WO2019176744A1 - メタン製造装置及び方法 - Google Patents
メタン製造装置及び方法 Download PDFInfo
- Publication number
- WO2019176744A1 WO2019176744A1 PCT/JP2019/009161 JP2019009161W WO2019176744A1 WO 2019176744 A1 WO2019176744 A1 WO 2019176744A1 JP 2019009161 W JP2019009161 W JP 2019009161W WO 2019176744 A1 WO2019176744 A1 WO 2019176744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methane
- gas
- hydrogen
- carbon dioxide
- raw material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/06—Heat exchange, direct or indirect
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/10—Recycling of a stream within the process or apparatus to reuse elsewhere therein
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/46—Compressors or pumps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/542—Adsorption of impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/548—Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/58—Control or regulation of the fuel preparation of upgrading process
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/60—Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/104—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the present invention relates to a methane production apparatus and method for producing methane by supplying hydrogen to a raw material gas containing carbon dioxide.
- Patent Documents 1 and 2 propose a methane production apparatus that suppresses a temperature rise in the reactor.
- the methanation reactor of Patent Document 1 includes a first reactor for supplying a raw material gas and a part of hydrogen, a second reactor for supplying the remainder of hydrogen to the gas discharged from the first reactor, and a second reaction.
- a third reactor for adjusting the composition of the gas exiting the reactor. The reaction temperature of the first reactor is adjusted by the amount of hydrogen supplied to the first reactor.
- the methane production apparatus of Patent Document 2 communicates a plurality of reactors in which a catalyst is accommodated with two adjacent reactors, and sends the product gas generated in the former reactor to the latter reactor.
- a plurality of communication lines, a raw material gas introduction part that introduces steam together with the raw material gas into the first reactor among the plurality of reactors, and a methanation of the product gas generated in the first reactor in each communication line A cooling unit that cools to a temperature at which the reaction starts.
- JP 2013-136538 A Japanese Patent Laying-Open No. 2015-107943
- methane is separated from the product gas that has exited the final-stage reactor in an adsorption tower, the separated methane is recovered as product gas, and the off-gas from which methane has been removed from the product gas is released to the atmosphere.
- Off-gas contains carbon dioxide and a small amount of methane. In other words, off-gas is a greenhouse gas that affects global warming.
- the present invention has been made in view of the above circumstances, and an object thereof is to reduce the amount of off-gas emission to the atmosphere in a methane production apparatus and method for producing methane from a raw material gas containing mixed hydrogen and carbon dioxide. It is to reduce.
- a methane production apparatus is a methane production apparatus for producing methane from a raw material gas containing mixed hydrogen and carbon dioxide, A reactor containing a methanation catalyst; A source gas supply line for supplying the source gas to the reactor; A methane separation device for separating methane from the product gas discharged from the reactor; A product gas tank for storing the methane separated from the product gas by the methane separator; The methane separation device is connected to the raw material gas supply line, and is provided with a recycle line for sending an off-gas from which the methane has been removed from the generated gas to the raw material gas supply line by the methane separation device.
- the reactor may include a plurality of reactors connected in series via a communication line.
- off gas is reused as a raw material of the methane production apparatus, and thus the amount of off gas discharged to the atmosphere (or outside the system) can be reduced.
- the recycle line is an off-gas tank that stores the off-gas, a flow rate regulator that adjusts a flow rate of the off-gas flowing into the raw material gas supply line, and a flow rate adjustment that comes out of the off-gas tank
- a pressure regulator for regulating the pressure of the off-gas entering the vessel may be included.
- the off gas whose composition is uniformized in the off gas tank can be added to the raw material gas at a predetermined pressure and a predetermined flow rate, the composition, pressure and flow rate of the raw material gas can be controlled.
- the methane separation apparatus is a pressure fluctuation adsorption gas separation apparatus including a plurality of adsorption tanks, and is configured to discharge a rinsing fluid that has passed through the plurality of adsorption tanks to the recycling line. May have been.
- the methane production apparatus having the above configuration further includes a product gas line connecting the methane separation apparatus and the product gas tank, and a hydrogen separation apparatus provided in the product gas line, and the hydrogen separation apparatus includes a hydrogen permeable membrane. And the methane flow path through which the methane provided on one side through the hydrogen permeable membrane passes, and the carbon dioxide before being mixed with the hydrogen provided on the other side through the hydrogen permeable membrane passes And a carbon dioxide channel.
- the methane production apparatus having the above configuration includes a temperature sensor that detects the temperature of the catalyst of the reactor, a buffer tank provided in the source gas supply line, a hydrogen supply line that supplies the hydrogen to the buffer tank, When the temperature of the catalyst is equal to or higher than a predetermined temperature based on the carbon dioxide supply line that supplies the carbon dioxide to the buffer tank, the release valve provided in the carbon dioxide supply line, and the detected temperature of the catalyst The release valve is operated so that at least a part of the carbon dioxide passing through the carbon dioxide supply line is released out of the system and the release valve is closed when the temperature of the catalyst is lower than the predetermined temperature.
- a valve control device may be further provided.
- the temperature of the methanation catalyst can be lowered.
- a method for producing methane includes: A step of preparing a raw material gas by mixing hydrogen and carbon dioxide; Reacting the hydrogen and the carbon dioxide in the source gas in the presence of a methanation catalyst to produce methane and water; A step of separating and recovering the methane from the produced methane and water, and the produced gas containing the unreacted raw material gas; Mixing the off-gas from which the methane has been removed from the product gas into the source gas; It is characterized by including.
- off-gas is reused as a raw material for the methane production apparatus, so that the amount of off-gas discharged to the atmosphere (or outside the system) can be reduced.
- the step of mixing the off gas into the source gas includes homogenizing the composition of the off gas and adjusting the flow rate and pressure of the off gas to mix into the source gas. You can leave.
- the off gas having a uniform composition can be added to the raw material gas at a predetermined pressure and a predetermined flow rate, the composition, pressure and flow rate of the raw material gas can be controlled.
- the step of separating the methane includes separating the methane using a pressure fluctuation adsorption gas separation device including a plurality of adsorption tanks, and mixing the off-gas into the source gas
- a pressure fluctuation adsorption gas separation device including a plurality of adsorption tanks
- mixing the off-gas into the source gas may include mixing the off-gas mixed with the rinsing fluid through the plurality of adsorption tanks into the raw material gas.
- methane contained in the rinsing fluid is reused as a raw material gas, so that the amount of methane discharged to the atmosphere (or outside the system) can be reduced.
- the step of separating the methane uses a hydrogen permeable membrane using a hydrogen partial pressure difference between the methane separated from the product gas and the carbon dioxide before being mixed with the hydrogen. Removing hydrogen contained therein from the methane.
- the amount of off-gas discharged to the atmosphere can be reduced.
- FIG. 1 is a diagram showing an overall configuration of a methane production apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the configuration of the hydrogen separator.
- the methane production apparatus produces methane from a raw material gas containing mixed hydrogen and carbon dioxide.
- FIG. 1 is a diagram showing an overall configuration of a methane production apparatus 100 according to an embodiment of the present invention.
- a methane production apparatus 100 shown in FIG. 1 supplies a raw material gas to a plurality of reactors R1, R2,... Connected in series via a communication line 1 and to the foremost reactor R1 among the plurality of reactors R.
