WO2019176612A1 - Electromagnetic absorber composition, three-dimensionally molded article formed from electromagnetic absorber, electronic component and electronic device using same, and methods for producing electronic component and electronic device - Google Patents

Electromagnetic absorber composition, three-dimensionally molded article formed from electromagnetic absorber, electronic component and electronic device using same, and methods for producing electronic component and electronic device Download PDF

Info

Publication number
WO2019176612A1
WO2019176612A1 PCT/JP2019/008327 JP2019008327W WO2019176612A1 WO 2019176612 A1 WO2019176612 A1 WO 2019176612A1 JP 2019008327 W JP2019008327 W JP 2019008327W WO 2019176612 A1 WO2019176612 A1 WO 2019176612A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave absorber
dimensional structure
electronic component
composition
Prior art date
Application number
PCT/JP2019/008327
Other languages
French (fr)
Japanese (ja)
Inventor
山田幸憲
廣井俊雄
藤田真男
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2020506409A priority Critical patent/JP7141444B2/en
Publication of WO2019176612A1 publication Critical patent/WO2019176612A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an electromagnetic wave absorber that absorbs millimeter wave electromagnetic waves, and more particularly, an electromagnetic wave absorber composition, an electromagnetic wave absorber three-dimensional structure, an electronic component and an electronic device using the same, and the electronic component And an electronic device manufacturing method.
  • Non-Patent Document 1 In order to suppress high-frequency noise, an electromagnetic wave absorbing sheet that uses magnetic loss of a magnetic material that has been conventionally used is less effective, and a resonant electromagnetic wave absorbing sheet that uses a conductive material is required (Patent Document 1).
  • Patent Document 1 direct contact of a conductive material with a conductive circuit element or transmission path is not suitable because it causes a short circuit.
  • the conductive layer of the resonance type electromagnetic wave absorbing sheet is prevented from directly touching the circuit element or the transmission path by the adhesive to be applied to the circuit element or the transmission path, the sheet is cut and punched to a desired size. When used, the conductive layer is exposed on the cut surface, and there is a risk of short-circuiting the circuit by contacting this portion. Furthermore, the danger of a short circuit due to the loss of the conductive material cannot be eliminated.
  • the iron oxide magnetic material is a non-conductive material, and there is no danger of a short circuit.
  • epsilon-type iron oxide has an electromagnetic wave absorption ability in the millimeter wave band, and the absorption frequency can be controlled by the substitution element and the substitution amount (Patent Documents 2 and 3).
  • hexagonal ferrite also has an electromagnetic wave absorption ability in the millimeter wave band (Patent Document 4).
  • JP 2007-81119 A Patent No. 4881613
  • JP 2008-60484 A Patent No. 4787978
  • the shape of the electromagnetic wave absorber sheet is usually a circuit. Since the shape is difficult to follow the surface shape of the element or the transmission path, the sheet may be peeled off. Moreover, since the size of a circuit element or a transmission line is small, handling of an electromagnetic wave absorber sheet may be difficult. Furthermore, depending on the material and roughness of the surface of the circuit element, the adhesive may not stick, or the adhesive may come into contact with the circuit element or the transmission path.
  • the noise suppression effect correlates with the amount of electromagnetic wave absorbing material present in the traveling direction of the electromagnetic wave that becomes noise, and the greater the amount of electromagnetic wave absorbing material, the higher the noise suppressing effect. Therefore, the noise suppression effect is reduced by the thickness of the electromagnetic wave absorber and the uneven distribution of the electromagnetic wave absorbing material, and noise may leak.
  • the present invention solves the above-mentioned conventional problems, and can absorb an electromagnetic wave absorber securely to a noise source or to a circuit element or a transmission path to prevent the influence of noise without leaking the electromagnetic wave.
  • a three-dimensional modeled body is provided.
  • the electromagnetic wave absorber composition of the present invention is an electromagnetic wave absorber composition used for forming an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a millimeter wave band or higher frequency band. And an electromagnetic wave absorbing material and a binder resin, wherein the electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band equal to or higher than a millimeter wave band, and the thickness of the electromagnetic wave absorber three-dimensional structure is d
  • V (%) a relational expression of d ⁇ V 1/3 > 0.4 is established.
  • the electromagnetic wave absorber three-dimensional structure of the present invention is an electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition of the present invention, wherein the electromagnetic wave absorber three-dimensional structure is It is shaped into a thin-walled structure that can cover an electronic member, the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm), and the volume content of the electromagnetic wave absorbing material contained in the electromagnetic wave absorber three-dimensional structure is Assuming V (%), a relational expression of d ⁇ V 1/3 > 0.4 is established, and the electromagnetic wave transmission attenuation in a frequency band equal to or higher than the millimeter wave band is 10 dB or higher.
  • the electronic component of the present invention includes an electronic member coated with the electromagnetic wave absorber three-dimensional structure of the present invention.
  • the electronic device of the present invention includes the electronic component of the present invention.
  • the method for producing an electronic component of the present invention includes a step of preparing the electromagnetic wave absorber composition of the present invention, a step of forming an electromagnetic wave absorber three-dimensional structure using the electromagnetic wave absorber composition, A step of bonding the electromagnetic wave absorber three-dimensional structure to an electronic member and covering it.
  • the electronic device manufacturing method of the present invention includes a step of incorporating the electronic component manufactured by the electronic component manufacturing method of the present invention into the electronic device.
  • an electromagnetic wave absorber three-dimensional structure having a thin structure is formed, and the thickness of the electromagnetic wave absorber three-dimensional structure,
  • an electromagnetic wave absorber that does not cause a short circuit and that does not leak noise can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a three-dimensional structure of an electromagnetic wave absorber according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating another example of the electromagnetic wave absorber three-dimensional structure according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of a part of the electronic component of the present embodiment.
  • FIG. 4 is a schematic cross-sectional view showing another example of a part of the electronic component of the present embodiment.
  • FIG. 5 is a graph showing the electromagnetic wave transmission attenuation amount at a frequency of 76 GHz of the electromagnetic wave absorbers of Examples and Comparative Examples.
  • FIG. 6 is a diagram showing an electromagnetic wave absorption spectrum of the electromagnetic wave absorbers of Example 1 and Comparative Example 3.
  • the composition for an electromagnetic wave absorber disclosed in the present application is a composition for an electromagnetic wave absorber used for forming an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a frequency band of a millimeter wave band or higher.
  • V (%) a relational expression of d ⁇ V 1/3 > 0.4 is established.
  • an electromagnetic wave absorber three-dimensional structure having a thin-walled structure is formed, and the thickness of the electromagnetic wave absorber three-dimensional structure and the above-mentioned electromagnetic wave absorber three-dimensional structure
  • an electromagnetic wave absorber that does not cause a short circuit and that does not leak noise can be provided.
  • the electromagnetic wave absorbing material is preferably hexagonal ferrite containing at least one selected from the group consisting of Sr and Ba. Further, the electromagnetic wave absorbing material is hexagonal ferrite containing Sr, and it is more preferable that a part of Fe site of the hexagonal ferrite containing Sr is substituted with Al.
  • the hexagonal ferrite is a non-conductive iron oxide that magnetically resonates in a frequency band above the millimeter wave band.
  • the electromagnetic wave absorbing material is epsilon-type iron oxide, and a part of the Fe site of the epsilon-type iron oxide is preferably substituted with at least one selected from the group consisting of Al, Ga, and In. .
  • the epsilon-type iron oxide is a non-conductive iron oxide that magnetically resonates in a frequency band equal to or higher than the millimeter wave band, and a part of the Fe site is at least one selected from the group consisting of Al, Ga and In. This is because the magnetic resonance frequency responsible for electromagnetic wave absorption can be changed by substitution.
  • the binder resin preferably contains at least one selected from the group consisting of an active energy ray curable resin, a thermosetting resin, a thermoplastic resin, and a rubber-like resin. This is because by using the binder resin, an electromagnetic wave absorber three-dimensional structure having a thin-walled structure can be formed by various methods.
  • the electromagnetic wave absorber three-dimensional structure disclosed in the present application is an electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition disclosed above, and the electromagnetic wave absorber three-dimensional structure Is formed into a thin-walled structure capable of covering an electronic member, the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm), and the volume of the electromagnetic wave absorbing material contained in the electromagnetic wave absorber three-dimensional structure is included.
  • the rate is V (%)
  • a relational expression of d ⁇ V 1/3 > 0.4 is established, and the electromagnetic wave transmission attenuation amount in the frequency band of the millimeter wave band or higher is 10 dB or higher.
  • an electromagnetic wave absorber three-dimensional structure having a thin-walled structure is formed, and the thickness of the electromagnetic wave absorber three-dimensional structure and the above-mentioned electromagnetic wave absorber three-dimensional structure
  • the volume content of the electromagnetic wave absorbing material By controlling the volume content of the electromagnetic wave absorbing material to the above relationship, even when the thickness of the electromagnetic wave absorber three-dimensional structure changes during modeling, it is possible to ensure a certain level of electromagnetic wave absorption performance, noise.
  • An electromagnetic wave absorber without leakage can be provided.
  • the volume resistivity of the electromagnetic wave absorber three-dimensional structure is preferably 10 10 ⁇ cm or more. This is because the occurrence of a short circuit can be reliably prevented.
  • the electronic component disclosed in the present application is an electronic component including an electronic member covered with the electromagnetic wave absorber three-dimensional structure disclosed above.
  • EMC electromagnetic compatibility
  • the above-mentioned electronic components are resistant to the electromagnetic waves emitted from them from affecting other devices and systems, and to operate satisfactorily even when receiving electromagnetic waves from other devices and systems. Can be secured.
  • the electromagnetic wave absorber three-dimensional structure is preferably in contact with and followed the surface of the electronic member. This is because noise leakage can be prevented more reliably and the EMC (electromagnetic compatibility) of the electronic component can be further improved.
  • the electromagnetic wave absorber three-dimensional structure may have a non-contact portion with respect to the surface of the electronic member. This is because, depending on the surface shape of the electronic member, it may be difficult to form the electromagnetic wave absorber three-dimensional structure into a shape in which the electromagnetic wave absorber is brought into contact with the surface of the electronic member.
  • Examples of the electronic member include a circuit element and a transmission line.
  • the electronic device disclosed in the present application is an electronic device including the electronic component disclosed above.
  • EMC electromagtic compatibility
  • the manufacturing method of the electronic component disclosed by this application forms the electromagnetic wave absorber three-dimensional structure using the process for preparing the electromagnetic wave absorber composition disclosed above and the electromagnetic wave absorber composition.
  • the electronic device manufacturing method disclosed in the present application includes a step of incorporating the electronic component manufactured by the electronic component manufacturing method disclosed above into the electronic device.
  • EMC electromagnetic compatibility
  • the electromagnetic wave absorber composition of the present embodiment is used to form an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a frequency band equal to or higher than a millimeter wave band, and an electromagnetic wave absorbing material and a binder.
  • the electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band equal to or higher than a millimeter wave band, and the thickness of the electromagnetic wave absorber three-dimensional structure is formed as d (mm),
  • V (%) the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorber composition
  • V (%) the relational expression d ⁇ V 1/3 > 0.4 is established.
  • the electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band greater than or equal to the millimeter wave band. Specifically, the following hexagonal ferrite or the following epsilon type iron oxide can be used.
  • the volume content V (%) of the electromagnetic wave absorbing material in the composition for electromagnetic wave absorber is d ⁇ V 1/3 > when the thickness of the electromagnetic wave absorber three-dimensional structure is formed as d (mm). Adjustment is made so that a relational expression of 0.4 is established.
  • hexagonal ferrite As the hexagonal ferrite, hexagonal ferrite containing at least one selected from the group consisting of Sr and Ba can be used. Further, it is more preferable that a part of the Fe site of the hexagonal ferrite containing Sr is substituted with Al.
  • the hexagonal ferrite has a magnetoblumbite type crystal structure and is represented by a general formula: AFe 12 O 19 , and A in the general formula represents at least one selected from the group consisting of Sr and Ba.
  • the hexagonal ferrite can change the magnetic resonance frequency responsible for electromagnetic wave absorption by substituting a part of Fe site with a trivalent Al metal element.
  • Patent Document 4 Japanese Patent Laid-Open No. 2007-250823.
  • Epsilon-type iron oxide As the epsilon-type iron oxide, epsilon-type iron oxide in which a part of the Fe site is substituted with at least one selected from the group consisting of Al, Ga and In can be used.
  • the epsilon-type iron oxide has an ⁇ -phase crystal structure, is represented by a general formula: ⁇ -Fe 2 O 3 , and part of the Fe site is at least one selected from the group consisting of Al, Ga, and In.
  • the magnetic resonance frequency responsible for electromagnetic wave absorption can be changed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-60484
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-277726
  • the binder resin is used as a matrix material when the electromagnetic wave absorbing material is dispersed and fixed to form an electromagnetic wave absorber three-dimensional structure, specifically, an active energy ray curable resin, At least one selected from the group consisting of thermosetting resins, thermoplastic resins and rubber-like resins can be used.
  • active energy ray curable resin examples include urethane acrylate, acrylic resin acrylate, and epoxy acrylate.
  • the active energy ray-curable resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by an optical modeling method using a three-dimensional printer.
  • bifunctional or higher polyfunctional ethylenically unsaturated monomers can be used, for example, linear or branched alkylene glycol di (meth) acrylate having 10 to 25 carbon atoms, alkylene glycol tri (meth).
  • Acrylate for example, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 3-methyl- 1,5-pentanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, etc.], having 10 to 30 carbon atoms Alicyclic ring-containing di (meth) acrylate [for example, dimethylol tricyclodeca Di (meth) acrylate, etc.] or the like can be used. These may be used alone or in combination of two or more.
  • thermosetting resin for example, phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicon resin, polyurethane and the like can be used.
  • thermosetting resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by a heat compression molding method.
  • thermoplastic resin examples include polyethylene, polypropylene, polystyrene, ABS resin, methyl methacrylate resin, polyvinyl chloride, polyamide, polyethylene terephthalate, polybutylene terephthalate, and polycarbonate.
  • thermoplastic resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by an injection molding method.
  • Rubber resin for example, urethane rubber, silicone rubber, fluorine rubber or the like which is a thermosetting elastomer can be used.
  • the rubber-like resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by a heat compression molding method.
  • a photopolymerization initiator is added to the electromagnetic wave absorber composition.
  • the photopolymerization initiator is for initiating a polymerization reaction or crosslinking reaction of a monomer by active energy rays
  • the electromagnetic wave absorber composition contains the photopolymerization initiator, for example, a three-dimensional printer.
  • the composition for electromagnetic wave absorber released using can be cured by irradiation with active energy rays.
  • the active energy ray irradiated to the photopolymerization initiator can be appropriately selected from, for example, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays and the like.
  • the photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, and is a benzoin compound having 14 to 18 carbon atoms [for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl.
