WO2019176668A1 - レンズ集積受光素子及びその検査方法 - Google Patents

レンズ集積受光素子及びその検査方法 Download PDF

Info

Publication number
WO2019176668A1
WO2019176668A1 PCT/JP2019/008753 JP2019008753W WO2019176668A1 WO 2019176668 A1 WO2019176668 A1 WO 2019176668A1 JP 2019008753 W JP2019008753 W JP 2019008753W WO 2019176668 A1 WO2019176668 A1 WO 2019176668A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
lens
inspection
receiving element
pinhole
Prior art date
Application number
PCT/JP2019/008753
Other languages
English (en)
French (fr)
Inventor
俊英 吉松
圭穂 前田
史人 中島
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/971,230 priority Critical patent/US11557685B2/en
Publication of WO2019176668A1 publication Critical patent/WO2019176668A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • the present invention relates to a lens integrated light receiving element for converting a plurality of optical signals having different wavelengths into electrical signals, and a method for inspecting misalignment that occurs during the formation of the lens integrated light receiving element.
  • an optical receiver that converts wavelength division multiplexed optical signals into electrical signals at once, multiple light receiving elements are formed to convert multiple optical signals spatially separated by a wavelength demultiplexer into electrical signals
  • one light receiving element is assigned to one light receiving lens, and an optical signal incident from the light receiving lens is converted into an electric signal by the corresponding light receiving element.
  • FIG. 5 is a diagram showing a configuration example of a conventional lens integrated light receiving element 500.
  • the lens integrated light receiving element 500 joins a semiconductor substrate 550 on which a plurality of light receiving elements 510 are formed and an optical substrate 540 on which a plurality of light receiving lenses 520 are formed.
  • the surface on which the light receiving element 510 is formed on the semiconductor substrate 550 is defined as the “surface” of the lens integrated light receiving element 500
  • optical The light receiving lens 520 formed on the substrate 540 is disposed on the “back surface” of the lens integrated light receiving element 500.
  • the light receiving element 510 formed on the semiconductor substrate 550 and the light receiving lens 520 formed on the optical substrate 540 can be manufactured using a semiconductor exposure apparatus.
  • the semiconductor exposure apparatus is positioned within the semiconductor exposure apparatus for positioning in the direction in which the semiconductor substrate 550 and the optical substrate 540, which are substantially flat, extend, that is, in the horizontal direction shown in FIG. High accuracy is achieved according to the positioning accuracy of the wafer stage. Therefore, the accuracy of the production position in the horizontal direction of the plurality of light receiving elements 510 on the semiconductor substrate 550 produced by the semiconductor exposure apparatus is high, and similarly, the horizontal direction of the plurality of light receiving lenses 520 on the optical substrate 540 is high. The accuracy of the manufacturing position is also high.
  • the accuracy (hereinafter referred to as “element-lens placement accuracy”) is easily affected by rotational deviation or horizontal positional deviation within the joined surfaces, which occurs when the semiconductor substrate 550 and the optical substrate 540 are joined.
  • the configuration of the monolithic integrated lens integrated light receiving element which is another conventional configuration different from the configuration of FIG. 5, the positional relationship between the light receiving element and the light receiving lens will be described using the directions shown in FIG.
  • the element is formed on the front side of the semiconductor substrate, and the plurality of light receiving lenses are formed on the back side of the semiconductor substrate.
  • a semiconductor exposure apparatus is also used when manufacturing this monolithic integrated lens integrated light receiving element.
  • the element-to-lens placement accuracy of the manufactured light receiving element and the light receiving lens is generated during exposure on each surface. Susceptible to rotational and positional deviations.
  • a method of inspecting the element-lens arrangement accuracy using the configuration of the conventional lens integrated light receiving element shown in FIG. 5 will be described.
  • an optical receiver designed A light incident device having an equal optical system, that is, a dedicated inspection device is prepared, and then light is transmitted to the light receiving element 510 on the front surface side through the light receiving lens 520 formed on the back surface side of the lens integrated light receiving element 500.
  • It is necessary to evaluate the light receiving sensitivity by detecting the photocurrent from the electrode 530 that is incident and formed on the surface side and electrically connected to the light receiving element 510 and measuring the value. Then, using this light receiving sensitivity as a reference index, the inspection of the accuracy of arrangement between the lens and the lens of the lens integrated light receiving element is performed.
  • the present invention has been made in view of the above problems, and the present invention relates to positions of a light receiving lens and a light receiving element in a lens integrated light receiving element for converting a high-speed wavelength division multiplexed optical signal into an electric signal.
  • the purpose is to easily check the displacement.
  • One embodiment of the present invention includes one or more light-receiving lenses for receiving an optical signal, and one or more light-receiving elements that are located on the main axis of the light-receiving lens and convert the optical signal into an electrical signal.
  • One or a plurality of inspection pinholes for passing illumination light and one or a plurality of inspections having a principal axis parallel to the principal axis of the light receiving lens and condensing the illumination light passing through the inspection pinhole And a lens integrated light receiving element.
  • one embodiment of the present invention is a method for inspecting a lens integrated light receiving element for converting a high-speed wavelength division multiplexed optical signal into an electrical signal.
  • the illumination light used for inspection is passed through one or more inspection pinholes, and then the illumination light that has passed through the inspection pinholes is transmitted through one or more inspection lenses to form an image. Generate a hall image.
  • the pinhole image projected on the observation surface is compared with the inspection lens projected on the observation surface on the observation surface orthogonal to the main axis of the inspection lens.
  • the present invention it is possible to simultaneously inspect a plurality of light receiving lenses and a corresponding light receiving element lens integrated light receiving element with respect to the arrangement accuracy between the light receiving element and the light receiving lens. Compared with the inspection method, it is possible to shorten the time required for the inspection.