- the raw material gas supply line 2, the methane separation device 3 that separates methane from the product gas that has come out from the last-stage reactor R 2 among the plurality of reactors R, and the methane separated from the product gas by the methane separation device 3 are stored.
- a product gas tank 4 and a recycle line 5 for sending off-gas from which methane has been removed from the produced gas by the methane separator 3 to the raw material gas supply line 2 are provided.
- a recycle line 5 for sending off-gas from which methane has been removed from the produced gas by the methane separator 3 to the raw material gas supply line 2 are provided.
- reactor R when not pointing to a specific reactor among several reactor R1, R2 ..., it represents as "reactor R".
- the methane production apparatus 100 includes two reactors R, a first reactor R1 and a second reactor R2. However, the number of reactors R may be three or more.
- Each reactor R contains a methanation catalyst that promotes a methanation reaction that produces methane and water from hydrogen and carbon dioxide.
- the methanation catalyst is not particularly limited, and may be a commercially available Ni-based catalyst, for example.
- the reactors R1 and R2 are provided with temperature sensors T1 and T2 for detecting the temperature of the methanation catalyst.
- the first reactor R1 and the second reactor R2 are connected by a communication line 1, and the product gas discharged from the first reactor R1 flows into the second reactor R2 through the communication line 1.
- the product gas contains unreacted carbon dioxide and hydrogen in addition to methane and water produced by the methanation reaction.
- the number of communication lines 1 is 1, but the methane production apparatus 100 includes the number of communication lines 1 corresponding to the number of reactors R.
- the communication line 1 is provided with a first heat exchanger 11, a water separator 12, and a second heat exchanger 13.
- first heat exchanger 11 heat exchange between the generated gas and the cooling water is performed.
- water separator 12 the moisture in the product gas condensed by being cooled by the first heat exchanger 11 is separated from the product gas.
- second heat exchanger 13 heat exchange is performed between the hot oil used for cooling the reactor R2 and the product gas.
- the temperature of the product gas flowing from the communication line 1 into the next stage reactor (second reactor R2) by the first heat exchanger 11 and the second heat exchanger 13 is equal to or higher than the temperature at which the methanation reaction starts. The temperature is adjusted to below the temperature at which the nation reaction stops.
- a buffer tank 21 that stores the raw material gas
- a compressor 22 that compresses the raw material gas discharged from the buffer tank 21, and the compressed raw material gas are adjusted to a temperature suitable for the methanation reaction.
- a heat exchanger 23 is provided.
- the buffer tank 21 is supplied with hydrogen from the hydrogen supply line 24 and supplied with carbon dioxide from the carbon dioxide supply line 25.
- the carbon dioxide supply line 25 is provided with a discharge valve 26 controlled by a discharge valve control device 27.
- the release valve control device 27 Based on the temperature of the methanation catalyst of the first reactor R1 detected by the temperature sensor T1, the release valve control device 27 is configured to output at least carbon dioxide passing through the carbon dioxide supply line 25 when the temperature of the catalyst is equal to or higher than a predetermined temperature.
- the release valve 26 is operated so that the release valve 26 is closed when a part is released out of the system and the temperature of the catalyst is lower than a predetermined temperature.
- the raw material gas is compressed so as to have a pressure suitable for the methanation reaction.
- the pressure suitable for the methanation reaction varies depending on the type of methanation catalyst and the specifications of the reactor R.
- the pressure condition of the raw material gas flowing into the first reactor R1 is, for example, 0 to 3 MPa in absolute pressure.
- heat exchanger 23 heat exchange between the hot oil used for cooling the first reactor R1 and the raw material gas is performed, and the raw material gas is adjusted to a temperature suitable for the methanation reaction.
- the temperature suitable for the methanation reaction varies depending on the type of methanation catalyst and the number of stages of the reactor R.
- the raw material gas flowing into the first reactor R1 is about 250 to 350 ° C.
- the reaction gas flowing into the second reactor R2 is about 150 to 250 ° C.
- the product gas output from the last-stage reactor R2 is sent to the methane separation device 3 through the product gas line 30.
- the product gas line 30 includes a heat exchanger 31 in which heat is exchanged between the product gas discharged from the last-stage reactor R2 and water, and moisture in the product gas condensed by being cooled by the heat exchanger 31. And a water separator 32 for separating the water.
- the methane separation apparatus 3 is a pressure fluctuation adsorption type gas separation apparatus using a pressure swing adsorption method.
- a known pressure fluctuation adsorption type gas separation device may be used.
- a pressure fluctuation adsorption type gas separation apparatus includes a plurality of adsorption tanks filled with an adsorbent and a compressor that pressurizes an original gas to be sent to the adsorption tank (all not shown). Then, one cycle of the pressure equalization process, the adsorption process, the regeneration process, and the pressure equalization process is alternately performed with time in each adsorption tank. In the pressure equalization step, a plurality of adsorption tanks are communicated, and the pressure is recovered by moving the gas in the tank.
- the original gas is supplied to the adsorption tank to increase the internal pressure, and the product gas (separated gas) is taken out from the adsorption tank while supplying the original gas.
- the product gas separated gas
- the pressure in the adsorption tank is lowered, the easily adsorbed components are desorbed from the adsorbent, and the adsorbent is regenerated, and the inside of the tank is rinsed by supplying a rinsing fluid to the adsorption tank.
- a product gas is usually used as the rinse fluid.
- a product gas tank 4 is connected to the methane separation device 3 through a product gas line 40. Methane separated from the product gas by the methane separation device 3 flows into the product gas tank 4 through the product gas line 40 and is recovered as a product.
- the main component of the gas flowing through the product gas line 40 is methane, but a slight amount of hydrogen is mixed. Therefore, the product gas line 40 is provided with a hydrogen separator 42 that separates hydrogen from the gas flowing through the product gas line 40. By separating hydrogen by the hydrogen separator 42, the purity of methane recovered in the product gas tank 4 can be further increased.
- FIG. 2 is a diagram showing the configuration of the hydrogen separator 42.
- 2 includes a hydrogen permeable membrane 71 that allows only hydrogen to pass through, a methane channel 72 provided on one side via the hydrogen permeable membrane 71, and a hydrogen permeable membrane 71 on the other side via the hydrogen permeable membrane 71.
- a carbon dioxide channel 73 provided.
- Methane emitted from the methane separator 3 passes through the methane flow path 72.
- carbon dioxide in the carbon dioxide supply line 25, that is, carbon dioxide before being mixed with hydrogen passes through the carbon dioxide flow path 73.
- the flow of methane in the methane flow path 72 and the flow of carbon dioxide in the carbon dioxide flow path 73 are opposed to each other.
- the hydrogen partial pressure of the gas flowing through the carbon dioxide channel 73 is 0, and the hydrogen partial pressure of the gas flowing through the methane channel 72 is greater than 0 (for example, 10,000 Pa).
- hydrogen in the gas flowing through the methane passage 72 passes through the hydrogen permeable membrane 71 and moves to the carbon dioxide passage 73.
- the product gas line 40 is connected to a rinsing line 43 that allows methane passing through the product gas line 40 to pass through a plurality of adsorption tanks of the methane separation device 3 as a rinsing fluid.
- the rinse line 43 is connected to the recycle line 5.
- the rinse fluid in which the plurality of adsorption tanks are rinsed by the methane separation device 3 is discharged to the recycle line 5.
- a recycling line 5 for returning off-gas to the raw material gas supply line 2 is connected to the methane separation device 3.
