WO2019176698A1 - 非水電解質電池用セパレータおよびその製造方法 - Google Patents

非水電解質電池用セパレータおよびその製造方法 Download PDF

Info

Publication number
WO2019176698A1
WO2019176698A1 PCT/JP2019/008941 JP2019008941W WO2019176698A1 WO 2019176698 A1 WO2019176698 A1 WO 2019176698A1 JP 2019008941 W JP2019008941 W JP 2019008941W WO 2019176698 A1 WO2019176698 A1 WO 2019176698A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
ethylene
vinyl alcohol
alcohol copolymer
porous film
Prior art date
Application number
PCT/JP2019/008941
Other languages
English (en)
French (fr)
Inventor
有紀 太田
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2019176698A1 publication Critical patent/WO2019176698A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous electrolyte battery, a method for producing the same, and a non-aqueous electrolyte battery using the separator for a non-aqueous electrolyte battery.
  • nonaqueous electrolyte batteries have been developed with the spread of mobile terminals such as mobile phones, notebook computers, pad-type information terminal devices, electric vehicles, and hybrid vehicles.
  • a non-aqueous electrolyte battery such as a lithium ion secondary battery differs in form, capacity, performance, etc.
  • a positive electrode and a negative electrode are installed via a separator (separation membrane), and LiPF 6 ,
  • a lithium salt such as LiBF 4 , LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide)) is housed in a container together with an electrolyte solution dissolved in an organic liquid such as ethylene carbonate
  • LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)
  • LiFSI lithium (bisfluorosulfonylimide)
  • Non-aqueous electrolyte batteries with the above-mentioned structure are more safe than water-based batteries, and are more likely to cause smoke, fire, rupture, etc. due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit, etc. Sex is required.
  • separators constituting a non-aqueous electrolyte battery are made of a porous film (porous film), and when the temperature inside the battery rises, the flow of current and ions is blocked by blocking the pores. It has a so-called shutdown function.
  • a porous film made of a polyolefin resin has been widely adopted.
  • Patent Document 1 a porous film made of a polyolefin resin provided with a coating layer containing filler particles and a binder for the purpose of improving safety.
  • Patent Document 2 a porous film made of an ethylene-vinyl alcohol copolymer produced by a wet coagulation method is known (Patent Document 2), and is used as a separator for an ethylene-vinyl alcohol copolymer porous film.
  • Patent Document 3 Use has also been proposed.
  • the present invention has high safety, sufficiently controlled pores, low internal resistance when used as a separator for nonaqueous electrolyte batteries, and improves battery characteristics such as high efficiency and high battery capacity.
  • An object of the present invention is to provide a separator for a non-aqueous electrolyte battery.
  • the present invention provides a method for producing a separator for a non-aqueous electrolyte battery, which can easily produce a separator for a non-aqueous electrolyte battery that can easily control pores and porosity and improve battery characteristics. Objective.
  • the present invention provides the following preferred embodiments.
  • It consists of a porous membrane composed of an ethylene-vinyl alcohol copolymer, and the porous membrane has a fine pore size in the pore size range of 0.01 to 10 ⁇ m in the pore distribution measured by mercury porosimetry.
  • a separator for a non-aqueous electrolyte battery wherein the ratio of the pore volume in the pore diameter range of 0.1 to 1 ⁇ m is 80% or more.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is 20 to 60 mol%, and the saponification degree is 80 mol% or more, according to any one of the above [1] to [4] Nonaqueous electrolyte battery separator.
  • a method for producing a separator for a nonaqueous electrolyte battery comprising a step of wet coagulating a solution containing an ethylene-vinyl alcohol copolymer and a solvent,
  • the wet coagulation step includes immersing a solution containing the ethylene-vinyl alcohol copolymer and a solvent, which may be applied to a substrate, in a coagulation liquid for 1 second to 30 minutes,
  • the absolute value of the difference between the temperature of the solution and the temperature of the coagulation liquid is 35 ° C. or less
  • the solvent constituting the solution is a mixed solvent containing water and alcohol.
  • a nonaqueous electrolyte battery comprising the nonaqueous electrolyte battery separator according to any one of [1] to [6].
  • the safety is high, the pores are sufficiently controlled, the internal resistance is low when used as a separator of a non-aqueous electrolyte battery, and battery characteristics such as high efficiency and high battery capacity are improved.
  • the separator for nonaqueous electrolyte batteries which can be provided can be provided.
  • the present invention also provides a method for producing a non-aqueous electrolyte battery separator capable of efficiently producing a non-aqueous electrolyte battery separator that can easily control pores and porosity and improve battery characteristics. it can.
  • the separator for a non-aqueous electrolyte battery of the present invention (hereinafter also referred to as “the separator of the present invention”) is composed of a porous film composed of an ethylene-vinyl alcohol copolymer, and separates the positive electrode and the negative electrode in the non-aqueous electrolyte battery. In addition, it has an ion transport property of passing or holding the electrolyte and allowing ions to pass between the positive electrode and the negative electrode.
  • the ethylene-vinyl alcohol copolymer for forming the separator for example, one obtained by saponifying an ethylene-vinyl ester copolymer such as an ethylene-vinyl acetate copolymer may be used. it can.
  • the ethylene content (ethylene modification amount) of the ethylene-vinyl alcohol copolymer is preferably 20 to 60 mol%.
  • the ethylene content is not less than the above lower limit, the water resistance of the resulting porous membrane can be improved, and when the ethylene content is not more than the above upper limit, the ethylene-vinyl alcohol copolymer is suitable. Because of its hydrophilicity, it becomes easy to process into a porous film.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is more preferably 25 mol% or more, further preferably 30 mol% or more, and more preferably 55 mol% or less. More preferably, it is 50 mol% or less.
  • the saponification degree in the ethylene-vinyl alcohol copolymer is preferably 80 mol% or more, more preferably 90 mol% or more, and further preferably 95 mol% or more.
  • the upper limit of the saponification degree is not particularly limited, but is 100 mol% or less, and it is particularly preferable to use a saponification degree (that is, a saponification degree of 100 mol%). In general, when the degree of saponification is 99 mol% or more, it is determined that the saponification is complete.
  • the ethylene-vinyl alcohol copolymer for forming the separator of the present invention has an ethylene content of 20 to 60 mol% and a saponification degree of 80 mol% or more. Are preferred.
  • the copolymerization form of the ethylene-vinyl alcohol copolymer is not particularly limited, and may be any of a random copolymer, an alternating copolymer, a block copolymer, a graft copolymer, and the like.
  • the ethylene-vinyl alcohol copolymer includes a structural unit derived from a monomer that can be copolymerized with these units in addition to the ethylene unit and the vinyl alcohol unit, as long as the effects of the present invention are not impaired.
  • other structural units include ⁇ -olefins such as propylene, isobutylene, ⁇ -octene, and ⁇ -dodecene; acrylic acids, methacrylic acid, methyl methacrylate, crotonic acid, maleic acid, itaconic acid, and the like.
  • the ethylene-vinyl alcohol copolymer contains structural units derived from other monomers, the content is preferably 15 mol% or less, more preferably 10 mol% or less.
  • the ethylene-vinyl alcohol copolymer preferably has a crosslinked structure.
  • the ethylene-vinyl alcohol copolymer has a cross-linked structure, the mechanical strength of the porous film (separator) composed of the copolymer can be improved, and the liquid retention can be improved.
  • the crosslinked structure is a structure derived from a compound having at least two functional groups capable of reacting with a hydroxyl group contained in a vinyl alcohol unit in an ethylene-vinyl alcohol copolymer (hereinafter also referred to as “crosslinking agent”).
  • a hydroxyl group in the vinyl alcohol unit can be introduced as a crosslinked structure formed as a crosslinking point.
  • the crosslinking agent capable of introducing a crosslinked structure into the ethylene-vinyl alcohol copolymer include oxalic acid, malonic acid, methylmalonic acid, succinic acid, methylsuccinic acid, dimethylsuccinic acid, 2, 3 -Saturated dicarboxylic acids such as dimethylsuccinic acid, glutamic acid, 3-methylglutamic acid, adipic acid, 3-methyladipic acid, pimelic acid, sebacic acid, azelaic acid, tartaric acid, cyclohexanedicarboxylic acid; maleic acid, fumaric acid, itaconic acid Unsaturated carboxylic acids such as citraconic acid, glutaconic acid and aconitic acid; aromatic dicarbox
  • the content of the structural unit derived from the crosslinking agent that introduces the crosslinked structure is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, , Preferably 15 mol% or less, more preferably 10 mol% or less.
  • the content of the structural unit derived from the crosslinking agent that introduces a crosslinked structure is within the above range, an appropriate crosslinked structure is formed between the molecules of the ethylene-vinyl alcohol copolymer and the crosslinking agent, and the resulting separator The mechanical strength and liquid retention can be improved while maintaining the liquid permeability to the electrolyte.
  • the introduction of a cross-linked structure into the ethylene-vinyl alcohol copolymer may be carried out as described above with the ethylene-vinyl alcohol copolymer before or after the film-forming process for forming a porous film from the copolymer. It can be performed by reacting with a suitable crosslinking agent.
  • the addition amount of the crosslinking agent is preferably 0.001 to 5% by mass, more preferably 0.01 to 3% by mass, and still more preferably 0% with respect to the total mass of the ethylene-vinyl alcohol copolymer. .05 to 2% by mass.
  • the introduction of the crosslinked structure into the ethylene-vinyl alcohol copolymer may be performed by adding a crosslinking agent to the coagulation liquid.
  • the amount of the crosslinking agent added is sufficient to form the separator of the present invention. Is preferably 0.001 to 5% by mass, more preferably 0%, based on the total weight of the solution containing the ethylene-vinyl alcohol copolymer and the solvent (hereinafter also referred to as “mixture for forming a porous film”). 0.01 to 4% by mass, more preferably 0.05 to 3% by mass. Whether or not a crosslinked structure has been introduced can be confirmed by whether or not a peak derived from a crosslinking agent in a film obtained by, for example, infrared spectroscopy or elemental analysis is observed.
  • the method for producing the ethylene-vinyl alcohol copolymer is not particularly limited, and it can be prepared by a conventionally known method.
  • the separator of the present invention consists of a porous film composed of ethylene-vinyl alcohol copolymer.
  • the content of the ethylene-vinyl alcohol copolymer in the separator (porous membrane) of the present invention is usually 90% by mass or more, preferably 95% by mass or more, more preferably relative to the total mass of the separator. Is 97% by mass or more, and the separator is a porous membrane substantially made of an ethylene-vinyl alcohol copolymer (that is, the content of the ethylene-vinyl alcohol copolymer is 100% by mass with respect to the total mass of the separator). It may consist of
  • the porous film constituting the separator of the present invention is composed of a porous film having a sharp pore distribution as described above, and has uniform pores, so that a uniform current distribution can be formed during charge and discharge. Dendride is difficult to deposit. By using such a separator, it is possible to obtain a nonaqueous electrolyte battery that is less likely to cause an internal short circuit, is excellent in safety, has a long battery life, and has excellent battery characteristics.
