable not to use a reducing gas because the film is exposed to a film forming gas under reduced pressure before film formation. For example, it is preferable to use a SiN film or the like formed by using a mixed gas of SiH 4 / N 2 with high-density plasma at a substrate temperature of 200 ° C.
 これ以降の工程は、図7を参照して説明する。 The subsequent steps will be described with reference to FIG.
 次に、保護絶縁膜14上に層間絶縁膜17(例えば、シリコン酸化膜)を形成し、その後、CMPによって層間絶縁膜17を削り込んで平坦化する。平坦化された層間絶縁膜17の上にハードマスク膜16を堆積する。その後、第2配線18a、18b用の配線溝およびプラグ19a、19b用の下穴を形成し、銅デュアルダマシン配線プロセスを用いて、当該配線溝および当該下穴内にバリアメタル20a、20b(例えば、TaN/Ta)を介して第2配線18a、18b(例えば、Cu)およびプラグ19a、19b(例えば、Cu)を同時に形成する。その後、第2配線18a、18bを含むハードマスク膜16上にバリア絶縁膜21(例えば、SiN膜)を堆積する。 Next, an interlayer insulating film 17 (for example, a silicon oxide film) is formed on the protective insulating film 14, and then the interlayer insulating film 17 is etched and planarized by CMP. A hard mask film 16 is deposited on the planarized interlayer insulating film 17. Thereafter, a wiring groove for the second wiring 18a, 18b and a pilot hole for the plugs 19a, 19b are formed, and barrier metal 20a, 20b (for example, in the wiring groove and the pilot hole is formed using a copper dual damascene wiring process. The second wirings 18a and 18b (for example, Cu) and the plugs 19a and 19b (for example, Cu) are simultaneously formed through TaN / Ta). Thereafter, a barrier insulating film 21 (for example, a SiN film) is deposited on the hard mask film 16 including the second wirings 18a and 18b.
 第2配線18a、18bの形成は、下層配線(第1配線5a、5b)の形成と同様のプロセスを用いることができる。このとき、バリアメタル20a、20bと第3電極12を同一材料とすることでプラグ19a、19bと第3電極12の間の接触抵抗を低減し、素子性能を向上(オン時の抵抗変化素子22の抵抗を低減)させることができるようになる。 The formation of the second wirings 18a and 18b can use the same process as the formation of the lower layer wirings ( first wirings 5a and 5b). At this time, by making the barrier metals 20a and 20b and the third electrode 12 the same material, the contact resistance between the plugs 19a and 19b and the third electrode 12 is reduced, and the element performance is improved (the resistance change element 22 when turned on). Can be reduced).
 層間絶縁膜17はプラズマCVD法で形成することができる。 The interlayer insulating film 17 can be formed by a plasma CVD method.
 本実施例の製造方法によれば、第1配線5a、5bを抵抗変化素子の下部電極とすることで、すなわち、第1配線5a、5bが抵抗変化素子の下部電極を兼ねている。そのため、抵抗変化素子の小型化による高密度化を実現するとともに、相補型の抵抗変化素子を形成することができ、信頼性を向上させることができる。抵抗変化素子の上面には整流素子11が形成され、通常のCuダマシン配線プロセスに追加工程として、3枚のマスクセットを作成するだけで、抵抗変化素子を搭載することができる。その結果、半導体装置の低コスト化を同時に達成することができるようになる。さらに、銅配線によって構成される最先端のデバイスの内部にも抵抗変化素子を搭載して、装置の性能を向上させることができる。 According to the manufacturing method of the present embodiment, the first wirings 5a and 5b are used as the lower electrodes of the resistance change element, that is, the first wirings 5a and 5b also serve as the lower electrode of the resistance change element. Therefore, it is possible to achieve high density by miniaturization of the variable resistance element, to form a complementary variable resistance element, and to improve reliability. The rectifying element 11 is formed on the upper surface of the variable resistance element, and the variable resistance element can be mounted only by creating three mask sets as an additional step to the normal Cu damascene wiring process. As a result, the cost reduction of the semiconductor device can be achieved at the same time. Furthermore, a resistance change element can also be mounted inside a state-of-the-art device composed of copper wiring to improve the performance of the apparatus.