- the downstream end of the recycle line 5 is connected to the buffer tank 21.
- the downstream end of the recycle line 5 only needs to be connected to the upstream side of the compressor 22 in the raw material gas supply line 2, and the downstream side of the buffer tank 21 and the upstream side of the compressor 22 or the buffer tank. 21 may be connected to the upstream side.
- the off gas is a gas obtained by removing methane from the produced gas in the methane separation device 3. Off-gas includes carbon dioxide, hydrogen, water, methane that could not be separated, and the like. Further, the rinsing fluid (methane) is mixed with the off-gas flowing through the recycle line 5.
- the recycle line 5 is provided with an off-gas tank 51, a pressure regulator 52, and a flow rate regulator 53.
- the off gas discharged from the methane separator 3 and the rinse fluid (methane) discharged from the methane separator 3 through the rinse line 43 flow into the off gas tank 51 and are mixed.
- the off gas tank 51 has a sufficient volume so that the composition of the off gas (including the rinse fluid) flowing through the off gas tank 51 is uniform.
- the flow rate adjuster 53 is a means for adjusting the flow rate of the off gas flowing into the raw material gas supply line 2.
- the flow rate regulator 53 is, for example, a constant flow rate valve, and maintains the flow rate of the off gas flowing into the source gas supply line 2 at a predetermined value.
- the pressure regulator 52 is a means for adjusting the pressure of the off gas that flows out of the off gas tank 51 and flows into the flow rate regulator 53.
- the pressure regulator 52 is, for example, a constant pressure valve, and maintains the pressure of the off gas flowing into the flow rate regulator 53 at a predetermined pressure.
- hydrogen supplied from the hydrogen supply line 24 and carbon dioxide supplied from the carbon dioxide supply line 25 are mixed at a predetermined ratio to prepare a raw material gas.
- the raw material gas flows into the first reactor R1 through the compressor 22 and the heat exchanger 23.
- hydrogen and carbon dioxide in the raw material gas undergo a methanation reaction in the presence of a methanation catalyst to produce methane and water.
- Methane and water produced in the first reactor R1 and product gas containing unreacted hydrogen and carbon dioxide flow out to the communication line 1.
- the product gas flowing out to the communication line 1 flows into the second reactor R2 through the first heat exchanger 11, the water separator 12, and the second heat exchanger 13.
- hydrogen and carbon dioxide in the product gas undergo a methanation reaction in the presence of a methanation catalyst to produce methane and water.
- Methane and water produced in the second reactor R2 and product gas containing unreacted hydrogen and carbon dioxide flow out to the product gas line 30.
- the product gas flowing out to the product gas line 30 flows into the methane separation device 3 through the heat exchanger 31 and the water separator 32.
- methane separation device 3 methane is separated from the product gas.
- the separated methane flows into the product gas tank 4 through the product gas line 40 and is recovered as product gas.
- the off-gas from which methane has been removed from the product gas flows out to the recycle line 5.
- the rinsing fluid that has passed through the adsorption tank in the separation process of the methane separation device 3 is discharged to the recycle line 5.
- the off gas having a uniform composition in the off gas tank 51 is mixed in the raw material gas flowing through the raw material gas supply line 2 after the flow rate and pressure are adjusted by the pressure regulator 52 and the flow rate regulator 53.
- the methane production apparatus 100 includes the reactor R in which the methanation catalyst is accommodated, the source gas supply line 2 that supplies the source gas to the reactor R, and the reactor R.
- the methane separation device 3 for separating methane from the produced gas
- the product gas tank 4 for storing the methane separated from the produced gas by the methane separation device 3, the methane separation device 3 and the raw material gas supply line 2 are connected, and the methane separation is performed.
- the apparatus 3 includes a recycle line 5 for sending the off gas from which methane has been removed from the generated gas to the raw material gas supply line 2.
- the reactor R includes a plurality of reactors R1 and R2 connected in series by the communication line 1, but the reactor R may be singular.
- the methane production method of the present embodiment comprises a step of preparing a raw material gas by mixing hydrogen and carbon dioxide, and reacting hydrogen and carbon dioxide in the raw material gas in the presence of a methanation catalyst to produce methane and water. , Separating the methane from the generated methane and water, and the generated gas containing the unreacted raw material gas, and collecting the off-gas from which the methane has been removed from the raw gas. Process.
- off gas is reused as a raw material of the methane production apparatus 100, so that the amount of off gas discharged to the atmosphere (or outside the system) can be reduced.
- the recycle line 5 includes an offgas tank 51 that stores offgas, a flow regulator 53 that adjusts the flow rate of offgas flowing into the raw material gas supply line 2, and the offgas tank 51. It includes a pressure regulator 52 that regulates the pressure of off-gas that exits and enters the flow regulator 53.
- the step of mixing the off gas into the raw material gas includes equalizing the composition of the off gas and adjusting the flow rate and pressure of the off gas to be mixed into the raw material gas.
- the off gas whose composition is uniformized in the off gas tank 51 can be added to the raw material gas at a predetermined pressure and a predetermined flow rate, the composition, pressure and flow rate of the raw material gas can be controlled.
- the methane separation apparatus 3 is a pressure fluctuation adsorption gas separation apparatus including a plurality of adsorption tanks, and discharges the rinsing fluid through the plurality of adsorption tanks to the recycle line 5. Is configured to do.
- the step of separating methane includes separating methane using a pressure fluctuation adsorption gas separation device including a plurality of adsorption tanks, and mixing off-gas into the raw material gas
- the step of causing includes mixing the off gas mixed with the rinsing fluid through the plurality of adsorption tanks into the raw material gas.
- methane contained in the rinsing fluid is sent to the raw material gas supply line 2 along with the off gas and reused as the raw material gas, so that the amount of methane discharged to the atmosphere (or outside the system) can be reduced.
- the methane production apparatus 100 further includes a product gas line 40 that connects the methane separation apparatus 3 and the product gas tank 4, and a hydrogen separation apparatus 42 provided in the product gas line 40.
- the hydrogen separator 42 includes a hydrogen permeable membrane 71, a methane passage 72 through which methane is provided on one side via the hydrogen permeable membrane 71, and hydrogen provided on the other side via the hydrogen permeable membrane 71. And a carbon dioxide channel 73 through which carbon dioxide before being mixed passes.
- the step of separating methane uses a hydrogen partial pressure difference between methane separated from the product gas and carbon dioxide before being mixed with hydrogen. 71 to remove the hydrogen contained therein from methane.
- the methane production apparatus 100 includes a temperature sensor T1 that detects the temperature of the catalyst in the foremost reactor R1, and a buffer tank 21 provided in the source gas supply line 2 and a hydrogen supply to the buffer tank 21.
- the release valve control device 27 releases at least part of the carbon dioxide that passes through the carbon dioxide supply line 25 when the temperature of the catalyst is equal to or higher than a predetermined temperature.
