WO2019176507A1 - Flat motor - Google Patents

Flat motor Download PDF

Info

Publication number
WO2019176507A1
WO2019176507A1 PCT/JP2019/006836 JP2019006836W WO2019176507A1 WO 2019176507 A1 WO2019176507 A1 WO 2019176507A1 JP 2019006836 W JP2019006836 W JP 2019006836W WO 2019176507 A1 WO2019176507 A1 WO 2019176507A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
coils
pattern
coil
control circuit
Prior art date
Application number
PCT/JP2019/006836
Other languages
French (fr)
Japanese (ja)
Inventor
沙季 青木
稔博 秋山
西森 泰輔
若林 俊一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020505729A priority Critical patent/JPWO2019176507A1/en
Publication of WO2019176507A1 publication Critical patent/WO2019176507A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type

Definitions

  • the present invention relates to a planar motor that moves a mover two-dimensionally along a plane.
  • Patent Document 1 discloses a linear electromagnetic microactuator that two-dimensionally transports a micromachine component of about several millimeters.
  • the mover when the mover is moved along a predetermined movement route, the mover may deviate from the movement route. In particular, when the moving direction of the mover changes, the mover may deviate from the moving route due to inertial force.
  • the present invention provides a planar motor capable of suppressing the mover from moving off the moving route.
  • a planar motor includes a mover having a magnet, a main surface facing the mover, a stator having a plurality of coils arranged along the main surface, and the plurality of A control circuit that moves the mover along the main surface by controlling a current supplied to the coil, and the control circuit changes the moving direction of the mover from the first moving direction to the first moving direction.
  • the first control is the first traveling direction of the mover among the plurality of coils.
  • the repulsive force is generated between the first coil and the magnet by supplying a current to the first coil located in front of the first coil, and the second control is the movable element among the plurality of coils. Behind the first direction of travel By supplying a current to the second coil is located, is controlled to generate a suction force between the second coil and the magnet.
  • planar motor of the present invention can be prevented from deviating from the mover moving route.
  • FIG. 1 is a diagram illustrating a schematic configuration of a planar motor according to an embodiment.
  • FIG. 2 is a diagram illustrating a cross-sectional structure of the planar motor according to the embodiment.
  • FIG. 3 is a plan view showing the surface of the circuit board.
  • FIG. 4 is a plan view showing the back surface of the circuit board.
  • FIG. 5 is a first plan view for explaining an operation example 1 of the planar motor according to the embodiment.
  • FIG. 6 is a second plan view for explaining an operation example 1 of the planar motor according to the embodiment.
  • FIG. 7 is a plan view for explaining an operation example 2 of the planar motor according to the embodiment.
  • FIG. 8 is a plan view for explaining an operation example 3 of the planar motor according to the embodiment.
  • FIG. 9 is a first plan view for explaining an operation example 4 of the planar motor according to the embodiment.
  • FIG. 10 is a second plan view for explaining an operation example 4 of the planar motor according to the embodiment.
  • FIG. 11 is a plan view of a planar motor according to a modification of the embodiment.
  • FIG. 12 is a diagram illustrating a cross-sectional structure of a planar motor according to a modification of the embodiment.
  • the Z-axis direction in the coordinate axes is, for example, the vertical direction, the Z-axis + side is expressed as an upper side (upper), and the Z-axis-side is expressed as a lower side (lower).
  • the Z-axis direction is a direction perpendicular to the main surface of the stator.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction.
  • the XY plane is a plane parallel to the main surface of the stator.
  • “plan view” means viewing from the Z-axis direction.
  • the N pole of the magnet is described as “N”
  • the S pole of the magnet is described as “S”.
  • FIG. 1 is a diagram illustrating a schematic configuration of a planar motor according to an embodiment.
  • the planar motor 10 includes a mover 20, a stator 30, and a control circuit 40.
  • the planar motor 10 is a linear motor (electromagnetic actuator) that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30.
  • the flat motor 10 is used, for example, for transporting luggage in a distribution warehouse.
  • the mover 20 is a moving object in the planar motor 10.
  • the mover 20 has a permanent magnet 21.
  • the mover 20 is schematically illustrated, but the mover 20 is specifically a structure to which a permanent magnet 21 is attached.
  • the permanent magnet 21 is, for example, a ferrite magnet, but may be an alnico magnet or a neodymium magnet, and the magnetic material forming the permanent magnet 21 is not particularly limited.
  • the permanent magnet 21 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a and the S pole is located closer to the main surface 31a than the N pole.
  • the permanent magnet 21 may be arranged such that the N pole is located closer to the main surface 31a than the S pole.
  • the mover 20 includes, for example, a plurality of permanent magnets 21 as long as it has at least one permanent magnet 21, and the number of permanent magnets 21 included in the mover 20 is not particularly limited.
  • the mover 20 may have an electromagnet instead of the permanent magnet 21.
  • the electromagnet is driven by, for example, a dry battery or a storage battery.
  • the electromagnet may be supplied with power from the pattern coil 33 that does not contribute to the movement of the mover 20.
  • mover 20 should just have the permanent magnet 21 or the electromagnet. That is, the needle
  • FIG. 2 is a diagram showing a cross-sectional structure of the planar motor 10. As shown in FIG. 2, the stator 30 includes a cover member 31 and a circuit board 32. In FIG. 1, the illustration of the cover member 31 is omitted to clearly show the arrangement of the plurality of pattern coils 33.
  • the cover member 31 is a plate-like or sheet-like member that covers the circuit board 32.
  • the cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle.
  • the upper surface of the cover member 31 is a main surface 31a of the stator 30.