  • acetophenone compounds having 8 to 18 carbon atoms [for example, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy- 2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc.], carbon number 4-19 anthraquinone compounds [eg, 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc.], thioxanthone compounds having 13 to 17 carbon atoms [eg, 2,4-diethylthioxanthone , 2-isopropylthioxanth
  • the amount of the photopolymerization initiator added may be 3.0 to 15 parts by mass when the total mass of the electromagnetic wave absorber composition is 100 parts by mass. When two or more kinds of the photopolymerization initiators are used in combination, the addition amount is determined as the total addition amount of each photopolymerization initiator.
  • ⁇ Surface conditioner> When the active energy ray curable resin is used as the binder resin, a surface conditioner is added to the electromagnetic wave absorber composition. Thereby, the surface tension of the said composition for electromagnetic wave absorbers can be adjusted to an appropriate range. By adjusting the surface tension of the composition for electromagnetic wave absorbers to an appropriate range, an optically shaped article with good dimensional accuracy can be obtained. In order to obtain this effect, the amount of the surface conditioner added may be 0.005 to 3.0 parts by mass when the total mass of the electromagnetic wave absorber composition is 100 parts by mass.
  • a silicone compound or the like can be used, and examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. More specifically, the product names include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, manufactured by BYK Chemie.
  • Granol 100, Granol 115, Gu Nord 400, Granol 410, Granol 435, Granol 440, Granol 450, B-1484, a Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 or the like can be used. These may be used alone or in combination of two or more. When two or more kinds of the surface conditioners are used in combination, the addition amount is determined as the total addition amount of each surface conditioner.
  • the following filler and dispersant can be further added to the electromagnetic wave absorber composition.
  • the electromagnetic wave absorption characteristics of the electromagnetic wave absorber can be improved.
  • the filler that can be used include metal particles, metal fibers, carbon, carbon nanotubes, and carbon nanocoils whose surfaces are covered with an insulator layer.
  • the above-described electromagnetic wave absorbing material can be uniformly arranged in the electromagnetic wave absorber without uneven distribution, so that the electromagnetic wave absorption characteristics of the electromagnetic wave absorber are improved.
  • the dispersant a polymer dispersant having an Mw of 1,000 or more is preferably used.
  • polymer dispersant examples include trade names such as DISPERBYK-101 and DISPERBYK-102 manufactured by BYK Chemie; EFKA4010 and EFKA4046 manufactured by Fuka Additive; Disperse Aid 6 and Disperse Aid 8 manufactured by Sannopco Various Solsperse dispersants such as SOLSPERS 3000 and 5000 manufactured by Noveon; Adeka Pluronic L31 and F38 manufactured by ADEKA; Ionette S-20 manufactured by Sanyo Chemical Industries; Disparon KS- manufactured by Enomoto Kasei Co., Ltd. 860, 873SN etc. are mentioned. These may be used alone or in combination of two or more.
  • the amount of the dispersant added is preferably 0.05 to 15 parts by mass when the total mass of the electromagnetic wave absorber composition is 100 parts by mass. When two or more kinds of the dispersants are used in combination, the addition amount is determined as the total addition amount of each dispersant.
  • the electromagnetic wave absorber composition can be prepared by uniformly dispersing and mixing the above components. By uniformly dispersing each of the above components, the electromagnetic wave absorbing material can be prevented from being unevenly distributed and an electromagnetic wave absorber free from noise leakage can be produced.
  • the said mixing method is not specifically limited, For example, the mixing method using a kneader, an extruder, a roll mill etc. is preferable.
  • the electromagnetic wave absorber three-dimensional structure of the present embodiment is an electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition disclosed in the above-described embodiment, and is thin enough to cover an electronic member
  • d thickness of the electromagnetic wave absorber three-dimensional structure
  • V volume content of the electromagnetic wave absorbing material included in the electromagnetic wave absorber three-dimensional structure
  • the thickness of the electromagnetic wave absorber three-dimensional structure may vary. That is, a thin part and a thick part may occur in the electromagnetic wave absorber three-dimensional structure. In this case, the content of the electromagnetic wave absorbing material contained in the thin part is less than the content of the electromagnetic wave absorbing material contained in the thick part, and the electromagnetic wave absorption characteristics in the thin part are deteriorated. That is, when the electromagnetic wave passes through the thin portion, the electromagnetic wave absorbing effect is reduced because the thickness through which the electromagnetic wave passes is reduced. As a result, unnecessary electromagnetic waves leak from the inside of the device to the outside, which may adversely affect the external device.
  • the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm) and the volume content of the electromagnetic wave absorbing material included in the electromagnetic wave absorber three-dimensional structure is V (%), d
  • the relational expression of ⁇ V 1/3 > 0.4 is satisfied, even if the thickness of the electromagnetic wave absorber three-dimensional structure changes during modeling, the entire area of the electromagnetic wave absorber three-dimensional structure is above a certain level. Therefore, an electromagnetic wave absorber with low noise leakage can be realized.
  • an electromagnetic wave absorber that secures an electromagnetic wave transmission attenuation of 10 dB or more can be realized. If the electromagnetic wave transmission attenuation is less than 10 dB, there is a high possibility that noise leakage will affect peripheral electronic devices.
  • the above relational expression is derived by the present inventors through experiments and the like.
  • the wall thickness d is constant, it means that the volume content V is set to a certain value or more.
  • the volume content V is constant, it means that the wall thickness d is set to a certain value or more.
  • the electromagnetic wave absorber three-dimensional structure can be formed in advance according to the surface shape of various electronic members and the casing of the electronic member, the electromagnetic wave absorber three-dimensional structure is an electronic member using the electromagnetic wave absorber three-dimensional structure. Can be installed at any time.
  • the volume resistivity of the electromagnetic wave absorber three-dimensional structure is increased. It can be 10 10 ⁇ cm or more. Thereby, the said electromagnetic wave absorber three-dimensional structure can be made into a nonelectroconductive material, and generation
  • the method for producing the electromagnetic wave absorber three-dimensional structure is not particularly limited, but can be selected from various production methods according to the type of binder resin used in the above-described electromagnetic wave absorber composition.
  • an electromagnetic wave absorber three-dimensional structure by an optical modeling method, an active energy ray curable resin, a photopolymerization initiator, a surface conditioner, and further, if necessary, a filler and a dispersant are used in appropriate combination. Can do.
  • an electromagnetic wave absorber three-dimensional structure can be easily formed with high modeling accuracy by an inkjet optical modeling method (MJM modeling method) using an inkjet printer as a three-dimensional printer. In this case, it is necessary to adjust the viscosity of the electromagnetic wave absorber composition to an appropriate discharge viscosity of the ink jet printer.
  • JM modeling method inkjet optical modeling method
  • thermosetting resin and rubber-like resin are used as the binder resin
  • an electromagnetic wave absorber three-dimensional structure can be produced by a heat compression molding method.
  • thermoplastic resin as said binder resin
  • an electromagnetic wave absorber three-dimensional molded item can be produced by the injection molding method.
  • FIGS. 2A and 2B are schematic cross-sectional views illustrating specific examples of the electromagnetic wave absorber three-dimensional structure according to the present embodiment manufactured according to the surface shape of a specific electronic member.
  • the manufacturing method of the electromagnetic wave absorber three-dimensional structure is not particularly limited, and depending on the type of binder resin used in the above-described electromagnetic wave absorber composition, an optical modeling method using a three-dimensional printer, a heat compression molding method The injection molding method can be appropriately selected.
  • the electromagnetic wave absorber three-dimensional structures 11 and 12 shown in FIGS. 1A and 1B have a thin-walled structure and are formed in a cup shape so as to cover an electronic member.
  • the thickness d of the electromagnetic wave absorber three-dimensional structures 11 and 12 shown in FIGS. 1A and 1B is formed substantially uniformly.
  • the electromagnetic wave absorber three-dimensional structure 21 and 22 shown in FIGS. 2A and 2B have a thin structure and are formed in a cup shape so as to cover the electronic member. 22 has thick portions 21a and 22a and thin portions 21b and 22b, respectively.
  • the electromagnetic wave absorber three-dimensional structures 11, 12, 21, and 22 shown in FIGS. 1A and 1B and FIGS. 2A and 2B have a thickness d (mm) and the electromagnetic wave absorber three-dimensional structures 11, 12, 21, and 22. Since the relational expression d ⁇ V 1/3 > 0.4 is established between the volume content V (%) of the electromagnetic wave absorbing material contained in the material, as shown in FIGS. Even if the thickness changes, the electromagnetic wave transmission attenuation amount of 10 dB or more in the frequency band of the millimeter wave band or higher can be ensured in the entire region of the electromagnetic wave absorber three-dimensional structure, and noise leakage can be ensured. There can be no electromagnetic wave absorber.
  • the electronic component of this embodiment includes an electronic member covered with the electromagnetic wave absorber three-dimensional structure disclosed in the above-described embodiment. Moreover, the electronic device of this embodiment is provided with the electronic component of this embodiment.
  • EMC electromagnettic compatibility
  • Examples of the electronic member covered with the electromagnetic wave absorber three-dimensional model include a circuit element and a transmission path.
  • the circuit element include a transistor, a diode, a resistor, a capacitor, an inductor, and a battery.
  • the transmission path include wiring, a printed circuit board, a connector, a socket, and the like.
  • the circuit board provided with the circuit element, the transmission line, etc. corresponds, for example.
  • a communication device for example, a communication device, a sensor, a medical device, a millimeter wave radar, or the like using wireless communication technology is applicable.
  • FIGS. 3A and 3B and FIGS. 4A and 4B are schematic cross-sectional views showing a part of an electronic component (for example, a circuit board) of this embodiment provided with a circuit element covered with an electromagnetic wave absorber three-dimensional structure.
  • the circuit element 13 has shown a part of electronic component coat
  • the circuit element 14 has shown a part of electronic component coat
  • 4A shows a part of an electronic component in which the circuit element 23 is covered with the electromagnetic wave absorber three-dimensional structure 21 shown in FIG. 2A.
  • 4B shows a part of an electronic component in which the circuit element 24 is covered with the electromagnetic wave absorber three-dimensional structure 22 shown in FIG. 2B. More specifically, FIGS. 3 and 4 show a part of a circuit board, for example.
  • the electromagnetic wave absorber three-dimensional structures 11 and 21 are in contact with and follow the surface of the circuit elements 13 and 23.
  • the electromagnetic wave absorber three-dimensional structures 12 and 22 have non-contact portions with respect to the surfaces of the circuit elements 14 and 24, respectively.
  • the manufacturing method of the electronic component of this embodiment forms an electromagnetic wave absorber three-dimensional structure using the step of preparing the electromagnetic wave absorber composition disclosed in the above embodiment and the electromagnetic wave absorber composition. And a step of bonding and covering the electromagnetic wave absorber three-dimensional structure to the electronic member.
  • an electronic component having high EMC electromagnettic compatibility
  • the said electromagnetic wave absorber three-dimensional structure can be produced in a process different from an electronic member, the influence of the heat
  • the electromagnetic wave absorber three-dimensional structure does not include a conductive layer and has a volume resistivity of 10 10 ⁇ cm or more, there is no possibility of short circuit even if it contacts a circuit element or a transmission line.
  • the electronic device manufacturing method of the present embodiment includes a step of incorporating the electronic component manufactured by the electronic component manufacturing method disclosed in the above embodiment into the electronic device.
  • EMC electromagnetic compatibility
  • Example 1 Preparation of composition for electromagnetic wave absorber> The following components were kneaded with a pressure batch kneader to prepare an electromagnetic wave absorber composition A of this example in which the volume content V of hexagonal ferrite magnetic powder as an electromagnetic wave absorbing material was 51%.
  • the hexagonal ferrite magnetic powder having the following composition formula has a magnetic resonance frequency responsible for electromagnetic wave absorption adjusted to 76 G (Hz).
  • Hexagonal ferrite magnetic powder composition formula: SrFe 10.56 Al 1.44 O 19
  • Silicone rubber (trade name “KE-541-U” manufactured by Shin-Etsu Chemical Co., Ltd.)
  • composition for electromagnetic wave absorber (Example 2) ⁇ Preparation of composition for electromagnetic wave absorber> The following components were kneaded with a pressure-type batch kneader to prepare an electromagnetic wave absorber composition B of this example in which the volume content V of epsilon-type iron oxide magnetic powder as an electromagnetic wave absorbing material was 40%.
  • the epsilon-type iron oxide magnetic powder having the following composition formula is prepared by adjusting the magnetic resonance frequency responsible for electromagnetic wave absorption to 76 G (Hz).
  • Epsilon-type iron oxide magnetic powder (composition formula: ⁇ -Ga 0.46 Fe 1.54 O 3 )
  • Silicone rubber (trade name “KE-541-U” manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Example 3 Preparation of composition for electromagnetic wave absorber> The following components were kneaded with a heating extruder to prepare an electromagnetic wave absorber composition C of this example in which the volume content V of the hexagonal ferrite magnetic powder as an electromagnetic wave absorbing material was 47%.
  • the following hexagonal ferrite magnetic powder is the same as that used in Example 1.
  • Hexagonal ferrite magnetic powder composition formula: SrFe 10.56 Al 1.44 O 19
  • Polycarbonate trade name “Panlite” manufactured by Teijin Limited
  • ⁇ Production of electromagnetic wave absorber three-dimensional structure Using the electromagnetic wave absorber composition C produced above, a sheet-like electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) having a length of 12 cm, a width of 12 cm, and a thickness of d: 1 mm is formed by injection molding. Produced. The value of d ⁇ V 1/3 of the electromagnetic wave absorber of this example is 0.78.
  • Example 1 An electromagnetic wave absorber three-dimensional structure was produced in the same manner as in Example 1 except that the thickness d of the electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) was changed to 0.5 mm.
  • the value of d ⁇ V 1/3 in this comparative example is 0.40.
  • Example 2 An electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) was produced in the same manner as in Example 2 except that the thickness d of the electromagnetic wave absorber three-dimensional structure was changed to 0.5 mm.
  • the value of d ⁇ V 1/3 in this comparative example is 0.37.
  • Example 3 An electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) was produced in the same manner as in Example 3 except that the thickness d of the electromagnetic wave absorber three-dimensional structure was changed to 0.5 mm.
  • the value of d ⁇ V 1/3 in this comparative example is 0.39.
  • the electromagnetic wave transmission attenuation of the three-dimensional electromagnetic wave absorber (electromagnetic wave absorber) produced in Examples 1 to 3 and Comparative Examples 1 to 3 was measured using a free space method. Specifically, using an millimeter wave network analyzer “ME7838A” (product name) manufactured by Anritsu Corporation, an electromagnetic wave absorber is irradiated with an input wave (millimeter wave) of a predetermined frequency from a transmitting antenna via a dielectric lens. And the electromagnetic waves which permeate
  • ME7838A product name
  • the electromagnetic wave transmission attenuation at a frequency of 76 GHz is shown in Table 1 and FIG.
  • Table 1 in addition to the electromagnetic wave transmission attenuation, values of the electromagnetic wave absorbing material and the binder resin, the thickness d of the electromagnetic wave absorber, the volume content V of the electromagnetic wave absorbing material, and d ⁇ V 1/3 are also shown.
  • FIG. 6 shows the electromagnetic wave absorption spectra of Example 1 and Comparative Example 3.
  • the electromagnetic wave transmission attenuation amount of Examples 1 to 3 in which the value of d ⁇ V 1/3 exceeded 0.4 was as high as 10 dB or more, and the electromagnetic wave from the coated electronic member was not covered.
  • the electromagnetic wave transmission attenuation of 1 to 3 is as low as 9 dB or less, the electromagnetic wave from the coated electronic member affects the electronic member outside the coating, and the electromagnetic wave from the electronic member outside the coating penetrates and affects the coated electronic member.
  • the electromagnetic wave absorber composition and electromagnetic wave absorber three-dimensional structure disclosed in the present application absorb electromagnetic waves in a high frequency band above the millimeter wave band, provide no leakage of noise, and provide a non-conductive electromagnetic wave absorber. Therefore, it is useful for manufacturing an electronic component and an electronic device excellent in EMC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

