WO2019176817A1 - 光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置 - Google Patents

光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置 Download PDF

Info

Publication number
WO2019176817A1
WO2019176817A1 PCT/JP2019/009518 JP2019009518W WO2019176817A1 WO 2019176817 A1 WO2019176817 A1 WO 2019176817A1 JP 2019009518 W JP2019009518 W JP 2019009518W WO 2019176817 A1 WO2019176817 A1 WO 2019176817A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
layer
optically anisotropic
rth
Prior art date
Application number
PCT/JP2019/009518
Other languages
English (en)
French (fr)
Inventor
伊藤 学
坂本 圭
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020506491A priority Critical patent/JP7188437B2/ja
Publication of WO2019176817A1 publication Critical patent/WO2019176817A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optically anisotropic layer, an optically anisotropic laminate, a polarizing plate, and an image display device.
  • Image display devices such as liquid crystal display devices and organic electroluminescence display devices are provided with various optical films.
  • organic electroluminescence may be appropriately referred to as “organic EL”.
  • organic EL organic electroluminescence
  • Conventionally, techniques relating to such an optical film have been studied.
  • Such an optical film is required to be thin while having optical characteristics such as desired optical anisotropy.
  • the image display device can be made light and thin.
  • a thin optical film is also advantageous in realizing an image display device having a non-curved surface and a flexible image display device.
  • the image display apparatus may be provided with a positive C film for the purpose of obtaining effects such as improvement in color and contrast over a wide viewing angle and improvement in visibility through polarized sunglasses. Further, in order to obtain such an effect over a wide wavelength band, it has been proposed to combine a positive C film and a negative C film to form a multilayer film, thereby expressing a function as a positive C film (Patent Document). 1).
  • the multilayer positive C film in the prior art has a problem that when it is produced by a combination of actually usable resin films, its thickness increases.
  • the object of the present invention is to reduce the thickness of the resin film having optical characteristics useful as a positive C film for use in an image display device, and a resin film that can be actually used. It is to provide an optically anisotropic layer and its use.
  • An optically anisotropic layer comprising a first retardation layer and a second retardation layer, Optically anisotropic layer in which the first retardation layer and the second retardation layer satisfy the formulas (1) to (5): nz (P1)> nx (P1) ⁇ ny (P1) Formula (1) nx (P2) ⁇ ny (P2)> nz (P2) Formula (2)
  • nx (P1), ny (P1) and nz (P1) are main refractive indexes of the first retardation layer
  • nx (P2), ny (P2) and nz (P2) are the main refractive indexes of the first retardation
  • * represents a site where the partial structure is bonded to the sugar unit in the cellulose ester (I)
  • Y represents —O—C ( ⁇ O) — or —O—C ( ⁇ O ) —NR 10 —
  • R 10 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • PDG is an organic group having a ring structure
  • the number of ⁇ electrons contained in the ring structure is 12 or more. Represents an organic group.
  • Rx is a hydrogen atom or an organic group having 1 to 20 carbon atoms
  • Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms.
  • R 10 represents the same meaning as described above, p is an integer from 0 to 3, n represents 0 or 1. * Represents a bond with B.
  • XG is represented by any one of the formulas (IV-1) to (IV-3), Ay may have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, or a substituent.
  • Ax is represented by the following formula (V).
  • E 3 represents —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—
  • each of R 11 and R 12 independently represents a hydrogen atom.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, a fluoroalkyl group having 1 to 6 carbon atoms, or an alkoxy having 1 to 6 carbon atoms.
  • R b is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon.
  • a plurality of R 2 to R 5 may be all the same or different from each other, and at least one of C—R 1 to C—R 4 constituting the ring may be replaced with a nitrogen atom Good.
  • the cellulose ester (I) has a structure in which part or all of the hydroxyl groups in the cellulose ester (I ′) are substituted with a partial structure represented by the formula (I).
  • I ′) is a cellulose ester other than the cellulose ester (I), and the cellulose ester (I ′) is cellulose acetate butyrate, cellulose acetate, cellulose butyrate, cellulose acetate propionate, cellulose acetate phthalate, and
  • the optically anisotropic layer according to any one of [2] to [6], which is selected from the group consisting of these mixtures.
  • the second retardation layer is a layer of a cured product of a cholesteric liquid crystal composition, and the cholesteric liquid crystal composition is a composition containing a polymerizable liquid crystal compound having an aromatic imine structure.
  • the first retardation layer includes a polymer, and the polymer is selected from the group consisting of polyvinyl carbazole, polyfumaric acid ester, cellulose derivative, and combinations thereof, [1] to [8] The optically anisotropic layer according to any one of the above items.
  • An optically anisotropic laminate comprising the optically anisotropic layer according to any one of [1] to [9] and a third retardation layer, Optically anisotropic laminate in which the third retardation layer satisfies the formulas (6) to (7): nx (P3)> ny (P3) ⁇ nz (P3) Formula (6) 110 nm ⁇ Re (P3) (590) ⁇ 170 nm Formula (7)
  • nx (P3), ny (P3) and nz (P3) are the main refractive indexes of the third retardation layer
  • Re (P3) (590) is an in-plane retardation of the third retardation layer at a wavelength of 590 nm.
  • a linear polarizer comprising the optically anisotropic laminate according to [10].
  • An image display device comprising the polarizing plate according to [11].
  • a linear polarizer [10] the optically anisotropic laminate according to An image display device comprising an organic electroluminescence element in this order.
  • the thickness can be reduced.
  • An anisotropic layer and uses thereof are provided.
  • the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
  • the inclination direction of a surface means a direction that is neither parallel nor perpendicular to the surface, specifically, a range in which the polar angle of the surface is greater than 0 ° and less than 90 °. Pointing in the direction.
  • nx represents a refractive index in a direction giving the maximum refractive index among the in-plane directions of the layer
  • ny represents a refractive index in a direction orthogonal to the nx direction in the in-plane directions
  • d represents the thickness of the layer.
  • the in-plane direction indicates a direction perpendicular to the thickness direction.
  • the measurement wavelength of the refractive index is 590 nm.
  • “long” means one having a length of usually 5 times or more, preferably 10 times or more of the width, specifically, It has a length enough to be wound up in a roll and stored or transported.
  • the upper limit of the length with respect to the width is not particularly limited, but may be, for example, 100,000 times or less.
  • polarizing plate and “wave plate” include not only rigid members but also flexible members such as resin films.
  • (meth) acryl is a term encompassing “acryl”, “methacryl”, and combinations thereof.
  • the main refractive index of a certain layer or film is the refractive index nx in the in-plane direction of the layer and giving the maximum refractive index, and the in-plane direction of the layer and giving nx It means the refractive index ny in the direction perpendicular to the direction and the refractive index nz in the thickness direction of the layer.
  • the refractive indexes corresponding to nx, ny, and nz are represented by symbols including character strings “nx”, “ny”, and “nz”, respectively.
  • nx (A) is the maximum refractive index in the in-plane direction of the optically anisotropic layer.
  • Ny (A) is the in-plane direction of the optical anisotropic layer and is the direction perpendicular to the direction giving nx (A), and nz (A) is It is the refractive index in the thickness direction of the optically anisotropic layer.
  • the in-plane retardation Re of a certain layer exhibits reverse wavelength dispersibility means that the in-plane retardations Re (450) and Re (550) of the layer at wavelengths of 450 nm and 550 nm are Re (450 ) / Re (550) ⁇ 1.00.
  • the in-plane retardations Re (550) and Re (650) at wavelengths 550 nm and 650 nm of the layer preferably have Re (550) / Re (650) ⁇ 1. Satisfy 00.
  • the retardation Rth in the thickness direction of a certain layer exhibits reverse wavelength dispersion, and the retardations Rth (450) and Rth (550) in the thickness direction at wavelengths of 450 nm and 550 nm of the layer are Rth (450) / Rth. (550) ⁇ 1.00 is satisfied.
  • the layer in which Rth has reverse wavelength dispersion preferably further has retardations Rth (550) and Rth (650) in the thickness direction at wavelengths 550 nm and 650 nm of the layer, such that Rth (550) / Rth (650) ⁇ 1. .00 is satisfied.
  • optically anisotropic layer of the present invention is an optically anisotropic layer including a first retardation layer and a second retardation layer, and the first retardation layer and the second retardation layer are represented by the following formula (1). -Formula (5) is satisfy
  • nx (P1), ny (P1), and nz (P1) are the main refractive indexes of the first retardation layer
  • nx (P2), ny (P2), and nz (P2) are the second retardation.
  • Rth (P1) is the thickness direction retardation of the first retardation layer at a wavelength of 590 nm
  • Rth (P2) is the thickness direction letter of the second retardation layer at a wavelength of 590 nm
  • Rth (P1) (450) is the retardation in the thickness direction of the first retardation layer at a wavelength of 450 nm
  • Rth (P1) (550) is the thickness direction of the first retardation layer at a wavelength of 550 nm.
  • Rth (P2) (450) is the retardation in the thickness direction at a wavelength of 450 nm of the second retardation layer
  • Rth (P2) (550) is the second phase. Is a retardation in the thickness direction at a wavelength of 550nm layer.
  • the optically anisotropic layer of the present invention can be configured as a multilayer film in which the first retardation layer and the second retardation layer are laminated. By having such a configuration, the optically anisotropic layer can exhibit a desired optical effect with respect to light that sequentially passes through the first retardation layer and the second retardation layer.
  • the first retardation layer is a layer that satisfies the formula (1). It is preferable that the refractive index nx (P1) and the refractive index ny (P1) of the first retardation layer have the same or close values. Specifically, the difference nx (P1) ⁇ ny (P1) between the refractive index nx (P1) and the refractive index ny (P1) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0.00. 0,000, particularly preferably 0.00000 to 0.00020. When the refractive index difference nx (P1) ⁇ ny (P1) is within the above range, an optically anisotropic layer having desired optical characteristics can be easily obtained.
  • a material constituting the first retardation layer a material capable of forming a layer satisfying the above formula (1) by a coating method using a solution has a desired optical characteristic and a thin first retardation. This is preferable because the layer can be easily manufactured. Specifically, it is preferable that a layer satisfying the formula (1) can be formed by applying a coating liquid containing the material on the support surface to obtain a coating liquid layer and curing the coating liquid layer. .
  • the material capable of forming the first retardation layer by a coating method using a solution may be a material containing a polymer.
  • the polymer include polyvinyl carbazole, polyfumaric acid ester, cellulose derivative, and combinations thereof.
  • positive C polymers By employing a positive C polymer, an optically anisotropic layer having desired optical characteristics can be easily obtained by a coating method using a solution.
  • polyvinyl carbazole examples include a polymer containing a polymer unit obtained by polymerizing 9-vinyl carbazole.
  • polyfumarate esters examples include copolymers of diisopropyl fumarate and 3-ethyl-3-oxetanylmethyl acrylate; and copolymers of diisopropyl fumarate and cinnamic acid esters.
  • cellulose derivatives include cellulose esters. Specifically, a cellulose ester in which a part of hydrogen atoms on the hydroxyl group of cellulose is substituted with an acetyl group and the other part is substituted with a non-acetyl group (propionyl group, butyryl group, or a combination thereof). It is done. In such a cellulose ester, the ratio of the number of groups substituted with non-acetyl groups to the number of unsubstituted hydroxyl groups is preferably 10 or more.
  • the degree of substitution of non-acetyl groups is preferably 1.1 to 1.75. More specific examples of the cellulose ester include those disclosed in JP-T-2012-519219. Since the optical properties of the first retardation layer and the second retardation layer are different, the cellulose derivative as the material constituting the first retardation layer is usually different from the material constituting the second retardation layer. Become a material.
  • the positive C polymer may be used alone or in combination of two or more at any ratio.
  • the molecular weight of the positive C polymer is not particularly limited and can be appropriately adjusted to a value suitable for production and use. Specifically, the number average molecular weight measured by gel permeation chromatography is preferably 50,000 or more and 200,000 or less.
  • the first retardation layer may be composed of only the positive C polymer, but may further contain an optional component in combination with the positive C polymer.
  • the first retardation layer may contain a plasticizer.
  • plasticizers include xylitol pentaacetate, xylitol pentapropionate, arabitol pentapropionate, triphenyl phosphate, polyesters containing succinic acid residues and diethylene glycol residues, and adipic acid residues and diethylene glycol residues And polyester containing.
  • the proportion of the plasticizer is preferably 2.5% by weight or more, more preferably 10% by weight or more, preferably 25% by weight or less, more preferably 20% in the total 100% by weight of the positive C polymer and the plasticizer. % By weight or less.
  • the material constituting the first retardation layer is not limited to the positive C polymer described above, and may be other materials.
  • a material containing a liquid crystal compound that is vertically aligned can be used.
  • a commercially available material for example, trade name UCL-018 manufactured by DIC Corporation
  • the first retardation layer can be formed by a coating method using a solution containing a positive C polymer. Specifically, a positive C polymer and optional components as necessary are dissolved in an appropriate solvent to obtain a coating solution. The coating solution is applied to a suitable substrate. Thereafter, a first retardation layer containing a positive C polymer on the substrate can be obtained by performing a drying operation as necessary and volatilizing the solvent.
  • an appropriate solvent can be appropriately selected from known solvents such as methyl ethyl ketone, 1,3-dioxolane, N-methylpyrrolidone (NMP).
  • the concentration of the positive C polymer in the coating liquid can be, for example, 10% by weight to 20% by weight.
  • an optically anisotropic layer having desired optical characteristics can be easily obtained, which is particularly advantageous.
  • the substrate is not particularly limited, and a film such as a polyethylene terephthalate film (for example, “Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd.) can be used.
  • the thickness of the first retardation layer is preferably 6 to 22 ⁇ m, more preferably 7 to 19 ⁇ m. By setting it as this thickness, a desired optical characteristic can be provided to the first retardation layer.
  • the second retardation layer is a layer that satisfies the expressions (2) and (5). It is preferable that the refractive index nx (P2) and the refractive index ny (P2) of the second retardation layer have the same or close values. Specifically, the difference nx (P2) ⁇ ny (P2) between the refractive index nx (P2) and the refractive index ny (P2) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0.00. 0,000, particularly preferably 0.00000 to 0.00020. When the refractive index difference nx (P2) ⁇ ny (P2) is within the above range, an optically anisotropic layer having desired optical characteristics can be easily obtained.
  • Rth (P2) (450) / Rth (P2) (550) is larger than 1.14, preferably larger than 1.15, more preferably larger than 1.16. According to the finding of the present inventor, when the value of Rth (P2) (450) / Rth (P2) (550) is not less than the lower limit, the optically anisotropic layer of the present invention has a positive C film. Useful optical properties and can be reduced in thickness.
  • the upper limit of Rth (P2) (450) / Rth (P2) (550) is not particularly limited, but may be, for example, less than 1.50.
  • the material constituting the second retardation layer has a desired optical characteristic, and a material that can form a layer satisfying the above formulas (2) and (5) by a coating method using a solution has This is preferable because the thin second retardation layer can be easily manufactured. Specifically, by applying a coating liquid containing the material on the support surface to obtain a coating liquid layer, and applying a curing process such as drying and light irradiation to the coating liquid layer, the formula (2) and It is preferable that a layer satisfying the formula (5) can be formed.
  • the cellulose ester having the partial structure represented by the formula (I) shown below (the cellulose ester having the partial structure represented by the formula (I) is shown below. And a combination of these materials as well as a material containing a cholesteric liquid crystal composition.
  • the cellulose ester (I) has a partial structure represented by the formula (I).
  • * represents a site where this partial structure is bonded to the sugar unit in the cellulose ester (I), and Y represents —O—C ( ⁇ O) — or —O—C ( ⁇ O) —.
  • R 10 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • PDG is an organic group having a ring structure
  • the number of ⁇ electrons contained in the ring structure is 12 or more. Represents an organic group.
  • PDG is preferably a group represented by the following formula (II).
  • n 0 or 1.
  • B represents a chemical single bond and any one of the following formulas (III-1) to (III-26).
  • XG represents one of the following formulas (IV-1) to (IV-8). Of these, (IV-1) to (IV-3) are preferable.
  • E 1 and E 2 each independently represent —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—, and each of R 11 and R 12 independently represents A hydrogen atom or an alkyl group having 1 to 4 carbon atoms is represented.
  • Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms.
  • Fluoroalkyl group alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number Represents a 1-6 N-alkylsulfamoyl group or an N, N-dialkylsulfamoyl group having 2-12 carbon atoms, and when there are a plurality of Rc, they may be the same or different It may be.
  • P is an integer from 0 to 3.
  • D 1 to D 3 each represents an aromatic hydrocarbon ring group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • the aromatic hydrocarbon ring group includes an aromatic hydrocarbon ring, and on one or more carbon atoms constituting the aromatic hydrocarbon ring, A group having one or more bonds to be bonded.
  • an example of the aromatic hydrocarbon ring group includes a phenyl group, and the phenyl group includes a benzene ring as the aromatic hydrocarbon ring, and the other part of the molecule on one carbon atom constituting the benzene ring. Have one bond to join.
  • an aromatic heterocyclic group includes an aromatic heterocyclic ring, and on one or more carbon atoms and / or heteroatoms constituting the aromatic hydrocarbon ring, A group having one or more bonds that bind to other parts of the molecule.
  • the aromatic hydrocarbon ring group having a substituent is a group having a structure in which a substituent is further provided on the aromatic hydrocarbon ring group. That is, it contains an aromatic hydrocarbon ring and has one or more bonds bonded to other parts of the molecule on one or more carbon atoms constituting the aromatic hydrocarbon ring, and the aromatic carbon ring A group having a substituent on one or more other carbon atoms constituting the hydrogen ring.
  • the aromatic hydrocarbon ring group which may have a substituent is a term including both an aromatic hydrocarbon ring group (having no substituent) and an aromatic hydrocarbon ring group having a substituent. It is.
  • the aromatic heterocyclic group having a substituent is a group having a structure in which a substituent is further provided on the aromatic heterocyclic group. That is, it contains an aromatic heterocycle and has one or more bonds that bind to other parts of the molecule on one or more carbon atoms and / or heteroatoms constituting the aromatic heterocycle, A group having a substituent on one or more other carbon atoms and / or heteroatoms constituting an aromatic heterocycle.
  • the aromatic heterocyclic group which may have a substituent is a term encompassing both an aromatic heterocyclic group (having no substituent) and an aromatic heterocyclic group having a substituent.
  • the specific number of carbon atoms is It is the number of carbons constituting the group hydrocarbon ring. That is, the specific carbon number is a carbon number that does not include the carbon number in the substituent.
  • the aromatic hydrocarbon ring group having a substituent is a benzylnaphthyl group
  • the group is included in the aromatic hydrocarbon ring group having a substituent and having 10 carbon atoms unless otherwise specified.
  • the specific carbon number is It is the number of carbons constituting the aromatic heterocycle.
  • the organic group having a substituent an alkyl group having a substituent, an alkenyl group having a substituent, an alkynyl group having a substituent, a cycloalkyl group having a substituent, etc.
  • the specific carbon number is a carbon number not including the carbon number in the substituent.
  • Preferred examples of the aromatic hydrocarbon ring group as an example of D 1 to D 3 include aromatic hydrocarbon ring groups having 6 to 30 carbon atoms such as a phenyl group and a naphthyl group, and more preferred examples are A phenyl group is mentioned.
  • Preferred examples of the aromatic hydrocarbon ring group having a substituent as an example of D 1 to D 3 include a group having a structure in which a substituent is further provided on the hydrocarbon ring of the example of the aromatic hydrocarbon ring group. Can be mentioned.
  • the number of substituents in the aromatic hydrocarbon ring group having a substituent may be one or plural per one ring. When one ring has a plurality of substituents, these may be the same or different. Examples of such substituent include the following group G001.
  • Group G001 halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; alkenyl group having 2 to 6 carbon atoms such as vinyl group and allyl group A halogenated alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; an N, N-dialkylamino group having 1 to 12 carbon atoms such as a dimethylamino group; a carbon number such as a methoxy group, an ethoxy group, and an isopropoxy group; 1-6 alkoxy groups; nitro groups; —OCF 3 ; —C ( ⁇ O) —Rb; —O—C ( ⁇ O) —Rb; —C ( ⁇ O) —O—Rb; and —SO 2 Ra .
  • Ra and Rb represent the same meaning as described below.
  • Preferable examples of the aromatic heterocyclic group as examples of D 1 to D 3 include aromatic heterocyclic groups having 2 to 30 carbon atoms, more preferable examples include the following group G002, and more Preferable examples include the following group G003.
  • Preferable examples of the aromatic heterocyclic group having a substituent as an example of D 1 to D 3 include a group having a structure in which a substituent is further provided on the heterocyclic ring of the above-described examples of the aromatic heterocyclic group. .
  • the number of substituents in the aromatic heterocyclic group having a substituent may be one or plural per one ring. When one ring has a plurality of substituents, these may be the same or different. Examples of such substituents include the group G001.
  • Group G002 1-benzofuranyl group, 2-benzofuranyl group, imidazolyl group, indolinyl group, furazanyl group, oxazolyl group, quinolyl group, thiadiazolyl group, thiazolyl group, thiazolopyrazinyl group, thiazolopyridyl group, thiazolopyrida group Zinyl, thiazolopyrimidinyl, thienyl, triazinyl, triazolyl, naphthyridinyl, pyrazinyl, pyrazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrrolyl, phthalazinyl, furanyl, benzo [ c] thienyl group, benzo [b] thienyl group, benzoisoxazolyl group, benzisothiazolyl group, benzimidazolyl group, benz
  • Group G003 monocyclic aromatic heterocyclic groups such as furanyl group, pyranyl group, thienyl group, oxazolyl group, furazanyl group, thiazolyl group, and thiadiazolyl group, and benzothiazolyl group, benzoxazolyl group, quinolyl group, 1- Benzofuranyl group, 2-benzofuranyl group, phthalimide group, benzo [c] thienyl group, benzo [b] thienyl group, thiazolopyridyl group, thiazolopyrazinyl group, benzoisoxazolyl group, benzooxadiazolyl group, And an aromatic heterocyclic group having a condensed ring such as a benzothiadiazolyl group.
  • monocyclic aromatic heterocyclic groups such as furanyl group, pyranyl group, thienyl group, oxazolyl group, furazanyl group, thiazolyl group,
  • D 4 to D 5 include a cyano group, a carboxyl group, —C ( ⁇ O) —CH 3 , —C ( ⁇ O) NHPh, —C ( ⁇ O) —OC 2 H 5 , —C ( ⁇ O) —OC 4 H 9 , —C ( ⁇ O) —OCH (CH 3 ) 2 , —C ( ⁇ O) —OCH 2 CH 2 CH (CH 3 ) —OCH 3 , —C ( ⁇ O) — OCH 2 CH 2 C (CH 3 ) 2 —OH, —C ( ⁇ O) —OCH 2 CH (CH 2 CH 3 ) —C 4 H 9 may be mentioned.
  • Examples of the organic group in which D 4 and D 5 together form a ring include the following group G004.
  • R * represents an alkyl group having 1 to 3 carbon atoms
  • R ** represents an alkyl group having 1 to 3 carbon atoms or an optionally substituted phenyl group
  • R *** represents an alkyl group having 1 to 3 carbon atoms or an optionally substituted phenyl group
  • R **** represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, or —COORy
  • Ry represents an alkyl group having 1 to 3 carbon atoms.
  • * In group G004 represents the position at which D 4 and D 5 are bonded to the other part of the group represented by formula (IV-8) via a double bond.
  • R ** and R *** are a phenyl group having a substituent
  • substituents include a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxyl group, a carboxyl group, and an alkoxy group.
  • Groups, aryloxy groups, acyloxy groups, cyano groups and amino groups, and preferred examples include halogen atoms, alkyl groups, cyano groups and alkoxy groups.
  • the number of substituents possessed by the phenyl group may be one or plural. In the case where the phenyl group has a plurality of substituents in R ** and R ***, they may be the same as or different from each other.
  • Rx is an organic group having 1 to 12 carbon atoms
  • organic groups include an alkoxy group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms that may be substituted with a hydroxyl group, and carbon.
  • aromatic hydrocarbon ring groups of 6 to 12.
  • Q represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • Ay represents a hydrogen atom or an organic group having 1 to 30 carbon atoms which may have a substituent.
  • Preferred examples of Ay include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent.
  • An optionally substituted alkynyl group having 2 to 20 carbon atoms, an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, and an optionally substituted aromatic group having 6 to 30 carbon atoms examples thereof include a hydrocarbon ring group and an aromatic heterocyclic group having 2 to 30 carbon atoms which may have a substituent.
  • Examples of the alkyl group having 1 to 20 carbon atoms as an example of Ay include the following group G005.
  • the alkyl group preferably has 1 to 12 carbon atoms, and more preferably 4 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 20 carbon atoms having a substituent as an example of Ay include groups having a structure in which a substituent is further provided in each of the examples of the alkyl group.
  • Group G005 methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group, sec-butyl group, t-butyl group, n-pentyl Group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group Group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-n
  • the number of substituents in the alkyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the following group G006.
  • Group G006 halogen atoms such as fluorine atom and chlorine atom;
  • An alkoxy group having 1 to 20 carbon atoms such as a cyano group, an N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group, a methoxy group, an ethoxy group, an isopropoxy group, or a butoxy group;
  • An aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a nitro group, a phenyl group, or a naphthyl
  • Examples of the alkenyl group having 2 to 20 carbon atoms as an example of Ay include the following group G007.
  • the alkenyl group preferably has 2 to 12 carbon atoms.
  • Examples of the alkenyl group having 2 to 20 carbon atoms having a substituent as an example of Ay include groups having a structure in which a substituent is further provided in each of the examples of the alkenyl group.
  • Group G007 vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group Group, heptadecenyl group, octadecenyl group, nonadecenyl group, and icocenyl group.
  • the number of substituents in the alkenyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the group G006.
  • examples of Ay include the following group G008.
  • examples of the alkynyl group having 2 to 20 carbon atoms having a substituent as an example of Ay include groups having a structure in which a substituent is further provided in each of the above examples of the alkynyl group.
  • Group G008 ethynyl group, propynyl group, 2-propynyl group (propargyl group), butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group, 2-pentynyl group, hexynyl group, 5-hexynyl group, heptynyl group, Octynyl group, 2-octynyl group, nonanyl group, decanyl group, and 7-decanyl group.
  • the number of substituents in the alkynyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the group G006.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms as an example of Ay include the following group G009. Among these, a cyclopentyl group and a cyclohexyl group are preferable.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms having a substituent as an example of Ay include a group having a structure in which a substituent is further provided in each of the examples of the cycloalkyl group.
  • Group G009 cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, and cyclooctyl group.
  • the number of substituents in the cycloalkyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the group G006.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms as examples of Ay include aromatic hydrocarbon ring groups having 6 to 30 carbon atoms such as a phenyl group and a naphthyl group, and more preferable examples. As for, a phenyl group is mentioned.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms having a substituent as an example of Ay include a group having a structure in which a substituent is further provided in each of the above examples of the aromatic hydrocarbon ring group Is mentioned.
  • the number of substituents in the aromatic hydrocarbon ring group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituents include the group G001.
  • Examples of the aromatic heterocyclic group having 6 to 30 carbon atoms as Ay include the group G002, and more preferable examples include the group G003.
  • Examples of the aromatic heterocyclic group having 6 to 30 carbon atoms having a substituent as an example of Ay include a group having a structure in which a substituent is further provided in each of the examples of the aromatic heterocyclic group. It is done.
  • the number of substituents in the aromatic heterocyclic group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituents include the group G001.
  • the total number of carbon atoms in Ay including the substituent can be 1 to 50.
  • Ra may have an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms as a substituent. Represents an aromatic hydrocarbon ring group having 6 to 20 carbon atoms.
  • Rb is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • Rb represents a cycloalkyl group having 3 to 12 carbon atoms which may have a carbon atom, or an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent.
  • Examples of the alkyl group having 1 to 20 carbon atoms as an example of Rb include the group G005.
  • the alkyl group preferably has 1 to 12 carbon atoms, and more preferably 4 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 20 carbon atoms having a substituent as an example of Rb include groups having a structure in which a substituent is further provided in each of the examples of the alkyl group.
  • the number of substituents in the alkyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the following group G010.
  • Group G010 halogen atoms such as fluorine atom and chlorine atom; A cyano group; An N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group; Alkoxy groups having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group, butoxy group; An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms such as a methoxymethoxy group or a methoxyethoxy group; A nitro group; An aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group or a naphthyl group; An aromatic heterocyclic group having 2 to 20 carbon atoms such as a triazolyl group, pyrrolyl group, furanyl group, thienyl group, thiazolyl group, benzothiazol-2-ylthio group; A cycloalkyl group
  • Examples of the alkenyl group having 2 to 20 carbon atoms as examples of Rb include the group G007.
  • the alkenyl group preferably has 2 to 12 carbon atoms.
  • Examples of the alkenyl group having 2 to 20 carbon atoms having a substituent as an example of Rb include groups having a structure in which each of the examples of the alkenyl group is further provided with a substituent.
  • the number of substituents in the alkenyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the group G010.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms as examples of Rb include the group G009. Among these, a cyclopentyl group and a cyclohexyl group are preferable.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms having a substituent as an example of Rb include groups having a structure in which a substituent is further provided in each of the examples of the cycloalkyl group.
  • the number of substituents in the cycloalkyl group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituent include the following group G011, and more preferable examples include the following group G012.
  • Group G011 Halogen atoms such as fluorine atom and chlorine atom; cyano group; N, N-dialkylamino group having 2 to 12 carbon atoms such as dimethylamino group; 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group An alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group and an isopropoxy group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group.