  • FIG. 1 shows an embodiment of the present invention, a lens integration produced by bonding a semiconductor substrate 101 on which a plurality of light receiving elements 103 are formed and an optical substrate 110 on which a plurality of light receiving lenses 112 are formed.
  • 2 is a diagram illustrating a configuration of a light receiving element 100.
  • FIG. 5 is different from the configuration of the conventional lens integrated light receiving element 500 shown in FIG. 5 in that an inspection lens 111, an inspection pinhole forming member 105, and an inspection pinhole 102 formed by the inspection pinhole forming member 105 are provided. It is.
  • the lens integrated light receiving element 100 includes four light receiving elements 103 and four corresponding light receiving lenses 112, and two inspection lenses 111 and In addition, two inspection pinhole forming members 105 corresponding thereto are provided.
  • Each of the inspection pinhole forming members 105 is formed on the front surface side of the lens integrated light receiving element 100, and each of the inspection lenses 111 is formed on the back surface side of the lens integrated light receiving element 100.
  • the inspection pinhole forming member 105 is formed on the semiconductor substrate 101 disposed on the back side of the lens integrated light receiving element 100, and stands vertically from the semiconductor substrate 101 and penetrates a surface parallel to the semiconductor substrate 101. In this way, the metal member is provided with a hole, that is, an inspection pin hole 102.
  • the four light receiving lenses 112 and the two inspection pinholes 102 are fabricated on the same surface of the semiconductor substrate 101 disposed on the surface side of the lens integrated light receiving element 100.
  • the four light receiving elements 103 and the two inspection pinholes 102 are manufactured by using a semiconductor exposure apparatus, the deviation from the target manufacturing position in the horizontal direction is very small. Therefore, each of the light receiving elements 103 and the inspection pins The accuracy of the production position of each hole 102 in the horizontal direction is high.
  • the four light receiving lenses 112 and the two inspection lenses 111 are manufactured on the same surface of the optical substrate 110 disposed on the back surface side of the lens integrated light receiving element 100.
  • each of the light receiving lenses 112 and the inspection lens 111 are manufactured using the semiconductor exposure apparatus, each of the light receiving lenses 112 and the inspection lens The accuracy of the production position of each lens 111 in the horizontal direction is high.
  • the material of the inspection pinhole forming member 105 the same metal material as that used in the manufacture of the light receiving element is used, so that the inspection pinhole 102 is formed. There is no need to add a process, and the light receiving element 103 can be manufactured at the same time.
  • gold is an example of a preferable metal material.
  • gold which is the same material as the electrode 104, it is possible not only to manufacture the inspection pinhole forming member 105 simultaneously with the manufacture of the light receiving element 103 but also at the same time as the manufacture of the electrode 104.
  • the hole forming member 105 can be manufactured. Therefore, complication of the manufacturing process and increase in the number of manufacturing processes can be prevented.
  • the inspection lens 111 is a convex lens like the light receiving lens 112, it is not necessary to add a special process to form the inspection lens 111, and the inspection lens 111 is manufactured at the same time as the light receiving lens 112 is manufactured. Is possible.
  • An object of the present invention is to simultaneously inspect a certain element-lens arrangement accuracy with respect to a plurality of light receiving lenses and light receiving elements corresponding thereto.
  • FIG. 2 is a diagram showing an inspection method of the element-lens arrangement accuracy of the lens integrated light receiving element 100 of the present invention shown in FIG.
  • the inspection method shown in FIG. 2 is applied in a wafer manufacturing process in which the optical substrate 250 and the semiconductor substrate 240 are bonded.
  • a plurality of lens integrated light receiving elements are manufactured in a single wafer.
  • FIG. 1 in order to simplify the explanation, in FIG.
  • the integrated light receiving elements 210 and 220 are formed on the wafer 200.
  • the wafer 200 is placed on the wafer holding plate 230 extending in the horizontal direction so that the semiconductor substrate 240 is on the lower side in the vertical direction and the optical substrate 250 is on the upper side in the vertical direction.
  • the illumination light 261 emitted from the illumination 260 from the lower side in the vertical direction is irradiated to the lens integrated light receiving element 210. Therefore, the illumination light 261 that has passed through the inspection pinhole 102 shown in FIG. 1 passes through the inspection lenses 215 and 216 and forms an image on the imaging surface 201.
  • an image formed by the inspection pinhole 102 using the inspection camera 270 (hereinafter referred to as a pinhole image) by aligning and focusing the imaging surface 201 and the focal plane 202 of the inspection camera 270. ) Can be observed.
  • a pinhole image By observing this pinhole image, it is possible to inspect the positional accuracy in the horizontal direction between the inspection pinhole and the inspection lenses 215 and 216.
  • the illumination light 261 has a single wavelength or a band wavelength that is optically transmitted through the semiconductor substrate 240 and the optical substrate 250 and is not optically transmitted through the pinhole forming member.
  • the wavelength of the illumination light 261 employed in the implementation of the inspection method of the present invention is the average wavelength (for example, 1300 nm) of the wavelength division multiplexed signal light when it is a single wavelength, and the wavelength division when it has a bandwidth.
  • the average wavelength of the multiplexed signal light is preferably half that wavelength (for example, 650 nm to 1300 nm).
  • the wavelength of the illumination light 261 has a bandwidth
  • the configuration of the inspection camera 270 is simple. Produces the benefits.
  • the light receiving element manufactured simultaneously with the inspection pinhole forming member and the inspection lenses 215 and 216 are manufactured. It is possible to indirectly inspect the accuracy of the horizontal arrangement of the light receiving lenses 211, 212, 213, and 214, that is, the accuracy of element-lens arrangement.
  • FIG. 3A and 3 (b) are diagrams showing the state of the pinhole image obtained in the inspection method shown in FIG.
  • FIG. 3A shows a case where the placement accuracy in the horizontal direction between the light receiving element and the corresponding light receiving lens 302 is good, that is, a case where the placement accuracy between the element and the lens is high