This three-dimensionally molded article formed from an electromagnetic absorber is molded using an electromagnetic absorber composition containing a binder resin and iron oxide which is an electromagnetic wave absorbing material which magnetically resonates in millimeter-wave and higher frequency bands. The three-dimensionally molded article is molded into a thin-wall structure capable of covering an electronic member and satisfies the relational expression d × V1/3 > 0.4, where d (mm) represents the wall thickness of the three-dimensionally molded article, and V (%) represents the volume content percentage of the electromagnetic wave absorbing material contained in the three-dimensionally molded article. Moreover, the electromagnetic wave transmission attenuation in the millimeter-wave and higher frequency bands is 10dB or greater.

Description

電磁波吸収体用組成物、電磁波吸収体三次元造形物、それを用いた電子部品及び電子機器、並びにその電子部品及び電子機器の製造方法Electromagnetic wave absorber composition, electromagnetic wave absorber three-dimensional structure, electronic component and electronic device using the same, and method for manufacturing the electronic component and electronic device
 本発明は、ミリ波帯の電磁波を吸収する電磁波吸収体に関し、更に詳しくは、電磁波吸収体用組成物、電磁波吸収体三次元造形物、それを用いた電子部品及び電子機器、並びにその電子部品及び電子機器の製造方法に関する。 The present invention relates to an electromagnetic wave absorber that absorbs millimeter wave electromagnetic waves, and more particularly, an electromagnetic wave absorber composition, an electromagnetic wave absorber three-dimensional structure, an electronic component and an electronic device using the same, and the electronic component And an electronic device manufacturing method.
 携帯電話に代表される無線通信技術の発達に伴い、様々な機器やセンサが無線によってネットワークにつながりつつある。また、医療分野でも感染予防の観点から機器のコードレス化が進み、医療機器が無線でつながり始めている。これらの通信には比較的短距離での高速大容量通信が求められており、利用周波数が高い。この様な高周波数を利用する機器の増加に伴い、機器から発生するノイズによる動作不良や、上記ノイズと利用電磁波との干渉等によって電子機器や通信に不具合が起こる危険性が増大している。更に、近年、自動車の衝突事故防止を目的としたミリ波レーダの搭載も始まっている。これら医療、自動車分野の機器での不具合は人命に影響を与えるため、誤動作があってはならない。そこで、機器のノイズや干渉による不具合の防止、いわゆるEMC(Electromagnetic Compatibility:電磁両立性)対策としての電磁波吸収体を、ミリ波帯の電磁波を発受信する回路素子や伝送路に適用する必要性が高まっている。 With the development of wireless communication technology represented by mobile phones, various devices and sensors are being connected to the network wirelessly. In the medical field, devices are becoming cordless from the viewpoint of infection prevention, and medical devices are starting to be connected wirelessly. These communications require high-speed and large-capacity communication over a relatively short distance, and have a high use frequency. As the number of devices using such high frequencies increases, there is an increased risk of malfunctions in electronic devices and communications due to malfunctions caused by noise generated from the devices and interference between the noise and the electromagnetic waves used. Furthermore, in recent years, the installation of millimeter wave radar for the purpose of preventing collision accidents of automobiles has begun. Since malfunctions in these medical and automotive devices affect human life, there should be no malfunction. Therefore, there is a need to apply an electromagnetic wave absorber as a countermeasure against so-called EMC (Electromagnetic Compatibility) countermeasures to circuit elements and transmission lines that emit and receive millimeter-wave electromagnetic waves. It is growing.
 高い周波数のノイズを抑制するためには、従来用いられてきた磁性材料の磁気損失を利用した電磁波吸収シートでは効果が低く、導電材料を利用した共振型電磁波吸収シートが必要となる(特許文献1、非特許文献1)。しかしながら、導電材料が導通のある回路素子や伝送路に直接触れることは、短絡の原因となるため不向きである。また、回路素子や伝送路に貼付するための粘着剤によって共振型電磁波吸収シートの導電層が回路素子や伝送路に直接触れることを回避したとしても、シートを所望のサイズに切断・打抜きをして使用する場合、切断面には導電層が露出することになり、この部分が接触することにより回路を短絡させる危険性がある。更に、導電材料の脱落による回路短絡の危険性も払拭できない。 In order to suppress high-frequency noise, an electromagnetic wave absorbing sheet that uses magnetic loss of a magnetic material that has been conventionally used is less effective, and a resonant electromagnetic wave absorbing sheet that uses a conductive material is required (Patent Document 1). Non-Patent Document 1). However, direct contact of a conductive material with a conductive circuit element or transmission path is not suitable because it causes a short circuit. Even if the conductive layer of the resonance type electromagnetic wave absorbing sheet is prevented from directly touching the circuit element or the transmission path by the adhesive to be applied to the circuit element or the transmission path, the sheet is cut and punched to a desired size. When used, the conductive layer is exposed on the cut surface, and there is a risk of short-circuiting the circuit by contacting this portion. Furthermore, the danger of a short circuit due to the loss of the conductive material cannot be eliminated.
 一方、鉄酸化物磁性体は非導電材であり、回路短絡の危険性がない。近年、イプシロン型酸化鉄がミリ波帯の電磁波吸収能を持ち、置換元素とその置換量によって吸収周波数をコントロール可能であることが見いだされた(特許文献2、3)。更に、六方晶フェライトもミリ波帯の電磁波吸収能を持つことが知られている(特許文献4)。 On the other hand, the iron oxide magnetic material is a non-conductive material, and there is no danger of a short circuit. In recent years, it has been found that epsilon-type iron oxide has an electromagnetic wave absorption ability in the millimeter wave band, and the absorption frequency can be controlled by the substitution element and the substitution amount (Patent Documents 2 and 3). Furthermore, it is known that hexagonal ferrite also has an electromagnetic wave absorption ability in the millimeter wave band (Patent Document 4).
特開2007-81119号公報(特許第5481613号公報)JP 2007-81119 A (Patent No. 4881613) 特開2008-60484号公報(特許第4787978号公報)JP 2008-60484 A (Patent No. 4787978) 特開2008-277726号公報(特許第4859791号公報)JP 2008-277726 A (Patent No. 4859791) 特開2007-250823号公報(特許第4674380号公報)JP 2007-250823 A (Japanese Patent No. 4673380)
 ところで、シート状の電磁波吸収体をノイズの発生源もしくはノイズの影響を防ぎたい回路素子あるいは伝送路に粘着剤等によって貼り合せてノイズを抑制する場合、通常、電磁波吸収体シートの形状は、回路素子あるいは伝送路の表面形状に追従させることが困難な形状であるため、シートが剥がれてしまうことがある。また、回路素子あるいは伝送路のサイズが小さいために、電磁波吸収体シートのハンドリングが困難なことがある。更に、回路素子の表面の材質や粗度によっては、粘着剤が貼りつかないことや、粘着剤が接触することによって回路素子あるいは伝送路に悪影響を及ぼすこともある。 By the way, when a sheet-like electromagnetic wave absorber is bonded to a circuit element or transmission line that is desired to prevent the influence of noise or noise with adhesive or the like to suppress noise, the shape of the electromagnetic wave absorber sheet is usually a circuit. Since the shape is difficult to follow the surface shape of the element or the transmission path, the sheet may be peeled off. Moreover, since the size of a circuit element or a transmission line is small, handling of an electromagnetic wave absorber sheet may be difficult. Furthermore, depending on the material and roughness of the surface of the circuit element, the adhesive may not stick, or the adhesive may come into contact with the circuit element or the transmission path.
 また、ノイズの抑制効果は、ノイズとなる電磁波の進行方向における電磁波吸収材料の存在量と相関があり、電磁波吸収材料の存在量が多いほどノイズ抑制効果が高い。従って、電磁波吸収体の厚さや電磁波吸収材料の偏在によってノイズ抑制効果が低減し、ノイズが漏洩することがある。 Also, the noise suppression effect correlates with the amount of electromagnetic wave absorbing material present in the traveling direction of the electromagnetic wave that becomes noise, and the greater the amount of electromagnetic wave absorbing material, the higher the noise suppressing effect. Therefore, the noise suppression effect is reduced by the thickness of the electromagnetic wave absorber and the uneven distribution of the electromagnetic wave absorbing material, and noise may leak.
 本発明は、上記従来の課題を解決し、ノイズの発生源に対し、又はノイズの影響を防ぎたい回路素子あるいは伝送路に対し、電磁波吸収体をノイズが漏洩することなく確実に装着できる電磁波吸収体三次元造形物を提供するものである。 The present invention solves the above-mentioned conventional problems, and can absorb an electromagnetic wave absorber securely to a noise source or to a circuit element or a transmission path to prevent the influence of noise without leaking the electromagnetic wave. A three-dimensional modeled body is provided.
 本発明の電磁波吸収体用組成物は、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が10dB以上である電磁波吸収体三次元造形物を形成するために使用される電磁波吸収体用組成物であって、電磁波吸収材料とバインダ樹脂とを含み、前記電磁波吸収材料は、ミリ波帯域以上の周波数帯域で磁気共鳴する鉄酸化物であり、前記電磁波吸収体三次元造形物の肉厚をd(mm)として形成する場合、前記電磁波吸収体用組成物における前記電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立する。 The electromagnetic wave absorber composition of the present invention is an electromagnetic wave absorber composition used for forming an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a millimeter wave band or higher frequency band. And an electromagnetic wave absorbing material and a binder resin, wherein the electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band equal to or higher than a millimeter wave band, and the thickness of the electromagnetic wave absorber three-dimensional structure is d When forming as (mm), if the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorber composition is V (%), a relational expression of d × V 1/3 > 0.4 is established.
 本発明の電磁波吸収体三次元造形物は、上記本発明の電磁波吸収体用組成物を使用して造形された電磁波吸収体三次元造形物であって、前記電磁波吸収体三次元造形物は、電子部材を被覆可能な薄肉構造に造形されており、前記電磁波吸収体三次元造形物の肉厚をd(mm)、前記電磁波吸収体三次元造形物に含まれる電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立し、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が、10dB以上である。 The electromagnetic wave absorber three-dimensional structure of the present invention is an electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition of the present invention, wherein the electromagnetic wave absorber three-dimensional structure is It is shaped into a thin-walled structure that can cover an electronic member, the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm), and the volume content of the electromagnetic wave absorbing material contained in the electromagnetic wave absorber three-dimensional structure is Assuming V (%), a relational expression of d × V 1/3 > 0.4 is established, and the electromagnetic wave transmission attenuation in a frequency band equal to or higher than the millimeter wave band is 10 dB or higher.
 本発明の電子部品は、上記本発明の電磁波吸収体三次元造形物によって被覆された電子部材を含む。 The electronic component of the present invention includes an electronic member coated with the electromagnetic wave absorber three-dimensional structure of the present invention.
 本発明の電子機器は、上記本発明の電子部品を含む。 The electronic device of the present invention includes the electronic component of the present invention.
 本発明の電子部品の製造方法は、上記本発明の電磁波吸収体用組成物を準備する工程と、前記電磁波吸収体用組成物を用いて、電磁波吸収体三次元造形物を形成する工程と、前記電磁波吸収体三次元造形物を、電子部材に接合して被覆する工程とを含む。 The method for producing an electronic component of the present invention includes a step of preparing the electromagnetic wave absorber composition of the present invention, a step of forming an electromagnetic wave absorber three-dimensional structure using the electromagnetic wave absorber composition, A step of bonding the electromagnetic wave absorber three-dimensional structure to an electronic member and covering it.
 本発明の電子機器の製造方法は、上記本発明の電子部品の製造方法で製造した電子部品を電子機器に組み込む工程を含む。 The electronic device manufacturing method of the present invention includes a step of incorporating the electronic component manufactured by the electronic component manufacturing method of the present invention into the electronic device.
 本発明によれば、非導電材である鉄酸化物を電磁波吸収材料として用いて、薄肉構造を有する電磁波吸収体三次元造形物を形成し、上記電磁波吸収体三次元造形物の肉厚と、上記電磁波吸収体三次元造形物中の上記電磁波吸収材料の体積含率とを特定の関係に制御することにより、短絡が発生せず、且つ、ノイズ漏洩のない電磁波吸収体を提供することができる。 According to the present invention, using an iron oxide that is a non-conductive material as an electromagnetic wave absorbing material, an electromagnetic wave absorber three-dimensional structure having a thin structure is formed, and the thickness of the electromagnetic wave absorber three-dimensional structure, By controlling the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorber three-dimensional structure to a specific relationship, an electromagnetic wave absorber that does not cause a short circuit and that does not leak noise can be provided. .
図1は、本実施形態の電磁波吸収体三次元造形物の一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a three-dimensional structure of an electromagnetic wave absorber according to the present embodiment. 図2は、本実施形態の電磁波吸収体三次元造形物の他の例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view illustrating another example of the electromagnetic wave absorber three-dimensional structure according to the present embodiment. 図3は、本実施形態の電子部品の一部分の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a part of the electronic component of the present embodiment. 図4は、本実施形態の電子部品の一部分の他の例を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing another example of a part of the electronic component of the present embodiment. 図5は、実施例及び比較例の電磁波吸収体の周波数76GHzにおける電磁波透過減衰量を示すグラフである。FIG. 5 is a graph showing the electromagnetic wave transmission attenuation amount at a frequency of 76 GHz of the electromagnetic wave absorbers of Examples and Comparative Examples. 図6は、実施例1及び比較例3の電磁波吸収体の電磁波吸収スペクトルを示す図である。FIG. 6 is a diagram showing an electromagnetic wave absorption spectrum of the electromagnetic wave absorbers of Example 1 and Comparative Example 3.
 本願で開示する電磁波吸収体用組成物は、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が10dB以上である電磁波吸収体三次元造形物を形成するために使用される電磁波吸収体用組成物であり、電磁波吸収材料とバインダ樹脂とを含み、上記電磁波吸収材料が、ミリ波帯域以上の周波数帯域で磁気共鳴する鉄酸化物であり、上記電磁波吸収体三次元造形物の肉厚をd(mm)として形成する場合、上記電磁波吸収体用組成物における上記電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立する。 The composition for an electromagnetic wave absorber disclosed in the present application is a composition for an electromagnetic wave absorber used for forming an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a frequency band of a millimeter wave band or higher. An electromagnetic wave absorbing material and a binder resin, wherein the electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band greater than or equal to a millimeter wave band, and the thickness of the electromagnetic wave absorber three-dimensional structure is d When forming as (mm), if the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorber composition is V (%), a relational expression of d × V 1/3 > 0.4 is established.
 上記電磁波吸収体用組成物を用いて、薄肉構造を有する電磁波吸収体三次元造形物を形成し、上記電磁波吸収体三次元造形物の肉厚と、上記電磁波吸収体三次元造形物中の上記電磁波吸収材料の体積含率とを上記関係に制御することにより、短絡が発生せず、且つ、ノイズ漏洩のない電磁波吸収体を提供することができる。 Using the electromagnetic wave absorber composition, an electromagnetic wave absorber three-dimensional structure having a thin-walled structure is formed, and the thickness of the electromagnetic wave absorber three-dimensional structure and the above-mentioned electromagnetic wave absorber three-dimensional structure By controlling the volume content of the electromagnetic wave absorbing material to the above relationship, an electromagnetic wave absorber that does not cause a short circuit and that does not leak noise can be provided.
 上記電磁波吸収材料は、Sr及びBaからなる群から選ばれる少なくとも1種を含む六方晶フェライトであることが好ましい。また、上記電磁波吸収材料は、Srを含む六方晶フェライトであり、上記Srを含む六方晶フェライトのFeサイトの一部が、Alで置換されていることが更に好ましい。上記六方晶フェライトは、ミリ波帯域以上の周波数帯域で磁気共鳴する非導電性の鉄酸化物であり、Srを含む六方晶フェライトのFeサイトの一部をAlで置換することにより、電磁波吸収を担う磁気共鳴周波数を変化させることができ、更に熱的安定性に優れているからである。 The electromagnetic wave absorbing material is preferably hexagonal ferrite containing at least one selected from the group consisting of Sr and Ba. Further, the electromagnetic wave absorbing material is hexagonal ferrite containing Sr, and it is more preferable that a part of Fe site of the hexagonal ferrite containing Sr is substituted with Al. The hexagonal ferrite is a non-conductive iron oxide that magnetically resonates in a frequency band above the millimeter wave band. By replacing a part of the Fe site of the hexagonal ferrite containing Sr with Al, electromagnetic wave absorption is achieved. This is because the magnetic resonance frequency to be carried can be changed and the thermal stability is excellent.
 また、上記電磁波吸収材料は、イプシロン型酸化鉄であり、上記イプシロン型酸化鉄のFeサイトの一部が、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換されていることが好ましい。上記イプシロン型酸化鉄は、ミリ波帯域以上の周波数帯域で磁気共鳴する非導電性の鉄酸化物であり、Feサイトの一部を、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換することにより、電磁波吸収を担う磁気共鳴周波数を変化させることができるからである。 The electromagnetic wave absorbing material is epsilon-type iron oxide, and a part of the Fe site of the epsilon-type iron oxide is preferably substituted with at least one selected from the group consisting of Al, Ga, and In. . The epsilon-type iron oxide is a non-conductive iron oxide that magnetically resonates in a frequency band equal to or higher than the millimeter wave band, and a part of the Fe site is at least one selected from the group consisting of Al, Ga and In. This is because the magnetic resonance frequency responsible for electromagnetic wave absorption can be changed by substitution.