- the discharge valve 26 is operated so that the discharge valve 26 is closed when the temperature of the gas is below a predetermined temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Gases By Adsorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
メタン製造装置は、メタネーション触媒が収容された反応器と、反応器へ原料ガスを供給する原料ガス供給ラインと、反応器から出た生成ガスからメタンを分離するメタン分離装置と、メタン分離装置で生成ガスから分離されたメタンを貯える製品ガスタンクと、メタン分離装置で生成ガスからメタンが除かれたオフガスを原料ガス供給ラインへ送るリサイクルラインとを備える。
Description
本発明は、二酸化炭素を含有する原料ガスに水素を供給し、メタンを生成するメタン製造装置及び方法に関する。
従来、二酸化炭素(CO2)と水素(H2)とをメタン(CH4)に変換する触媒反応(メタネーション反応)を利用して、二酸化炭素を含有する原料ガスからメタンを製造する装置が知られている。次の化1は、メタネーション反応式である。
[化1] CO2+4H2⇔CH4+2H2O
[化1] CO2+4H2⇔CH4+2H2O
メタネーション反応は発熱反応であるため、原料ガス及びその反応ガスは、反応場を通過する間に温度が上昇する。また、メタネーション反応は可逆反応であるため、温度が上昇することにより反応の平衡が化1の左辺側(原料側)に偏る。従って、メタネーション反応を促進するためには、反応場における温度上昇の抑制が効果的である。そこで、特許文献1,2では、反応器における温度上昇を抑制するメタン製造装置が提案されている。
特許文献1のメタネーション反応装置は、原料ガスと水素の一部を供給する第1反応器と、第1反応器から出たガスに水素の残部を供給する第2反応器と、第2反応器から出たガスの組成を調整する第3反応器とを備える。第1反応器の反応温度は、当該第1反応器への水素供給量によって調整される。
また、特許文献2のメタン製造装置は、触媒が収容された複数の反応器と、隣り合う2つの反応器をそれぞれ連通し、前段の反応器において生成された生成ガスを後段の反応器に送出する複数の連通ラインと、複数の反応器のうち、最も前段の反応器に原料ガスとともに水蒸気を導入する原料ガス導入部と、各連通ラインにおいて前段の反応器で生成された生成ガスをメタネーション反応が開始する温度まで冷却する冷却部とを備える。
特許文献1では、最終段の反応器を出た生成ガスは吸着塔においてメタンが分離され、分離されたメタンは製品ガスとして回収され、生成ガスからメタンが除かれたオフガスは大気へ放出される。オフガスは、二酸化炭素、及び少量のメタンを含む。つまり、オフガスは地球温暖化に影響を及ぼす温室効果ガスである。
本発明は以上の事情に鑑みてされたものであり、その目的は、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置及び方法において、大気へのオフガスの排出量を低減することにある。
本発明の一態様に係るメタン製造装置は、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置であって、
メタネーション触媒が収容された反応器と、
前記反応器へ前記原料ガスを供給する原料ガス供給ラインと、
前記反応器から出た生成ガスからメタンを分離するメタン分離装置と、
前記メタン分離装置で前記生成ガスから分離された前記メタンを貯える製品ガスタンクと、
前記メタン分離装置と前記原料ガス供給ラインとを接続し、前記メタン分離装置で前記生成ガスから前記メタンが除かれたオフガスを前記原料ガス供給ラインへ送るリサイクルラインとを備えることを特徴としている。なお、前記反応器が、連通ラインで直列的に接続された複数の反応器を含んでいてもよい。
メタネーション触媒が収容された反応器と、
前記反応器へ前記原料ガスを供給する原料ガス供給ラインと、
前記反応器から出た生成ガスからメタンを分離するメタン分離装置と、
前記メタン分離装置で前記生成ガスから分離された前記メタンを貯える製品ガスタンクと、
前記メタン分離装置と前記原料ガス供給ラインとを接続し、前記メタン分離装置で前記生成ガスから前記メタンが除かれたオフガスを前記原料ガス供給ラインへ送るリサイクルラインとを備えることを特徴としている。なお、前記反応器が、連通ラインで直列的に接続された複数の反応器を含んでいてもよい。
上記構成のメタン製造装置によれば、オフガスがメタン製造装置の原料として再利用されるので、大気(又は系外)へのオフガスの排出量を低減することできる。
上記構成のメタン製造装置において、前記リサイクルラインが、前記オフガスを貯えるオフガスタンク、前記原料ガス供給ラインへ流入する前記オフガスの流量を調整する流量調整器、及び、前記オフガスタンクから出て前記流量調整器へ入る前記オフガスの圧力を調整する圧力調整器を含んでいてよい。
これにより、オフガスタンクで組成が均一化されたオフガスを、所定圧力且つ所定流量で原料ガスに加えることができるので、原料ガスの組成、圧力及び流量をコントロールすることができる。
上記構成のメタン製造装置において、前記メタン分離装置は、複数の吸着槽を含む圧力変動吸着式ガス分離装置であって、前記複数の吸着槽を通じたリンス流体を前記リサイクルラインへ排出するように構成されていてよい。
これにより、リンス流体に含まれるメタンがオフガスに伴って原料ガス供給ラインへ送られ、原料ガスとして再利用されるので、大気(又は系外)へのメタンの排出量を低減することできる。
上記構成のメタン製造装置が、前記メタン分離装置と前記製品ガスタンクとを接続する製品ガスラインと、前記製品ガスラインに設けられた水素分離装置とを更に備え、前記水素分離装置が、水素透過膜と、前記水素透過膜を介して一側に設けられた前記メタンが通るメタン流路と、前記水素透過膜を介して他側に設けられた前記水素と混合される前の前記二酸化炭素が通る二酸化炭素流路とを有していてよい。
これにより、生成ガスから分離されたメタンに含まれる水素を低減することができ、回収されるメタンの純度を高めることができる。
上記構成のメタン製造装置が、前記反応器の前記触媒の温度を検出する温度センサと、前記原料ガス供給ラインに設けられた、バッファタンク、前記バッファタンクへ前記水素を供給する水素供給ライン、前記バッファタンクへ前記二酸化炭素を供給する二酸化炭素供給ライン、及び、前記二酸化炭素供給ラインに設けられた放出弁と、検出された前記触媒の温度に基づいて、前記触媒の温度が所定温度以上のときに前記二酸化炭素供給ラインを通る前記二酸化炭素の少なくとも一部が系外へ放出され、前記触媒の温度が前記所定温度未満のときに前記放出弁が閉じられるように、前記放出弁を操作する放出弁制御装置とを、更に備えていてよい。
これにより、メタネーション触媒の温度がメタネーション反応が停止する温度(又は、その近傍)まで上昇したときに、原料ガス中の二酸化炭素の割合を減らすことによって、反応器でのメタネーション反応を抑え、メタネーション触媒の温度を下げることができる。
本発明の一態様に係るメタン製造方法は、
水素と二酸化炭素とを混合して原料ガスを調製する工程と、
前記原料ガス中の前記水素及び前記二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、
生成した前記メタン及び水、並びに、未反応の前記原料ガスを含む生成ガスから、前記メタンを分離して回収する工程と、
前記生成ガスから前記メタンが除かれたオフガスを前記原料ガスに混入させる工程と、
を含むことを特徴としている。
水素と二酸化炭素とを混合して原料ガスを調製する工程と、
前記原料ガス中の前記水素及び前記二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、
生成した前記メタン及び水、並びに、未反応の前記原料ガスを含む生成ガスから、前記メタンを分離して回収する工程と、
前記生成ガスから前記メタンが除かれたオフガスを前記原料ガスに混入させる工程と、
を含むことを特徴としている。
上記のメタン製造方法によれば、オフガスがメタン製造装置の原料として再利用されるので、大気(又は系外)へのオフガスの排出量を低減することできる。