 本発明の産業上の利用可能性について説明する。 The industrial applicability of the present invention will be described.
 例えば、本願発明者によってなされた発明の背景となった利用分野であるCMOS(Complementary Metal Oxide Semiconductor)回路を有する半導体製造装置技術に関して詳しく説明し、半導体基板上の銅多層配線内部に抵抗変化素子を形成する例について説明したが、本発明はそれに限定されるものではなく、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、FRAM(登録商標)(Ferro Electric Random Access Memory)、MRAM(Magnetic Random Access Memory)、抵抗変化型メモリ、バイポーラトランジスタ等のようなメモリ回路を有する半導体製品、マイクロプロセッサなどの論理回路を有する半導体製品、あるいはそれらを同時に掲載したボードやパッケージの銅配線上へも適用することができる。 For example, a semiconductor manufacturing apparatus technology having a CMOS (Complementary Metal Oxide Semiconductor) circuit, which is a field of use that has been the background of the invention made by the present inventor, will be described in detail, and a resistance change element is provided inside a copper multilayer wiring on a semiconductor substrate. Although an example of forming is described, the present invention is not limited thereto. For example, DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), flash memory, FRAM (registered trademark) (Ferro Electric Random Access) Memory (MRAM), MRAM (Magnetic Random Access Memory), resistance change memory, semiconductor products having memory circuits such as bipolar transistors, semiconductor products having logic circuits such as microprocessors, or boards and packages on which these are posted simultaneously Can be applied on copper wiring .
 また、本発明は半導体装置への、電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMS(Micro Electro Mechanical Systems)などの接合にも適用することができる。また、本発明ではスイッチ機能での実施例を中心に説明したが、不揮発性と抵抗変化特性、および整流素子を利用したメモリ素子などに用いることもできる。また、本発明では抵抗変化素子の実施例として、金属イオン析出型の抵抗変化素子の特性を中心に示したが、抵抗変化素子の動作原理は本発明の利用を限定するものではない。 The present invention can also be applied to the bonding of electronic circuit devices, optical circuit devices, quantum circuit devices, micromachines, MEMS (Micro Electro Mechanical Systems), etc. to semiconductor devices. In the present invention, the example of the switch function has been mainly described. However, the present invention can be used for a nonvolatile memory, a resistance change characteristic, and a memory element using a rectifying element. Further, in the present invention, as an example of the resistance change element, the characteristics of the metal ion precipitation type resistance change element are mainly shown, but the operation principle of the resistance change element does not limit the use of the present invention.