  • the main surface 31 a faces the mover 20.
  • the main surface 31a is formed of a material with low magnetic permeability in order to prevent the mover 20 (permanent magnet 21) from being attracted to the stator 30.
  • the cover member 31 is formed of a non-metallic material (a material having an insulating property) such as a resin material.
  • the circuit board 32 is a thin-film (sheet-like) board on which a plurality of thin-film pattern coils 33 are formed on the surface.
  • the planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle.
  • the base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
  • the thickness of the circuit board 32 is, for example, about 170 ⁇ m to 200 ⁇ m.
  • FIG. 3 is a plan view showing the surface of the circuit board 32.
  • a plurality of pattern coils 33 are arranged on the surface of the circuit board 32 in a matrix.
  • Each of the plurality of pattern coils 33 is a rectangular winding wire whose winding axis is perpendicular to the main surface 31a, but may be other winding shapes such as a circular winding shape.
  • the winding directions of the plurality of pattern coils 33 are the same, but may be different.
  • FIG. 4 is a plan view showing the back surface of the circuit board 32. The other end located on the outer peripheral side of the pattern coil 33 is electrically connected to the control circuit 40.
  • the pattern coil 33, the conductive via structure 35, and the wiring 36 are formed of a metal material such as copper, for example.
  • the pattern coil 33 and the wiring 36 are patterned by, for example, etching.
  • the control circuit 40 is a circuit that controls driving of the plurality of pattern coils 33. Specifically, the control circuit 40 controls the current supplied to the plurality of pattern coils 33 to move the mover 20 along the main surface 31a. As schematically illustrated in FIG. 3, the control circuit 40 includes a control unit 41.
  • control unit 41 does not supply power to each of the plurality of pattern coils 33, (b) supplies a direct-current voltage having a first polarity (for example, positive polarity), and (c). Any one of supplying a DC voltage of the second polarity (for example, negative polarity) opposite to the first polarity is performed.
  • the pattern coil 33 to which the first polarity DC voltage is supplied functions as an S-pole electromagnet on the main surface 31a side, for example, and the pattern coil 33 to which the second polarity DC voltage is supplied on the main surface 31a side, for example. Functions as an N-pole electromagnet.
  • control circuit 40 (more specifically, the control unit 41) can supply a DC voltage to each of the plurality of pattern coils 33 and switch the polarity of the DC voltage.
  • control circuit 40 can supply a current to each of the plurality of pattern coils 33 and switch the polarity of the current.
  • control unit 41 is realized by at least one of a processor, a microcomputer, and a circuit. Part or all of the control circuit 40 may be included in the circuit board 32.
  • FIG. 5 and 6 are plan views for explaining an operation example 1 of the planar motor 10.
  • the permanent magnet 21 of the mover 20 is arranged such that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole.
  • the mover 20 schematically shows only the south pole of the permanent magnet 21.
  • the control circuit 40 forwards the movable element 20 in the first traveling direction (hereinafter simply referred to as “forward”) among the plurality of pattern coils 33.
  • Current is supplied to a plurality of first pattern coils 33a located in the For example, the control circuit 40 supplies a second polarity current to the plurality of first pattern coils 33a.
  • the plurality of first pattern coils 33 a function as electromagnets having the N pole on the side of the mover 20, and an attractive force is generated between the plurality of first pattern coils 33 a and the permanent magnets 21.
  • control circuit 40 generates an attractive force between the plurality of first pattern coils 33 a and the permanent magnet 21 by supplying current to the plurality of first pattern coils 33 a. As a result, a forward thrust is applied to the mover 20.
  • the control circuit 40 may supply current to at least one first pattern coil 33a.
  • control circuit 40 is parallel to the power supply to the plurality of first pattern coils 33a, and the rear of the mover 20 in the first traveling direction among the plurality of pattern coils 33 (hereinafter also simply referred to as rear).
  • a current is supplied to the plurality of second pattern coils 33b located at the positions.
  • the control circuit 40 supplies a first polarity current to the plurality of second pattern coils 33b.
  • the plurality of second pattern coils 33 b function as electromagnets having the S-pole on the movable element 20 side, and a repulsive force is generated between the plurality of second pattern coils 33 b and the permanent magnets 21.
  • control circuit 40 generates a repulsive force between the plurality of second pattern coils 33 b and the permanent magnet 21 by supplying current to the plurality of second pattern coils 33 b. As a result, a forward thrust is applied to the mover 20.
  • the control circuit 40 may supply current to at least one second pattern coil 33b.
  • the planar motor 10 moves the mover 20 along the first traveling direction using both the first pattern coil 33a and the second pattern coil 33b.
  • the planar motor 10 may move the mover 20 along the first traveling direction by using at least one of the first pattern coil 33a and the second pattern coil 33b.
  • the control circuit 40 supplies current to the plurality of first pattern coils 33a positioned in front of the mover 20 in the first traveling direction among the plurality of pattern coils 33, thereby the plurality of first pattern coils 33a and A repulsive force is generated between the permanent magnets 21.
  • the first pattern coil 33a is an example of a first coil.
  • control circuit 40 can form an invisible wall due to the repulsive force of the plurality of first pattern coils 33a, and the mover 20 is prevented from jumping to the position P. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route.
  • the control circuit 40 may supply current to at least one first pattern coil 33a.
  • control circuit 40 when the control circuit 40 moves the mover 20 along the second traveling direction, the control circuit 40 supplies a current to at least one pattern coil 33c located in front of the mover 20 in the second traveling direction. Supply. As a result, an attractive force is generated between at least one pattern coil 33 c and the permanent magnet 21.