  • FIG. The element-to-lens arrangement is affected by the rotational displacement caused by the positional displacement when the semiconductor substrate and the optical substrate are bonded, or the rotational displacement caused by the positional displacement during exposure on the front and back surfaces when manufacturing the monolithic integrated lens integrated light receiving element. The case where accuracy is low is shown.
  • the illumination light 305 that has passed through the inspection pinhole 304 passes through the inspection lens 303, and the transmitted light 306 forms an image on the image plane 307 to form a pinhole image 330.
  • the pinhole image 330 obtained at this time is circular when viewed from the back side parallel to the surface having a normal line substantially parallel to the vertical direction so that the lens main axis 308 passes through the center of the circle in the vertical direction.
  • an image is formed on the imaging plane 307.
  • the pinhole image 330 is observed so that the center of the inspection lens 303 and the center of the pinhole image 330 coincide with each other on the image plane 307.
  • This state of the pinhole image 330 means that the cylindrical central axis of the cylindrical inspection pinhole through which the illumination light 305 passes coincides with the lens main axis 308 of the inspection lens 303, that is, between the element and the lens. This means that the placement accuracy is high.
  • FIG. 3B similarly to FIG. 3A, the illumination light 305 that has passed through the inspection pinhole 304 passes through the inspection lens 303, and the transmitted light 306 is on the image plane 307.
  • a pinhole image 304 is obtained by forming an image at.
  • the pinhole image 330 obtained at this time is circular when observed from the back side parallel to the surface having a normal line substantially parallel to the vertical direction.
  • the center of the circular pinhole image observed at this time forms an image on the image plane 307 without passing through the lens main axis 308.
  • a pinhole image is observed on the imaging plane 307 so that the center of the inspection lens 302 does not coincide with the center of the pinhole image 330.
  • This state of the pinhole image 330 means that the cylindrical central axis of the cylindrical inspection pinhole 304 through which the illumination light 305 passes and the lens main axis 308 of the inspection lens 303 are displaced in the horizontal direction. That is, when compared with the case of FIG. 3A, it means that the element-lens arrangement accuracy is low.
  • the illumination light 305 is passed through the inspection pinhole 304 formed by the inspection pinhole forming member 301, and the light passing therethrough is imaged on the imaging plane 307 by the transmitted light 306 transmitted through the inspection lens 303.
  • the image formation state of the pinhole image 330 it is possible to qualitatively inspect whether the element-lens arrangement accuracy is high or low.
  • a line segment 311 passing through the center of the plurality of circular inspection lenses 303 and a line segment 321 passing through the centers of the plurality of circular inspection lenses 303 are observed from the back side of the lens integrated light receiving element. Obtain as a reference line.
  • a line segment 312 passing through the center of the plurality of circular pinhole images 330 formed on the imaging plane 307 and a line segment 322 passing through the center of the plurality of circular pinhole images 330 are acquired as inspection lines. To do.
  • the rotational deviation generated when the semiconductor substrate 310 and the optical substrate 309 are bonded to each other is measured.
  • the degree can be inspected quantitatively.
  • the curvature of the inspection lens 303 which is a convex lens, the wavelength of the illumination light 305, the diameter of the inspection pinhole 304, the reflection of the illumination light 305 in the vicinity of the inspection pinhole 304 of the inspection pinhole forming member 301,
  • the accuracy of the inspected rotational deviation is affected by conditions such as the distance between the center positions of the plurality of inspection lenses 303, but the inspected quantitative rotational deviation is shown in FIGS. From (b), it is clear that it can be derived quantitatively from the viewpoint of geometric optics.
  • FIG. 4 shows a lens integrated light receiving element having the same configuration as that shown in FIG. 1 in an optical receiver that converts a signal multiplexed into a plurality of wavelengths into an electrical signal simultaneously when a wavelength division multiplexed optical signal is inputted.
  • 1 shows an embodiment to which 440 is applied.
  • a plurality of signal lights 403 spatially separated by a plurality of optical waveguides 401 formed on an optical waveguide substrate 400 provided in the wavelength demultiplexer are emitted in a vertical direction from an emission surface 402 of the optical waveguide 401.
  • the emitted plurality of signal lights 403 are collected by a plurality of light receiving lenses 420 formed on the optical substrate 410, input to light receiving elements 412 corresponding to the respective light receiving lenses 420, and converted into electric signals.
  • the inspection pinhole forming member 421, the inspection pinhole 422, and the inspection lens 420 which are the features of the present invention, are provided at both ends in the horizontal direction of the lens integrated light receiving element 440, a plurality of light receiving lenses. 411 and a plurality of light receiving elements 412 corresponding thereto are spaced apart. Therefore, the inspection pinhole forming member 421, the inspection pinhole 422, and the inspection lens 420 do not shield the signal light 403 incident on the light receiving lens 411, but have the lens integrated light receiving element 440 that is an optical receiver. Obviously, it does not affect the function of photoelectric conversion.
  • the transmitted lights 252 and 306 of the illumination lights 261 and 305 pass through the inspection lenses 215, 216, and 303 and form an image on the imaging planes 201 and 307, respectively.
  • the lens integrated light receiving element 440 shown in FIG. 4 the signal light 403 is received and collected by the light receiving lens 411.
  • the shape of the inspection lens produced on the optical substrate is the same as the shape of the light receiving lens, the image forming surfaces 201 and 307 of the pinhole image and the inspection lens which is a convex lens in FIGS.
  • the distance from the apex coincides with the distance between the exit surface 402 of the optical waveguide 401 in FIG. 4 and the apex of the light receiving lens that is a convex lens.
  • the lens integrated light receiving element of the present invention does not require a new lens design and a new manufacturing process when manufacturing an inspection lens in addition to the conventional light receiving lens. Therefore, an inspection lens can be provided at a low cost, and an inspection using the lens is easier than the conventional method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