  • the ratio of the pore volume in the range of 0.1 to 1 ⁇ m to the pore volume in the range of 0.01 to 10 ⁇ m in the pore distribution measured by the mercury intrusion method is less than 80%. And the pores become non-uniform, and the performance as a separator for a nonaqueous electrolyte battery tends to be inferior.
  • the ratio of the pore volume in the range of 0.1 to 1 ⁇ m to the pore volume in the range of 0.01 to 10 ⁇ m in the pore distribution is preferably 82% or more, more preferably 85. % Or more, more preferably 88% or more.
  • the upper limit of the proportion of the pore volume is not particularly limited, but is usually 99% or less, preferably 98% or less.
  • the measurement of the pore distribution by the mercury intrusion method can be performed according to the method described in Examples described later.
  • the porosity of the porous film constituting the separator of the present invention is preferably 20% or more, more preferably 25% or more, still more preferably 30% or more, and particularly preferably 40% or more.
  • the porosity is preferably 80% or less, more preferably 75% or less, and further preferably 70% or less.
  • the porosity is not more than the above upper limit value, the strength of the porous film can be improved. Therefore, by using such a separator, it is possible to obtain a non-aqueous electrolyte battery that hardly causes an internal short circuit.
  • the porosity can be measured and calculated from the thickness and weight of the film and the density of the polymer. Detailed measurement and calculation methods are as described in the examples described later.
  • the average pore diameter in the porous membrane constituting the separator of the present invention is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.5 ⁇ m or more, and preferably 4 ⁇ m or less. Preferably it is 3.5 micrometers or less, More preferably, it is 3 micrometers or less.
  • the average pore diameter is not less than the above lower limit value, sufficient liquid permeability to the electrolytic solution can be ensured, and the resistance can be lowered.
  • the average pore diameter is not more than the above upper limit value, it is possible to obtain a nonaqueous electrolyte battery that prevents the electrodes from contacting each other and hardly causes an internal short circuit.
  • the said average pore diameter is a value in the pore of the separator (porous film) surface calculated
  • the shape of the pores in the porous membrane is not particularly limited, and examples thereof include a monolith shape, a honeycomb shape, a disc shape, and a polygonal plate shape. Among them, a monolith shape including a shape having a three-dimensional network structure skeleton and voids that are difficult to short-circuit while having high electrolyte solution transportability is preferable.
  • an endothermic peak heat amount derived from crystal melting of the porous film and an endothermic peak derived from crystal melting of the ethylene-vinyl alcohol copolymer constituting the porous film as measured by a differential scanning calorimeter.
  • the ratio to heat quantity is preferably 1.10 to 3.50, more preferably 1.20 to 3.00. And more preferably 1.30 to 2.00.
  • the ethylene content of the ethylene-vinyl alcohol copolymer used as the raw material is the same, the higher the endothermic peak amount ratio, the higher the crystallinity.
  • the endothermic peak heat amount ratio is in the above range.
  • the “endothermic peak calorie derived from crystal melting” is the endotherm of the second cycle measured by a differential scanning calorimeter when the porous membrane or the ethylene-vinyl alcohol copolymer constituting the porous membrane is heated. It means the endothermic amount at the peak. A detailed measurement method will be described in Examples described later.
  • the porous film constituting the separator of the present invention is not particularly limited, but is preferably a flat film.
  • the thickness is preferably 1 ⁇ m or more and less than 50 ⁇ m, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, more preferably 40 ⁇ m or less, and further preferably 35 ⁇ m or less.
  • the thickness of the porous film is not less than the above lower limit, the strength of the porous film is sufficiently high, and it is possible to obtain a separator that suppresses the occurrence of cracks and hardly causes a short circuit.
  • the liquid permeability of electrolyte solution is favorable in the thickness of a porous film being the said upper limit or less, and battery resistance can be made low.
  • the separator of the present invention is, for example, Including a step of wet coagulating a solution containing an ethylene-vinyl alcohol copolymer and a solvent,
  • the wet coagulation step includes immersing a solution containing the ethylene-vinyl alcohol copolymer and a solvent, which may be applied to a substrate, in a coagulation liquid for 1 second to 30 minutes,
  • the absolute value of the difference between the temperature of the solution and the temperature of the coagulation liquid is 35 ° C. or less
  • the solvent constituting the solution is a mixed solvent containing water and alcohol. .
  • the present invention A method for producing a separator for a non-aqueous electrolyte battery, comprising a step of wet coagulating a solution containing an ethylene-vinyl alcohol copolymer and a solvent,
  • the wet coagulation step includes immersing a solution containing the ethylene-vinyl alcohol copolymer and a solvent, which may be applied to a substrate, in a coagulation liquid for 1 second to 30 minutes,
  • the absolute value of the difference between the temperature of the solution and the temperature of the coagulation liquid is 35 ° C. or less
  • the solvent constituting the solution is a mixed solvent containing water and alcohol (hereinafter referred to as “present” Also referred to as “the manufacturing method of the invention”).
  • the production method of the present invention includes a step (hereinafter also referred to as “coagulation step”) of wet coagulation of a solution (a mixed liquid for forming a porous film) containing an ethylene-vinyl alcohol copolymer and a solvent.
  • coagulation step a step of wet coagulation of a solution (a mixed liquid for forming a porous film) containing an ethylene-vinyl alcohol copolymer and a solvent.
  • the solvent used in the mixed liquid for forming the porous film is a mixed solvent containing water and alcohol from the viewpoint of solubility of the ethylene-vinyl alcohol copolymer.
  • alcohols that can be mixed with water in the mixed solvent include methanol, ethanol, butanol, isopropanol, 1-propanol, 1-butanol, and ethylene glycol. These may be used alone or in combination of two or more.
  • the solvent used in the mixture for forming the porous film is selected from the group consisting of water, methanol, ethanol, isopropanol and 1-propanol. It is preferably a mixed solvent with one or more alcohols.
  • the mixing ratio of water and alcohol is preferably 20/80 to 70/30, more preferably 25/75 to 65/35 in volume ratio. .
  • a mixed solvent containing water and alcohol at a ratio in the above range, a porous film-forming mixed solution containing an ethylene-vinyl alcohol copolymer having a solid content concentration suitable for forming a porous film can be easily prepared. it can.
  • the mixed solvent used in the mixed liquid for forming a porous film may contain a small amount of a solvent other than water and alcohol as long as it can dissolve the ethylene-vinyl alcohol copolymer.
  • a mixed solvent composed of water and alcohol is preferable.
  • the solid content concentration of the ethylene-vinyl alcohol copolymer in the mixture for forming a porous film is preferably 3 to 50% by mass, more preferably 5 to 45% by mass.
  • the handling property of the mixed liquid for forming the porous film is good and the porous film can be easily formed by wet coagulation.
  • the mixed liquid for forming a porous film may contain a crosslinking agent for introducing a crosslinked structure into the ethylene-vinyl alcohol copolymer constituting the separator of the present invention.
  • the addition amount of the crosslinking agent is preferably 0.001 to 5% by mass, more preferably 0.01 to 3% by mass, and still more preferably 0% with respect to the total mass of the ethylene-vinyl alcohol copolymer. .05 to 2% by mass.
  • the mixed liquid for forming a porous film includes a polymer compound (copolymer) other than the ethylene-vinyl alcohol copolymer, an antioxidant, an ultraviolet absorber, and a lubricant as long as the effects of the present invention are not impaired. Furthermore, additives such as inorganic fine powders and organic substances such as antifoaming agents and antiblocking agents may be included.
  • the content of the above-mentioned components other than the ethylene-vinyl alcohol copolymer is usually 10% by mass or less, preferably 5% by mass or less, based on the solid content of the porous film forming liquid mixture.
  • solid content of the liquid mixture for porous film formation means the total amount of the component remove
  • a mixed liquid for forming a porous film is prepared by mixing an ethylene-vinyl alcohol copolymer and, if necessary, other components such as a cross-linking agent and an additive with a mixed solvent containing water and alcohol, and then stirring ethylene.
  • -It can be obtained by dissolving a vinyl alcohol copolymer.
  • the obtained mixed liquid for forming a porous film can be solidified by immersing it in a coagulating liquid to obtain a wet film.
  • the immersion of the mixed liquid for forming a porous film in the coagulation liquid is not particularly limited as long as a wet film having a desired shape and film thickness can be obtained after solidification.
  • the porous film forming mixed liquid may be immersed in the coagulating liquid together with the base material, or the porous film forming mixed liquid may be directly put into the coagulating liquid through a slit.
  • Specific examples of the method for applying the porous film forming liquid mixture to the substrate include, for example, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, an immersion method, and a brush coating method. And the like.
  • Examples of the method of directly feeding the porous film forming mixed liquid into the coagulation liquid include extrusion by a T-die method, an inflation method, or the like.
  • Examples of the substrate on which the porous film forming liquid mixture can be applied include polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), polyethylene (PE), and glass.
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PVC polyvinyl chloride
  • PE polyethylene
  • the coagulating liquid is not particularly limited as long as it is a solution capable of coagulating the mixed liquid for forming a porous film, and examples thereof include a mixed solution of water, water and an organic solvent.
  • the organic solvent that can be mixed with water include alcohols such as methanol, ethanol, isopropanol and 1-propanol, and ketones such as acetone and methyl ethyl ketone. These may be used alone or in combination of two or more. Since the coagulation ability with respect to the liquid mixture for forming a porous film is high and it becomes easy to obtain uniform pores, water or a mixed solution of water and an organic solvent is preferable as the coagulation liquid, and the preparation and disposal of the solvent are easy. Therefore, water or a mixed solution of water and alcohol is more preferable.
  • a crosslinking agent may be added to the coagulation liquid.
  • the addition amount of the crosslinking agent is preferably 0.001 to 5% by mass, more preferably 0.01 to 4% by mass with respect to the total weight of the mixed liquid for forming the porous film for forming the separator of the present invention. %, More preferably 0.05 to 3% by mass.
  • the content of water in the coagulation liquid is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more with respect to the total mass of the coagulation liquid.
  • the content of the organic solvent in the coagulation liquid is preferably less than 50% by mass with respect to the total mass of the coagulation liquid, and more Preferably it is less than 40 mass%, More preferably, it is less than 30 mass%.
  • the upper limit value of the content of water in the coagulation liquid is not particularly limited, and may be composed only of water (that is, 100% by mass). The higher the water content, the faster the coagulation rate tends to be. Therefore, the higher the water content in the coagulation liquid, the better.
  • the alcohol brought from the porous film forming liquid mixture In general, the upper limit of the water content is about 98% by mass.
  • the absolute value of the difference between the temperature of the mixed liquid for forming a porous film and the temperature of the coagulating liquid is 35 ° C. or less.
  • the production method of the present invention can control the pores and the porosity by adjusting the temperature of the mixed liquid for forming a porous film and the temperature of the coagulation liquid, and further for controlling the pores and the porosity. Since a process and a complicated process are not required, there is an advantage that productivity is high and production cost can be reduced.