  • the control circuit 40 supplies current to at least one pattern coil 33d located behind the mover 20 in the second traveling direction among the plurality of pattern coils 33 in parallel with power supply to the at least one pattern coil 33c. To do. As a result, a repulsive force is generated between the at least one pattern coil 33 d and the permanent magnet 21.
  • the mover 20 moves along the second traveling direction using the attractive force generated between the pattern coil 33 c and the permanent magnet 21 and the repulsive force generated between the pattern coil 33 d and the permanent magnet 21.
  • the control circuit 40 may brake the mover 20 in order to prevent the mover 20 from jumping to the position P.
  • FIG. 7 is a plan view for explaining an operation example 2 of such a planar motor 10.
  • the control circuit 40 supplies the current to the plurality of second pattern coils 33 b located behind the mover 20 in the first traveling direction among the plurality of pattern coils 33.
  • An attractive force is generated between the second pattern coil 33 b and the permanent magnet 21.
  • the second pattern coil 33b is an example of a second coil.
  • control circuit 40 can brake the mover 20 by the attractive force of the plurality of second pattern coils 33b, and the mover 20 is prevented from jumping to the position P. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route.
  • control circuit 40 should just supply an electric current to the at least 1 2nd pattern coil 33b.
  • FIG. 8 is a plan view for explaining an operation example 3 of such a planar motor 10.
  • the control circuit 40 supplies a plurality of first pattern coils 33 a located in front of the mover 20 in the first traveling direction among the plurality of pattern coils 33, thereby A repulsive force is generated between the first pattern coil 33 a and the permanent magnet 21.
  • the control circuit 40 supplies current to the plurality of second pattern coils 33b located behind the mover 20 in the first advancing direction among the plurality of pattern coils 33.
  • An attractive force is generated between the second pattern coil 33 b and the permanent magnet 21. It is an example of a 2nd coil.
  • control circuit 40 forms an invisible wall by the repulsive force of the plurality of first pattern coils 33a, and brakes the mover 20 by the suction force of the plurality of second pattern coils 33b. it can. Therefore, the mover 20 is prevented from jumping to the position P. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route.
  • the control circuit 40 may supply current to at least one first pattern coil 33a and supply current to at least one second pattern coil 33b.
  • the plurality of pattern coils 33 include a first coil group 33f and a second coil group 33g.
  • the first coil group 33f includes a plurality of third pattern coils 33e.
  • the first coil group 33 f is located on each of both sides of the movement route of the plurality of pattern coils 33.
  • the side here means a direction intersecting with the extending direction of the moving route (in other words, the traveling direction of the mover 20). That is, the plurality of third pattern coils 33 e are arranged side by side along the movement route of the mover 20 among the plurality of pattern coils 33.
  • it is not essential that the first coil group 33f is located on each of both sides of the moving route, and it is only necessary that the first coil group 33f be located on at least one side of the moving route.
  • the control circuit 40 supplies the first coil group 33f with a current that generates a repulsive force with the permanent magnet 21. This repulsive force acts on the mover 20 in a direction intersecting the traveling direction of the mover 20, and can prevent the mover 20 from deviating from the movement route.
  • the first coil group 33f functions as a guide coil for guiding the mover 20 along the movement route.
  • the second coil group 33g includes a plurality of pattern coils 33 for moving the mover 20 along the movement route.
  • the method of driving the second coil group 33g by the control circuit 40 is the same as in the first to third operation examples.
  • the control circuit 40 supplies, for example, a current that causes a repulsive force between the first coil group 33f and the permanent magnet 21 in advance before the mover 20 starts moving, and in this state, Start moving. That is, the control circuit 40 starts moving the mover 20 along the movement route in a state where a current that generates a repulsive force between the permanent magnet 21 and all of the plurality of third pattern coils 33e is supplied. Thereby, the planar motor 10 can suppress that the needle
  • the control circuit 40 may sequentially supply current to some of the third pattern coils 33e as the mover 20 moves.
  • FIG. 10 is a plan view for explaining an operation example of such a planar motor 10.
  • control circuit 40 is selective to the third pattern coil (1) located on the side of the mover 20 in the first coil group 33f. To supply current.
  • the control circuit 40 selectively supplies current to the third pattern coil (2) located on the side of the mover 20 in the first coil group 33f. To do. Similarly, the control circuit 40 selectively supplies current to the third pattern coil (3) when the mover 20 is located at the position P3, and when the mover 20 is located at the position P4, A current is selectively supplied to the third pattern coil (4).
  • control circuit 40 includes a part of the third pattern coils located on the side of the mover 20 among the plurality of third pattern coils 33e as the mover 20 moves along the movement route.
  • a current that selectively generates a repulsive force with the permanent magnet 21 is supplied to 33e.
  • the planar motor 10 can suppress the mover 20 from moving out of the moving route with lower power consumption than when supplying current to all of the plurality of third pattern coils 33e.
  • the control circuit 40 starts moving the mover 20 along the movement route in a state where a current that generates a repulsive force between the permanent magnet 21 and all of the plurality of third pattern coils 33e is supplied. Thereafter, in accordance with the movement of the mover 20, the supply of current may be turned off in order from the third pattern coil 33e located in the region through which the mover 20 has passed. That is, the control circuit 40 may sequentially turn off the supply of current to the third pattern coil 33e that does not need to generate a repulsive force with the permanent magnet 21. Thereby, the planar motor 10 can suppress the mover 20 from deviating from the movement route with lower power consumption than when the current is continuously supplied to all of the plurality of third pattern coils 33e.