上記のメタン製造方法において、前記オフガスを前記原料ガスに混入させる工程が、前記オフガスの組成を均一化させることと、前記オフガスの流量及び圧力を調整して前記原料ガスに混入させることとを含んでいてよい。
これにより、組成が均一化されたオフガスを、所定圧力且つ所定流量で原料ガスに加えることができるので、原料ガスの組成、圧力及び流量をコントロールすることができる。
上記のメタン製造方法において、前記メタンを分離する工程が、複数の吸着槽を含む圧力変動吸着式ガス分離装置を用いて前記メタンを分離することを含み、前記オフガスを前記原料ガスに混入させる工程が、前記複数の吸着槽を通じたリンス流体が混入した前記オフガスを前記原料ガスに混入させることを含んでいてよい。
これにより、リンス流体に含まれるメタンが原料ガスとして再利用されるので、大気(又は系外)へのメタンの排出量を低減することができる。
上記のメタン製造方法において、前記メタンを分離する工程が、前記生成ガスから分離した前記メタンと前記水素と混合される前の前記二酸化炭素との水素分圧差を利用して、水素透過膜を用いて前記メタンからそれに含まれる水素を除去することを含んでいてよい。
これにより、生成ガスから分離されたメタンに含まれる水素を低減することができ、回収されるメタンの純度を高めることができる。
本発明によれば、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置及び方法において、大気へのオフガスの排出量を低減することができる。
次に、図面を参照して本発明の実施の形態を説明する。本実施形態に係るメタン製造装置は、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するものである。
〔メタン製造装置100の構成〕
図1は本発明の一実施形態に係るメタン製造装置100の全体的な構成を示す図である。図1に示すメタン製造装置100は、連通ライン1で直列に接続された複数の反応器R1,R2・・・と、複数の反応器Rのうち最前段の反応器R1へ原料ガスを供給する原料ガス供給ライン2と、複数の反応器Rのうち最終段の反応器R2から出た生成ガスからメタンを分離するメタン分離装置3と、メタン分離装置3で生成ガスから分離されたメタンを貯える製品ガスタンク4と、メタン分離装置3で生成ガスからメタンが除かれたオフガスを原料ガス供給ライン2へ送るリサイクルライン5とを備える。なお、複数の反応器R1,R2・・・のうち特定の反応器を指さない場合に「反応器R」と表す。
図1は本発明の一実施形態に係るメタン製造装置100の全体的な構成を示す図である。図1に示すメタン製造装置100は、連通ライン1で直列に接続された複数の反応器R1,R2・・・と、複数の反応器Rのうち最前段の反応器R1へ原料ガスを供給する原料ガス供給ライン2と、複数の反応器Rのうち最終段の反応器R2から出た生成ガスからメタンを分離するメタン分離装置3と、メタン分離装置3で生成ガスから分離されたメタンを貯える製品ガスタンク4と、メタン分離装置3で生成ガスからメタンが除かれたオフガスを原料ガス供給ライン2へ送るリサイクルライン5とを備える。なお、複数の反応器R1,R2・・・のうち特定の反応器を指さない場合に「反応器R」と表す。
本実施形態に係るメタン製造装置100は、第1反応器R1と第2反応器R2との2つの反応器Rを備える。但し、反応器Rの数は3以上の複数であってもよい。各反応器Rには、水素及び二酸化炭素からメタン及び水を生成するメタネーション反応を促進させるメタネーション触媒が収容されている。メタネーション触媒は、特に限定されないが、例えば、市販のNi系触媒であってよい。反応器R1,R2には、メタネーション触媒の温度を検出するための温度センサT1,T2が設けられている。
第1反応器R1と第2反応器R2との間は、連通ライン1で接続されており、第1反応器R1から出た生成ガスは、連通ライン1を通じて第2反応器R2へ流入する。生成ガスには、メタネーション反応で生成したメタン及び水に加えて、未反応の二酸化炭素及び水素が含まれる。本実施形態では、反応器Rの数が2つであるため連通ライン1の数は1であるが、メタン製造装置100は反応器Rの数に応じた数の連通ライン1を備える。
連通ライン1には、第1熱交換器11と、水分離器12と、第2熱交換器13とが設けられている。第1熱交換器11では、生成ガスと冷却水との熱交換が行われる。水分離器12では、第1熱交換器11で冷却されることによって凝縮した生成ガス中の水分が、生成ガスから分離される。第2熱交換器13では、反応器R2の冷却に利用されたホットオイルと生成ガスとの熱交換が行われる。第1熱交換器11及び第2熱交換器13によって、連通ライン1から次段の反応器(第2反応器R2)へ流入する生成ガスの温度は、メタネーション反応が開始する温度以上且つメタネーション反応が停止する温度未満に調整される。
原料ガス供給ライン2には、原料ガスが貯えられるバッファタンク21と、バッファタンク21から出た原料ガスを圧縮する圧縮機22と、圧縮された原料ガスをメタネーション反応に適した温度に調整する熱交換器23とが設けられている。
バッファタンク21には、水素供給ライン24から水素が供給され、二酸化炭素供給ライン25から二酸化炭素が供給される。バッファタンク21では、定常時は、水素と二酸化炭素の割合がモル比で3.2~4.0となるように(水素/二酸化炭素=3.2~4.0)、均一に混合される。
二酸化炭素供給ライン25には、放出弁制御装置27によって制御される放出弁26が設けられている。放出弁制御装置27は、温度センサT1で検出された第1反応器R1のメタネーション触媒の温度に基づいて、触媒の温度が所定温度以上のときに二酸化炭素供給ライン25を通る二酸化炭素の少なくとも一部が系外へ放出され、触媒の温度が所定温度未満のときに放出弁26が閉じられるように、放出弁26を動作させる。これにより、第1反応器R1のメタネーション触媒の温度が所定温度以上のときは、バッファタンク21から第1反応器R1へ送られる原料ガスの二酸化炭素の割合が上記定常時よりも小さくなる。
圧縮機22では、原料ガスがメタネーション反応に適した圧力となるように圧縮される。メタネーション反応に適した圧力は、メタネーション触媒の種類や、反応器Rの仕様によって異なる。第1反応器R1に流入する原料ガスの圧力条件は、例えば、絶対圧で0~3MPaである。
熱交換器23では、第1反応器R1の冷却に利用されたホットオイルと原料ガスとの熱交換が行われ、原料ガスがメタネーション反応に適した温度に調整される。メタネーション反応に適した温度は、メタネーション触媒の種類や、反応器Rの段数によって異なる。例えば、第1反応器R1へ流入する原料ガスは約250~350℃であり、第2反応器R2へ流入する反応ガスは約150~250℃である。
最終段の反応器R2から出た生成ガスは、生成ガスライン30を通じてメタン分離装置3へ送られる。生成ガスライン30には、最終段の反応器R2から出た生成ガスと水との熱交換が行われる熱交換器31と、熱交換器31で冷却されることによって凝縮した生成ガス中の水分を分離する水分離器32とが設けられている。
メタン分離装置3は、圧力変動吸着(Pressure Swing Adsorption)法を利用する、圧力変動吸着式ガス分離装置である。メタン分離装置3として、公知の圧力変動吸着式ガス分離装置が利用されてよい。
一般に、圧力変動吸着式ガス分離装置は、吸着剤が充填された複数の吸着槽と、吸着槽へ送る元ガスを加圧する圧縮機とを備える(いずれも図示略)。そして、均圧工程、吸着工程、再生工程、及び均圧工程の1サイクルが各吸着槽で交互に経時的に行われる。均圧工程では、複数の吸着槽が連通され、槽内のガスを移動させることにより圧力を回収する。吸着工程では、元ガスを吸着槽へ供給し、内部圧力を高めることと、元ガスを供給しながら吸着槽から製品ガス(分離されたガス)を取り出すこととが行われる。再生工程では、吸着槽の圧力を下げて、易吸着成分を吸着剤から脱離させ、吸着剤を再生させることと、吸着槽にリンス流体を供給して槽内をリンスすることとが行われる。リンス流体には、通常、製品ガスが用いられる。
メタン分離装置3には、製品ガスライン40を通じて製品ガスタンク4が接続されている。メタン分離装置3で生成ガスから分離されたメタンは、製品ガスライン40を通じて製品ガスタンク4へ流入し、製品として回収される。