  • the absolute value of the difference between the temperature of the mixed liquid for forming a porous film and the temperature of the coagulation liquid is preferably 20 ° C. or less, more preferably 15 ° C. or less, and further preferably 12 ° C. or less.
  • the lower limit of the difference between the temperature of the porous film forming liquid mixture and the temperature of the coagulating liquid is not particularly limited, and is usually about 10 ° C., and the temperature of the porous film forming liquid mixture and the temperature of the coagulating liquid are the same. (That is, 0 ° C.).
  • the temperature of the mixed liquid for forming a porous film means the temperature of the mixed liquid when the mixed liquid for forming a porous film is introduced into the coagulating liquid. In the case of immersion, the temperature at the time of application of the porous film forming liquid mixture can be regarded as the temperature of the porous film forming liquid mixture.
  • the temperature of the coagulation liquid is preferably 10 to 70 ° C., more preferably 15 ° C. or more, further preferably 20 ° C. or more, particularly preferably 30 ° C. or more, particularly preferably more than 30 ° C., and more preferably Is 65 ° C. or lower.
  • the temperature of the coagulation liquid is within the above range, the film formation and the pore formation by the coagulation of the ethylene-vinyl alcohol copolymer proceed in a well-balanced manner, so that a porous film having desired pores and porosity is obtained. be able to.
  • the resulting porous film and the ethylene constituting the porous film can be easily controlled within a desired range.
  • the temperature of the coagulation liquid is too low, phase separation proceeds prior to pore formation, making it difficult to form sufficient pores and obtaining a porous membrane having a desired pore diameter and porosity. It becomes difficult. If the temperature of the coagulation liquid is too high, spinodal decomposition does not occur sufficiently, and it becomes difficult to form a porous film.
  • the temperature of the mixed liquid for forming a porous film is preferably 20 to 90 ° C., more preferably 30 to 80 ° C.
  • the temperature of the mixed liquid for forming the porous film is within the above range, when immersed in the coagulating liquid, the film formation by the coagulation of the ethylene-vinyl alcohol copolymer and the pore formation can proceed in a balanced manner. .
  • the resulting porous film and the ethylene constituting the porous film can be easily controlled within a desired range.
  • the immersion time of the mixed liquid for forming a porous film in the coagulating liquid is 1 to 30 minutes, preferably 3 seconds or more, more preferably 5 seconds or more, and preferably 25 Min or less, more preferably 20 min or less. If the immersion time is too short, the ethylene-vinyl alcohol copolymer does not sufficiently solidify, making it difficult to obtain pores having a desired pore diameter. In addition, if the immersion time is too long, excessive swelling occurs in the coagulation liquid, and in an extreme case, the porosity is decreased and desired pores cannot be obtained, and productivity is also reduced.
  • the wet film obtained by the coagulation step may be subjected to a drying process for removing the solvent.
  • the method for the drying treatment is not particularly limited. For example, natural drying; aeration drying with warm air, hot air, low-humidity air; heating drying; reduced pressure / vacuum drying; drying with radiation such as infrared rays, far infrared rays, and electron beams; and You may carry out by these combinations. From the viewpoint of improving production efficiency without disturbing the pores and voids formed in the coagulation step, aeration drying is preferred.
  • the drying conditions can be removed as soon as possible without damaging the resulting porous membrane (for example, the occurrence of cracks due to stress concentration). It may be determined as appropriate.
  • the drying temperature is usually 10 to 150 ° C., preferably 25 to 110 ° C., and the drying time is usually about 1 to 90 minutes.
  • the porous film from which the solvent has been removed may be subjected to a rolling treatment.
  • the rolling method include a mold press and a roll press.
  • the separator for non-aqueous electrolyte obtained by the production method of the present invention is composed of a porous film showing a sharp pore distribution and has uniform pores, so that a uniform current distribution can be formed during charge and discharge. Dendride is difficult to deposit.
  • a separator By using such a separator, it is possible to obtain a nonaqueous electrolyte battery that is less likely to cause an internal short circuit, is excellent in safety, has a long battery life, and has excellent battery characteristics. Therefore, the present invention is also directed to a non-aqueous electrolyte battery including the non-aqueous electrolyte battery separator of the present invention.
  • the nonaqueous electrolyte battery of the present invention includes the separator of the present invention.
  • Examples of the nonaqueous electrolyte battery include a lithium ion battery, a sodium ion battery, a lithium sulfur battery, an all-solid battery, and a lithium ion capacitor.
  • the nonaqueous electrolyte battery of the present invention generally includes a positive electrode, a negative electrode, and an electrolyte solution in addition to the separator of the present invention.
  • the nonaqueous electrolyte battery of the present invention can be manufactured using known materials and techniques.
  • a negative electrode usually used for a non-aqueous electrolyte battery such as a lithium ion secondary battery is used without particular limitation.
  • graphite, hard carbon, Si-based oxide, etc. are used as the negative electrode active material.
  • the negative electrode active material includes a conductive auxiliary such as metal powder, conductive polymer, acetylene black, and carbon black, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and polyvinyl alcohol.
  • a slurry for negative electrode prepared by mixing with water or a solvent having a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower (for example, N-methyl-2-pyrrolidone) is applied to a negative electrode current collector such as copper foil.
  • the negative electrode can be formed by applying and drying the solvent.
  • a positive electrode usually used for a non-aqueous electrolyte battery such as a lithium ion secondary battery is used without particular limitation.
  • the positive electrode active material TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used.
  • the positive electrode active material includes a conductive auxiliary exemplified in the negative electrode and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and polyvinyl alcohol, and has a boiling point of 100 ° C. in water or atmospheric pressure.
  • the positive electrode slurry prepared by mixing in a solvent of 300 ° C. or lower can be applied to a positive electrode current collector such as aluminum and the solvent can be dried to obtain a positive electrode.
  • dissolved electrolyte in the solvent can be used as electrolyte solution in the nonaqueous electrolyte battery of this invention.
  • the electrolyte solution may be liquid or gel as long as it is used for a non-aqueous electrolyte battery such as a normal lithium ion secondary battery, and functions as a battery depending on the type of the negative electrode active material and the positive electrode active material. What is to be exhibited may be selected as appropriate.
  • any known lithium salt can be used, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlC l4, LiCl, LiBr, LiB (C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, And lower aliphatic lithium carboxylates.
  • the solvent for dissolving such an electrolyte is not particularly limited. Specific examples include, for example, carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2 -Ethers such as ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran; Sulfoxides such as dimethyl sulfoxide; Oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; Nitrogen-containing compounds such as acetonitrile and nitromethane Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate; triethyl
  • Inorganic acid esters diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, and the like.
  • a gel electrolyte a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
  • a binder used for a negative electrode or a positive electrode a polymer compound having a copolymer containing vinyl alcohol, vinyl acetal and / or vinyl ester, which is the same material as the separator of the present invention, is used. It is expected that productivity will be improved by preventing displacement of the electrode and preventing active material from falling off. For this reason, it is more preferable to use the same kind of material as the separator of the present invention as the binder. On the other hand, using a SBR emulsion is also a preferred aspect from the balance between availability and productivity improvement.
  • the method for producing the nonaqueous electrolyte battery of the present invention is not particularly limited, and can be produced according to a conventionally known method.
  • the shape of the nonaqueous electrolyte battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
  • the non-aqueous electrolyte battery of the present invention comprising the separator of the present invention as a constituent member is highly safe, hardly raises the internal resistance, and has excellent battery characteristics such as a high battery capacity.
  • the non-aqueous electrolyte battery of the present invention can be suitably used for various applications. For example, portable terminals that are required to be small, thin, light, and have high performance, high capacity, and large current. It is useful as a battery used in large equipment such as an electric vehicle that requires performance such as charge / discharge characteristics.
  • ⁇ Pore distribution> The pore volume distribution was calculated by the mercury intrusion method under the following conditions. Based on the measured pore distribution, the ratio of the pore volume in the range of 0.1 to 1 ⁇ m to the pore volume in the range of 0.01 to 10 ⁇ m was calculated. Measurement condition: Measuring device: poremaster 33-P-GT manufactured by Cantachrome Instruments Japan GK Mercury contact angle 130.00 °, surface tension 485.00 erg / cm 2 Pressure range: 12.2 kPa to 123 MPa Cell volume: 1cc
  • the porosity of the porous membrane was calculated according to the following equation by measuring the thickness and mass of a sample punched out to a predetermined size ( ⁇ 17 mm).
  • Porosity ⁇ 1 ⁇ (theoretical volume of separator / apparent volume of separator) ⁇ ⁇ 100
  • Theoretical volume of separator (mass of separator) / (theoretical density)
  • Apparent volume of separator (thickness) ⁇ (area of separator)
  • ⁇ Liquid absorption> 100 ml of a mixed solvent (EC / EMC 3/7) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was placed in the container.
  • the separator was cut into a size of 10 mm in the longitudinal direction and 60 mm in the width direction, and the tip of 1 mm in the width direction was immersed in the above mixed solvent, and the height from the liquid surface of the mixed solvent sucked up by capillary action after 1 minute ( (Liquid absorption height) was measured. Evaluation was performed 10 times per sample, and the average value was defined as the electrolyte solution absorption height.
  • ⁇ Pore diameter> The diameters of 100 openings observed in the scanning electron micrograph were averaged and calculated.
  • electrolyte ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC)
  • a cell for measuring membrane resistance was prepared in the same manner as described above except that the number of separators sandwiched between aluminum foils was two and three.
  • the produced cell was put in a constant temperature bath at 25 ° C., and the resistance of the cell was measured by an AC impedance method at an amplitude of 10 mV and a frequency of 100 kHz.
  • the measured resistance value of the cell was plotted against the number of separators in the cell, and the plot was linearly approximated to obtain the slope.
  • the film resistance ( ⁇ cm 2 ) per separator was determined by multiplying this inclination by 4.8 ⁇ 4.5 cm which is the electrode area.
  • the composition ratio between the active material and the binder in the slurry is, as a solid
  • ⁇ Preparation of negative electrode for battery> The obtained slurry for electrode coating was applied onto a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.), and room temperature ( After primary drying at 24.5 ° C., rolling was performed using a roll press (manufactured by Hosen Co., Ltd.). Then, after punching out as a battery electrode ( ⁇ 14 mm), a coin battery coated electrode was produced by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours.
  • the coin battery coating electrode obtained above was transferred to a glove box (manufactured by Miwa Seisakusho Co., Ltd.) under an argon gas atmosphere.
  • a metal lithium foil (thickness 0.2 mm, ⁇ 16 mm) was used for the positive electrode.
  • the porous membrane obtained above was used as a separator, and the electrolyte was vinylene carbonate (VC) added to ethylene carbonate (EC) and ethyl methyl carbonate (EMC) of lithium hexafluorophosphate (LiPF 6 ).
  • the diameter of the arc-shaped part when expressed by the interface resistance (Rin) with the separator, the value of the resistive component axis (Z axis, real axis) when the capacitive component axis (Z axis, imaginary axis) is 0
  • solution resistance (Rsol) solution resistance
  • conductivity at 25 ° C. and ⁇ 20 ° C. was calculated, respectively. The results are shown in Table 1.