  • the permanent magnet 21 included in the mover 20 has a flat cylindrical shape
  • the shape and size of the permanent magnet 21 and the mounting posture of the mover 20 on the main body are not particularly limited.
  • the permanent magnet 21 may be annular.
  • FIG. 11 is a plan view of a planar motor according to such a modification
  • FIG. 12 is a diagram illustrating a cross-sectional structure of the planar motor according to the modification.
  • the planar motor 10a includes a mover 20a, a stator 30, and a control circuit 40 (not shown in FIGS. 11 and 12).
  • the permanent magnet 21a of the mover 20a has an annular shape.
  • the permanent magnet 21a has an N pole on the inside and an S pole on the outside. That is, the permanent magnet 21a has a structure in which the S pole and the N pole are arranged along the radial direction between the inner side surface and the outer side surface.
  • the permanent magnet 21a is attached to the main body of the mover 20 so that the S pole and the N pole are along the main surface 31a.
  • Such a planar motor 10a can also perform the operations shown in the above operation examples 1 to 4.
  • the permanent magnet 21 a has a total of four magnetic poles, that is, two S poles and two N poles, opposed to the main surface 31 a of the stator 30 in a cross-sectional view. Then, the stator 30 can move the mover 20 by generating an attractive force and a repulsive force between each of the four magnetic poles. That is, the planar motor 10a can improve the thrust to the mover 20.
  • the flat motor 10 is fixed to the movable element 20 having the permanent magnet 21, the main surface 31a facing the movable element 20, and the plurality of pattern coils 33 arranged along the main surface 31a.
  • a child 30 and a control circuit 40 that moves the mover 20 along the main surface 31a by controlling the current supplied to the plurality of pattern coils 33 are provided.
  • the control circuit 40 performs at least one of the first control and the second control when changing the traveling direction of the mover 20 from the first traveling direction to the second traveling direction intersecting the first traveling direction.
  • the first control supplies current between the first pattern coil 33a and the permanent magnet 21 by supplying current to the first pattern coil 33a that is located in front of the mover 20 in the first traveling direction among the plurality of pattern coils 33. This is a control that generates a repulsive force.
  • a current is supplied to the second pattern coil 33b located behind the movable element 20 in the first traveling direction among the plurality of pattern coils 33, so that the second control coil 33b and the permanent magnet 21 are interposed. This is a control that generates a suction force.
  • the permanent magnet 21 is an example of a magnet
  • the pattern coil 33 is an example of a coil.
  • the first pattern coil 33a is an example of a first coil
  • the second pattern coil 33b is an example of a second coil.
  • Such a planar motor 10 can suppress the mover 20 from jumping forward in the first traveling direction. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route.
  • control circuit 40 includes a plurality of third pattern coils 33e arranged along the movement route of the mover 20 among the plurality of pattern coils 33, and a plurality of third patterns positioned on the side of the movement route.
  • a current that generates a repulsive force with the permanent magnet 21 is supplied to the coil 33e.
  • Such a planar motor 10 can suppress the mover 20 from moving off the moving route.
  • control circuit 40 includes a part of the third pattern located on the side of the mover 20 among the plurality of third pattern coils 33e as the mover 20 moves along the movement route.
  • a current that selectively generates a repulsive force between the coil 33e and the permanent magnet 21 is supplied to the coil 33e.
  • Such a planar motor 10 suppresses the mover 20 from moving off the moving route with lower power consumption than when the planar motor 10 supplies current to all of the plurality of third pattern coils 33e. it can.
  • control circuit 40 starts moving the mover 20 along the movement route in a state where a current that generates a repulsive force between the plurality of third pattern coils 33e and the permanent magnet 21 is supplied.
  • Such a planar motor 10 can suppress the mover 20 from moving out of the moving route by simple control.
  • the arrangement direction of the S pole and the N pole of the permanent magnet 21 intersects the main surface 31a.
  • Such a planar motor 10 can suppress the mover 20 having the permanent magnet 21 in which the arrangement direction of the S pole and the N pole intersects the main surface 31a from being removed from the moving route.
  • the mover 20a has a permanent magnet 21a, and the arrangement direction of the S pole and the N pole of the permanent magnet 21a is along the main surface 30a.
  • Such a planar motor 10a can suppress the mover 20a having the permanent magnet 21a in which the arrangement direction of the S-pole and the N-pole is along the main surface 31a from deviating from the moving route.
  • the stator 30 includes a circuit board 32, and each of the plurality of pattern coils 33 is a pattern coil that is patterned on the circuit board 32.
  • the circuit board 32 is an example of a board.
  • stator 30 can be easily reduced in size and thickness.
  • the plurality of pattern coils 33 are arranged in a matrix along the main surface 31a.
  • Such a planar motor 10 can move the mover 20 by a plurality of pattern coils 33 arranged in a matrix.
  • planar motor according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
  • the stator has a thin film pattern coil, but the coil provided in the stator is not limited to the pattern coil.
  • the stator may include a plurality of winding coils instead of the pattern coil.
  • the some pattern coil was arrange
  • the pattern coil has a winding shape along a hexagon, the plurality of pattern coils may be arranged in a honeycomb shape.
  • the planar motor may include a stator having another laminated structure that can realize the characteristic function of the present invention.
  • the planar motor may include, for example, a stator in which another layer is provided between layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. .
  • each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment.
  • Other materials may be included to the extent that can be realized.
  • a magnetic layer may be provided between the cover member and the circuit board.
  • the magnetic layer is formed of a material such as iron oxide, chromium oxide, cobalt, or ferrite, for example. According to such a magnetic layer, the amount of magnetic flux contributing to the movement of the mover can be improved. That is, the magnetic flux generated by the pattern coil can be used efficiently.