  • Halogen atoms such as fluorine atom and chlorine atom
  • cyano group N, N-dialkylamino group having 2 to 12 carbon atoms such as dimethylamino group
  • 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group
  • An alkoxy group having 1 to 6 carbon atoms such as a methoxy group,
  • Group G012 Halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 1 to carbon atoms such as methoxy group, ethoxy group and isopropoxy group 6 alkoxy groups; nitro groups; and aromatic hydrocarbon ring groups having 6 to 20 carbon atoms such as phenyl groups and naphthyl groups.
  • Halogen atoms such as fluorine atom and chlorine atom
  • cyano group alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group
  • 1 to carbon atoms such as methoxy group, ethoxy group and isopropoxy group 6 alkoxy groups
  • nitro groups and aromatic hydrocarbon ring groups having 6 to 20 carbon atoms such as phenyl groups and naphthyl groups.
  • Examples of the aromatic hydrocarbon ring group having 6 to 12 carbon atoms as examples of Rb include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. Among these, a phenyl group is preferable.
  • the number of substituents in the aromatic hydrocarbon ring group having a substituent may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such a substituent include the following group G013, and more preferable examples include the following group G014.
  • Group G013 Halogen atoms such as fluorine atom and chlorine atom; cyano group; N, N-dialkylamino group having 2 to 12 carbon atoms such as dimethylamino group; carbon such as methoxy group, ethoxy group, isopropoxy group and butoxy group
  • An aromatic heterocyclic group having 2 to 20 carbon atoms such as thiophenyl group; a cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; carbon number such as cyclopentyloxy group
  • Group G014 halogen atoms such as fluorine atom and chlorine atom; cyano group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group, butoxy group; nitro group; furanyl group, thiophenyl group, etc.
  • Ax represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms.
  • the aromatic ring (aromatic hydrocarbon ring or aromatic heterocycle) possessed by Ax may have a substituent.
  • Ax examples include the following (Ax-1) to (Ax-6).
  • Ax-1) A hydrocarbon ring group having 6 to 40 carbon atoms having one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
  • Ax-2) a heterocyclic group having 2 to 40 carbon atoms having one or more aromatic rings selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms .
  • Ax-3) an alkyl group having 1 to 12 carbon atoms substituted with at least one of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms.
  • Ax-4 An alkenyl group having 2 to 12 carbon atoms substituted with at least one of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms.
  • Ax-5) An alkynyl group having 2 to 12 carbon atoms substituted with at least one of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms.
  • Ax-6) A group having a structure in which a substituent is further provided on the aromatic ring of (Ax-1) to (Ax-5).
  • (Ax-1) examples include the following group G015.
  • (Ax-2) include the following groups G016 to G023.
  • R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • (Ax-3) has an alkyl group having 1 to 12 carbon atoms provided with at least one of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms as a substituent.
  • Examples of the alkyl group here include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • (Ax-4) has an alkenyl group having 2 to 12 carbon atoms provided with at least one of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms as a substituent.
  • Examples of the alkenyl group here include a vinyl group and an allyl group.
  • (Ax-5) has at least one of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms as a substituent on an alkynyl group having 2 to 12 carbon atoms.
  • Examples of the alkynyl group here include an ethynyl group and a propynyl group.
  • each of (Ax-3) to (Ax-5) has a plurality of substituents, these may be the same or different.
  • the aromatic hydrocarbon ring group having 6 to 30 carbon atoms provided in (Ax-3) to (Ax-5) include a phenyl group and a naphthyl group, and more preferable examples include a phenyl group. It is done.
  • the aromatic heterocyclic group having 2 to 30 carbon atoms provided in (Ax-3) to (Ax-5) include the group G002, and more preferable examples include the group G003. .
  • the number of substituents provided on the aromatic ring may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such a substituent include the following group G024, and more preferable examples include the following group G025.
  • Group G024 halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; alkenyl group having 2 to 6 carbon atoms such as vinyl group and allyl group A halogenated alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; an N, N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group; a carbon number such as a methoxy group, an ethoxy group, and an isopropoxy group 1 to 6 alkoxy groups; nitro groups; aromatic hydrocarbon ring groups having 6 to 20 carbon atoms such as phenyl groups and naphthyl groups; —OCF 3 ; —C ( ⁇ O) —Rb; —O—C ( ⁇ O ) —Rb; —C ( ⁇ O) —O—Rb;
  • Group G025 halogen atom, cyano group, alkyl group having 1 to 6 carbon atoms, and alkoxy group having 1 to 6 carbon atoms.
  • a preferable example of Ax includes a group represented by the following formula (V).
  • E 3 represents —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—, wherein R 11 and R 12 are each independently a hydrogen atom, Or an alkyl group having 1 to 4 carbon atoms.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, a fluoroalkyl group having 1 to 6 carbon atoms, or an alkoxy having 1 to 6 carbon atoms.
  • the group —OCF 3 or —C ( ⁇ O) —O—R b The definition and specific examples of R b are as described above.
  • a plurality of R 2 to R 5 may be all the same or different from each other, and at least one of C—R 1 to C—R 4 constituting the ring may be replaced with a nitrogen atom Good.
  • Az represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms.
  • the aromatic ring which Az has may have a substituent.
  • Az include the following (Az-1) to (Az-3).
  • Az-1) A hydrocarbon ring group having 6 to 40 carbon atoms having one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
  • (Az-2) a heterocyclic group having 2 to 40 carbon atoms having one or more aromatic rings selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms .
  • Az-3) A group having a structure in which a substituent is further provided on the aromatic ring of (Az-1) to (Az-2).
  • the number of substituents provided on the aromatic ring may be one or plural. When it has a plurality of substituents, these may be the same or different. Examples of such substituents include those described above for group G024.
  • R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the partial structure represented by the formula (I) is bonded to a sugar unit.
  • the cellulose ester (I) may have a structure in which the hydroxyl group (—OH) on the carbocycle in the saccharide unit is replaced with —Y—PDG.
  • the cellulose ester (I) may have any partial structure other than the partial structure represented by the formula (I) in addition to the partial structure represented by the formula (I) as a structure bonded to the sugar unit.
  • Examples of such an arbitrary partial structure include an acetoxy group (—OC ( ⁇ O) CH 3 ), a butyryloxy group (—OC ( ⁇ O) CH 2 CH 2 CH 3 ), a propionyloxy group (—OC ( ⁇ O) CH 2 CH 3 ), a phthalyloxy group (—OC ( ⁇ O) C 6 H 4 —C ( ⁇ O) OH and / or —OC ( ⁇ O) C 6 H 4 —C ( ⁇ O) O—) and these The combination of is considered.
  • cellulose ester (I ′) part or all of the hydroxyl groups in the cellulose ester other than the cellulose ester (I) (hereinafter referred to as cellulose ester (I ′)) are represented by the formula (I). It may have a structure substituted with a partial structure.
  • cellulose esters (I ') include those selected from the group consisting of cellulose acetate butyrate, cellulose acetate, cellulose butyrate, cellulose acetate propionate, cellulose acetate phthalate, and mixtures thereof.
  • cellulose ester (I ′) cellulose acetate butyrate, cellulose acetate, cellulose acetate propionate, or a mixture thereof having a high hydroxyl group content is preferable.
  • cellulose ester (I ′) having a high hydroxyl group content the partial structure represented by formula (I) can be easily introduced.
  • Cellulose ester (I ′) can be produced by triesterifying cellulose with a corresponding carboxylic acid or anhydride (for example, acetic acid in the case of acetate, butyric acid in the case of butyrate) and then hydrolyzing.
  • a resin having 2 to 35% by weight of acetyl group, 16 to 53% by weight of butyryl group and 0.8 to 5% by weight of hydroxyl group is generally acetyl.
  • the resin having 32 to 41% by weight group and 3.5 to 8.7% by weight hydroxyl group is cellulose acetate propionate
  • the acetyl group is 0.6 to 2.5% by weight and the propionyl group is 42 to 45% by weight.
  • % And a hydroxyl group of 2.5 to 5% by weight is commercially available.
  • the structure represented by the formula (I) can be introduced to the hydroxyl group contained in these.
  • the hydroxyl group content contained in the cellulose ester (I ′) used in the reaction is 0.5 to 50% by weight, preferably 0.5 to 30% by weight, and more preferably 0.5 to 20% by weight.
  • the introduction ratio of the structure represented by the formula (I) is preferably 30% or more, more preferably 50% or more, and most preferably 80% or more with respect to the hydroxyl group content of the cellulose ester (I ′) used in the reaction. .
  • cellulose ester (I) having a structure represented by the formula (I) in the side chain a cellulose ester having a benzothiazole ring in the side chain is preferable.
  • Synthesis Method (A) Synthesis Method when Y is —O—C ( ⁇ O) —
  • Synthesis Method (B) Synthesis when Y is —O—C ( ⁇ O) —NR 10 —
  • Synthesis Method (A-1) Synthesis Method Using Compound (A-1) Represented by Formula PDG-C ( ⁇ O) —OH
  • Synthesis Method (A-2) Formula PDG-C ( ⁇ O) And a synthesis method using the compound (A-2) represented by -L.
  • PDG represents the same as PDG in formula (I)
  • L represents a halogen atom, a methanesulfonyloxy group, a paratoluenesulfonyloxy group, or a benzenesulfonyloxy group.
  • Synthesis method (A-1) a method using a condensing agent such as carbodiimide
  • Synthesis method (A-1-2) A method using azeotropic dehydration using an acid catalyst
  • Synthesis method (A-1-3) a method using azeotropic dehydration using a base catalyst.
  • the condensing agent in the synthesis method (A-1-1) is not particularly limited, and examples thereof include N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and dicyclohexyl.
  • a carbodiimide is mentioned.
  • N, N-diisopropylcarbodiimide and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride are preferable.
  • an activator such as 4- (dimethylamino) pyridine can coexist in the reaction system.
  • the amount of the condensing agent used in the synthesis method (A-1-1) is preferably 1.0 to 2.0 equivalents, more preferably 1.0 to 1.0, based on the hydroxyl group of the cellulose ester (I ′). 5 equivalents.
  • the amount of compound (A-1) to be used is preferably 0.5 to 2.0 equivalents, more preferably 1.0 to 1.5 equivalents, relative to the hydroxyl group of cellulose ester (I ′).
  • reaction solvent can be appropriately used.
  • An inert solvent can be selected suitably.
  • reaction solvents include chloro solvents such as chloroform and methylene chloride; amide solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and hexamethylphosphoric triamide; 1,4 -Ethers such as dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; n-pentane And aliphatic hydrocarbon solvents such as n-hexane and n-octane; alicyclic hydro
  • chlorinated solvents such as chloroform and methylene chloride
  • amide solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and hexamethylphosphoric triamide
  • 1,4-dioxane and cyclopentyl Ethers such as methyl ether, tetrahydrofuran, tetrahydropyran and 1,3-dioxolane are preferred.
  • the reaction temperature is usually from 0 ° C. to 100 ° C., preferably from about 23 ° C. to 50 ° C. or less.
  • the reaction time is usually 30 minutes to 24 hours.
  • Examples of the acid catalyst in the synthesis method (A-1-2) include inorganic mineral acids such as hydrochloric acid and sulfuric acid, and sulfonic acids such as methanesulfonic acid and paratoluenesulfonic acid, among which methanesulfonic acid and paratoluene. Sulfonic acids such as sulfonic acids are preferred.
  • the amount of the acid catalyst used in the synthesis method (A-1-2) is preferably 0.01 to 1.5 equivalents, more preferably 0.05 to 1 with respect to the hydroxyl group of the cellulose ester (I ′). 0.0 equivalents.
  • the amount of compound (A-1) to be used is preferably 0.5 to 2.0 equivalents, more preferably 1.0 to 1.5 equivalents, relative to the hydroxyl group of cellulose ester (I ′).
  • reaction solvent can be appropriately used.
  • An inert solvent can be selected suitably.
  • reaction solvents include: chlorinated solvents such as chloroform and methylene chloride; ethers such as 1,4-dioxane, cyclopentylmethyl ether, tetrahydrofuran, tetrahydropyran, and 1,3-dioxolane; aromatics such as benzene, toluene, and xylene
  • An aromatic hydrocarbon solvent such as n-pentane, n-hexane and n-octane; an alicyclic hydrocarbon solvent such as cyclopentane and cyclohexane; and two or more of these solvents A mixed solvent is mentioned.
  • ethers such as cyclopentyl methyl ether and aromatic hydrocarbon solvents such as benzene, toluene and xylene are preferable.
  • the reaction temperature is usually the temperature at which the produced water and the solvent azeotrope and is generally 50 ° C. to 170 ° C. However, it is also effective to lower the reaction temperature by reducing the pressure in the reaction system.
  • the reaction time is usually 30 minutes to 24 hours.
  • Examples of the base catalyst in the synthesis method (A-1-3) include metal alkoxides such as sodium methylate, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkalis such as sodium carbonate and potassium carbonate. Metal carbonate is mentioned. Of these, metal alkoxides such as sodium methylate and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferred.
  • the amount of the base catalyst used can be in the same range as the amount of the acid catalyst used in the synthesis method (A-1-2).
  • reaction solvent can be appropriately used.
  • An inert solvent can be selected suitably.
  • reaction solvents include ethers such as 1,4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane; aromatic hydrocarbon solvents such as benzene, toluene, xylene; n-pentane, Examples thereof include aliphatic hydrocarbon solvents such as n-hexane and n-octane; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane; and mixed solvents composed of two or more of these solvents.
  • ethers such as cyclopentyl methyl ether and aromatic hydrocarbon solvents such as benzene, toluene and xylene are preferable.
  • the range of reaction temperature and reaction time in the synthesis method (A-1-3) can be the same as those in the synthesis method (A-1-2).
  • Compound (A-1) can be prepared, for example, by synthesizing a hydrazine derivative by the method described in JP-A-2016-190818 and further modifying it. Such modification can be carried out by reaction with a suitable compound having a formyl group or a ketone group that can react with a hydrazine derivative.
  • compound (A-2) is reacted with the hydroxyl group of cellulose ester (I ′) in the presence of a base.
  • a base for example, when L is a halogen atom, a dehydrohalogenation reaction is performed.
  • Specific examples of the compound (A-2) include an acid chloride in which L is a chlorine atom, and a mixed acid anhydride in which L is a methanesulfonyloxy group or a paratoluenesulfonyloxy group.
  • Compound (A-2) can be prepared by derivatizing compound (A-1) as a starting material into an acid halide or mixed acid anhydride.
  • a specific method of derivatization is not particularly limited, and a known method can be adopted.
  • Derivatization to an acid halide can be performed using an appropriate halogenating agent.
  • halogenating agents include phosphorus trichloride, phosphorus pentachloride, thionyl chloride, and oxalyl chloride. Of these, thionyl chloride and oxalyl chloride are preferable.
  • Derivatization to a mixed acid anhydride is not particularly limited, but in the presence of a sulfonyl halide such as methanesulfonyl chloride and p-toluenesulfonyl chloride, and a base such as triethylamine, diisopropylethylamine, pyridine, and 4- (dimethylamino) pyridine. Can be done.
  • a sulfonyl halide such as methanesulfonyl chloride and p-toluenesulfonyl chloride
  • a base such as triethylamine, diisopropylethylamine, pyridine, and 4- (dimethylamino) pyridine.
  • Synthesis by the synthesis method (A-2) can be performed by esterifying the hydroxyl group of cellulose ester (I ′) using compound (A-2).
  • the esterification reaction can be performed using a base.
  • the base used in the esterification reaction include triethylamine, diisopropylethylamine, pyridine, 4- (dimethylamino) pyridine, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and cesium carbonate. Of these, triethylamine and diisopropylethylamine are preferable.
  • the cellulose ester (I) can be synthesized by addition reaction of the isocyanate group of the compound (B) with the hydroxyl group of the cellulose ester (I ′). In such an addition reaction, a base can be used.
  • the base in the addition reaction is not particularly limited, and examples thereof include triethylamine, diisopropylethylamine, pyridine, 4- (dimethylamino) pyridine, 1,4-diazabicyclo [2.2.2] octane, and 1,8-diazabicyclo [5.4.0] undecou7-ene is mentioned, among which 1,4-diazabicyclo [2.2.2] octane is preferred.
  • the second retardation layer is a layer containing cellulose ester (I)
  • the second retardation layer may be composed only of the cellulose ester, but in addition to the cellulose ester, an optional component is further added. May be included.
  • the second retardation layer is a layer containing cellulose ester (I)
  • the second retardation layer can be formed by a coating method using a solution containing the cellulose ester. Specifically, the cellulose ester and optional components as necessary are dissolved in an appropriate solvent to obtain a coating solution. The coating solution is applied to a suitable substrate. Thereafter, a drying operation is performed as necessary, and the solvent is volatilized to obtain a second retardation layer containing a cellulose ester on the substrate.
  • an appropriate solvent can be appropriately selected from known solvents such as methyl ethyl ketone, 1,3-dioxolane, N-methylpyrrolidone (NMP).
  • the concentration of the cellulose ester in the coating liquid can be, for example, 10% by weight to 20% by weight.
  • an optically anisotropic layer having desired optical properties such as the above formula (5) and having a small thickness can be easily obtained. It is advantageous.
  • the substrate is not particularly limited, and a film such as a polyethylene terephthalate film (for example, “Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd.) can be used.
  • the thickness of the second retardation layer is preferably 2.5 to 40 ⁇ m, more preferably 5 to 20 ⁇ m. By setting it as this thickness, a desired optical characteristic can be provided to the second retardation layer.
  • the cured product of the cholesteric liquid crystal composition is a material obtained by curing the cholesteric liquid crystal composition.
  • a cholesteric liquid crystal composition is a composition containing a polymerizable liquid crystal compound capable of exhibiting a cholesteric liquid crystal phase.
  • the layer of the cured product of the cholesteric liquid crystal composition is usually a resin layer obtained by polymerizing a polymerizable liquid crystal compound, preferably a resin layer having cholesteric regularity (hereinafter simply referred to as “cholesteric resin layer”). It may be said). More specifically, a resin layer having cholesteric regularity can be obtained by polymerizing the polymerizable liquid crystal compound in a state where the polymerizable liquid crystal compound exhibits a cholesteric liquid crystal phase in the cholesteric liquid crystal composition.
  • the molecules in a certain layer have cholesteric regularity
  • the molecules are aligned in a manner that forms a layer of many molecules in the resin layer.
  • the molecules are aligned such that the molecular axis is in a certain direction, and in the layer B adjacent thereto, the molecules are displaced at an angle from the direction in the layer A.
  • Molecules are aligned in the direction, and in the layer C adjacent thereto, the molecules are aligned in a direction further at an angle with the direction in the layer B. In this way, in a large number of molecular layers, the angle of the molecular axes is continuously shifted to form a structure in which the molecules are twisted.
  • the structure in which the direction of the molecular axis is continuously twisted is usually a spiral structure and an optically chiral structure.
  • the twist direction (spiral axis) is preferably substantially parallel to the thickness direction of the cholesteric resin layer (parallel or a direction forming an angle of about ⁇ 5 °).
  • the cholesteric resin layer can exhibit selective reflection characteristics (characteristics for reflecting a part of the circularly polarized light component of incident light and transmitting the remainder).
  • the selective reflection band (the wavelength band in which the selective reflection characteristic appears) can be correlated with the pitch of the helical structure. Since the retardation layer for the image display device is usually required to have a uniform high transmittance in the visible region, when the cholesteric resin layer as the retardation layer has selective reflection characteristics, the selective reflection band is An infrared region or an ultraviolet region is preferable.
  • the selective reflection band can be adjusted to a desired range by adjusting the types of components such as polymerizable liquid crystal compounds and chiral compounds in the cholesteric liquid crystal composition and their contents.
  • the cholesteric liquid crystal composition contains a polymerizable liquid crystal compound having an aromatic imine structure.
  • the polymerizable liquid crystal compound having an aromatic imine structure include compounds represented by the following formula (I ′). Hereinafter, this compound may be referred to as a polymerizable liquid crystal compound (i).
  • the polymerizable liquid crystal compound (i) is neither a polymerizable compound (ii) described later nor a polymerizable chiral compound.
  • Y 1 to Y 6 are each independently a single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, —NR 21 —C ( ⁇ O) —, —C ( ⁇ O) —NR 21 —, —O—C ( ⁇ O) —NR 21 —, —NR 21 —C ( ⁇ O) —O—, —NR 21 —C ( ⁇ O) —NR 21 —, or —NR 21 —O— is represented.
  • R 21 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 21 is preferably a hydrogen atom or a methyl group.
  • Particularly preferred as a combination of Y is Y 1 and Y 3 are —C ( ⁇ O) —O—, and Y 4 and Y 4 in terms of ease of synthesis and better expression of the desired effect of the present invention.
  • Y 6 is —O—C ( ⁇ O) — and Y 2 and Y 5 are —O—, or Y 1 to Y 3 are —C ( ⁇ O) —O—, and Y 4 A combination in which Y 6 is —O—C ( ⁇ O) —.
  • G 1 and G 2 are each independently a divalent aliphatic group having 1 to 20 carbon atoms, preferably a divalent aliphatic group having 1 to 12 carbon atoms, which may have a substituent. And an alkylene group having 1 to 12 carbon atoms is more preferred.
  • Examples of the substituent for the aliphatic group of G 1 and G 2 include a halogen atom and an alkoxy group having 1 to 6 carbon atoms.
  • the halogen atom is preferably a fluorine atom
  • the alkoxy group is preferably a methoxy group or an ethoxy group.
  • the aliphatic group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, — NR 22 —C ( ⁇ O) —, —C ( ⁇ O) —NR 22 —, —NR 22 —, or —C ( ⁇ O) — may be present (provided that —O— and —S -Except when two or more intervening each other.)
  • R 22 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 22 is preferably a hydrogen atom or a methyl group.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • Specific examples of the alkenyl group having 2 to 10 carbon atoms of Z 1 and Z 2 include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • a chlorine atom is preferable.
  • Examples of the substituent when X 1 to X 8 are an alkyl group having a substituent include a halogen atom, a hydroxyl group, a methyl group, and an ethyl group.
  • R 23 and R 24 represent a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, and in the case of an alkyl group, the alkyl group includes —O—, —S —, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, —NR 25 —C ( ⁇ O) —, —C ( ⁇ O ) —NR 25 —, —NR 25 —, or —C ( ⁇ O) — may be present (except when two or more of —O— and —S— are present adjacent to each other).
  • R 25 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 23 and R 24 are an alkyl group having a substituent include a halogen atom, a hydroxyl group, a methyl group, and an ethyl group.
  • X 1 to X 8 are all hydrogen atoms
  • (2) X 1 to X 5 and X 7 are all hydrogen atoms
  • X 6 and X 8 is —OCH 3 , —OCH 2 CH 3 , or —CH 3
  • X 1 to X 5 , X 7 and X 8 are all hydrogen atoms
  • X 6 is —C ( ⁇ O) —OR 23 , —OCH 3 , —OCH 2 CH 3 , —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 CH 3 or a fluorine atom
  • (4) X 1 to X 4 And X 6 to X 8 are all hydrogen atoms
  • X 5 is —C ( ⁇ O) —O—R 23 , —OCH 3 , —OCH 2 CH 3 , —CH 3 , —CH 2 CH 3 , It is preferably —CH 2 CH 2 CH 3 or
  • a and b represent the number of repeating units of (G 1 -Y 1 ) units and (G 2 -Y 6 ) units, respectively, and a and b are each independently 0 or 1.
  • both a and b are 1 from the viewpoint of ease of synthesis and better expression of the desired effect of the present invention.
  • a 1 and A 2 each independently represents a divalent organic group A having 1 to 30 carbon atoms.
  • the carbon number of the organic group A is preferably 6-20.
  • the organic group A of A 1 and A 2 is not particularly limited, those having an aromatic ring are preferred.
  • the following formula (A 11) may be bonded to substituents (A 21) and (A 31),
  • a phenylene group which may have a substituent, a biphenylene group which may have a substituent, or a naphthylene group which may have a substituent is preferable.
  • a substituent is represented by the following formula (A 11 ).
  • a phenylene group which may have a substituent and may have a substituent is more preferable.
  • substituents examples include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, and a —C ( ⁇ O) —OR group.
  • R is an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group, and an alkoxy group are preferable, a fluorine atom as the halogen atom, a methyl group, an ethyl group, and a propyl group as the alkyl group, and a methoxy group and an ethoxy group as the alkoxy group. preferable.
  • polymerizable liquid crystal compound (i) represented by the formula (I ′) and the groups constituting the polymerizable liquid crystal compound (i ′) include those disclosed in International Publication No. 2017/033929.
  • Preferable specific examples of the polymerizable liquid crystal compound (i) include the following.
  • the polymerizable liquid crystal compound (i) has a ⁇ n value of preferably 0.05 or more, more preferably 0.20 or more. By having such a high ⁇ n value, a second retardation layer having desired performance and a small thickness can be provided.
  • the upper limit of (DELTA) n is not specifically limited, For example, it is 0.40 or less, Preferably it can be 0.35 or less.
  • the polymerizable liquid crystal compound (i) can be produced based on a known method described in documents such as International Publication No. 2009/041512.
  • the cholesteric liquid crystal composition may contain a polymerizable compound other than the polymerizable liquid crystal compound.
  • a polymerizable compound other than the polymerizable liquid crystal compound Preferable examples of such polymerizable compounds include achiral compounds represented by the following formula (II ′). Hereinafter, this compound may be referred to as a polymerizable compound (ii).
  • Z 3 represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms which may have a substituent, a halogen atom, a hydroxyl group, a carboxyl group, an amino group, and a cyano group; Represents a group selected from the group consisting of Examples of the substituent when Z 3 is an alkyl group having a substituent include a halogen atom.
  • Z 3 is preferably a cyano group.
  • MG represents 4,4′-biphenylene group, 4,4′-bicyclohexylene group, 2,6-naphthylene group, and 4,4′-benzaldehyde azine group (—C 6 H 4 —CH— ⁇ N—N). ⁇ CH—C 6 H 4 —, where —C 6 H 4 — represents a p-phenylene group.
  • MG is preferably a 4,4′-biphenylene group.
  • n 1 represents an integer of 0 to 6, preferably 0 to 2.
  • Y 11 represents a single bond, —O—, —S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —NHCO—, —OCOO—, —CH 2 COO—. And a group selected from the group consisting of —CH 2 OCO—. Y 11 is preferably —OCO—.
  • Z 4 represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom. Z 4 is preferably CH 2 ⁇ CH—.
  • ⁇ n of the polymerizable compound (ii) is preferably 0.18 or more, more preferably 0.22 or more.
  • a second retardation layer having desired performance and a small thickness can be provided.
  • the upper limit of (DELTA) n is not specifically limited, For example, it can be 0.35, Preferably it can be 0.30.
  • polymerizable compound (ii) include the following compounds (2-1) to (2-4).
  • the production method of the polymerizable compound (ii) is not particularly limited, and may be synthesized by a method known in the technical field, for example, a method described in JP-A Nos. 62-70406 and 11-10055. Can do.
  • a weight ratio of (total weight of polymerizable compound (ii)) / (total weight of polymerizable liquid crystal compound (i)). Is preferably 0.05 to 1, more preferably 0.1 to 0.65, and even more preferably 0.15 to 0.45.
  • the weight ratio indicates the weight when one kind is used and the total weight when two or more kinds are used.
  • the molecular weight of the polymerizable compound (ii) is preferably less than 600, and the molecular weight of the polymerizable liquid crystal compound (i) is preferably 600 or more.
  • the polymerizable compound (ii) has a molecular weight of less than 600, it can enter the gaps between the rod-like liquid crystal compounds having a higher molecular weight, thereby improving the alignment uniformity.
  • the molecular weight of the polymerizable liquid crystal compound (i) is more preferably 750 to 950.
  • the molecular weight of the polymerizable compound (ii) can more preferably be 250 to 450.
  • a polymerizable chiral compound is mentioned as a further example of polymerizable compounds other than the polymerizable liquid crystal compound that can be contained in the cholesteric liquid crystal composition.
  • the polymerizable chiral compound a compound having a chiral carbon atom in the molecule and capable of polymerizing with the polymerizable liquid crystal compound and not disturbing the orientation of the polymerizable liquid crystal compound can be appropriately selected and used.
  • the polymerizable liquid crystal compound (i) described above can exhibit a cholesteric phase by mixing with the polymerizable chiral compound.
  • polymerization means a chemical reaction in a broad sense including a crosslinking reaction in addition to a normal polymerization reaction.
  • the polymerizable chiral compound can be used singly or in combination of two or more.
  • Examples of the polymerizable chiral compound include those described in JP-A No. 11-193287 and JP-A No. 2003-13787 in addition to commercially available products (eg, “LC756” manufactured by BASF). And known ones such as those described in International Publication No. 2017/033929.
  • the blending ratio of the polymerizable chiral compound is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound (i). 100 parts by weight, more preferably 0.5 to 20 parts by weight.
  • the cholesteric liquid crystal composition may contain a photopolymerization initiator from the viewpoint of performing the polymerization reaction more efficiently.
  • the photopolymerization initiator an appropriate one can be selected and used depending on the type of polymerizable group present in the polymerizable liquid crystal compound used together.
  • a radical polymerization initiator is used if the polymerizable group is radical polymerizable
  • an anionic polymerization initiator is used if it is an anion polymerizable group
  • a cationic polymerization initiator is used if it is a cationic polymerizable group. sell.
  • Specific examples of the photopolymerization initiator include those described in International Publication No. 2017/033929.
  • photo radical polymerization initiator examples include trade name Irgacure 907, trade name Irgacure 184, trade name Irgacure 369, trade name Irgacure 379EG, trade name Irgacure 651 and trade name Irgacure OXE02 manufactured by Ciba Specialty Chemicals. These polymerization initiators can be used singly or in combination of two or more.
  • the blending ratio of the photopolymerization initiator in the cholesteric liquid crystal composition is usually 0.03 to 7% by weight.
  • the cholesteric liquid crystal composition may contain a surfactant in order to adjust the surface tension.
  • the surfactant is not particularly limited, but a nonionic surfactant is usually preferable.
  • a commercially available product can be used as the surfactant. Examples of commercially available products include KH-40 manufactured by Seimi Chemical Co., Ltd. and FTX-209F manufactured by Neos.
  • the blending ratio of the surfactant is usually 0.01 to 10 with respect to 100 parts by weight of the polymerizable liquid crystal compound (i). Part by weight, preferably 0.1 to 2 parts by weight.
  • cholesteric liquid crystal compositions include metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, and antioxidants. Any additive such as a metal oxide such as an ion exchange resin or titanium oxide may be contained.
  • the additive is usually mixed in an amount of 0.1 each for 100 parts by weight of the polymerizable liquid crystal compound (i). ⁇ 20 parts by weight.
  • a cholesteric liquid crystal composition usually comprises the above-described components (polymerizable liquid crystal compound (i), polymerizable compound (ii), polymerizable chiral compound, photopolymerization initiator, and optional additives) in a suitable organic solvent. It can be prepared by dissolving it in
  • Organic solvents to be used include ketones such as cyclopentanone, cyclohexanone and methyl ethyl ketone; acetate esters such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane; 1,4-dioxane, cyclopentylmethyl And ethers such as ether, tetrahydrofuran and tetrahydropyran;
  • the content ratio of the solvent can be 50 to 75% by weight as a ratio with respect to the total amount of the solution.
  • the cholesteric resin layer can be formed by applying a cholesteric liquid crystal composition to a substrate to obtain a layer of the cholesteric liquid crystal composition and curing it.
  • the substrate is not particularly limited, and a film such as a polyethylene terephthalate film (for example, “Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd.) can be used.