異なる波長を有する複数の光信号を電気信号に変換するためのレンズ集積受光素子における、受光用レンズと受光素子との位置ずれを簡便に検査する。光信号を受信するための1または複数の受光用レンズと、受光用レンズの主軸上に位置して、光信号を電気信号に変換する1または複数の受光素子と、照明光を通過させるための1または複数の検査用ピンホールと、受光用レンズの主軸と平行な主軸を有して、検査用ピンホールを通過した照明光を集光させる1または複数の検査用レンズと、を備えるレンズ集積受光素子を提供する。

Description

レンズ集積受光素子及びその検査方法
 本発明は、異なる波長を有する複数の光信号を電気信号に変換するためのレンズ集積受光素子およびレンズ集積受光素子の形成時に生じる位置ずれについての検査方法に関する。
 高速な光信号を電気信号に変換する光受信器を実現するために、受光素子が形成された半導体基板と受光用レンズなどの光学部品が形成された光学基板とを接合して、レンズ集積受光素子を実現する構成が知られている(特許文献1)。
 また、波長分割多重光信号を一括して電気信号に変換する光受信器において、波長分波器で空間的に分離した複数の光信号を電気信号に変換するために、複数の受光素子を形成した半導体基板と複数の受光用レンズを形成した光学基板とを接合する構成や、複数の受光用レンズと複数の受光素子を単一の半導体基板にモノリシック集積させる構成(以下、モノシリック集積型レンズ集積受光素子という)が知られている(特許文献2)。これらの構成において、1つの受光用レンズに対して1つの受光素子が割り当てられ、その受光用レンズから入射された光信号は、その対応する受光素子によって電気信号へと変換される。
 図5は、従来のレンズ集積受光素子500の構成例を示す図である。図5のレンズ集積受光素子500の構成では、レンズ集積受光素子500は、複数の受光素子510が形成されている半導体基板550と複数の受光用レンズ520が形成された光学基板540とを接合して作製される。ここで、受光素子510と受光用レンズ520との位置関係を説明するために、半導体基板550に受光素子510が形成されている面をレンズ集積受光素子500の「表面」として定義した場合、光学基板540に形成される受光用レンズ520は、レンズ集積受光素子500の「裏面」に配置される。
 半導体基板550上に形成される受光素子510および光学基板540上に形成される受光用レンズ520は、半導体露光装置を用いて作製することができる。半導体露光装置は、受光素子510および受光用レンズ520の作製において、略平板である半導体基板550および光学基板540が延伸する方向、すなわち図5中に示す水平方向における位置決めについて、半導体露光装置内のウェハステージの位置決め精度の高さに従って、高い精度を有する。したがって、半導体露光装置により作製される、半導体基板550上の複数の受光素子510同士の水平方向における作製位置の精度は高く、同様に、光学基板540上の複数の受光用レンズ520同士の水平方向における作製位置の精度も高い。
特開2017-103435 特開2017-97072
 一方、レンズ集積受光素子500の、表面側に形成される複数の受光素子510のそれぞれと、それに対応する裏面側に形成される複数の受光用レンズ520のそれぞれとの間の水平方向における配置の精度(以下、素子-レンズ間配置精度という)は、半導体基板550と光学基板540との接合時に生じる、互いに接合された面内における回転ずれまたは水平方向の位置ずれの影響を受けやすい。
 また、図5の構成と別の従来の構成であるモノシリック集積型レンズ集積受光素子の構成について、受光素子と受光用レンズとの位置関係を図5に示す方向を用いて説明すると、複数の受光素子は半導体基板の表面側に、複数の受光用レンズは半導体基板の裏面側に形成される。このモノシリック集積型レンズ集積受光素子を作製する場合にも半導体露光装置が用いられる。
 半導体基板の表面側への受光素子の作製時および裏面側への受光用レンズの作製時において、作製された受光素子と受光用レンズとの素子-レンズ間配置精度は、各面に対する露光時に生じる回転ずれや位置ずれの影響を受けやすい。
 すなわち、図5に示す従来の構成および従来のモノシリック集積型レンズ集積受光素子の構成を作製する場合、半導体基板上に形成される複数の受光素子同士および光学基板上に形成される複数の受光用レンズ同士の水平方向における作製位置は、高い精度を有するが、それらによってレンズ集積受光素子として構成した場合、素子-レンズ間配置精度は、低いものとなる。
 図5に示す従来のレンズ集積受光素子の構成を用いて、素子-レンズ間配置精度の検査をする方法を説明する。表面側に形成された受光素子510と裏面側に形成された受光用レンズ520との間の位置精度、すなわち素子-レンズ間配置精度の検査をするために、まず、設計される光受信器と等しい光学系を有する光入射装置、すなわち専用の検査装置を用意して、次に、レンズ集積受光素子500の裏面側に形成された受光用レンズ520を介して表面側の受光素子510に光を入射させ、表面側に形成され受光素子510と電気的に接続されている電極530から光電流を検知しその値を測定して受光感度を評価する必要があった。そして、この受光感度を基準の指標として、レンズ集積受光素子の素子-レンズ間配置精度の高低の検査をしていた。
 この従来のレンズ集積受光素子の素子-レンズ間配置精度の検査方法では、専用の検査装置の光学調芯作業や電極510のそれぞれからの通電作業が、複数の受光素子520のそれぞれに対して必要になるため、検査工程に時間を要するという課題がある。ひいては、上記の課題によって検査に要するコストが大きいという課題も生じる。
 本発明は、上記課題を鑑みてなされたものであって、本発明は、高速な波長分割多重光信号を電気信号に変換するためのレンズ集積受光素子における、受光用レンズと受光素子との位置ずれを簡便に検査することを目的とする。
 本発明の一実施形態は、光信号を受信するための1または複数の受光用レンズと、受光用レンズの主軸上に位置して、光信号を電気信号に変換する1または複数の受光素子と、照明光を通過させるための1または複数の検査用ピンホールと、受光用レンズの主軸と平行な主軸を有して、検査用ピンホールを通過した照明光を集光させる1または複数の検査用レンズと、を備えるレンズ集積受光素子を提供する。
 また、本発明の一実施形態は、高速な波長分割多重光信号を電気信号に変換するためのレンズ集積受光素子の検査方法である。まず、検査に用いる照明光を、1または複数の検査用ピンホールを通過させ、次いで、検査用ピンホールを通過した照明光を、1または複数の検査用レンズを透過させ結像させて、ピンホール像を生成させる。その次に、検査用レンズの主軸と直交する観察面において、観察面に投影されたピンホール像と観察面に投影された検査用レンズとを比較する。
 ここで、観察面に投影されたピンホール像と観察面に投影された検査用レンズとの中心が一致するかどうかに基づいて、受光用レンズと受光素子との位置ずれの有無を判断する。
 一方、観察面に投影された前記ピンホール像と観察面に投影された検査用レンズとの中心が一致しないときは、受光用レンズと受光素子との位置ずれがあると判断する。
 本発明によれば、受光素子と受光用レンズとの間の配置精度に関する検査を、複数の受光用レンズとそれに対応する受光素子レンズ集積受光素子に対して同時に行うことが可能になり、従来の検査方法よりも、検査に要する時間を短縮することが可能である。