  • the components such as the control unit may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the present invention may be realized as a method for controlling a planar motor.

Abstract

A flat motor (10) is provided with: a movable element (20) comprising a permanent magnet (21); a stator (30) comprising a main surface facing the movable element (20) and a plurality of pattern coils (33) disposed along the main surface; and a control circuit which moves the movable element (20) along the main surface by controlling the current supplied to the plurality of pattern coils (33). When changing the advancing direction of the movable element (20) from a first advancing direction to a second advancing direction intersecting the first advancing direction, the control circuit supplies currents to first pattern coil (33a) among the plurality of pattern coils (33) positioned forward of the first advancing direction of the movable element (20), thereby generating a repulsive force between the first pattern coils (33a) and the permanent magnet (21).

Description

平面モータPlanar motor
 本発明は、可動子を平面に沿って二次元的に移動させる平面モータに関する。 The present invention relates to a planar motor that moves a mover two-dimensionally along a plane.
 可動子を平面に沿って二次元的に移動させる平面モータが知られている。このような平面モータとして、特許文献1には、数mm程度のマイクロマシン部品を二次元的に搬送するリニア電磁型マイクロアクチュエータが開示されている。 A planar motor that moves a mover two-dimensionally along a plane is known. As such a planar motor, Patent Document 1 discloses a linear electromagnetic microactuator that two-dimensionally transports a micromachine component of about several millimeters.
特開平11-299215号公報Japanese Patent Laid-Open No. 11-299215
 平面モータにおいて、あらかじめ定められた移動ルートに沿って可動子を移動させる場合可動子が移動ルートから外れてしまうことがある。特に、可動子の進行方向が変わるような場合には、可動子が慣性力によって移動ルートから外れてしまうことがある。 In a planar motor, when the mover is moved along a predetermined movement route, the mover may deviate from the movement route. In particular, when the moving direction of the mover changes, the mover may deviate from the moving route due to inertial force.
 本発明は、可動子が移動ルートから外れてしまうことを抑制することができる平面モータを提供する。 The present invention provides a planar motor capable of suppressing the mover from moving off the moving route.
 本発明の一態様に係る平面モータは、磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿って配置される複数のコイルを有する固定子と、前記複数のコイルに供給される電流を制御することにより、前記可動子を前記主面に沿って移動させる制御回路とを備え、前記制御回路は、前記可動子の進行方向を第一進行方向から前記第一進行方向と交差する第二進行方向に変更する場合、第一制御、及び、第二制御の少なくとも一方を行い、前記第一制御は、前記複数のコイルのうち前記可動子の前記第一進行方向の前方に位置する第一コイルに電流を供給することにより、前記第一コイル及び前記磁石の間に反発力を生じさせる制御であり、前記第二制御は、前記複数のコイルのうち前記可動子の前記第一進行方向の後方に位置する第二コイルに電流を供給することにより、前記第二コイル及び前記磁石の間に吸引力を生じさせる制御である。 A planar motor according to an aspect of the present invention includes a mover having a magnet, a main surface facing the mover, a stator having a plurality of coils arranged along the main surface, and the plurality of A control circuit that moves the mover along the main surface by controlling a current supplied to the coil, and the control circuit changes the moving direction of the mover from the first moving direction to the first moving direction. When changing to the second traveling direction that intersects the traveling direction, at least one of the first control and the second control is performed, and the first control is the first traveling direction of the mover among the plurality of coils. The repulsive force is generated between the first coil and the magnet by supplying a current to the first coil located in front of the first coil, and the second control is the movable element among the plurality of coils. Behind the first direction of travel By supplying a current to the second coil is located, is controlled to generate a suction force between the second coil and the magnet.
 本発明の平面モータは、可動子移動ルートから外れてしまうことを抑制することができる。 The planar motor of the present invention can be prevented from deviating from the mover moving route.
図1は、実施の形態に係る平面モータの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a planar motor according to an embodiment. 図2は、実施の形態に係る平面モータの断面構造を示す図である。FIG. 2 is a diagram illustrating a cross-sectional structure of the planar motor according to the embodiment. 図3は、回路基板の表面を示す平面図である。FIG. 3 is a plan view showing the surface of the circuit board. 図4は、回路基板の裏面を示す平面図である。FIG. 4 is a plan view showing the back surface of the circuit board. 図5は、実施の形態に係る平面モータの動作例1を説明するための第一の平面図である。FIG. 5 is a first plan view for explaining an operation example 1 of the planar motor according to the embodiment. 図6は、実施の形態に係る平面モータの動作例1を説明するための第二の平面図である。FIG. 6 is a second plan view for explaining an operation example 1 of the planar motor according to the embodiment. 図7は、実施の形態に係る平面モータの動作例2を説明するための平面図である。FIG. 7 is a plan view for explaining an operation example 2 of the planar motor according to the embodiment. 図8は、実施の形態に係る平面モータの動作例3を説明するための平面図である。FIG. 8 is a plan view for explaining an operation example 3 of the planar motor according to the embodiment. 図9は、実施の形態に係る平面モータの動作例4を説明するための第一の平面図である。FIG. 9 is a first plan view for explaining an operation example 4 of the planar motor according to the embodiment. 図10は、実施の形態に係る平面モータの動作例4を説明するための第二の平面図である。FIG. 10 is a second plan view for explaining an operation example 4 of the planar motor according to the embodiment. 図11は、実施の形態の変形例に係る平面モータの平面図である。FIG. 11 is a plan view of a planar motor according to a modification of the embodiment. 図12は、実施の形態の変形例に係る平面モータの断面構造を示す図である。FIG. 12 is a diagram illustrating a cross-sectional structure of a planar motor according to a modification of the embodiment.