  • the base film can be subjected to a treatment for imparting an orientation regulating force such as a rubbing treatment.
  • the cholesteric liquid crystal composition layer Prior to the curing step, the cholesteric liquid crystal composition layer can be subjected to an alignment treatment, if necessary.
  • the alignment treatment can be performed, for example, by heating the liquid crystal composition layer at 50 to 150 ° C. for 0.5 to 10 minutes.
  • a cholesteric resin layer can be formed by curing the cholesteric liquid crystal composition by light irradiation after performing an alignment treatment as necessary.
  • the light used for light irradiation in the present invention includes not only visible light but also ultraviolet rays and other electromagnetic waves.
  • the type of light can be appropriately selected according to the components of the cholesteric liquid crystal composition such as a polymerization initiator.
  • the light irradiation amount and the irradiation conditions can be appropriately adjusted so that desired curing is performed.
  • the cholesteric resin layer on the base material can be used as it is, or the cholesteric resin layer is peeled off from the base material as necessary, and this can be used as the second retardation layer.
  • the thickness of the second retardation layer is preferably 1.0 to 2.0 ⁇ m, more preferably 1.4 to 1.8 ⁇ m. . By setting it as this thickness, a desired optical characteristic can be provided to the second retardation layer.
  • the optically anisotropic layer may have main refractive indexes nx (A), ny (A), and nz (A) that satisfy nz (A)> nx (A) ⁇ ny (A).
  • An optically anisotropic layer having such a main refractive index can be used as a positive C film. Therefore, when this optically anisotropic layer is incorporated in a circularly polarizing plate and applied to an image display device, reflection of external light is suppressed in the tilt direction of the display surface of the image display device, or light that displays an image is displayed. It can be made to pass through polarized sunglasses.
  • the image display device is a liquid crystal display device, the viewing angle can usually be widened. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be improved.
  • the refractive index nx (A) and the refractive index ny (A) of the optically anisotropic layer are the same or close to each other.
  • the difference nx (A) ⁇ ny (A) between the refractive index nx (A) and the refractive index ny (A) is preferably 0.00000 to 0.00100, more preferably 0.00000 to 0.00. 0,000, particularly preferably 0.00000 to 0.00020.
  • the refractive index difference nx (A) ⁇ ny (A) is within the above range, the optical design when the optically anisotropic layer is provided in the image display device can be simplified, and other retardation films can be used. It is possible to eliminate the need for adjustment of the bonding direction at the time of bonding.
  • the retardation Rth (A) (650) in the thickness direction of the anisotropic layer usually satisfies the following formula (8), preferably further satisfies formula (9). 0.50 ⁇ Rth (A) (450) / Rth (A) (550) ⁇ 1.00 Formula (8) 1.00 ⁇ Rth (A) (650) / Rth (A) (550) ⁇ 1.25 Formula (9)
  • Rth (A) (450) / Rth (A) (550) is usually larger than 0.70, preferably larger than 0.75, more preferably larger than 0.80. It is large and usually less than 1.00, preferably less than 0.99, more preferably less than 0.98.
  • Rth (A650) / Rth (A550) is usually 1.00 or more, preferably 1.01 or more, more preferably 1.02 or more. It is less than 25, preferably less than 1.15, more preferably less than 1.10.
  • the retardation Rth in the thickness direction shows reverse wavelength dispersion.
  • the optically anisotropic layer whose retardation Rth in the thickness direction exhibits reverse wavelength dispersion is incorporated in a circularly polarizing plate and applied to an image display device in the direction of inclination of the display surface of the image display device.
  • the function of suppressing reflection of light and transmitting polarized sunglasses through the light for displaying an image can be exhibited in a wide wavelength range.
  • the image display device is a liquid crystal display device, it is usually possible to effectively widen the viewing angle. Therefore, the visibility of the image displayed on the display surface can be particularly effectively improved.
  • the in-plane retardation Re (A) (590) of the optically anisotropic layer at a wavelength of 590 nm preferably satisfies the following formula (10).
  • Re (A) (590) is preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm, and particularly preferably 0 nm to 2 nm.
  • Re (A) (590) is within the above range, the optical design when the optically anisotropic layer is provided in the image display device can be simplified, and pasting with another retardation film can be performed. Sometimes it is not necessary to adjust the bonding direction.
  • the retardation Rth (A) (590) in the thickness direction of the optically anisotropic layer at a wavelength of 590 nm preferably satisfies the following formula (11). ⁇ 200 nm ⁇ Rth (A) (590) ⁇ ⁇ 10 nm Formula (11)
  • Rth (A) (590) is preferably ⁇ 200 nm or more, more preferably ⁇ 130 nm or more, particularly preferably ⁇ 100 nm or more, preferably ⁇ 10 nm or less, more preferably Is -30 nm or less, particularly preferably -50 nm or less.
  • an optically anisotropic layer having Rth (A) (590) is incorporated in a circularly polarizing plate and applied to an image display device, it reflects external light in the tilt direction of the display surface of the image display device. It is possible to suppress the color change of reflected light, or to allow light for displaying an image to pass through polarized sunglasses.
  • the image display device is a liquid crystal display device, the viewing angle can usually be widened. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be improved.
  • the total light transmittance of the optically anisotropic layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the total light transmittance can be measured in a wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
  • the haze of the optically anisotropic layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the haze can be measured at five locations using “turbidity meter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997, and the average value obtained therefrom can be adopted.
  • the thickness of the optically anisotropic layer can be appropriately adjusted so that desired optical characteristics can be obtained.
  • an optically anisotropic layer having desired optical characteristics and a small thickness can be easily obtained.
  • an optically anisotropic layer having desired optical characteristics and a small thickness can be more easily obtained.
  • the thickness of the optically anisotropic layer is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the lower limit of the thickness of the optically anisotropic layer is not particularly limited as long as desired optical characteristics can be obtained, but may be, for example, 0.5 ⁇ m or more.
  • optically anisotropic layer is not specifically limited, Arbitrary manufacturing methods can be employ
  • the optically anisotropic layer is manufactured by forming each of the first retardation layer and the second retardation layer on the surface of an appropriate base material by the method described above and bonding them. Yes.
  • each of the first retardation layer and the second retardation layer can be easily produced by a coating method using a solution, and the optical characteristics of each layer can be easily made desired. Can be adjusted.
  • either one of the first retardation layer and the second retardation layer is formed by the method described above, and the formed layer is used as a base material on the surface.
  • An optically anisotropic layer can also be produced by forming the other of the first retardation layer and the second retardation layer.
  • the method for producing an optically anisotropic layer may include, for example, a step of peeling the optically anisotropic layer from the substrate.
  • optically anisotropic laminate of the present invention includes the optically anisotropic layer and the third retardation layer described above.
  • the in-plane retardation Re (A) (590) of the optically anisotropic layer at a wavelength of 590 nm and the retardation Rth in the thickness direction of the optically anisotropic layer at a wavelength of 590 nm ( A) (590) preferably satisfies the following formulas (12) and (13).
  • Re (A) (590) is preferably 0 nm to 10 nm, more preferably 0 nm to 5 nm, and particularly preferably 0 nm to 2 nm.
  • Re (A) (590) is within the above range, the optical design when the optically anisotropic laminate is provided in the image display device can be simplified.
  • Rth (A) (590) is preferably ⁇ 110 nm or more, more preferably ⁇ 100 nm or more, preferably ⁇ 20 nm or less, more preferably ⁇ 40 nm or less. Particularly preferably, it is ⁇ 50 nm or less.
  • Such an optically anisotropic laminate including an optically anisotropic layer having Rth (A) (590) is incorporated into a circularly polarizing plate and applied to an image display device. In the tilt direction, it is possible to effectively exhibit the functions of suppressing reflection of external light and transmitting light for displaying an image through polarized sunglasses. Therefore, when the display surface of the image display device is viewed from the tilt direction, the visibility of the image can be effectively improved.
  • the third retardation layer satisfies the expressions (6) to (7).
  • nx (P3), ny (P3) and nz (P3) are the main refractive indexes of the third retardation layer
  • Re (P3) (590) is the in-plane at the wavelength of 590 nm of the third retardation layer. Retardation.
  • the retardation layer satisfying the equations (6) and (7) can function as a so-called ⁇ / 4 wavelength plate.
  • An optically anisotropic laminate including such a third retardation layer can constitute a circularly polarizing plate when combined with a linear polarizer.
  • This circularly polarizing plate is provided on the display surface of the image display device, so that when the display surface is viewed from the front direction, reflection of external light is suppressed or light for displaying an image can be transmitted through the polarized sunglasses. Therefore, it is possible to improve the visibility of the image.
  • the refractive index ny (P3) and the refractive index nz (P3) of the third retardation layer are the same or close to each other.
  • of the difference between the refractive index ny (P3) and the refractive index nz (P3) is preferably 0.00000 to 0.00100, more preferably 0. 0.00000 to 0.00050, particularly preferably 0.00000 to 0.00020.
  • of the refractive index difference is within the above range, the optical design when the optically anisotropic laminate is provided in the image display device can be simplified.
  • the in-plane retardation Re (P3) (590) of the third retardation layer at a wavelength of 590 nm preferably satisfies the following formula (14). 110 nm ⁇ Re (P3) (590) ⁇ 170 nm Formula (14)
  • Re (P3) (590) is preferably 110 nm or more, more preferably 120 nm or more, particularly preferably 130 nm or more, preferably 170 nm or less, more preferably 160 nm or less, Especially preferably, it is 150 nm or less.
  • Such an optically anisotropic laminate including the third retardation layer having Re (P3) (590) can be combined with a linear polarizer to obtain a circularly polarizing plate.
  • a linear polarizer By providing this circularly polarizing plate on the display surface of the image display device, when the display surface is viewed from the front, the reflection of external light is suppressed, or the light displaying the image can be transmitted through the polarized sunglasses. Therefore, it is possible to improve the visibility of the image.
  • the in-plane retardation Re (P3) (650) of the retardation layer preferably satisfies the following formula (15), and more preferably also satisfies the formula (16). 0.75 ⁇ Re (P3) (450) / Re (P3) (550) ⁇ 1.00 Formula (15) 1.01 ⁇ Re (P3) (650) / Re (P3) (550) ⁇ 1.25 Formula (16)
  • Re (P3) (450) / Re (P3) (550) is preferably larger than 0.75, more preferably larger than 0.78, and particularly preferably 0.8. More than 80, preferably less than 1.00, more preferably less than 0.95, particularly preferably less than 0.90.
  • Re (P3) (650) / Re (P3) (550) is preferably greater than 1.01, preferably greater than 1.02, and particularly preferably 1.04. It is larger, preferably less than 1.25, more preferably less than 1.22, and particularly preferably less than 1.19.
  • the third retardation layer having in-plane retardations Re (P3) (450), Re (P3) (550) and Re (P3) (650) satisfying the above formulas (15) and (16) is In-plane retardation Re shows reverse wavelength dispersion.
  • the optically anisotropic laminate including the third retardation layer having in-plane retardation Re exhibiting reverse wavelength dispersion is incorporated in a circularly polarizing plate and applied to the image display device, the display of the image display device is displayed.
  • functions of suppressing reflection of external light and transmitting polarized sunglasses through light for displaying an image can be exhibited in a wide wavelength range. Therefore, the visibility of the image displayed on the display surface can be particularly effectively improved.
  • the in-plane slow axis direction of the third retardation layer is arbitrary and can be arbitrarily set according to the use of the optically anisotropic laminate.
  • the angle formed by the slow axis of the third retardation layer and the film width direction is preferably more than 0 ° and less than 90 °.
  • the angle formed by the in-plane slow axis of the third retardation layer and the film width direction is preferably 15 ° ⁇ 5 °, 22.5 ° ⁇ 5 °, 45 ° ⁇ 5 °, Or 75 ° ⁇ 5 °, more preferably 15 ° ⁇ 4 °, 22.5 ° ⁇ 4 °, 45 ° ⁇ 4 °, or 75 ° ⁇ 4 °, even more preferably 15 ° ⁇ 3 °, 22.5 It may be a specific range such as ⁇ 3 °, 45 ° ⁇ 3 °, or 75 ° ⁇ 3 °.
  • the total light transmittance of the third retardation layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. Further, the haze of the third retardation layer is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the material constituting the third retardation layer is not particularly limited, and a material having the above characteristics can be appropriately adopted from known materials. Specifically, a material used as a retardation layer, such as a stretched film or a layer obtained by curing a liquid crystal composition containing a polymerizable liquid crystal compound, can be employed.
  • the optically anisotropic laminate may further include an arbitrary layer in combination with the optically anisotropic layer and the third retardation layer.
  • an arbitrary layer an adhesive layer, a hard-coat layer, etc. are mentioned, for example.
  • optically anisotropic laminated body is not specifically limited, Arbitrary manufacturing methods can be employ
  • the optically anisotropic layer is manufactured by forming each of the optically anisotropic layer and the third retardation layer on the surface of an appropriate base material by the above-described method and bonding them. Yes.
  • the optically anisotropic layer or the third retardation layer is formed by the method described above, and the formed layer is used as the base material on the surface.
  • An optically anisotropic laminate can also be manufactured by forming the other of the optically anisotropic layer and the third retardation layer.
  • the method for producing an optically anisotropic laminate may include an optional step in addition to the steps described above.
  • the method for producing an optically anisotropic laminate may include, for example, a step of peeling the optically anisotropic laminate from the substrate.
  • the method for producing an optically anisotropic laminate may also include a step of providing an arbitrary layer such as a hard coat layer.
  • the polarizing plate of this invention is equipped with a linear polarizer and the optically anisotropic layer mentioned above, or an optically anisotropic laminated body. By providing such a polarizing plate in the image display device, it is possible to improve the visibility of the image when the image display device is viewed from the tilt direction.
  • linear polarizer known linear polarizers used in devices such as liquid crystal display devices and other optical devices can be used.
  • linear polarizers are films obtained by adsorbing iodine or dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath; adsorbing iodine or dichroic dye on a polyvinyl alcohol film And a film obtained by stretching and further modifying a part of the polyvinyl alcohol unit in the molecular chain to a polyvinylene unit.
  • linear polarizers include polarizers having a function of separating polarized light into reflected light and transmitted light, such as grid polarizers, multilayer polarizers, and cholesteric liquid crystal polarizers.
  • polarizers having a function of separating polarized light into reflected light and transmitted light such as grid polarizers, multilayer polarizers, and cholesteric liquid crystal polarizers.
  • the linear polarizer a polarizer containing polyvinyl alcohol is preferable.
  • the degree of polarization of the linear polarizer is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
  • the thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the polarizing plate may further include an adhesive layer for bonding the linear polarizer and the optically anisotropic layer or the optically anisotropic laminate.
  • the polarizing plate when the polarizing plate includes an optically anisotropic laminate, the polarizing plate can function as a circularly polarizing plate.
  • the term “circularly polarizing plate” includes not only a circularly polarizing plate in a narrow sense but also an elliptically polarizing plate.
  • Such a circularly polarizing plate may include a linear polarizer, an optically anisotropic layer, and a third retardation layer in this order.
  • Such a circularly polarizing plate may include a linear polarizer, a third retardation layer, and an optically anisotropic layer in this order.
  • the angle formed by the slow axis of the third retardation layer with respect to the polarization absorption axis of the linear polarizer is preferably 45 ° or an angle close thereto. Specifically, the angle is preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 4 °, and particularly preferably 45 ° ⁇ 3 °.
  • the polarizing plate described above can further include an arbitrary layer.
  • a polarizer protective film layer is mentioned, for example. Any transparent film layer can be used as the polarizer protective film layer.
  • a resin film layer excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like is preferable.
  • resins include acetate resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, chain olefin resins, cyclic olefin resins, and (meth) acrylic resins. It is done.
  • hard coat layers such as an impact-resistant polymethacrylate resin layer, the mat
  • These arbitrary layers may be provided with only one layer or two or more layers.
  • the polarizing plate can be produced by laminating a linear polarizer and an optically anisotropic layer or an optically anisotropic laminate with an adhesive as necessary.
  • the image display device of the present invention includes the polarizing plate of the present invention described above.
  • the image display device of the present invention usually also includes an image display element.
  • the polarizing plate is usually provided on the viewing side of the image display element. At this time, the direction of the polarizing plate can be arbitrarily set according to the use of the polarizing plate. Therefore, the image display apparatus may include an optically anisotropic layer or an optically anisotropic laminate, a polarizer, and an image display element in this order.
  • the image display device may include a polarizer, an optically anisotropic layer or an optically anisotropic laminate, and an image display element in this order.
  • image display devices There are various types of image display devices depending on the type of image display element.
  • a liquid crystal display device including a liquid crystal cell as an image display element, and an organic EL element as an image display element are used.
  • An organic EL display device provided may be used.
  • the image display device of the present invention includes the optically anisotropic layer of the present invention as a constituent element, thereby suppressing reflection of outside light or allowing light for displaying an image to pass through polarized sunglasses. be able to. Furthermore, while having such an effect, a display device having high durability and high color tone can be obtained.
  • the optically anisotropic layer of the present invention can be used for various applications other than an image display device including an image display element.
  • it may be provided in an arbitrary device such as a display device that does not have an image display element such as a signboard, an illumination device, and a light source device for the purpose of improving the color.
  • optical properties (refractive index, retardation and reverse wavelength dispersion properties) of the sample layer (optically anisotropic layer, retardation layer, etc.) formed on the film (base film, etc.) were measured by the following methods. .
  • the sample layer was bonded to a glass plate with a pressure-sensitive adhesive layer (the pressure-sensitive adhesive layer is “CS9621T” manufactured by Nitto Denko Corporation, the same applies hereinafter). Thereafter, the substrate was peeled off to obtain a sample provided with a glass plate and a sample layer. This sample was placed on the stage of a phase difference meter (manufactured by Axometrics), and the wavelength dispersion of in-plane retardation Re of the sample layer was measured.
  • the chromatic dispersion of the in-plane retardation Re is a graph representing the in-plane retardation Re for each wavelength, and is shown as a graph in coordinates with the horizontal axis representing wavelength and the vertical axis representing in-plane retardation Re, for example. It is. From the wavelength dispersion of the in-plane retardation Re of the sample layer thus obtained, the in-plane retardations Re (450), Re (550), Re (590) and Re (wavelengths of 450 nm, 550 nm, 590 nm and 650 nm) are obtained. 650).
  • the stage was tilted by 40 °, and the wavelength dispersion of the retardation Re40 of the sample layer in the tilt direction forming an angle of 40 ° with respect to the thickness direction of the sample layer was measured.
  • the chromatic dispersion of the retardation Re40 is a graph representing the retardation Re40 for each wavelength.
  • the chromatic dispersion is shown as a graph in coordinates where the horizontal axis represents wavelength and the vertical axis represents in-plane retardation Re40.
  • the refractive index nx of the sample layer in the in-plane direction and giving the maximum refractive index, the in-plane direction and the direction perpendicular to the nx direction was measured at wavelengths of 407 nm, 532 nm and 633 nm, and Cauchy fitting was performed to obtain wavelength dispersion of the refractive indexes nx, ny and nz.
  • the chromatic dispersion of the refractive index is a graph representing the refractive index for each wavelength, and is shown as a graph in coordinates with the horizontal axis representing the wavelength and the vertical axis representing the refractive index, for example.
  • the wavelength dispersion of the retardation Rth in the thickness direction of the sample layer was calculated based on the retardation Re40 and the wavelength dispersion data of the refractive index.
  • the wavelength dispersion of the retardation Rth in the thickness direction is a graph representing the retardation Rth in the thickness direction for each wavelength. For example, in the coordinates where the horizontal axis represents the wavelength and the vertical axis represents the retardation Rth in the thickness direction. Shown as a graph.
  • the thickness of the sample layer (optically anisotropic layer, retardation layer, etc.) formed on a certain base material (base film, etc.) is measured using a film thickness measuring device (“Filmetrics” manufactured by Filmetrics) It was measured.
  • Example 1 (1-1. First retardation layer) Poly (9-vinylcarbazole) (manufactured by Aldrich, product number 182605, weight average molecular weight 1,100,000 or less, powder) was added to N-methyl-2-pyrrolidone (NMP) so that the solid concentration was 12%. Was dissolved in a coating solution.
  • NMP N-methyl-2-pyrrolidone
  • a polyethylene terephthalate film (“Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd., thickness 100 ⁇ m, the same applies below) with easy adhesion treatment on one side was prepared.
  • a coating liquid was applied onto the surface of the base film to form a coating liquid layer. Coating was performed on the back surface of the base film (the surface opposite to the surface subjected to the easy adhesion treatment, the same applies hereinafter) using an applicator. The thickness of the coating liquid layer was adjusted so that the thickness of the obtained first retardation layer was about 10 ⁇ m.
  • the coating liquid layer was dried in an oven at 85 ° C. for about 10 minutes to evaporate the solvent in the coating liquid layer.
  • the 1st phase difference layer was formed on the base material film, and the multilayer object which has the layer composition of (1st phase contrast layer) / (base material film) was obtained.
  • the film thickness and optical characteristics of the first retardation layer in the obtained multilayer were measured.
  • reaction solution was poured into 2 liters of water and extracted twice with 200 ml of ethyl acetate.
  • the ethyl acetate layer was collected and dried over anhydrous sodium sulfate, and sodium sulfate was filtered off.
  • the substituent was a hydroxyl group: 6.68 mol%, —COCH 3 : 48.75 mol%, —COCH 2 CH 2 CH 3 : 42.92 mol%, a group derived from the intermediate (Im-B): 1.65 mol It was found that it is composed of%.
  • CAB-001 was dissolved in 1,3-dioxolane so that the solid content concentration was 12% to prepare a coating solution.
  • the coating liquid was applied to form a coating liquid layer. Coating was performed on the back surface of the base film using an applicator. The thickness of the coating liquid layer was adjusted so that the thickness of the obtained second retardation layer was about 12 ⁇ m.
  • the coating liquid layer was dried in an oven at 85 ° C. for about 10 minutes to evaporate the solvent in the coating liquid layer.
  • the 2nd phase contrast layer was formed on the substrate film, and the multilayer thing which has the layer composition of (2nd phase contrast layer) / (base material film) was obtained.
  • the film thickness and optical characteristics of the second retardation layer in the obtained multilayer were measured.
  • a pressure-sensitive adhesive layer was further provided on the surface of the first retardation layer of the obtained multilayer product.
  • the surface on the second retardation layer side of the multilayer obtained in (1-2) was bonded to the pressure-sensitive adhesive layer, and then the base film was peeled off.
  • the second retardation layer is transferred to the multilayer structure, and a layer of (second retardation layer) / (adhesive layer) / (first retardation layer) / (adhesive layer) / (glass plate)
  • a multilayer having a configuration was obtained.
  • the multilayer includes an optically anisotropic layer having a layer configuration of (second retardation layer) / (adhesive layer) / (first retardation layer).
  • optical properties of the obtained optically anisotropic layer are measured, it is determined whether or not the requirements of formula (3), formula (4), and formula (5) are satisfied, and it corresponds to a positive C film or a negative C film. It was determined whether or not. Further, it was determined whether or not the wavelength dispersion of Rth of the obtained optically anisotropic layer was reverse wavelength dispersion (Rth (A) (450) / Rth (A) (550) ⁇ 1.00). .
  • Example 2 Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate the first retardation layer, the second retardation layer, and the optically anisotropic layer. In the application of the coating liquid in (1-1), the thickness of the coating liquid layer was adjusted so that the thickness of the obtained first retardation layer was about 7 ⁇ m.
  • Example 3 (3-1. Second retardation layer: cholesteric liquid crystal layer) Cholesteric liquid crystal composition 1 was prepared by mixing the following materials: Compound 1: 16.1 parts by weight, Compound 2: 4.0 parts by weight, chiral compound (“LC756” manufactured by BASF): 2.35 parts by weight, polymerization initiator (“Irgacure 379EG” manufactured by Ciba Specialty Chemicals): 0.6 parts by weight, surfactant (“FTX-209F” manufactured by Neos): 0.022 parts by weight, cyclopentanone: 51.6 parts by weight.
  • LC756 manufactured by BASF
  • surfactant FTX-209F” manufactured by Neos
  • a base film As a base film, a polyethylene terephthalate film (“Cosmo Shine (registered trademark) A4100” manufactured by Toyobo Co., Ltd .; thickness: 100 ⁇ m) was prepared. One side of this base film was an easy adhesion treated surface that was subjected to an easy adhesion treatment.
  • the rubbing process was given to the surface on the opposite side to the easily bonding process surface of a base film.
  • the cholesteric liquid crystal composition was filtered on a surface subjected to rubbing treatment with a filter having a pore diameter of 0.45 ⁇ m, and then coated using a bar coater # 4. As a result, an uncured cholesteric liquid crystal composition layer was formed on one side of the base film.
  • the resulting cholesteric liquid crystal composition layer was subjected to an alignment treatment at 140 ° C. for 2 minutes. Thereby, in the layer of the cholesteric liquid crystal composition, the photopolymerizable liquid crystal compound was aligned and exhibited a cholesteric liquid crystal phase. In addition, the cholesteric liquid crystal composition layer was dried during the alignment treatment, and the solvent was removed from the cholesteric liquid crystal composition layer.
  • the layer of the cholesteric liquid crystal composition was irradiated with ultraviolet rays (metal halide lamp) on the coating film forming surface side of the cholesteric liquid crystal composition in a nitrogen atmosphere. Irradiation conditions were a peak illuminance of 300 mJ / cm 2 .
  • the layer of the cholesteric liquid crystal composition was cured to become a cholesteric resin layer (dry thickness 0.9 ⁇ m) in which the alignment state was fixed.
  • the cholesteric resin layer as a 2nd phase difference layer was formed on the base film, and the multilayered product which has a layer structure of (2nd phase difference layer) / (base film) was obtained. The film thickness and optical characteristics of the second retardation layer in the obtained multilayer were measured.
  • cholesteric resin layer For the obtained cholesteric resin layer, a reflection spectrum was measured in a wavelength range of 200 nm to 600 nm using an ultraviolet visible near infrared spectrophotometer (“V-550” manufactured by JASCO Corporation). At that time, it was confirmed that the selective reflection band exists only in the ultraviolet region. The center wavelength of the selective reflection band was 370 nm.
  • Example 1 Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate the first retardation layer, the second retardation layer, and the optically anisotropic layer. In the application of the coating liquid in (1-1), the thickness of the coating liquid layer was adjusted so that the thickness of the obtained first retardation layer was about 5 ⁇ m.
  • Example 2 (C2-1. Second retardation layer: TAC) Cellulose triacetate (abbreviated as TAC, purchased from Wako Pure Chemical Industries, Ltd.) was dissolved in 1,3-dioxolane so that the solid concentration was 12% to prepare a coating solution. On the back surface of the base film, the coating liquid was applied to form a coating liquid layer. Coating was performed on the back surface of the base film using an applicator. The thickness of the coating liquid layer was adjusted so that the thickness of the obtained second retardation layer was about 30 ⁇ m.
  • TAC Second retardation layer
  • the coating liquid layer was dried in an oven at 85 ° C. for about 10 minutes to evaporate the solvent in the coating liquid layer.
  • the 2nd phase contrast layer was formed on the substrate film, and the multilayer thing which has the layer composition of (2nd phase contrast layer) / (base material film) was obtained.
  • the film thickness and optical characteristics of the second retardation layer in the obtained multilayer were measured.
  • the specific method for producing the second retardation layer was as follows. First, except that the thickness of the coating liquid layer was adjusted so that the thickness of the resulting layer was 26.7 ⁇ m, the same operation as in (1-2) of Example 1 was carried out to apply CAB-001 on the base film. A layer was formed to obtain a multilayered product (i) having a layer structure of (CAB-001 layer) / (base film).
  • the TAC layer was formed on the base film by the same operation as (C2-1) in Comparative Example 2, except that the thickness of the coating liquid layer was adjusted so that the thickness of the resulting layer was 17.8 ⁇ m. And a multilayer (ii) having a layer structure of (TAC layer) / (base film) was obtained.
  • the multilayer (i) and the multilayer (ii) are bonded via an adhesive layer, and (base film) / (TAC layer) / (adhesive layer) / (CAB-001 layer) ) / (Base film) was obtained as a multilayer (iii). Further, the base film on one surface is peeled from the multilayer (iii), and has a layer structure of (TAC layer) / (adhesive layer) / (CAB-001 layer) / (base film). A multilayer (iv-C3) was obtained.
  • the multilayer includes a second retardation layer having a layer structure of (TAC layer) / (adhesive layer) / (CAB-001 layer).
  • the thickness of the coating liquid layer was adjusted so that the thickness of the CAB-001 layer and the thickness of the TAC layer were both 36.75 ⁇ m, and (C3-1) of Comparative Example 3
  • the same operation was performed to obtain a multi-layered product (iv-C4) having a layer structure of (TAC layer) / (adhesive layer) / (CAB-001 layer) / (base film).
  • the multilayer includes a second retardation layer having a layer structure of (TAC layer) / (adhesive layer) / (CAB-001 layer).
  • Tables 1 to 3 show the results of Examples and Comparative Examples.
  • Formula (3) A determination result of whether or not the optically anisotropic layer satisfies Formula (3) (
  • Rth (P1) (450) / Rth (P1) (550) and Rth (P2) (450) / Rth (P2) (550) are shown.
  • the numerical value of Rth (P2) (450) / Rth (P2) (550) is shown.
  • Phase difference type A determination result of whether or not the optically anisotropic layer corresponds to a positive C film or a negative C film.
  • Positive C corresponds to a positive C film.
  • Negative C corresponds to negative C film.
  • Stronger forward dispersion forward wavelength dispersibility, and the tendency of forward wavelength dispersion is higher than that of Comparative Example 1.
  • the optically anisotropic layers obtained in Examples have useful optical characteristics that they are positive C films having reverse wavelength dispersion compared to those of Comparative Examples. However, the thickness could be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