 上記バインダ樹脂は、活性エネルギー線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂及びゴム状樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。上記バインダ樹脂を用いることにより、各種の方法により、薄肉構造を有する電磁波吸収体三次元造形物を形成することができるからである。 The binder resin preferably contains at least one selected from the group consisting of an active energy ray curable resin, a thermosetting resin, a thermoplastic resin, and a rubber-like resin. This is because by using the binder resin, an electromagnetic wave absorber three-dimensional structure having a thin-walled structure can be formed by various methods.
 また、本願で開示する電磁波吸収体三次元造形物は、上記で開示した電磁波吸収体用組成物を使用して造形された電磁波吸収体三次元造形物であり、上記電磁波吸収体三次元造形物は、電子部材を被覆可能な薄肉構造に造形されており、上記電磁波吸収体三次元造形物の肉厚をd(mm)、上記電磁波吸収体三次元造形物に含まれる電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立し、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が、10dB以上である。 The electromagnetic wave absorber three-dimensional structure disclosed in the present application is an electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition disclosed above, and the electromagnetic wave absorber three-dimensional structure Is formed into a thin-walled structure capable of covering an electronic member, the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm), and the volume of the electromagnetic wave absorbing material contained in the electromagnetic wave absorber three-dimensional structure is included. When the rate is V (%), a relational expression of d × V 1/3 > 0.4 is established, and the electromagnetic wave transmission attenuation amount in the frequency band of the millimeter wave band or higher is 10 dB or higher.
 上記電磁波吸収体用組成物を用いて、薄肉構造を有する電磁波吸収体三次元造形物を形成し、上記電磁波吸収体三次元造形物の肉厚と、上記電磁波吸収体三次元造形物中の上記電磁波吸収材料の体積含率とを上記関係に制御することにより、造形時に上記電磁波吸収体三次元造形物の肉厚が変化しても、一定以上の電磁波吸収性能を確保することができ、ノイズ漏洩のない電磁波吸収体を提供することができる。 Using the electromagnetic wave absorber composition, an electromagnetic wave absorber three-dimensional structure having a thin-walled structure is formed, and the thickness of the electromagnetic wave absorber three-dimensional structure and the above-mentioned electromagnetic wave absorber three-dimensional structure By controlling the volume content of the electromagnetic wave absorbing material to the above relationship, even when the thickness of the electromagnetic wave absorber three-dimensional structure changes during modeling, it is possible to ensure a certain level of electromagnetic wave absorption performance, noise. An electromagnetic wave absorber without leakage can be provided.
 上記電磁波吸収体三次元造形物の体積抵抗率は、1010Ωcm以上であることが好ましい。これにより、短絡の発生を確実に防止できるからである。 The volume resistivity of the electromagnetic wave absorber three-dimensional structure is preferably 10 10 Ωcm or more. This is because the occurrence of a short circuit can be reliably prevented.
 また、本願で開示する電子部品は、上記で開示した電磁波吸収体三次元造形物によって被覆された電子部材を含む電子部品である。上記電磁波吸収体三次元造形物を用いて電子部材を被覆することにより、電子部品のEMC(電磁両立性)を確保できる。即ち、上記電子部品について、それから発する電磁波が他のどのような機器、システムに対しても影響を与えず、また、他の機器、システムからの電磁波を受けても自身も満足に動作する耐性を確保することができる。 Further, the electronic component disclosed in the present application is an electronic component including an electronic member covered with the electromagnetic wave absorber three-dimensional structure disclosed above. By covering the electronic member with the electromagnetic wave absorber three-dimensional structure, EMC (electromagnetic compatibility) of the electronic component can be ensured. In other words, the above-mentioned electronic components are resistant to the electromagnetic waves emitted from them from affecting other devices and systems, and to operate satisfactorily even when receiving electromagnetic waves from other devices and systems. Can be secured.
 上記電磁波吸収体三次元造形物は、上記電子部材の表面に接触して追従していることが好ましい。これにより、ノイズ漏洩をより確実に防止して、電子部品のEMC(電磁両立性)をより向上できるからである。 The electromagnetic wave absorber three-dimensional structure is preferably in contact with and followed the surface of the electronic member. This is because noise leakage can be prevented more reliably and the EMC (electromagnetic compatibility) of the electronic component can be further improved.
 上記電磁波吸収体三次元造形物は、上記電子部材の表面に対して非接触部を有していてもよい。上記電子部材の表面形状によっては、上記電磁波吸収体三次元造形物を上記電子部材の表面に対して接触させる形状に造形することが困難な場合があるからである。 The electromagnetic wave absorber three-dimensional structure may have a non-contact portion with respect to the surface of the electronic member. This is because, depending on the surface shape of the electronic member, it may be difficult to form the electromagnetic wave absorber three-dimensional structure into a shape in which the electromagnetic wave absorber is brought into contact with the surface of the electronic member.
 上記電子部材としては、例えば、回路素子、伝送路等が含まれる。 Examples of the electronic member include a circuit element and a transmission line.
 また、本願で開示する電子機器は、上記で開示した電子部品を含む電子機器である。上記電子部品を備えることにより、電子機器のEMC(電磁両立性)を確保できる。 Further, the electronic device disclosed in the present application is an electronic device including the electronic component disclosed above. By providing the electronic component, EMC (electromagnetic compatibility) of the electronic device can be ensured.
 また、本願で開示する電子部品の製造方法は、上記で開示した電磁波吸収体用組成物を準備する工程と、上記電磁波吸収体用組成物を用いて、電磁波吸収体三次元造形物を形成する工程と、上記電磁波吸収体三次元造形物を、電子部材に接合して被覆する工程とを含む。上記製造方法により、EMC(電磁両立性)の高い電子部品を製造できる。 Moreover, the manufacturing method of the electronic component disclosed by this application forms the electromagnetic wave absorber three-dimensional structure using the process for preparing the electromagnetic wave absorber composition disclosed above and the electromagnetic wave absorber composition. A process and a process of bonding and covering the electromagnetic wave absorber three-dimensional structure to an electronic member. With the above manufacturing method, an electronic component having high EMC (electromagnetic compatibility) can be manufactured.
 また、本願で開示する電子機器の製造方法は、上記で開示した電子部品の製造方法で製造した電子部品を電子機器に組み込む工程を含む。上記製造方法により、EMC(電磁両立性)の高い電子機器を製造できる。 Further, the electronic device manufacturing method disclosed in the present application includes a step of incorporating the electronic component manufactured by the electronic component manufacturing method disclosed above into the electronic device. With the above manufacturing method, an electronic device with high EMC (electromagnetic compatibility) can be manufactured.
 (電磁波吸収体用組成物の実施形態)
 先ず、電磁波吸収体用組成物の実施形態を説明する。本実施形態の電磁波吸収体用組成物は、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が10dB以上である電磁波吸収体三次元造形物を形成するために使用され、電磁波吸収材料とバインダ樹脂とを含み、上記電磁波吸収材料が、ミリ波帯域以上の周波数帯域で磁気共鳴する鉄酸化物であり、上記電磁波吸収体三次元造形物の肉厚をd(mm)として形成する場合、上記電磁波吸収体用組成物における上記電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立する。
(Embodiment of composition for electromagnetic wave absorber)
First, an embodiment of the electromagnetic wave absorber composition will be described. The electromagnetic wave absorber composition of the present embodiment is used to form an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a frequency band equal to or higher than a millimeter wave band, and an electromagnetic wave absorbing material and a binder. Resin, and the electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band equal to or higher than a millimeter wave band, and the thickness of the electromagnetic wave absorber three-dimensional structure is formed as d (mm), When the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorber composition is V (%), the relational expression d × V 1/3 > 0.4 is established.
 以下、上記電磁波吸収体用組成物に含まれる各成分について説明する。 Hereinafter, each component contained in the composition for electromagnetic wave absorber will be described.
 <電磁波吸収材料>
 上記電磁波吸収材料は、ミリ波帯域以上の周波数帯域で磁気共鳴する鉄酸化物であり、具体的には、下記六方晶フェライト又は下記イプシロン型酸化鉄を使用できる。上記電磁波吸収体用組成物における上記電磁波吸収材料の体積含率V(%)は、上記電磁波吸収体三次元造形物の肉厚をd(mm)として形成する場合、d×V1/3>0.4の関係式が成立するように調整する。
<Electromagnetic wave absorbing material>
The electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band greater than or equal to the millimeter wave band. Specifically, the following hexagonal ferrite or the following epsilon type iron oxide can be used. The volume content V (%) of the electromagnetic wave absorbing material in the composition for electromagnetic wave absorber is d × V 1/3 > when the thickness of the electromagnetic wave absorber three-dimensional structure is formed as d (mm). Adjustment is made so that a relational expression of 0.4 is established.
 [六方晶フェライト]
 上記六方晶フェライトとしては、Sr及びBaからなる群から選ばれる少なくとも1種を含む六方晶フェライトが使用できる。また、Srを含む六方晶フェライトのFeサイトの一部がAlで置換されていることがより好ましい。上記六方晶フェライトは、マグネトブランバイト型結晶構造を有し、一般式:AFe1219で示され、一般式中のAは、Sr及びBaからなる群から選ばれる少なくとも1種を示す。上記六方晶フェライトは、Feサイトの一部を、3価のAl金属元素で置換することにより、電磁波吸収を担う磁気共鳴周波数を変化させることができる。
[Hexagonal ferrite]
As the hexagonal ferrite, hexagonal ferrite containing at least one selected from the group consisting of Sr and Ba can be used. Further, it is more preferable that a part of the Fe site of the hexagonal ferrite containing Sr is substituted with Al. The hexagonal ferrite has a magnetoblumbite type crystal structure and is represented by a general formula: AFe 12 O 19 , and A in the general formula represents at least one selected from the group consisting of Sr and Ba. The hexagonal ferrite can change the magnetic resonance frequency responsible for electromagnetic wave absorption by substituting a part of Fe site with a trivalent Al metal element.
 上記六方晶フェライトについては、前述の特許文献4(特開2007-250823号公報)に詳細が開示されている。 The details of the hexagonal ferrite are disclosed in the aforementioned Patent Document 4 (Japanese Patent Laid-Open No. 2007-250823).
 [イプシロン型酸化鉄]
 上記イプシロン型酸化鉄としては、Feサイトの一部が、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換されているイプシロン型酸化鉄が使用できる。上記イプシロン型酸化鉄は、ε相結晶構造を有し、一般式:ε-Fe23で示され、Feサイトの一部を、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換することにより、電磁波吸収を担う磁気共鳴周波数を変化させることができる。
[Epsilon-type iron oxide]
As the epsilon-type iron oxide, epsilon-type iron oxide in which a part of the Fe site is substituted with at least one selected from the group consisting of Al, Ga and In can be used. The epsilon-type iron oxide has an ε-phase crystal structure, is represented by a general formula: ε-Fe 2 O 3 , and part of the Fe site is at least one selected from the group consisting of Al, Ga, and In. By substituting, the magnetic resonance frequency responsible for electromagnetic wave absorption can be changed.
 上記イプシロン型酸化鉄については、前述の特許文献2(特開2008-60484号公報)及び特許文献3(特開2008-277726号公報)に詳細が開示されている。 The details of the above epsilon-type iron oxide are disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2008-60484) and Patent Document 3 (Japanese Patent Laid-Open No. 2008-277726).
 <バインダ樹脂>
 上記バインダ樹脂は、上記電磁波吸収材料を分散させて固定して、電磁波吸収体三次元造形物を形成する際のマトリックス材として使用するものであり、具体的には、活性エネルギー線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂及びゴム状樹脂からなる群から選ばれる少なくとも1種を使用できる。
<Binder resin>
The binder resin is used as a matrix material when the electromagnetic wave absorbing material is dispersed and fixed to form an electromagnetic wave absorber three-dimensional structure, specifically, an active energy ray curable resin, At least one selected from the group consisting of thermosetting resins, thermoplastic resins and rubber-like resins can be used.
 [活性エネルギー線硬化性樹脂]
 上記活性エネルギー線硬化性樹脂としては、例えば、ウレタンアクリレート、アクリル樹脂アクリレート、エポキシアクリレート等を使用できる。上記バインダ樹脂として、上記活性エネルギー線硬化性樹脂を用いる場合には、三次元プリンタを用いた光造形法により電磁波吸収体三次元造形物を作製することができる。
[Active energy ray curable resin]
Examples of the active energy ray curable resin include urethane acrylate, acrylic resin acrylate, and epoxy acrylate. When the active energy ray-curable resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by an optical modeling method using a three-dimensional printer.
 より具体的には、二官能以上の多官能エチレン性不飽和単量体が使用でき、例えば、炭素数10~25の直鎖又は分岐のアルキレングリコールジ(メタ)アクリレート、アルキレングリコールトリ(メタ)アクリレート〔例えば、トリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等〕、炭素数10~30の脂環含有ジ(メタ)アクリレート〔例えば、ジメチロールトリシクロデカンジ(メタ)アクリレート等〕等を使用できる。これらは単独で用いてもよいし、2種以上を併用してもよい。 More specifically, bifunctional or higher polyfunctional ethylenically unsaturated monomers can be used, for example, linear or branched alkylene glycol di (meth) acrylate having 10 to 25 carbon atoms, alkylene glycol tri (meth). Acrylate [for example, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 3-methyl- 1,5-pentanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, etc.], having 10 to 30 carbon atoms Alicyclic ring-containing di (meth) acrylate [for example, dimethylol tricyclodeca Di (meth) acrylate, etc.] or the like can be used. These may be used alone or in combination of two or more.
 [熱硬化性樹脂]
 上記熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコン樹脂、ポリウレタン等を使用できる。上記バインダ樹脂として、上記熱硬化性樹脂を用いる場合には、加熱圧縮成形法により電磁波吸収体三次元造形物を作製することができる。
[Thermosetting resin]
As the thermosetting resin, for example, phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicon resin, polyurethane and the like can be used. When the thermosetting resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by a heat compression molding method.
 [熱可塑性樹脂]
 上記熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、メタクリル酸メチル樹脂、ポリ塩化ビニル、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート等を使用できる。上記バインダ樹脂として、上記熱可塑性樹脂を用いる場合には、射出成形法により電磁波吸収体三次元造形物を作製することができる。
[Thermoplastic resin]
Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, ABS resin, methyl methacrylate resin, polyvinyl chloride, polyamide, polyethylene terephthalate, polybutylene terephthalate, and polycarbonate. When the thermoplastic resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by an injection molding method.
 [ゴム状樹脂]
 上記ゴム状樹脂としては、例えば、熱硬化性エラストマであるウレタンゴム、シリコーンゴム、フッ素ゴム等を使用できる。上記バインダ樹脂として、上記ゴム状樹脂を用いる場合には、加熱圧縮成形法により電磁波吸収体三次元造形物を作製することができる。
[Rubber resin]
As the rubber-like resin, for example, urethane rubber, silicone rubber, fluorine rubber or the like which is a thermosetting elastomer can be used. When the rubber-like resin is used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by a heat compression molding method.
 <光重合開始剤>
 上記バインダ樹脂として、上記活性エネルギー線硬化性樹脂を用いる場合には、上記電磁波吸収体用組成物には、光重合開始剤が添加される。上記光重合開始剤は、活性エネルギー線によって単量体の重合反応又は架橋反応を開始させるものであり、上記電磁波吸収体用組成物が上記光重合開始剤を含むことにより、例えば、三次元プリンタを用いて放出された上記電磁波吸収体用組成物を活性エネルギー線の照射によって硬化させることができる。
<Photopolymerization initiator>
When the active energy ray-curable resin is used as the binder resin, a photopolymerization initiator is added to the electromagnetic wave absorber composition. The photopolymerization initiator is for initiating a polymerization reaction or crosslinking reaction of a monomer by active energy rays, and the electromagnetic wave absorber composition contains the photopolymerization initiator, for example, a three-dimensional printer. The composition for electromagnetic wave absorber released using can be cured by irradiation with active energy rays.
 上記光重合開始剤に照射される活性エネルギー線としては、例えば、紫外線、近紫外線、可視光線、赤外線、遠赤外線等から適宜選択して使用することができる。 The active energy ray irradiated to the photopolymerization initiator can be appropriately selected from, for example, ultraviolet rays, near ultraviolet rays, visible rays, infrared rays, far infrared rays and the like.
 上記光重合開始剤としては、低エネルギーで重合を開始させることができれば特に限定されず、炭素数14~18のベンゾイン化合物〔例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等〕、炭素数8~18のアセトフェノン化合物〔例えば、アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等〕、炭素数14~19のアントラキノン化合物〔例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等〕、炭素数13~17のチオキサントン化合物〔例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等〕、炭素数16~17のケタール化合物〔例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等〕、炭素数22~28のアシルフォスフィンオキサイド化合物〔例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等〕、これらの化合物の混合物等を使用できる。これらは単独で用いてもよいし、2種類以上を併用してもよい。 The photopolymerization initiator is not particularly limited as long as the polymerization can be initiated with low energy, and is a benzoin compound having 14 to 18 carbon atoms [for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl. Ethers, etc.], acetophenone compounds having 8 to 18 carbon atoms [for example, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy- 2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc.], carbon number 4-19 anthraquinone compounds [eg, 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc.], thioxanthone compounds having 13 to 17 carbon atoms [eg, 2,4-diethylthioxanthone , 2-isopropylthioxanthone, 2-chlorothioxanthone, etc.], ketal compounds having 16 to 17 carbon atoms (for example, acetophenone dimethyl ketal, benzyldimethyl ketal, etc.), benzophenone compounds having 13 to 21 carbon atoms (for example, benzophenone, 4-benzoyl, etc.) -4'-methyldiphenyl sulfide, 4,4'-bismethylaminobenzophenone, etc.], acylphosphine oxide compounds having 22 to 28 carbon atoms [for example, 2,4,6-trimethylbenzoyl-diphenyl -Phosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, etc.], and these compounds Can be used. These may be used alone or in combination of two or more.