製品ガスライン40を流れるガスの主成分はメタンであるが、僅かな水素が混入している。そこで、製品ガスライン40には、製品ガスライン40を流れるガスから水素を分離する水素分離装置42が設けられている。水素分離装置42で水素が分離されることによって、製品ガスタンク4に回収されるメタンの純度を更に高めることができる。
図2は、水素分離装置42の構成を示す図である。図2に示す水素分離装置42は、水素のみを通過させる水素透過膜71と、水素透過膜71を介して一側に設けられたメタン流路72と、水素透過膜71を介して他側に設けられた二酸化炭素流路73とを含む。メタン分離装置3から出たメタンがメタン流路72を通過する。また、二酸化炭素供給ライン25の二酸化炭素、即ち、水素と混合される前の二酸化炭素が、二酸化炭素流路73を通過する。メタン流路72のメタンの流れと、二酸化炭素流路73の二酸化炭素の流れは対向している。このような水素分離装置42では、二酸化炭素流路73を流れるガスの水素分圧は0であり、メタン流路72を流れるガスの水素分圧は0よりも大きい(例えば、10000Pa)。この水素分圧の差をドライビングフォースとして、メタン流路72を流れるガス中の水素が、水素透過膜71を透過して、二酸化炭素流路73へ移動する。
製品ガスライン40には、製品ガスライン40を通るメタンをリンス流体としてメタン分離装置3の複数の吸着槽を通過させるリンスライン43が接続されている。リンスライン43は、リサイクルライン5と接続されている。メタン分離装置3で複数の吸着槽をリンスしたリンス流体は、リサイクルライン5へ排出される。
メタン分離装置3には、オフガスを原料ガス供給ライン2へ戻すリサイクルライン5が接続されている。リサイクルライン5の下流側端部は、バッファタンク21と接続されている。但し、リサイクルライン5の下流側端部は、原料ガス供給ライン2において圧縮機22よりも上流に接続されていればよく、バッファタンク21の下流側且つ圧縮機22の上流側、又は、バッファタンク21の上流側に接続されていてもよい。オフガスは、メタン分離装置3で生成ガスからメタンが除かれたガスである。オフガスは、二酸化炭素、水素、水、分離しきれなかったメタンなどを含む。更に、リサイクルライン5を流れるオフガスには、リンス流体(メタン)が混合している。
リサイクルライン5には、オフガスタンク51と、圧力調整器52と、流量調整器53とが設けられている。
オフガスタンク51には、メタン分離装置3から排出されたオフガスと、リンスライン43を通じてメタン分離装置3から排出されたリンス流体(メタン)とが流入し、混合される。オフガスタンク51は、オフガスタンク51を流れるオフガス(リンス流体を含む)の組成が均一となるように、十分な容積を有する。
流量調整器53は、原料ガス供給ライン2へ流入するオフガスの流量を調整する手段である。流量調整器53は、例えば、定流量弁であって、原料ガス供給ライン2へ流入するオフガスの流量を所定値に維持する。
圧力調整器52は、オフガスタンク51から出て流量調整器53へ流入するオフガスの圧力を調整する手段である。圧力調整器52は、例えば、定圧弁であって、流量調整器53へ流入するオフガスの圧力を所定の圧力に維持する。
〔メタン製造方法〕
ここで、上記構成のメタン製造装置100を用いたメタン製造方法を説明する。
ここで、上記構成のメタン製造装置100を用いたメタン製造方法を説明する。
先ず、バッファタンク21で、水素供給ライン24から供給された水素と二酸化炭素供給ライン25から供給された二酸化炭素とが所定の割合で混合されて、原料ガスが調製される。
原料ガスは、圧縮機22及び熱交換器23を経て、第1反応器R1に流入する。第1反応器R1では、原料ガス中の水素及び二酸化炭素がメタネーション触媒の存在下でメタネーション反応して、メタン及び水が生成される。第1反応器R1で生成されたメタン及び水、並びに、未反応の水素及び二酸化炭素を含む生成ガスは、連通ライン1へ流出する。
連通ライン1に流れ出た生成ガスは、第1熱交換器11、水分離器12、及び第2熱交換器13を経て第2反応器R2に流入する。第2反応器R2でも、生成ガス中の水素及び二酸化炭素がメタネーション触媒の存在下でメタネーション反応して、メタン及び水が生成される。第2反応器R2で生成されたメタン及び水、並びに、未反応の水素及び二酸化炭素を含む生成ガスは、生成ガスライン30へ流出する。
生成ガスライン30に流れ出た生成ガスは、熱交換器31及び水分離器32を経てメタン分離装置3へ流入する。メタン分離装置3では、生成ガスからメタンが分離される。分離したメタンは、製品ガスライン40を通じて製品ガスタンク4へ流入し、製品ガスとして回収される。一方、生成ガスからメタンが除かれたオフガスは、リサイクルライン5へ流出する。また、メタン分離装置3の分離工程で吸着槽を通じたリンス流体はリサイクルライン5へ排出される。
リサイクルライン5に流れ出たオフガス(リンス流体を含む)は、オフガスタンク51に流入して、組成が均一化される。オフガスタンク51で組成が均一化されたオフガスは、圧力調整器52及び流量調整器53によって流量及び圧力が調整されたうえで、原料ガス供給ライン2を流れる原料ガスに混入する。
以上に説明したように、本実施形態のメタン製造装置100は、メタネーション触媒が収容された反応器Rと、反応器Rへ原料ガスを供給する原料ガス供給ライン2と、反応器Rから出た生成ガスからメタンを分離するメタン分離装置3と、メタン分離装置3で生成ガスから分離されたメタンを貯える製品ガスタンク4と、メタン分離装置3と原料ガス供給ライン2とを接続し、メタン分離装置3で生成ガスからメタンが除かれたオフガスを原料ガス供給ライン2へ送るリサイクルライン5とを備えている。なお、本実施形態では、反応器Rが連通ライン1で直列的に接続された複数の反応器R1,R2を含むが、反応器Rは単数であってもよい。
また、本実施形態のメタン製造方法は、水素と二酸化炭素とを混合して原料ガスを調製する工程と、原料ガス中の水素及び二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、生成したメタン及び水、並びに、未反応の原料ガスを含む生成ガスから、メタンを分離して回収する工程と、生成ガスからメタンが除かれたオフガスを原料ガスに混入させる工程とを含む。
上記メタン製造装置100及び方法によれば、オフガスがメタン製造装置100の原料として再利用されるので、大気(又は系外)へのオフガスの排出量を低減することできる。
また、本実施形態に係るメタン製造装置100では、リサイクルライン5が、オフガスを貯えるオフガスタンク51、原料ガス供給ライン2へ流入するオフガスの流量を調整する流量調整器53、及び、オフガスタンク51から出て流量調整器53へ入るオフガスの圧力を調整する圧力調整器52を含んでいる。
同様に、本実施形態に係るメタン製造方法は、オフガスを原料ガスに混入させる工程が、オフガスの組成を均一化させることと、オフガスの流量及び圧力を調整して原料ガスに混入させることとを含んでいる。
これにより、オフガスタンク51で組成が均一化されたオフガスを、所定圧力且つ所定流量で原料ガスに加えることができるので、原料ガスの組成、圧力及び流量をコントロールすることができる。
また、本実施形態に係るメタン製造装置100では、メタン分離装置3は、複数の吸着槽を含む圧力変動吸着式ガス分離装置であって、複数の吸着槽を通じたリンス流体をリサイクルライン5へ排出するように構成されている。
同様に、本実施形態に係るメタン製造方法は、メタンを分離する工程が、複数の吸着槽を含む圧力変動吸着式ガス分離装置を用いてメタンを分離することを含み、オフガスを原料ガスに混入させる工程が、複数の吸着槽を通じたリンス流体が混入したオフガスを原料ガスに混入させることを含む。
これにより、リンス流体に含まれるメタンがオフガスに伴って原料ガス供給ライン2へ送られ、原料ガスとして再利用されるので、大気(又は系外)へのメタンの排出量を低減することできる。
また、本実施形態に係るメタン製造装置100は、メタン分離装置3と製品ガスタンク4とを接続する製品ガスライン40と、製品ガスライン40に設けられた水素分離装置42とを更に備えている。そして、水素分離装置42が、水素透過膜71と、水素透過膜71を介して一側に設けられたメタンが通るメタン流路72と、水素透過膜71を介して他側に設けられた水素と混合される前の二酸化炭素が通る二酸化炭素流路73とを有している。