 特に抵抗変化素子が金属析出型の抵抗変化素子である場合、抵抗変化素子はバイポーラ特性を示すことから、双方の整流特性を有する本発明を用いることが好ましい。さらに抵抗変化素子を論理回路の信号線の中に配置するスイッチとして用いる場合、整流素子として要求される仕様は、整流特性に優れる(低電圧印加時には電流が小さく、高電圧印加時には電流が大きい)だけでなく、整流素子自体の寄生容量も小さいことが望まれる。本発明の整流素子はバッファ層(例えばアモルファスシリコン)を400℃以下で形成できることから多層配線内部に形成することができるため、構造的に低容量を実現できる利点も有する。 In particular, when the variable resistance element is a metal deposition type variable resistance element, the variable resistance element exhibits bipolar characteristics. Therefore, it is preferable to use the present invention having both rectification characteristics. Furthermore, when the variable resistance element is used as a switch arranged in a signal line of a logic circuit, the specification required as a rectifying element is excellent in rectifying characteristics (the current is small when a low voltage is applied and the current is large when a high voltage is applied). In addition, it is desirable that the parasitic capacitance of the rectifying element itself is small. Since the rectifying element of the present invention can form the buffer layer (for example, amorphous silicon) at 400 ° C. or lower and can be formed inside the multilayer wiring, it also has an advantage that a low capacity can be realized structurally.
 また、できあがりからも本発明によるスイッチング素子を確認することができる。具体的には、デバイスの断面をTEM(透過型電子顕微鏡:Transmission Electron Microscope)観察することで、多層配線内部に抵抗変化素子が搭載されている場合には、抵抗変化素子の下面が銅配線であり、銅配線が下部電極を兼ねており、二つの異なる下層配線の間に開口部を有しているかを観察することで確認することができ、本発明に記載の構造であるかを確認できる。さらにTEMに加えEDX(エネルギー分散型X線分光法:Energy Dispersive X-ray Spectroscopy)、EELS(電子エネルギー損失分光法:Electron Energy-Loss Spectroscopy)などの組成分析を行うことで、本発明に記載された材料であるかの確認をすることができる。 Also, the switching element according to the present invention can be confirmed from the completion. Specifically, by observing the cross section of the device with a TEM (Transmission Electron Microscope), when the variable resistance element is mounted inside the multilayer wiring, the lower surface of the variable resistance element is a copper wiring. Yes, it can be confirmed by observing whether the copper wiring also serves as the lower electrode and has an opening between two different lower layer wirings, and can confirm whether the structure is described in the present invention . In addition to TEM, it is described in the present invention by performing composition analysis such as EDX (Energy Dispersive X-ray Spectroscopy), EELS (Electron Energy Loss Spectroscopy). It can be confirmed whether it is a new material.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年6月18日に出願された日本出願特願2015-122892号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-122892 filed on Jun. 18, 2015, the entire disclosure of which is incorporated herein.
 2  層間絶縁膜
 5a、5b  第1配線
 6a、6b  バリアメタル
 7  絶縁性バリア膜
 8  第1ハードマスク膜
 9  抵抗変化膜
 10  第2電極
 11  整流素子
 12  制御電極(第3電極)
 14  保護絶縁膜
 15  層間絶縁膜
 16  ハードマスク膜
 17  層間絶縁膜
 18a、18b  第2配線
 19a、19b  プラグ
 20a、20b  バリアメタル
 21  バリア絶縁膜
 22a、22b、25a、25b、26a、26b  スイッチング素子
 101  第1電極
 102  第2電極
 103  第3電極
 104  第1バッファ層
 105  第2バッファ層
 106  整流素子
2 Interlayer insulating film 5a, 5b First wiring 6a, 6b Barrier metal 7 Insulating barrier film 8 First hard mask film 9 Resistance change film 10 Second electrode 11 Rectifier 12 Control electrode (third electrode)
14 Protective insulating film 15 Interlayer insulating film 16 Hard mask film 17 Interlayer insulating film 18a, 18b Second wiring 19a, 19b Plug 20a, 20b Barrier metal 21 Barrier insulating film 22a, 22b, 25a, 25b, 26a, 26b Switching element 101 First 1 electrode 102 2nd electrode 103 3rd electrode 104 1st buffer layer 105 2nd buffer layer 106 Rectifier