  • Example 2 A separator was prepared in the same manner as in Example 1 except that ethylene-vinyl alcohol copolymer powder having an ethylene content of 32 mol% (Kuraray, F101B) was used, and the temperature of the coagulation liquid was set to 30 ° C. Each physical property was evaluated. Moreover, the coin battery was produced similarly to Example 1, and resistance measurement was performed. The results are shown in Table 1.
  • Example 4 A separator was prepared in the same manner as in Example 1 except that 48 mol% ethylene-vinyl alcohol copolymer powder (Kuraray, G156B) containing ethylene was used, and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 1.
  • Example 7 A separator was prepared in the same manner as in Example 1 except that the temperature of the coagulation liquid was 15 ° C., and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 1.
  • Example 8 A separator was prepared in the same manner as in Example 1 except that the immersion time was 1 minute, and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 1.
  • Comparative Example 1 A separator was prepared in the same manner as in Example 1 except that the immersion time was 60 minutes, and each physical property was evaluated. Further, a coin battery was produced in the same manner as in Example 1, and an attempt was made to measure resistance. However, 3 out of 20 short-circuited cells were produced, and the cell production stability was poor.
  • Comparative Example 2 A separator was prepared in the same manner as in Example 1 except that the temperature of the coagulation liquid was 5 ° C., and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 1.
  • Comparative Example 3 A coin battery was produced in the same manner as in Example 1 except that a commercially available polypropylene-based separator (Celguard # 2400, film thickness: 25 ⁇ m, pore diameter 0.043 ⁇ m, manufactured by Polypore) was used as the separator. Furthermore, resistance was measured by the same method as in Example 1. The results are shown in Table 1.
  • Example 15 A separator was prepared in the same manner as in Example 1 except that the thickness of the film was 53 ⁇ m, and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 1.
  • Example 9 A separator was prepared in the same manner as in Example 1 except that 0.05% by mass of citric acid (Wako Pure Chemical Industries, Ltd.) was added to the coagulation liquid, and each physical property was evaluated. Coin batteries were prepared and resistance measurements were made in the same manner as in Example 2. The results are shown in Table 2. In Examples 9 to 12, the structures obtained from citric acid, oxalic acid, or terephthalic acid in the obtained separators was confirmed by infrared spectroscopy.
  • Example 10 A separator was prepared in the same manner as in Example 9 except that the amount of citric acid was 0.10% by mass, and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 2.
  • Example 11 A separator was prepared in the same manner as in Example 9 except that the amount of citric acid was changed to 1.00% by mass, and each physical property was evaluated. Further, a coin battery was manufactured in the same manner as in Example 1, and resistance measurement was performed. The results are shown in Table 2.
  • Example 12 A separator was prepared in the same manner as in Example 10 except that an ethylene-vinyl alcohol copolymer powder (Kuraray, F101B) having an ethylene content of 32 mol% was used, and each physical property was evaluated. Moreover, the coin battery was produced similarly to Example 1, and resistance measurement was performed. The results are shown in Table 2.
  • Example 13 A separator was prepared in the same manner as in Example 10 except that oxalic acid (Wako Pure Chemical Industries, Ltd.) was used instead of citric acid, and the physical properties were evaluated. The results were shown in Table 2.
  • Example 14 A separator was prepared in the same manner as in Example 10 except that terephthalic acid (Wako Pure Chemical Industries, Ltd.) was used instead of citric acid, and each physical property was evaluated. The results were shown in Table 2.
  • the separator produced by Comparative Example 1 having a long immersion time the pore volume in the pore diameter range of 0.1 to 1 ⁇ m with respect to the pore volume in the pore diameter range of 0.01 to 10 ⁇ m in the pore distribution.
  • the ratio was less than 80%, the pore diameter was large, the porosity increased, and the number of short-circuited batteries increased.
  • the separator produced by Comparative Example 2 having a low temperature of the coagulating liquid and a large difference from the temperature of the mixed liquid for forming a porous film has a low porosity and a small pore diameter, and has a high resistance. Further, in the separators of Examples 9 to 14 using the ethylene-vinyl alcohol copolymer having a crosslinked structure, it was confirmed that the tensile strength and the liquid absorption were improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、エチレン-ビニルアルコール系共重合体から構成される多孔膜からなり、該多孔膜において、水銀圧入法により測定した細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合が80%以上である、非水電解質電池用セパレータに関する。

Description

非水電解質電池用セパレータおよびその製造方法
 本発明は、非水電解質電池用セパレータおよびその製造方法、並びに、前記非水電解質電池用セパレータを用いた非水電解質電池に関する。
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末や電気自動車およびハイブリット自動車等の普及に伴い、種々の非水電解質電池が開発されている。リチウムイオン二次電池などの非水電解質電池はその用途に応じて、形態、容量および性能等において異なるが、一般的に、セパレータ(分離膜)を介して正極と負極を設置し、LiPF、LiBF、LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。
 上記のような構造を有する非水電解質電池では水系電池と比較して、外熱による温度上昇、過充電、内部短絡や外部短絡等による発煙、発火、破裂等の危険性が生じやすく、高い安全性が要求されている。従来、安全性を確保するため、非水電解質電池を構成するセパレータの多くは多孔膜(多孔質フィルム)からなり、電池内部の温度が上昇すると孔の閉塞により電流やイオンの流れを遮断する、いわゆるシャットダウン機能を有する。そのようなセパレータとしてポリオレフィン系樹脂からなる多孔膜が広く採用されており、例えば、より高い安全性の向上を目的としてフィラー粒子およびバインダーを含む被覆層を設けた、ポリオレフィン系樹脂からなる多孔質のセパレータが提案されている(特許文献1)。また、多孔膜としては、湿式凝固法により製造されるエチレン-ビニルアルコール共重合体からなる多孔膜が知られており(特許文献2)、エチレン-ビニルアルコール共重合体多孔膜のセパレータ用途としての使用も提案されている(特許文献3)。
特開2007-280911号公報 特開昭49-113859号公報 特開昭56-49157号公報
 しかしながら、特許文献1に記載されるような、多孔膜にフィラー粒子やバインダーを含む被覆層を設けたセパレータでは、電気素子の内部抵抗が増加して出力特性の低下が生じやすく、充放電サイクルが進むにつれて容量が急激に低下することによりサイクル寿命が短くなるといった問題がある。また、多孔膜に被覆層を設ける工程が必要となるため、生産コストの上昇や生産性の低下といった問題もある。一方、特許文献2に記載されるような方法においては細孔や空隙率を十分に制御することが難しいため、得られる多孔膜の細孔が不均一となりやすく、細孔径も比較的小さくなる傾向にある。このため、このような多孔膜を非水電解質電池のセパレータとして用いた場合、電解液の通液性が低下するため内部抵抗が高くなるなど電池構成部材としての性能において必ずしも満足のいくものではなかった。さらに、特許文献3に記載されるようなエチレン-ビニルアルコール共重合体多孔膜は、非水電解質電池のセパレータとしての機械強度や電池構成部材としての性能において十分ではなく、また、空隙率や細孔径を制御するために無機粉体を用いることから、不要分の回収などの工程を必要とし、生産性に乏しいといった問題もあった。