 上記光重合開始剤の添加量は、上記電磁波吸収体用組成物の全質量を100質量部とすると、3.0~15質量部とすればよい。上記光重合開始剤を2種類以上併用する場合は、上記添加量は、各光重合開始剤の添加量の合計として定める。 The amount of the photopolymerization initiator added may be 3.0 to 15 parts by mass when the total mass of the electromagnetic wave absorber composition is 100 parts by mass. When two or more kinds of the photopolymerization initiators are used in combination, the addition amount is determined as the total addition amount of each photopolymerization initiator.
 <表面調整剤>
 上記バインダ樹脂として、上記活性エネルギー線硬化性樹脂を用いる場合には、上記電磁波吸収体用組成物には、表面調整剤が添加される。これにより、上記電磁波吸収体用組成物の表面張力を適切な範囲に調整することができる。上記電磁波吸収体用組成物の表面張力を適切な範囲に調整することにより、寸法精度が良好な光造形品を得ることができる。この効果を得るため、上記表面調整剤の添加量は、上記電磁波吸収体用組成物の全質量を100質量部とすると、0.005~3.0質量部とすればよい。
<Surface conditioner>
When the active energy ray curable resin is used as the binder resin, a surface conditioner is added to the electromagnetic wave absorber composition. Thereby, the surface tension of the said composition for electromagnetic wave absorbers can be adjusted to an appropriate range. By adjusting the surface tension of the composition for electromagnetic wave absorbers to an appropriate range, an optically shaped article with good dimensional accuracy can be obtained. In order to obtain this effect, the amount of the surface conditioner added may be 0.005 to 3.0 parts by mass when the total mass of the electromagnetic wave absorber composition is 100 parts by mass.
 上記表面調整剤としては、シリコーン系化合物等が使用でき、シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。より具体的には、商品名として、ビックケミー社製のBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570;エボニック・ジャパン社製のTEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700;共栄社化学社製のグラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93等を使用できる。これらは単独で用いてもよいし、2種類以上を併用してもよい。上記表面調整剤を2種類以上併用する場合は、上記添加量は、各表面調整剤の添加量の合計として定める。 As the surface conditioner, a silicone compound or the like can be used, and examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. More specifically, the product names include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, manufactured by BYK Chemie. BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570; Evonik Japan-made TEGO-Rad2100, TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700; Kyoeisha Chemical Co., Ltd. Granol 100, Granol 115, Gu Nord 400, Granol 410, Granol 435, Granol 440, Granol 450, B-1484, a Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 or the like can be used. These may be used alone or in combination of two or more. When two or more kinds of the surface conditioners are used in combination, the addition amount is determined as the total addition amount of each surface conditioner.
 上記電磁波吸収体用組成物には、更に下記のフィラー及び分散剤を添加することができる。 The following filler and dispersant can be further added to the electromagnetic wave absorber composition.
 <フィラー>
 上記フィラーを添加することにより、電磁波吸収体の電磁波吸収特性を向上できる。上記フィラーとしては、例えば、表面を絶縁体層で被覆した金属粒子、金属繊維、カーボン、カーボンナノチューブ、カーボンナノコイル等を使用できる。
<Filler>
By adding the filler, the electromagnetic wave absorption characteristics of the electromagnetic wave absorber can be improved. Examples of the filler that can be used include metal particles, metal fibers, carbon, carbon nanotubes, and carbon nanocoils whose surfaces are covered with an insulator layer.
 <分散剤>
 上記分散剤を添加することにより、電磁波吸収体中に前述の電磁波吸収材料を偏在なく均一に配置できるため、電磁波吸収体の電磁波吸収特性が向上する。上記分散剤としては、Mwが1,000以上の高分子分散剤を使用することが好ましい。上記高分子分散剤としては、商品名として、BYKケミー社製のDISPERBYK-101、DISPERBYK-102等;エフカアディティブ社製のEFKA4010、EFKA4046等;サンノプコ社製のディスパースエイド6、ディスパースエイド8等;Noveon社製のソルスパース(SOLSPERSE)3000、5000等の各種ソルスパース分散剤;ADEKA社製のアデカプルロニックL31、F38等;三洋化成工業社製のイオネットS-20;楠本化成社製のディスパロン KS-860、873SN等が挙げられる。これらは単独で用いてもよいし、2種類以上を併用してもよい。
<Dispersant>
By adding the dispersing agent, the above-described electromagnetic wave absorbing material can be uniformly arranged in the electromagnetic wave absorber without uneven distribution, so that the electromagnetic wave absorption characteristics of the electromagnetic wave absorber are improved. As the dispersant, a polymer dispersant having an Mw of 1,000 or more is preferably used. Examples of the polymer dispersant include trade names such as DISPERBYK-101 and DISPERBYK-102 manufactured by BYK Chemie; EFKA4010 and EFKA4046 manufactured by Fuka Additive; Disperse Aid 6 and Disperse Aid 8 manufactured by Sannopco Various Solsperse dispersants such as SOLSPERS 3000 and 5000 manufactured by Noveon; Adeka Pluronic L31 and F38 manufactured by ADEKA; Ionette S-20 manufactured by Sanyo Chemical Industries; Disparon KS- manufactured by Enomoto Kasei Co., Ltd. 860, 873SN etc. are mentioned. These may be used alone or in combination of two or more.
 上記分散剤の添加量は、上記電磁波吸収体用組成物の全質量を100質量部とすると、0.05~15質量部であることが好ましい。上記分散剤を2種類以上併用する場合は、上記添加量は、各分散剤の添加量の合計として定める。 The amount of the dispersant added is preferably 0.05 to 15 parts by mass when the total mass of the electromagnetic wave absorber composition is 100 parts by mass. When two or more kinds of the dispersants are used in combination, the addition amount is determined as the total addition amount of each dispersant.
 上記電磁波吸収体用組成物は、上記各成分を均一に分散して混合することにより作製できる。上記各成分を均一に分散することにより、上記電磁波吸収材料の偏在を防止でき、ノイズ漏洩のない電磁波吸収体を作製することができる。上記混合方法は特に限定されないが、例えば、ニーダ、エクストルーダ、ロールミル等を用いた混合方法が好ましい。 The electromagnetic wave absorber composition can be prepared by uniformly dispersing and mixing the above components. By uniformly dispersing each of the above components, the electromagnetic wave absorbing material can be prevented from being unevenly distributed and an electromagnetic wave absorber free from noise leakage can be produced. Although the said mixing method is not specifically limited, For example, the mixing method using a kneader, an extruder, a roll mill etc. is preferable.
 (電磁波吸収体三次元造形物の実施形態)
 次に、電磁波吸収体三次元造形物の実施形態を説明する。本実施形態の電磁波吸収体三次元造形物は、前述の実施形態で開示した電磁波吸収体用組成物を使用して造形された電磁波吸収体三次元造形物であり、電子部材を被覆可能な薄肉構造に造形されており、上記電磁波吸収体三次元造形物の肉厚をd(mm)、上記電磁波吸収体三次元造形物に含まれる電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立し、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が、10dB以上である。
(Embodiment of electromagnetic wave absorber three-dimensional structure)
Next, an embodiment of the electromagnetic wave absorber three-dimensional structure will be described. The electromagnetic wave absorber three-dimensional structure of the present embodiment is an electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition disclosed in the above-described embodiment, and is thin enough to cover an electronic member When the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm) and the volume content of the electromagnetic wave absorbing material included in the electromagnetic wave absorber three-dimensional structure is V (%) The relational expression d × V 1/3 > 0.4 is established, and the electromagnetic wave transmission attenuation amount in the frequency band equal to or higher than the millimeter wave band is 10 dB or higher.
 上記電磁波吸収体用組成物を用いて、電磁波吸収体三次元造形物を形成する場合、上記電磁波吸収体三次元造形物の肉厚を常に完全に均一とすることは困難である。そのため、上記電磁波吸収体三次元造形物の肉厚に変動が生じる場合がある。即ち、上記電磁波吸収体三次元造形物に薄肉部と厚肉部とが生じることがある。この場合、薄肉部に含まれる電磁波吸収材料の含有量は、厚肉部に含まれる電磁波吸収材料の含有量より少なくなり、上記薄肉部における電磁波吸収特性が低下する。即ち、薄肉部を電磁波が通過する場合、電磁波が通過する厚さが薄くなるため電磁波吸収効果が低下する。その結果、機器の内側から外部に不要な電磁波が漏れてしまい、外部の機器に悪影響を与えるおそれがある。 When forming the electromagnetic wave absorber three-dimensional structure using the electromagnetic wave absorber composition, it is difficult to always make the thickness of the electromagnetic wave absorber three-dimensional structure completely uniform. Therefore, the thickness of the electromagnetic wave absorber three-dimensional structure may vary. That is, a thin part and a thick part may occur in the electromagnetic wave absorber three-dimensional structure. In this case, the content of the electromagnetic wave absorbing material contained in the thin part is less than the content of the electromagnetic wave absorbing material contained in the thick part, and the electromagnetic wave absorption characteristics in the thin part are deteriorated. That is, when the electromagnetic wave passes through the thin portion, the electromagnetic wave absorbing effect is reduced because the thickness through which the electromagnetic wave passes is reduced. As a result, unnecessary electromagnetic waves leak from the inside of the device to the outside, which may adversely affect the external device.
 これに対して、上記電磁波吸収体三次元造形物の肉厚をd(mm)、上記電磁波吸収体三次元造形物に含まれる電磁波吸収材料の体積含率をV(%)とした場合、d×V1/3>0.4の関係式が成立すると、たとえ造形時に上記電磁波吸収体三次元造形物の肉厚が変化しても、上記電磁波吸収体三次元造形物の全領域において一定以上の電磁波吸収性能を確保することができ、ノイズ漏洩の小さい電磁波吸収体を実現できる。具体的には10dB以上の電磁波透過減衰量を確保した電磁波吸収体を実現できる。電磁波透過減衰量が10dBより小さいと、ノイズ漏洩により周辺の電子機器に影響を与える恐れが高くなる。 On the other hand, when the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm) and the volume content of the electromagnetic wave absorbing material included in the electromagnetic wave absorber three-dimensional structure is V (%), d When the relational expression of × V 1/3 > 0.4 is satisfied, even if the thickness of the electromagnetic wave absorber three-dimensional structure changes during modeling, the entire area of the electromagnetic wave absorber three-dimensional structure is above a certain level. Therefore, an electromagnetic wave absorber with low noise leakage can be realized. Specifically, an electromagnetic wave absorber that secures an electromagnetic wave transmission attenuation of 10 dB or more can be realized. If the electromagnetic wave transmission attenuation is less than 10 dB, there is a high possibility that noise leakage will affect peripheral electronic devices.
 上記関係式は、本発明者らが、実験等により導いたものであるが、例えば、肉厚dを一定とした場合には、体積含率Vを一定以上に設定することを意味し、また、体積含率Vを一定とした場合には、肉厚dを一定以上に設定することを意味する。 The above relational expression is derived by the present inventors through experiments and the like. For example, when the wall thickness d is constant, it means that the volume content V is set to a certain value or more. When the volume content V is constant, it means that the wall thickness d is set to a certain value or more.
 また、上記電磁波吸収体三次元造形物は、各種の電子部材や電子部材の筐体の表面形状に合わせて、事前に形成できるため、上記電磁波吸収体三次元造形物を電磁波吸収体として電子部材にいつでも装着できる。 In addition, since the electromagnetic wave absorber three-dimensional structure can be formed in advance according to the surface shape of various electronic members and the casing of the electronic member, the electromagnetic wave absorber three-dimensional structure is an electronic member using the electromagnetic wave absorber three-dimensional structure. Can be installed at any time.
 非導電性の鉄酸化物とバインダ樹脂とを含む上記電磁波吸収体用組成物を用いて上記電磁波吸収体三次元造形物を形成することにより、上記電磁波吸収体三次元造形物の体積抵抗率を1010Ωcm以上とすることができる。これにより、上記電磁波吸収体三次元造形物を非導電材とすることができ、短絡の発生を確実に防止できる。 By forming the electromagnetic wave absorber three-dimensional structure using the electromagnetic wave absorber composition containing the non-conductive iron oxide and the binder resin, the volume resistivity of the electromagnetic wave absorber three-dimensional structure is increased. It can be 10 10 Ωcm or more. Thereby, the said electromagnetic wave absorber three-dimensional structure can be made into a nonelectroconductive material, and generation | occurrence | production of a short circuit can be prevented reliably.
 上記電磁波吸収体三次元造形物の製造方法は特に限定されないが、前述の電磁波吸収体用組成物に使用するバインダ樹脂の種類に応じて各種の製造方法の中から選択することができる。例えば、光造形法により電磁波吸収体三次元造形物を作製する場合は、活性エネルギー線硬化性樹脂、光重合開始剤、表面調整剤、更に必要に応じてフィラーや分散剤を適宜組み合わせて用いることができる。この場合、三次元プリンタとしてインクジェットプリンタを用いたインクジェット光造形法(MJM造形法)により、電磁波吸収体三次元造形物を高い造形精度で、且つ、簡便に形成することができる。この場合、上記電磁波吸収体用組成物の粘度をインクジェットプリンタの吐出適正粘度に調整する必要がある。 The method for producing the electromagnetic wave absorber three-dimensional structure is not particularly limited, but can be selected from various production methods according to the type of binder resin used in the above-described electromagnetic wave absorber composition. For example, when producing an electromagnetic wave absorber three-dimensional structure by an optical modeling method, an active energy ray curable resin, a photopolymerization initiator, a surface conditioner, and further, if necessary, a filler and a dispersant are used in appropriate combination. Can do. In this case, an electromagnetic wave absorber three-dimensional structure can be easily formed with high modeling accuracy by an inkjet optical modeling method (MJM modeling method) using an inkjet printer as a three-dimensional printer. In this case, it is necessary to adjust the viscosity of the electromagnetic wave absorber composition to an appropriate discharge viscosity of the ink jet printer.
 上記バインダ樹脂として、前述の熱硬化性樹脂及びゴム状樹脂を用いる場合には、加熱圧縮成形法により電磁波吸収体三次元造形物を作製することができる。また、上記バインダ樹脂として、前述の熱可塑性樹脂を用いる場合には、射出成形法により電磁波吸収体三次元造形物を作製することができる。 When the above-mentioned thermosetting resin and rubber-like resin are used as the binder resin, an electromagnetic wave absorber three-dimensional structure can be produced by a heat compression molding method. Moreover, when using the above-mentioned thermoplastic resin as said binder resin, an electromagnetic wave absorber three-dimensional molded item can be produced by the injection molding method.
 次に、上記電磁波吸収体三次元造形物の実施形態を図面に基づき説明する。図1A、B及び図2A、Bは、特定の電子部材の表面形状に合わせて製造した本実施形態の電磁波吸収体三次元造形物の具体例を示す模式断面図である。上記電磁波吸収体三次元造形物の製造方法は特に限定されず、前述の電磁波吸収体用組成物に使用するバインダ樹脂の種類に応じて、三次元プリンタを用いた光造形法、加熱圧縮成形法、射出成形法等の中から適宜選択できる。 Next, an embodiment of the electromagnetic wave absorber three-dimensional structure will be described with reference to the drawings. 1A and 1B and FIGS. 2A and 2B are schematic cross-sectional views illustrating specific examples of the electromagnetic wave absorber three-dimensional structure according to the present embodiment manufactured according to the surface shape of a specific electronic member. The manufacturing method of the electromagnetic wave absorber three-dimensional structure is not particularly limited, and depending on the type of binder resin used in the above-described electromagnetic wave absorber composition, an optical modeling method using a three-dimensional printer, a heat compression molding method The injection molding method can be appropriately selected.
 図1A、Bに示す電磁波吸収体三次元造形物11及び12は、薄肉構造を有し、電子部材を被覆できるようにカップ状に形成さている。図1A、Bに示す電磁波吸収体三次元造形物11及び12の肉厚dは、ほぼ均一に形成されている。 The electromagnetic wave absorber three- dimensional structures 11 and 12 shown in FIGS. 1A and 1B have a thin-walled structure and are formed in a cup shape so as to cover an electronic member. The thickness d of the electromagnetic wave absorber three- dimensional structures 11 and 12 shown in FIGS. 1A and 1B is formed substantially uniformly.
 一方、図2A、Bに示す電磁波吸収体三次元造形物21及び22は、薄肉構造を有し、電子部材を被覆できるようにカップ状に形成さているが、電磁波吸収体三次元造形物21及び22は、肉厚部21a、22aと、薄肉部21b、22bとをそれぞれ有している。 On the other hand, the electromagnetic wave absorber three- dimensional structure 21 and 22 shown in FIGS. 2A and 2B have a thin structure and are formed in a cup shape so as to cover the electronic member. 22 has thick portions 21a and 22a and thin portions 21b and 22b, respectively.
 図1A、B及び図2A、Bに示した電磁波吸収体三次元造形物11、12、21、22は、肉厚d(mm)と、電磁波吸収体三次元造形物11、12、21、22に含まれる電磁波吸収材料の体積含率V(%)との間に、d×V1/3>0.4の関係式が成立しているので、図2A、Bに示すように造形時に肉厚が変化しても、上記電磁波吸収体三次元造形物の全領域において、ミリ波帯域以上の周波数帯域での電磁波透過減衰量が10dB以上の電磁波吸収性能を確保することができ、ノイズ漏洩のない電磁波吸収体とすることができる。 The electromagnetic wave absorber three- dimensional structures 11, 12, 21, and 22 shown in FIGS. 1A and 1B and FIGS. 2A and 2B have a thickness d (mm) and the electromagnetic wave absorber three- dimensional structures 11, 12, 21, and 22. Since the relational expression d × V 1/3 > 0.4 is established between the volume content V (%) of the electromagnetic wave absorbing material contained in the material, as shown in FIGS. Even if the thickness changes, the electromagnetic wave transmission attenuation amount of 10 dB or more in the frequency band of the millimeter wave band or higher can be ensured in the entire region of the electromagnetic wave absorber three-dimensional structure, and noise leakage can be ensured. There can be no electromagnetic wave absorber.
 (電子部品及び電子機器の実施形態)
 続いて、電子部品の実施形態について説明する。本実施形態の電子部品は、前述の実施形態で開示した電磁波吸収体三次元造形物によって被覆された電子部材を備えている。また、本実施形態の電子機器は、本実施形態の電子部品を備えている。
(Embodiments of electronic component and electronic device)