Claims (10)

  1.  第1電極および第2電極と、
     前記第1電極および前記第2電極の間に設けられた整流層と、
     前記第1電極と前記整流層の間に設けられた第1バッファ層と、
     前記第2電極と前記整流層の間に設けられた第2バッファ層と、を有し、
     前記第1バッファ層および前記第2バッファ層の仕事関数は前記第1電極および第2電極の仕事関数よりも小さく、前記第1バッファ層および前記第2バッファ層の比誘電率は前記整流層の比誘電率よりも大きい、整流素子。
    A first electrode and a second electrode;
    A rectifying layer provided between the first electrode and the second electrode;
    A first buffer layer provided between the first electrode and the rectifying layer;
    A second buffer layer provided between the second electrode and the rectifying layer,
    The work functions of the first buffer layer and the second buffer layer are smaller than the work functions of the first electrode and the second electrode, and the relative dielectric constant of the first buffer layer and the second buffer layer is the same as that of the rectifying layer. A rectifying element larger than the relative dielectric constant.
  2.  請求項1に記載の整流素子において、
     前記第1バッファ層および前記第2バッファ層はシリコンまたはゲルマニウムを主成分として構成される、整流素子。
    The rectifying device according to claim 1,
    The first buffer layer and the second buffer layer are rectifier elements composed mainly of silicon or germanium.
  3.  請求項1または2に記載の整流素子において、
     前記第1バッファ層および前記第2バッファ層は非晶質である、整流素子。
    The rectifying device according to claim 1 or 2,
    The rectifying element, wherein the first buffer layer and the second buffer layer are amorphous.
  4.  請求項1から3のいずれか1項に記載の整流素子において、
     前記第1バッファ層および前記第2バッファ層のバンドギャップは1.2eV以下である、整流素子。
    In the rectifier according to any one of claims 1 to 3,
    The rectifying device has a band gap of 1.2 eV or less between the first buffer layer and the second buffer layer.
  5.  請求項1から4のいずれか1項に記載の整流素子において、
     前記第1電極および前記第2電極はタンタルもしくはチタンまたはそれらの窒素化合物である、整流素子。
    In the rectifying device according to any one of claims 1 to 4,
    The rectifying element, wherein the first electrode and the second electrode are tantalum, titanium, or a nitrogen compound thereof.
  6.  請求項1から5のいずれか1項に記載の整流素子において、
     前記整流層は酸化物または窒素物である、整流素子。
    The rectifying device according to any one of claims 1 to 5,
    The rectifying element is an rectifying element made of oxide or nitrogen.
  7.  請求項6に記載の整流素子において、
     前記整流層は窒化シリコンである、整流素子。
    The rectifying device according to claim 6,
    The rectifying element is made of silicon nitride.
  8.  論理回路の信号経路中に設けられたスイッチング素子であって、
     請求項1から7のいずれか1項に記載の整流素子と、
     2つの抵抗変化素子と、を有し、
     前記2つの抵抗変化素子のそれぞれが2つの端子を有し、
     前記2つの抵抗変化素子の2端子のそれぞれの一方の端子が互いに相手と接続され、該2つの抵抗変化素子の2つの他方の端子の一方が前記信号の入力端子であり、他方が前記信号の出力端子であり、
     前記整流素子の前記第1電極または前記第2電極のうち、一方の電極が前記2つの抵抗変化素子の2端子のそれぞれの一方の端子と接続され、他方の電極が制御端子である、スイッチング素子。
    A switching element provided in a signal path of a logic circuit,
    A rectifying device according to any one of claims 1 to 7,
    Two resistance change elements,
    Each of the two resistance change elements has two terminals,
    One terminal of each of the two terminals of the two variable resistance elements is connected to the other, one of the other two terminals of the two variable resistance elements is the input terminal for the signal, and the other is the input terminal for the signal. Output terminal,
    One of the first electrode and the second electrode of the rectifying element is connected to one of the two terminals of the two resistance change elements, and the other electrode is a control terminal. .
  9.  基板上に第1電極を形成し、
     水素化シランを原料としたプラズマCVD法を用いて第1バッファ層を前記第1電極上に形成し、
     水素化シランと、窒素またはアンモニアを原料としてプラズマCVD法を用いて、整流層を前記第1バッファ層の上に形成し、
     水素化シランを原料としたプラズマCVD法を用いて第2バッファ層を前記整流層の上に形成し、
     前記第2バッファ層の上に第2電極を形成する、整流素子の製造方法。
    Forming a first electrode on the substrate;
    A first buffer layer is formed on the first electrode using a plasma CVD method using silane hydride as a raw material,
    A rectifying layer is formed on the first buffer layer using a plasma CVD method using hydrogenated silane and nitrogen or ammonia as raw materials,
    A second buffer layer is formed on the rectifying layer using a plasma CVD method using silane hydride as a raw material,
    A method of manufacturing a rectifying element, wherein a second electrode is formed on the second buffer layer.
  10.  請求項9に記載の整流素子の製造方法において、
     前記第1バッファ層の形成、前記整流層の形成、および前記第2バッファ層の形成は、途中で前記基板が大気暴露されることなく連続的に行われる、整流素子の製造方法。
    The method of manufacturing a rectifying device according to claim 9,
    The method of manufacturing a rectifying element, wherein the formation of the first buffer layer, the formation of the rectifying layer, and the formation of the second buffer layer are continuously performed without exposing the substrate to the air in the middle.
PCT/JP2016/002837 2015-06-18 2016-06-13 Rectifying element, switching element, and method for manufacturing rectifying element WO2016203751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017524604A JPWO2016203751A1 (en) 2015-06-18 2016-06-13 Rectifying element, switching element, and method of manufacturing rectifying element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122892 2015-06-18
JP2015122892 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016203751A1 true WO2016203751A1 (en) 2016-12-22