同様に、本実施形態に係るメタン製造方法は、メタンを分離する工程が、生成ガスから分離したメタンと、水素と混合される前の二酸化炭素との水素分圧差を利用して、水素透過膜71を用いてメタンからそれに含まれる水素を除去することを含んでいる。
これにより、生成ガスから分離されたメタンに含まれる水素を低減することができ、製品ガスタンク4に回収されるメタンの純度を高めることができる。
また、本実施形態に係るメタン製造装置100は、最前段の反応器R1の触媒の温度を検出する温度センサT1と、原料ガス供給ライン2に設けられた、バッファタンク21、バッファタンク21へ水素を供給する水素供給ライン24、及び、バッファタンク21へ二酸化炭素を供給する二酸化炭素供給ライン25と、二酸化炭素供給ライン25に設けられた放出弁26と、放出弁26を制御する放出弁制御装置27とを備えている。そして、放出弁制御装置27は、検出された触媒の温度に基づいて、触媒の温度が所定温度以上のときに二酸化炭素供給ライン25を通る二酸化炭素の少なくとも一部が系外へ放出され、触媒の温度が所定温度未満のときに放出弁26が閉じられるように、放出弁26を動作させる。
これにより、メタネーション触媒の温度が、例えば、メタネーション反応が停止する温度(又は、その近傍)まで上昇したときに、原料ガス中の二酸化炭素の割合を減らすことによって、反応器Rでのメタネーション反応を抑え、メタネーション触媒の温度を下げることができる。
以上に本発明の好適な実施の形態を説明したが、本発明の精神を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
1 :連通ライン
2 :原料ガス供給ライン
3 :メタン分離装置
4 :製品ガスタンク
5 :リサイクルライン
11 :第1熱交換器
12 :水分離器
13 :第2熱交換器
21 :バッファタンク
22 :圧縮機
23 :熱交換器
24 :水素供給ライン
25 :二酸化炭素供給ライン
26 :放出弁
27 :放出弁制御装置
30 :生成ガスライン
31 :熱交換器
32 :水分離器
40 :製品ガスライン
42 :水素分離装置
43 :リンスライン
51 :オフガスタンク
52 :圧力調整器
53 :流量調整器
71 :水素透過膜
72 :メタン流路
73 :二酸化炭素流路
100 :メタン製造装置
R,R1,R2 :反応器
T1,T2 :温度センサ
2 :原料ガス供給ライン
3 :メタン分離装置
4 :製品ガスタンク
5 :リサイクルライン
11 :第1熱交換器
12 :水分離器
13 :第2熱交換器
21 :バッファタンク
22 :圧縮機
23 :熱交換器
24 :水素供給ライン
25 :二酸化炭素供給ライン
26 :放出弁
27 :放出弁制御装置
30 :生成ガスライン
31 :熱交換器
32 :水分離器
40 :製品ガスライン
42 :水素分離装置
43 :リンスライン
51 :オフガスタンク
52 :圧力調整器
53 :流量調整器
71 :水素透過膜
72 :メタン流路
73 :二酸化炭素流路
100 :メタン製造装置
R,R1,R2 :反応器
T1,T2 :温度センサ
Claims (10)
- 混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置であって、
メタネーション触媒が収容された反応器と、
前記反応器へ前記原料ガスを供給する原料ガス供給ラインと、
前記反応器から出た生成ガスからメタンを分離するメタン分離装置と、
前記メタン分離装置で前記生成ガスから分離された前記メタンを貯える製品ガスタンクと、
前記メタン分離装置と前記原料ガス供給ラインとを接続し、前記メタン分離装置で前記生成ガスから前記メタンが除かれたオフガスを前記原料ガス供給ラインへ送るリサイクルラインとを備える、
メタン製造装置。 - 前記リサイクルラインが、前記オフガスを貯えるオフガスタンク、前記原料ガス供給ラインへ流入する前記オフガスの流量を調整する流量調整器、及び、前記オフガスタンクから出て前記流量調整器へ入る前記オフガスの圧力を調整する圧力調整器を含む、
請求項1に記載のメタン製造装置。 - 前記メタン分離装置は、複数の吸着槽を含む圧力変動吸着式ガス分離装置であって、前記複数の吸着槽を通じたリンス流体を前記リサイクルラインへ排出するように構成されている、
請求項1又は2に記載のメタン製造装置。 - 前記メタン分離装置と前記製品ガスタンクとを接続する製品ガスラインと、
前記製品ガスラインに設けられた水素分離装置とを更に備え、
前記水素分離装置が、水素透過膜と、前記水素透過膜を介して一側に設けられた前記メタンが通るメタン流路と、前記水素透過膜を介して他側に設けられた前記水素と混合される前の前記二酸化炭素が通る二酸化炭素流路とを有する、
請求項1~3のいずれか一項に記載のメタン製造装置。 - 前記反応器の前記触媒の温度を検出する温度センサと、
前記原料ガス供給ラインに設けられた、バッファタンク、前記バッファタンクへ前記水素を供給する水素供給ライン、及び、前記バッファタンクへ前記二酸化炭素を供給する二酸化炭素供給ラインと、
前記二酸化炭素供給ラインに設けられた放出弁と、
検出された前記触媒の温度に基づいて、前記触媒の温度が所定温度以上のときに前記二酸化炭素供給ラインを通る前記二酸化炭素の少なくとも一部が系外へ放出され、前記触媒の温度が前記所定温度未満のときに前記放出弁が閉じられるように、前記放出弁を動作させる放出弁制御装置とを、更に備える、
請求項1~4のいずれか一項に記載のメタン製造装置。 - 前記反応器が、連通ラインで直列的に接続された複数の反応器を含む、
請求項1~5のいずれか一項に記載のメタン製造装置。 - 水素と二酸化炭素とを混合して原料ガスを調製する工程と、
前記原料ガス中の前記水素及び前記二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、
生成した前記メタン及び水、並びに、未反応の前記原料ガスを含む生成ガスから、前記メタンを分離して回収する工程と、
前記生成ガスから前記メタンが除かれたオフガスを前記原料ガスに混入させる工程と、を含む、
メタン製造方法。 - 前記オフガスを前記原料ガスに混入させる工程が、前記オフガスの組成を均一化させることと、前記オフガスの流量及び圧力を調整して前記原料ガスに混入させることとを含む、
請求項7に記載のメタン製造方法。 - 前記メタンを分離する工程が、複数の吸着槽を含む圧力変動吸着式ガス分離装置を用いて前記メタンを分離することを含み、
前記オフガスを前記原料ガスに混入させる工程が、前記複数の吸着槽を通じたリンス流体が混入した前記オフガスを前記原料ガスに混入させることを含む、
請求項7又は8に記載のメタン製造方法。 - 前記メタンを分離する工程が、前記生成ガスから分離した前記メタンと前記水素と混合される前の前記二酸化炭素との水素分圧差を利用して、水素透過膜を用いて前記メタンからそれに含まれる水素を除去することを含む、
請求項7~9のいずれか一項に記載のメタン製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019001266.5T DE112019001266T5 (de) | 2018-03-13 | 2019-03-07 | Vorrichtung und Verfahren zur Herstellung von Methan |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018045737A JP7157534B2 (ja) | 2018-03-13 | 2018-03-13 | メタン製造装置及び方法 |
JP2018-045737 | 2018-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176744A1 true WO2019176744A1 (ja) | 2019-09-19 |
Family
ID=67906744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009161 WO2019176744A1 (ja) | 2018-03-13 | 2019-03-07 | メタン製造装置及び方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7157534B2 (ja) |
DE (1) | DE112019001266T5 (ja) |