 そこで、本発明は、安全性が高く、かつ、細孔が十分に制御され、非水電解質電池のセパレータとして用いた場合に内部抵抗が低く、高効率、高電池容量等の電池特性を向上させることのできる非水電解質電池用セパレータを提供することを目的とする。また、本発明は、細孔や空隙率を制御しやすく、電池特性を向上させ得る非水電解質電池用セパレータを効率よく製造することのできる非水電解質電池用セパレータの製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意検討を行った結果、本発明に到達した。すなわち本発明は、以下の好適な態様を提供するものである。
[1]エチレン-ビニルアルコール系共重合体から構成される多孔膜からなり、該多孔膜において、水銀圧入法により測定した細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合が80%以上である、非水電解質電池用セパレータ。
[2]多孔膜の空隙率は20%以上である、前記[1]に記載の非水電解質電池用セパレータ。
[3]示差走査熱量計により測定される、多孔膜の結晶融解に由来する吸熱ピーク熱量と、該多孔膜を構成するエチレン-ビニルアルコール系共重合体の結晶融解に由来する吸熱ピーク熱量との比(多孔膜の吸熱ピーク熱量/エチレン-ビニルアルコール系共重合体の吸熱ピーク熱量)は1.10~3.50である、前記[1]または[2]に記載の非水電解質電池用セパレータ。
[4]多孔膜は1μm以上50μm未満の厚みを有する平膜状である、前記[1]~[3]のいずれかに記載の非水電解質電池用セパレータ。
[5]エチレン-ビニルアルコール系共重合体のエチレン含有率は20~60モル%であり、かつ、ケン化度は80モル%以上である、前記[1]~[4]のいずれかに記載の非水電解質電池用セパレータ。
[6]エチレン-ビニルアルコール系共重合体は架橋構造を有する、前記[1]~[5]のいずれかに記載の非水電解質電池用セパレータ。
[7]エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を湿式凝固させる工程を含む、非水電解質電池用セパレータの製造方法であって、
 前記湿式凝固の工程は、基材に塗布されていてもよい、前記エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を凝固液中に1秒~30分間浸漬することを含み、
 前記溶液の温度と前記凝固液の温度との差の絶対値は35℃以下であり、かつ、前記溶液を構成する溶媒は、水およびアルコールを含む混合溶媒である、製造方法。
[8]凝固液の温度は10~70℃である、前記[7]に記載の製造方法。
[9]凝固液は、凝固液の総質量に対して50質量%以上の水を含む、前記[7]または[8]に記載の製造方法。
[10]前記[1]~[6]のいずれかに記載の非水電解質電池用セパレータを含む非水電解質電池。
 本発明によれば、安全性が高く、かつ、細孔が十分に制御され、非水電解質電池のセパレータとして用いた場合に内部抵抗が低く、高効率、高電池容量等の電池特性を向上させることのできる非水電解質電池用セパレータを提供することができる。また、本発明は、細孔や空隙率を制御しやすく、電池特性を向上させ得る非水電解質電池用セパレータを効率よく製造することのできる非水電解質電池用セパレータの製造方法を提供することができる。
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の非水電解質電池用セパレータ(以下、「本発明のセパレータ」ともいう)は、エチレン-ビニルアルコール系共重合体から構成される多孔膜からなり、非水電解質電池における正極と負極を隔離し、かつ、電解液を通液もしくは保持して正極と負極との間でイオンを通すイオン輸送性を有する。
 本発明において、セパレータを形成するためのエチレン-ビニルアルコール系共重合体としては、例えば、エチレン-酢酸ビニル共重合体などのエチレン-ビニルエステル共重合体をケン化して得られるものを用いることができる。本発明において、エチレン-ビニルアルコール系共重合体のエチレン含有率(エチレン変性量)は、好ましくは20~60モル%である。エチレン含有率が上記下限値以上であると、得られる多孔膜の耐水性を向上させることができ、また、エチレン含有率が上記上限値以下であると、エチレン-ビニルアルコール系共重合体が適度な親水性を有するため、多孔膜への加工がしやすくなる。本発明において、エチレン-ビニルアルコール系共重合体のエチレン含有率は、より好ましくは25モル%以上であり、さらに好ましくは30モル%以上であり、また、より好ましくは55モル%以下であり、さらに好ましくは50モル%以下である。
 エチレン-ビニルアルコール系共重合体におけるケン化度は、好ましくは80モル%以上であり、より好ましくは90モル%以上であり、さらに好ましくは95モル%以上である。ケン化度が上記下限値以上であると、成形性が良好であり、高い機械的強度を有するセパレータを得ることができる。ケン化度の上限は特に限定されるものではないが、100モル%以下であり、完全ケン化(すなわち、ケン化度100モル%)のものを用いることが特に好ましい。なお、通常、ケン化度が99モル%以上であれば、完全ケン化であると判断される。本発明の一実施態様において、本発明のセパレータを形成するためのエチレン-ビニルアルコール系共重合体としては、エチレン含有率が20~60モル%であり、かつ、ケン化度が80モル%以上のものが好ましい。
 エチレン-ビニルアルコール系共重合体の共重合形態は特に限定されず、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等のいずれであってもよい。
 本発明において、エチレン-ビニルアルコール系共重合体には、本発明の効果を損なわない範囲で、エチレン単位およびビニルアルコール単位以外に、これらの単位と共重合し得る単量体に由来する構造単位(以下、「他の構造単位」ともいう)が含まれていてもよい。そのような他の構造単位としては、例えば、プロピレン、イソブチレン、α-オクテン、α-ドデセン等のα-オレフィン;アクリル酸、メタクリル酸、メタクリル酸メチル、クロトン酸、マレイン酸、イタコン酸等の不飽和酸またはその無水物、塩、あるいはモノまたはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル類;アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸またはその塩;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン等が挙げられる。エチレン-ビニルアルコール系共重合体が、他の単量体に由来する構造単位を含む場合、その含有量は15モル%以下であることが好ましく、10モル%以下であることがより好ましい。
 本発明において、エチレン-ビニルアルコール系共重合体は架橋構造を有することが好ましい。エチレン-ビニルアルコール共重合体が架橋構造を有すると、該共重合体から構成される多孔膜(セパレータ)の機械的強度を向上させることができ、また、保液性を高めることもできる。架橋構造は、エチレン-ビニルアルコール系共重合体中のビニルアルコール単位に含まれる水酸基と反応し得る少なくとも2つの官能基を有する化合物(以下、「架橋剤」ともいう)に由来する構造であり、エチレン-ビニルアルコール系共重合体と架橋剤とを反応させることにより、ビニルアルコール単位中の水酸基を架橋点として形成される架橋構造として導入し得る。本発明において、エチレン-ビニルアルコール系共重合体に架橋構造を導入し得る架橋剤としては、例えば、シュウ酸、マロン酸、メチルマロン酸、スクシン酸、メチルスクシン酸、ジメチルスクシン酸、2,3-ジメチルスクシン酸、グルタミン酸、3-メチルグルタミン酸、アジピン酸、3-メチルアジピン酸、ピメリック酸、セバチン酸、アゼライン酸、酒石酸、シクロヘキサンジカルボン酸などの飽和ジカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、アコニティック酸などの不飽和ジカルボン酸;テレフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸;クエン酸などのトリカルボン酸;ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などのポリカルボン酸;ジイソシアナート、ジアルデヒドなどの有機架橋剤、および、硼素化合物などの無機架橋剤などが挙げられる。中でも、適度な細孔構造を維持したまま架橋構造を導入できる観点から、クエン酸、ホウ酸、グリオキシル酸が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 エチレン-ビニルアルコール系共重合体において、上記架橋構造を導入する架橋剤に由来する構造単位の含有量は、好ましくは0.01モル%以上、より好ましくは0.1モル%以上であり、また、好ましくは15モル%以下、より好ましくは10モル%以下である。架橋構造を導入する架橋剤に由来する構造単位の含有量が上記範囲内であると、エチレン-ビニルアルコール系共重合体と架橋剤との分子間で適度な架橋構造が形成され、得られるセパレータの電解質に対する通液性は保持したまま、機械的強度や保液性を高めることができる。
 エチレン-ビニルアルコール系共重合体への架橋構造の導入は、該共重合体から多孔膜を形成するための製膜工程前または成膜工程後に、エチレン-ビニルアルコール系共重合体と上述したような架橋剤とを反応させることにより行うことができる。この場合、架橋剤の添加量は、エチレン-ビニルアルコール系共重合体の総質量に対して、好ましくは0.001~5質量%、より好ましくは0.01~3質量%、さらに好ましくは0.05~2質量%である。また、エチレン-ビニルアルコール系共重合体への架橋構造の導入は、凝固液に架橋剤を添加して行ってもよく、この場合、架橋剤の添加量は、本発明のセパレータを形成するためのエチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液(以下、「多孔膜形成用混合液」ともいう)の総重量に対し、好ましくは0.001~5質量%、より好ましくは0.01~4質量%、さらに好ましくは0.05~3質量%である。なお、架橋構造が導入されているか否かは、例えば赤外分光法や元素分析等で得られた膜の架橋剤由来のピークが観測されるか否かで確認することができる。
 本発明において、エチレン-ビニルアルコール系共重合体の製造方法は特に限定されず、従来公知の方法により調製することができる。
 本発明のセパレータは、エチレン-ビニルアルコール系共重合から構成される多孔膜からなる。本発明のセパレータ(多孔膜)におけるエチレン-ビニルアルコール系共重合体の含有量は、セパレータの総質量に対して、通常、90質量%以上であり、好ましくは95質量%以上であり、さらに好ましくは97質量%以上であり、セパレータが、実質的にエチレン-ビニルアルコール系共重合体からなる多孔膜(すなわち、セパレータの総質量に対するエチレン-ビニルアルコール系共重合体の含有量が100質量%)からなっていてもよい。
 本発明のセパレータを構成する多孔膜において、水銀圧入法により測定した細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合は80%以上である。本発明のセパレータを構成する多孔膜は、上記のようなシャープな細孔分布を示す多孔膜からなり、均一な細孔を有しているため、充放電時に均一な電流分布を形成することができ、デンドライドが析出し難い。このようなセパレータを用いることにより、内部短絡が生じ難く、安全性に優れ、かつ、電池寿命が長く、電池特性に優れた非水電解質電池を得ることができる。これに対して、水銀圧入法により測定した細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合が80%未満であると、細孔が不均一となり、非水電解質電池用セパレータとしての性能に劣る傾向にある。本発明において、上記細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合は、好ましくは82%以上、より好ましくは85%以上、さらに好ましくは88%以上である。上記細孔容積の割合の上限は特に限定されるものではないが、通常、99%以下であり、好ましくは98%以下である。なお、上記水銀圧入法による細孔分布の測定は、後述する実施例に記載する方法に従い行うことができる。
 本発明のセパレータを構成する多孔膜の空隙率は、好ましくは20%以上であり、より好ましくは25%以上であり、さらに好ましくは30%以上であり、特に好ましくは40%以上である。空隙率が上記下限値以上であると、電解液の通液性に優れ、イオンパスがしやすくなるため、抵抗を下げることができる。また、空隙率は、好ましくは80%以下であり、より好ましくは75%以下であり、さらに好ましくは70%以下である。空隙率が上記上限値以下であると、多孔膜の強度を向上させることができるため、このようなセパレータを用いることにより内部短絡を生じ難い非水電解質電池を得ることができる。なお、空隙率は、膜の厚み、重量およびポリマーの密度より測定、算出することができる。詳細な測定および算出方法は、後述する実施例に記載の通りである。
 また、本発明のセパレータを構成する多孔膜における平均細孔径は、好ましくは0.01μm以上、より好ましくは0.1μm以上、さらに好ましくは0.5μm以上であり、また、好ましくは4μm以下、より好ましくは3.5μm以下、さらに好ましくは3μm以下である。平均細孔径が上記下限値以上であると、電解液に対する十分な通液性を確保することができ、抵抗を下げることができる。また、平均細孔径が上記上限値以下であると、電極同士の接触を防止し、内部短絡を生じ難い非水電解質電池を得ることができる。なお、上記平均細孔径は、電子顕微鏡(SEM)観察により求められるセパレータ(多孔膜)表面の細孔における値である。