 また、受光素子と受光用レンズとの間の配置精度に関する検査のために、設計する光受信器と等しい光学系を有する専用の検査装置を準備する必要がなくなり、検査に要するコストを低減させることが可能である。
本発明の一実施形態であるレンズ集積受光素子の構成を示す図である。 本発明の一実施形態であるレンズ集積受光素子の検査方法を示す図である。 本発明の一実施形態であるレンズ集積受光素子の検査方法における、ピンホール像の結像の様子を示す図である。 本発明の一実施形態であるレンズ集積受光素子を光受信器に適用した実施例を示す図である。 従来のレンズ集積受光素子の構成例を示す図である。
 本発明の目的は、レンズ集積受光素子の構成における複数の受光素子と複数の受光用レンズとの間の位置精度、すなわち素子-レンズ間配置精度についての検査を、複数の受光用レンズおよびそれに対応する複数の受光素子を備えるレンズ集積受光素子に対して、一括して行うことを可能にすることである。
 以下に、本発明のレンズ集積受光素子およびそれを用いたレンズ集積受光素子の検査方法の実施形態を説明する。なお、以下の本発明の実施形態は、例示であり、本発明を実施するための最良の形態に限らず、本発明の要旨を逸脱しない限り、その他の構成とすることが可能である。
 図1は、本発明の一実施形態である、複数の受光素子103が形成される半導体基板101と、複数の受光用レンズ112が形成される光学基板110とを接合させて作製されたレンズ集積受光素子100の構成を示す図である。図5に示す従来のレンズ集積受光素子500の構成と異なる点は、検査用レンズ111、検査用ピンホール形成部材105および検査用ピンホール形成部材105により形成される検査用ピンホール102を備えることである。
 図1の構成では、レンズ集積受光素子100は、4つの受光素子103およびそれに対応する4つの受光用レンズ112を備え、レンズ集積受光素子100の水平方向両端側に、2つの検査用レンズ111とおよびそれに対応する2つの検査用ピンホール形成部材105を備えている。
 検査用ピンホール形成部材105のそれぞれは、レンズ集積受光素子100の表面側に、検査用レンズ111のそれぞれは、レンズ集積受光素子100の裏面側に形成される。検査用ピンホール形成部材105は、レンズ集積受光素子100の裏面側に配置される半導体基板101上に形成され、半導体基板101上から垂直方向に立設して半導体基板101と平行な面を貫通するように孔、すなわち検査用ピンホール102が設けられた金属部材である。
 4つの受光レンズ112および2つの検査用ピンホール102は、レンズ集積受光素子100の表面側に配置される半導体基板101の同一面上に作製される。4つの受光素子103と2つの検査用ピンホール102を、半導体露光装置を用いて作製した場合、水平方向における目標作製位置からのずれは非常に小さく、したがって、受光素子103のそれぞれおよび検査用ピンホール102のそれぞれの水平方向における作製位置の精度は高い。
 また、4つの受光用レンズ112および2つの検査用レンズ111は、レンズ集積受光素子100の裏面側に配置される光学基板110の同一面上に作製される。受光素子103および検査用ピンホール102を作製するときと同様に、半導体露光装置を用いて4つの受光用レンズ112および2つの検査用レンズ111を作製した場合、受光用レンズ112のそれぞれおよび検査用レンズ111のそれぞれの水平方向における作製位置の精度は高い。
 ここで、検査用ピンホール形成部材105の材料として、受光素子の作製時に用いる金属材料と同一の金属材料を用いることにより、検査用ピンホール102を形成するために、従来の製造工程に特別な工程を追加する必要は無く、受光素子103の作製と同時に作製することが可能である。たとえば、好ましい金属材料の種類として金が挙げられる。電極104と同一の材料である金を採用することにより、受光素子103の作製と同時に検査用ピンホール形成部材105を作製することが可能であるのみならず、電極104の作製とも同時に検査用ピンホール形成部材105を作製することができる。したがって、製造工程の煩雑化および製造工程数の増加を防ぐことができる。
 また、検査用レンズ111は、受光用レンズ112と同じく凸レンズであるため、検査用レンズ111を形成するために、特別な工程を追加する必要は無く、受光用レンズ112の作製と同時に作製することが可能である。
 次に、本発明の検査方法についての一実施形態を説明する。
 本発明の検査方法は、複数の受光素子を形成した半導体ウェハ基板と複数のレンズを形成した光学ウェハ基板とを接合した状態で、受光素子とそれに対応する受光用レンズとの間の配置精度である、素子-レンズ間配置精度を、複数の受光用レンズとそれらにそれぞれ対応する受光素子について同時に検査をすることを目的とする。
 図2は、図1に示す本発明のレンズ集積受光素子100についての、素子-レンズ間配置精度の検査方法を示す図である。この図2に示す検査方法は、光学基板250と半導体基板240とが接合されているウェハの製造工程において適用される。実際のウェハの製造工程では、レンズ集積受光素子は、単一のウェハ内に複数個作製されるが、説明を簡単にするために、図2では、4つの受光用レンズ211、212、213、214、それらのそれぞれに対応する4つの受光素子(図示せず)、および2つの検査用レンズ215、216を備えた4チャンネルのレンズ集積受光素子210を1チップとし、2チップの4チャンネルのレンズ集積受光素子210、220が、ウェハ200上に形成された状態を示している。
 以下では、図2の水平方向左側に位置する4チャンネルのレンズ集積受光素子210に着目して説明する。
 まず、ウェハ200を、半導体基板240が垂直方向下側となり、光学基板250が垂直方向上側となるように、水平方向に延伸しているウェハ保持板230上に載置させる。次に、垂直方向下側から照明260から射出される照明光261を、レンズ集積受光素子210に対して照射する。そこで、図1に示す検査用ピンホール102を通過した照明光261は、検査用レンズ215、216を透過して、結像面201上で結像する。このとき、結像面201と検査用カメラ270の焦点面202とを一致させ合焦させることにより、検査用カメラ270を用いて検査用ピンホール102により結像した像(以下、ピンホール像という)を観察することができる。このピンホール像を観察することにより、検査用ピンホールと検査用レンズ215、216との間の水平方向における位置精度を検査することが可能である。
 ここで、照明光261は、半導体基板240および光学基板250を光学的に透過し、かつピンホール形成部材を光学的に透過しない単一波長または帯域波長である。本発明の検査方法の実施において採用される照明光261の波長は、単一波長の場合には波長分割多重信号光の平均波長(たとえば1300nm)であり、帯域幅を有する場合には上記波長分割多重信号光の平均波長からその半分の波長(たとえば650nm~1300nm)であることが好ましい。
 照明光261の波長が帯域幅を有する場合、上記の波長範囲に規定することにより、ピンホール像を可視光域において観察することが可能となり、ひいては、検査用カメラ270の構成が平易なものとなるメリットを生じる。
 つまり、検査用ピンホールと検査用レンズとの間の水平方向における位置精度を検査することにより、検査用ピンホール形成部材と同時に作製される受光素子と検査用レンズ215、216と同時に製造される受光用レンズ211、212、213、214との水平方向における配置の精度、すなわち素子-レンズ間配置精度を間接的に検査することが可能である。