第1位相差層(P1)及び第2位相差層(P2)を備え、nz(P1)>nx(P1)≧ny(P1)、nx(P2)≧ny(P2)>nz(P2)、|Rth(P1)|>|Rth(P2)|、Rth(P1)(450)/Rth(P1)(550)<Rth(P2)(450)/Rth(P2)(550)及びRth(P2)(450)/Rth(P2)(550)>1.14を満たす、光学異方性層;並びにそれを含む光学異方性積層体、偏光板及び画像表示装置。

Description

光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置
 本発明は、光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置に関する。
 液晶表示装置、有機エレクトロルミネッセンス表示装置等の画像表示装置には、様々な光学フィルムが設けられる。以下、「有機エレクトロルミネッセンス」のことを、適宜「有機EL」ということがある。このような光学フィルムに係る技術については、従来から検討がなされている。かかる光学フィルムは、所望の光学異方性等の光学的特性を有しながら且つ薄いものであることが求められる。薄い光学フィルムを採用することにより、画像表示装置を軽量で薄いものとすることができる。また、薄い光学フィルムは、非曲面の画像表示装置、及び可撓性を有する画像表示装置を実現する上でも有利である。
 画像表示装置には、広い視野角にわたる色味及びコントラストの向上、偏光サングラスを通した視認性の向上等の効果を得る目的で、ポジティブCフィルムを設けることがある。また、広い波長帯域にわたってかかる効果を得るために、ポジティブCフィルムとネガティブCフィルムとを組み合わせて複層のフィルムとし、それによりポジティブCフィルムとしての機能を発現させることが提案されている(特許文献1)。
特表2006-527394号公報(対応公報:米国特許出願公開第2005/057714号明細書)
 しかしながら、従来技術における複層のポジティブCフィルムは、実際に利用可能な樹脂フィルムの組み合わせで作製した場合、その厚みが厚くなるという課題がある。
 従って、本発明の目的は、画像表示装置に用いるポジティブCフィルムとして有用な光学的特性を有し、かつ、実際に利用可能な樹脂フィルムの組み合わせで作製した場合、その厚みを薄くすることができる、光学異方性層、及びその用途を提供することにある。
 本発明は、下記のとおりである。
 〔1〕 第1位相差層及び第2位相差層を備える光学異方性層であって、
 前記第1位相差層及び前記第2位相差層が、式(1)~式(5)を満たす、光学異方性層:
 nz(P1)>nx(P1)≧ny(P1)  式(1)
 nx(P2)≧ny(P2)>nz(P2)  式(2)
 |Rth(P1)|>|Rth(P2)|  式(3)
 Rth(P1)(450)/Rth(P1)(550)<Rth(P2)(450)/Rth(P2)(550) 式(4)
 Rth(P2)(450)/Rth(P2)(550)>1.14  式(5)
 但し、
 nx(P1)、ny(P1)及びnz(P1)は、前記第1位相差層の主屈折率であり、
 nx(P2)、ny(P2)及びnz(P2)は、前記第2位相差層の主屈折率であり、
 前記Rth(P1)は、前記第1位相差層の波長590nmにおける厚み方向のレターデーションであり、
 前記Rth(P2)は、前記第2位相差層の波長590nmにおける厚み方向のレターデーションであり、
 前記Rth(P1)(450)は、前記第1位相差層の波長450nmにおける厚み方向のレターデーションであり、
 前記Rth(P1)(550)は、前記第1位相差層の波長550nmにおける厚み方向のレターデーションであり、
 前記Rth(P2)(450)は、前記第2位相差層の波長450nmにおける厚み方向のレターデーションであり、
 前記Rth(P2)(550)は、前記第2位相差層の波長550nmにおける厚み方向のレターデーションである。
 〔2〕 前記第2位相差層が、下記式(I)で表される部分構造を有するセルロースエステル(I)を含む層である、〔1〕に記載の光学異方性層。
Figure JPOXMLDOC01-appb-C000006
 〔式(I)中、*は前記部分構造が前記セルロースエステル(I)における糖単位に結合する部位を表し、Yは、-O-C(=O)-、又は-O-C(=O)-NR10-を表し、R10は、水素原子または炭素数1~6のアルキル基を表し、PDGは環構造を有する有機基であって、前記環構造に含まれるπ電子数が12以上である有機基を表す。〕
 〔3〕 前記式(I)中、PDGが下記式(II)で表される〔2〕に記載の光学異方性層。
Figure JPOXMLDOC01-appb-C000007
 〔式(II)中、Bは、化学的な単結合および下記式(III-1)~(III-26)のいずれかを表し、
Figure JPOXMLDOC01-appb-C000008
 XGは、下記式(IV-1)~(IV-8)のいずれかを表し、
Figure JPOXMLDOC01-appb-C000009
 Axは、炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する有機基を表し、Axが有する芳香環は置換基を有していてもよく、
 Ayは、水素原子または置換基を有していてもよい炭素数1~30の有機基を表し、
 Azは、炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する有機基を表し、Azが有する芳香環は置換基を有していてもよく、
 Qは、水素原子または炭素数1~6のアルキル基を表し、
 EおよびEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表し、
 D~Dは置換基を有していてもよい芳香族炭化水素環基または置換基を有していてもよい芳香族複素環基を表し、
 DおよびDは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基、-C(=O)-Rx、-C(=O)-ORx、若しくは-C(=O)NR10Rxを表すか、又は、DおよびDはこれらが一緒になって環を形成している有機基である。
 Rxは、水素原子、又は炭素数1~20の有機基であり、
 Rcは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、Rcが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。
 R10は前記と同じ意味を表し、
 pは0~3の整数であり、
 nは0または1を表す。*はBとの結合を表す。〕
 〔4〕 XGが、前記式(IV-1)~(IV-3)の何れかで表され、
 Ayは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数6~30の芳香族炭化水素環基、または、置換基を有していてもよい炭素数2~30の芳香族複素環基を表す、〔3〕に記載の光学異方性層。
 〔5〕 Axが下記式(V)で示される、〔3〕または〔4〕に記載の光学異方性層。
Figure JPOXMLDOC01-appb-C000010
 〔式(V)中、Eは-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表し、
 R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、-OCF、または、-C(=O)-O-Rを表し、
 Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、または、置換基を有していてもよい炭素数6~12の芳香族炭化水素環基を表し、
 複数のR~R同士は、すべて同一であっても、相異なっていてもよく、環を構成する少なくとも1つのC-R~C-Rは、窒素原子に置き換えられていてもよい。〕
 〔6〕 前記第2位相差層が、ベンゾチアゾール環を側鎖に有するセルロースエステルを含む層である、〔1〕に記載の光学異方性層。
 〔7〕 前記セルロースエステル(I)が、セルロースエステル(I’)における水酸基の一部又は全部が前記式(I)で表される部分構造で置換されてなる構造を有し、前記セルロースエステル(I’)は、前記セルロースエステル(I)以外のセルロースエステルであり、前記セルロースエステル(I’)が、セルロースアセテートブチレート、セルロースアセテート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレート、及びこれらの混合物からなる群より選択されるものである〔2〕~〔6〕のいずれか1項に記載の光学異方性層。
 〔8〕 前記第2位相差層が、コレステリック液晶組成物の硬化物の層であり、前記コレステリック液晶組成物は、芳香族イミン構造を有する重合性液晶化合物を含む組成物である、〔1〕に記載の光学異方性層。
 〔9〕 前記第1位相差層が、重合体を含み、前記重合体が、ポリビニルカルバゾール、ポリフマル酸エステル、セルロース誘導体、及びこれらの組み合わせからなる群より選ばれる、〔1〕~〔8〕のいずれか1項に記載の光学異方性層。
 〔10〕 〔1〕~〔9〕のいずれか1項に記載の光学異方性層、及び第3位相差層を備える光学異方性積層体であって、
 前記第3位相差層が、式(6)~式(7)を満たす、光学異方性積層体:
 nx(P3)>ny(P3)≧nz(P3)   式(6)
 110nm≦Re(P3)(590)≦170nm  式(7)
 但し、
 nx(P3)、ny(P3)及びnz(P3)は、前記第3位相差層の主屈折率であり、
 Re(P3)(590)は、前記第3位相差層の波長590nmにおける面内レターデーションである。
 〔11〕 直線偏光子と、
 〔10〕に記載の光学異方性積層体とを備える、偏光板。
 〔12〕 〔11〕に記載の偏光板を備える、画像表示装置。
 〔13〕 直線偏光子と、
 〔10〕に記載の光学異方性積層体と、
 有機エレクトロルミネッセンス素子と、を、この順に備える、画像表示装置。
 本発明によれば、画像表示装置に用いるポジティブCフィルムとして有用な光学的特性を有し、かつ、実際に利用可能な樹脂フィルムの組み合わせで作製した場合、その厚みを薄くすることができる、光学異方性層、及びその用途が提供される。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。
 以下の説明において、ある面の傾斜方向とは、別に断らない限り、当該面に平行でも垂直でもない方向を意味し、具体的には前記面の極角が0°より大きく90°より小さい範囲の方向を指す。
 以下の説明において、別に断らない限り、ある層の面内レターデーションReは、Re=(nx-ny)×dで表される値を示し、また、ある層の厚み方向のレターデーションRthとは、Rth=[{(nx+ny)/2}-nz]×dで表される値を示す。ここで、nxは、層の面内方向のうち、最大の屈折率を与える方向の屈折率を表し、nyは、前記面内方向のうちnxの方向に直交する方向の屈折率を表し、nzは、層の厚み方向の屈折率を表し、dは、層の厚みを表す。また、面内方向とは、厚み方向に垂直な方向を示す。
 以下の説明において、別に断らない限り、屈折率の測定波長は、590nmである。
 以下の説明において、「長尺」のものとは、幅に対して、通常5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。幅に対する長さの上限は、特に限定されないが、例えば100,000倍以下としうる。
 以下の説明において、「偏光板」及び「波長板」とは、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、別に断らない限り、「(メタ)アクリル」は、「アクリル」、「メタクリル」及びこれらの組み合わせを包含する用語である。
 以下の説明において、ある層又は膜の主屈折率とは、当該層の面内方向であって最大の屈折率を与える方向の屈折率nx、当該層の面内方向であって前記nxを与える方向に垂直な方向の屈折率ny、及び当該層の厚み方向の屈折率nzをいう。本願においては、これらnx、ny及びnzに対応する屈折率を、それぞれ、文字列「nx」、「ny」及び「nz」を含む記号にて表す。例えば、光学異方性層の主屈折率nx(A)、ny(A)及びnz(A)のうち、nx(A)は、光学異方性層の面内方向であって最大の屈折率を与える方向の屈折率であり、ny(A)は、光学異方性層の面内方向であってnx(A)を与える方向に垂直な方向の屈折率であり、nz(A)は、光学異方性層の厚み方向の屈折率である。
 以下の説明において、ある層の面内レターデーションReが逆波長分散性を示す、とは、当該層の波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)が、Re(450)/Re(550)<1.00を満たすことをいう。Reが逆波長分散性を有する層は、好ましくはさらに、当該層の波長550nm及び650nmにおける面内レターデーションRe(550)及びRe(650)が、Re(550)/Re(650)<1.00を満たす。
 ある層の厚み方向のレターデーションRthが逆波長分散性を示す、とは、当該層の波長450nm及び550nmにおける厚み方向のレターデーションRth(450)及びRth(550)が、Rth(450)/Rth(550)<1.00を満たすことをいう。Rthが逆波長分散性を有する層は、好ましくはさらに、当該層の波長550nm及び650nmにおける厚み方向のレターデーションRth(550)及びRth(650)が、Rth(550)/Rth(650)<1.00を満たす。
 〔1.光学異方性層〕
 本発明の光学異方性層は、第1位相差層及び第2位相差層を備える光学異方性層であって、第1位相差層及び第2位相差層は、下記式(1)~式(5)を満たす。
 nz(P1)>nx(P1)≧ny(P1)  式(1)
 nx(P2)≧ny(P2)>nz(P2)  式(2)
 |Rth(P1)|>|Rth(P2)|  式(3)
 Rth(P1)(450)/Rth(P1)(550)<Rth(P2)(450)/Rth(P2)(550) 式(4)
 Rth(P2)(450)/Rth(P2)(550)>1.14  式(5)
 但し、nx(P1)、ny(P1)及びnz(P1)は、第1位相差層の主屈折率であり、nx(P2)、ny(P2)及びnz(P2)は、第2位相差層の主屈折率であり、Rth(P1)は、第1位相差層の波長590nmにおける厚み方向のレターデーションであり、Rth(P2)は、第2位相差層の波長590nmにおける厚み方向のレターデーションであり、Rth(P1)(450)は、第1位相差層の波長450nmにおける厚み方向のレターデーションであり、Rth(P1)(550)は、第1位相差層の波長550nmにおける厚み方向のレターデーションであり、Rth(P2)(450)は、第2位相差層の波長450nmにおける厚み方向のレターデーションであり、Rth(P2)(550)は、第2位相差層の波長550nmにおける厚み方向のレターデーションである。
 本発明の光学異方性層は、第1位相差層及び第2位相差層が積層した状態の複層のフィルムとして構成しうる。かかる構成を有することにより、光学異方性層は、第1位相差層及び第2位相差層を順次透過する光に対して、所望の光学的な効果を発現しうる。
 〔1.1.1.第1位相差層〕
 第1位相差層は、前記式(1)を満たす層である。
 第1位相差層の屈折率nx(P1)と屈折率ny(P1)とは、値が同じであるか近いことが好ましい。具体的には、屈折率nx(P1)と屈折率ny(P1)の差nx(P1)-ny(P1)は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差nx(P1)-ny(P1)が前記の範囲に収まることにより、所望の光学的特性を有する光学異方性層を容易に得ることができる。
 〔1.1.2.第1位相差層の材料:ポジC重合体〕
 第1位相差層を構成する材料は、溶液を用いた塗工法により前記式(1)を満たす層を形成しうる材料を用いることが、所望の光学的特性を有し且つ薄い第1位相差層を容易に製造することができるため好ましい。具体的には、当該材料を含む塗工液を支持面上に塗工して塗工液層を得、これを硬化させることにより、前記式(1)を満たす層を形成しうることが好ましい。
 溶液を用いた塗工法により第1位相差層を形成しうる材料は、重合体を含む材料としうる。重合体の好ましい例としては、ポリビニルカルバゾール、ポリフマル酸エステル、セルロース誘導体、及びこれらの組み合わせが挙げられる。これらの重合体を、以下において「ポジC重合体」ということがある。ポジC重合体を採用することにより、所望の光学的特性を有する光学異方性層を、溶液を用いた塗工法により容易に得ることができる。
 ポリビニルカルバゾールの例としては、9-ビニルカルバゾールが重合してなる重合単位を含む重合体が挙げられる。
 ポリフマル酸エステルの例としては、フマル酸ジイソプロピルとアクリル酸3-エチル-3-オキセタニルメチルとの共重合体;及びフマル酸ジイソプロピルとケイ皮酸エステルとの共重合体が挙げられる。
 セルロース誘導体の例としては、セルロースエステルが挙げられる。具体的には、セルロースの水酸基上の水素原子の一部がアセチル基で置換され、他の一部が非アセチル基(プロピオニル基、ブチリル基又はこれらの組み合わせ)で置換されてなるセルロースエステルが挙げられる。かかるセルロースエステルにおいて、非置換の水酸基数に対する、非アセチル基で置換された基の数の比は10以上であることが好ましい。また、非アセチル基の置換度(非置換及び置換の合計の水酸基の数に対する、非アセチル基で置換された基の数の比)は、1.1~1.75であることが好ましい。より具体的なセルロースエステルの例としては、例えば特表2012-519219号公報に開示されるものが挙げられる。第1位相差層と第2位相差層とでは、その光学的性質が異なるため、第1位相差層を構成する材料としてのセルロース誘導体は、通常第2位相差層を構成する材料とは異なる材料となる。
 ポジC重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポジC重合体の分子量は、特に限定されず、製造及び使用に適した値に適宜調整しうる。具体的には、ゲル・パーミエーション・クロマトグラフィーにより測定される数平均分子量で、好ましくは50,000以上、200,000以下である。
 〔1.1.3.第1位相差層の任意の成分〕
 第1位相差層は、ポジC重合体のみからなってもよいが、ポジC重合体に組み合わせて、更に、任意の成分を含みうる。
 第1位相差層は、可塑剤を含みうる。第1位相差層が、ポジC重合体としてセルロースエステルを含む場合、第1位相差層は、セルロースエステルと組み合わせて、可塑剤を含むことが特に好ましい。可塑剤の例としては、キシリトールペンタアセテート、キシリトールペンタプロピオネート、アラビトールペンタプロピオネート、トリフェニルホスフェート、コハク酸残基とジエチレングリコール残基とを含むポリエステル、およびアジピン酸残基とジエチレングリコール残基とを含むポリエステルが挙げられる。可塑剤の割合は、ポジC重合体及び可塑剤の合計100重量%中、好ましくは2.5重量%以上、より好ましくは10重量%以上であり、好ましくは25重量%以下、より好ましくは20重量%以下である。
 〔1.1.4.第1位相差層の材料:その他〕
 第1位相差層を構成する材料は、上に述べたポジC重合体に限られず、その他の材料であってもよい。例えば、垂直配向する液晶性化合物を含む材料を用いうる。かかる材料としては、市販の材料(例えば、DIC社製、商品名UCL-018)を用いうる。
 〔1.1.5.第1位相差層の形成方法、厚み等〕
 第1位相差層は、ポジC重合体を含む溶液を用いた塗工法により形成しうる。具体的には、ポジC重合体、及び必要に応じて任意の成分を、適切な溶媒に溶解し、塗工液を得る。当該塗工液を、適切な基材に塗工する。その後、必要に応じて乾燥の操作を行い、溶媒を揮発させることにより、基材上にポジC重合体を含む第1位相差層を得ることができる。溶媒としては、メチルエチルケトン、1,3-ジオキソラン、N-メチルピロリドン(NMP)等の既知の溶媒から適切なものを適宜選択しうる。塗工液中のポジC重合体の濃度は、例えば10重量%~20重量%としうる。ポジC重合体として、上に述べた特定のものを採用した場合、所望の光学的特性を有する光学異方性層を容易に得ることができ、特に有利である。基材としては、特に限定されず、ポリエチレンテレフタレートフィルム(例えば東洋紡社製「コスモシャイン(登録商標)A4100」)等のフィルムを用いうる。
 第1位相差層の厚みは、好ましくは6~22μm、より好ましくは7~19μmである。かかる厚みとすることにより、第1位相差層に所望の光学的特性を付与しうる。
 〔1.2.1.第2位相差層〕
 第2位相差層は、前記式(2)及び式(5)を満たす層である。
 第2位相差層の屈折率nx(P2)と屈折率ny(P2)とは、値が同じであるか近いことが好ましい。具体的には、屈折率nx(P2)と屈折率ny(P2)の差nx(P2)-ny(P2)は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差nx(P2)-ny(P2)が前記の範囲に収まることにより、所望の光学的特性を有する光学異方性層を容易に得ることができる。
 前記式(5)を詳細に説明すると、Rth(P2)(450)/Rth(P2)(550)は1.14より大きく、好ましくは1.15より大きく、より好ましくは1.16より大きい。本発明者が見出したところによれば、Rth(P2)(450)/Rth(P2)(550)の値が前記下限以上であることにより、本発明の光学異方性層にポジティブCフィルムとしての有用な光学的特性を与え、かつその厚みを薄くすることができる。Rth(P2)(450)/Rth(P2)(550)の上限は、特に限定されないが、例えば1.50未満としうる。
 〔1.2.2.第2位相差層の材料〕
 第2位相差層を構成する材料は、溶液を用いた塗工法により前記式(2)及び式(5)を満たす層を形成しうる材料を用いることが、所望の光学的特性を有し且つ薄い第2位相差層を容易に製造することができるため好ましい。具体的には、当該材料を含む塗工液を支持面上に塗工して塗工液層を得、これに乾燥、光照射等の硬化の工程を施すことにより、前記式(2)及び式(5)を満たす層を形成しうることが好ましい。
 第2位相差層を構成する材料の例としては、以下に示す、式(I)で表される部分構造を有するセルロースエステル(式(I)で表される部分構造を有するセルロースエステルを、以下において「セルロースエステル(I)」という場合がある)を含む材料;コレステリック液晶組成物の硬化物;並びにこれらの組み合わせが挙げられる。
 〔1.2.3.セルロースエステル(I)を含む材料〕
 セルロースエステル(I)は、式(I)で表される部分構造を有する。
Figure JPOXMLDOC01-appb-C000011
 式(I)中、*はこの部分構造がセルロースエステル(I)における糖単位に結合する部位を表し、Yは、-O-C(=O)-、又は-O-C(=O)-NR10-を表し、R10は、水素原子または炭素数1~6のアルキル基を表し、PDGは環構造を有する有機基であって、前記環構造に含まれるπ電子数が12以上である有機基を表す。
 PDGとしては、下記式(II)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(II)中、nは0または1を表す。
 式(II)中、Bは、化学的な単結合および下記式(III-1)~(III-26)のいずれかを表す。
Figure JPOXMLDOC01-appb-C000013
 XGは、下記式(IV-1)~(IV-8)のいずれかを表す。これらのうち、(IV-1)~(IV-3)が好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(IV-1)~(IV-8)において、*はBとの結合を表す。
 EおよびEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表す。
 Rcは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、Rcが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。
 pは0~3の整数である。
 D~Dは置換基を有していてもよい芳香族炭化水素環基または置換基を有していてもよい芳香族複素環基を表す。
 セルロースエステル(I)の説明において、芳香族炭化水素環基とは、芳香族炭化水素環を含み、当該芳香族炭化水素環を構成する一又は複数の炭素原子上において、分子の他の部分と結合する一又は複数の結合手を有する基である。例えば、芳香族炭化水素環基の例としてはフェニル基が挙げられ、フェニル基は、芳香族炭化水素環としてベンゼン環を含み、ベンゼン環を構成する一の炭素原子上において、分子の他の部分と結合する一の結合手を有する。同様に、セルロースエステル(I)の説明において、芳香族複素環基とは、芳香族複素環を含み、当該芳香族炭化水素環を構成する一又は複数の炭素原子及び/又はヘテロ原子上において、分子の他の部分と結合する一又は複数の結合手を有する基である。
 セルロースエステル(I)の説明において、置換基を有する芳香族炭化水素環基とは、芳香族炭化水素環基に、さらに置換基を設けた構造を有する基である。即ち、芳香族炭化水素環を含み、当該芳香族炭化水素環を構成する一又は複数の炭素原子上において、分子の他の部分と結合する一又は複数の結合手を有し、当該芳香族炭化水素環を構成する他の一又は複数の炭素原子上において置換基を有する基である。置換基を有していてもよい芳香族炭化水素環基とは、芳香族炭化水素環基(置換基を有さないもの)及び置換基を有する芳香族炭化水素環基の両方を包含する用語である。
 セルロースエステル(I)の説明において、置換基を有する芳香族複素環基とは、芳香族複素環基に、さらに置換基を設けた構造を有する基である。即ち、芳香族複素環を含み、当該芳香族複素環を構成する一又は複数の炭素原子及び/又はヘテロ原子上において、分子の他の部分と結合する一又は複数の結合手を有し、当該芳香族複素環を構成する他の一又は複数の炭素原子及び/又はヘテロ原子上において置換基を有する基である。置換基を有していてもよい芳香族複素環基とは、芳香族複素環基(置換基を有さないもの)及び置換基を有する芳香族複素環基の両方を包含する用語である。
 セルロースエステル(I)の説明において、置換基を有する芳香族炭化水素環基のあるものが、特定の炭素数を有する旨規定する表現では、別に断らない限り、当該特定の炭素数は、当該芳香族炭化水素環を構成する炭素の数である。即ち、当該特定の炭素数は、置換基における炭素数を算入しない炭素数である。例えば、置換基を有する芳香族炭化水素環基がベンジルナフチル基である場合、当該基は、別に断らない限り、置換基を有する芳香族炭化水素環基であって炭素数10のものに包含される。同様に、セルロースエステル(I)の説明において、置換基を有する芳香族複素環基のあるものが、特定の炭素数を有すると規定する表現では、別に断らない限り、当該特定の炭素数は、当該芳香族複素環を構成する炭素の数である。さらに、置換基を有する有機基(置換基を有するアルキル基、置換基をするアルケニル基、置換基を有するアルキニル基、置換基を有するシクロアルキル基、等)の例示において、これらのあるものが、特定の炭素数を有すると規定する表現でも同様である。即ちこの表現においては、別に断らない限り、当該特定の炭素数は、置換基における炭素数を算入しない炭素数である。
 D~Dの例としての芳香族炭化水素環基の好ましい例としては、フェニル基、ナフチル基等の、炭素数6~30の芳香族炭化水素環基が挙げられ、より好ましい例としてはフェニル基が挙げられる。
 D~Dの例としての置換基を有する芳香族炭化水素環基の好ましい例としては、当該芳香族炭化水素環基の例の炭化水素環にさらに置換基を設けた構造を有する基が挙げられる。
 D~Dの例としての、置換基を有する芳香族炭化水素環基における置換基の数は、一つの環あたり一つでもよく複数でもよい。一つの環が複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、下記群G001が挙げられる。
 群G001:フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の炭素数1~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-Rb;-O-C(=O)-Rb;-C(=O)-O-Rb;及び-SORa。
 群G001において、RaおよびRbは下記と同じ意味を表す。
 D~Dの例としての芳香族複素環基の好ましい例としては、炭素数2~30の芳香族複素環基が挙げられ、より好ましい例としては、下記群G002が挙げられ、さらにより好ましい例としては、下記群G003が挙げられる。
 D~Dの例としての置換基を有する芳香族複素環基の好ましい例としては、前記の芳香族複素環基の例の複素環にさらに置換基を設けた構造を有する基が挙げられる。
 D~Dの例としての、置換基を有する芳香族複素環基における置換基の数は、一つの環あたり一つでもよく複数でもよい。一つの環が複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G001が挙げられる。
 群G002:1-ベンゾフラニル基、2-ベンゾフラニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、キノリル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、およびベンゾピラゾリル基。
 群G003:フラニル基、ピラニル基、チエニル基、オキサゾリル基、フラザニル基、チアゾリル基、およびチアジアゾリル基等の単環の芳香族複素環基、ならびにベンゾチアゾリル基、ベンゾオキサゾリル基、キノリル基、1-ベンゾフラニル基、2-ベンゾフラニル基、フタルイミド基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、チアゾロピリジル基、チアゾロピラジニル基、ベンゾイソオキサゾリル基、ベンゾオキサジアゾリル基、およびベンゾチアジアゾリル基等の縮合環の芳香族複素環基。