 以下、実施の形態にについて、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態で説明に用いられる図面においては座標軸が示される場合がある。座標軸におけるZ軸方向は、例えば、鉛直方向であり、Z軸+側は、上側(上方)と表現され、Z軸-側は、下側(下方)と表現される。Z軸方向は、言い換えれば、固定子が有する主面に垂直な方向である。また、X軸方向及びY軸方向は、Z軸方向に垂直な平面(水平面)上において、互いに直交する方向である。X-Y平面は、固定子が有する主面に平行な平面である。例えば、以下の実施の形態において、「平面視」とは、Z軸方向から見ることを意味する。また、図面において、磁石のN極は、「N」と記載され、磁石のS極は、「S」と記載される。 In the drawings used for explanation in the following embodiments, coordinate axes may be shown. The Z-axis direction in the coordinate axes is, for example, the vertical direction, the Z-axis + side is expressed as an upper side (upper), and the Z-axis-side is expressed as a lower side (lower). In other words, the Z-axis direction is a direction perpendicular to the main surface of the stator. The X-axis direction and the Y-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction. The XY plane is a plane parallel to the main surface of the stator. For example, in the following embodiments, “plan view” means viewing from the Z-axis direction. In the drawings, the N pole of the magnet is described as “N”, and the S pole of the magnet is described as “S”.
 (実施の形態)
 [構成]
 以下、実施の形態に係る平面モータの構成について図面を用いて説明する。図1は、実施の形態に係る平面モータの概略構成を示す図である。
(Embodiment)
[Constitution]
Hereinafter, the structure of the planar motor according to the embodiment will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of a planar motor according to an embodiment.
 図1に示されるように、実施の形態に係る平面モータ10は、可動子20と、固定子30と、制御回路40とを備える。平面モータ10は、固定子30が有する主面31aに沿って可動子20を2次元的に移動させるリニアモータ(電磁アクチュエータ)である。平面モータ10は、例えば、物流倉庫における荷物の搬送などに用いられる。 As shown in FIG. 1, the planar motor 10 according to the embodiment includes a mover 20, a stator 30, and a control circuit 40. The planar motor 10 is a linear motor (electromagnetic actuator) that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30. The flat motor 10 is used, for example, for transporting luggage in a distribution warehouse.
 まず、可動子20について説明する。可動子20は、平面モータ10における移動対象物である。可動子20は、永久磁石21を有する。図1では、可動子20は模式的に図示されているが、可動子20は、具体的には、永久磁石21が取り付けられた構造体である。永久磁石21は、例えば、フェライト磁石であるが、アルニコ磁石、または、ネオジム磁石などであってもよく、永久磁石21を形成する磁性材料は特に限定されない。 First, the mover 20 will be described. The mover 20 is a moving object in the planar motor 10. The mover 20 has a permanent magnet 21. In FIG. 1, the mover 20 is schematically illustrated, but the mover 20 is specifically a structure to which a permanent magnet 21 is attached. The permanent magnet 21 is, for example, a ferrite magnet, but may be an alnico magnet or a neodymium magnet, and the magnetic material forming the permanent magnet 21 is not particularly limited.
 図1の例では、永久磁石21は、S極及びN極の並び方向が主面31aに交差し、S極がN極よりも主面31a寄りに位置するように配置されている。しかしながら、永久磁石21は、N極がS極よりも主面31a寄りに位置するように配置されてもよい。可動子20は、例えば、複数の永久磁石21を有するが、少なくとも1つの永久磁石21を有していればよく、可動子20が有する永久磁石21の個数は特に限定されない。 In the example of FIG. 1, the permanent magnet 21 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a and the S pole is located closer to the main surface 31a than the N pole. However, the permanent magnet 21 may be arranged such that the N pole is located closer to the main surface 31a than the S pole. The mover 20 includes, for example, a plurality of permanent magnets 21 as long as it has at least one permanent magnet 21, and the number of permanent magnets 21 included in the mover 20 is not particularly limited.
 なお、可動子20は、永久磁石21に代えて電磁石を有してもよい。この場合、電磁石は、例えば、乾電池または蓄電池によって駆動される。電磁石は、可動子20の移動に寄与していないパターンコイル33から給電されてもよい。このように、可動子20は、永久磁石21または電磁石を有していればよい。つまり、可動子20は、磁石を有していればよい。 The mover 20 may have an electromagnet instead of the permanent magnet 21. In this case, the electromagnet is driven by, for example, a dry battery or a storage battery. The electromagnet may be supplied with power from the pattern coil 33 that does not contribute to the movement of the mover 20. Thus, the needle | mover 20 should just have the permanent magnet 21 or the electromagnet. That is, the needle | mover 20 should just have a magnet.
 次に、固定子30について説明する。固定子30は、可動子20を移動させるための構造体であり、建築物などに固定される。図2は、平面モータ10の断面構造を示す図である。図2に示されるように、固定子30は、カバー部材31と、回路基板32とを有する。なお、上記図1では、複数のパターンコイル33の配置を明示するためにカバー部材31の正確な図示が省略されている。 Next, the stator 30 will be described. The stator 30 is a structure for moving the mover 20 and is fixed to a building or the like. FIG. 2 is a diagram showing a cross-sectional structure of the planar motor 10. As shown in FIG. 2, the stator 30 includes a cover member 31 and a circuit board 32. In FIG. 1, the illustration of the cover member 31 is omitted to clearly show the arrangement of the plurality of pattern coils 33.