 多孔膜における細孔の形状は、特に制限されるものではなく、例えば、モノリス形状、ハニカム形状、円板状、多角形板状などが挙げられる。中でも、高い電解液輸送性を有しながら、短絡しにくい三次元網目構造の骨格と空隙をそれぞれ連続に有する形状を含むモノリス形状が好ましい。
 本発明のセパレータにおいて、示差走査熱量計により測定される、多孔膜の結晶融解に由来する吸熱ピーク熱量と、該多孔膜を構成するエチレン-ビニルアルコール系共重合体の結晶融解に由来する吸熱ピーク熱量との比(多孔膜の吸熱ピーク熱量/エチレン-ビニルアルコール系共重合体の吸熱ピーク熱量)は、好ましくは1.10~3.50であり、より好ましくは1.20~3.00であり、さらに好ましくは1.30~2.00である。多孔膜と該多孔膜を構成するエチレン-ビニルアルコール系共重合体の前記吸熱ピーク熱量の比が高いほど、原料となるエチレン-ビニルアルコール系共重合体と比較して高い結晶性を有する多孔膜が得られることを意味する。原料となるエチレン-ビニルアルコール系共重合体のエチレン含有量が同じである場合には、前記吸熱ピーク量の比が高いほど結晶性が高いといえ、通常、該吸熱ピーク熱量の比が上記範囲内にあると、多孔膜の結晶化度が高く、非水電解質電池のセパレータとして用いた場合にイオンパスがスムーズに進みやすく、導電性を向上させることができる。これにより、抵抗を下げることができ、高効率の非水電解質電池を得ることができる。なお、「結晶融解に由来する吸熱ピーク熱量」は、多孔膜または該多孔膜を構成するエチレン-ビニルアルコール系共重合体を加熱した場合において、示差走査熱量計により測定される2サイクル目の吸熱ピークにおける吸熱量を意味する。詳細な測定方法は、後述する実施例に記載する。
 本発明のセパレータを構成する多孔膜は、特に限定されるものではないが、平膜状であることが好ましい。その厚みは、好ましくは1μm以上50μm未満であり、より好ましくは5μm以上、さらに好ましくは10μm以上であり、また、より好ましくは40μm以下であり、さらに好ましくは35μm以下である。多孔膜の厚みが上記下限値以上であると、多孔膜の強度が十分に高く、割れの発生を抑えて短絡を生じ難いセパレータを得ることができる。また、多孔膜の厚みが上記上限値以下であると、電解液の通液性が良好であり、電池抵抗を低くすることができる。
 本発明のセパレータは、例えば、
 エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を湿式凝固させる工程を含み、
 前記湿式凝固の工程が、基材に塗布されていてもよい、前記エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を凝固液中に1秒~30分間浸漬することを含み、
 前記溶液の温度と前記凝固液の温度との差の絶対値が35℃以下であり、かつ、前記溶液を構成する溶媒が、水およびアルコールを含む混合溶媒である、方法
により製造することができる。したがって、本発明は、
 エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を湿式凝固させる工程を含む、非水電解質電池用セパレータの製造方法であって、
 前記湿式凝固の工程は、基材に塗布されていてもよい、前記エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を凝固液中に1秒~30分間浸漬することを含み、
 前記溶液の温度と前記凝固液の温度との差の絶対値は35℃以下であり、かつ、前記溶液を構成する溶媒は、水およびアルコールを含む混合溶媒である、製造方法(以下、「本発明の製造方法」ともいう)も対象とする。
 本発明の製造方法は、エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液(多孔膜形成用混合液)を湿式凝固させる工程(以下、「凝固工程」ともいう)を含む。多孔膜形成用混合液を構成するエチレン-ビニルアルコール系共重合体としては、本発明のセパレータに関して先に記載したようなエチレン-ビニルアルコール系共重合体と同様のものを用いることができる。
 多孔膜形成用混合液に用いる溶媒は、エチレン-ビニルアルコール系共重合体の溶解性の観点から、水およびアルコールを含む混合溶媒である。前記混合溶媒において、水と混合し得るアルコールとしては、メタノール、エタノール、ブタノール、イソプロパノール、1-プロパノール、1-ブタノール、エチレングリコールなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、エチレン-ビニルアルコール系共重合体の溶解性、細孔形成の観点から、多孔膜形成用混合液に用いる溶媒は、水と、メタノール、エタノール、イソプロパノールおよび1-プロパノールからなる群から選択される1種以上のアルコールとの混合溶媒であることが好ましい。
 水およびアルコールを含む混合溶媒において、水とアルコールとの混合比率(水/アルコール)は、体積比で好ましくは20/80~70/30であり、より好ましくは25/75~65/35である。上記範囲の比率で水およびアルコールを含む混合溶媒を用いることにより、多孔膜の形成に適する固形分濃度のエチレン-ビニルアルコール系共重合体を含む多孔膜形成用混合液を容易に調製することができる。本発明の製造方法において、多孔膜形成用混合液に用いる混合溶媒は、エチレン-ビニルアルコール系共重合体を溶解し得るものである限り、水およびアルコール以外の溶媒を少量含んでいてもよいが、水およびアルコールからなる混合溶媒であることが好ましい。
 多孔膜形成用混合液におけるエチレン-ビニルアルコール系共重合体の固形分濃度は、好ましくは3~50質量%であり、より好ましくは5~45質量%である。エチレン-ビニルアルコール系共重合体の固形分濃度が上記範囲であると、多孔膜形成用混合液の取扱性が良好であり、湿式凝固による多孔膜の形成を行いやすい。
 また、多孔膜形成用混合液は、本発明のセパレータを構成するエチレン-ビニルアルコール系共重合体中に架橋構造を導入するための架橋剤を含んでいてもよい。この場合、架橋剤の添加量は、エチレン-ビニルアルコール系共重合体の総質量に対して、好ましくは0.001~5質量%、より好ましくは0.01~3質量%、さらに好ましくは0.05~2質量%である。
 さらに、多孔膜形成用混合液は、本発明の効果を損なわない範囲において、エチレン-ビニルアルコール系共重合体以外の高分子化合物(共重合体)、並びに、酸化防止剤、紫外線吸収剤、滑剤、消泡剤およびアンチブロッキング剤などの無機微粉体や有機物等の添加剤を含んでいてもよい。この場合、エチレン-ビニルアルコール系共重合体以外の上記成分の含有量は、多孔膜形成用混合液の固形分に対して、通常、10質量%以下であり、好ましくは5質量%以下である。なお、多孔膜形成用混合液の固形分とは、多孔膜形成用混合液から溶媒を除いた成分の合計量のことをいう。
 多孔膜形成用混合液は、エチレン-ビニルアルコール系共重合体、並びに、必要に応じて架橋剤や添加剤等の他の成分を、水およびアルコールを含む混合溶媒と混合、撹拌して、エチレン-ビニルアルコール系共重合体を溶解させることにより得ることができる。得られた多孔膜形成用混合液を、凝固液中に浸漬することにより凝固させ、湿潤膜を得ることができる。
 凝固液中への多孔膜形成用混合液の浸漬は、凝固後に所望の形状および膜厚を有する湿潤膜を得られる限り、特に限定されるものではなく、例えば、多孔膜形成用混合液を基材に塗布した後、該基材とともに多孔膜形成用混合液を凝固液中に浸漬してもよいし、スリットを通して多孔膜形成用混合液を凝固液中に直接投入して行ってもよい。多孔膜形成用混合液を基材に塗布する方法としては、具体的に、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。また、多孔膜形成用混合液を凝固液中に直接投入する方法としては、例えば、Tダイ法、インフレーション法などによる押し出しが挙げられる。
 多孔膜形成用混合液を塗布し得る基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ガラス等が挙げられる。
 凝固液としては、多孔膜形成用混合液を凝固させ得る溶液であれば特に限定されず、例えば、水、水および有機溶媒の混合溶液などが挙げられる。水と混合し得る有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、1-プロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。多孔膜形成用混合液に対する凝固能力が高く、均一な細孔を得やすくなることから、凝固液としては、水または水および有機溶媒の混合溶液が好ましく、さらに溶媒の調製や廃棄が容易であることから、水または水およびアルコールの混合溶液がより好ましい。
 本発明のセパレータを構成するエチレン-ビニルアルコール系共重合体中に架橋構造を導入する場合、凝固液に架橋剤を添加してもよい。この場合、架橋剤の添加量は、本発明のセパレータを形成するための多孔膜形成用混合液の総重量に対して好ましくは0.001~5質量%、より好ましくは0.01~4質量%、さらに好ましくは0.05~3質量%である。
 凝固液中の水の含有量は、凝固液の総質量に対して、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。言い換えると、凝固液が水と有機溶媒(好ましくはアルコール)とからなる場合、凝固液中の有機溶媒の含有量は、凝固液の総質量に対して、好ましくは50質量%未満であり、より好ましくは40質量%未満であり、さらに好ましくは30質量%未満である。凝固液中の水の含有量の上限値は特に限定されるものではなく、水のみからなるもの(すなわち、100質量%)であってもよい。水の含有量が高いほど凝固速度が速くなる傾向にあるため、凝固液中の水の含有量は多いほど好ましいが、セパレータの連続生産を行う場合、多孔膜形成用混合液から持ち込まれるアルコールが存在するため、通常、水の含有量の上限値は98質量%程度である。
 本発明の製造方法において、多孔膜形成用混合液の温度と凝固液の温度との差の絶対値は35℃以下である。多孔膜形成用混合液の温度と凝固液の温度との差を、絶対値で35℃以下とすることにより、得られる多孔膜の細孔や空隙率を効果的かつ容易に制御することができ、非水電解質電池用セパレータとして適する細孔径を有し、かつ、均一な細孔を有する多孔膜を得ることができる。一方、多孔膜形成用混合液の温度と凝固液の温度との差が大きくなり過ぎると、エチレン-ビニルアルコール系共重合体の凝固速度が細孔形成速度よりも速くなり、共重合体が凝固してしまうことにより十分な細孔形成がなされず、所望の細孔径を得ることが困難となる。また、本発明の製造方法は、多孔膜形成用混合液の温度と凝固液の温度を調整することにより細孔や空隙率を制御することができ、細孔や空隙率を制御するためのさらなる工程や複雑な工程を必要としないため、生産性が高く、生産コストを下げることができるといった利点も有する。また、多孔膜形成用混合液の温度と凝固液の温度との差を小さくし、上記温度範囲内の条件下、凝固工程を行うことにより、得られる多孔膜と、該多孔膜を構成するエチレン-ビニルアルコール共重合体との結晶融解に由来する吸熱ピーク熱量の比を所望の範囲に制御しやすくなる。本発明の製造方法において、多孔膜形成用混合液の温度と凝固液の温度との差の絶対値は、好ましくは20℃以下、より好ましくは15℃以下、さらに好ましくは12℃以下である。多孔膜形成用混合液の温度と凝固液の温度との差の下限は特に限定されるものではなく、通常10℃程度であり、多孔膜形成用混合液の温度と凝固液の温度とが同じ(すなわち、0℃)であってもよい。なお、本発明において、多孔膜形成用混合液の温度とは、多孔膜形成用混合液を凝固液へ投入する際の混合液の温度を意味し、基材等へ塗布した直後に凝固液へ浸漬する場合には、多孔膜形成用混合液の塗布時の温度を多孔膜形成用混合液の温度とみなすことができる。
 凝固液の温度は、好ましくは10~70℃であり、より好ましくは15℃以上、さらに好ましくは20℃以上、特に好ましくは30℃以上であり、とりわけ好ましくは30℃を超え、また、より好ましくは65℃以下である。凝固液の温度が上記範囲内であると、エチレン-ビニルアルコール系共重合体の凝固による膜形成と細孔形成とがバランスよく進行するため、所望の細孔および空隙率を有する多孔膜を得ることができる。また、多孔膜形成用混合液の温度と凝固液の温度との差を小さくし、上記温度範囲内の条件下、凝固工程を行うことにより、得られる多孔膜と、該多孔膜を構成するエチレン-ビニルアルコール共重合体との結晶融解に由来する吸熱ピーク熱量の比を所望の範囲に制御しやすくなる。一方、凝固液の温度が低すぎると、細孔形成よりも先に相分離が進むため、十分な細孔形成を行うことが難しくなり、所望の細孔径や空隙率を有する多孔膜を得ることが困難となる。また、凝固液の温度が高すぎると、スピノーダル分解が十分に起こらず、多孔膜を形成することが困難となる。
 また、多孔膜形成用混合液の温度は、好ましくは20~90℃であり、より好ましくは30~80℃である。多孔膜形成用混合液の温度が上記範囲内であると、凝固液に浸漬した際に、エチレン-ビニルアルコール系共重合体の凝固による膜形成と細孔形成とをバランスよく進行させることができる。また、多孔膜形成用混合液の温度と凝固液の温度との差を小さくし、上記温度範囲内の条件下、凝固工程を行うことにより、得られる多孔膜と、該多孔膜を構成するエチレン-ビニルアルコール共重合体との結晶融解に由来する吸熱ピーク熱量の比を所望の範囲に制御しやすくなる。
 本発明の製造方法において、多孔膜形成用混合液の凝固液中への浸漬時間は1秒~30分間であり、好ましくは3秒以上、より好ましくは5秒以上であり、また、好ましくは25分以下、より好ましくは20分以下である。浸漬時間が短すぎると、エチレン-ビニルアルコール系共重合体が十分に凝固せず、所望の細孔径を有する細孔を得ることが困難となる。また、浸漬時間が長すぎると、凝固液中で過度な膨潤が起こり、極端な場合には空隙率の減少が生じて所望の細孔が得られないだけでなく、生産性の低下も生じる。