 図3(a)および図3(b)は、図2に示す検査方法において取得されるピンホール像の結像の状態を示す図である。図3(a)は、受光素子とそれに対応する受光用レンズ302との間の水平方向における配置の精度が良い場合、すなわち素子-レンズ間配置精度が高い場合を示し、図3(b)は、半導体基板と光学基板を接合するときの位置ずれによる回転ずれ、またはモノシリック集積型レンズ集積受光素子の作製時における表裏面での露光時の位置ずれによる回転ずれの影響により、素子-レンズ間配置精度が低い場合を示す。
 まず、素子-レンズ間配置精度が高い場合について説明する。図3(a)に示すように、検査用ピンホール304を通過した照明光305が検査用レンズ303を透過して、その透過光306が結像面307上において結像してピンホール像330が得られる。このとき得られるピンホール像330は、垂直方向に略平行な法線を有する面と平行である裏面側から観察すると、円形であり、その円の中心をレンズ主軸308が垂直方向に通過するように、結像面307上で結像する。図3(a)に示されるように、結像面307において、検査用レンズ303の中心とピンホール像330の中心とが一致するように、ピンホール像330が観察される。
 このピンホール像330の状態は、照明光305が通過する円柱状の検査用ピンホールの円柱中心軸が検査用レンズ303のレンズ主軸308と一致していることを意味し、すなわち素子-レンズ間配置精度が高いことを意味している。
 次に、素子-レンズ間配置精度が低い場合について説明する。図3(b)に示すように、図3(a)と同様に、検査用ピンホール304を通過した照明光305が検査用レンズ303を透過して、その透過光306が結像面307上において結像してピンホール像304が得られる。このとき得られるピンホール像330は、垂直方向に略平行な法線を有する面と平行である裏面側から観察すると、円形である。このとき観察される円形のピンホール像の中心は、レンズ主軸308を通過せずに、結像面307上で結像する。
 つまり、図3(b)に示されるように、結像面307において、検査用レンズ302の中心とピンホール像330の中心とが一致しないように、ピンホール像が観察される。
 このピンホール像330の状態は、照明光305が通過する円柱状の検査用ピンホール304の円柱中心軸と検査用レンズ303のレンズ主軸308とが、水平方向において位置がずれていることを意味し、すなわち、図3(a)の場合と比較した場合、素子-レンズ間配置精度が低いことを意味している。
 したがって、照明光305を検査用ピンホール形成部材301により形成された検査用ピンホール304を通過させ、通過した光が検査用レンズ303を透過した透過光306により結像面307上に結像されるピンホール像330の結像の状態を観察することにより、素子-レンズ間配置精度の高低を定性的に検査することもできる。
 さらに、図3(b)に示すように、半導体基板310と光学基板309の接合時に、垂直方向に略平行な法線を有する面内方向において回転ずれが生じた場合について詳細に説明する。まず、レンズ集積受光素子の裏面側から観察し、複数の円形状の検査用レンズ303の中央を横貫する線分311と複数の円形状の検査用レンズ303の中央を縦貫する線分321とを基準線として取得する。次に、結像面307で結像する複数の円形のピンホール像330の中心を横貫する線分312と複数の円形のピンホール像330の中心を縦貫する線分322とを検査線として取得する。
 ここで、基準線311と検査線312とのなす角度、および基準線321と検査線322とがなす角度とを計測することにより、半導体基板310と光学基板309との接合時に生じた回転ずれの度合いを定量的に検査することができる。
 具体的には、凸レンズである検査用レンズ303の曲率、照明光305の波長、検査用ピンホール304の口径、検査用ピンホール形成部材301の検査用ピンホール304近傍における照明光305の反射、または複数の検査用レンズ303の中心位置同士の距離などの条件により、検査された回転ずれの精度は影響を受けるが、この検査された定量的な回転ずれは、図3(a)および図3(b)より、幾何光学の見地から、定量的に導出可能なことは明らかである。
 図4は、波長分割多重光信号を入力したときに、複数の波長に多重化された信号について同時に電気信号に変換する光受信器に、図1に示す構成と同じ構成であるレンズ集積受光素子440を適用した一実施形態を示す。波長分波器に備えられる光導波路基板400上に形成した複数の光導波路401によって、空間的に分離した複数の信号光403は、光導波路401の射出面402から垂直方向に射出される。射出された複数の信号光403は、光学基板410上に形成された複数の受光用レンズ420により集光され、それぞれの受光用レンズ420に対応する受光素子412に入力され、電気信号に変換される。
 このとき、本発明の特徴である、検査用ピンホール形成部材421、検査用ピンホール422および検査用レンズ420は、レンズ集積受光素子440の水平方向両端側に設けられるため、複数の受光用レンズ411とそれに対応する複数の受光素子412と距離が離れている。したがって、検査用ピンホール形成部材421、検査用ピンホール422および検査用レンズ420は、受光用レンズ411に入射される信号光403を遮蔽せず、光受信器であるレンズ集積受光素子440が有する光電変換の機能に何ら影響を与えないことは明らかである。
 また、図2および図3に示す検査方法において、照明光261、305の透過光252、306は、検査用レンズ215、216、303を透過して結像面201、307において結像するのに対し、図4に示すレンズ集積受光素子440において、信号光403は、受光用レンズ411で受光され集光される。
 つまり、光学基板上に作製する検査用レンズの形状と受光用レンズの形状とを同一にした場合、図2および図3におけるピンホール像の結像面201、307と凸レンズである検査用レンズの頂点との距離は、図4における光導波路401の出射面402と凸レンズである受光用レンズの頂点との距離と一致する。
 すなわち、本発明のレンズ集積受光素子は、従来の受光用レンズに加えて検査用レンズを製造する際に、新たなレンズの設計および新たな製造工程の追加を必要としない。そのため、低コストで、検査用レンズを備えることができ、さらにそれを用いた検査も従来よりも容易な方法である。
100、440、500  レンズ集積受光素子
101、240、310、430、550  半導体基板
102、304、422  検査用ピンホール
103、412、510  受光素子
104、530  電極
105、301、421  検査用ピンホール形成部材
110、250、309、410、540  光学基板
111、215、216、303、420  検査用レンズ
112、211、212、213、214、302、411、520  受光用レンズ
200  ウェハ
201、307  結像面
202  焦点面
210、220  4チャンネルのレンズ集積受光素子
230  ウェハ保持板
252、306  透過光
260  照明
261、305  照明光
270  検査用カメラ
308  レンズ主軸
311、321  基準線
312、322  検査線
330  ピンホール像
400  光導波路基板
401  光導波路
402  光導波路401の射出面
403  信号光