 DおよびDは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基、-C(=O)-Rx、-C(=O)-ORx、若しくは-C(=O)NR10Rxを表すか、又はDおよびDはこれらが一緒になって環を形成している有機基である。Rxは、水素原子、又は炭素数1~20の有機基である。
 D~Dの好ましい例としては、シアノ基、カルボキシル基、-C(=O)-CH、-C(=O)NHPh、-C(=O)-OC、-C(=O)-OC、-C(=O)-OCH(CH、-C(=O)-OCHCHCH(CH)-OCH、-C(=O)-OCHCHC(CH-OH、-C(=O)-OCHCH(CHCH)-Cが挙げられる。
 DおよびDの例としての、これらが一緒になって環を形成している有機基の例としては、下記群G004が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 群G004中のそれぞれの基において、
 R*は、炭素数1~3のアルキル基を表し、
 R**は、炭素数1~3のアルキル基、又は置換基を有していてもよいフェニル基を表し、
 R***は、炭素数1~3のアルキル基、又は置換基を有していてもよいフェニル基を表し、
 R****は、水素原子、炭素数1~3のアルキル基、水酸基、又は-COORyを表し、Ryは炭素数1~3のアルキル基を表す。
 群G004中の*は、D及びDが、二重結合を介して、式(IV-8)で表される基の他の部分と結合する位置を表す。
 R**及びR***が置換基を有するフェニル基である場合、かかる置換基の例としては、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基およびアミノ基が挙げられ、好ましい例としてはハロゲン原子、アルキル基、シアノ基、及びアルコキシ基が挙げられる。フェニル基が有する置換基の数は、一つでもよく、複数でもよい。R**及びR***においてフェニル基が複数の置換基を有する場合、それらは互いに同一であってもよいし、異なっていてもよい。
 Rxが炭素数1~12の有機基である場合、かかる有機基の例としては、炭素数1~12のアルコキシ基、水酸基で置換されていてもよい炭素数1~12のアルキル基、及び炭素数6~12の芳香族炭化水素環基が挙げられる。
 Qは、水素原子または炭素数1~6のアルキル基を表す。かかる炭素数1~6のアルキル基の例としては、メチル基、エチル基、プロピル基、およびイソプロピル基が挙げられる。
 Ayは、水素原子または置換基を有していてもよい炭素数1~30の有機基を表す。Ayの好ましい例としては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数6~30の芳香族炭化水素環基、及び置換基を有していてもよい炭素数2~30の芳香族複素環基が挙げられる。
 Ayの例としての、炭素数1~20のアルキル基の例としては、下記群G005が挙げられる。かかるアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。
 Ayの例としての、置換基を有する炭素数1~20のアルキル基の例としては、前記のアルキル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 群G005:メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基。
 Ayの例としての、置換基を有するアルキル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、下記群G006が挙げられる。
 群G006:フッ素原子、塩素原子等のハロゲン原子;
 シアノ基、ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基、メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;
 メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;
 ニトロ基、フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;
 トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;
 シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;
 シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;
 テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;
 フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;
 1個以上の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;並びに
 ベンゾフリル基、ベンゾピラニル基、ベンゾジオキソリル基、ベンゾジオキサニル基、-SORa、-SRb、-SRbで置換された炭素数1~12のアルコキシ基、及び水酸基。
 群G006において、RaおよびRbは下記と同じ意味を表す。
 Ayの例としての、炭素数2~20のアルケニル基の例としては、下記群G007が挙げられる。かかるアルケニル基の炭素数は、2~12であることが好ましい。
 Ayの例としての、置換基を有する炭素数2~20のアルケニル基の例としては、前記のアルケニル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 群G007:ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、およびイコセニル基。
 Ayの例としての、置換基を有するアルケニル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G006が挙げられる。
 Ayの例としての、炭素数2~20のアルキニル基の例としては、下記群G008が挙げられる。
 Ayの例としての、置換基を有する炭素数2~20のアルキニル基の例としては、前記のアルキニル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 群G008:エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、及び7-デカニル基。
 Ayの例としての、置換基を有するアルキニル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G006が挙げられる。
 Ayの例としての、炭素数3~12のシクロアルキル基の例としては、下記群G009が挙げられる。これらの中でも、シクロペンチル基、及びシクロヘキシル基が好ましい。
 Ayの例としての、置換基を有する炭素数3~12のシクロアルキル基の例としては、前記のシクロアルキル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 群G009:シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基。
 Ayの例としての、置換基を有するシクロアルキル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G006が挙げられる。
 Ayの例としての、炭素数6~30の芳香族炭化水素環基の例としては、フェニル基、ナフチル基等の、炭素数6~30の芳香族炭化水素環基が挙げられ、より好ましい例としてはフェニル基が挙げられる。
 Ayの例としての、置換基を有する炭素数6~30の芳香族炭化水素環基の例としては、前記の芳香族炭化水素環基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 Ayの例としての、置換基を有する芳香族炭化水素環基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G001が挙げられる。
 Ayの例としての、炭素数6~30の芳香族複素環基の例としては、前記群G002が挙げられ、より好ましい例としては、前記群G003が挙げられる。
 Ayの例としての、置換基を有する炭素数6~30の芳香族複素環基の例としては、前記の芳香族複素環基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 Ayの例としての、置換基を有する芳香族複素環基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G001が挙げられる。
 Ayの、置換基を含めた全体としての炭素数は、1~50としうる。
 セルロースエステル(I)の説明において、Raは、炭素数1~6のアルキル基、または、炭素数1~6のアルキル基若しくは炭素数1~6のアルコキシ基を置換基として有していてもよい炭素数6~20の芳香族炭化水素環基を表す。
 セルロースエステル(I)の説明において、Rbは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、または置換基を有していてもよい炭素数6~12の芳香族炭化水素環基を表す。
 Rbの例としての、炭素数1~20のアルキル基の例としては、前記群G005が挙げられる。かかるアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。
 Rbの例としての、置換基を有する炭素数1~20のアルキル基の例としては、前記のアルキル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 Rbの例としての、置換基を有するアルキル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、下記群G010が挙げられる。
 群G010:フッ素原子、塩素原子等のハロゲン原子;
 シアノ基;
 ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;
 メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;
 メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;
 ニトロ基;
 フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;
 トリアゾリル基、ピロリル基、フラニル基、チエニル基、チアゾリル基、ベンゾチアゾール-2-イルチオ基等の、炭素数2~20の芳香族複素環基;
 シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;
 シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;
 テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;
 フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;
 トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;
 ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;およびベンゾジオキサニル基。
 Rbの例としての、炭素数2~20のアルケニル基の例としては、前記群G007が挙げられる。かかるアルケニル基の炭素数は、2~12であることが好ましい。
 Rbの例としての、置換基を有する炭素数2~20のアルケニル基の例としては、前記のアルケニル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 Rbの例としての、置換基を有するアルケニル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記群G010が挙げられる。
 Rbの例としての、炭素数3~12のシクロアルキル基の例としては、前記群G009が挙げられる。これらの中でも、シクロペンチル基、及びシクロヘキシル基が好ましい。
 Rbの例としての、置換基を有する炭素数3~12のシクロアルキル基の例としては、前記のシクロアルキル基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 Rbの例としての、置換基を有するシクロアルキル基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、下記群G011が挙げられ、より好ましい例としては、下記群G012が挙げられる。
 群G011:フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基。
 群G012:フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基。
 Rbの例としての、炭素数6~12の芳香族炭化水素環基の例としては、フェニル基、1-ナフチル基、及び2-ナフチル基が挙げられる。これらの中でも、フェニル基が好ましい。
 Rbの例としての、置換基を有する炭素数6~12の芳香族炭化水素環基の例としては、前記の芳香族炭化水素環基の例のそれぞれにさらに置換基を設けた構造を有する基が挙げられる。
 Rbの例としての、置換基を有する芳香族炭化水素環基における置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、下記群G013が挙げられ、より好ましい例としては、下記群G014が挙げられる。
 群G013:フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;-OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;及びベンゾジオキサニル基。
 群G014:フッ素原子、塩素原子等のハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;ニトロ基;フラニル基、チオフェニル基等の、炭素数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素数1~12のフルオロアルキル基;及び-OCF
 Axは、炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する有機基を表す。Axが有する芳香環(芳香族炭化水素環又は芳香族複素環)は置換基を有していてもよい。
 Axの好ましい例としては、下記(Ax-1)~(Ax-6)が挙げられる。
 (Ax-1)一以上の炭素数6~30の芳香族炭化水素環を有する、炭素数6~40の炭化水素環基。
 (Ax-2)炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる一以上の芳香環を有する、炭素数2~40の複素環基。
 (Ax-3)炭素数6~30の芳香族炭化水素環基および炭素数2~30の芳香族複素環基の少なくとも1つで置換された、炭素数1~12のアルキル基。
 (Ax-4)炭素数6~30の芳香族炭化水素環基および炭素数2~30の芳香族複素環基の少なくとも1つで置換された、炭素数2~12のアルケニル基。
 (Ax-5)炭素数6~30の芳香族炭化水素環基および炭素数2~30の芳香族複素環基の少なくとも1つで置換された、炭素数2~12のアルキニル基。
 (Ax-6)(Ax-1)~(Ax-5)の芳香環に、さらに置換基を設けた構造を有する基。
 (Ax-1)の具体例としては、下記群G015が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 (Ax-2)の具体例としては、下記群G016~群G023が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 群G016~群G023において、Rは水素原子、又は炭素数1~6のアルキル基を示す。
 (Ax-3)は、炭素数1~12のアルキル基に、置換基として炭素数6~30の芳香族炭化水素環基および炭素数2~30の芳香族複素環基の少なくとも1つを設けた構造を有する。ここでのアルキル基の例としては、メチル基、エチル基、プロピル基、及びイソプロピル基が挙げられる。
 (Ax-4)は、炭素数2~12のアルケニル基に、置換基として炭素数6~30の芳香族炭化水素環基および炭素数2~30の芳香族複素環基の少なくとも1つを設けた構造を有する。ここでのアルケニル基の例としては、ビニル基及びアリル基が挙げられる。
 (Ax-5)は、炭素数2~12のアルキニル基に、置換基として炭素数6~30の芳香族炭化水素環基および炭素数2~30の芳香族複素環基の少なくとも1つを設けた構造を有する。ここでのアルキニル基の例としては、エチニル基及びプロピニル基が挙げられる。
 (Ax-3)~(Ax-5)のそれぞれが複数の置換基を有する場合、これらは同一であってもよく異なってもよい。
 (Ax-3)~(Ax-5)に設けられる、炭素数6~30の芳香族炭化水素環基の例としては、フェニル基及びナフチル基が挙げられ、より好ましい例としてはフェニル基が挙げられる。
 (Ax-3)~(Ax-5)に設けられる、炭素数2~30の芳香族複素環基の例としては、前記群G002が挙げられ、より好ましい例としては、前記群G003が挙げられる。
 (Ax-6)における、芳香環に設けられる置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、下記群G024が挙げられ、より好ましい例としては、下記群G025が挙げられる。
 群G024:フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の炭素数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の炭素数6~20の芳香族炭化水素環基;-OCF;-C(=O)-Rb;-O-C(=O)-Rb;-C(=O)-O-Rb;-SORa
 群G024において、Rb及びRaは、前記と同じ意味を表す。
 群G025:ハロゲン原子、シアノ基、炭素数1~6のアルキル基、および、炭素数1~6のアルコキシ基。
 Axの好ましい例としては、下記式(V)で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式(V)中、Eは-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表す。
 R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、-OCF、または、-C(=O)-O-Rを表す。
 Rの定義及び具体例は前記の通りである。
 複数のR~R同士は、すべて同一であっても、相異なっていてもよく、環を構成する少なくとも1つのC-R~C-Rは、窒素原子に置き換えられていてもよい。
 Azは、炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する有機基を表す。Azが有する芳香環は置換基を有していてもよい。
 Azの好ましい例としては、下記(Az-1)~(Az-3)が挙げられる。
 (Az-1)一以上の炭素数6~30の芳香族炭化水素環を有する、炭素数6~40の炭化水素環基。
 (Az-2)炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる一以上の芳香環を有する、炭素数2~40の複素環基。
 (Az-3)(Az-1)~(Az-2)の芳香環に、さらに置換基を設けた構造を有する基。
 (Az-3)における、芳香環に設けられる置換基の数は、一つでもよく複数でもよい。複数の置換基を有する場合、これらは同一であってもよく異なってもよい。かかる置換基の例としては、前記、群G024と同様のものが挙げられる。
 Azの好ましい例としては、下記群G026が挙げられる。群G026において、Rは水素原子、又は炭素数1~6のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000026
 セルロースエステル(I)において、式(I)で表される部分構造は、糖単位に結合する。具体的には、セルロースエステル(I)は、糖単位における炭素環上の水酸基(-OH)が、-Y-PDGに置き換えられた構造を有しうる。
 セルロースエステル(I)は、糖単位に結合した構造として、式(I)で表される部分構造に加え、式(I)で表される部分構造以外の任意の部分構造を有してもよい。かかる任意の部分構造の例としては、アセトキシ基(-OC(=O)CH)、ブチリルオキシ基(-OC(=O)CHCHCH)、プロピオニルオキシ基(-OC(=O)CHCH)、フタリルオキシ基(-OC(=O)C-C(=O)OH及び/又は-OC(=O)C-C(=O)O-)及びこれらの組み合わせが考えられる。
 より具体的には、セルロースエステル(I)は、セルロースエステル(I)以外のセルロースエステル(以下において、セルロールエステル(I’)という)における水酸基の一部又は全部が、式(I)で表される部分構造で置換されてなる構造を有しうる。セルロースエステル(I’)の例としては、セルロースアセテートブチレート、セルロースアセテート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレート、及びこれらの混合物からなる群より選択されるものが挙げられる。
 セルロースエステル(I’)としては、セルロースアセテートブチレート、セルロースアセテート、セルロースアセテートプロピオネート、又はこれらの混合物であって、水酸基含量の多いものが好ましい。セルロースエステル(I’)として水酸基含量が多いものを採用することにより、式(I)で表される部分構造を容易に導入しうる。
 セルロースエステル(I’)は、セルロースを対応するカルボン酸あるいは無水物(例えば、アセテートの場合は酢酸、ブチレートの場合は酪酸)でトリエステル化した後、加水分解することによって製造されうる。セルロースアセテートブチレートの場合、一般的にアセチル基が2~35重量%、ブチリル基が16~53重量%、水酸基が0.8~5重量%の樹脂が、セルロースアセテートの場合、一般的にアセチル基32~41重量%、水酸基が3.5~8.7重量%の樹脂が、セルロースアセテートプロピオネートの場合、アセチル基が0.6~2.5重量%、プロピオニル基が42~45重量%、水酸基が2.5~5重量%の樹脂が市販されている。具体例としては、例えば、「CAB-531-1」(アセチル基含量=2.8%、ブチリル基含量=50%、水酸基含量=1.7%)、「CAB-553-0.4」(アセチル基含量=2.0%、ブチリル基含量=46%、水酸基含量=4.8%)(いずれもイーストマンケミカルプロダクト社製、商品名)、「CA-320S」(アセチル基含量=32%、水酸基含量=8.7%)(イーストマンケミカルプロダクト社製、商品名)、「CAP-504-0.2」(アセチル基含量=0.6%、プロピオニル基含量=42.5%、水酸基含量=5%)(イーストマンケミカルプロダクト社製、商品名)等が挙げられる。これらに含まれる水酸基に対して、前記式(I)で示される構造を導入しうる。反応に使用するセルロースエステル(I’)に含まれる水酸基含量としては、0.5~50重量%であり、0.5~30重量%が好ましく、0.5~20重量%が更に好ましい。前記式(I)で示される構造の導入率は、反応に使用するセルロースエステル(I’)の水酸基含量に対して、30%以上が好ましく、50%以上が更に好ましく、80%以上が最も好ましい。
 式(I)で表される構造を側鎖に有するセルロースエステル(I)としては、ベンゾチアゾール環を側鎖に有するセルロースエステルが好ましい。
 セルロースエステル(I)の合成方法の例として、
 合成方法(A):Yが-O-C(=O)-である場合の合成方法、及び
 合成方法(B):Yが-O-C(=O)-NR10-である場合の合成方法
 のそれぞれについて説明する。
 合成方法(A)の具体的な例としては、
 合成方法(A-1):式PDG-C(=O)-OHで表される化合物(A-1)を用いる合成方法、及び
 合成方法(A-2):式PDG-C(=O)-Lで表される化合物(A-2)を用いる合成方法
 が挙げられる。前記式中、PDGは、式(I)におけるPDGと同じものを表し、Lはハロゲン原子、メタンスルホニルオキシ基、パラトルエンスルホニルオキシ基、又はベンゼンスルホニルオキシ基を表す。
 合成方法(A-1)では、化合物(A-1)を、セルロースエステル(I’)の水酸基と脱水縮合反応させる。その具体的な方法の例としては、
 合成方法(A-1-1):カルボジイミド等の縮合剤を用いる方法、
 合成方法(A-1-2):酸触媒を用いる共沸脱水による方法、及び
 合成方法(A-1-3):塩基触媒を用いる共沸脱水による方法
 が挙げられる。
 合成方法(A-1-1)における縮合剤は特に制限されないが、その例としては、N,N’-ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、及びジシクロヘキシルカルボジイミドが挙げられる。中でも、N,N-ジイソプロピルカルボジイミド、及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩が好ましい。
 脱水縮合剤を用いる際には、4-(ジメチルアミノ)ピリジン等の活性化剤を、反応系に共存させることもできる。
 合成方法(A-1-1)における縮合剤の使用量は、セルロースエステル(I’)の水酸基に対して、好ましくは1.0~2.0当量、より好ましくは、1.0~1.5当量である。化合物(A-1)の使用量は、セルロースエステル(I’)の水酸基に対して、好ましくは0.5~2.0当量、より好ましくは、1.0~1.5当量である。
 合成方法(A-1-1)における反応においては、反応溶媒を適宜用いうる。反応溶媒には、特に制限はなく、不活性な溶媒を適宜選択しうる。反応溶媒の例としては、クロロホルム、塩化メチレン等の塩素系溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミド等のアミド系溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;及びこれらの溶媒の2種以上からなる混合溶媒が挙げられる。中でも、クロロホルム、塩化メチレン等の塩素系溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミド等のアミド系溶媒;及び1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類が好ましい。反応温度は通常、0℃~100℃であり、室温である23℃付近から50℃以下が好ましい。反応時間は通常、30分から24時間である。
 合成方法(A-1-2)における酸触媒の例としては、塩酸、硫酸等の無機鉱酸、及びメタンスルホン酸、パラトルエンスルホン酸等のスルホン酸が挙げられ、中でもメタンスルホン酸、パラトルエンスルホン酸等のスルホン酸が好ましい。
 合成方法(A-1-2)における酸触媒の使用量は、セルロースエステル(I’)の水酸基に対して、好ましくは0.01~1.5当量であり、より好ましくは0.05~1.0当量である。化合物(A-1)の使用量は、セルロースエステル(I’)の水酸基に対して、好ましくは0.5~2.0当量、より好ましくは、1.0~1.5当量である。
 合成方法(A-1-2)における反応においては、反応溶媒を適宜用いうる。反応溶媒には、特に制限はなく、不活性な溶媒を適宜選択しうる。反応溶媒の例としては、クロロホルム、塩化メチレン等の塩素系溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;及びこれらの溶媒の2種以上からなる混合溶媒が挙げられる。中でも、シクロペンチルメチルエーテル等のエーテル類、及びベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が好ましい。反応温度は通常、生成する水と溶媒が共沸する温度であり、一般的には50℃~170℃であるが、反応系内を減圧することで反応温度を下げることも効果的である。反応時間は通常、30分から24時間である。
 合成方法(A-1-3)における塩基触媒の例としては、ナトリウムメチラート等の金属アルコキシド、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、及び炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩が挙げられる。中でも、ナトリウムメチラート等の金属アルコキシド、及び水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が好ましい。塩基触媒の使用量は、合成方法(A-1-2)における酸触媒の使用量と同じ範囲としうる。
 合成方法(A-1-3)における反応においては、反応溶媒を適宜用いうる。反応溶媒には、特に制限はなく、不活性な溶媒を適宜選択しうる。反応溶媒の例としては、1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;及びこれらの溶媒の2種以上からなる混合溶媒が挙げられる。中でも、シクロペンチルメチルエーテル等のエーテル類、及びベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が好ましい。合成方法(A-1-3)における反応温度及び反応時間の範囲は、合成方法(A-1-2)におけるそれらと同じ範囲としうる。
 化合物(A-1)は、例えば、特開2016-190818号公報に記載の方法によりヒドラジン誘導体を合成し、これをさらに修飾することにより調製しうる。かかる修飾は、ヒドラジン誘導体と反応できる、ホルミル基あるいはケトン基を有する適当な化合物との反応により行いうる。
 合成方法(A-2)では、化合物(A-2)を、セルロースエステル(I’)の水酸基と、塩基存在下、反応させる。例えば、Lがハロゲン原子である場合は、脱ハロゲン化水素反応を行う。化合物(A-2)の具体例としては、Lが塩素原子である酸クロリド、並びにLがメタンスルホニルオキシ基又はパラトルエンスルホニルオキシ基である混合酸無水物が挙げられる。
 化合物(A-2)は、化合物(A-1)を出発物質として、これを酸ハロゲン化物または混合酸無水物へ誘導体化することにより調製しうる。誘導体化の具体的な方法は、特に限定されず、既知の方法を採用しうる。