WO (1) | WO2019176744A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114955998A (zh) * | 2022-06-21 | 2022-08-30 | 中科氢焱零碳人居科技(苏州)有限公司 | 一种天然气制氢反应器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7487590B2 (ja) | 2020-07-10 | 2024-05-21 | 株式会社豊田中央研究所 | 二酸化炭素回収装置及び二酸化炭素回収方法 |
DE102021125884A1 (de) * | 2021-10-06 | 2023-04-06 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung | Verfahren und Vorrichtung zur Herstellung eines methanhaltigen Produktgases |
WO2024106373A1 (ja) * | 2022-11-16 | 2024-05-23 | 株式会社レゾナック | 炭化水素の製造方法及び炭化ケイ素の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128003A (en) * | 1991-10-17 | 1992-07-07 | United Technologies Corporation | Method for the conversion of carbon dioxide and hydrogen to variable methane and oxygen ratios |
JP2015051954A (ja) * | 2013-09-09 | 2015-03-19 | 千代田化工建設株式会社 | 水素及び合成天然ガスの製造装置及び製造方法 |
US20170355919A1 (en) * | 2015-11-26 | 2017-12-14 | Industry-Academic Cooperation Foundation Chosun University | Method and apparatus for synthesizing methane gas from carbon dioxide and hydrogen at room temperature and atmospheric pressure |
JP2019026595A (ja) * | 2017-07-31 | 2019-02-21 | 三菱ケミカル株式会社 | メタン製造装置 |
-
2018
- 2018-03-13 JP JP2018045737A patent/JP7157534B2/ja active Active
-
2019
- 2019-03-07 DE DE112019001266.5T patent/DE112019001266T5/de active Pending
- 2019-03-07 WO PCT/JP2019/009161 patent/WO2019176744A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128003A (en) * | 1991-10-17 | 1992-07-07 | United Technologies Corporation | Method for the conversion of carbon dioxide and hydrogen to variable methane and oxygen ratios |
JP2015051954A (ja) * | 2013-09-09 | 2015-03-19 | 千代田化工建設株式会社 | 水素及び合成天然ガスの製造装置及び製造方法 |
US20170355919A1 (en) * | 2015-11-26 | 2017-12-14 | Industry-Academic Cooperation Foundation Chosun University | Method and apparatus for synthesizing methane gas from carbon dioxide and hydrogen at room temperature and atmospheric pressure |
JP2019026595A (ja) * | 2017-07-31 | 2019-02-21 | 三菱ケミカル株式会社 | メタン製造装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114955998A (zh) * | 2022-06-21 | 2022-08-30 | 中科氢焱零碳人居科技(苏州)有限公司 | 一种天然气制氢反应器 |
Also Published As
Publication number | Publication date |
---|---|
JP2019156760A (ja) | 2019-09-19 |
DE112019001266T5 (de) | 2020-12-03 |
JP7157534B2 (ja) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019176744A1 (ja) | メタン製造装置及び方法 | |
KR100887850B1 (ko) | 가스 재생 시스템과 가스 정화 및 재생 방법 | |
EP2720976B1 (en) | Method for hydrogen production | |
CA3006900C (en) | Method for the provision of carbon dioxide for the synthesis of urea | |
CA2646385A1 (en) | Carbon dioxide separation via partial pressure swing cyclic chemical reaction | |
CA2948370C (en) | Method for the manufacture of urea | |
CN110237650B (zh) | 一种乙烯直接氧化制环氧乙烷中反应循环气的FTrPSA分离方法 | |
JPWO2007105696A1 (ja) | 水素製造装置および水素製造方法 | |
JP5614808B2 (ja) | ヘリウムガスの精製方法および精製装置 | |
CN115843289A (zh) | 纯化合成气的工艺 | |
JP5101540B2 (ja) | アルゴン精製方法およびアルゴン精製装置 | |
JP2019156760A5 (ja) | ||
JP5683390B2 (ja) | ヘリウムガスの精製方法および精製装置 | |
WO2019176745A1 (ja) | メタン製造装置及び方法 | |
CA2933736C (en) | Process for producing ammonia synthesis gas | |
JP7061485B2 (ja) | メタン製造装置 | |
CN106163987B (zh) | 用于改造制氨装置的前端的方法 | |
JP7324150B2 (ja) | 炭化水素製造装置、および、炭化水素化合物の製造方法 | |
JP4079695B2 (ja) | 浸炭用雰囲気ガス発生装置及び方法 | |
JP5057683B2 (ja) | 水素製造装置 | |
JP2019156730A (ja) | メタノールの合成方法 | |
JP2006159168A (ja) | 純度の高い窒素ガスを作り出す窒素ガスの製造方法および製造装置 | |
JP2007320779A (ja) | アンモニア合成用素ガスの製造方法および製造装置 | |
TW201736264A (zh) | 在多反應系統中自非惰性合成氣體製備氨之方法 | |
JP2008024566A (ja) | 水素製造方法及び水素製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768472 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19768472 Country of ref document: EP Kind code of ref document: A1 |