Claims (7)

  1.  異なる波長を有する複数の光信号を電気信号に変換するためのレンズ集積受光素子であって、
     前記光信号を受信するための1または複数の受光用レンズと、
     前記受光用レンズの主軸上に位置して、前記光信号を電気信号に変換する1または複数の受光素子と、
     照明光を通過させるための1または複数の検査用ピンホールと、
     前記受光用レンズの主軸と平行な主軸を有して、前記検査用ピンホールを通過した前記照明光を集光させる1または複数の検査用レンズと、
     を備えるレンズ集積受光素子。
  2.  前記受光用レンズおよび前記検査用レンズは、前記受光用レンズの主軸と直交する第1の平面上に配列され、
     前記受光素子とおよび前記検査用ピンホールは、前記受光用レンズの主軸と直交する第2の平面上に配列される、
     請求項1に記載のレンズ集積受光素子。
  3.  前記受光用レンズおよび前記検査用レンズは、凸レンズである、請求項2に記載のレンズ集積受光素子。
  4.  前記受光用レンズおよび前記検査用レンズは、同一の透光性基板上に形成され、
     前記受光素子および前記検査用ピンホールは、同一の半導体基板上に形成される、
     請求項1乃至3のいずれかに記載のレンズ集積受光素子。
  5.  前記検査用ピンホールは、前記半導体基板上から垂直方向に立設する検査用ピンホール形成部材の前記半導体基板と平行な面を貫通する孔である、
     請求項4に記載のレンズ集積受光素子。
  6.  前記検査用ピンホール形成部材は、金属を含み、当該金属は前記受光素子に含まれる金属と同一である、請求項5に記載のレンズ集積受光素子。
  7.  異なる波長を有する複数の光信号を電気信号に変換するためのレンズ集積受光素子の検査方法であって、
     検査に用いる照明光を、1または複数の検査用ピンホールを通過させ、
     前記検査用ピンホールを通過した照明光を、1または複数の検査用レンズを透過させ結像させて、ピンホール像を生成させ、
     前記検査用レンズの主軸と直交をなす観察面において、前記観察面に投影された前記ピンホール像と前記観察面に投影された前記検査用レンズとを比較して、
      前記観察面に投影された前記ピンホール像と前記観察面に投影された前記検査用レンズとの中心が一致するかどうかに基づいて、受光用レンズと受光素子との位置ずれの有無を判断する、
     レンズ集積受光素子の検査方法。
PCT/JP2019/008753 2018-03-13 2019-03-06 レンズ集積受光素子及びその検査方法 WO2019176668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/971,230 US11557685B2 (en) 2018-03-13 2019-03-06 Lens-integrated light-receiving element and method of examining same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045557 2018-03-13
JP2018045557A JP6927098B2 (ja) 2018-03-13 2018-03-13 レンズ集積受光素子及びその検査方法