 酸ハロゲン化物への誘導体化は、適当なハロゲン化剤を用いて行いうる。ハロゲン化剤の例としては、三塩化リン、五塩化リン、塩化チオニル、及び塩化オキサリルが挙げられる。中でも、塩化チオニル、及び塩化オキサリルが好ましい。
 混合酸無水物への誘導体化は、特に制限されないが、メタンスルホニルクロリド、p-トルエンスルホニルクロリド等のスルホニルハライド、及びトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等の塩基の存在下で行うことができる。
 化合物(A-2)を用いて、セルロースエステル(I’)の水酸基をエステル化することにより、合成方法(A-2)による合成を行いうる。エステル化反応は、塩基を用いて行いうる。エステル化反応に用いる塩基の例としては、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、及び炭酸セシウムが挙げられる。中でも、トリエチルアミン、及びジイソプロピルエチルアミンが好ましい。
 合成方法(B)は、式PDG-N=C=Oで表される化合物(B)を用いて行いうる。セルロースエステル(I’)の水酸基に、化合物(B)のイソシアナト基を付加反応させることにより、セルロースエステル(I)を合成しうる。かかる付加反応に際しては、塩基を用いうる。付加反応における塩基は特に制限されないが、その例としては、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン、1,4-ジアザビシクロ[2.2.2]オクタン、及び1,8-ジアザビシクロ[5.4.0]ウンデクー7-エンが挙げられ、中でも1,4-ジアザビシクロ[2.2.2]オクタンが好ましい。
 第2位相差層が、セルロースエステル(I)を含む層である場合、第2位相差層は、当該セルロースエステルのみからなってもよいが、当該セルロースエステルに加えて、更に、任意の成分を含みうる。
 第2位相差層が、セルロースエステル(I)を含む層である場合、第2位相差層は、当該セルロースエステルを含む溶液を用いた塗工法により形成しうる。具体的には、セルロースエステル、及び必要に応じて任意の成分を、適切な溶媒に溶解し、塗工液を得る。当該塗工液を、適切な基材に塗工する。その後、必要に応じて乾燥の操作を行い、溶媒を揮発させることにより、基材上にセルロースエステルを含む第2位相差層を得ることができる。溶媒としては、メチルエチルケトン、1,3-ジオキソラン、N-メチルピロリドン(NMP)等の既知の溶媒から適切なものを適宜選択しうる。塗工液中のセルロースエステルの濃度は、例えば10重量%~20重量%としうる。セルロースエステルとして、上に述べた特定のものを採用した場合、前記式(5)等の所望の光学的特性を有し、且つ厚みの薄い光学異方性層を容易に得ることができ、特に有利である。基材としては、特に限定されず、ポリエチレンテレフタレートフィルム(例えば東洋紡社製「コスモシャイン(登録商標)A4100」)等のフィルムを用いうる。
 第2位相差層がセルロースエステル(I)を含む層である場合、第2位相差層の厚みは、好ましくは2.5~40μm、より好ましくは5~20μmである。かかる厚みとすることにより、第2位相差層に所望の光学的特性を付与しうる。
 〔1.2.4.コレステリック液晶組成物の硬化物〕
 コレステリック液晶組成物の硬化物は、コレステリック液晶組成物を硬化して得られる材料である。コレステリック液晶組成物は、コレステリック液晶相を呈しうる重合性液晶化合物を含む組成物である。コレステリック液晶組成物の硬化物の層は、通常、重合性液晶化合物が重合して得られた樹脂の層であり、好ましくは、コレステリック規則性を有する樹脂層(以下において、単に「コレステリック樹脂層」という場合がある)である。より具体的には、コレステリック液晶組成物において重合性液晶化合物がコレステリック液晶相を呈した状態において、重合性液晶化合物を重合させることにより、コレステリック規則性を有する樹脂層を得ることができる。
 ある層の内部の分子がコレステリック規則性を有する場合、分子は、樹脂層内において、多数の分子の層をなす態様で整列する。かかる多数の分子の層の中のある層Aにおいては、分子の軸がある一定の方向となるよう分子が整列し、それに隣接する層Bでは、層Aにおける方向と角度を成してずれた方向に分子が整列し、それにさらに隣接する層Cでは層Bにおける方向と角度を成してさらにずれた方向に分子が整列する。このように、多数の分子の層において、分子の軸の角度が連続的にずれて、分子がねじれる構造が形成される。このように分子軸の方向が連続的にねじれてゆく構造は、通常は螺旋構造であり、光学的にカイラルな構造となる。かかるねじれの方向(螺旋軸)は、コレステリック樹脂層の厚み方向に略平行(平行、又は±5°程度の角度をなす方向)になっていることが好ましい。
 コレステリック樹脂層は、選択反射特性(入射光の一部の円偏光成分を反射させ、残余を透過させる特性)を発現しうる。選択反射帯域(選択反射特性が発現する波長帯域)は、その螺旋構造のピッチに相関しうる。画像表示装置のための位相差層は、通常、可視領域において均一な高い透過率を有することが求められるため、位相差層としてのコレステリック樹脂層が選択反射特性を有する場合、選択反射帯域は、赤外領域又は紫外領域であることが好ましい。選択反射帯域は、コレステリック液晶組成物における重合性液晶化合物、キラル化合物等の成分の種類及びその含有量を調整することにより、所望の範囲に調整しうる。
 好ましい例において、コレステリック液晶組成物は、芳香族イミン構造を有する重合性液晶化合物を含む。芳香族イミン構造を有する重合性液晶化合物の例としては、下記式(I’)で示される化合物が挙げられる。以下において、この化合物を、重合性液晶化合物(i)という場合がある。重合性液晶化合物(i)は、後述する重合性化合物(ii)でも、重合性キラル化合物でもないものである。
Figure JPOXMLDOC01-appb-C000027
 前記式(I’)において、Y~Yはそれぞれ独立して、単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR21-C(=O)-、-C(=O)-NR21-、-O-C(=O)-NR21-、-NR21-C(=O)-O-、-NR21-C(=O)-NR21-、-O-NR21-、または-NR21-O-を表す。ここで、R21は、水素原子または炭素数1~6のアルキル基を表す。R21は、水素原子又はメチル基であることが好ましい。
 Yの組み合わせとして特に好ましいのは、合成しやすさ及び本発明の所望の効果をより良好に発現させる観点から、YとYが-C(=O)-O-であり、YとYが-O-C(=O)-であり、YとYが-O-である組み合わせ、あるいは、Y~Yが-C(=O)-O-であり、Y~Yが-O-C(=O)-である組み合わせである。
 G及びGはそれぞれ独立して、置換基を有していてもよい、炭素数1~20の2価の脂肪族基であり、好ましくは炭素数1~12の2価の脂肪族基であり、炭素数1~12のアルキレン基が更に好ましい。
 G及びGの脂肪族基の置換基としては、ハロゲン原子、炭素数1~6のアルコキシ基;等が挙げられる。ハロゲン原子としてはフッ素原子が好ましく、アルコキシ基としては、メトキシ基、エトキシ基が好ましい。
 また、前記脂肪族基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR22-C(=O)-、-C(=O)-NR22-、-NR22-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R22は、水素原子または炭素数1~6のアルキル基を表す。R22は、水素原子又はメチル基であることが好ましい。
 Z及びZはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Z及びZの炭素数2~10のアルケニル基の具体例としては、CH=CH-、CH=C(CH)-、CH=CH-CH-、CH-CH=CH-、CH=CH-CH-CH-、CH=C(CH)-CH-CH-、(CHC=CH-CH-、(CHC=CH-CH-CH-、CH=C(Cl)-、CH=C(CH)-CH-、CH-CH=CH-CH-等が挙げられる。
 該アルケニル基の炭素数としては、2~6が好ましい。Z及びZのアルケニル基の置換基であるハロゲン原子としては、塩素原子が好ましい。
 中でも、Z及びZとしては、本発明の所望の効果をより良好に発現させる観点から、CH=CH-、CH=CH(CH)-、CH=C(Cl)-、CH=CH-CH-、CH=C(CH)-CH-、又はCH=C(CH)-CH-CH-であることがより好ましい。
 X~Xはそれぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~10のアルキル基、シアノ基、ニトロ基、-OR23、-O-C(=O)-R23、-C(=O)-OR23、-O-C(=O)-OR23、-NR24-C(=O)-R23、-C(=O)-NR2324、または-O-C(=O)-NR2324を表す。X~Xが置換基を有するアルキル基である場合の置換基としては、ハロゲン原子、ヒドロキシル基、メチル基、エチル基を挙げることができる。ここで、R23及びR24は、水素原子又は置換基を有してもよい炭素数1~10のアルキル基を表し、アルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR25-C(=O)-、-C(=O)-NR25-、-NR25-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R25は、水素原子または炭素数1~6のアルキル基を表す。R23及びR24が置換基を有するアルキル基である場合の置換基としては、それぞれ独立に、ハロゲン原子、ヒドロキシル基、メチル基、エチル基を挙げることができる。
 原料の入手しやすさの観点から、(1)X~Xがいずれも水素原子であるか、(2)X~X及びXがいずれも水素原子であり、かつX及びXが-OCH、-OCHCH、若しくは-CHであるか、(3)X~X、X及びXがいずれも水素原子であり、かつXが-C(=O)-OR23、-OCH、-OCHCH、-CH、-CHCH、-CHCHCH若しくはフッ素原子であるか、又は(4)X~X及びX~Xがいずれも水素原子であり、かつXが-C(=O)-O-R23、-OCH、-OCHCH、-CH、-CHCH、-CHCHCH若しくはフッ素原子であることが好ましい。
 前記a及びbはそれぞれ、(G-Y)単位及び(G-Y)単位の繰り返し数を表し、a及びbはそれぞれ独立して、0又は1である。a、bとして特に好ましい組み合わせとしては、合成しやすさ及び、本発明の所望の効果をより良好に発現させる観点からa及びbは共に1である。
 A及びAはそれぞれ独立して、炭素数1~30の2価の有機基Aを表す。有機基Aの炭素数としては6~20が好ましい。A及びAの有機基Aとしては、特に制限されないが、芳香族環を有するものが好ましい。
 前記A及びAとしては、本発明の所望の効果をより良好に発現させる観点から、下記式(A11)、(A21)及び(A31)に置換基が結合してもよい、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、又は置換基を有していてもよいナフチレン基が好ましく、中でも、下記式(A11)に置換基が結合しても良い、置換基を有していてもよいフェニレン基がより好ましい。当該置換基としては、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR基;等が挙げられる。ここでRは、炭素数1~6のアルキル基である。これらの中でも、ハロゲン原子、アルキル基、及びアルコキシ基が好ましく、ハロゲン原子としてはフッ素原子が、アルキル基としてはメチル基、エチル基、プロピル基が、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
Figure JPOXMLDOC01-appb-C000028
 前記式(I’)で表される重合性液晶化合物(i)及びそれを構成する基の具体例としては、例えば、国際公開第2017/033929号に開示されるものが挙げられる。重合性液晶化合物(i)の好ましい具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 重合性液晶化合物(i)は、そのΔn値が好ましくは0.05以上、より好ましくは0.20以上である。このような高いΔn値を有することにより、所望の性能を有し、且つ厚みの薄い第2位相差層を与えることができる。Δnの上限は、特に限定されないが、例えば、0.40以下、好ましくは0.35以下とすることができる。
 重合性液晶化合物(i)は、国際公開第2009/041512号等の文献に記載される既知の方法に基づき製造しうる。
 〔1.2.5.重合性化合物(ii)〕
 コレステリック液晶組成物は、重合性液晶化合物以外の重合性化合物を含有し得る。かかる重合性化合物の好ましい例としては、下記式(II’)で示されるアキラルな化合物が挙げられる。以下において、この化合物を重合性化合物(ii)という場合がある。
 Z-MG-O(CH)n1-Y11-Z (II’)
 前記式(II’)において、Zは、水素原子、置換基を有してもよい炭素原子数1~2個のアルキル基、ハロゲン原子、ヒドロキシル基、カルボキシル基、アミノ基、及びシアノ基;からなる群より選択される基を表す。Zが置換基を有するアルキル基である場合の置換基としては、ハロゲン原子を挙げることができる。Zは好ましくはシアノ基である。
 MGは、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、2,6-ナフチレン基、及び4,4’-ベンズアルデヒドアジン基(-C-CH-=N-N=CH-C-,ここで-C-はp-フェニレン基)からなる群より選択されるメソゲン基を表す。MGは好ましくは4,4’-ビフェニレン基である。
 nは、0~6、好ましくは0~2の整数を表す。
 Y11は、単結合、-O-、-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される基を表す。Y11は好ましくは-OCO-である。
 Zは、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。Zは好ましくはCH=CH-である。
 重合性化合物(ii)のΔnは好ましくは0.18以上であり、より好ましくは0.22以上とすることができる。このように高いΔn値を有することにより、所望の性能を有し、且つ厚みの薄い第2位相差層を与えることができる。Δnの上限は、特に限定されないが、例えば、0.35、好ましくは0.30とすることができる。
 重合性化合物(ii)の好ましい例としては、具体的には下記の化合物(2-1)~(2-4)を挙げることができる。
Figure JPOXMLDOC01-appb-C000030
 重合性化合物(ii)の製造方法は、特に限定されず、当該技術分野において知られた方法、例えば特開昭62-70406号公報及び特開平11-100575号公報に記載の方法により合成することができる。
 コレステリック液晶組成物が重合性液晶化合物(i)及び重合性化合物(ii)を含む場合、(重合性化合物(ii)の合計重量)/(重合性液晶化合物(i)の合計重量)の重量比は、好ましくは0.05~1、より好ましくは0.1~0.65、さらにより好ましくは0.15~0.45である。前記重量比を0.05以上とすることにより配向均一性を高めることができる。また逆に1以下とすることにより配向均一性を高め、液晶相の安定性を高め、均一な製品を得ることができる。なお、合計重量とは、1種を用いた場合にはその重量を、2種以上用いた場合には合計の重量を示す。
 コレステリック液晶組成物においては、重合性化合物(ii)の分子量が600未満、重合性液晶化合物(i)の分子量が600以上であることが好ましい。重合性化合物(ii)の分子量が600未満であることにより、それよりも分子量の大きい棒状液晶化合物の隙間に入り込むことができ、配向均一性を向上させることができる。重合性液晶化合物(i)の分子量は、より好ましくは750~950とすることができる。重合性化合物(ii)の分子量は、より好ましくは250~450とすることができる。
 〔1.2.6.重合性キラル化合物〕
 コレステリック液晶組成物が含有しうる、重合性液晶化合物以外の重合性化合物のさらなる例としては、重合性キラル化合物が挙げられる。重合性キラル化合物としては、分子内にキラルな炭素原子を有し、重合性液晶化合物と重合可能な化合物であって、かつ重合性液晶化合物の配向を乱さないものを適宜選択して用いうる。上に述べた重合性液晶化合物(i)は、重合性キラル化合物と混合することでコレステリック相を発現し得る。
 ここで、「重合」とは、通常の重合反応のほか、架橋反応を含む広い意味での化学反応を意味するものとする。
 コレステリック液晶組成物においては、重合性キラル化合物を一種単独で、あるいは二種以上を組み合わせて用いることができる。
 重合性キラル化合物の例としては、市販のもの(例えば、BASF社製「LC756」等)に加え、特開平11-193287号公報に記載されるもの、特開2003-137887号公報に記載されるもの、及び国際公開第2017/033929号に記載されるもの等の既知のものが挙げられる。
 コレステリック液晶組成物が重合性液晶化合物(i)と重合性キラル化合物とを含む場合、重合性キラル化合物の配合割合は、重合性液晶化合物(i)100重量部に対し、好ましくは0.1~100重量部、より好ましくは0.5~20重量部である。
 〔1.2.7.光重合開始剤〕
 コレステリック液晶組成物は、重合反応をより効率的に行う観点から、光重合開始剤を含有しうる。
 光重合開始剤としては、共に用いる重合性液晶化合物に存在する重合性基の種類に応じて適宜なものを選択して使用しうる。例えば、重合性基が、ラジカル重合性であればラジカル重合開始剤を、アニオン重合性の基であればアニオン重合開始剤を、カチオン重合性の基であればカチオン重合開始剤を、それぞれ使用しうる。光重合開始剤の具体例としては、国際公開第2017/033929号に記載されるものが挙げられる。
 特に、光ラジカル重合開始剤の具体例としては、例えば、チバスペシャルティーケミカルズ社製の商品名Irgacure907、商品名Irgacure184、商品名Irgacure369、商品名Irgacure379EG、商品名Irgacure651及び商品名IrgacureOXE02等が挙げられる。
 これらの重合開始剤は一種単独で、又は二種以上を組み合わせて用いることができる。
 コレステリック液晶組成物における光重合開始剤の配合割合は、通常0.03~7重量%である。
 〔1.2.8.コレステリック液晶組成物の他の成分〕
 コレステリック液晶組成物は、表面張力を調整するために、界面活性剤を含有しうる。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましい。界面活性剤としては、市販品を用いうる。市販品の例としては、セイミケミカル(株)製KH-40、及びネオス社製FTX-209Fが挙げられる。コレステリック液晶組成物が重合性液晶化合物(i)及び界面活性剤を含有する場合において、界面活性剤の配合割合は、重合性液晶化合物(i)100重量部に対し、通常、0.01~10重量部、好ましくは0.1~2重量部である。
 コレステリック液晶組成物は、上記成分の他、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物などの任意の添加剤を含有しうる。コレステリック液晶組成物が重合性液晶化合物(i)及び上に述べた添加剤を含有する場合、添加剤の配合割合は、重合性液晶化合物(i)100重量部に対し、通常、各々0.1~20重量部である。
 〔1.2.9.コレステリック液晶組成物の調製方法〕
 コレステリック液晶組成物は、通常、上に述べた成分(重合性液晶化合物(i)、重合性化合物(ii)、重合性キラル化合物、光重合開始剤、及び任意の添加剤)を適当な有機溶媒に溶解させることにより調製することができる。
 用いる有機溶媒としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;等が挙げられる。溶媒の含有割合は、溶液全量に対する割合として50~75重量%としうる。
 〔1.2.10.コレステリック液晶組成物を用いた、コレステリック樹脂層の形成方法〕
 コレステリック樹脂層は、コレステリック液晶組成物を基材に塗工してコレステリック液晶組成物の層を得て、これを硬化することにより形成しうる。基材としては、特に限定されず、ポリエチレンテレフタレートフィルム(例えば東洋紡社製「コスモシャイン(登録商標)A4100」)等のフィルムを用いうる。基材フィルムには、必要に応じて、ラビング処理等の配向規制力を付与する処理を施しうる。硬化の工程に先立って、必要に応じてコレステリック液晶組成物の層に配向処理を施すことができる。配向処理は、例えば液晶組成物の層を50~150℃で0.5~10分間加温することにより行うことができる。
 必要に応じて配向処理を施した後、コレステリック液晶組成物を光照射により硬化させることにより、コレステリック樹脂層を形成しうる。本発明において光照射に用いる光とは、可視光のみならず紫外線及びその他の電磁波をも含む。光の種類は、重合開始剤等の、コレステリック液晶組成物の成分に応じて適宜選択しうる。光の照射量及び照射の条件は、所望の硬化が行われるよう適宜調整しうる。
 基材上にコレステリック樹脂層を形成した後、基材上のコレステリック樹脂層をそのまま、又は必要に応じてコレステリック樹脂層を基材から剥離し、これを第2位相差層として用いうる。
 第2位相差層がコレステリック液晶組成物の硬化物の層である場合、第2位相差層の厚みは、好ましくは1.0~2.0μm、より好ましくは1.4~1.8μmである。かかる厚みとすることにより、第2位相差層に所望の光学的特性を付与しうる。
 〔1.3.第1位相差層と第2位相差層の光学的特性の関係〕
 本発明の光学異方性層が備える第1位相差層及び第2位相差層は、前記式(3)及び式(4)を満たす。
 前記式(3)を詳細に説明すると、|Rth(P1)|-|Rth(P2)|は、0より大きく、好ましくは20より大きく、より好ましくは30より大きい。|Rth(P1)|-|Rth(P2)|の値が前記下限以上であることにより、本発明の光学異方性層にポジティブCフィルムとしての有用な光学的特性を与えることができる。|Rth(P1)|-|Rth(P2)|の上限は、特に限定されないが、例えば150未満としうる。
 前記式(4)を詳細に説明すると、(Rth(P1)(450)/Rth(P1)(550))-(Rth(P2)(450)/Rth(P2)(550))は、0より小さく、好ましくは-0.06より小さく、より好ましくは-0.08より小さい。(Rth(P1)(450)/Rth(P1)(550))-(Rth(P2)(450)/Rth(P2)(550))の値が前記上限以下であることにより、本発明の光学異方性層にポジティブCフィルムとしての有用な、逆波長分散性等の光学的特性を与えることができる。(Rth(P1)(450)/Rth(P1)(550))-(Rth(P2)(450)/Rth(P2)(550))の下限は、特に限定されないが、例えば0.5超としうる。
 〔1.4.光学異方性層の特性〕
 光学異方性層は、その主屈折率nx(A)、ny(A)及びnz(A)が、nz(A)>nx(A)≧ny(A)を満たすものとしうる。このような主屈折率を有する光学異方性層は、ポジティブCフィルムとして用いうる。そのため、この光学異方性層を円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできる。さらに、画像表示装置が液晶表示装置である場合には、通常、視野角を広げることができる。そのため、画像表示装置の表示面を傾斜方向から見た場合に、画像の視認性を高めることができる。
 光学異方性層の屈折率nx(A)と屈折率ny(A)とは、値が同じであるか近いことが好ましい。具体的には、屈折率nx(A)と屈折率ny(A)の差nx(A)-ny(A)は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差nx(A)-ny(A)が前記の範囲に収まることにより、光学異方性層を画像表示装置に設ける場合の光学設計をシンプルにすることができ、かつ他の位相差フィルムとの貼合時に貼り合せ方向の調整を不要にできる。
 波長450nmにおける光学異方性層の厚み方向のレターデーションRth(A)(450)、波長550nmにおける光学異方性層の厚み方向のレターデーションRth(A)(550)、及び、波長650nmにおける光学異方性層の厚み方向のレターデーションRth(A)(650)は、通常、下記式(8)を満たし、好ましくはさらに式(9)を満たす。
 0.50<Rth(A)(450)/Rth(A)(550)<1.00 式(8)
 1.00≦Rth(A)(650)/Rth(A)(550)<1.25 式(9)
 前記式(8)を詳細に説明すると、Rth(A)(450)/Rth(A)(550)は、通常0.70より大きく、好ましくは0.75より大きく、より好ましくは0.80より大きく、また、通常1.00未満、好ましくは0.99未満、より好ましくは0.98未満である。
 さらに、前記式(9)を詳細に説明すると、Rth(A650)/Rth(A550)は、通常1.00以上、好ましくは1.01以上、より好ましくは1.02以上であり、通常1.25未満、好ましくは1.15未満、より好ましくは1.10未満である。
 前記の式(8)及び式(9)を満たす厚み方向のレターデーションRth(A)(450)、Rth(A)(550)及びRth(A)(650)を有する光学異方性層は、その厚み方向のレターデーションRthが逆波長分散性を示す。このように厚み方向のレターデーションRthが逆波長分散性を示す光学異方性層は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制したり、画像を表示する光に偏光サングラスを透過させたりする機能を、広い波長範囲において発揮できる。さらに、画像表示装置が液晶表示装置である場合には、通常、視野角を効果的に広げることができる。そのため、表示面に表示される画像の視認性を、特に効果的に向上させることができる。
 波長590nmにおける光学異方性層の面内レターデーションRe(A)(590)は、下記式(10)を満たすことが好ましい。
 Re(A590)≦10nm 式(10)
 前記式(10)を詳細に説明すると、Re(A)(590)は、好ましくは0nm~10nm、より好ましくは0nm~5nm、特に好ましくは0nm~2nmである。Re(A)(590)が前記の範囲に収まることにより、光学異方性層を画像表示装置に設ける場合の光学設計をシンプルにすることができ、かつ、他の位相差フィルムとの貼合時に貼り合せ方向の調整を不要にできる。
 波長590nmにおける光学異方性層の厚み方向のレターデーションRth(A)(590)は、下記式(11)を満たすことが好ましい。
 -200nm≦Rth(A)(590)≦-10nm 式(11)
 前記式(11)を詳細に説明すると、Rth(A)(590)は、好ましくは-200nm以上、より好ましくは-130nm以上、特に好ましくは-100nm以上であり、好ましくは-10nm以下、より好ましくは-30nm以下、特に好ましくは-50nm以下である。このようなRth(A)(590)を有する光学異方性層は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制し、反射光の色味変化を小さくできたり、画像を表示する光が偏光サングラスを透過できるようにしたりできる。さらに、画像表示装置が液晶表示装置である場合には、通常は、視野角を広げることができる。そのため、画像表示装置の表示面を傾斜方向から見た場合に、画像の視認性を高めることができる。
 光学異方性層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。
 光学異方性層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ここで、ヘイズは、JIS K7361-1997に準拠して、日本電色工業社製「濁度計 NDH-300A」を用いて、5箇所測定し、それから求めた平均値を採用しうる。
 光学異方性層の厚みは、所望の光学的特性が得られるように、適切に調整しうる。特に、第2位相差層として前記式(5)を満たすものを採用することにより、所望の光学的特性を有し、且つ厚みの薄い光学異方性層を容易に得ることができる。さらに、第1位相差層及び第2位相差層を構成する材料として上に述べたものを用いることにより、所望の光学的特性を有し、且つ厚みの薄い光学異方性層をさらに容易に得ることができる。光学異方性層の厚みは、好ましくは30μm以下、より好ましくは25μm以下、特に好ましくは20μm以下である。光学異方性層の厚みの下限は、所望の光学的特性が得られる限りにおいて特に限定されないが、例えば0.5μm以上としうる。
 〔1.5.光学異方性層の製造方法〕
 光学異方性層の製造方法は、特に限定されず、任意の製造方法を採用しうる。
 例えば、適切な基材の面上に、上に述べた方法により、第1位相差層及び第2位相差層のそれぞれを形成し、それらを貼合することにより、光学異方性層を製造しうる。当該製造方法を採用することにより、第1位相差層及び第2位相差層のそれぞれを、溶液を用いた塗工法により容易に製造し、且つ、各層の光学的特性を所望のものに容易に調整しうる。
 または、適切な基材の面上に、上に述べた方法により、第1位相差層及び第2位相差層のいずれか一方を形成し、形成した層を基材として、その面上に、第1位相差層及び第2位相差層の他方を形成することによっても、光学異方性層を製造しうる。
 また、光学異方性層の製造方法は、例えば、光学異方性層を基材から剥離する工程を含んでいてもよい。
 〔2.光学異方性積層体〕
 本発明の光学異方性積層体は、上述した光学異方性層、及び第3位相差層を備える。
 〔2.1.光学異方性積層体における光学異方性層〕
 光学異方性積層体における光学異方性層としては、上述したものを用いる。ただし、光学異方性積層体においては、波長590nmにおける光学異方性層の面内レターデーションRe(A)(590)、及び、波長590nmにおける光学異方性層の厚み方向のレターデーションRth(A)(590)が、下記式(12)及び式(13)を満たすことが好ましい。
 Re(A)(590)≦10nm 式(12)