 本発明の製造方法においては、凝固工程により得られた湿潤膜に対して、溶媒を除去するための乾燥処理を施してもよい。乾燥処理の方法としては、特に限定されず、例えば、自然乾燥;温風、熱風、低湿風による通気乾燥;加熱乾燥;減圧/真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥、およびこれらの組み合わせにより行ってもよい。凝固工程において形成された細孔および空隙を乱すことなく生産効率を向上させ得る観点からは、通気乾燥が好ましい。乾燥条件は、用いる溶媒の種類や湿潤膜内に含まれる溶媒量等に応じて、得られる多孔膜を損傷(例えば、応力集中による亀裂の発生)しない範囲で、できる限り早く溶媒を除去できるように適宜決定すればよい。例えば、乾燥温度は、通常10~150℃、好ましくは25~110℃であり、乾燥時間は、通常1~90分程度である。
 さらに、多孔膜の平滑性を向上させるため、溶媒を除去した多孔膜に圧延処理を施してもよい。圧延方法としては、例えば、金型プレスやロールプレスなどの方法が挙げられる。
 本発明の製造方法により得られる非水電解質用セパレータは、シャープな細孔分布を示す多孔膜からなり、均一な細孔を有しているため、充放電時に均一な電流分布を形成することができ、デンドライドが析出し難い。このようなセパレータを用いることにより、内部短絡が生じ難く、安全性に優れ、かつ、電池寿命が長く、電池特性に優れた非水電解質電池を得ることができる。したがって、本発明は、本発明の非水電解質電池用セパレータを含む非水電解質電池も対象とする。
 本発明の非水電解質電池は、本発明のセパレータを含む。非水電解質電池としては、例えば、リチウムイオン電池、ナトリウムイオン電池、リチウム硫黄電池、全固体電池、リチウムイオンキャパシタ等が挙げられる。
 本発明の非水電解質電池には、本発明のセパレータに加えて、一般に、正極と負極と電解液とが含まれる。本発明の非水電解質電池は、公知の材料および技術を用いて製造することができる。
 負極としては、リチウムイオン二次電池等の非水電解質電池に通常使用される負極が特に制限なく使用される。例えば、負極活物質としては、黒鉛、ハードカーボン、Si系酸化物などが使用される。また、負極活物質を、金属粉、導電性ポリマー、アセチレンブラック、カーボンブラックなどの導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリビニルアルコールなどのバインダーとを、水や常圧における沸点が100℃以上300℃以下の溶媒(例えば、N-メチル-2-ピロリドンなど)に混合して調製した負極用スラリーを、例えば、銅箔等の負極集電体に塗布して溶媒を乾燥させて負極とすることができる。
 正極としては、リチウムイオン二次電池等の非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、負極において例示した導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリビニルコールなどのバインダーとを、水や常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。
 また、本発明の非水電解質電池における電解液として、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常のリチウムイオン二次電池等の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質および正極活物質の種類に応じて、電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。
 このような電解質を溶解させる溶媒(電解液溶媒)は、特に限定されるものではない。具体例としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは2種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。
 特に、負極や正極に用いるバインダーとして、本発明のセパレータと同種の材料である、ビニルアルコール、ビニルアセタールおよび/またはビニルエステルを含む共重合体を有する高分子化合物を用いることで、本発明のセパレータとの電極位置ずれや、活物質脱落防止による生産性向上が期待される。このため、バインダーとして本発明のセパレータと同種の材料を用いることがより好ましい。一方、入手容易性と生産性向上のバランスから、SBR系エマルジョンを用いることも好適な態様の1つである。
 本発明の非水電解質電池を製造する方法としては、特に限定されず、従来公知の方法に従い製造することができる。例えば、負極と正極とを、本発明のセパレータを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する方法が挙げられる。本発明において、非水電解質電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型などいずれであってもよい。
 本発明のセパレータを構成部材として含む本発明の非水電解質電池は、安全性が高く、かつ、内部抵抗の上昇を生じ難く、高電池容量等の優れた電池特性を有する。本発明の非水電解質電池は、様々な用途に好適に用いることができ、例えば、小型化、薄型化、軽量化および高性能化の要求される携帯端末や、高容量化および大電流での充放電特性などの性能が要求される電気自動車等の大型機器に用いられる電池として有用である。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
1.実施例1
(1)多孔膜形成用混合液の調製
 エチレン含有率44モル%のエチレン-ビニルアルコール共重合体粉末(クラレ製、E105B)を、水と1-プロパノールとの混合溶媒(水/1-プロパノール=35/65体積比)に、70℃3時間で溶解し、固形分濃度10質量%の多孔膜形成用混合液を調製した。
(2)セパレータの作製
 上記で得られた多孔膜形成用混合液を、水平台の上に置いたガラス板からなる基材上にバーコーター(T101、松尾産業株式会社製)を用いて塗布(多孔膜形成用混合液の温度:50℃)した後、多孔膜形成用混合液をガラス板基材ごと40℃の水浴に10分間浸漬させ、凝固させた。次いで、エチレン-ビニルアルコール共重合体からなる湿潤膜を取り出し、基材から剥離した後、風乾後、100℃で1時間乾燥することにより多孔膜からなるセパレータを得た。得られた多孔膜の膜厚は28μmであった。
(3)セパレータ(多孔膜)の物性測定
 得られたセパレータ(多孔膜)の細孔分布、細孔径、空隙率、吸液性、結晶性、引張強度および膜抵抗を、それぞれ、以下の方法に従い測定、算出した。結果を表1に示す。
 <細孔分布>
 細孔容積分布は、以下の条件で水銀圧入法により算出した。測定した細孔分布に基づき、細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合を算出した。
 測定条件:
 測定装置:カンタクローム・インスツルメンツ・ジャパン合同会社製poremaster 33-P-GT
 水銀接触角130.00°、表面張力485.00erg/cm
 圧力範囲:12.2kPa~123MPa
 セル容積:1cc
 <空隙率の算出>
 多孔膜の空隙率は、所定のサイズ(φ17mm)に打ち抜いた試料の厚みおよび質量を測定し、次式に従い算出した。
 空隙率={1-(セパレータの理論体積/セパレータの見かけ体積)}×100
 セパレータの理論体積=(セパレータの質量)/(理論的な密度)
 セパレータの見かけ体積=(厚み)×(セパレータの面積)
 <吸液性>
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒(EC/EMC=3/7)を容器内に100ml入れた。セパレータを長手方向:10mm、幅方向:60mmの大きさにカットし、幅方向の先端1mmを上記混合溶媒に浸け、1分経過後に毛細管現象によって吸い上げられた混合溶媒の液面からの高さ(吸液高さ)を測定した。評価は1サンプルに付き10回測定を行い、その平均値を電解液吸液高さとした。
 <細孔径>
 走査型電子顕微鏡写真で観察される開口部100個の直径を平均して算出した。
 <結晶性>
 多孔膜の結晶融解に由来する吸熱ピーク熱量と、該多孔膜を構成するエチレン-ビニルアルコール系共重合体の結晶融解に由来する吸熱ピーク熱量との比(多孔膜の吸熱ピーク熱量/エチレン-ビニルアルコール系共重合体の吸熱ピーク熱量)は、以下の条件で示差走査熱量計(DSC)により、多孔膜およびエチレン-ビニルアルコール系共重合体をそれぞれ測定して得られた2サイクル目のピークの値を、それぞれ多孔膜の結晶融解に由来する吸熱ピーク熱量および該多孔膜を構成するエチレン-ビニルアルコール系共重合体の結晶融解に由来する吸熱ピーク熱量として算出した。
 測定条件:
測定装置:TA Instruments Japan Inc. DISCOVERY DSC / DSC25
サンプル重量2mg
昇温速度10℃/分
走査温度0~200℃
 <引張強度>
 引っ張り強度はJIS K 7162-1Bの試験片にて、以下の条件で引っ張り試験機により算出した。
 測定条件:
測定装置:オートグラフAG5000B、島津製作所社製
温度:25℃
チャック間距離:70mm
試験速度:500mm/分
試験片:ダンベル型(試験部の幅10mm)
 <膜抵抗>
 厚さ20μmのアルミ箔を4.8×4.5cmと4.9×4.7cmのサイズに切出してリードタブを付けた後、これら2枚のアルミ箔で5.1×5.0cmのサイズに切り出したセパレータ(多孔膜)1枚を挟み込んだ。このアルミ箔で挟み込んだセパレータをアルミラミネートパックの中にリードタブがアルミラミネートパックの外に出るようにして設置した後、電解液(エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジメチルカーボネート(DMC)=1/1/1、1.0M LiPF)350μlを減圧封入することにより膜抵抗測定用セルを得た。
 アルミ箔で挟持されるセパレータの枚数を2枚および3枚とした以外は、それぞれ上記と同様の方法で膜抵抗測定用のセルを作製した。作製したセルを25℃の恒温槽中に入れ、交流インピーダンス法で振幅10mV、周波数100kHzにて該セルの抵抗を測定した。測定されたセルの抵抗値をセル中のセパレータの枚数に対してプロットし、このプロットを線形近似して傾きを求めた。この傾きに電極面積である4.8×4.5cmを乗じて、セパレータ1枚当たりの膜抵抗(Ωcm)を求めた。
(4)セパレータの電池特性評価
 得られたセパレータを用いた非水電解質電池の電池特性を、以下の方法に従い評価した。
 <電池用負極の作製>
 負極用活物質として人造黒鉛(FSN-1、中国杉杉製)96質量部に対して、バインダーとしてSBR系エマルジョン水溶液(TRD2001、JSR株式会社製、48.3質量%)を固形分として2質量部、増粘剤としてCMC-Na(カルボキシメチルセルロースナトリウム;セロゲンBSH-6、第一工業製薬製、10質量%)を固形分として1質量部、および導電助剤(導電付与剤)としてSuper-P(ティムカル株式会社製)を固形分として1質量部を専用容器に投入し、遊星攪拌器(ARE-250、株式会社シンキー製)を用いて混練し、電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:SBR:CMC-Na=96:1:2:1(質量比)である。
 <電池用負極の作製>
 得られた電極塗工用スラリーを、バーコーター(T101、松尾産業株式会社製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業株式会社製)上に塗工し、室温(24.5℃)で一次乾燥後、ロールプレス(宝泉株式会社製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、140℃で3時間減圧条件の二次乾燥によってコイン電池用塗工電極を作製した。
 <コイン電池の作製>
 上記で得られたコイン電池用塗工電極をアルゴンガス雰囲気下のグローブボックス(株式会社美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレータとして上記で得られた多孔膜を使用し、電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7体積%、VC2質量%)を用いて注入し、コイン電池(2032タイプ)を作製した。
 <抵抗測定>
 上記で作製したコイン電池を用いて、インピーダンス測定装置(ポテンショ/ガルバノスタット(SI1287、ソーラトロン社製)および周波数応答アナライザ(FRA、ソーラトロン社製))にて交流インピーダンス測定を実施した。コイン電池を25℃および-20℃の恒温槽に置き、周波数0.01-10Hz、電圧振幅10mVにて交流インピーダンス法により、試験電池のインピーダンススペクトルを測定した。測定されたインピーダンススペクトルを抵抗的成分軸(Z軸、実数軸)および容量的成分軸(Z軸、虚数軸)で規定される複素平面(コールコールプロット)上に、円弧状部を含む線図で表したときの円弧状部の直径をセパレータとの界面抵抗(Rin)、容量的成分軸(Z軸、虚数軸)が0のときの抵抗的成分軸(Z軸、実数軸)の値を溶液抵抗(Rsol)として、25℃および-20℃における導電率をそれぞれ算出した。結果を表1に示す。
2.実施例2
 エチレン含有率32モル%のエチレン-ビニルアルコール共重合体粉末(クラレ製、F101B)を用い、凝固液の温度を30℃にしたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。また、実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
3.実施例3
 エチレン含有27モル%のエチレン-ビニルアルコール共重合体粉末(クラレ製、L171B)を用い、水/1-プロパノール=45/55(体積比)の混合溶媒に、70℃3時間で溶解したこと以外は、実施例2と同様の方法でセパレータを作製し、実施例1と同様の方法により各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
4.実施例4
 エチレン含有48モル%のエチレン-ビニルアルコール共重合体粉末(クラレ製、G156B)を用いたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
5.実施例5