Publications (1)

Publication Number Publication Date
WO2019176668A1 true WO2019176668A1 (ja) 2019-09-19

Family

ID=67907746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008753 WO2019176668A1 (ja) 2018-03-13 2019-03-06 レンズ集積受光素子及びその検査方法

Country Status (3)

Country Link
US (1) US11557685B2 (ja)
JP (1) JP6927098B2 (ja)
WO (1) WO2019176668A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010373A (ja) * 1996-06-21 1998-01-16 Toshiba Corp レセプタクル型光送受信装置およびその製造方法
US20020154857A1 (en) * 2001-04-23 2002-10-24 Optical Coating Laboratory, Inc. Wavelength division multiplexing/demultiplexing systems
JP2011075318A (ja) * 2009-09-29 2011-04-14 Renesas Electronics Corp レンズずれ測定装置、レンズずれ測定方法及び光モジュールの製造方法
JP2012122794A (ja) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp 波面計測装置および波面計測方法
JP2014048550A (ja) * 2012-09-03 2014-03-17 Nippon Telegr & Teleph Corp <Ntt> 受光部品および光受信モジュールの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800662B2 (ja) * 2011-10-07 2015-10-28 キヤノン株式会社 半導体装置及びその製造方法
JP5950618B2 (ja) * 2012-02-24 2016-07-13 キヤノン株式会社 光透過部材の形成方法および撮像装置の製造方法
JP6527451B2 (ja) 2015-11-19 2019-06-05 日本電信電話株式会社 光分波器、光受信モジュールおよびその製造方法
JP6572118B2 (ja) 2015-12-04 2019-09-04 日本電信電話株式会社 光部品構造
JP7492881B2 (ja) * 2020-08-03 2024-05-30 株式会社日本マイクロニクス 測定システムおよび測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010373A (ja) * 1996-06-21 1998-01-16 Toshiba Corp レセプタクル型光送受信装置およびその製造方法
US20020154857A1 (en) * 2001-04-23 2002-10-24 Optical Coating Laboratory, Inc. Wavelength division multiplexing/demultiplexing systems
JP2011075318A (ja) * 2009-09-29 2011-04-14 Renesas Electronics Corp レンズずれ測定装置、レンズずれ測定方法及び光モジュールの製造方法
JP2012122794A (ja) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp 波面計測装置および波面計測方法
JP2014048550A (ja) * 2012-09-03 2014-03-17 Nippon Telegr & Teleph Corp <Ntt> 受光部品および光受信モジュールの製造方法

Also Published As

Publication number Publication date
US20210098637A1 (en) 2021-04-01
US11557685B2 (en) 2023-01-17
JP2019161004A (ja) 2019-09-19
JP6927098B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
KR20180122434A (ko) 웨이퍼와 같은 물체의 2d/3d 검사를 위한 방법
JP6055087B2 (ja) 制御されたスペクトルの光ビームを発するための発光装置
KR20180122435A (ko) 가변적인 공간 해상도를 가지고 웨이퍼와 같은 물체의 2d/3d 검사를 위한 공초점 장치 및 방법
KR101820999B1 (ko) 마이크로 렌즈 노광 장치
EP3431918A1 (en) Multichannel confocal sensor and related method for inspecting a sample
CN111158158B (zh) 分光计光学系统以及半导体检查装置
JP5084327B2 (ja) 偏心検査装置及び偏心調整装置
JP6487617B2 (ja) マイクロレンズアレイの欠陥検査方法及び欠陥検査装置
JP7080910B2 (ja) テストデバイス及びヘテロジニアスに集積化した構造体
WO2019176668A1 (ja) レンズ集積受光素子及びその検査方法
JP2008026049A (ja) フランジ焦点距離測定装置
JP2008191122A (ja) 表面形状測定装置及び方法
JP2020071219A (ja) プローブ位置合わせ装置
JP5517108B2 (ja) 波面収差測定装置
TW201025667A (en) System for light collecting and imagine monitoring and the method for light-emitting device testing
JP2005017127A (ja) 干渉計および形状測定装置
JP2004172595A (ja) 光照射装置、固体撮像装置の試験装置、中継装置
CN114690393B (zh) 一种内调焦望远镜
CN218584684U (zh) 检测系统
WO2022264495A1 (ja) 測定装置
TW201905414A (zh) 線寬測量系統和線寬測量裝置
CN112859528B (zh) 一种套刻误差测量装置及测量方法
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide
JP2007148084A (ja) 焦点検出装置
JP2000136982A (ja) アレイ素子検査方法およびアレイ素子検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767316

Country of ref document: EP

Kind code of ref document: A1