 -110nm≦Rth(A)(590)≦-20nm 式(13)
 前記式(12)を詳細に説明すると、Re(A)(590)は、好ましくは0nm~10nm、より好ましくは0nm~5nm、特に好ましくは0nm~2nmである。Re(A)(590)が前記の範囲に収まることにより、光学異方性積層体を画像表示装置に設ける場合の光学設計をシンプルにすることができる。
 また、前記式(13)を詳細に説明すると、Rth(A)(590)は、好ましくは-110nm以上、より好ましくは-100nm以上であり、好ましくは-20nm以下、より好ましくは-40nm以下、特に好ましくは-50nm以下である。このようなRth(A)(590)を有する光学異方性層を備えた光学異方性積層体は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の傾斜方向において、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過させたりする機能を、効果的に発揮できる。そのため、画像表示装置の表示面を傾斜方向から見た場合に、画像の視認性を効果的に高めることができる。
 〔2.2.第3位相差層〕
 第3位相差層は、式(6)~式(7)を満たす。
 nx(P3)>ny(P3)≧nz(P3)   式(6)
 110nm≦Re(P3)(590)≦170nm  式(7)
 但し、nx(P3)、ny(P3)及びnz(P3)は、第3位相差層の主屈折率であり、Re(P3)(590)は、第3位相差層の波長590nmにおける面内レターデーションである。
 式(6)及び式(7)を満たす位相差層は、所謂λ/4波長板として機能しうる。このような第3位相差層を備える光学異方性積層体は、直線偏光子と組み合わせることによって円偏光板を構成しうる。この円偏光板は、画像表示装置の表示面に設けることにより、表示面を正面方向から見た場合に、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできるので、画像の視認性を高めることが可能である。
 第3位相差層の屈折率ny(P3)と屈折率nz(P3)とは、値が同じであるか近いことが好ましい。具体的には、屈折率ny(P3)と屈折率nz(P3)の差の絶対値|ny(P3)-nz(P3)|は、好ましくは0.00000~0.00100、より好ましくは0.00000~0.00050、特に好ましくは0.00000~0.00020である。屈折率差の絶対値|ny(P3)-nz(P3)|が前記の範囲に収まることにより、光学異方性積層体を画像表示装置に設ける場合の光学設計をシンプルにすることができる。
 波長590nmにおける第3位相差層の面内レターデーションRe(P3)(590)は、下記式(14)を満たすことが好ましい。
 110nm≦Re(P3)(590)≦170nm 式(14)
 前記式(14)を詳細に説明すると、Re(P3)(590)は、好ましくは110nm以上、より好ましくは120nm以上、特に好ましくは130nm以上であり、好ましくは170nm以下、より好ましくは160nm以下、特に好ましくは150nm以下である。このようなRe(P3)(590)を有する第3位相差層を備えた光学異方性積層体は、直線偏光子と組み合わせて円偏光板を得ることができる。この円偏光板を画像表示装置の表示面に設けることにより、表示面を正面方向から見た場合に、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過できるようにしたりできるので、画像の視認性を高めることが可能である。
 波長450nmにおける第3位相差層の面内レターデーションRe(P3)(450)、波長550nmにおける第3位相差層の面内レターデーションRe(P3)(550)、及び、波長650nmにおける第3位相差層の面内レターデーションRe(P3)(650)は、下記の式(15)を満たすことが好ましく、式(16)をも満たすことがさらに好ましい。
 0.75<Re(P3)(450)/Re(P3)(550)<1.00 式(15)
 1.01<Re(P3)(650)/Re(P3)(550)<1.25 式(16)
 前記式(15)を詳細に説明すると、Re(P3)(450)/Re(P3)(550)は、好ましくは0.75より大きく、より好ましくは0.78より大きく、特に好ましくは0.80より大きく、また、好ましくは1.00未満、より好ましくは0.95未満、特に好ましくは0.90未満である。
 前記式(16)を詳細に説明すると、Re(P3)(650)/Re(P3)(550)は、好ましくは1.01より大きく、好ましくは1.02より大きく、特に好ましくは1.04より大きく、また、好ましくは1.25未満、より好ましくは1.22未満、特に好ましくは1.19未満である。
 前記の式(15)及び式(16)を満たす面内レターデーションRe(P3)(450)、Re(P3)(550)及びRe(P3)(650)を有する第3位相差層は、その面内レターデーションReが逆波長分散性を示す。このように面内レターデーションReが逆波長分散性を示す第3位相差層を備える光学異方性積層体は、円偏光板に組み込んで画像表示装置に適用した場合に、画像表示装置の表示面の正面方向において、外光の反射を抑制したり、画像を表示する光に偏光サングラスを透過させたりする機能を、広い波長範囲において発揮できる。そのため、表示面に表示される画像の視認性を、特に効果的に向上させることができる。
 第3位相差層の面内の遅相軸方向は、任意であり、光学異方性積層体の用途に応じて任意に設定しうる。中でも、光学異方性積層体が長尺のフィルムである場合、第3位相差層の遅相軸とフィルム幅方向とがなす角度は、0°超90°未満であることが好ましい。また、ある態様において、第3位相差層の面内の遅相軸とフィルム幅方向とがなす角度は、好ましくは15°±5°、22.5°±5°、45°±5°、又は75°±5°、より好ましくは15°±4°、22.5°±4°、45°±4°、又は75°±4°、さらにより好ましくは15°±3°、22.5°±3°、45°±3°、又は75°±3°といった特定の範囲としうる。このような角度関係を有することにより、長尺の直線偏光子に光学異方性積層体をロールツーロールで貼り合わせて、円偏光板の効率的な製造が可能となる。
 第3位相差層の全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。また、第3位相差層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
 第3位相差層を構成する材料は、特に限定されず、既知の材料から上記の特徴を有するものを適宜採用しうる。具体的には、延伸フィルム、重合性液晶性化合物を含む液晶組成物を硬化させてなる層等の、位相差層として用いられる材料を採用しうる。
 〔2.3.光学異方性積層体における任意の層〕
 光学異方性積層体は、光学異方性層及び第3位相差層に組み合わせて、更に任意の層を備えうる。任意の層としては、例えば、粘着剤層、ハードコート層等が挙げられる。
 〔2.4.光学異方性積層体の製造方法〕
 光学異方性積層体の製造方法は、特に限定されず、任意の製造方法を採用しうる。
 例えば、適切な基材の面上に、上に述べた方法により、光学異方性層及び第3位相差層のそれぞれを形成し、それらを貼合することにより、光学異方性層を製造しうる。
 または、適切な基材の面上に、上に述べた方法により、光学異方性層及び第3位相差層のいずれか一方を形成し、形成した層を基材として、その面上に、光学異方性層及び第3位相差層の他方を形成することによっても、光学異方性積層体を製造しうる。
 また、前記の光学異方性積層体の製造方法は、上述した工程に加えて、任意の工程を含んでいてもよい。例えば、光学異方性積層体の製造方法は、例えば、光学異方性積層体を基材から剥離する工程を含んでいてもよい。光学異方性積層体の製造方法はまた、ハードコート層等の任意の層を設ける工程を含んでいてもよい。
 〔3.偏光板〕
 本発明の偏光板は、直線偏光子と、上述した光学異方性層、又は光学異方性積層体とを備える。このような偏光板は、画像表示装置に設けることにより、画像表示装置を傾斜方向から見た場合の画像の視認性を高めることができる。
 直線偏光子としては、液晶表示装置、及びその他の光学装置等の装置に用いられている既知の直線偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子の厚みは、好ましくは5μm~80μmである。
 偏光板は、更に、直線偏光子と、光学異方性層又は光学異方性積層体とを貼り合わせるための、粘着剤層を備えていてもよい。
 また、偏光板が光学異方性積層体を備える場合、その偏光板は、円偏光板として機能しうる。ここで、用語「円偏光板」には、狭義の円偏光板だけでなく、楕円偏光板も含む。このような円偏光板は、直線偏光子、光学異方性層及び第3位相差層を、この順で備えていてもよい。また、このような円偏光板は、直線偏光子、第3位相差層及び光学異方性層を、この順で備えていてもよい。
 前記のような円偏光板において、直線偏光子の偏光吸収軸に対して第3位相差層の遅相軸がなす角度は、45°またはそれに近い角度であることが好ましい。前記の角度は、具体的には、好ましくは45°±5°、より好ましくは45°±4°、特に好ましくは45°±3°である。
 上述した偏光板は、更に、任意の層を含みうる。任意の層としては、例えば、偏光子保護フィルム層が挙げられる。偏光子保護フィルム層としては、任意の透明フィルム層を用いうる。中でも、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂のフィルム層が好ましい。そのような樹脂としては、トリアセチルセルロース等のアセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、鎖状オレフィン樹脂、環式オレフィン樹脂、(メタ)アクリル樹脂等が挙げられる。さらに、偏光板が含みうる任意の層としては、例えば、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、フィルムの滑り性を良くするマット層、反射抑制層、防汚層等が挙げられる。これらの任意の層は、1層だけを設けてもよく、2層以上を設けてもよい。
 偏光板は、直線偏光子と、光学異方性層、又は光学異方性積層体とを、必要に応じて粘着剤を介して貼合することによって、製造しうる。
 〔4.画像表示装置〕
 本発明の画像表示装置は、上述した本発明の偏光板を備える。本発明の画像表示装置はまた、通常、画像表示素子を備える。画像表示装置において、偏光板は、通常、画像表示素子の視認側に設けられる。この際、偏光板の向きは、その偏光板の用途に応じて任意に設定しうる。よって、画像表示装置は、光学異方性層、又は光学異方性積層体と;偏光子と;画像表示素子と;を、この順に備えていてもよい。また、画像表示装置は、偏光子と;光学異方性層、又は光学異方性積層体と;画像表示素子と;を、この順に備えていてもよい。
 画像表示装置としては、画像表示素子の種類に応じて様々なものがあるが、代表的な例としては、画像表示素子として液晶セルを備える液晶表示装置、及び、画像表示素子として有機EL素子を備える有機EL表示装置が挙げられる。
 本発明の画像表示装置は、本発明の光学異方性層を構成要素として含み、これにより、外光の反射を抑制したり、画像を表示する光が偏光サングラスを透過しうるようにしたりすることができる。さらに、そのような効果を有しながら、且つ、耐久性が高く、良好な色調を有する表示装置とすることができる。
 〔5.その他〕
 本発明の光学異方性層は、画像表示素子を備える画像表示装置以外にも、種々の用途に用いうる。例えば、看板等の画像表示素子を有しない表示装置、照明装置、光源装置等の任意の装置に、色味の改善などの目的で設けうる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 〔評価方法〕
 〔光学特性の測定〕
 フィルム(基材フィルム等)上に形成された、試料層(光学異方性層、位相差層等)の光学特性(屈折率、レターデーション及び逆波長分散特性)は、下記の方法で測定した。
 試料層を、粘着剤層付ガラス板(粘着剤層は、日東電工社製「CS9621T」、以下において同じ)に貼り合せた。その後、基材を剥離し、ガラス板及び試料層を備えるサンプルを得た。このサンプルを、位相差計(Axometrics社製)のステージに設置して、試料層の面内レターデーションReの波長分散を測定した。ここで、面内レターデーションReの波長分散とは、波長毎の面内レターデーションReを表すグラフであり、例えば、横軸を波長、縦軸を面内レターデーションReとした座標においてグラフとして示される。こうして得られた試料層の面内レターデーションReの波長分散から、波長450nm、550nm、590nm及び650nmにおける試料層の面内レターデーションRe(450)、Re(550)、Re(590)及びRe(650)を求めた。
 また、試料層の遅相軸を回転軸として、ステージを40°傾けて、試料層の厚み方向に対して40°の角度をなす傾斜方向での試料層のレターデーションRe40の波長分散を測定した。ここで、レターデーションRe40の波長分散とは、波長毎のレターデーションRe40を表すグラフであり、例えば、横軸を波長、縦軸を面内レターデーションRe40とした座標においてグラフとして示される。
 さらに、プリズムカプラ(Metricon社製)を用いて、試料層の、面内方向であって最大の屈折率を与える方向の屈折率nx、前記面内方向であって前記nxの方向に垂直な方向の屈折率ny、及び、厚み方向の屈折率nzを、波長407nm、532nm及び633nmで測定し、コーシーフィッティングすることにより、屈折率nx、ny及びnzの波長分散を得た。ここで、屈折率の波長分散とは、波長毎の屈折率を表すグラフであり、例えば、横軸を波長、縦軸を屈折率とした座標においてグラフとして示される。
 その後、レターデーションRe40及び屈折率の波長分散のデータを基に、試料層の厚み方向のレターデーションRthの波長分散を計算した。ここで、厚み方向のレターデーションRthの波長分散とは、波長毎の厚み方向のレターデーションRthを表すグラフであり、例えば、横軸を波長、縦軸を厚み方向のレターデーションRthとした座標においてグラフとして示される。そして、こうして求められた試料層の厚み方向のレターデーションRthの波長分散から、波長450nm、550nm、590nm及び650nmにおける試料層の厚み方向のレターデーションRth(450)、Rth(550)、Rth(590)及びRth(650)を求めた。
 〔厚みの測定〕
 ある基材(基材フィルム等)上に形成された試料層(光学異方性層、位相差層等)の厚みは、膜厚測定装置(フィルメトリクス社製「フィルメトリクス」)を用いて、測定した。
 〔実施例1〕
 (1-1.第1位相差層)
 ポリ(9-ビニルカルバゾール)(Aldlich社製、商品番号182605、重量平均分子量1,100,000以下、粉末)を、固形分濃度が12%となるようにN-メチル-2-ピロリドン(NMP)に溶解させて、塗工液を作製した。
 基材フィルムとして片面に易接着処理を施したポリエチレンテレフタレートフィルム(東洋紡社製 「コスモシャイン(登録商標)A4100」、厚み100μm、以下において同じ)を用意した。前記の基材フィルムの面上に、塗工液を塗工して、塗工液層を形成した。塗工は、アプリケーターを用いて、基材フィルムの裏面(易接着処理を施した面の反対側の面、以下において同じ)に行った。塗工液層の厚みは、得られる第1位相差層の厚みが10μm程度になるように調整した。
 その後、塗工液層を、85℃オーブンで10分ほど乾燥させて、塗工液層中の溶媒を蒸発させた。これにより、基材フィルム上に第1位相差層を形成し、(第1位相差層)/(基材フィルム)の層構成を有する複層物を得た。得られた複層物における第1位相差層の膜厚及び光学特性を測定した。
 (1-2.第2位相差層)
 (1-2-1.中間体(Im-A)の合成)
Figure JPOXMLDOC01-appb-C000031
 特開2016-190818号公報の実施例1に記載される方法に従い、上記式(Im-A)で示される中間体(Im-A)を合成した。
 目的物の構造はH-NMRで同定した。H-NMR(500MHz,CDCl,TMS,δppm):7.60(dd,1H,J=1.0Hz,8.0Hz)、7.53(dd,1H,J=1.0Hz,8.0Hz)、7.27(ddd,1H,J=1.0Hz,8.0Hz,8.0Hz)、7.06(ddd,1H,J=1.0Hz,8.0Hz,8.0Hz)、4.22(s,2H)、3.74(t,2H,J=7.5Hz)、1.69-1.76(m,2H)、1.29-1.42(m,6H)、0.89(t,3H,J=7.0Hz)
 (1-2-2.中間体(Im-B)の合成)
Figure JPOXMLDOC01-appb-C000032
 温度計を備えた3口反応器において、窒素気流中、4-ホルミル安息香酸:10g(66.6mmol)をメタノール300mlに溶解させて、溶液を得た。室温下にて、この溶液に、(1-2-1)で合成した中間体(Im-A)19.9g(79.92mmol)を加えた。その後、(±)-10-カンファースルホン酸929mg(4.00mmol)を加えた。得られた混合物を、23℃にて、そのまま18時間撹拌し、反応を行った。反応終了後、氷浴にて、反応液を冷却して30分撹拌した。析出した固体をろ過により集めて、冷却したメタノールで洗浄した。得られた固体を真空乾燥機で乾燥させて、上記式(Im-B)で示される中間体(Im-B)を淡黄色固体として20.0g得た。収率は、4-ホルミル安息香酸基準で78.7モル%であった。
 (1-2-3.CAB-001の合成)
 温度計を備えた3口反応器において、窒素気流中、CAB551-0.2(イーストマンケミカルプロダクト社製、商品名)8g、(1-2-2)で合成した中間体(Im-B)2.14g(5.6mmol)及び4-(ジメチルアミノ)ピリジン684mg(5.6mmol)をN-メチルピロリドン200mlに溶解させ、溶液を得た。この溶液に1-エチル-3-(3―ジメチルアミノプロピル)カルボジイミド塩酸塩1.29g(6.72mmol)を加えて23℃にて18時間撹拌し、反応を行った。反応終了後、反応液を水2リットルに投入して、酢酸エチル200mlで2回抽出した。酢酸エチル層を集めて、無水硫酸ナトリウムで乾燥させて、硫酸ナトリウムをろ別した。酢酸エチル層をロータリーエバポレーターにて溶媒を蒸発除去した後、得られた残留物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1(容積比))により精製した。溶媒を留去して得られたオイルにクロロホルム80mlを加えた。このクロロホルム溶液をヘキサン1リットルにゆっくり滴下して、再沈殿精製を行った。析出した固体をろ過により集めて、ヘキサンで洗浄した。得られた固体を真空乾燥機で乾燥させて、セルロースエステル(I)であるCAB-001を、4.0gの淡黄色固体として得た。この固体の一部をサンプリングしてDMSO-dに溶解させてH-NMRにて、CAB-001に導入されている置換基の導入率を算出した。その結果、置換基は、水酸基:6.68mol%、-COCH:48.75mol%、-COCHCHCH:42.92mol%、中間体(Im-B)由来の基:1.65mol%から構成されていることが分かった。
 (1-2-4.第2位相差層の形成)
 CAB-001を、固形分濃度が12%となるように1,3-ジオキソランに溶解させて、塗工液を作製した。
 基材フィルムの裏面上に、塗工液を塗工して、塗工液層を形成した。塗工は、アプリケーターを用いて、基材フィルムの裏面上に行った。
 塗工液層の厚みは、得られる第2位相差層の厚みが12μm程度になるように調整した。
 その後、塗工液層を、85℃オーブンで10分ほど乾燥させて、塗工液層中の溶媒を蒸発させた。これにより、基材フィルム上に第2位相差層を形成し、(第2位相差層)/(基材フィルム)の層構成を有する複層物を得た。得られた複層物における第2位相差層の膜厚及び光学特性を測定した。
 (1-3.光学異方性層)
 粘着剤層付きガラス板の粘着剤層に、(1-1)で得た複層物の第1位相差層側の面を貼合し、その後基材フィルムを剥離した。これにより、第1位相差層を粘着剤層付きガラス板に転写し、(第1位相差層)/(粘着剤層)/(ガラス板)の層構成を有する複層物を得た。
 得られた複層物の第1位相差層の面上に、さらに粘着剤層を設けた。粘着剤層に、(1-2)で得た複層物の第2位相差層側の面を貼合し、その後基材フィルムを剥離した。これにより、第2位相差層を複層物に転写し、(第2位相差層)/(粘着剤層)/(第1位相差層)/(粘着剤層)/(ガラス板)の層構成を有する複層物を得た。当該複層物は、(第2位相差層)/(粘着剤層)/(第1位相差層)の層構成を有する光学異方性層を含むものである。
 得られた光学異方性層の光学特性を測定し、式(3)、式(4)及び式(5)の要件を満たすか否かを判定し、ポジティブCフィルム又はネガティブCフィルムに該当するか否かを判定した。また、得られた光学異方性層のRthの波長分散性が、逆波長分散(Rth(A)(450)/Rth(A)(550)<1.00)であるか否かを判定した。
 〔実施例2〕
 下記の変更点の他は、実施例1と同じ操作を行い、第1位相差層、第2位相差層及び光学異方性層を得て評価した。
 ・(1-1)での塗工液の塗工において、塗工液層の厚みを、得られる第1位相差層の厚みが7μm程度になるように調整した。
 〔実施例3〕
 (3-1.第2位相差層:コレステリック液晶層)
 下記の材料を混合して、コレステリック液晶組成物1を調製した:
 化合物1:16.1重量部、化合物2:4.0重量部、キラル化合物(BASF社製「LC756」):2.35重量部、重合開始剤(チバスペシャルティケミカル社製「イルガキュア379EG」):0.6重量部、界面活性剤(ネオス社製「FTX-209F」):0.022重量部、シクロペンタノン:51.6重量部。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 基材フィルムとして、ポリエチレンテレフタレートフィルム(東洋紡社製「コスモシャイン(登録商標)A4100」;厚み100μm)を用意した。この基材フィルムは、片面が、易接着処理を施された易接着処理面となっていた。
 基材フィルムの易接着処理面とは反対側の面に、ラビング処理を施した。次に、ラビング処理を施した面に、コレステリック液晶組成物を、孔径0.45μmのフィルターで濾過した後、バーコーター#4を用いて塗工した。これにより、基材フィルムの片面に、未硬化状態のコレステリック液晶組成物の層が形成された。
 得られたコレステリック液晶組成物の層に、140℃で2分間、配向処理を施した。これにより、コレステリック液晶組成物の層において、光重合性液晶化合物が配向し、コレステリック液晶相を呈した。また、前記の配向処理中にコレステリック液晶組成物の層が乾燥し、コレステリック液晶組成物の層から溶媒が除去された。
 その後、コレステリック液晶組成物の層に対して、紫外線(メタルハライドランプ)をコレステリック液晶組成物の塗工膜形成面側に窒素雰囲気下で照射した。照射条件は、ピーク照度300mJ/cmとした。照射の結果、コレステリック液晶組成物の層が硬化し、配向状態が固定されたコレステリック樹脂層(乾燥厚み0.9μm)となった。これにより、基材フィルム上に第2位相差層としてのコレステリック樹脂層を形成し、(第2位相差層)/(基材フィルム)の層構成を有する複層物を得た。得られた複層物における第2位相差層の膜厚及び光学特性を測定した。
 得られたコレステリック樹脂層について、紫外可視近赤外分光光度計(日本分光社製「V-550」)を使用して、200nm~600nmの波長範囲で反射スペクトルを測定した。その際、選択反射帯域が紫外線領域のみに存在していることを確認した。選択反射帯域の中心波長は370nmであった。
 (3-2.第1位相差層及び光学異方性層)
 下記の変更点の他は、実施例1の(1-1)及び(1-3)と同じ操作を行い、第2位相差層及び光学異方性層を得て評価した。
 ・(1-1)での塗工液の塗工において、塗工液層の厚みを、得られる第1位相差層の厚みが19μm程度になるように調整した。
 ・(1-2)で得た複層物に代えて、(3-1)で得た複層物を用いた。
 〔比較例1〕
 下記の変更点の他は、実施例1と同じ操作を行い、第1位相差層、第2位相差層及び光学異方性層を得て評価した。
 ・(1-1)での塗工液の塗工において、塗工液層の厚みを、得られる第1位相差層の厚みが5μm程度になるように調整した。
 〔比較例2〕
 (C2-1.第2位相差層:TAC)
 三酢酸セルロース(略名TAC、和光純薬工業株式会社より購入)を、固形分濃度が12%となるように1,3-ジオキソランに溶解させて、塗工液を作製した。基材フィルムの裏面上に、塗工液を塗工して、塗工液層を形成した。塗工は、アプリケーターを用いて、基材フィルムの裏面上に行った。塗工液層の厚みは、得られる第2位相差層の厚みが30μm程度になるように調整した。
 その後、塗工液層を、85℃オーブンで10分ほど乾燥させて、塗工液層中の溶媒を蒸発させた。これにより、基材フィルム上に第2位相差層を形成し、(第2位相差層)/(基材フィルム)の層構成を有する複層物を得た。得られた複層物における第2位相差層の膜厚及び光学特性を測定した。
 (C2-2.第1位相差層及び光学異方性層)
 下記の変更点の他は、実施例1の(1-1)及び(1-3)と同じ操作を行い、第2位相差層及び光学異方性層を得て評価した。
 ・(1-1)での塗工液の塗工において、塗工液層の厚みを、得られる第1位相差層の厚みが12μm程度になるように調整した。
 ・(1-2)で得た複層物に代えて、(C2-1)で得た複層物を用いた。
 〔比較例3〕
 (C3-1.第2位相差層)
 第2位相差層として、CAB-001の層及びTACの層からなる位相差層を製造した。CAB-001の層及びTACの層の厚みは、第2位相差層のRth(P2)(450)/Rth(P2)(550)が1.14以下となり、且つ、第1位相差層と組み合わせて得られる光学異方性層の波長分散性及びRth(590)が実施例1の光学異方性層と同程度となるよう調整した。
 具体的な第2位相差層の製造方法は、下記の通りとした。
 まず、塗工液層の厚みを、得られる層の厚みが26.7μmになるよう調整した他は、実施例1の(1-2)と同じ操作により、基材フィルム上にCAB-001の層を形成し、(CAB-001の層)/(基材フィルム)の層構成を有する複層物(i)を得た。
 次に、塗工液層の厚みを、得られる層の厚みが17.8μmになるよう調整した他は、比較例2の(C2-1)と同じ操作により、基材フィルム上にTACの層を形成し、(TACの層)/(基材フィルム)の層構成を有する複層物(ii)を得た。
 複層物(i)と複層物(ii)とを、粘着剤層を介して貼合し、(基材フィルム)/(TACの層)/(粘着剤層)/(CAB-001の層)/(基材フィルム)の層構成を有する複層物(iii)を得た。さらに、複層物(iii)から一方の面の基材フィルムを剥離し、(TACの層)/(粘着剤層)/(CAB-001の層)/(基材フィルム)の層構成を有する複層物(iv-C3)を得た。当該複層物は、(TACの層)/(粘着剤層)/(CAB-001の層)の層構成を有する第2位相差層を含むものである。
 (C3-2.第1位相差層及び光学異方性層)
 下記の変更点の他は、実施例1の(1-1)及び(1-3)と同じ操作を行い、第2位相差層及び光学異方性層を得て評価した。
 ・(1-1)での塗工液の塗工において、塗工液層の厚みを、得られる第1位相差層の厚みが22.3μm程度になるように調整した。
 ・(1-2)で得た複層物に代えて、(C3-1)で得た複層物(iv-C3)を用いた。
 〔比較例4〕
 (C4-1.第2位相差層)
 Rth(P2)(450)/Rth(P2)(550)がさらに小さくなるよう、CAB-001の層及びTACの層の厚みの比を変更した他は、比較例3の(C3-1)と同じ操作により、位相差層を製造した。
 具体的には、CAB-001の層の厚み及びTACの層の厚みが、いずれも36.75μmになるよう塗工液層の厚みを調整した他は、比較例3の(C3-1)と同じ操作を行い、(TACの層)/(粘着剤層)/(CAB-001の層)/(基材フィルム)の層構成を有する複層物(iv-C4)を得た。当該複層物は、(TACの層)/(粘着剤層)/(CAB-001の層)の層構成を有する第2位相差層を含むものである。
 (C4-2.第1位相差層及び光学異方性層)
 下記の変更点の他は、実施例1の(1-1)及び(1-3)と同じ操作を行い、第2位相差層及び光学異方性層を得て評価した。
 ・(1-1)での塗工液の塗工において、塗工液層の厚みを、得られる第1位相差層の厚みが22.3μm程度になるように調整した。
 ・(1-2)で得た複層物に代えて、(C4-1)で得た複層物(iv-C4)を用いた。
 実施例及び比較例の結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 *式(3):光学異方性層が、式(3)(|Rth(P1)|>|Rth(P2)|)を満たすか否かの判定結果。併せて、|Rth(P1)|及び|Rth(P2)|の数値を示す。Y:式(3)を満たす。N:式(3)を満たさない。
 *式(4):光学異方性層が、式(4)(Rth(P1)(450)/Rth(P1)(550)<Rth(P2)(450)/Rth(P2)(550))を満たすか否かの判定結果。併せて、Rth(P1)(450)/Rth(P1)(550)及びRth(P2)(450)/Rth(P2)(550)の数値を示す。Y:式(4)を満たす。N:式(4)を満たさない。
 *式(5):光学異方性層が、式(5)(Rth(P2)(450)/Rth(P2)(550)>1.14)を満たすか否かの判定結果。併せて、Rth(P2)(450)/Rth(P2)(550)の数値を示す。Y:式(5)を満たす。N:式(5)を満たさない。
 *位相差種類:光学異方性層が、ポジティブCフィルム又はネガティブCフィルムに該当するか否かの判定結果。ポジC:ポジティブCフィルムに該当する。ネガC:ネガティブCフィルムに該当する。
 *より強い順分散:順波長分散性であり、比較例1よりもさらに順波長分散性の傾向が高い。
 実施例及び比較例の結果から明らかな通り、実施例で得た光学異方性層は、比較例のものに比べ、逆波長分散性を有するポジティブCフィルムであるという有用な光学的特性を有しながら、且つその厚みが薄いものとすることができた。