 カバー部材31は、回路基板32を覆う板状またはシート状の部材である。カバー部材31の平面視形状は、矩形であるが、円形等その他の形状であってもよい。カバー部材31の上面は、固定子30が有する主面31aとなる。主面31aは、可動子20と対向する。主面31aは、可動子20(永久磁石21)が固定子30に吸着してしまうことを抑制するために、透磁率が低い材料によって形成される。カバー部材31は、具体的には、樹脂材料などの非金属材料(絶縁性を有する材料)によって形成される。 The cover member 31 is a plate-like or sheet-like member that covers the circuit board 32. The cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle. The upper surface of the cover member 31 is a main surface 31a of the stator 30. The main surface 31 a faces the mover 20. The main surface 31a is formed of a material with low magnetic permeability in order to prevent the mover 20 (permanent magnet 21) from being attracted to the stator 30. Specifically, the cover member 31 is formed of a non-metallic material (a material having an insulating property) such as a resin material.
 回路基板32は、表面に薄膜状のパターンコイル33が複数形成される薄膜状(シート状)の基板である。回路基板32の平面視形状は、矩形であるが、円形等その他の形状であってもよい。回路基板32の基材は、例えば、ガラエポなどの樹脂材料によって形成される。回路基板32の厚みは、例えば、170μm~200μm程度である。 The circuit board 32 is a thin-film (sheet-like) board on which a plurality of thin-film pattern coils 33 are formed on the surface. The planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle. The base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy. The thickness of the circuit board 32 is, for example, about 170 μm to 200 μm.
 回路基板32の表面には、複数のパターンコイル33が形成される。図3は、回路基板32の表面を示す平面図である。 A plurality of pattern coils 33 are formed on the surface of the circuit board 32. FIG. 3 is a plan view showing the surface of the circuit board 32.
 図1及び図3に示されるように、回路基板32の表面には、複数のパターンコイル33がマトリクス状に配置される。複数のパターンコイル33のそれぞれは、巻回軸が主面31aに垂直な方向に沿う矩形巻回状の配線であるが、円形巻回状等、他の巻回状であってもよい。複数のパターンコイル33の巻回方向は、同一であるが、異なってもよい。 1 and 3, a plurality of pattern coils 33 are arranged on the surface of the circuit board 32 in a matrix. Each of the plurality of pattern coils 33 is a rectangular winding wire whose winding axis is perpendicular to the main surface 31a, but may be other winding shapes such as a circular winding shape. The winding directions of the plurality of pattern coils 33 are the same, but may be different.
 パターンコイル33の巻回中心付近に位置する一方の端部(内周側に位置する一方の端部)は、導電ビア構造35によって回路基板32の裏面に形成された配線36に電気的に接続される。図4は、回路基板32の裏面を示す平面図である。パターンコイル33の外周側に位置する他方の端部は、制御回路40に電気的に接続される。 One end portion (one end portion located on the inner peripheral side) located near the winding center of the pattern coil 33 is electrically connected to the wiring 36 formed on the back surface of the circuit board 32 by the conductive via structure 35. Is done. FIG. 4 is a plan view showing the back surface of the circuit board 32. The other end located on the outer peripheral side of the pattern coil 33 is electrically connected to the control circuit 40.
 パターンコイル33、導電ビア構造35、及び、配線36は、例えば、銅などの金属材料によって形成される。パターンコイル33及び配線36は、例えば、エッチングによってパターン形成される。 The pattern coil 33, the conductive via structure 35, and the wiring 36 are formed of a metal material such as copper, for example. The pattern coil 33 and the wiring 36 are patterned by, for example, etching.
 次に、制御回路40について説明する。制御回路40は、複数のパターンコイル33の駆動を制御する回路である。制御回路40は、具体的には、複数のパターンコイル33に供給される電流を制御することにより、可動子20を主面31aに沿って移動させる。図3に模式的に示されるように、制御回路40は、制御部41を有する。 Next, the control circuit 40 will be described. The control circuit 40 is a circuit that controls driving of the plurality of pattern coils 33. Specifically, the control circuit 40 controls the current supplied to the plurality of pattern coils 33 to move the mover 20 along the main surface 31a. As schematically illustrated in FIG. 3, the control circuit 40 includes a control unit 41.
 制御部41は、例えば、複数のパターンコイル33のそれぞれに対して、(a)電力を供給しない、(b)第一極性(例えば、正極性)の直流電圧を供給する、及び、(c)第一極性の逆の第二極性(例えば、負極性)の直流電圧を供給する、のいずれかを行う。第一極性の直流電圧が供給されたパターンコイル33は、例えば、主面31a側がS極の電磁石として機能し、第二極性の直流電圧が供給されたパターンコイル33は、例えば、主面31a側がN極の電磁石として機能する。 For example, the control unit 41 (a) does not supply power to each of the plurality of pattern coils 33, (b) supplies a direct-current voltage having a first polarity (for example, positive polarity), and (c). Any one of supplying a DC voltage of the second polarity (for example, negative polarity) opposite to the first polarity is performed. The pattern coil 33 to which the first polarity DC voltage is supplied functions as an S-pole electromagnet on the main surface 31a side, for example, and the pattern coil 33 to which the second polarity DC voltage is supplied on the main surface 31a side, for example. Functions as an N-pole electromagnet.