Family

ID=57545110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002837 WO2016203751A1 (en) 2015-06-18 2016-06-13 Rectifying element, switching element, and method for manufacturing rectifying element

Country Status (2)

Country Link
JP (1) JPWO2016203751A1 (en)
WO (1) WO2016203751A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181921A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Variable resistance element array and method for controlling variable resistance element array
WO2018190241A1 (en) * 2017-04-11 2018-10-18 日本電気株式会社 Switch circuit, semiconductor device using same, and switching method
WO2019125392A1 (en) * 2017-12-18 2019-06-27 Intel Corporation Integrated circuit structures, selector devices, and methods
JP2020161723A (en) * 2019-03-27 2020-10-01 日本電気株式会社 Nonlinear resistance element, switching element, and method for manufacturing nonlinear resistance element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204652A (en) * 2011-03-25 2012-10-22 Toshiba Corp Manufacturing method of semiconductor device
WO2014112365A1 (en) * 2013-01-18 2014-07-24 日本電気株式会社 Switching element, and method for manufacturing semiconductor switching device
JP2015076609A (en) * 2013-10-07 2015-04-20 アイメック・ヴェーゼットウェーImec Vzw Selector for rram

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204652A (en) * 2011-03-25 2012-10-22 Toshiba Corp Manufacturing method of semiconductor device
WO2014112365A1 (en) * 2013-01-18 2014-07-24 日本電気株式会社 Switching element, and method for manufacturing semiconductor switching device
JP2015076609A (en) * 2013-10-07 2015-04-20 アイメック・ヴェーゼットウェーImec Vzw Selector for rram

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181921A1 (en) * 2017-03-31 2018-10-04 日本電気株式会社 Variable resistance element array and method for controlling variable resistance element array
WO2018190241A1 (en) * 2017-04-11 2018-10-18 日本電気株式会社 Switch circuit, semiconductor device using same, and switching method
JPWO2018190241A1 (en) * 2017-04-11 2020-05-14 日本電気株式会社 Switch circuit, semiconductor device using the same, and switch method
US10693467B2 (en) 2017-04-11 2020-06-23 Nec Corporation Switch circuit, semiconductor device using same, and switching method
WO2019125392A1 (en) * 2017-12-18 2019-06-27 Intel Corporation Integrated circuit structures, selector devices, and methods
JP2020161723A (en) * 2019-03-27 2020-10-01 日本電気株式会社 Nonlinear resistance element, switching element, and method for manufacturing nonlinear resistance element
JP7255853B2 (en) 2019-03-27 2023-04-11 ナノブリッジ・セミコンダクター株式会社 Nonlinear resistance element, switching element, and method for manufacturing nonlinear resistance element

Also Published As

Publication number Publication date
JPWO2016203751A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6428860B2 (en) Switching element and method for manufacturing switching element
JP5794231B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6344243B2 (en) Switching element and method for manufacturing semiconductor switching device
JP5382001B2 (en) Semiconductor device and manufacturing method thereof
JP5360209B2 (en) Semiconductor device and manufacturing method thereof
JP6901686B2 (en) Switching elements, semiconductor devices and their manufacturing methods
JP5799504B2 (en) Semiconductor device and manufacturing method thereof
JP6665776B2 (en) Switching element and method of manufacturing switching element
WO2016203751A1 (en) Rectifying element, switching element, and method for manufacturing rectifying element
JP5527321B2 (en) Resistance change element and manufacturing method thereof
JP2016192510A (en) Resistance change element and formation method therefor
JP2013077681A (en) Resistance change element and programming method therefor
WO2018181019A1 (en) Semiconductor device and manufacturing method therefor
US9905758B2 (en) Semiconductor device and method for manufacturing same
JP2015065240A (en) Current control element and method for manufacturing the same
WO2019176833A1 (en) Semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811226

Country of ref document: EP

Kind code of ref document: A1