Subsequently, an embodiment of an electronic component will be described. The electronic component of this embodiment includes an electronic member covered with the electromagnetic wave absorber three-dimensional structure disclosed in the above-described embodiment. Moreover, the electronic device of this embodiment is provided with the electronic component of this embodiment.
 上記電子部品を構成する上記電子部材は、上記電磁波吸収体三次元造形物によって被覆されているので、上記電子部品のEMC(電磁両立性)を確保できる。また、上記電子機器は、EMCを確保した上記電子部品を備えているので、電子機器全体としても、EMCを確保できる。 Since the electronic member constituting the electronic component is covered with the electromagnetic wave absorber three-dimensional structure, EMC (electromagnetic compatibility) of the electronic component can be ensured. Moreover, since the said electronic device is equipped with the said electronic component which ensured EMC, EMC can be ensured also as the whole electronic device.
 上記電磁波吸収体三次元造形物によって被覆される電子部材としては、例えば、回路素子、伝送路等が該当する。上記回路素子としては、例えば、トランジスタ、ダイオード、抵抗器、キャパシタ、インダクタ、電池等が該当する。上記伝送路としては、例えば、配線、プリント基板、コネクタ、ソケット等が該当する。また、上記電子部品としては、例えば、回路素子、伝送路等を備えた回路基板が該当する。 Examples of the electronic member covered with the electromagnetic wave absorber three-dimensional model include a circuit element and a transmission path. Examples of the circuit element include a transistor, a diode, a resistor, a capacitor, an inductor, and a battery. Examples of the transmission path include wiring, a printed circuit board, a connector, a socket, and the like. Moreover, as said electronic component, the circuit board provided with the circuit element, the transmission line, etc. corresponds, for example.
 上記電子機器としては、例えば、無線通信技術を利用した通信機器、センサ、医療機器、ミリ波レーダ等が該当する。 As the electronic device, for example, a communication device, a sensor, a medical device, a millimeter wave radar, or the like using wireless communication technology is applicable.
 次に、上記電子部品の実施形態を図面に基づき説明する。図3A、B及び図4A、Bは、電磁波吸収体三次元造形物により被覆された回路素子を備えた本実施形態の電子部品(例えば、回路基板)の一部分を示す模式断面図である。図3Aでは、回路素子13が、図1Aで示した電磁波吸収体三次元造形物11により被覆された電子部品の一部分を示している。図3Bでは、回路素子14が、図1Bで示した電磁波吸収体三次元造形物12により被覆された電子部品の一部分を示している。図4Aでは、回路素子23が、図2Aで示した電磁波吸収体三次元造形物21により被覆された電子部品の一部分を示している。図4Bでは、回路素子24が、図2Bで示した電磁波吸収体三次元造形物22により被覆された電子部品の一部分を示している。より具体的には、図3及び図4は、例えば、回路基板の一部を示す。 Next, an embodiment of the electronic component will be described with reference to the drawings. FIGS. 3A and 3B and FIGS. 4A and 4B are schematic cross-sectional views showing a part of an electronic component (for example, a circuit board) of this embodiment provided with a circuit element covered with an electromagnetic wave absorber three-dimensional structure. In FIG. 3A, the circuit element 13 has shown a part of electronic component coat | covered with the electromagnetic wave absorber three-dimensional structure 11 shown in FIG. 1A. In FIG. 3B, the circuit element 14 has shown a part of electronic component coat | covered with the electromagnetic wave absorber three-dimensional structure 12 shown in FIG. 1B. 4A shows a part of an electronic component in which the circuit element 23 is covered with the electromagnetic wave absorber three-dimensional structure 21 shown in FIG. 2A. 4B shows a part of an electronic component in which the circuit element 24 is covered with the electromagnetic wave absorber three-dimensional structure 22 shown in FIG. 2B. More specifically, FIGS. 3 and 4 show a part of a circuit board, for example.
 図3A及び図4Aでは、電磁波吸収体三次元造形物11及び21が、回路素子13及び23の表面に接触して追従している。一方、図3B及び図4Bでは、電磁波吸収体三次元造形物12及び22が、回路素子14及び24の表面に対してそれぞれ非接触部を有している。 3A and 4A, the electromagnetic wave absorber three- dimensional structures 11 and 21 are in contact with and follow the surface of the circuit elements 13 and 23. On the other hand, in FIG. 3B and FIG. 4B, the electromagnetic wave absorber three- dimensional structures 12 and 22 have non-contact portions with respect to the surfaces of the circuit elements 14 and 24, respectively.
 次に、電子部品の製造方法の実施形態について説明する。本実施形態の電子部品の製造方法は、前述の実施形態で開示した電磁波吸収体用組成物を準備する工程と、上記電磁波吸収体用組成物を用いて、電磁波吸収体三次元造形物を形成する工程と、上記電磁波吸収体三次元造形物を、電子部材に接合して被覆する工程とを含んでいる。上記製造方法により、EMC(電磁両立性)の高い電子部品を製造できる。また、上記製造方法では、上記電磁波吸収体三次元造形物を、電子部材とは別工程で作製できるので、上記電磁波吸収体三次元造形物を製造する際の熱や加圧の影響が電子部材に及ぶことがない。更に、上記電磁波吸収体三次元造形物は、導電性層を含まず、体積抵抗率が1010Ωcm以上であることから、回路素子や伝送路に接触しても短絡の恐れがない。 Next, an embodiment of a method for manufacturing an electronic component will be described. The manufacturing method of the electronic component of this embodiment forms an electromagnetic wave absorber three-dimensional structure using the step of preparing the electromagnetic wave absorber composition disclosed in the above embodiment and the electromagnetic wave absorber composition. And a step of bonding and covering the electromagnetic wave absorber three-dimensional structure to the electronic member. With the above manufacturing method, an electronic component having high EMC (electromagnetic compatibility) can be manufactured. Moreover, in the said manufacturing method, since the said electromagnetic wave absorber three-dimensional structure can be produced in a process different from an electronic member, the influence of the heat | fever and pressurization at the time of manufacturing the said electromagnetic wave absorber three-dimensional structure is an electronic member. It does not reach. Furthermore, since the electromagnetic wave absorber three-dimensional structure does not include a conductive layer and has a volume resistivity of 10 10 Ωcm or more, there is no possibility of short circuit even if it contacts a circuit element or a transmission line.
 続いて、電子機器の製造方法の実施形態について説明する。本実施形態の電子機器の製造方法は、上記の実施形態で開示した電子部品の製造方法で製造した電子部品を電子機器に組み込む工程を含んでいる。上記製造方法により、EMC(電磁両立性)の高い電子機器を製造できる。 Subsequently, an embodiment of a method for manufacturing an electronic device will be described. The electronic device manufacturing method of the present embodiment includes a step of incorporating the electronic component manufactured by the electronic component manufacturing method disclosed in the above embodiment into the electronic device. With the above manufacturing method, an electronic device with high EMC (electromagnetic compatibility) can be manufactured.
 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
 (実施例1)
 <電磁波吸収体用組成物の作製>
 下記成分を加圧式の回分式ニーダで混練し、電磁波吸収材料である六方晶フェライト磁性粉の体積含率Vが51%となる本実施例の電磁波吸収体用組成物Aを作製した。下記組成式の六方晶フェライト磁性粉は、電磁波吸収を担う磁気共鳴周波数を76G(Hz)に調整したものである。
(1)六方晶フェライト磁性粉(組成式:SrFe10.56Al1.4419
(2)シリコーンゴム(信越化学株式会社製、商品名“KE-541-U”)
Example 1
<Preparation of composition for electromagnetic wave absorber>
The following components were kneaded with a pressure batch kneader to prepare an electromagnetic wave absorber composition A of this example in which the volume content V of hexagonal ferrite magnetic powder as an electromagnetic wave absorbing material was 51%. The hexagonal ferrite magnetic powder having the following composition formula has a magnetic resonance frequency responsible for electromagnetic wave absorption adjusted to 76 G (Hz).
(1) Hexagonal ferrite magnetic powder (composition formula: SrFe 10.56 Al 1.44 O 19 )
(2) Silicone rubber (trade name “KE-541-U” manufactured by Shin-Etsu Chemical Co., Ltd.)
 <電磁波吸収体三次元造形物の作製>
 上記で作製した電磁波吸収体用組成物Aを用いて、油圧プレス機を用いた温度165℃の加熱圧縮成形法により、縦:12cm、横:12cm、厚さd:2mmのシート状の電磁波吸収体三次元造形物(電磁波吸収体)を作製した。本実施例の電磁波吸収体のd×V1/3の値は、1.60となる。
<Production of electromagnetic wave absorber three-dimensional structure>
Using the electromagnetic wave absorber composition A produced above, a sheet-shaped electromagnetic wave absorption of 12 cm in length, 12 cm in width, and 2 mm in thickness d by a heat compression molding method at a temperature of 165 ° C. using a hydraulic press machine. A three-dimensional body (electromagnetic wave absorber) was prepared. The value of d × V 1/3 of the electromagnetic wave absorber of this example is 1.60.
 (実施例2)
 <電磁波吸収体用組成物の作製>
 下記成分を加圧式の回分式ニーダで混練し、電磁波吸収材料であるイプシロン型酸化鉄磁性粉の体積含率Vが40%となる本実施例の電磁波吸収体用組成物Bを作製した。下記組成式のイプシロン型酸化鉄磁性粉は、電磁波吸収を担う磁気共鳴周波数を76G(Hz)に調整したものである。
(1)イプシロン型酸化鉄磁性粉(組成式:ε-Ga0.46Fe1.543
(2)シリコーンゴム(信越化学株式会社製、商品名“KE-541-U”)
(Example 2)
<Preparation of composition for electromagnetic wave absorber>
The following components were kneaded with a pressure-type batch kneader to prepare an electromagnetic wave absorber composition B of this example in which the volume content V of epsilon-type iron oxide magnetic powder as an electromagnetic wave absorbing material was 40%. The epsilon-type iron oxide magnetic powder having the following composition formula is prepared by adjusting the magnetic resonance frequency responsible for electromagnetic wave absorption to 76 G (Hz).
(1) Epsilon-type iron oxide magnetic powder (composition formula: ε-Ga 0.46 Fe 1.54 O 3 )
(2) Silicone rubber (trade name “KE-541-U” manufactured by Shin-Etsu Chemical Co., Ltd.)
 <電磁波吸収体三次元造形物の作製>
 上記で作製した電磁波吸収体用組成物Bを用いて、油圧プレス機を用いた温度165℃の加熱圧縮成形法により、縦:12cm、横:12cm、厚さd:2mmのシート状の電磁波吸収体三次元造形物(電磁波吸収体)を作製した。本実施例の電磁波吸収体のd×V1/3の値は、1.47となる。
<Production of electromagnetic wave absorber three-dimensional structure>
Using the electromagnetic wave absorber composition B produced above, a sheet-like electromagnetic wave absorption of 12 cm in length, 12 cm in width, and 2 mm in thickness d by a heat compression molding method at a temperature of 165 ° C. using a hydraulic press. A three-dimensional body (electromagnetic wave absorber) was prepared. The value of d × V 1/3 of the electromagnetic wave absorber of this example is 1.47.
 (実施例3)
 <電磁波吸収体用組成物の作製>
 下記成分を加熱式エクストルーダで混練し、電磁波吸収材料である六方晶フェライト磁性粉の体積含率Vが47%となる本実施例の電磁波吸収体用組成物Cを作製した。下記六方晶フェライト磁性粉は、実施例1で使用したものと同じである。
(1)六方晶フェライト磁性粉(組成式:SrFe10.56Al1.4419
(2)ポリカーボネート(帝人株式会社製、商品名“パンライト”)
(Example 3)
<Preparation of composition for electromagnetic wave absorber>
The following components were kneaded with a heating extruder to prepare an electromagnetic wave absorber composition C of this example in which the volume content V of the hexagonal ferrite magnetic powder as an electromagnetic wave absorbing material was 47%. The following hexagonal ferrite magnetic powder is the same as that used in Example 1.
(1) Hexagonal ferrite magnetic powder (composition formula: SrFe 10.56 Al 1.44 O 19 )
(2) Polycarbonate (trade name “Panlite” manufactured by Teijin Limited)
 <電磁波吸収体三次元造形物の作製>
 上記で作製した電磁波吸収体用組成物Cを用いて、射出成形法により、縦:12cm、横:12cm、厚さd:1mmのシート状の電磁波吸収体三次元造形物(電磁波吸収体)を作製した。
本実施例の電磁波吸収体のd×V1/3の値は、0.78となる。
<Production of electromagnetic wave absorber three-dimensional structure>
Using the electromagnetic wave absorber composition C produced above, a sheet-like electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) having a length of 12 cm, a width of 12 cm, and a thickness of d: 1 mm is formed by injection molding. Produced.
The value of d × V 1/3 of the electromagnetic wave absorber of this example is 0.78.
 (比較例1)
 電磁波吸収体三次元造形物(電磁波吸収体)の厚さdを0.5mmに変更した以外は、実施例1と同様にして電磁波吸収体三次元造形物を作製した。本比較例のd×V1/3の値は、0.40となる。
(Comparative Example 1)
An electromagnetic wave absorber three-dimensional structure was produced in the same manner as in Example 1 except that the thickness d of the electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) was changed to 0.5 mm. The value of d × V 1/3 in this comparative example is 0.40.
 (比較例2)
 電磁波吸収体三次元造形物の厚さdを0.5mmに変更した以外は、実施例2と同様にして電磁波吸収体三次元造形物(電磁波吸収体)を作製した。本比較例のd×V1/3の値は、0.37となる。
(Comparative Example 2)
An electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) was produced in the same manner as in Example 2 except that the thickness d of the electromagnetic wave absorber three-dimensional structure was changed to 0.5 mm. The value of d × V 1/3 in this comparative example is 0.37.
 (比較例3)
 電磁波吸収体三次元造形物の厚さdを0.5mmに変更した以外は、実施例3と同様にして電磁波吸収体三次元造形物(電磁波吸収体)を作製した。本比較例のd×V1/3の値は、0.39となる。
(Comparative Example 3)
An electromagnetic wave absorber three-dimensional structure (electromagnetic wave absorber) was produced in the same manner as in Example 3 except that the thickness d of the electromagnetic wave absorber three-dimensional structure was changed to 0.5 mm. The value of d × V 1/3 in this comparative example is 0.39.
 次に、実施例1~3及び比較例1~3で作製した電磁波吸収体三次元造形物(電磁波吸収体)の電磁波透過減衰量をフリースペース法を用いて測定した。具体的には、アンリツ株式会社製のミリ波ネットワークアナライザー“ME7838A”(製品名)を用いて、送信アンテナから誘電体レンズを介して電磁波吸収体に所定の周波数の入力波(ミリ波)を照射し、電磁波吸収体の裏側に配置された受信アンテナで透過する電磁波を計測した。照射される電磁波の強度と透過した電磁波の強度とをそれぞれ電圧値として把握し、その強度差から電磁波透過減衰量をdB単位で求めた。 Next, the electromagnetic wave transmission attenuation of the three-dimensional electromagnetic wave absorber (electromagnetic wave absorber) produced in Examples 1 to 3 and Comparative Examples 1 to 3 was measured using a free space method. Specifically, using an millimeter wave network analyzer “ME7838A” (product name) manufactured by Anritsu Corporation, an electromagnetic wave absorber is irradiated with an input wave (millimeter wave) of a predetermined frequency from a transmitting antenna via a dielectric lens. And the electromagnetic waves which permeate | transmit with the receiving antenna arrange | positioned at the back side of the electromagnetic wave absorber were measured. The intensity of the applied electromagnetic wave and the intensity of the transmitted electromagnetic wave were grasped as voltage values, and the electromagnetic wave transmission attenuation amount was determined in dB from the intensity difference.
 以上の結果として、周波数76GHzにおける電磁波透過減衰量を表1及び図5に示す。表1では、電磁波透過減衰量に加えて、電磁波吸収材料及びバインダ樹脂の種類、電磁波吸収体の厚さd、電磁波吸収材料の体積含率V及びd×V1/3の値も併記した。また、図6に実施例1と比較例3の電磁波吸収スペクトルを示す。 As a result, the electromagnetic wave transmission attenuation at a frequency of 76 GHz is shown in Table 1 and FIG. In Table 1, in addition to the electromagnetic wave transmission attenuation, values of the electromagnetic wave absorbing material and the binder resin, the thickness d of the electromagnetic wave absorber, the volume content V of the electromagnetic wave absorbing material, and d × V 1/3 are also shown. FIG. 6 shows the electromagnetic wave absorption spectra of Example 1 and Comparative Example 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図5から、d×V1/3の値が0.4を超えた実施例1~3の電磁波透過減衰量は、10dB以上と高く、被覆した電子部材からの電磁波が被覆外の電子部材に影響することも、被覆外の電子部材からの電磁波が侵入して被覆した電子部材に影響することもないのに対し、d×V1/3の値が0.4以下の比較例1~3の電磁波透過減衰量は、9dB以下と低く、被覆した電子部材からの電磁波が被覆外の電子部材に影響し、被覆外の電子部材からの電磁波が侵入して被覆した電子部材に影響することが分かる。これは、d×V1/3の値が0.4を超えることにより、電磁波吸収体の厚さが変化しても電磁波吸収体内の電磁波吸収材料の量を一定以上確保できるため、一定量以上の電磁波透過減衰量を達成できたものと考えられる。 From Table 1 and FIG. 5, the electromagnetic wave transmission attenuation amount of Examples 1 to 3 in which the value of d × V 1/3 exceeded 0.4 was as high as 10 dB or more, and the electromagnetic wave from the coated electronic member was not covered. A comparative example in which the value of d × V 1/3 is 0.4 or less, while it does not affect the electronic member, nor does it affect the electronic member covered by the electromagnetic wave from the electronic member outside the coating. The electromagnetic wave transmission attenuation of 1 to 3 is as low as 9 dB or less, the electromagnetic wave from the coated electronic member affects the electronic member outside the coating, and the electromagnetic wave from the electronic member outside the coating penetrates and affects the coated electronic member. I understand that This is because when the value of d × V 1/3 exceeds 0.4, the amount of the electromagnetic wave absorbing material in the electromagnetic wave absorber can be secured more than a certain amount even if the thickness of the electromagnetic wave absorber is changed. It is thought that the electromagnetic wave transmission attenuation amount was achieved.
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present invention can be implemented in forms other than those described above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. It is included.
 本願で開示する電磁波吸収体用組成物及び電磁波吸収体三次元造形物は、ミリ波帯域以上の高い周波数帯域の電磁波を吸収し、ノイズ漏洩がなく、且つ、非導電性の電磁波吸収体を提供することができ、EMCに優れた電子部品及び電子機器を作製するのに有用である。 The electromagnetic wave absorber composition and electromagnetic wave absorber three-dimensional structure disclosed in the present application absorb electromagnetic waves in a high frequency band above the millimeter wave band, provide no leakage of noise, and provide a non-conductive electromagnetic wave absorber. Therefore, it is useful for manufacturing an electronic component and an electronic device excellent in EMC.
 11、12、21、22 電磁波吸収体三次元造形物
 21a、22a 厚肉部
 21b、22b 薄肉部
 13、14、23、24 回路素子
11, 12, 21, 22 Electromagnetic wave absorber three- dimensional structure 21a, 22a Thick part 21b, 22b Thin part 13, 14, 23, 24 Circuit element

Claims (14)

  1.  ミリ波帯域以上の周波数帯域での電磁波透過減衰量が10dB以上である電磁波吸収体三次元造形物を形成するために使用される電磁波吸収体用組成物であって、
     電磁波吸収材料とバインダ樹脂とを含み、
     前記電磁波吸収材料は、ミリ波帯域以上の周波数帯域で磁気共鳴する鉄酸化物であり、
     前記電磁波吸収体三次元造形物の肉厚をd(mm)として形成する場合、前記電磁波吸収体用組成物における前記電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立する電磁波吸収体用組成物。
    An electromagnetic wave absorber composition used for forming an electromagnetic wave absorber three-dimensional structure having an electromagnetic wave transmission attenuation amount of 10 dB or more in a frequency band equal to or higher than a millimeter wave band,
    Including an electromagnetic wave absorbing material and a binder resin,
    The electromagnetic wave absorbing material is an iron oxide that magnetically resonates in a frequency band of a millimeter wave band or higher,
    When the thickness of the electromagnetic wave absorber three-dimensional structure is formed as d (mm), assuming that the volume content of the electromagnetic wave absorbing material in the electromagnetic wave absorber composition is V (%), d × V 1 / 3 > A composition for an electromagnetic wave absorber that satisfies a relational expression of> 0.4.
  2.  前記電磁波吸収材料が、Sr及びBaからなる群から選ばれる少なくとも1種を含む六方晶フェライトである請求項1に記載の電磁波吸収体用組成物。 2. The electromagnetic wave absorber composition according to claim 1, wherein the electromagnetic wave absorbing material is hexagonal ferrite containing at least one selected from the group consisting of Sr and Ba.
  3.  前記電磁波吸収材料が、Srを含む六方晶フェライトであり、
     前記Srを含む六方晶フェライトのFeサイトの一部が、Alで置換されている請求項1又は2に記載の電磁波吸収体用組成物。
    The electromagnetic wave absorbing material is hexagonal ferrite containing Sr;
    The composition for electromagnetic wave absorbers according to claim 1, wherein a part of the Fe site of the hexagonal ferrite containing Sr is substituted with Al.
  4.  前記電磁波吸収材料が、イプシロン型酸化鉄であり、
     前記イプシロン型酸化鉄のFeサイトの一部が、Al、Ga及びInからなる群から選ばれる少なくとも1種で置換されている請求項1に記載の電磁波吸収体用組成物。
    The electromagnetic wave absorbing material is epsilon-type iron oxide,
    The composition for electromagnetic wave absorbers according to claim 1, wherein a part of the Fe site of the epsilon-type iron oxide is substituted with at least one selected from the group consisting of Al, Ga and In.
  5.  前記バインダ樹脂が、活性エネルギー線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂及びゴム状樹脂からなる群から選ばれる少なくとも1種を含む請求項1~4のいずれか1項に記載の電磁波吸収体用組成物。 The electromagnetic wave absorption according to any one of claims 1 to 4, wherein the binder resin contains at least one selected from the group consisting of an active energy ray curable resin, a thermosetting resin, a thermoplastic resin, and a rubber-like resin. Body composition.
  6.  請求項1~5のいずれか1項に記載の電磁波吸収体用組成物を使用して造形された電磁波吸収体三次元造形物であって、
     前記電磁波吸収体三次元造形物は、電子部材を被覆可能な薄肉構造に造形されており、
     前記電磁波吸収体三次元造形物の肉厚をd(mm)、前記電磁波吸収体三次元造形物に含まれる電磁波吸収材料の体積含率をV(%)とすると、d×V1/3>0.4の関係式が成立し、
     ミリ波帯域以上の周波数帯域での電磁波透過減衰量が、10dB以上である電磁波吸収体三次元造形物。
    An electromagnetic wave absorber three-dimensional structure formed using the electromagnetic wave absorber composition according to any one of claims 1 to 5,
    The electromagnetic wave absorber three-dimensional structure is formed into a thin structure that can cover an electronic member,
    When the thickness of the electromagnetic wave absorber three-dimensional structure is d (mm) and the volume content of the electromagnetic wave absorbing material included in the electromagnetic wave absorber three-dimensional structure is V (%), d × V 1/3 > A relational expression of 0.4 holds,
    An electromagnetic wave absorber three-dimensional structure in which an electromagnetic wave transmission attenuation in a frequency band equal to or higher than the millimeter wave band is 10 dB or more.
  7.  体積抵抗率が、1010Ωcm以上である請求項6に記載の電磁波吸収体三次元造形物。 The electromagnetic wave absorber three-dimensional structure according to claim 6, wherein the volume resistivity is 10 10 Ωcm or more.
  8.  請求項6又は7に記載の電磁波吸収体三次元造形物によって被覆された電子部材を含む電子部品。 An electronic component comprising an electronic member covered with the electromagnetic wave absorber three-dimensional structure according to claim 6 or 7.
  9.  前記電磁波吸収体三次元造形物は、前記電子部材の表面に接触して追従している請求項8に記載の電子部品。 The electronic component according to claim 8, wherein the electromagnetic wave absorber three-dimensional structure contacts and follows the surface of the electronic member.
  10.  前記電磁波吸収体三次元造形物は、前記電子部材の表面に対して非接触部を有する請求項8に記載の電子部品。 The electronic component according to claim 8, wherein the electromagnetic wave absorber three-dimensional structure has a non-contact portion with respect to a surface of the electronic member.
  11.  前記電子部材が、回路素子と、伝送路とを含む請求項8~10のいずれか1項に記載の電子部品。 The electronic component according to any one of claims 8 to 10, wherein the electronic member includes a circuit element and a transmission path.
  12.  請求項8~11のいずれか1項に記載の電子部品を含む電子機器。 An electronic device comprising the electronic component according to any one of claims 8 to 11.
  13.  請求項1~5のいずれか1項に記載の電磁波吸収体用組成物を準備する工程と、
     前記電磁波吸収体用組成物を用いて、電磁波吸収体三次元造形物を形成する工程と、
     前記電磁波吸収体三次元造形物を、電子部材に接合して被覆する工程とを含む電子部品の製造方法。
    Preparing the electromagnetic wave absorber composition according to any one of claims 1 to 5,
    Using the electromagnetic wave absorber composition, forming an electromagnetic wave absorber three-dimensional structure,
    A method of manufacturing an electronic component including a step of bonding and covering the electromagnetic wave absorber three-dimensional structure to an electronic member.
  14.  請求項13に記載の電子部品の製造方法で製造した電子部品を電子機器に組み込む工程を含む電子機器の製造方法。 An electronic device manufacturing method including a step of incorporating the electronic component manufactured by the electronic component manufacturing method according to claim 13 into the electronic device.
PCT/JP2019/008327 2018-03-12 2019-03-04 Electromagnetic absorber composition, three-dimensionally molded article formed from electromagnetic absorber, electronic component and electronic device using same, and methods for producing electronic component and electronic device WO2019176612A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506409A JP7141444B2 (en) 2018-03-12 2019-03-04 Electromagnetic wave absorber composition, electromagnetic wave absorber three-dimensional structure, electronic component and electronic device using the same, and method for manufacturing the electronic component and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-043987 2018-03-12
JP2018043987 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019176612A1 true WO2019176612A1 (en) 2019-09-19

Family

ID=67908180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008327 WO2019176612A1 (en) 2018-03-12 2019-03-04 Electromagnetic absorber composition, three-dimensionally molded article formed from electromagnetic absorber, electronic component and electronic device using same, and methods for producing electronic component and electronic device

Country Status (2)

Country Link
JP (1) JP7141444B2 (en)
WO (1) WO2019176612A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328006A (en) * 1999-05-17 2000-11-28 Sony Corp Emc module and its manufacture
JP2001297905A (en) * 2000-04-17 2001-10-26 Tokin Corp High-frequency current suppressor
JP2010077198A (en) * 2008-09-24 2010-04-08 Asahi Kasei E-Materials Corp Resin composition
JP2016111341A (en) * 2014-12-03 2016-06-20 国立大学法人 東京大学 Electromagnetic wave absorber and film forming paste
JP2017045946A (en) * 2015-08-28 2017-03-02 住友ベークライト株式会社 Electromagnetic wave shield film, and electronic component mounting substrate
WO2017221992A1 (en) * 2016-06-22 2017-12-28 日立マクセル株式会社 Electric wave absorption sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328006A (en) * 1999-05-17 2000-11-28 Sony Corp Emc module and its manufacture
JP2001297905A (en) * 2000-04-17 2001-10-26 Tokin Corp High-frequency current suppressor
JP2010077198A (en) * 2008-09-24 2010-04-08 Asahi Kasei E-Materials Corp Resin composition
JP2016111341A (en) * 2014-12-03 2016-06-20 国立大学法人 東京大学 Electromagnetic wave absorber and film forming paste
JP2017045946A (en) * 2015-08-28 2017-03-02 住友ベークライト株式会社 Electromagnetic wave shield film, and electronic component mounting substrate
WO2017221992A1 (en) * 2016-06-22 2017-12-28 日立マクセル株式会社 Electric wave absorption sheet

Also Published As

Publication number Publication date
JPWO2019176612A1 (en) 2021-03-25
TW201938662A (en) 2019-10-01
JP7141444B2 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6445741B2 (en) Electromagnetic wave absorbing sheet
EP3460813A1 (en) Wireless power transmission apparatus for vehicle
JPWO2008126690A1 (en) Electromagnetic shield sheet and RFID plate
EP2723154A1 (en) Electromagnetic wave interference suppressor
JP2007129179A (en) Conductive/magnetic filler, electromagnetic wave interference controlling sheet, flat cable for high frequency signal, flexible printed circuit board and method for manufacturing the sheet
EP2136613B1 (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
KR101549987B1 (en) A composite film using conductive adhesion layers, having improved heat sink capabilities with graphite layer and method of fabricating the same.
JP2005159337A (en) Electromagnetic interference suppressor and electromagnetic suppressing method using the same
WO2019176612A1 (en) Electromagnetic absorber composition, three-dimensionally molded article formed from electromagnetic absorber, electronic component and electronic device using same, and methods for producing electronic component and electronic device
JP5043082B2 (en) Electromagnetic wave absorbing material
JP2010077198A (en) Resin composition
KR20040055678A (en) Electromagnetic Wave-Absorbing, Thermal- Conductive Sheet
JP2007281074A (en) Noise suppression sheet
EP2045285A1 (en) Roll-type composite sheet having improved heat-releasing, electromagnetic wave-absorbing, and impact-absorbing properties, and method of manufacturing the same
TW201112939A (en) Electromagnetic wave absorption component and electromagnetic wave absorption device
KR101530624B1 (en) Multiple funtional antenna for near filed communication and method for manufacturing the same
JP5720358B2 (en) Radio wave suppression sheet, electronic device including the sheet, and radio wave suppression component
JP2006135118A (en) Electromagnetic wave absorbing heat radiation sheet
KR100874690B1 (en) A roll-type composite sheet with enhanced electromagnetic wave-shielding and -absorbing, and heat-releasing properties, and a method for preparation of the same
JP2012186384A (en) Electromagnetic noise suppression member
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
KR100675514B1 (en) Electromagnetic wave shield material
JP2013182931A (en) Electromagnetic noise suppression member
JP2013077592A (en) Radio wave suppression body, and electronic apparatus and radio wave suppression component equipped with the radio wave suppression body
WO2019235393A1 (en) Electromagnetic wave absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020506409

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767863

Country of ref document: EP

Kind code of ref document: A1