Claims (13)

  1.  第1位相差層及び第2位相差層を備える光学異方性層であって、
     前記第1位相差層及び前記第2位相差層が、式(1)~式(5)を満たす、光学異方性層:
     nz(P1)>nx(P1)≧ny(P1)  式(1)
     nx(P2)≧ny(P2)>nz(P2)  式(2)
     |Rth(P1)|>|Rth(P2)|  式(3)
     Rth(P1)(450)/Rth(P1)(550)<Rth(P2)(450)/Rth(P2)(550) 式(4)
     Rth(P2)(450)/Rth(P2)(550)>1.14  式(5)
     但し、
     nx(P1)、ny(P1)及びnz(P1)は、前記第1位相差層の主屈折率であり、
     nx(P2)、ny(P2)及びnz(P2)は、前記第2位相差層の主屈折率であり、
     前記Rth(P1)は、前記第1位相差層の波長590nmにおける厚み方向のレターデーションであり、
     前記Rth(P2)は、前記第2位相差層の波長590nmにおける厚み方向のレターデーションであり、
     前記Rth(P1)(450)は、前記第1位相差層の波長450nmにおける厚み方向のレターデーションであり、
     前記Rth(P1)(550)は、前記第1位相差層の波長550nmにおける厚み方向のレターデーションであり、
     前記Rth(P2)(450)は、前記第2位相差層の波長450nmにおける厚み方向のレターデーションであり、
     前記Rth(P2)(550)は、前記第2位相差層の波長550nmにおける厚み方向のレターデーションである。
  2.  前記第2位相差層が、下記式(I)で表される部分構造を有するセルロースエステル(I)を含む層である、請求項1に記載の光学異方性層。
    Figure JPOXMLDOC01-appb-C000001
     〔式(I)中、*は前記部分構造が前記セルロースエステル(I)における糖単位に結合する部位を表し、Yは、-O-C(=O)-、又は-O-C(=O)-NR10-を表し、R10は、水素原子または炭素数1~6のアルキル基を表し、PDGは環構造を有する有機基であって、前記環構造に含まれるπ電子数が12以上である有機基を表す。〕
  3.  前記式(I)中、PDGが下記式(II)で表される請求項2に記載の光学異方性層。
    Figure JPOXMLDOC01-appb-C000002
     〔式(II)中、Bは、化学的な単結合および下記式(III-1)~(III-26)のいずれかを表し、
    Figure JPOXMLDOC01-appb-C000003
     XGは、下記式(IV-1)~(IV-8)のいずれかを表し、
    Figure JPOXMLDOC01-appb-C000004
     Axは、炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する有機基を表し、Axが有する芳香環は置換基を有していてもよく、
     Ayは、水素原子または置換基を有していてもよい炭素数1~30の有機基を表し、
     Azは、炭素数6~30の芳香族炭化水素環および炭素数2~30の芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する有機基を表し、Azが有する芳香環は置換基を有していてもよく、
     Qは、水素原子または炭素数1~6のアルキル基を表し、
     EおよびEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表し、
     D~Dは置換基を有していてもよい芳香族炭化水素環基または置換基を有していてもよい芳香族複素環基を表し、
     DおよびDは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基、-C(=O)-Rx、-C(=O)-ORx、若しくは-C(=O)NR10Rxを表すか、又は、DおよびDはこれらが一緒になって環を形成している有機基である。
     Rxは、水素原子、又は炭素数1~20の有機基であり、
     Rcは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、Rcが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。
     R10は前記と同じ意味を表し、
     pは0~3の整数であり、
     nは0または1を表す。*はBとの結合を表す。〕
  4.  XGが、前記式(IV-1)~(IV-3)の何れかで表され、
     Ayは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数6~30の芳香族炭化水素環基、または、置換基を有していてもよい炭素数2~30の芳香族複素環基を表す、請求項3に記載の光学異方性層。
  5.  Axが下記式(V)で示される、請求項3または4に記載の光学異方性層。
    Figure JPOXMLDOC01-appb-C000005
     〔式(V)中、Eは-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表し、
     R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、-OCF、または、-C(=O)-O-Rを表し、
     Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、または、置換基を有していてもよい炭素数6~12の芳香族炭化水素環基を表し、
     複数のR~R同士は、すべて同一であっても、相異なっていてもよく、環を構成する少なくとも1つのC-R~C-Rは、窒素原子に置き換えられていてもよい。〕
  6.  前記第2位相差層が、ベンゾチアゾール環を側鎖に有するセルロースエステルを含む層である、請求項1に記載の光学異方性層。
  7.  前記セルロースエステル(I)が、セルロースエステル(I’)における水酸基の一部又は全部が前記式(I)で表される部分構造で置換されてなる構造を有し、前記セルロースエステル(I’)は、前記セルロースエステル(I)以外のセルロースエステルであり、前記セルロースエステル(I’)が、セルロースアセテートブチレート、セルロースアセテート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレート、及びこれらの混合物からなる群より選択されるものである請求項2~6のいずれか1項に記載の光学異方性層。
  8.  前記第2位相差層が、コレステリック液晶組成物の硬化物の層であり、前記コレステリック液晶組成物は、芳香族イミン構造を有する重合性液晶化合物を含む組成物である、請求項1に記載の光学異方性層。
  9.  前記第1位相差層が、重合体を含み、前記重合体が、ポリビニルカルバゾール、ポリフマル酸エステル、セルロース誘導体、及びこれらの組み合わせからなる群より選ばれる、請求項1~8のいずれか1項に記載の光学異方性層。
  10.  請求項1~9のいずれか1項に記載の光学異方性層、及び第3位相差層を備える光学異方性積層体であって、
     前記第3位相差層が、式(6)~式(7)を満たす、光学異方性積層体:
     nx(P3)>ny(P3)≧nz(P3)   式(6)
     110nm≦Re(P3)(590)≦170nm  式(7)
     但し、
     nx(P3)、ny(P3)及びnz(P3)は、前記第3位相差層の主屈折率であり、
     Re(P3)(590)は、前記第3位相差層の波長590nmにおける面内レターデーションである。
  11.  直線偏光子と、
     請求項10に記載の光学異方性積層体とを備える、偏光板。
  12.  請求項11に記載の偏光板を備える、画像表示装置。
  13.  直線偏光子と、
     請求項10に記載の光学異方性積層体と、
     有機エレクトロルミネッセンス素子と、を、この順に備える、画像表示装置。
PCT/JP2019/009518 2018-03-16 2019-03-08 光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置 WO2019176817A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506491A JP7188437B2 (ja) 2018-03-16 2019-03-08 光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018049617 2018-03-16
JP2018-049617 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019176817A1 true WO2019176817A1 (ja) 2019-09-19

Family

ID=67908316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009518 WO2019176817A1 (ja) 2018-03-16 2019-03-08 光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置

Country Status (3)

Country Link
JP (1) JP7188437B2 (ja)
TW (1) TW201938367A (ja)
WO (1) WO2019176817A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091746A (ja) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 光学フィルムおよび液晶表示素子
JP2006527394A (ja) * 2003-08-14 2006-11-30 エルジー・ケム・リミテッド 相違する分散比値を有する2枚以上のcプレートを含む複合光補償cプレート及びこれを使用した液晶表示装置
JP2007140443A (ja) * 2005-10-21 2007-06-07 Nitto Denko Corp 光学補償層付偏光板、光学補償層付偏光板を用いた液晶パネル、液晶表示装置、および画像表示装置
JP2008191407A (ja) * 2007-02-05 2008-08-21 Dainippon Printing Co Ltd 位相差フィルム
WO2008133290A1 (ja) * 2007-04-24 2008-11-06 Zeon Corporation 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体
JP2009037110A (ja) * 2007-08-03 2009-02-19 Tosoh Corp 光学補償フィルム
JP2013003233A (ja) * 2011-06-14 2013-01-07 Konica Minolta Advanced Layers Inc 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2017049361A (ja) * 2015-08-31 2017-03-09 日東電工株式会社 光学補償層付偏光板およびそれを用いた有機elパネル
WO2017184394A1 (en) * 2016-04-22 2017-10-26 Eastman Chemical Company Regioselectively substituted cellulose esters and films made therefrom

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091746A (ja) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 光学フィルムおよび液晶表示素子
JP2006527394A (ja) * 2003-08-14 2006-11-30 エルジー・ケム・リミテッド 相違する分散比値を有する2枚以上のcプレートを含む複合光補償cプレート及びこれを使用した液晶表示装置
JP2007140443A (ja) * 2005-10-21 2007-06-07 Nitto Denko Corp 光学補償層付偏光板、光学補償層付偏光板を用いた液晶パネル、液晶表示装置、および画像表示装置
JP2008191407A (ja) * 2007-02-05 2008-08-21 Dainippon Printing Co Ltd 位相差フィルム
WO2008133290A1 (ja) * 2007-04-24 2008-11-06 Zeon Corporation 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体
JP2009037110A (ja) * 2007-08-03 2009-02-19 Tosoh Corp 光学補償フィルム
JP2013003233A (ja) * 2011-06-14 2013-01-07 Konica Minolta Advanced Layers Inc 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2017049361A (ja) * 2015-08-31 2017-03-09 日東電工株式会社 光学補償層付偏光板およびそれを用いた有機elパネル
WO2017184394A1 (en) * 2016-04-22 2017-10-26 Eastman Chemical Company Regioselectively substituted cellulose esters and films made therefrom

Also Published As

Publication number Publication date
TW201938367A (zh) 2019-10-01
JPWO2019176817A1 (ja) 2021-03-18
JP7188437B2 (ja) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6363566B2 (ja) 光学異方性層とその製造方法、積層体、偏光板、表示装置、液晶化合物とその製造方法、カルボン酸化合物
JP6616489B2 (ja) 着色組成物、光吸収異方性膜、積層体および画像表示装置
US10705274B2 (en) Optically anisotropic layer and production method therefor, optically anisotropic laminate and production method therefor, optically anisotropic transfer body, polarization plate, and image display device
US8158021B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optical anisotropic article
JP6343348B2 (ja) 重合性化合物、ポリマー、重合性組成物、およびフィルム
WO2017195833A1 (ja) 着色組成物、2色性色素化合物、光吸収異方性膜、積層体および画像表示装置
JP6553708B2 (ja) 重合性組成物、フィルム、および投映像表示用ハーフミラー
JP2008291218A (ja) 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体
KR20190039688A (ko) 광학 이방성 적층체, 편광판 및 화상 표시 장치
US10519374B2 (en) Polymerizable composition containing polymerizable compound, film, half mirror for displaying projection image, and polymerizable compound
KR100951312B1 (ko) 플루오렌 유도체, 이를 포함하는 액정 조성물 및 이 액정조성물을 사용한 광학 필름
JP2002303722A (ja) 光学補償シート
KR101098648B1 (ko) 새로운 액정 화합물, 이를 포함하는 액정 조성물 및 이액정 조성물을 사용한 광학 필름
JPWO2009078431A1 (ja) 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体
WO2019225468A1 (ja) 偏光子および画像表示装置
JPWO2017110631A1 (ja) 光学異方性層及びその製造方法、光学異方性積層体並びに円偏光板
KR100951311B1 (ko) 이축성 액정 화합물, 이를 포함하는 액정 조성물 및 이액정 조성물을 사용한 광학 필름
EP3327051B1 (en) Polymerizable composition including polymerizable liquid crystal compound, film, and method of manufacturing film
JP5737283B2 (ja) 重合性キラル化合物、重合性液晶組成物、液晶性高分子及び光学異方体
KR100951310B1 (ko) 디스코틱 액정 화합물, 이를 포함하는 액정 조성물 및 이액정 조성물을 사용한 광학 필름
JP7188437B2 (ja) 光学異方性層、光学異方性積層体、偏光板、並びに画像表示装置
WO2021153510A1 (ja) 液晶組成物、光吸収異方性膜、積層体および画像表示装置
WO2024090308A1 (ja) 加飾シート、表示装置及び自動車車内用内装
JP7156294B2 (ja) 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置
JP2019066777A (ja) 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766490

Country of ref document: EP

Kind code of ref document: A1