 多孔膜形成用混合液の混合溶媒として、水/1-プロパノール=40/60(体積比)の混合溶媒を用いたこと以外は、実施例1と同様の方法でセパレータを作製し。各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
6.実施例6
 多孔膜形成用混合液の混合溶媒として、水/1-プロパノール=45/55(体積比)の混合溶媒を用いたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
7.実施例7
 凝固液の温度を15℃にしたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
8.実施例8
 浸漬時間を1分にしたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
9.比較例1
 浸漬時間を60分にしたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行おうとしたが、短絡したセルが20個中3個生じてしまい、セル作製安定性が悪かった。
10.比較例2
 凝固液の温度を5℃にしたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
11.比較例3
 セパレータとして市販のポリプロフィレン系セパレータ(セルガード#2400、膜厚:25μm、細孔径0.043μm、ポリポア製)を用いたこと以外は実施例1と同様の方法によってコイン電池の作製を行った。さらに、実施例1と同様の方法によって抵抗測定を行った。結果を表1に示す。
12.実施例15
 膜の厚みを53μmとしたこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
13.実施例9
 凝固液に対し、クエン酸(和光純薬工業(株)を0.05質量%添加したこと以外は、実施例1と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表2に示す。なお、実施例9~12において、得られたセパレータ中にクエン酸、シュウ酸またはテレフタル酸に由来する構造が存在することを赤外分光法にて確認した。
14.実施例10
 クエン酸の量を0.10質量%にした以外は、実施例9と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表2に示す。
15.実施例11
 クエン酸の量を1.00質量%にした以外は、実施例9と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表2に示す。
16.実施例12
 エチレン含有率32モル%のエチレン-ビニルアルコール共重合体粉末(クラレ製、F101B)を用いたこと以外は、実施例10と同様の方法でセパレータを作製し、各物性を評価した。また、実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表2に示す。
17.実施例13
 クエン酸に代えてシュウ酸(和光純薬工業(株)を用いた以外は、実施例10と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表2に示す。
18.実施例14
 クエン酸に代えてテレフタル酸(和光純薬工業(株)を用いた以外は、実施例10と同様の方法でセパレータを作製し、各物性を評価した。さらに実施例1と同様にコイン電池の作製を行い、抵抗測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明に従う実施例1~15のセパレータでは、比較例3に示す汎用的なセパレータと比較して、電池として有用である低温での導電性の向上が示された。また、吸液性が高く、注液後の電解液浸透時間が十分に短くなり、電池組立工程にて生産性を低下させる要因である電解液注液後のエージング時間を短縮することができ、セパレータ作製工程だけでなく、電池作製工程においても生産性を向上することができると考える。これに対して、浸漬時間が長い比較例1により作製されたセパレータでは、細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合が80%未満となり、細孔径が大きく、空隙率も高くなり、短絡する電池が多くなった。一方、凝固液の温度が低く、多孔膜形成用混合液の温度との差が大きい比較例2により作製されたセパレータでは、空隙率および細孔径が小さくなり、抵抗が高いセパレータとなった。さらに、架橋構造を有するエチレン-ビニルアルコール系共重合体を用いた実施例9~14のセパレータでは、引張強度および吸液性の向上が確認された。

Claims (10)

  1.  エチレン-ビニルアルコール系共重合体から構成される多孔膜からなり、該多孔膜において、水銀圧入法により測定した細孔分布における細孔径0.01~10μmの範囲の細孔容積に対する細孔径0.1~1μmの範囲の細孔容積の割合が80%以上である、非水電解質電池用セパレータ。
  2.  多孔膜の空隙率は20%以上である、請求項1に記載の非水電解質電池用セパレータ。
  3.  示差走査熱量計により測定される、多孔膜の結晶融解に由来する吸熱ピーク熱量と、該多孔膜を構成するエチレン-ビニルアルコール系共重合体の結晶融解に由来する吸熱ピーク熱量との比(多孔膜の吸熱ピーク熱量/エチレン-ビニルアルコール系共重合体の吸熱ピーク熱量)は1.10~3.50である、請求項1または2に記載の非水電解質電池用セパレータ。
  4.  多孔膜は1μm以上50μm未満の厚みを有する平膜状である、請求項1~3のいずれかに記載の非水電解質電池用セパレータ。
  5.  エチレン-ビニルアルコール系共重合体のエチレン含有率は20~60モル%であり、かつ、ケン化度は80モル%以上である、請求項1~4のいずれかに記載の非水電解質電池用セパレータ。
  6.  エチレン-ビニルアルコール系共重合体は架橋構造を有する、請求項1~5のいずれかに記載の非水電解質電池用セパレータ。
  7.  エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を湿式凝固させる工程を含む、非水電解質電池用セパレータの製造方法であって、
     前記湿式凝固の工程は、基材に塗布されていてもよい、前記エチレン-ビニルアルコール系共重合体と溶媒とを含有する溶液を凝固液中に1秒~30分間浸漬することを含み、
     前記溶液の温度と前記凝固液の温度との差の絶対値は35℃以下であり、かつ、前記溶液を構成する溶媒は、水およびアルコールを含む混合溶媒である、製造方法。
  8.  凝固液の温度は10~70℃である、請求項7に記載の製造方法。
  9.  凝固液は、凝固液の総質量に対して50質量%以上の水を含む、請求項7または8に記載の製造方法。
  10.  請求項1~6のいずれかに記載の非水電解質電池用セパレータを含む非水電解質電池。
PCT/JP2019/008941 2018-03-13 2019-03-06 非水電解質電池用セパレータおよびその製造方法 WO2019176698A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045793A JP2021082375A (ja) 2018-03-13 2018-03-13 非水電解質電池用セパレータおよびその製造方法
JP2018-045793 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176698A1 true WO2019176698A1 (ja) 2019-09-19

Family

ID=67907043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008941 WO2019176698A1 (ja) 2018-03-13 2019-03-06 非水電解質電池用セパレータおよびその製造方法

Country Status (3)

Country Link
JP (1) JP2021082375A (ja)
TW (1) TW201938607A (ja)
WO (1) WO2019176698A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113859A (ja) * 1973-03-02 1974-10-30
JPS5377883A (en) * 1976-12-21 1978-07-10 Nitto Electric Ind Co Ltd Diaphragm for electrolyte
JPS5649157A (en) * 1979-09-27 1981-05-02 Asahi Chemical Ind Ethyleneevinyl alcohol copolymer porous film and its manufacture
JPH05293344A (ja) * 1992-04-20 1993-11-09 Kuraray Co Ltd エチレンビニルアルコール系共重合体中空糸膜の製造法
JPH11213982A (ja) * 1997-11-13 1999-08-06 Celgard Llc 電池セパレーターおよび電池
JP2000501752A (ja) * 1995-12-07 2000-02-15 ミネソタ マイニング アンド マニュファクチャリング カンパニー エチレン―ビニルアルコールコポリマーのマイクロポーラス材料およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113859A (ja) * 1973-03-02 1974-10-30
JPS5377883A (en) * 1976-12-21 1978-07-10 Nitto Electric Ind Co Ltd Diaphragm for electrolyte
JPS5649157A (en) * 1979-09-27 1981-05-02 Asahi Chemical Ind Ethyleneevinyl alcohol copolymer porous film and its manufacture
JPH05293344A (ja) * 1992-04-20 1993-11-09 Kuraray Co Ltd エチレンビニルアルコール系共重合体中空糸膜の製造法
JP2000501752A (ja) * 1995-12-07 2000-02-15 ミネソタ マイニング アンド マニュファクチャリング カンパニー エチレン―ビニルアルコールコポリマーのマイクロポーラス材料およびその製造方法
JPH11213982A (ja) * 1997-11-13 1999-08-06 Celgard Llc 電池セパレーターおよび電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMAE, KATSUHIKO ET AL.: "Effect of the Coagulation Temperature on Membrane Properties of Ethylene-Vinyl Alcohol Copolymer", KOBUNSHI RONBUNSHU, vol. 42, no. 3, 1985, pages 143 - 149, XP055640472 *

Also Published As

Publication number Publication date
TW201938607A (zh) 2019-10-01
JP2021082375A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6484367B2 (ja) 積層多孔質フィルム及び非水電解液二次電池
JP2007510267A (ja) 高分子が独立的な相にコーティングされた電極及びこれを含む電気化学素子
JP2008300300A (ja) 非水リチウムイオン二次電池
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
JP2004146190A (ja) リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2002338730A (ja) ポリエチレン製微多孔膜及びそれを用いた電池
Hwang et al. Poly (vinylidene fluoride-hexafluoropropylene)-based membranes for lithium batteries
JP2014026946A (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP2021140962A (ja) セパレータ一体型電極の製造方法
JP2018113218A (ja) リチウムイオン二次電池の製造方法
KR20200088657A (ko) 이차전지용 분리막, 그 제조방법 및 이를 포함하는 이차전지
WO2021193444A1 (ja) 非水電解質電池用セパレータ
JP2001110449A (ja) イオン伝導性シート
JP2001102089A (ja) 固体状電解質、電気化学素子、リチウムイオン二次電池および電気二重層キャパシタ
WO2019176698A1 (ja) 非水電解質電池用セパレータおよびその製造方法
CN114665146A (zh) 电化学装置、电子装置和制备负极极片的方法
CN115380415A (zh) 电化学装置及电子装置
JP2021044153A (ja) 非水電解質電池用セパレータ
JP2023003220A (ja) 非水電解質電池用セパレータ
WO2020003805A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JPWO2019021810A1 (ja) 非水電解質電池用分離膜及びそれを用いた非水電解質電池
WO2007022672A1 (en) A cathode, a lithium ion battery comprising such a cathode and processes for preparation thereof
JP2002033106A (ja) リチウムイオン二次電池電極用スラリーおよびその利用
WO2022198644A1 (zh) 一种多孔碳集流体及电化学装置
JP7276691B2 (ja) セパレータ一体型電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP