WO2019176592A1 - Method for producing heteroatom-containing aromatic vinyl compound - Google Patents

Method for producing heteroatom-containing aromatic vinyl compound Download PDF

Info

Publication number
WO2019176592A1
WO2019176592A1 PCT/JP2019/008161 JP2019008161W WO2019176592A1 WO 2019176592 A1 WO2019176592 A1 WO 2019176592A1 JP 2019008161 W JP2019008161 W JP 2019008161W WO 2019176592 A1 WO2019176592 A1 WO 2019176592A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
formula
group
halogen
aromatic vinyl
Prior art date
Application number
PCT/JP2019/008161
Other languages
French (fr)
Japanese (ja)
Inventor
健介 鷲頭
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2019176592A1 publication Critical patent/WO2019176592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages

Definitions

  • the present invention relates to a method for producing an aromatic vinyl compound having a hetero atom.
  • An aromatic vinyl compound having a substituent containing a hetero atom is an important intermediate for pharmaceuticals and electronic materials, and is also an important monomer component of a functional polymer.
  • a dihalogenated dialkylsilane is reacted with an alkyl alcohol in the presence of an organic solvent and a tertiary amine to produce a monoalkoxychlorosilane.
  • by-product hydrochloride is removed by Celite filtration or the like, and then purified by distillation and reacted with a Grignard reagent derived from halogenated styrene.
  • the obtained monoalkoxydialkylsilylstyrene is filtered from the magnesium halide salt and then purified by distillation.
  • Non-Patent Document 1 discloses that a dialkyldichlorosilane and alcohol are reacted at 0 ° C. for 5 hours in an inert gas atmosphere under a hydrocarbon solvent using amines as a deoxidizer and filtered. , A method for obtaining monoalkoxychlorosilane through solvent washing and distillation.
  • Non-Patent Document 1 a salt of hydrogen chloride and an amine is produced.
  • this salt is soluble in a hydrocarbon solvent, it is difficult to remove it by filtration, solvent washing, and distillation alone. There exists a problem of reducing the yield and purity of the target product due to the side reaction in the next step.
  • monoalkoxychlorosilane is highly reactive and easily decomposes in the air, causing a decrease in purity and yield, or reacting with moisture to generate hydrogen chloride, which is a problem in handling safety. There is. Moreover, the loss of the target product at the time of filtration separation from the produced salt and distillation purification occurs, which causes a decrease in yield. Furthermore, in the reaction with the Grignard reagent, the alkoxysilyl group of the resulting monoalkoxydialkylsilylstyrene also has reactivity with the Grignard reagent, so that there is a problem that an unintended side reaction occurs.
  • an object of the present invention is to provide a production method capable of obtaining a target heteroatom-containing aromatic vinyl compound with high purity and high yield.
  • the present inventor can obtain a heteroatom-containing aromatic vinyl compound with high purity and high yield safely by using a halogenated aromatic vinyl compound as a starting material and reacting in one pod.
  • the present inventors have found that the above problems can be solved, and have further studied to complete the present invention.
  • R 1 -R 2 -Y wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent, R 2 is Si (R 10 ) (R 11 ),
  • R 10 and R 11 are each independently a group containing at least one atom selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur and oxygen atoms, Y is carbon, A functional group containing at least one atom selected from the group consisting of silicon, nitrogen, sulfur and oxygen atoms)
  • a process for producing a heteroatom-containing aromatic vinyl compound represented by formula (I) by adding a functional group Y by adding [2] (C) comprising the step of isolating the heteroatom-containing aromatic vinyl compound represented by the formula (I) obtained in the step (B) by filtration and / or vacuum distillation , [3]
  • An organometallic nucleophile is Formula (V): M 1 -Y (Wherein M 1 is an alkali metal and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms)
  • M 1 is an alkali metal
  • Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms
  • R 1 -R 2 -Y of the present invention (wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent) , R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur or oxygen atoms.
  • Y is a group containing at least one atom, and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms), Si
  • a method for producing a heteroatom-containing aromatic vinyl compound containing at least one heteroatom selected from O, N, and S wherein (A) Formula (II): R 1 -X 1 (wherein R 1 is the same as defined above, X 1 is a compound represented by a halogen)
  • An organometallic nucleophile containing a functional group Y is added to the reaction mixture containing the halogenated
  • a heteroatom-containing aromatic vinyl compound represented by the formula (I) has a high purity and a high purity. It is possible to obtain safely at a rate.
  • the present invention relates to the formula (I): R 1 —R 2 —Y (wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent. , R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur or oxygen atoms.
  • Y is a group containing at least one atom, and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms)
  • a method for producing a containing aromatic vinyl compound which is represented by (A) Formula (II): R 1 -X 1 (wherein R 1 is the same as above, and X 1 is halogen)
  • a reaction solution containing a Grignard reagent obtained by reacting magnesium with a compound is added to the formula (III : X 2 -R 2 -X 3 (wherein, X 2 and X 3 is a halogen independently, R 2 is as defined above) by reacting a halogen compound represented by the formula (IV)
  • step (A) formula (II): R 1 -X 1 (wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent,
  • a reaction solution containing a Grignard reagent obtained by reacting magnesium with a compound of 1 is halogen
  • R 1 -R 2 -X 3 wherein R 1 , R 2 and X 3 are the above-mentioned groups.
  • R 1 is an aromatic group which has a vinyl group and may be substituted with a group inert to the Grignard reagent, and the vinyl group means a reactive carbon-carbon double bond.
  • the aromatic group of the “aromatic group optionally substituted with a group inert to the Grignard reagent” constitutes a ring, for example, a 5- to 14-membered aryl group, preferably a 5- to 6-membered aryl group A 5- to 14-membered heteroaryl group, preferably a 5- to 6-membered heteroaryl group containing at least one, preferably 1 to 2, heteroatoms such as nitrogen, sulfur, oxygen, etc.
  • Examples of the group inert to the Grignard reagent that may be substituted with the aromatic group of the “aromatic group optionally substituted with an inert group to the Grignard reagent” include an alkyl group (for example, 1 to 5 carbon atoms).
  • Alkyl groups specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.), ether groups, silyl ether groups, and the like.
  • the group inert to the Grignard reagent may be substituted at any substitutable position of the aromatic group, but preferably has a bond to X 1 at the para position of the substitution position by the vinyl group. It is preferable to substitute at other substitutable positions. When two or more substituents are present, the substituents may be the same or different.
  • the number of substituents is preferably 1 to 3, more preferably 1.
  • X 1 is halogen, selected from a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom.
  • R 1 -X 1 (wherein R 1 is an aromatic group having a vinyl group, which may be substituted with a group inert to the Grignard reagent, and X 1 is a halogen)
  • R 1 is an aromatic group having a vinyl group, which may be substituted with a group inert to the Grignard reagent, and X 1 is a halogen
  • Specific examples of the compound include 4-chlorostyrene, 4-bromostyrene, 2-vinyl-6-chloropyridine and the like.
  • X 2 and X 3 are each independently a halogen such as a chlorine atom, a bromine atom or an iodine atom, and a chlorine atom is preferable from the viewpoint of low cost and availability.
  • R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently at least one selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur and oxygen atoms. A group containing more than one kind of atom.
  • R 10 and R 11 each independently include a group containing halogen, linear or branched alkyl, linear or branched alkenyl, carbonyl, amide, amino, ether, phenol or phenyl, Specifically, halogen, C 1-10 alkyl, C 2-10 alkenyl, tri C 1-6 alkylsiloxy, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxy C 1 -6 alkyl, C 4-10
  • the halogen is a chlorine atom, a bromine atom or an iodine atom.
  • C 1-10 alkyl is a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, and is not particularly limited, but examples thereof include methyl, ethyl, propyl, Examples thereof include isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and the like.
  • R 10 or R 11 is more preferably methyl, ethyl, octyl or the like.
  • C 2-10 alkenyl is a hydrocarbon group having 2 to 10 carbon atoms having at least one straight-chain or branched carbon-carbon double bond, and is not particularly limited. Are, for example, ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 2-pentenyl and the like.
  • tri-C 1-6 alkylsiloxy examples include trimethylsiloxy, triethylsiloxy, tributylsiloxy, tri-iso-propylsiloxy, tri-tert-butylsiloxy and the like.
  • C 1-6 acyl means one obtained by removing an OH group from a carboxylic acid having 1 to 6 carbon atoms, and is not particularly limited. Specifically, methanoyl, Examples include ethanoyl and benzoyl.
  • C 1-6 acyloxy is not particularly limited, and examples thereof include acetoxy, propanoyloxy, acryloyloxy, methacryloyloxy, malonyloxy, benzoyloxy and the like.
  • C 1-6 acyloxy C 1-6 alkyl is not particularly limited, but “C 1-6 acyloxy” as defined herein such as acetoxyethyl is added. And an alkyl group having 1 to 6 carbon atoms as defined herein.
  • C 1-6 alkoxy means an alkyl group having 1 to 6 carbon atoms bonded to an oxygen atom, and is not particularly limited. Ethoxy, n-butoxy, sec-butoxy, isobutoxy, tert-butoxy, propoxy, methylenedioxy and the like.
  • C 6-12 aryl means a group derived from an aromatic hydrocarbon having 6 to 12 carbon atoms, and is not particularly limited. Examples thereof include 3-phenylpropyl, tolyl, xylyl, cumenyl, benzyl, phenethyl, cinamyl, biphenyl and the like, and may have a substituent.
  • C 6-12 aryloxy is not particularly limited, and examples thereof include phenoxy and 3-phenoxypropyl, which may have a substituent.
  • C 1-6 alkylamino is not particularly limited, and specifically includes methylamino, ethylamino, propylamino, isopropylamino, n-butylamino, tert-butyl. Examples include amino and sec-butylamino.
  • di-C 1-6 alkylamino is not particularly limited, but dimethylamino, diethylamino, ethylmethylamino, dipropylamino, diisopropylamino, dibutylamino, di-tert-butyl. Examples include amino.
  • cyano C 1-6 alkyl includes an alkyl group having 1 to 6 carbon atoms as defined herein, to which a “cyano” group is added.
  • C 1-6 alkoxy C 1-6 alkyl has 1 to 6 carbon atoms as defined in the present specification to which “C 1-6 alkoxy” as defined in the present specification is added.
  • An alkyl group is 1 to 6 carbon atoms as defined in the present specification to which “C 1-6 alkoxy” as defined in the present specification is added.
  • C 4-10 heterocyclyl is not particularly limited, but is a heterocycle having 4 to 10 carbon atoms having at least one heteroatom selected from N, O or S.
  • a group generated by removing one hydrogen atom from a ring atom and specific examples include thienyl, pyrrolidyl, pyrrolyl, pyridyl, furanyl and the like.
  • thiobenzene C 1-6 alkyl is not particularly limited, and examples thereof include an alkyl group having 1 to 6 carbon atoms as defined in the present specification to which thiobenzene is added.
  • “Amido C 1-6 alkyl” is not particularly limited, but is substituted with an alkyl group such as dimethylamide, diethylamide, dipropylamide, di-iso-propylamide, dibutylamide, di-tert-butylamide and the like. And an alkyl group having 1 to 6 carbon atoms, as defined herein, to which is added an amide group.
  • halogen compound of the above formula (III) are not particularly limited, but include dichlorodiC 1-6 alkylsilanes such as dichlorodimethylsilane, dichlorodiethylsilane or dichlorodipropylsilane, dichloroditrimethyl.
  • silane Cycloditriethylsiloxysilane, Dichlorodidimethylsiloxysilane or dichlorodialkylsiloxysilane such as dichlorodidiethylsiloxysilane, Tetrahalogenated silane such as tetrachlorosilane, Dichloro (acetoxyethyl) (methyl) silane, (Methyl) silane Dihalogen (acyloxyalkyl) (alkyl) silanes such as dichloro (acetoxymethyl) dichloro (methyl) silane or dichloro (acetoxyethyl) (ethyl) silane, dichloroditert-but Dihalogen dialkoxysilanes such as xysilane, dichloro (phenoxy) (methyl) silane, dichloro (phenyl) (methyl) silane, dichlorodidimethylaminosilane, dichlorocyanopropylmethylsilane, dichloro (ethoxy
  • an ether solvent usually used for Grignard reaction is added to metal magnesium under an inert gas atmosphere, and a catalyst amount of an initiator usually used to produce a Grignard reagent is added and stirred.
  • the compound of II) is preferably dropped and stirred to obtain a Grignard reagent, and the halogen compound of formula (III) is preferably dropped directly into the reaction solution containing the obtained Grignard reagent.
  • the inert gas is not particularly limited, and examples thereof include nitrogen gas, argon gas, and helium gas. Nitrogen gas is preferable from the viewpoint of low cost and availability.
  • the amount of metal magnesium used is preferably 1.00 to 1.20 mol, more preferably 1.05 to 1.10 mol, per 1 mol of the compound of the above formula (II).
  • the ether solvent is not particularly limited, and examples thereof include diethyl ether, dimethoxyethane, diethoxymethane, t-butyl methyl ether, dibutyl ether, tetrahydrofuran (THF), diglyme and the like, and tetrahydrofuran is preferable. .
  • the initiator is not particularly limited, and examples thereof include iodine and alkyl halides such as 1,2-dibromoethane. Of these, 1,2-dibromoethane is preferable because it is inexpensive and easily available.
  • the amount of the halogen compound of the formula (III) used is preferably an equimolar amount with respect to the compound of the formula (II), and used in the range of 1.01 to 1.10 mol with respect to 1 mol of the compound of the formula (II). be able to.
  • the reaction temperature in step (A) is preferably 0 to 80 ° C, more preferably 40 to 60 ° C. Further, in the step (A), the reaction temperature when the obtained Grignard reagent is reacted with the halogen compound of the above formula (III) is preferably 0 to 80 ° C., more preferably 10 to 50 ° C., particularly in the reaction vessel. The temperature is preferably not more than 50 ° C, more preferably not more than 30 ° C.
  • the reaction time in step (A) is preferably 1.0 to 3.0 hours, more preferably 1.5 to 2.0 hours after the dropwise addition of the compound of formula (II) in the preparation reaction of the Grignard reagent.
  • the reaction of the obtained Grignard reagent with the compound of the above formula (III) is carried out by adding the compound of the above formula (III) dropwise over 1 to 8 hours, preferably 2 to 5 hours, usually at 10 to 40 ° C., preferably Is preferably carried out at 20 to 40 ° C.
  • halogenated aromatic vinyl intermediate of the above formula (IV) obtained in the step (A) is used in the next step (B) as it is without purification or isolation.
  • step (B) an organometallic nucleophile containing a functional group Y is added to the reaction mixture containing the halogenated aromatic vinyl intermediate of the above formula (IV) obtained in the step (A) to convert the functional group Y.
  • the organometallic nucleophile is not particularly limited as long as it contains a functional group Y and the functional group Y can be introduced into the halogenated aromatic vinyl intermediate of the above formula (IV).
  • V M 1 -Y (wherein M 1 is an alkali metal and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms)
  • M 2 is an alkaline earth metal
  • Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms
  • R 3 is halogen
  • a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms and may be the same as or different from Y). It is done.
  • M 1 is an alkali metal, and specific examples include lithium, sodium, potassium, cesium and the like.
  • Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, specifically, halogen, C 1-10 alkyl, C 2-10 Alkenyl, Tri C 1-6 alkylsiloxy, Silanol, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6- 12 aryloxy, amino, C 1-6 alkylamino, diC 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thionyl, thiobenzene C 1 -6 alkyl, C 1-6 alkylamide, amide C 1-6 alkyl and the like are preferable.
  • Y may be any functional group that forms a salt with an alkali metal, and is preferably C 1-10 alkyl, C 1-6 alkoxy, di-C 1-6 alkylamino, or the like.
  • Y may be a functional group that forms a salt with an alkaline earth metal or a group that can take a Grignard reagent with M 2 and R 3 .
  • the organometallic compound of the formula (V) is not particularly limited, and examples thereof include sodium methoxide, potassium methoxide, lithium methoxide, cesium methoxide, sodium ethoxide, potassium ethoxide, lithium ethoxide, Cesium ethoxide, sodium n-butoxide, potassium n-butoxide, lithium n-butoxide, cesium n-butoxide, sodium s-butoxide, potassium s-butoxide, lithium s-butoxide, cesium s-butoxide, sodium t-butoxide, potassium t-butoxide, lithium t-butoxide, cesium t-butoxide, sodium n-propoxide, potassium n-propoxide, lithium n-propoxide, cesium n-propoxide, sodium isopropoxide, potassium Metal alkoxides such as um isopropoxide, lithium isopropoxide, cesium isopropoxide, metal salts of phenols such as
  • M 2 is an alkaline earth metal, and specific examples thereof include magnesium and calcium.
  • R 3 may be any functional group that forms a salt with halogen or an alkaline earth metal, and includes at least one atom selected from the group consisting of halogen, silicon, nitrogen, sulfur, and oxygen atoms.
  • Etc. R 3 is, for example, halogen such as chlorine, bromine or iodine, or C 1-10 alkyl, C 2-10 alkenyl, tri-C 1-6 alkylsiloxy, silanol, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1- Preferred are 6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thionyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide, amide C 1-6
  • the organometallic compound of the above formula (VI) is not particularly limited.
  • M 2 is magnesium
  • R 3 is halogen
  • Y is C 1-10 alkyl, C 2-10 alkenyl, C 1-6 acyloxy C 1-6.
  • Grignard reagents which are alkyl, C 6-12 aryl, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thiobenzene C 1-6 alkyl or amide C 1-6 alkyl; You can also
  • the vinyl aromatic peak derived from the Grignard reagent in the reaction mixture is directly applied to the reaction mixture obtained in the step (A) by gas chromatography-mass spectrometry (GC-MS) or the like.
  • GC-MS gas chromatography-mass spectrometry
  • inert gas and the ether solvent those described for the step (A) can be used similarly, and those used in the step (A) are preferably used.
  • the amount of the organometallic compound of the formula (V) or (VI) used is preferably an equimolar amount with respect to the compound of the formula (II), and 1.0 to 3.0 with respect to 1 mol of the compound of the formula (II). It can be used in a molar range.
  • the reaction temperature in step (B) is preferably 0 to 80 ° C, more preferably 10 to 60 ° C.
  • the temperature in the reaction vessel is preferably not more than 40 ° C, more preferably not more than 35 ° C.
  • the progress of the reaction in the step (B), that is, the production of the heteroatom-containing aromatic vinyl compound of the formula (I) is fast, and the reaction is completed almost simultaneously with the completion of the dropping.
  • step (C) of isolating the heteroatom-containing aromatic vinyl compound of the formula (I) obtained in the step (B) by filtration and / or vacuum distillation.
  • Filtration is performed by, for example, filtering the reaction solution obtained using a filter such as a cellulose filter and collecting the filtrate.
  • the obtained filtrate is preferably concentrated under reduced pressure, the solvent is distilled off, and further distilled under reduced pressure.
  • the filter used for filtration is not particularly limited, but a cellulose filter having a mesh of 70 mm is preferably used.
  • PTFE may be used as the material of the filter, and silica gel, alumina, celite, or the like may be used as the filter medium.
  • the vacuum concentration is preferably performed at an external temperature of 30 ° C./0.2 kPa to 60 ° C./0.2 kPa, and the vacuum distillation is preferably performed at 30 ° C./0.1 kPa to 120 ° C./0.1 kPa. It is possible to carry out by collecting the main distillation according to the boiling point of the heteroatom-containing aromatic vinyl compound.
  • tert-Butoxy potassium lithium diisopropylamide manufactured by Wako Pure Chemical Industries, Ltd .: 1.5 mol / L solution (organometallic compound of formula (VI)) manufactured by Tokyo Chemical Industry Co., Ltd. n-octylmagnesium bromide: manufactured by Tokyo Chemical Industry Co., Ltd., about 22% THF solution, about 1 mol / L Ethanol: Wako Pure Chemical Industries, Ltd. Isopropanol: Wako Pure Chemical Industries, Ltd. tert-butanol: Wako Pure Chemical Industries, Ltd. Triethylamine: Wako Pure Chemical Industries, Ltd. Hexane: Wako Pure Chemical Industries, Ltd. Magnesium: Wako Pure Chemical Industries, Ltd. Dibromoethane: Wako Pure Chemical Industries, Ltd. ( Manufactured by THF (tetrahydrofuran): manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 1 Synthesis of ethoxydimethyl (4-vinylphenyl) silane Under a nitrogen gas atmosphere, 13.15 g (0.54 mol) of magnesium, 33.9 g of THF, and 1.87 g (0.01 mol) of 1,2-dibromoethane were placed in a 500 mL glass four-necked flask. Stir at 26 ° C. for 30 minutes. Next, 92.00 g (0.50 mol) of 4-bromostyrene was added dropwise so that the internal temperature did not exceed 60 ° C., and the mixture was stirred at 24 to 26 ° C. for 3 hours to react with (4-vinylphenyl) magnesium bromide. 45.9 g of liquid was prepared.
  • Example 2 Synthesis of iso-propoxydimethyl (4-vinylphenyl) silane Other than using 49.06 g (0.50 mol) of iso-propoxy potassium in place of ethoxy potassium and distilling under reduced pressure at 75 ° C./0.1 kPa to collect a fraction having a boiling point of 70 ° C./0.1 kPa as the main distillation Obtained iso-propoxydimethyl (4-biphenyl) silane in the same manner as in Example 1. The total yield calculated from the molar ratio of the starting 4-bromostyrene was 72.4%. As a result of GC-MS analysis, no dimethylbis (4-vinylphenyl) silane was detected, and the purity of iso-propoxydimethyl (4-vinylphenyl) silane was 99.9%.
  • Example 3 Synthesis of tert-butoxydimethyl (4-vinylphenyl) silane Except that 56.10 g (0.50 mol) of tert-butoxy potassium was used instead of ethoxy potassium, distilled under reduced pressure at 80 ° C./0.1 kPa, and the fraction having a boiling point of 73 ° C./0.1 kPa was recovered as the main distillation Produced tert-butoxydimethyl (4-vinylphenyl) silane in the same manner as in Example 1. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 74.1%. As a result of GC-MS analysis, no dimethylbis (4-vinylphenyl) silane was detected, and the purity of tert-butoxydimethyl (4-vinylphenyl) silane was 99.9%.
  • Example 4 Synthesis of diisopropylaminodimethyl (4-vinylphenyl) silane Implemented except that lithium diisopropylamide (0.50 mol) was used instead of ethoxypotassium and distilled under reduced pressure at 130 ° C / 0.1 kPa and the fraction having a boiling point of 96 ° C / 0.1 kPa was recovered as the main distillation.
  • diisopropylamino (4-vinylphenyl) silane was obtained.
  • the overall yield calculated from the molar ratio of the starting 4-bromostyrene was 74.1%.
  • the purity of diisopropylamino (4-vinylphenyl) silane was 99.9%.
  • Example 5 Synthesis of (2-thienyl) dimethyl (4-vinylphenyl) silane A solution reacted with 2-thienylmagnesium bromide (0.50 mol) produced in Production Example 1 described later instead of ethoxypotassium was filtered through silica gel, and then the solvent was distilled off under reduced pressure. In the same manner as in 1, (2-thienyl) dimethyl (4-vinylphenyl) silane was obtained. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 80.6%. As a result of GC-MS analysis, the purity of (2-thienyl) dimethyl (4-vinylphenyl) silane was 99.7%.
  • Example 6 Synthesis of dimethyloctyl (4-vinylphenyl) silane A crude reaction solution was obtained in the same manner as in Example 1 except that n-octylmagnesium bromide (0.50 mol) was used in place of ethoxypotassium, and then obtained by filtration through silica gel instead of the cellulose filter. The solvent was distilled off to obtain dimethyl-n-octyl (4-vinylphenyl) silane. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 84%. As a result of GC-MS analysis, the purity of dimethyloctyl (4-vinylphenyl) silane was 99.0%.
  • Example 7 Synthesis of methyloctyl (2-thienyl) (4-vinylphenyl) silane Instead of dichlorodimethylsilane (0.50 mol), dichloro (2-thienyl) methylsilane (0.50 mol) was used, and n-octylmagnesium bromide (0.50 mol) was used instead of ethoxypotassium. Except for the above, a crude reaction solution was obtained in the same manner as in Example 1, and the filtrate obtained by filtration through silica gel instead of the cellulose filter was evaporated to remove methyloctyl (2-thienyl) (4-vinylphenyl). Silane was obtained.
  • the overall yield calculated from the molar ratio of the starting 4-bromostyrene was 86%.
  • the purity of methyloctyl (2-thienyl) (4-vinylphenyl) silane was 99.0%.
  • Example 8 Synthesis of methyl (2-thienyl) ethoxy (4-vinylphenyl) silane
  • the crude reaction solution was used in the same manner as in Example 1 except that dichloro (2-thienyl) methylsilane (0.50 mol) produced in Production Example 2 described later was used instead of dichlorodimethylsilane (0.50 mol).
  • the filtrate obtained by filtering with silica gel instead of the cellulose filter was evaporated to obtain methyl (2-thienyl) ethoxy (4-vinylphenyl) silane.
  • the overall yield calculated from the molar ratio of the starting 4-bromostyrene was 86%.
  • the purity of methyl (2-thienyl) ethoxy (4-vinylphenyl) silane was 99.0%.
  • Production Example 1 Production of organometallic compound of formula (VI), 2-thienylmagnesium bromide
  • 4-bromothiophene (0. 50 mol) was used to produce 2-thienylmagnesium bromide.
  • Production Example 2 Production of Halogen Compound of Formula (III), Dichloro (2-thienyl) methylsilane
  • 2-bromothiophene (0 Trichloromethylsilane was added dropwise to the solution of 2-thienylmagnesium bromide prepared using .50 mol) so that the internal temperature did not exceed 60 ° C. to prepare a THF solution of dichloro (2-thienyl) methylsilane.
  • Synthesis Example 2 Synthesis of chloroethoxydimethylsilane
  • 49.4 g (0.39 mol) of dimethyldichlorosilane and 194 g of hexane were added to a 1 L glass four-necked flask at room temperature, followed by salt / ice. While cooling to 0 ° C. in a bath, a mixed solution of 17.90 g (0.39 mol) of ethanol, 38.5 g (0.38 mol) of triethylamine, and 194 g of hexane was added for 90 minutes so that the internal temperature was 15 ° C. or less. And then stirred at 24 to 26 ° C.
  • chloroethoxydimethylsilane reaction solution is filtered through celite, concentrated at 80 ° C under atmospheric pressure to distill off the solvent, and then distilled under reduced pressure at 80 ° C / 15 kPa, with the fraction having a boiling point of 65 ° C / 15 kPa as the main fraction. Collected to obtain purified chloroethoxydimethylsilane.
  • Synthesis Example 3 Synthesis of ethoxydimethyl (4-vinylphenyl) silane Chloroethoxydimethylsilane (0.39 mol) prepared in Synthesis Example 2 was placed in a nitrogen-substituted 500 mL glass four-necked flask under an ice bath. The mixture was stirred while cooling until the internal temperature became 3-10 ° C. or lower. Thereafter, the reaction solution (0.39 mol) of (4-vinylphenyl) magnesium bromide prepared in Synthesis Example 1 was added dropwise so that the internal temperature was 15 ° C. or lower, and the mixture was stirred at 24 to 26 ° C. for 20 hours.
  • the overall yield calculated from the molar ratio of the starting dichlorodimethylsilane was 7.4%.
  • 5.0% of dimethylbis (4-vinylphenyl) silane (molecular weight: 264.13) was contained as an impurity, and the purity of ethoxydimethyl (4-vinylphenyl) silane was 95. 0.0%.
  • Comparative Example 2 Synthesis of iso-propoxydimethyl (4-vinylphenyl) silane Using 23.40 g (0.39 mol) of isopropanol instead of ethanol, distilled under reduced pressure at 85 ° C / 15 kPa, and having a boiling point of 70 ° C / 15 kPa Purified chloroisopropoxydimethylsilane was obtained in the same manner as in Synthesis Example 2 of Comparative Example 1 except that the fraction was collected as the main distillate.
  • Iso-propoxydimethyl (4-biphenyl) silane was obtained in the same manner as in Synthesis Example 3 of Comparative Example 1 except that the chloroisopropoxydimethylsilane obtained above was used instead of chloroethoxydimethylsilane.
  • the overall yield calculated from the molar ratio of the starting dichlorodimethylsilane was 8.2%.
  • dimethylbis (4-vinylphenyl) silane was contained as an impurity, and the purity of isopropoxydimethyl (4-vinylphenyl) silane was 93.8%. .
  • Comparative Example 3 Synthesis of tert-butoxydimethyl (4-vinylphenyl) silane 28.91 g (0.39 mol) of tert-butanol was used instead of ethanol and distilled under reduced pressure at 88 ° C / 15 kPa, and the boiling point was 75 ° C / Purified chloro-tert-butoxydimethylsilane was obtained in the same manner as in Synthesis Example 2 of Comparative Example 1 except that the 15 kPa fraction was collected as the main distillation.
  • Tert-butoxydimethyl (4-vinylphenyl) silane was obtained in the same manner as in Synthesis Example 3 of Comparative Example 1 except that the chloro-tert-butoxydimethylsilane obtained above was used instead of chloroethoxydimethylsilane.
  • the overall yield calculated from the molar ratio of the starting dichlorodimethylsilane was 9.1%.
  • 5.4% dimethylbis (4-vinylphenyl) silane was contained as an impurity, and the purity of tert-butoxydimethyl (4-vinylphenyl) silane was 94.6%. It was.
  • the production methods of Examples 1 to 8 via chloro (vinylphenyl) silane as an intermediate are more than the conventional methods for producing heteroatom-containing aromatic vinyl compounds via chloroalkoxysilane as an intermediate.
  • the target product can be obtained with high purity and high yield. Further, in the comparative example, since the hydrogen chloride triethylamine salt is generated, the operation is dangerous, whereas in the example, the target product can be safely taken out in one pot.

Abstract

A method for producing a heteroatom-containing aromatic vinyl compound of formula (I): R1-R2-Y [wherein: R1 represents a specific aromatic group; R2 represents Si(R10)(R11) wherein R10 and R11 independently represent a specific group; and Y represents a specific group], said method comprising: (A) a step for reacting a Grignard reagent-containing reaction solution, which is obtained by reacting a specific compound of formula (II): R1-X1 with magnesium, with a specific halogen compound of formula (III): X2-R2-X3 to give a specific halogenated aromatic vinyl intermediate of formula (IV): R1-R2-X3 in a crudely purified state; and (B) a step for adding an organic metal nucleophilic agent containing Y to the reaction mixture containing the halogenated aromatic vinyl intermediate obtained in step (A) and thus introducing the functional group Y thereinto to give the heteroatom-containing aromatic vinyl compound represented by formula (I).

Description

ヘテロ原子含有芳香族ビニル化合物の製造方法Process for producing heteroatom-containing aromatic vinyl compound
 本発明は、ヘテロ原子を有する芳香族ビニル化合物の製造方法に関する。 The present invention relates to a method for producing an aromatic vinyl compound having a hetero atom.
 ヘテロ原子を含む置換基を有する芳香族ビニル化合物は、医薬品や電子材料の重要な中間体であり、また、機能性高分子の重要なモノマー成分でもある。 An aromatic vinyl compound having a substituent containing a hetero atom is an important intermediate for pharmaceuticals and electronic materials, and is also an important monomer component of a functional polymer.
 従来、例えばモノアルコキシジアルキルシリルスチレンの製造方法としては、次のような方法が知られている。有機溶剤および三級アミンの存在下で、ジハロゲン化ジアルキルシランをアルキルアルコールと反応させて、モノアルコキシクロロシランを生成する。その後、副生する塩酸塩をセライトろ過等で除去した後、蒸留精製し、ハロゲン化スチレンから誘導したグリニャール試薬と反応させる。得られたモノアルコキシジアルキルシリルスチレンをハロゲン化マグネシウム塩からろ別した後、蒸留精製をする。 Conventionally, for example, the following methods are known as methods for producing monoalkoxydialkylsilylstyrene. A dihalogenated dialkylsilane is reacted with an alkyl alcohol in the presence of an organic solvent and a tertiary amine to produce a monoalkoxychlorosilane. Thereafter, by-product hydrochloride is removed by Celite filtration or the like, and then purified by distillation and reacted with a Grignard reagent derived from halogenated styrene. The obtained monoalkoxydialkylsilylstyrene is filtered from the magnesium halide salt and then purified by distillation.
 非特許文献1には、不活性ガスの雰囲気下、炭化水素系溶媒のもとで、ジアルキルジクロロシランとアルコールを脱酸剤としてアミン類の使用のもと、0℃で5時間反応させ、ろ過、溶媒洗浄、蒸留を経て、モノアルコキシクロロシランを得る方法が開示されている。 Non-Patent Document 1 discloses that a dialkyldichlorosilane and alcohol are reacted at 0 ° C. for 5 hours in an inert gas atmosphere under a hydrocarbon solvent using amines as a deoxidizer and filtered. , A method for obtaining monoalkoxychlorosilane through solvent washing and distillation.
 しかし、非特許文献1に記載の方法では、塩化水素とアミンの塩が生成するが、この塩は炭化水素溶媒に溶解性を有するため、ろ過、溶媒洗浄、蒸留だけでは除去が難しく、不純物として存在し、次工程での副反応のため、目的物の収率や純度を低下させてしまう問題がある。 However, in the method described in Non-Patent Document 1, a salt of hydrogen chloride and an amine is produced. However, since this salt is soluble in a hydrocarbon solvent, it is difficult to remove it by filtration, solvent washing, and distillation alone. There exists a problem of reducing the yield and purity of the target product due to the side reaction in the next step.
 また、モノアルコキシクロロシランは、反応性が高く空気中で容易に分解してしまい、純度と収率低下の一因となったり、水分と反応して塩化水素を発生させるため、取り扱いの安全上問題がある。また、生成塩とのろ別や、蒸留精製の際の目的物のロスが発生するため、収率の低下原因となる。さらにグリニャール試薬との反応において、生成するモノアルコキシジアルキルシリルスチレンのアルコキシシリル基もグリニャール試薬との反応性を有するため、目的外の副反応が生じるという問題がある。 In addition, monoalkoxychlorosilane is highly reactive and easily decomposes in the air, causing a decrease in purity and yield, or reacting with moisture to generate hydrogen chloride, which is a problem in handling safety. There is. Moreover, the loss of the target product at the time of filtration separation from the produced salt and distillation purification occurs, which causes a decrease in yield. Furthermore, in the reaction with the Grignard reagent, the alkoxysilyl group of the resulting monoalkoxydialkylsilylstyrene also has reactivity with the Grignard reagent, so that there is a problem that an unintended side reaction occurs.
 そこで、本発明は、高純度、高収率で目的とするヘテロ原子含有芳香族ビニル化合物を得ることのできる製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a production method capable of obtaining a target heteroatom-containing aromatic vinyl compound with high purity and high yield.
 本発明者は、鋭意検討の結果、ハロゲン化芳香族ビニル化合物を出発物質として用い、ワンポッドで反応させることにより、ヘテロ原子含有芳香族ビニル化合物を高純度、高収率で安全に得ることができ、上記課題を解決できることを見出し、さらに検討を重ねて本発明を完成した。 As a result of intensive studies, the present inventor can obtain a heteroatom-containing aromatic vinyl compound with high purity and high yield safely by using a halogenated aromatic vinyl compound as a starting material and reacting in one pod. The present inventors have found that the above problems can be solved, and have further studied to complete the present invention.
 すなわち、本発明は、
[1]式(I):R1-R2-Y
(式中、R1は、ビニル基を有し、かつグリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、R2はSi(R10)(R11)であり、式中、R10およびR11は、それぞれ独立して、ハロゲン、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む基であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)
で表されるヘテロ原子含有芳香族ビニル化合物を製造する方法であって、
(A)式(II):R1-X1
(式中、R1は前記と同じであり、X1はハロゲンである)
で表される化合物、好ましくは4-クロロスチレン、4-ブロモスチレンまたは2-ビニル-6-クロロピリジンにマグネシウムを反応させて得られるグリニャール試薬を含む反応液に、
式(III):X2-R2-X3
(式中、X2およびX3はそれぞれ独立してハロゲンであり、R2は前記と同じである)
で表されるハロゲン化合物、好ましくはジクロロジメチルシラン、ジクロロジエチルシランおよびジクロロジプロピルシランなどのジクロロジC1―6アルキルシラン、ジクロロジトリメチルシロキシシラン、シクロロジトリエチルシロキシシラン、ジクロロジジメチルシロキシシランまたはジクロロジジエチルシロキシシランなどのジクロロジアルキルシロキシシラン、テトラクロロシランなどのテトラハロゲン化シラン、ジクロロ(アセトキシエチル)(メチル)シラン、(メチル)シラン、ジクロロ(アセトキシメチル)ジクロロ(メチル)シランまたはジクロロ(アセトキシエチル)(エチル)シランなどのジハロゲン(アシルオキシアルキル)(アルキル)シラン、ジクロロジtert-ブトキシシランなどのジハロゲンジアルコキシシラン、ジクロロ(フェノキシ)(メチル)シラン、ジクロロ(フェニル)(メチル)シラン、ジクロロジジメチルアミノシラン、ジクロロシアノプロピルメチルシラン、ジクロロ(エトキシプロピル)(メチル)シラン、ジクロロ(エトキシプロピル)(エチル)シラン、ジクロロ(メトキシプロピル)(メチル)シラン、ジクロロ(メトキシプロピル)(エチル)シラン、ジクロロ(ジメチルアミドメチル)(メチル)シラン、ジクロロ(N、N-ジメチルアミドメチル)(メチル)シラン、2-(ジクロロメチルシリル)チオフェンおよび[(ジクロロメチル)メチル]チオベンゼンから選択される化合物を反応させ、
式(IV):R1-R2-X3
(式中、R1、R2およびX3は前記と同じである)
で表されるハロゲン化芳香族ビニル中間体を生成する工程、および
(B)工程(A)で得られるハロゲン化芳香族ビニル中間体を含む反応混合物に、官能基Yを含む有機金属求核剤を添加して官能基Yを導入し、式(I)で表されるヘテロ原子含有芳香族ビニル化合物を得る工程
を含む製造方法、
[2](C)工程(B)で得られる式(I)で表されるヘテロ原子含有芳香族ビニル化合物をろ過および/または減圧蒸留により単離する工程
を含む上記[1]記載の製造方法、
[3]有機金属求核剤が、
式(V):M1-Y
(式中、M1はアルカリ金属であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)
で表される有機金属化合物、好ましくはナトリウムメトキシド、カリウムメトキシド、リチウムメトキシド、セシウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムエトキシド、セシウムエトキシド、ナトリウムn-ブトキシド、カリウムn-ブトキシド、リチウムn-ブトキシド、セシウムn-ブトキシド、ナトリウムs-ブトキシド、カリウムs-ブトキシド、リチウムs-ブトキシド、セシウムs-ブトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド、リチウムt-ブトキシド、セシウムt-ブトキシド、ナトリウムn-プロポキシド、カリウムn-プロポキシド、リチウムn-プロポキシド、セシウムn-プロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムイソプロポキシド、セシウムイソプロポキシドなどの金属アルコキシドや、ナトリウムフェノキシド、カリウムフェノキシド、リチウムフェノキシド、セシウムフェノキシド等のフェノール類の金属塩、ナトリウムジメチルアミド、カリウムジメチルアミド、リチウムジメチルアミド、セシウムジメチルアミド、ナトリウムジエチリアミド、カリウムジエチルアミド、リチウムジエチルアミド、セシウムジエチルアミド、ナトリウムジイソプロピルアミド、カリウムジイソプロピルアミド、リチウムジイソプロピルアミド、セシウムジイソプロピルアミド、ナトリウムトリス(トリメチルシリル)アミド、カリウムトリス(トリメチルシリル)アミド、リチウムトリス(トリメチルシリル)アミド、セシウムトリス(トリメチルシリル)アミド等の金属アミド、ナトリウムチオラート、カリウムチオラート、リチウムチオラート、セシウムチオラート、ナトリウムベンゼンチオラート、カリウムベンゼンチオラート、リチウムベンゼンチオラート、セシウムベンゼンチオラートなどのチオール類の金属塩、およびn-ブチルリチウム等のアルキルリチウム等から選択される有機金属化合物、または
式(VI):
Figure JPOXMLDOC01-appb-C000002
(式中、M2はアルカリ土類金属であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、R3はハロゲン、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、Yと同一または異なっていてもよい)
で表される有機金属化合物、好ましくはマグネシウムジメトキシド、マグネシウムジエトキシド、マグネシウムジn-ブトキシド、マグネシウムジs-ブトキシド、マグネシウムジtert-ブトキシド、マグネシウムジn-プロポキシド、マグネシウムジイソプロポキシドなどの金属アルコキシド、およびマグネシウムジフェノキシド等のフェノール類から選択される有機金属化合物、より好ましくは、M2がマグネシウムであり、R3がハロゲンであり、YがC1-10アルキル、C2-10アルケニル、C1-6アシルオキシC1-6アルキル、C6-12アリール、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオベンゼンC1-6アルキルまたはアミドC1-6アルキルであるグリニャール試薬である上記[1]または[2]記載の製造方法、
[4]有機金属求核剤が金属アルコキシドまたはグリニャール試薬である上記[3]記載の製造方法、
[5]R10およびR11が、それぞれ独立して、ハロゲン、C1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルである上記[1]~[4]のいずれかに記載の製造方法、
[6]Yが、C1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、シラノール、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオニル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルである上記[1]~[5]のいずれかに記載の製造方法、
[7]工程(A)を開始剤の存在下で開始する上記[1]~[6]のいずれかに記載の製造方法、ならびに
[8]式(III)のハロゲン化合物がジクロロジC1―10アルキルシランまたはジクロロチオフェンC1―10アルキルシランである上記[1]~[7]のいずれかに記載の製造方法
に関する。
That is, the present invention
[1] Formula (I): R 1 -R 2 -Y
(Wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent, R 2 is Si (R 10 ) (R 11 ), In the formula, R 10 and R 11 are each independently a group containing at least one atom selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur and oxygen atoms, Y is carbon, A functional group containing at least one atom selected from the group consisting of silicon, nitrogen, sulfur and oxygen atoms)
A process for producing a heteroatom-containing aromatic vinyl compound represented by
(A) Formula (II): R 1 -X 1
(Wherein R 1 is the same as above, and X 1 is halogen)
A reaction solution containing a Grignard reagent obtained by reacting magnesium with a compound represented by the formula, preferably 4-chlorostyrene, 4-bromostyrene or 2-vinyl-6-chloropyridine,
Formula (III): X 2 -R 2 -X 3
(Wherein X 2 and X 3 are each independently halogen, and R 2 is the same as above)
, Preferably dichlorodiC 1-6 alkylsilanes such as dichlorodimethylsilane, dichlorodiethylsilane and dichlorodipropylsilane, dichloroditrimethylsiloxysilane, cycloalkyloditriethylsiloxysilane, dichlorodidimethylsiloxysilane or dichloro Dichlorodialkylsiloxysilanes such as didiethylsiloxysilane, tetrahalogenated silanes such as tetrachlorosilane, dichloro (acetoxyethyl) (methyl) silane, (methyl) silane, dichloro (acetoxymethyl) dichloro (methyl) silane or dichloro (acetoxyethyl) ) Dihalogendialkoxysila such as dihalogen (acyloxyalkyl) (alkyl) silane such as (ethyl) silane, dichloroditert-butoxysilane , Dichloro (phenoxy) (methyl) silane, dichloro (phenyl) (methyl) silane, dichlorodidimethylaminosilane, dichlorocyanopropylmethylsilane, dichloro (ethoxypropyl) (methyl) silane, dichloro (ethoxypropyl) (ethyl) silane Dichloro (methoxypropyl) (methyl) silane, dichloro (methoxypropyl) (ethyl) silane, dichloro (dimethylamidomethyl) (methyl) silane, dichloro (N, N-dimethylamidomethyl) (methyl) silane, 2- ( Reacting a compound selected from dichloromethylsilyl) thiophene and [(dichloromethyl) methyl] thiobenzene,
Formula (IV): R 1 -R 2 -X 3
(Wherein R 1 , R 2 and X 3 are the same as above)
And (B) an organometallic nucleophile containing a functional group Y in the reaction mixture containing the halogenated aromatic vinyl intermediate obtained in step (A). A process for producing a heteroatom-containing aromatic vinyl compound represented by formula (I) by adding a functional group Y by adding
[2] (C) The production method according to the above [1], comprising the step of isolating the heteroatom-containing aromatic vinyl compound represented by the formula (I) obtained in the step (B) by filtration and / or vacuum distillation ,
[3] An organometallic nucleophile is
Formula (V): M 1 -Y
(Wherein M 1 is an alkali metal and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms)
Preferably represented by sodium methoxide, potassium methoxide, lithium methoxide, cesium methoxide, sodium ethoxide, potassium ethoxide, lithium ethoxide, cesium ethoxide, sodium n-butoxide, potassium n- Butoxide, lithium n-butoxide, cesium n-butoxide, sodium s-butoxide, potassium s-butoxide, lithium s-butoxide, cesium s-butoxide, sodium t-butoxide, potassium t-butoxide, lithium t-butoxide, cesium t- Butoxide, sodium n-propoxide, potassium n-propoxide, lithium n-propoxide, cesium n-propoxide, sodium isopropoxide, potassium isopropoxide, lithium iso Metal alkoxides such as lopoxide and cesium isopropoxide, metal salts of phenols such as sodium phenoxide, potassium phenoxide, lithium phenoxide and cesium phenoxide, sodium dimethylamide, potassium dimethylamide, lithium dimethylamide, cesium dimethylamide, sodium diethyl Amide, potassium diethylamide, lithium diethylamide, cesium diethylamide, sodium diisopropylamide, potassium diisopropylamide, lithium diisopropylamide, cesium diisopropylamide, sodium tris (trimethylsilyl) amide, potassium tris (trimethylsilyl) amide, lithium tris (trimethylsilyl) amide, cesium tris (Trimethylsilyl) amide etc. Select from metal amides, sodium thiolate, potassium thiolate, lithium thiolate, cesium thiolate, sodium benzene thiolate, potassium benzene thiolate, metal salts of thiols such as lithium benzene thiolate, cesium benzene thiolate, and alkyl lithium such as n-butyllithium. An organometallic compound, or formula (VI):
Figure JPOXMLDOC01-appb-C000002
Wherein M 2 is an alkaline earth metal, Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, and R 3 is halogen , A functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, and may be the same as or different from Y)
And preferably magnesium dimethoxide, magnesium diethoxide, magnesium di n-butoxide, magnesium di s-butoxide, magnesium di tert-butoxide, magnesium di n-propoxide, magnesium diisopropoxide, etc. An organometallic compound selected from phenols such as magnesium diphenoxide, and more preferably, M 2 is magnesium, R 3 is halogen, Y is C 1-10 alkyl, C 2-10 Alkenyl, C 1-6 acyloxy C 1-6 alkyl, C 6-12 aryl, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thiobenzene C 1-6 alkyl or a Grignard reagent is an amido C 1-6 alkyl above [1] or [2] described Manufacturing method,
[4] The production method of the above-mentioned [3], wherein the organometallic nucleophile is a metal alkoxide or a Grignard reagent,
[5] R 10 and R 11 are each independently halogen, C 1-10 alkyl, C 2-10 alkenyl, tri-C 1-6 alkylsiloxy, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1- [1] to [4] above, which is 6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide or amide C 1-6 alkyl The production method according to any one of
[6] Y is C 1-10 alkyl, C 2-10 alkenyl, tri-C 1-6 alkylsiloxy, silanol, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxyC The production according to any one of [1] to [5] above, which is 1-6 alkyl, C 4-10 heterocyclyl, thionyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide or amide C 1-6 alkyl. Method,
[7] The production method according to any one of [1] to [6] above, wherein the step (A) is started in the presence of an initiator, and [8] the halogen compound of the formula (III) is dichlorodi-C 1-10 The production method according to any one of [1] to [7] above, which is alkylsilane or dichlorothiophene C 1-10 alkylsilane.
 本発明の、式(I):R1-R2-Y(式中、R1は、ビニル基を有し、かつグリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、R2はSi(R10)(R11)であり、式中、R10およびR11は、それぞれ独立して、ハロゲン、炭素、ケイ素、窒素、硫黄または酸素原子からなる群より選択される少なくとも1種以上の原子を含む基であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)で表される、Si、O、NおよびSから選択される少なくとも1つのヘテロ原子を含有するヘテロ原子含有芳香族ビニル化合物を製造する方法であって、(A)式(II):R1-X1(式中、R1は前記と同じであり、X1はハロゲンである)で表される化合物にマグネシウムを反応させて得られるグリニャール試薬を含む反応液に、式(III):X2-R2-X3(式中、X2およびX3はそれぞれ独立してハロゲンであり、R2は前記と同じである)で表されるハロゲン化合物を反応させ、式(IV):R1-R2-X3(式中、R1、R2およびX3は前記と同じである)で表されるハロゲン化芳香族ビニル中間体を生成する工程、および(B)工程(A)で得られるハロゲン化芳香族ビニル中間体を含む反応混合物に、官能基Yを含む有機金属求核剤を添加して官能基Yを導入し、式(I)で表されるヘテロ原子含有芳香族ビニル化合物を得る工程を含む式(I)で表されるヘテロ原子含有芳香族ビニル化合物の製造方法によれば、式(I)で表されるヘテロ原子含有芳香族ビニル化合物を高純度、高収率で安全に得ることができる。 Formula (I): R 1 -R 2 -Y of the present invention (wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent) , R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur or oxygen atoms. Y is a group containing at least one atom, and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms), Si A method for producing a heteroatom-containing aromatic vinyl compound containing at least one heteroatom selected from O, N, and S, wherein (A) Formula (II): R 1 -X 1 (wherein R 1 is the same as defined above, X 1 is a compound represented by a halogen) To the reaction solution containing the Grignard reagent obtained by reacting magnesium, formula (III): X 2 -R 2 -X 3 ( wherein, X 2 and X 3 is a halogen independently, R 2 is the And a halogen compound represented by the formula (IV): R 1 —R 2 —X 3 (wherein R 1 , R 2 and X 3 are the same as above) An organometallic nucleophile containing a functional group Y is added to the reaction mixture containing the halogenated aromatic vinyl intermediate obtained in the step (B) and the step (A). According to the method for producing a heteroatom-containing aromatic vinyl compound represented by the formula (I), including the step of introducing the functional group Y and obtaining the heteroatom-containing aromatic vinyl compound represented by the formula (I), A heteroatom-containing aromatic vinyl compound represented by the formula (I) has a high purity and a high purity. It is possible to obtain safely at a rate.
 本発明は、式(I):R1-R2-Y(式中、R1は、ビニル基を有し、かつグリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、R2はSi(R10)(R11)であり、式中、R10およびR11は、それぞれ独立して、ハロゲン、炭素、ケイ素、窒素、硫黄または酸素原子からなる群より選択される少なくとも1種以上の原子を含む基であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)で表されるヘテロ原子含有芳香族ビニル化合物を製造する方法であって、(A)式(II):R1-X1(式中、R1は上記と同じであり、X1はハロゲンである)で表される化合物にマグネシウムを反応させて得られるグリニャール試薬を含む反応液に、式(III):X2-R2-X3(式中、X2およびX3はそれぞれ独立してハロゲンであり、R2は上記と同じである)で表されるハロゲン化合物を反応させ、式(IV):R1-R2-X3(式中、R1、R2およびX3は上記と同じである)で表されるハロゲン化芳香族ビニル中間体を生成する工程、および(B)工程(A)で得られるハロゲン化芳香族ビニル中間体を含む反応混合物に、官能基Yを含む有機金属求核剤を添加して官能基Yを導入し、式(I)で表されるヘテロ原子含有芳香族ビニル化合物を得る工程を含む式(I)で表されるヘテロ原子含有芳香族ビニル化合物の製造方法である。 The present invention relates to the formula (I): R 1 —R 2 —Y (wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent. , R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur or oxygen atoms. Y is a group containing at least one atom, and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms) A method for producing a containing aromatic vinyl compound, which is represented by (A) Formula (II): R 1 -X 1 (wherein R 1 is the same as above, and X 1 is halogen) A reaction solution containing a Grignard reagent obtained by reacting magnesium with a compound is added to the formula (III : X 2 -R 2 -X 3 (wherein, X 2 and X 3 is a halogen independently, R 2 is as defined above) by reacting a halogen compound represented by the formula (IV) A step of producing a halogenated aromatic vinyl intermediate represented by: R 1 -R 2 -X 3 (wherein R 1 , R 2 and X 3 are the same as above), and step (B) ( Into the reaction mixture containing the halogenated aromatic vinyl intermediate obtained in A), an organometallic nucleophile containing a functional group Y is added to introduce the functional group Y, and the heteroatom-containing compound represented by the formula (I) It is a manufacturing method of the hetero atom containing aromatic vinyl compound represented by Formula (I) including the process of obtaining an aromatic vinyl compound.
 上記式(IV)で表されるハロゲン化芳香族ビニル化合物を中間体として経由し、ワンポッドで反応を完了させることにより、副生成物の生成を抑え、高純度および高収率で上記式(I)の、ビニル基を含む置換基およびヘテロ原子を含む置換基を有するヘテロ原子含有芳香族ビニル化合物を安全に製造することができる。 By completing the reaction in one pod via the halogenated aromatic vinyl compound represented by the above formula (IV) as an intermediate, the formation of by-products is suppressed, and the above formula (I) is obtained in high purity and high yield. The heteroatom-containing aromatic vinyl compound having a substituent containing a vinyl group and a substituent containing a heteroatom can be produced safely.
 工程(A)は、式(II):R1-X1(式中、R1はビニル基を有し、グリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、X1はハロゲンである)の化合物にマグネシウムを反応させて得られるグリニャール試薬を含む反応液に、式(III):X2-R2-X3(式中、X2およびX3はそれぞれ独立してハロゲンであり、R2はSi(R10)(R11)であり、式中、R10およびR11は、それぞれ独立して、ハロゲン、炭素、ケイ素、窒素、硫黄または酸素原子からなる群より選択される少なくとも1種以上の原子を含む基である)のハロゲン化合物を反応させ、式(IV):R1-R2-X3(式中、R1、R2およびX3は上記と同じである)のハロゲン化芳香族ビニル中間体を製造する工程である。 In step (A), formula (II): R 1 -X 1 (wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent, In a reaction solution containing a Grignard reagent obtained by reacting magnesium with a compound of 1 is halogen, the compound of formula (III): X 2 —R 2 —X 3 (wherein X 2 and X 3 are each independently R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently a group consisting of halogen, carbon, silicon, nitrogen, sulfur or oxygen atoms. And a halogen compound of the formula (IV): R 1 -R 2 -X 3 (wherein R 1 , R 2 and X 3 are the above-mentioned groups). The same as that of the halogenated aromatic vinyl intermediate.
 R1は、ビニル基を有し、グリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、ビニル基は反応性を有する炭素炭素二重結合を意味する。「グリニャール試薬に不活性な基で置換されていてもよい芳香族基」の芳香族基は、例えば5~14員環のアリール基、好ましくは5~6員環のアリール基、環を構成する原子として、窒素、硫黄、酸素などのヘテロ原子を少なくとも1個、好ましくは1~2個含む、5~14員環のヘテロアリール基、好ましくは5~6員環のヘテロアリール基であって、環中の炭素原子にX1との結合手を有するものなどが挙げられ、フェニル、ピリジル、ピリミジニル、チエニル、フラニル、ナフチル、キノリル、ベンゾフラニル、アントラセニル等が挙げられ、フェニルが好ましい。「グリニャール試薬に不活性な基で置換されていてもよい芳香族基」の芳香族基に置換してもよいグリニャール試薬に不活性な基としては、例えば、アルキル基(例えば炭素数1~5のアルキル基、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル等)、エーテル基、シリルエーテル基等が挙げられる。グリニャール試薬に不活性な基は、芳香族基の置換可能ないずれの位置に置換していてもよいが、ビニル基による置換位置のパラ位にX1との結合手を有することが好ましいため、それ以外の置換可能な位置に置換することが好ましい。置換基が2個以上である場合には、置換基はそれぞれ同一または異なっていてもよい。置換基の数は1~3個が好ましく、1個がより好ましい。 R 1 is an aromatic group which has a vinyl group and may be substituted with a group inert to the Grignard reagent, and the vinyl group means a reactive carbon-carbon double bond. The aromatic group of the “aromatic group optionally substituted with a group inert to the Grignard reagent” constitutes a ring, for example, a 5- to 14-membered aryl group, preferably a 5- to 6-membered aryl group A 5- to 14-membered heteroaryl group, preferably a 5- to 6-membered heteroaryl group containing at least one, preferably 1 to 2, heteroatoms such as nitrogen, sulfur, oxygen, etc. as atoms, Examples include those having a bond to X 1 at a carbon atom in the ring, such as phenyl, pyridyl, pyrimidinyl, thienyl, furanyl, naphthyl, quinolyl, benzofuranyl, anthracenyl, and the like, and phenyl is preferred. Examples of the group inert to the Grignard reagent that may be substituted with the aromatic group of the “aromatic group optionally substituted with an inert group to the Grignard reagent” include an alkyl group (for example, 1 to 5 carbon atoms). Alkyl groups, specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.), ether groups, silyl ether groups, and the like. The group inert to the Grignard reagent may be substituted at any substitutable position of the aromatic group, but preferably has a bond to X 1 at the para position of the substitution position by the vinyl group. It is preferable to substitute at other substitutable positions. When two or more substituents are present, the substituents may be the same or different. The number of substituents is preferably 1 to 3, more preferably 1.
 X1はハロゲンであり、塩素原子、臭素原子またはヨウ素原子から選択され、塩素原子が好ましい。 X 1 is halogen, selected from a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom.
 式(II):R1-X1(式中、R1はビニル基を有し、グリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、X1はハロゲンである)の化合物の具体例としては、4-クロロスチレン、4-ブロモスチレン、2-ビニル-6-クロロピリジンなどが挙げられる。 Formula (II): R 1 -X 1 (wherein R 1 is an aromatic group having a vinyl group, which may be substituted with a group inert to the Grignard reagent, and X 1 is a halogen) Specific examples of the compound include 4-chlorostyrene, 4-bromostyrene, 2-vinyl-6-chloropyridine and the like.
 X2およびX3は、それぞれ独立して塩素原子、臭素原子またはヨウ素原子などのハロゲンであり、安価で入手のしやすさの点から塩素原子が好ましい。 X 2 and X 3 are each independently a halogen such as a chlorine atom, a bromine atom or an iodine atom, and a chlorine atom is preferable from the viewpoint of low cost and availability.
 R2はSi(R10)(R11)であり、式中R10およびR11は、それぞれ独立して、ハロゲン、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む基である。例えば、R10およびR11は、それぞれ独立して、ハロゲン、直鎖または分岐鎖のアルキル、直鎖または分岐鎖のアルケニル、カルボニル、アミド、アミノ、エーテル、フェノールまたはフェニルを含む基が挙げられ、具体的には、ハロゲン、C1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルなどが好ましい。 R 2 is Si (R 10 ) (R 11 ), wherein R 10 and R 11 are each independently at least one selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur and oxygen atoms. A group containing more than one kind of atom. For example, R 10 and R 11 each independently include a group containing halogen, linear or branched alkyl, linear or branched alkenyl, carbonyl, amide, amino, ether, phenol or phenyl, Specifically, halogen, C 1-10 alkyl, C 2-10 alkenyl, tri C 1-6 alkylsiloxy, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxy C 1 -6 alkyl, C 4-10 heterocyclyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide, amide C 1-6 alkyl and the like are preferable.
 R10またはR11において、ハロゲンは塩素原子、臭素原子またはヨウ素原子である。 In R 10 or R 11 , the halogen is a chlorine atom, a bromine atom or an iodine atom.
 本明細書において、「C1-10アルキル」は、直鎖または分岐鎖の炭素数1~10個の飽和炭化水素基であり、特に限定されるものではないが、例えばメチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどが挙げられ、R10またはR11としてはメチル、エチル、オクチルなどがより好ましい。 In the present specification, “C 1-10 alkyl” is a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, and is not particularly limited, but examples thereof include methyl, ethyl, propyl, Examples thereof include isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and the like. R 10 or R 11 is more preferably methyl, ethyl, octyl or the like.
 本明細書において、「C2-10アルケニル」は、直鎖または分岐鎖の少なくとも1つの炭素炭素二重結合を有する炭素数2~10個の炭化水素基であり、特に限定されるものではないが、例えばエテニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、2-ペンテニルなどが挙げられる。 In the present specification, “C 2-10 alkenyl” is a hydrocarbon group having 2 to 10 carbon atoms having at least one straight-chain or branched carbon-carbon double bond, and is not particularly limited. Are, for example, ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 2-pentenyl and the like.
 本明細書において、「トリC1-6アルキルシロキシ」としては、トリメチルシロキシ、トリエチルシロキシ、トリブチルシロキシ、トリ-iso-プロピルシロキシ、トリ-tert-ブチルシロキシなどが挙げられる。 In the present specification, examples of “tri-C 1-6 alkylsiloxy” include trimethylsiloxy, triethylsiloxy, tributylsiloxy, tri-iso-propylsiloxy, tri-tert-butylsiloxy and the like.
 本明細書において、「C1-6アシル」は、炭素数1~6個のカルボン酸からOH基を除去したものを意味し、特に限定されるものではないが、具体的には、メタノイル、エタノイル、ベンゾイルなどが挙げられる。 In the present specification, “C 1-6 acyl” means one obtained by removing an OH group from a carboxylic acid having 1 to 6 carbon atoms, and is not particularly limited. Specifically, methanoyl, Examples include ethanoyl and benzoyl.
 本明細書において、「C1-6アシルオキシ」としては、特に限定されるものではないが、アセトキシ、プロパノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、マロニルオキシ、ベンゾイルオキシなどが挙げられる。 In the present specification, “C 1-6 acyloxy” is not particularly limited, and examples thereof include acetoxy, propanoyloxy, acryloyloxy, methacryloyloxy, malonyloxy, benzoyloxy and the like.
 本明細書において、「C1-6アシルオキシC1-6アルキル」としては、特に限定されるものではないが、アセトキシエチルなどの、本明細書において定義される「C1-6アシルオキシ」が付加された本明細書において定義される炭素数1~6のアルキル基が挙げられる。 In the present specification, “C 1-6 acyloxy C 1-6 alkyl” is not particularly limited, but “C 1-6 acyloxy” as defined herein such as acetoxyethyl is added. And an alkyl group having 1 to 6 carbon atoms as defined herein.
 本明細書において、「C1-6アルコキシ」は、炭素数が1~6個のアルキル基が酸素原子に結合したものを意味し、特に限定されるものではないが、具体的には、メトキシ、エトキシ、n-ブトキシ、sec-ブトキシ、イソブトキシ、tert-ブトキシ、プロポキシ、メチレンジオキシなどが挙げられる。 In the present specification, “C 1-6 alkoxy” means an alkyl group having 1 to 6 carbon atoms bonded to an oxygen atom, and is not particularly limited. Ethoxy, n-butoxy, sec-butoxy, isobutoxy, tert-butoxy, propoxy, methylenedioxy and the like.
 本明細書において、「C6-12アリール」は、炭素数6~12個の芳香族炭化水素から誘導された基を意味し、特に限定されるものではないが、具体的には、フェニル、3-フェニルプロピル、トリル、キシリル、クメニル、ベンジル、フェネシル、シナミル、ビフェニルなどが挙げられ、置換基を有していてもよい。 In the present specification, “C 6-12 aryl” means a group derived from an aromatic hydrocarbon having 6 to 12 carbon atoms, and is not particularly limited. Examples thereof include 3-phenylpropyl, tolyl, xylyl, cumenyl, benzyl, phenethyl, cinamyl, biphenyl and the like, and may have a substituent.
 本明細書において、「C6-12アリールオキシ」としては、特に限定されるものではないが、フェノキシ、3-フェノキシプロピルなどが挙げられ、置換基を有していてもよい。 In the present specification, “C 6-12 aryloxy” is not particularly limited, and examples thereof include phenoxy and 3-phenoxypropyl, which may have a substituent.
 本明細書において、「C1-6アルキルアミノ」としては、特に限定されるものではないが、具体的には、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、tert-ブチルアミノ、sec-ブチルアミノなどが挙げられる。 In the present specification, “C 1-6 alkylamino” is not particularly limited, and specifically includes methylamino, ethylamino, propylamino, isopropylamino, n-butylamino, tert-butyl. Examples include amino and sec-butylamino.
 本明細書において、「ジC1-6アルキルアミノ」としては、特に限定されるものではないが、ジメチルアミノ、ジエチルアミノ、エチルメチルアミノ、ジプロピルアミノ、ジイソプロピルアミノ、ジブチルアミノ、ジ-tert-ブチルアミノなどが挙げられる。 In the present specification, “di-C 1-6 alkylamino” is not particularly limited, but dimethylamino, diethylamino, ethylmethylamino, dipropylamino, diisopropylamino, dibutylamino, di-tert-butyl. Examples include amino.
 本明細書において、「シアノC1-6アルキル」としては、「シアノ」基が付加された本明細書において定義される炭素数1~6個のアルキル基が挙げられる。 In the present specification, “cyano C 1-6 alkyl” includes an alkyl group having 1 to 6 carbon atoms as defined herein, to which a “cyano” group is added.
 本明細書において、「C1-6アルコキシC1-6アルキル」としては、本明細書において定義される「C1-6アルコキシ」が付加された本明細書において定義される炭素数1~6個のアルキル基が挙げられる。 In the present specification, “C 1-6 alkoxy C 1-6 alkyl” has 1 to 6 carbon atoms as defined in the present specification to which “C 1-6 alkoxy” as defined in the present specification is added. An alkyl group.
 本明細書において、「C4-10ヘテロシクリル」としては、特に限定されるものではないが、N、OまたはSから選択されるヘテロ原子を少なくとも1つ有する炭素数4~10個の複素環の環原子から1個の水素原子を除去することにより生成される基であり、具体的には、チエニル、ピロリジル、ピロリル、ピリジル、フラニルなどが挙げられる。 In the present specification, “C 4-10 heterocyclyl” is not particularly limited, but is a heterocycle having 4 to 10 carbon atoms having at least one heteroatom selected from N, O or S. A group generated by removing one hydrogen atom from a ring atom, and specific examples include thienyl, pyrrolidyl, pyrrolyl, pyridyl, furanyl and the like.
 本明細書において、「チオベンゼンC1-6アルキル」としては、特に限定されるものではないが、チオベンゼンが付加された本明細書において定義される炭素数1~6個のアルキル基が挙げられる。 In the present specification, “thiobenzene C 1-6 alkyl” is not particularly limited, and examples thereof include an alkyl group having 1 to 6 carbon atoms as defined in the present specification to which thiobenzene is added.
 「アミドC1-6アルキル」としては、特に限定されるものではないが、ジメチルアミド、ジエチルアミド、ジプロピルアミド、ジ-iso-プロピルアミド、ジブチルアミド、ジ-tert-ブチルアミドなどのアルキル基で置換されたアミド基が付加された本明細書において定義される炭素数1~6個のアルキル基が挙げられる。 “Amido C 1-6 alkyl” is not particularly limited, but is substituted with an alkyl group such as dimethylamide, diethylamide, dipropylamide, di-iso-propylamide, dibutylamide, di-tert-butylamide and the like. And an alkyl group having 1 to 6 carbon atoms, as defined herein, to which is added an amide group.
 上記式(III)のハロゲン化合物の具体的な例としては、特に限定されるものではないが、ジクロロジメチルシラン、ジクロロジエチルシランまたはジクロロジプロピルシランなどのジクロロジC1―6アルキルシラン、ジクロロジトリメチルシロキシシラン、シクロロジトリエチルシロキシシラン、ジクロロジジメチルシロキシシランまたはジクロロジジエチルシロキシシラン等のジクロロジアルキルシロキシシラン、テトラクロロシランなどのテトラハロゲン化シラン、ジクロロ(アセトキシエチル)(メチル)シラン、(メチル)シラン、ジクロロ(アセトキシメチル)ジクロロ(メチル)シランまたはジクロロ(アセトキシエチル)(エチル)シランなどのジハロゲン(アシルオキシアルキル)(アルキル)シラン、ジクロロジtert-ブトキシシランなどのジハロゲンジアルコキシシラン、ジクロロ(フェノキシ)(メチル)シラン、ジクロロ(フェニル)(メチル)シラン、ジクロロジジメチルアミノシラン、ジクロロシアノプロピルメチルシラン、ジクロロ(エトキシプロピル)(メチル)シラン、ジクロロ(エトキシプロピル)(エチル)シラン、ジクロロ(メトキシプロピル)(メチル)シラン、ジクロロ(メトキシプロピル)(エチル)シラン、ジクロロ(ジメチルアミドメチル)(メチル)シラン、ジクロロ(N、N-ジメチルアミドメチル)(メチル)シラン、2-(ジクロロメチルシリル)チオフェン、[(ジクロロメチル)メチル]チオベンゼンなどが挙げられる。なかでも、ジクロロC1―6アルキルシランが好ましく、ジクロロジメチルシランが特に好ましい。 Specific examples of the halogen compound of the above formula (III) are not particularly limited, but include dichlorodiC 1-6 alkylsilanes such as dichlorodimethylsilane, dichlorodiethylsilane or dichlorodipropylsilane, dichloroditrimethyl. Siloxysilane, Cycloditriethylsiloxysilane, Dichlorodidimethylsiloxysilane or dichlorodialkylsiloxysilane such as dichlorodidiethylsiloxysilane, Tetrahalogenated silane such as tetrachlorosilane, Dichloro (acetoxyethyl) (methyl) silane, (Methyl) silane Dihalogen (acyloxyalkyl) (alkyl) silanes such as dichloro (acetoxymethyl) dichloro (methyl) silane or dichloro (acetoxyethyl) (ethyl) silane, dichloroditert-but Dihalogen dialkoxysilanes such as xysilane, dichloro (phenoxy) (methyl) silane, dichloro (phenyl) (methyl) silane, dichlorodidimethylaminosilane, dichlorocyanopropylmethylsilane, dichloro (ethoxypropyl) (methyl) silane, dichloro (ethoxy Propyl) (ethyl) silane, dichloro (methoxypropyl) (methyl) silane, dichloro (methoxypropyl) (ethyl) silane, dichloro (dimethylamidomethyl) (methyl) silane, dichloro (N, N-dimethylamidomethyl) (methyl) ) Silane, 2- (dichloromethylsilyl) thiophene, [(dichloromethyl) methyl] thiobenzene, and the like. Of these, dichloro C 1-6 alkylsilane is preferable, and dichlorodimethylsilane is particularly preferable.
 工程(A)は、例えば、不活性ガス雰囲気下で、金属マグネシウムに通常グリニャール反応に用いるエーテル系溶媒を入れ、通常グリニャール試薬の生成に用いる開始剤を触媒量添加し、攪拌した後、式(II)の化合物を滴下、攪拌してグリニャール試薬を得、得られたグリニャール試薬を含む反応液に直接式(III)のハロゲン化合物を滴下して行うことが好ましい。 In the step (A), for example, an ether solvent usually used for Grignard reaction is added to metal magnesium under an inert gas atmosphere, and a catalyst amount of an initiator usually used to produce a Grignard reagent is added and stirred. The compound of II) is preferably dropped and stirred to obtain a Grignard reagent, and the halogen compound of formula (III) is preferably dropped directly into the reaction solution containing the obtained Grignard reagent.
 不活性ガスとしては、特に限定されるものではないが、例えば、窒素ガス、アルゴンガス、ヘリウムガスなどを挙げることができ、安価で入手のしやすさの点から窒素ガスが好ましい。 The inert gas is not particularly limited, and examples thereof include nitrogen gas, argon gas, and helium gas. Nitrogen gas is preferable from the viewpoint of low cost and availability.
 金属マグネシウムの使用量は、上記式(II)の化合物1モルに対して、1.00~1.20モルが好ましく、1.05~1.10モルがより好ましい。 The amount of metal magnesium used is preferably 1.00 to 1.20 mol, more preferably 1.05 to 1.10 mol, per 1 mol of the compound of the above formula (II).
 エーテル系溶媒としては、特に限定されるものではないが、例えば、ジエチルエーテル、ジメトキシエタン、ジエトキシメタン、t-ブチルメチルエーテル、ジブチルエーテル、テトラヒドロフラン(THF)、ジグライムなどが挙げられ、テトラヒドロフランが好ましい。 The ether solvent is not particularly limited, and examples thereof include diethyl ether, dimethoxyethane, diethoxymethane, t-butyl methyl ether, dibutyl ether, tetrahydrofuran (THF), diglyme and the like, and tetrahydrofuran is preferable. .
 開始剤としては、特に限定されるものではないが、例えば、ヨウ素、1,2-ジブロモエタンなどのハロゲン化アルキルなどが挙げられる。なかでも1,2-ジブロモエタンが安価で入手がしやすいことから好ましい。 The initiator is not particularly limited, and examples thereof include iodine and alkyl halides such as 1,2-dibromoethane. Of these, 1,2-dibromoethane is preferable because it is inexpensive and easily available.
 式(III)のハロゲン化合物の使用量は、式(II)の化合物に対して当モル量が好ましく、式(II)の化合物1モルに対して1.01~1.10モルの範囲で用いることができる。 The amount of the halogen compound of the formula (III) used is preferably an equimolar amount with respect to the compound of the formula (II), and used in the range of 1.01 to 1.10 mol with respect to 1 mol of the compound of the formula (II). be able to.
 工程(A)の反応温度は、0~80℃が好ましく、40~60℃がより好ましい。さらに工程(A)のうち、得られたグリニャール試薬に上記式(III)のハロゲン化合物を反応させる際の反応温度は、0~80℃が好ましく、10~50℃がより好ましく、特に反応容器内の温度として50℃を超えないことが好ましく、30℃を超えないことがより好ましい。工程(A)の反応時間は、グリニャール試薬の調製反応は上記式(II)の化合物の滴下後1.0~3.0時間が好ましく、1.5~2.0時間がより好ましい。得られたグリニャール試薬と上記式(III)の化合物との反応は、上記式(III)の化合物を1~8時間、好ましくは2から5時間かけて滴下して、通常10~40℃、好ましくは20~40℃で行うことが好ましい。 The reaction temperature in step (A) is preferably 0 to 80 ° C, more preferably 40 to 60 ° C. Further, in the step (A), the reaction temperature when the obtained Grignard reagent is reacted with the halogen compound of the above formula (III) is preferably 0 to 80 ° C., more preferably 10 to 50 ° C., particularly in the reaction vessel. The temperature is preferably not more than 50 ° C, more preferably not more than 30 ° C. The reaction time in step (A) is preferably 1.0 to 3.0 hours, more preferably 1.5 to 2.0 hours after the dropwise addition of the compound of formula (II) in the preparation reaction of the Grignard reagent. The reaction of the obtained Grignard reagent with the compound of the above formula (III) is carried out by adding the compound of the above formula (III) dropwise over 1 to 8 hours, preferably 2 to 5 hours, usually at 10 to 40 ° C., preferably Is preferably carried out at 20 to 40 ° C.
 工程(A)で得られる上記式(IV)のハロゲン化芳香族ビニル中間体は、精製や単離することなく、反応混合物のまま、次の工程(B)に用いられるものである。 The halogenated aromatic vinyl intermediate of the above formula (IV) obtained in the step (A) is used in the next step (B) as it is without purification or isolation.
 工程(B)は、工程(A)で得られる上記式(IV)のハロゲン化芳香族ビニル中間体を含む反応混合物に、官能基Yを含む有機金属求核剤を添加して官能基Yを導入し、式(I)で表されるヘテロ原子含有芳香族ビニル化合物を得る工程である。 In the step (B), an organometallic nucleophile containing a functional group Y is added to the reaction mixture containing the halogenated aromatic vinyl intermediate of the above formula (IV) obtained in the step (A) to convert the functional group Y. Introducing a heteroatom-containing aromatic vinyl compound represented by the formula (I).
 有機金属求核剤は、官能基Yを含み、官能基Yが上記式(IV)のハロゲン化芳香族ビニル中間体に導入できるものであれば、特に限定されるものではないが、例えば、式(V):M1-Y(式中、M1はアルカリ金属であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)で表される有機金属化合物、または式(VI):
Figure JPOXMLDOC01-appb-C000003
(式中、M2はアルカリ土類金属であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、R3はハロゲン、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、Yと同一または異なっていてもよい)で表される有機金属化合物が挙げられる。
The organometallic nucleophile is not particularly limited as long as it contains a functional group Y and the functional group Y can be introduced into the halogenated aromatic vinyl intermediate of the above formula (IV). (V): M 1 -Y (wherein M 1 is an alkali metal and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms) Or an organometallic compound represented by formula (VI):
Figure JPOXMLDOC01-appb-C000003
Wherein M 2 is an alkaline earth metal, Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, and R 3 is halogen , A functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, and may be the same as or different from Y). It is done.
 M1は、アルカリ金属であり、具体的には、リチウム、ナトリウム、カリウム、セシウムなどが挙げられる。 M 1 is an alkali metal, and specific examples include lithium, sodium, potassium, cesium and the like.
 Yは、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、具体的には、ハロゲン、C1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、シラノール、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオニル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルなどが好ましい。式(V)の化合物においては、Yは、アルカリ金属と塩を形成する官能基であればよく、C1-10アルキル、C1-6アルコキシ、ジC1-6アルキルアミノなどが好ましい。また、式(VI)の化合物においては、Yは、アルカリ土類金属と塩を形成する官能基や、M2とR3とでグリニャール試薬とり得る基であればよい。 Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, specifically, halogen, C 1-10 alkyl, C 2-10 Alkenyl, Tri C 1-6 alkylsiloxy, Silanol, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6- 12 aryloxy, amino, C 1-6 alkylamino, diC 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thionyl, thiobenzene C 1 -6 alkyl, C 1-6 alkylamide, amide C 1-6 alkyl and the like are preferable. In the compound of the formula (V), Y may be any functional group that forms a salt with an alkali metal, and is preferably C 1-10 alkyl, C 1-6 alkoxy, di-C 1-6 alkylamino, or the like. In the compound of the formula (VI), Y may be a functional group that forms a salt with an alkaline earth metal or a group that can take a Grignard reagent with M 2 and R 3 .
 上記式(V)の有機金属化合物は、特に限定されるものではないが、例えば、ナトリウムメトキシド、カリウムメトキシド、リチウムメトキシド、セシウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムエトキシド、セシウムエトキシド、ナトリウムn-ブトキシド、カリウムn-ブトキシド、リチウムn-ブトキシド、セシウムn-ブトキシド、ナトリウムs-ブトキシド、カリウムs-ブトキシド、リチウムs-ブトキシド、セシウムs-ブトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド、リチウムt-ブトキシド、セシウムt-ブトキシド、ナトリウムn-プロポキシド、カリウムn-プロポキシド、リチウムn-プロポキシド、セシウムn-プロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムイソプロポキシド、セシウムイソプロポキシドなどの金属アルコキシドや、ナトリウムフェノキシド、カリウムフェノキシド、リチウムフェノキシド、セシウムフェノキシド等のフェノール類の金属塩、ナトリウムジメチルアミド、カリウムジメチルアミド、リチウムジメチルアミド、セシウムジメチルアミド、ナトリウムジエチリアミド、カリウムジエチルアミド、リチウムジエチルアミド、セシウムジエチルアミド、ナトリウムジイソプロピルアミド、カリウムジイソプロピルアミド、リチウムジイソプロピルアミド、セシウムジイソプロピルアミド、ナトリウムトリス(トリメチルシリル)アミド、カリウムトリス(トリメチルシリル)アミド、リチウムトリス(トリメチルシリル)アミド、セシウムトリス(トリメチルシリル)アミド等の金属アミド、ナトリウムチオラート、カリウムチオラート、リチウムチオラート、セシウムチオラート、ナトリウムベンゼンチオラート、カリウムベンゼンチオラート、リチウムベンゼンチオラート、セシウムベンゼンチオラートなどのチオール類の金属塩、n-ブチルリチウム等のアルキルリチウム等が挙げられる。 The organometallic compound of the formula (V) is not particularly limited, and examples thereof include sodium methoxide, potassium methoxide, lithium methoxide, cesium methoxide, sodium ethoxide, potassium ethoxide, lithium ethoxide, Cesium ethoxide, sodium n-butoxide, potassium n-butoxide, lithium n-butoxide, cesium n-butoxide, sodium s-butoxide, potassium s-butoxide, lithium s-butoxide, cesium s-butoxide, sodium t-butoxide, potassium t-butoxide, lithium t-butoxide, cesium t-butoxide, sodium n-propoxide, potassium n-propoxide, lithium n-propoxide, cesium n-propoxide, sodium isopropoxide, potassium Metal alkoxides such as um isopropoxide, lithium isopropoxide, cesium isopropoxide, metal salts of phenols such as sodium phenoxide, potassium phenoxide, lithium phenoxide, cesium phenoxide, sodium dimethylamide, potassium dimethylamide, lithium dimethylamide , Cesium dimethylamide, sodium diethylamide, potassium diethylamide, lithium diethylamide, cesium diethylamide, sodium diisopropylamide, potassium diisopropylamide, lithium diisopropylamide, cesium diisopropylamide, sodium tris (trimethylsilyl) amide, potassium tris (trimethylsilyl) amide, lithium Tris (trimethylsilyl) amide, cesium Metal amides such as tris (trimethylsilyl) amide, sodium thiolate, potassium thiolate, lithium thiolate, cesium thiolate, sodium benzene thiolate, potassium benzene thiolate, lithium benzene thiolate, metal salts of thiols such as cesium benzene thiolate, n-butyl lithium, etc. And alkyl lithium.
 M2は、アルカリ土類金属であり、具体的には、マグネシウム、カルシウムなどが挙げられる。 M 2 is an alkaline earth metal, and specific examples thereof include magnesium and calcium.
 R3は、ハロゲン、またはアルカリ土類金属と塩を形成する官能基であればよく、ハロゲン、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基などである。R3は例えば、塩素、臭素またはヨウ素などのハロゲン、またはC1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、シラノール、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオニル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルなどが好ましい。 R 3 may be any functional group that forms a salt with halogen or an alkaline earth metal, and includes at least one atom selected from the group consisting of halogen, silicon, nitrogen, sulfur, and oxygen atoms. Etc. R 3 is, for example, halogen such as chlorine, bromine or iodine, or C 1-10 alkyl, C 2-10 alkenyl, tri-C 1-6 alkylsiloxy, silanol, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1- Preferred are 6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thionyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide, amide C 1-6 alkyl and the like.
 上記式(VI)の有機金属化合物は、特に限定されるものではないが、例えば、マグネシウムジメトキシド、マグネシウムジエトキシド、マグネシウムジn-ブトキシド、マグネシウムジs-ブトキシド、マグネシウムジtert-ブトキシド、マグネシウムジn-プロポキシド、マグネシウムジイソプロポキシドなどの金属アルコキシドや、マグネシウムジフェノキシド等のフェノール類の金属塩が挙げられる。また、上記式(VI)の有機金属化合物は、M2がマグネシウムであり、R3がハロゲンであり、YがC1-10アルキル、C2-10アルケニル、C1-6アシルオキシC1-6アルキル、C6-12アリール、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオベンゼンC1-6アルキルまたはアミドC1-6アルキルであるグリニャール試薬とすることもできる。 The organometallic compound of the above formula (VI) is not particularly limited. For example, magnesium dimethoxide, magnesium diethoxide, magnesium di n-butoxide, magnesium di s-butoxide, magnesium di tert-butoxide, magnesium Examples thereof include metal alkoxides such as di-n-propoxide and magnesium diisopropoxide, and metal salts of phenols such as magnesium diphenoxide. In the organometallic compound of the above formula (VI), M 2 is magnesium, R 3 is halogen, Y is C 1-10 alkyl, C 2-10 alkenyl, C 1-6 acyloxy C 1-6. Grignard reagents which are alkyl, C 6-12 aryl, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thiobenzene C 1-6 alkyl or amide C 1-6 alkyl; You can also
 工程(B)は、例えば、工程(A)で得られた反応混合物の系にそのまま、ガスクロマトグラフィー-質量分析法(GC-MS)などにより反応混合物中のグリニャール試薬由来のビニル芳香族のピークの消失を確認した後、不活性ガス雰囲気下で、例えば工程(A)で用いたのと同様のエーテル系溶媒に溶解した上記式(V)または(VI)の有機金属化合物を滴下することにより行うことが好ましい。 In the step (B), for example, the vinyl aromatic peak derived from the Grignard reagent in the reaction mixture is directly applied to the reaction mixture obtained in the step (A) by gas chromatography-mass spectrometry (GC-MS) or the like. After confirming the disappearance of the above, by adding dropwise an organometallic compound of the above formula (V) or (VI) dissolved in an ether solvent similar to that used in the step (A) under an inert gas atmosphere, for example. Preferably it is done.
 不活性ガス、エーテル系溶媒は、工程(A)について記載したものを同様に用いることができ、工程(A)で用いたものを用いることが好ましい。 As the inert gas and the ether solvent, those described for the step (A) can be used similarly, and those used in the step (A) are preferably used.
 式(V)または(VI)の有機金属化合物の使用量は、式(II)の化合物に対して当モル量が好ましく、式(II)の化合物1モルに対して1.0~3.0モルの範囲で用いることができる。 The amount of the organometallic compound of the formula (V) or (VI) used is preferably an equimolar amount with respect to the compound of the formula (II), and 1.0 to 3.0 with respect to 1 mol of the compound of the formula (II). It can be used in a molar range.
 工程(B)の反応温度は、0~80℃が好ましく、10~60℃がより好ましい。特に反応容器内の温度として40℃を超えないことが好ましく、35℃を超えないことがより好ましい。通常、工程(B)における反応の進行、つまり式(I)のヘテロ原子含有芳香族ビニル化合物の生成は速く、滴下完了とほぼ同時に反応も完了する。 The reaction temperature in step (B) is preferably 0 to 80 ° C, more preferably 10 to 60 ° C. In particular, the temperature in the reaction vessel is preferably not more than 40 ° C, more preferably not more than 35 ° C. Usually, the progress of the reaction in the step (B), that is, the production of the heteroatom-containing aromatic vinyl compound of the formula (I) is fast, and the reaction is completed almost simultaneously with the completion of the dropping.
 工程(B)で得られる式(I)のヘテロ原子含有芳香族ビニル化合物は、ろ過および/または減圧蒸留により単離する工程(C)を行うことが好ましい。 It is preferable to perform the step (C) of isolating the heteroatom-containing aromatic vinyl compound of the formula (I) obtained in the step (B) by filtration and / or vacuum distillation.
 ろ過は、例えばセルロースフィルターなどのフィルターを用いて得られた反応液をろ別し、ろ液を回収することにより行われる。得られたろ液は、減圧濃縮し、溶媒を留去し、さらに減圧蒸留して回収することが好ましい。 Filtration is performed by, for example, filtering the reaction solution obtained using a filter such as a cellulose filter and collecting the filtrate. The obtained filtrate is preferably concentrated under reduced pressure, the solvent is distilled off, and further distilled under reduced pressure.
 ろ過に用いるフィルターは、特に限定されるものではないが、メッシュ70mmのセルロースフィルターを用いることが好ましい。フィルターの材質としてはPTFEを用いてもよく、ろ過材としては、シリカゲル、アルミナ、セライトなどを用いてもよい。 The filter used for filtration is not particularly limited, but a cellulose filter having a mesh of 70 mm is preferably used. PTFE may be used as the material of the filter, and silica gel, alumina, celite, or the like may be used as the filter medium.
 減圧濃縮は、外温30℃/0.2kPa~60℃/0.2kPaで行うことが好ましく、また減圧蒸留は30℃/0.1kPa~120℃/0.1kPaで行うことが好ましく、目的とするヘテロ原子含有芳香族ビニル化合物の沸点に合わせて、本留を回収することで行うことができる。 The vacuum concentration is preferably performed at an external temperature of 30 ° C./0.2 kPa to 60 ° C./0.2 kPa, and the vacuum distillation is preferably performed at 30 ° C./0.1 kPa to 120 ° C./0.1 kPa. It is possible to carry out by collecting the main distillation according to the boiling point of the heteroatom-containing aromatic vinyl compound.
 以下、本発明を実施例に基づいて説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 以下、実施例および比較例において用いた各種薬品をまとめて示す。各薬品は精製したものを使用した。
(式(II)の化合物)
4-ブロモスチレン:和光純薬工業(株)製
4-ブロモチオフェン:東京化成工業(株)製
(式(III)のハロゲン化合物)
ジクロロジメチルシラン:東京化成工業(株)製
トリクロロメチルシラン:東京化成工業(株)製
(式(V)の有機金属化合物)
エトキシカリウム:和光純薬工業(株)製
イソプロポキシカリウム:和光純薬工業(株)製
tert-ブトキシカリウム:和光純薬工業(株)製
リチウムジイソプロピルアミド:東京化成工業(株)製、1.5mol/L溶液
(式(VI)の有機金属化合物)
n-オクチルマグネシウムブロミド:東京化成工業(株)製、約22%THF溶液、約1mol/L
エタノール:和光純薬工業(株)製
イソプロパノール:和光純薬工業(株)製
tert-ブタノール:和光純薬工業(株)製
トリエチルアミン:和光純薬工業(株)製
ヘキサン:和光純薬工業(株)製
マグネシウム:和光純薬工業(株)製
ジブロモエタン:和光純薬工業(株)製
THF(テトラヒドロフラン):和光純薬工業(株)製
Hereinafter, various chemicals used in Examples and Comparative Examples are shown together. Each chemical was purified.
(Compound of formula (II))
4-Bromostyrene: Wako Pure Chemical Industries, Ltd. 4-Bromothiophene: Tokyo Chemical Industry Co., Ltd. (halogen compound of formula (III))
Dichlorodimethylsilane: Tokyo Chemical Industry Co., Ltd. Trichloromethylsilane: Tokyo Chemical Industry Co., Ltd. (organometallic compound of formula (V))
Ethoxy potassium: Wako Pure Chemical Industries, Ltd. Isopropoxy potassium: Wako Pure Chemical Industries, Ltd.
tert-Butoxy potassium: lithium diisopropylamide manufactured by Wako Pure Chemical Industries, Ltd .: 1.5 mol / L solution (organometallic compound of formula (VI)) manufactured by Tokyo Chemical Industry Co., Ltd.
n-octylmagnesium bromide: manufactured by Tokyo Chemical Industry Co., Ltd., about 22% THF solution, about 1 mol / L
Ethanol: Wako Pure Chemical Industries, Ltd. Isopropanol: Wako Pure Chemical Industries, Ltd.
tert-butanol: Wako Pure Chemical Industries, Ltd. Triethylamine: Wako Pure Chemical Industries, Ltd. Hexane: Wako Pure Chemical Industries, Ltd. Magnesium: Wako Pure Chemical Industries, Ltd. Dibromoethane: Wako Pure Chemical Industries, Ltd. ( Manufactured by THF (tetrahydrofuran): manufactured by Wako Pure Chemical Industries, Ltd.
実施例1:エトキシジメチル(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000004
 窒素ガス雰囲気下で、500mLのガラス製4つ口フラスコにマグネシウム13.15g(0.54モル)、THF33.9g、1,2-ジブロモエタン1.87g(0.01モル)を入れ、24~26℃で30分間攪拌した。次いで、4-ブロモスチレン92.00g(0.50モル)を内温が60℃を超えないように滴下した後、24~26℃で3時間攪拌し、(4-ビニルフェニル)マグネシウムブロミドの反応液45.9gを調製した。得られた反応液に、ジクロロジメチルシラン127.96g(0.50モル)、THF30.3gの溶液を内温が30℃を超えないように3時間かけて滴下した。GC-MSにて(4-ビニルフェニル)マグネシウムブロミド由来のスチレンピークの消失を確認した後、エトキシカリウム42.08g(0.50モル)、THF40.2gの溶液を内温が35℃を超えないように滴下し、セルロースフィルター(メッシュ70mm)でろ別し、ろ液を採取し、外温40℃/0.2kPaで減圧濃縮して溶媒を留去した。その後、70℃/0.1kPaで減圧蒸留し、沸点が45℃/0.1kPaの画分を本留として回収した。出発物質の4-ブロモスチレンのモル比から算出した全収率は70.4%であった。GC-MSで分析した結果、ジメチルビス(4-ビニルフェニル)シランは検出されず、エトキシジメチル(4-ビニルフェニル)シランの純度は99.9%であった。
Example 1: Synthesis of ethoxydimethyl (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000004
Under a nitrogen gas atmosphere, 13.15 g (0.54 mol) of magnesium, 33.9 g of THF, and 1.87 g (0.01 mol) of 1,2-dibromoethane were placed in a 500 mL glass four-necked flask. Stir at 26 ° C. for 30 minutes. Next, 92.00 g (0.50 mol) of 4-bromostyrene was added dropwise so that the internal temperature did not exceed 60 ° C., and the mixture was stirred at 24 to 26 ° C. for 3 hours to react with (4-vinylphenyl) magnesium bromide. 45.9 g of liquid was prepared. A solution of 127.96 g (0.50 mol) of dichlorodimethylsilane and 30.3 g of THF was added dropwise to the obtained reaction solution over 3 hours so that the internal temperature did not exceed 30 ° C. After confirming disappearance of the styrene peak derived from (4-vinylphenyl) magnesium bromide by GC-MS, the inner temperature of a solution of 42.08 g (0.50 mol) of ethoxypotassium and 40.2 g of THF does not exceed 35 ° C. The filtrate was collected by filtration with a cellulose filter (mesh 70 mm), and the filtrate was collected and concentrated under reduced pressure at an external temperature of 40 ° C./0.2 kPa to distill off the solvent. Then, it distilled under reduced pressure at 70 degreeC / 0.1kPa, and collect | recovered the fraction whose boiling point is 45 degreeC / 0.1kPa as a main distillation. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 70.4%. As a result of analysis by GC-MS, dimethylbis (4-vinylphenyl) silane was not detected, and the purity of ethoxydimethyl (4-vinylphenyl) silane was 99.9%.
実施例2:iso-プロポキシジメチル(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000005
 エトキシカリウムに変えてiso-プロポキシカリウム49.06g(0.50モル)を用い、75℃/0.1kPaで減圧蒸留し、沸点が70℃/0.1kPaの画分を本留として回収した以外は、実施例1と同様にしてiso-プロポキシジメチル(4-ビフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は72.4%であった。GC-MS分析の結果、ジメチルビス(4-ビニルフェニル)シランは検出されず、iso-プロポキシジメチル(4-ビニルフェニル)シランの純度は99.9%であった。
Example 2: Synthesis of iso-propoxydimethyl (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000005
Other than using 49.06 g (0.50 mol) of iso-propoxy potassium in place of ethoxy potassium and distilling under reduced pressure at 75 ° C./0.1 kPa to collect a fraction having a boiling point of 70 ° C./0.1 kPa as the main distillation Obtained iso-propoxydimethyl (4-biphenyl) silane in the same manner as in Example 1. The total yield calculated from the molar ratio of the starting 4-bromostyrene was 72.4%. As a result of GC-MS analysis, no dimethylbis (4-vinylphenyl) silane was detected, and the purity of iso-propoxydimethyl (4-vinylphenyl) silane was 99.9%.
実施例3:tert-ブトキシジメチル(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000006
 エトキシカリウムに変えてtert-ブトキシカリウム56.10g(0.50モル)を用い、80℃/0.1kPaで減圧蒸留し、沸点が73℃/0.1kPaの画分を本留として回収した以外は、実施例1と同様にしてtert-ブトキシジメチル(4-ビニルフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は74.1%であった。GC-MS分析の結果、ジメチルビス(4-ビニルフェニル)シランは検出されず、tert-ブトキシジメチル(4-ビニルフェニル)シランの純度は99.9%であった。
Example 3: Synthesis of tert-butoxydimethyl (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000006
Except that 56.10 g (0.50 mol) of tert-butoxy potassium was used instead of ethoxy potassium, distilled under reduced pressure at 80 ° C./0.1 kPa, and the fraction having a boiling point of 73 ° C./0.1 kPa was recovered as the main distillation Produced tert-butoxydimethyl (4-vinylphenyl) silane in the same manner as in Example 1. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 74.1%. As a result of GC-MS analysis, no dimethylbis (4-vinylphenyl) silane was detected, and the purity of tert-butoxydimethyl (4-vinylphenyl) silane was 99.9%.
実施例4:ジイソプロピルアミノジメチル(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000007
 エトキシカリウムに代えて、リチウムジイソプロピルアミド(0.50モル)を用い、130℃/0.1kPaで減圧蒸留し、沸点が96℃/0.1kPaの画分を本留として回収した以外は、実施例1と同様にしてジイソプロピルアミノ(4-ビニルフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は、74.1%であった。GC-MS分析の結果、ジイソプロピルアミノ(4-ビニルフェニル)シランの純度は99.9%であった。
Example 4: Synthesis of diisopropylaminodimethyl (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000007
Implemented except that lithium diisopropylamide (0.50 mol) was used instead of ethoxypotassium and distilled under reduced pressure at 130 ° C / 0.1 kPa and the fraction having a boiling point of 96 ° C / 0.1 kPa was recovered as the main distillation. In the same manner as in Example 1, diisopropylamino (4-vinylphenyl) silane was obtained. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 74.1%. As a result of GC-MS analysis, the purity of diisopropylamino (4-vinylphenyl) silane was 99.9%.
実施例5:(2-チエニル)ジメチル(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000008
 エトキシカリウムに代えて、後述の製造例1で製造した2-チエニルマグネシウムブロミド(0.50モル)を用いて反応させた溶液をシリカゲルでろ過したのち、溶媒を減圧留去した以外は、実施例1と同様にして(2-チエニル)ジメチル(4-ビニルフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は、80.6%であった。GC-MS分析の結果、(2-チエニル)ジメチル(4-ビニルフェニル)シランの純度は99.7%であった。
Example 5: Synthesis of (2-thienyl) dimethyl (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000008
A solution reacted with 2-thienylmagnesium bromide (0.50 mol) produced in Production Example 1 described later instead of ethoxypotassium was filtered through silica gel, and then the solvent was distilled off under reduced pressure. In the same manner as in 1, (2-thienyl) dimethyl (4-vinylphenyl) silane was obtained. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 80.6%. As a result of GC-MS analysis, the purity of (2-thienyl) dimethyl (4-vinylphenyl) silane was 99.7%.
実施例6:ジメチルオクチル(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000009
 エトキシカリウムに代えて、n-オクチルマグネシウムブロミド(0.50モル)を使用した以外は、実施例1と同様にして粗反応液を得たのち、セルロースフィルターの代わりにシリカゲルでろ過して得たろ液を溶媒留去してジメチル-n-オクチル(4-ビニルフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は、84%であった。GC-MS分析の結果、ジメチルオクチル(4-ビニルフェニル)シランの純度は99.0%であった。
Example 6: Synthesis of dimethyloctyl (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000009
A crude reaction solution was obtained in the same manner as in Example 1 except that n-octylmagnesium bromide (0.50 mol) was used in place of ethoxypotassium, and then obtained by filtration through silica gel instead of the cellulose filter. The solvent was distilled off to obtain dimethyl-n-octyl (4-vinylphenyl) silane. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 84%. As a result of GC-MS analysis, the purity of dimethyloctyl (4-vinylphenyl) silane was 99.0%.
実施例7:メチルオクチル(2-チエニル)(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000010
 ジクロロジメチルシラン(0.50モル)に代えて、ジクロロ(2-チエニル)メチルシラン(0.50モル)を使用し、エトキシカリウムに代えて、n-オクチルマグネシウムブロミド(0.50モル)を用いた以外は、実施例1と同様にして粗反応液を得たのち、セルロースフィルターの代わりにシリカゲルでろ過して得たろ液を溶媒留去してメチルオクチル(2-チエニル)(4-ビニルフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は、86%であった。GC-MS分析の結果、メチルオクチル(2-チエニル)(4-ビニルフェニル)シランの純度は99.0%であった。
Example 7: Synthesis of methyloctyl (2-thienyl) (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000010
Instead of dichlorodimethylsilane (0.50 mol), dichloro (2-thienyl) methylsilane (0.50 mol) was used, and n-octylmagnesium bromide (0.50 mol) was used instead of ethoxypotassium. Except for the above, a crude reaction solution was obtained in the same manner as in Example 1, and the filtrate obtained by filtration through silica gel instead of the cellulose filter was evaporated to remove methyloctyl (2-thienyl) (4-vinylphenyl). Silane was obtained. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 86%. As a result of GC-MS analysis, the purity of methyloctyl (2-thienyl) (4-vinylphenyl) silane was 99.0%.
実施例8:メチル(2-チエニル)エトキシ(4-ビニルフェニル)シランの合成
Figure JPOXMLDOC01-appb-C000011
 ジクロロジメチルシラン(0.50モル)に代えて、後述の製造例2で製造したジクロロ(2-チエニル)メチルシラン(0.50モル)を使用した以外は、実施例1と同様にして粗反応液を得たのち、セルロースフィルターの代わりにシリカゲルでろ過して得たろ液を溶媒留去してメチル(2-チエニル)エトキシ(4-ビニルフェニル)シランを得た。出発物質の4-ブロモスチレンのモル比から算出した全収率は、86%であった。GC-MS分析の結果、メチル(2-チエニル)エトキシ(4-ビニルフェニル)シランの純度は99.0%であった。
Example 8: Synthesis of methyl (2-thienyl) ethoxy (4-vinylphenyl) silane
Figure JPOXMLDOC01-appb-C000011
The crude reaction solution was used in the same manner as in Example 1 except that dichloro (2-thienyl) methylsilane (0.50 mol) produced in Production Example 2 described later was used instead of dichlorodimethylsilane (0.50 mol). After that, the filtrate obtained by filtering with silica gel instead of the cellulose filter was evaporated to obtain methyl (2-thienyl) ethoxy (4-vinylphenyl) silane. The overall yield calculated from the molar ratio of the starting 4-bromostyrene was 86%. As a result of GC-MS analysis, the purity of methyl (2-thienyl) ethoxy (4-vinylphenyl) silane was 99.0%.
製造例1:式(VI)の有機金属化合物、2-チエニルマグネシウムブロミドの製造
 実施例1の(4-ビニルフェニル)マグネシウムブロミドの調製において、4-ブロモスチレンの代わりに4-ブロモチオフェン(0.50モル)を用い、2-チエニルマグネシウムブロミドを製造した。
Production Example 1: Production of organometallic compound of formula (VI), 2-thienylmagnesium bromide In the preparation of (4-vinylphenyl) magnesium bromide of Example 1, 4-bromothiophene (0. 50 mol) was used to produce 2-thienylmagnesium bromide.
製造例2:式(III)のハロゲン化合物、ジクロロ(2-チエニル)メチルシランの製造
 実施例1の(4-ビニルフェニル)マグネシウムブロミドの調製において、4-ブロモスチレンの代わりに2-ブロモチオフェン(0.50モル)を用いて製造した2-チエニルマグネシウムブロミドの溶液に、トリクロロメチルシランを内温が60℃を超えないように滴下してジクロロ(2-チエニル)メチルシランのTHF溶液を製造した。
Production Example 2: Production of Halogen Compound of Formula (III), Dichloro (2-thienyl) methylsilane In the preparation of (4-vinylphenyl) magnesium bromide of Example 1, 2-bromothiophene (0 Trichloromethylsilane was added dropwise to the solution of 2-thienylmagnesium bromide prepared using .50 mol) so that the internal temperature did not exceed 60 ° C. to prepare a THF solution of dichloro (2-thienyl) methylsilane.
比較例1:エトキシジメチル(4-ビニルフェニル)シランの合成
合成例1:(4-ビフェニル)マグネシウムブロミドの合成
 窒素ガス雰囲気下で、100mLのガラス製4つ口フラスコにマグネシウム13.15g(0.54モル)、THF33.9g、1,2-ジブロモエタン1.87g(0.01モル)を入れ、24~26℃で30分間攪拌した。次いで、4-ブロモスチレン92.00g(0.50モル)を内温が60℃を超えないように滴下した後、24~26℃で3時間攪拌し、(4-ビニルフェニル)マグネシウムブロミドの反応液45.9gを調製した。
Comparative Example 1: Synthesis of ethoxydimethyl (4-vinylphenyl) silane Synthesis Example 1: Synthesis of (4-biphenyl) magnesium bromide In a nitrogen gas atmosphere, 13.15 g (0. 54 mol), 33.9 g of THF, and 1.87 g (0.01 mol) of 1,2-dibromoethane were added and stirred at 24-26 ° C. for 30 minutes. Next, 92.00 g (0.50 mol) of 4-bromostyrene was added dropwise so that the internal temperature did not exceed 60 ° C., and the mixture was stirred at 24 to 26 ° C. for 3 hours to react with (4-vinylphenyl) magnesium bromide. 45.9 g of liquid was prepared.
合成例2:クロロエトキシジメチルシランの合成
 窒素ガス雰囲気下で1Lのガラス製4つ口フラスコにジメチルジクロロシラン49.4g(0.39モル)およびヘキサン194gを室温で添加し、つづいて食塩/氷浴かで0℃まで冷却しながら、エタノール17.90g(0.39モル)、トリエチルアミン38.5g(0.38モル)、ヘキサン194gの混合溶液を内温が15℃以下になるように90分かけて滴下し、その後24~26℃で1時間攪拌し、クロロエトキシジメチルシランの反応溶液を調製した。クロロエトキシジメチルシラン反応液はセライトろ過した後、80℃で常圧濃縮して溶媒を留去し、その後、80℃/15kPaで減圧蒸留を行い、沸点65℃/15kPaの画分を本留として採取し、精製クロロエトキシジメチルシランを得た。
Synthesis Example 2: Synthesis of chloroethoxydimethylsilane In a nitrogen gas atmosphere, 49.4 g (0.39 mol) of dimethyldichlorosilane and 194 g of hexane were added to a 1 L glass four-necked flask at room temperature, followed by salt / ice. While cooling to 0 ° C. in a bath, a mixed solution of 17.90 g (0.39 mol) of ethanol, 38.5 g (0.38 mol) of triethylamine, and 194 g of hexane was added for 90 minutes so that the internal temperature was 15 ° C. or less. And then stirred at 24 to 26 ° C. for 1 hour to prepare a reaction solution of chloroethoxydimethylsilane. The chloroethoxydimethylsilane reaction solution is filtered through celite, concentrated at 80 ° C under atmospheric pressure to distill off the solvent, and then distilled under reduced pressure at 80 ° C / 15 kPa, with the fraction having a boiling point of 65 ° C / 15 kPa as the main fraction. Collected to obtain purified chloroethoxydimethylsilane.
合成例3:エトキシジメチル(4-ビニルフェニル)シランの合成
 窒素置換した500mLのガラス製4つ口フラスコに合成例2で調製したクロロエトキシジメチルシラン(0.39モル)を入れ、氷浴下で内温が3~10℃以下になるまで冷却しながら攪拌した。その後、合成例1で調製した(4-ビニルフェニル)マグネシウムブロミドの反応液(0.39モル)を内温が15℃以下になるように滴下した後、24~26℃で20時間攪拌した。ガスクロマトグラフィー(GC)で、(4-ビニルフェニル)マグネシウムブロミド由来のスチレンンの相対ピーク強度が一定になることで反応完了を確認した。エトキシジメチル(4-ビニルフェニル)シランの反応液78.2gを8000rpm/15分の条件で遠心分離し、上澄み液62.95gを回収し、外温40℃/0.2kPaで減圧濃縮し、溶媒留去を行った後、70℃/0.1kPaで減圧蒸留し、沸点が45℃/0.1kPaの画分を本留として回収した。出発物質のジクロロジメチルシランのモル比から算出した全収率は7.4%であった。GC-MSで分析した結果、5.0%のジメチルビス(4-ビニルフェニル)シラン(分子量:264.13)が不純物として含まれており、エトキシジメチル(4-ビニルフェニル)シランの純度は95.0%であった。
Synthesis Example 3: Synthesis of ethoxydimethyl (4-vinylphenyl) silane Chloroethoxydimethylsilane (0.39 mol) prepared in Synthesis Example 2 was placed in a nitrogen-substituted 500 mL glass four-necked flask under an ice bath. The mixture was stirred while cooling until the internal temperature became 3-10 ° C. or lower. Thereafter, the reaction solution (0.39 mol) of (4-vinylphenyl) magnesium bromide prepared in Synthesis Example 1 was added dropwise so that the internal temperature was 15 ° C. or lower, and the mixture was stirred at 24 to 26 ° C. for 20 hours. Completion of the reaction was confirmed by a constant relative peak intensity of styrene derived from (4-vinylphenyl) magnesium bromide by gas chromatography (GC). 78.2 g of the reaction solution of ethoxydimethyl (4-vinylphenyl) silane was centrifuged at 8000 rpm / 15 minutes, and 62.95 g of the supernatant was recovered and concentrated under reduced pressure at an external temperature of 40 ° C./0.2 kPa. After distilling off, it was distilled under reduced pressure at 70 ° C./0.1 kPa, and a fraction having a boiling point of 45 ° C./0.1 kPa was recovered as the main distillation. The overall yield calculated from the molar ratio of the starting dichlorodimethylsilane was 7.4%. As a result of analysis by GC-MS, 5.0% of dimethylbis (4-vinylphenyl) silane (molecular weight: 264.13) was contained as an impurity, and the purity of ethoxydimethyl (4-vinylphenyl) silane was 95. 0.0%.
比較例2:iso-プロポキシジメチル(4-ビニルフェニル)シランの合成
 エタノールに変えてイソプロパノール23.40g(0.39モル)を用い、85℃/15kPaで減圧蒸留し、沸点が70℃/15kPaの画分を本留として回収した以外は、比較例1の合成例2と同様にして精製クロロイソプロポキシジメチルシランを得た。クロロエトキシジメチルシランに変えて上記で得られたクロロイソプロポキシジメチルシランを用いた以外は比較例1の合成例3と同様にしてiso-プロポキシジメチル(4-ビフェニル)シランを得た。出発物質のジクロロジメチルシランのモル比から算出した全収率は8.2%であった。GC-MSで分析した結果、6.2%のジメチルビス(4-ビニルフェニル)シランが不純物として含まれており、イソプロポキシジメチル(4-ビニルフェニル)シランの純度は93.8%であった。
Comparative Example 2: Synthesis of iso-propoxydimethyl (4-vinylphenyl) silane Using 23.40 g (0.39 mol) of isopropanol instead of ethanol, distilled under reduced pressure at 85 ° C / 15 kPa, and having a boiling point of 70 ° C / 15 kPa Purified chloroisopropoxydimethylsilane was obtained in the same manner as in Synthesis Example 2 of Comparative Example 1 except that the fraction was collected as the main distillate. Iso-propoxydimethyl (4-biphenyl) silane was obtained in the same manner as in Synthesis Example 3 of Comparative Example 1 except that the chloroisopropoxydimethylsilane obtained above was used instead of chloroethoxydimethylsilane. The overall yield calculated from the molar ratio of the starting dichlorodimethylsilane was 8.2%. As a result of analysis by GC-MS, 6.2% dimethylbis (4-vinylphenyl) silane was contained as an impurity, and the purity of isopropoxydimethyl (4-vinylphenyl) silane was 93.8%. .
比較例3:tert-ブトキシジメチル(4-ビニルフェニル)シランの合成
 エタノールに変えてtert-ブタノール28.91g(0.39モル)を用い、88℃/15kPaで減圧蒸留し、沸点が75℃/15kPaの画分を本留として回収した以外は、比較例1の合成例2と同様にして精製クロロ-tert-ブトキシジメチルシランを得た。
 クロロエトキシジメチルシランに変えて上記で得られたクロロ-tert-ブトキシジメチルシランを用いた以外は比較例1の合成例3と同様にしてtert-ブトキシジメチル(4-ビニルフェニル)シランを得た。出発物質のジクロロジメチルシランのモル比から算出した全収率は9.1%であった。GC-MSで分析した結果、5.4%のジメチルビス(4-ビニルフェニル)シランが不純物として含まれており、tert-ブトキシジメチル(4-ビニルフェニル)シランの純度は94.6%であった。
Comparative Example 3: Synthesis of tert-butoxydimethyl (4-vinylphenyl) silane 28.91 g (0.39 mol) of tert-butanol was used instead of ethanol and distilled under reduced pressure at 88 ° C / 15 kPa, and the boiling point was 75 ° C / Purified chloro-tert-butoxydimethylsilane was obtained in the same manner as in Synthesis Example 2 of Comparative Example 1 except that the 15 kPa fraction was collected as the main distillation.
Tert-butoxydimethyl (4-vinylphenyl) silane was obtained in the same manner as in Synthesis Example 3 of Comparative Example 1 except that the chloro-tert-butoxydimethylsilane obtained above was used instead of chloroethoxydimethylsilane. The overall yield calculated from the molar ratio of the starting dichlorodimethylsilane was 9.1%. As a result of analysis by GC-MS, 5.4% dimethylbis (4-vinylphenyl) silane was contained as an impurity, and the purity of tert-butoxydimethyl (4-vinylphenyl) silane was 94.6%. It was.
 以上の結果より、クロロ(ビニルフェニル)シランを中間体として経由する実施例1~8の製造方法は、従来のクロロアルコキシシランを中間体として経由するヘテロ原子含有芳香族ビニル化合物の製造方法よりも高い純度と高い収率で目的物を得ることができる。また、比較例において、塩化水素トリエチルアミン塩が生成するため操作が危険であることに対し、実施例はワンポットで安全に目的物を取り出すことができる。 From the above results, the production methods of Examples 1 to 8 via chloro (vinylphenyl) silane as an intermediate are more than the conventional methods for producing heteroatom-containing aromatic vinyl compounds via chloroalkoxysilane as an intermediate. The target product can be obtained with high purity and high yield. Further, in the comparative example, since the hydrogen chloride triethylamine salt is generated, the operation is dangerous, whereas in the example, the target product can be safely taken out in one pot.

Claims (8)

  1. 式(I):R1-R2-Y
    (式中、R1は、ビニル基を有し、かつグリニャール試薬に不活性な基で置換されていてもよい芳香族基であり、R2はSi(R10)(R11)であり、式中、R10およびR11は、それぞれ独立して、ハロゲン、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む基であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)
    で表されるヘテロ原子含有芳香族ビニル化合物を製造する方法であって、
    (A)式(II):R1-X1
    (式中、R1は前記と同じであり、X1はハロゲンである)
    で表される化合物にマグネシウムを反応させて得られるグリニャール試薬を含む反応液に、
    式(III):X2-R2-X3
    (式中、X2およびX3はそれぞれ独立してハロゲンであり、R2は前記と同じである)
    で表されるハロゲン化合物を反応させ、
    式(IV):R1-R2-X3
    (式中、R1、R2およびX3は前記と同じである)
    で表されるハロゲン化芳香族ビニル中間体を生成する工程、および
    (B)工程(A)で得られるハロゲン化芳香族ビニル中間体を含む反応混合物に、官能基Yを含む有機金属求核剤を添加して官能基Yを導入し、式(I)で表されるヘテロ原子含有芳香族ビニル化合物を得る工程
    を含む製造方法。
    Formula (I): R 1 -R 2 -Y
    (Wherein R 1 is an aromatic group having a vinyl group and optionally substituted with a group inert to the Grignard reagent, R 2 is Si (R 10 ) (R 11 ), In the formula, R 10 and R 11 are each independently a group containing at least one atom selected from the group consisting of halogen, carbon, silicon, nitrogen, sulfur and oxygen atoms, Y is carbon, A functional group containing at least one atom selected from the group consisting of silicon, nitrogen, sulfur and oxygen atoms)
    A process for producing a heteroatom-containing aromatic vinyl compound represented by
    (A) Formula (II): R 1 -X 1
    (Wherein R 1 is the same as above, and X 1 is halogen)
    In a reaction solution containing a Grignard reagent obtained by reacting magnesium with a compound represented by
    Formula (III): X 2 -R 2 -X 3
    (Wherein X 2 and X 3 are each independently halogen, and R 2 is the same as above)
    A halogen compound represented by
    Formula (IV): R 1 -R 2 -X 3
    (Wherein R 1 , R 2 and X 3 are the same as above)
    And (B) an organometallic nucleophile containing a functional group Y in the reaction mixture containing the halogenated aromatic vinyl intermediate obtained in step (A). Is added to the functional group Y to obtain a heteroatom-containing aromatic vinyl compound represented by the formula (I).
  2. (C)工程(B)で得られる式(I)で表されるヘテロ原子含有芳香族ビニル化合物をろ過および/または減圧蒸留により単離する工程
    を含む請求項1記載の製造方法。
    (C) The manufacturing method of Claim 1 including the process of isolating the heteroatom containing aromatic vinyl compound represented by Formula (I) obtained by process (B) by filtration and / or vacuum distillation.
  3. 有機金属求核剤が、
    式(V):M1-Y
    (式中、M1はアルカリ金属であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基である)
    で表される有機金属化合物、または
    式(VI):
    Figure JPOXMLDOC01-appb-C000001
    (式中、M2はアルカリ土類金属であり、Yは炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、R3はハロゲン、炭素、ケイ素、窒素、硫黄および酸素原子からなる群より選択される少なくとも1種以上の原子を含む官能基であり、Yと同一または異なっていてもよい)
    で表される有機金属化合物である請求項1または2記載の製造方法。
    Organometallic nucleophiles
    Formula (V): M 1 -Y
    (Wherein M 1 is an alkali metal and Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms)
    Or an organic metal compound represented by formula (VI):
    Figure JPOXMLDOC01-appb-C000001
    Wherein M 2 is an alkaline earth metal, Y is a functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, and R 3 is halogen , A functional group containing at least one atom selected from the group consisting of carbon, silicon, nitrogen, sulfur and oxygen atoms, and may be the same as or different from Y)
    The manufacturing method of Claim 1 or 2 which is an organometallic compound represented by these.
  4. 有機金属求核剤が金属アルコキシドまたはグリニャール試薬である請求項3記載の製造方法。 The process according to claim 3, wherein the organometallic nucleophile is a metal alkoxide or a Grignard reagent.
  5. 10およびR11が、それぞれ独立して、ハロゲン、C1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルである請求項1~4のいずれか1項に記載の製造方法。 R 10 and R 11 are each independently halogen, C 1-10 alkyl, C 2-10 alkenyl, tri C 1-6 alkylsiloxy, C 1-6 acyl, C 1-6 acyloxy, C 1-6 Acyloxy C 1-6 alkyl, C 1-6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 alkyl, C 4-10 heterocyclyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide or amide C 1-6 alkyl. The manufacturing method as described.
  6. Yが、C1-10アルキル、C2-10アルケニル、トリC1-6アルキルシロキシ、シラノール、C1-6アシル、C1-6アシルオキシ、C1-6アシルオキシC1-6アルキル、C1-6アルコキシ、C6-12アリール、C6-12アリールオキシ、アミノ、C1-6アルキルアミノ、ジC1-6アルキルアミノ、シアノC1-6アルキル、C1-6アルコキシC1-6アルキル、C4-10ヘテロシクリル、チオニル、チオベンゼンC1-6アルキル、C1-6アルキルアミドまたはアミドC1-6アルキルである請求項1~5のいずれか1項に記載の製造方法。 Y is C 1-10 alkyl, C 2-10 alkenyl, tri-C 1-6 alkylsiloxy, silanol, C 1-6 acyl, C 1-6 acyloxy, C 1-6 acyloxy C 1-6 alkyl, C 1 -6 alkoxy, C 6-12 aryl, C 6-12 aryloxy, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, cyano C 1-6 alkyl, C 1-6 alkoxy C 1-6 The production method according to any one of claims 1 to 5, which is alkyl, C 4-10 heterocyclyl, thionyl, thiobenzene C 1-6 alkyl, C 1-6 alkylamide or amide C 1-6 alkyl.
  7. 工程(A)を開始剤の存在下で開始する請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the step (A) is started in the presence of an initiator.
  8. 式(III)のハロゲン化合物がジクロロジC1―10アルキルシランまたはジクロロチオフェンC1―10アルキルシランである請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the halogen compound of the formula (III) is dichlorodiC 1-10 alkylsilane or dichlorothiophene C 1-10 alkylsilane.
PCT/JP2019/008161 2018-03-12 2019-03-01 Method for producing heteroatom-containing aromatic vinyl compound WO2019176592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-044502 2018-03-12
JP2018044502A JP2019156747A (en) 2018-03-12 2018-03-12 Manufacturing method of hetero atom-containing aromatic vinyl compound

Publications (1)

Publication Number Publication Date
WO2019176592A1 true WO2019176592A1 (en) 2019-09-19

Family

ID=67907585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008161 WO2019176592A1 (en) 2018-03-12 2019-03-01 Method for producing heteroatom-containing aromatic vinyl compound

Country Status (2)

Country Link
JP (1) JP2019156747A (en)
WO (1) WO2019176592A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730481A (en) * 1993-07-15 1995-01-31 Hitachi Ltd Portable radio terminal separated from radio transmitter
JPH07258416A (en) * 1994-03-23 1995-10-09 Dow Corning Kk Both end-functional diphenylsiloxane oligomer and method for producing the same
JPH07258417A (en) * 1994-03-23 1995-10-09 Dow Corning Kk Both end-functional diphenylsiloxane oligomer and method for producing the same
JP2009263574A (en) * 2008-04-28 2009-11-12 Sumitomo Rubber Ind Ltd Copolymer and rubber composition using the same
US20100227977A1 (en) * 2005-12-08 2010-09-09 Lohse David J Synthesis and use of well-defined, highly-branched saturated hydrocarbon polymers
JP2011089086A (en) * 2009-10-26 2011-05-06 Sumitomo Rubber Ind Ltd Modified copolymer and rubber composition using the same
JP2012167207A (en) * 2011-02-15 2012-09-06 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013127015A (en) * 2011-12-16 2013-06-27 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013159771A (en) * 2012-02-08 2013-08-19 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire
JP2013159770A (en) * 2012-02-08 2013-08-19 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire
JP2013163761A (en) * 2012-02-10 2013-08-22 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013231119A (en) * 2012-04-27 2013-11-14 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire
JP2013249418A (en) * 2012-06-01 2013-12-12 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304781A (en) * 1994-05-09 1995-11-21 Japan Synthetic Rubber Co Ltd Styrene-based compound, (co)polymer and production thereof
WO2006049061A1 (en) * 2004-11-01 2006-05-11 Eiken Kagaku Kabushiki Kaisha Method of detecting h5 or h7 avian influenza virus
JP2013059771A (en) * 2011-09-12 2013-04-04 Olympus Corp Welding method and medical equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730481A (en) * 1993-07-15 1995-01-31 Hitachi Ltd Portable radio terminal separated from radio transmitter
JPH07258416A (en) * 1994-03-23 1995-10-09 Dow Corning Kk Both end-functional diphenylsiloxane oligomer and method for producing the same
JPH07258417A (en) * 1994-03-23 1995-10-09 Dow Corning Kk Both end-functional diphenylsiloxane oligomer and method for producing the same
US20100227977A1 (en) * 2005-12-08 2010-09-09 Lohse David J Synthesis and use of well-defined, highly-branched saturated hydrocarbon polymers
JP2009263574A (en) * 2008-04-28 2009-11-12 Sumitomo Rubber Ind Ltd Copolymer and rubber composition using the same
JP2011089086A (en) * 2009-10-26 2011-05-06 Sumitomo Rubber Ind Ltd Modified copolymer and rubber composition using the same
JP2012167207A (en) * 2011-02-15 2012-09-06 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013127015A (en) * 2011-12-16 2013-06-27 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013159771A (en) * 2012-02-08 2013-08-19 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire
JP2013159770A (en) * 2012-02-08 2013-08-19 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire
JP2013163761A (en) * 2012-02-10 2013-08-22 Sumitomo Rubber Ind Ltd Copolymer, rubber composition, and pneumatic tire
JP2013231119A (en) * 2012-04-27 2013-11-14 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire
JP2013249418A (en) * 2012-06-01 2013-12-12 Sumitomo Rubber Ind Ltd Copolymer, rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JP2019156747A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP5057064B2 (en) Process for producing alkylpiperazinoalkylsilane compounds
JP2010285405A (en) Vinylsilane compound having amino group and method for producing the same
JP5115729B2 (en) Organosilicon compound containing acetoacetate group protected with trialkylsilyl group and process for producing the same
WO2019176592A1 (en) Method for producing heteroatom-containing aromatic vinyl compound
JP2002179687A (en) Method for producing organoalkoxysilane
JP7322762B2 (en) Method for producing organosilicon compound having ketimine structure
JP2867118B2 (en) Method for producing silicon compound
KR100371312B1 (en) Preparation of alkyl(amino) dialkoxysilanes
JP6665437B2 (en) Method for producing tertiary alkyl silane and tertiary alkyl alkoxy silane
JP4178369B2 (en) Method for producing silyl (meth) acrylate compound
JP4275417B2 (en) Method for producing alkoxysilane compound
KR102444487B1 (en) Fluorinated alkyl silane compound, and production method for same
JP2019182793A (en) Method for producing halosilane compound having tertiary hydrocarbon group
KR102010453B1 (en) Method for preparing di-organo-dialkoxysilanes
JP2011256120A (en) Process for producing organoaminosilane compound
JP3419173B2 (en) New silane compounds suitable for coating inorganic powders
JPH08311083A (en) Production of silicon compound having steric hindrance
JP2004175784A (en) Method for producing norbornene derivative having organosilyl group
KR100477893B1 (en) Preparation of Organochlorosilanes by the Silylation of Conjugated dienes with Trichlorosilane
JP4891536B2 (en) Method for producing aminoaryl group-containing organosilicon compound, and method for producing an intermediate thereof
RU2565675C1 (en) Method of producing methylbenzyl alkoxysilanes
JPH11228584A (en) Production of aminoalkoxysilane
JP5544862B2 (en) Method for producing strontium amide compound
JP2000327685A (en) Production of silylated aniline derivative
KR100228954B1 (en) Process for preparing vinylically-unsaturated compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768081

Country of ref document: EP

Kind code of ref document: A1