 このように、制御回路40(より具体的には、制御部41)は、複数のパターンコイル33のそれぞれに直流電圧を供給し、当該直流電圧の極性を切り替えることができる。言い換えれば、制御回路40は、複数のパターンコイル33のそれぞれに電流を供給し、当該電流の極性を切り替えることができる。 As described above, the control circuit 40 (more specifically, the control unit 41) can supply a DC voltage to each of the plurality of pattern coils 33 and switch the polarity of the DC voltage. In other words, the control circuit 40 can supply a current to each of the plurality of pattern coils 33 and switch the polarity of the current.
 制御部41は、具体的には、プロセッサ、マイクロコンピュータ、及び、回路の少なくとも1つ以上によって実現される。なお、制御回路40の一部または全部は、回路基板32に含まれてもよい。 Specifically, the control unit 41 is realized by at least one of a processor, a microcomputer, and a circuit. Part or all of the control circuit 40 may be included in the circuit board 32.
 [動作例1]
 次に、平面モータ10の動作について説明する。図5及び図6は、平面モータ10の動作例1を説明するための平面図である。上述のように、可動子20が有する永久磁石21は、S極及びN極の並び方向が主面31aに交差し、S極がN極よりも主面31a寄りに位置するように配置されており、図5及び図6において、可動子20は、永久磁石21のS極のみが模式的に図示されている。
[Operation Example 1]
Next, the operation of the planar motor 10 will be described. 5 and 6 are plan views for explaining an operation example 1 of the planar motor 10. As described above, the permanent magnet 21 of the mover 20 is arranged such that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole. 5 and 6, the mover 20 schematically shows only the south pole of the permanent magnet 21.
 図5に示されるように、制御回路40は、可動子20を第一進行方向に沿って移動させる場合、複数のパターンコイル33のうち可動子20の第一進行方向の前方(以下、単に前方とも記載される)に位置する複数の第一パターンコイル33aに電流を供給する。制御回路40は、例えば、複数の第一パターンコイル33aに第二極性の電流を供給する。そうすると、複数の第一パターンコイル33aは、可動子20側がN極となる電磁石として機能し、複数の第一パターンコイル33a及び永久磁石21の間には、吸引力が発生する。つまり、制御回路40は、複数の第一パターンコイル33aに電流を供給することにより、複数の第一パターンコイル33a及び永久磁石21の間に吸引力を生じさせる。この結果、可動子20に前方へ向かう推力が与えられる。なお、制御回路40は、少なくとも1つの第一パターンコイル33aに電流を供給すればよい。 As shown in FIG. 5, when moving the mover 20 along the first traveling direction, the control circuit 40 forwards the movable element 20 in the first traveling direction (hereinafter simply referred to as “forward”) among the plurality of pattern coils 33. Current is supplied to a plurality of first pattern coils 33a located in the For example, the control circuit 40 supplies a second polarity current to the plurality of first pattern coils 33a. Then, the plurality of first pattern coils 33 a function as electromagnets having the N pole on the side of the mover 20, and an attractive force is generated between the plurality of first pattern coils 33 a and the permanent magnets 21. That is, the control circuit 40 generates an attractive force between the plurality of first pattern coils 33 a and the permanent magnet 21 by supplying current to the plurality of first pattern coils 33 a. As a result, a forward thrust is applied to the mover 20. The control circuit 40 may supply current to at least one first pattern coil 33a.
 また、制御回路40は、複数の第一パターンコイル33aへの電力供給と並行して、複数のパターンコイル33のうち可動子20の第一進行方向の後方(以下、単に後方とも記載される)に位置する複数の第二パターンコイル33bに電流を供給する。制御回路40は、例えば、複数の第二パターンコイル33bに第一極性の電流を供給する。そうすると、複数の第二パターンコイル33bは、可動子20側がS極となる電磁石として機能し、複数の第二パターンコイル33b及び永久磁石21の間には、反発力が発生する。つまり、制御回路40は、複数の第二パターンコイル33bに電流を供給することにより、複数の第二パターンコイル33b及び永久磁石21の間に反発力を生じさせる。この結果、可動子20に前方へ向かう推力が与えられる。なお、制御回路40は、少なくとも1つの第二パターンコイル33bに電流を供給すればよい。 In addition, the control circuit 40 is parallel to the power supply to the plurality of first pattern coils 33a, and the rear of the mover 20 in the first traveling direction among the plurality of pattern coils 33 (hereinafter also simply referred to as rear). A current is supplied to the plurality of second pattern coils 33b located at the positions. For example, the control circuit 40 supplies a first polarity current to the plurality of second pattern coils 33b. Then, the plurality of second pattern coils 33 b function as electromagnets having the S-pole on the movable element 20 side, and a repulsive force is generated between the plurality of second pattern coils 33 b and the permanent magnets 21. That is, the control circuit 40 generates a repulsive force between the plurality of second pattern coils 33 b and the permanent magnet 21 by supplying current to the plurality of second pattern coils 33 b. As a result, a forward thrust is applied to the mover 20. The control circuit 40 may supply current to at least one second pattern coil 33b.
 以上説明したように、平面モータ10は、第一パターンコイル33a及び第二パターンコイル33bの両方を使用して可動子20を第一進行方向に沿って移動させる。なお、平面モータ10は第一パターンコイル33a及び第二パターンコイル33bの少なくとも一方を使用して可動子20を第一進行方向に沿って移動させればよい。 As described above, the planar motor 10 moves the mover 20 along the first traveling direction using both the first pattern coil 33a and the second pattern coil 33b. The planar motor 10 may move the mover 20 along the first traveling direction by using at least one of the first pattern coil 33a and the second pattern coil 33b.
 次に、可動子20の進行方向を第一進行方向から第一進行方向と交差する第二進行方向に変更する場合の動作について図6を参照しながら説明する。第一進行方向に沿って移動している可動子20には慣性力が働く。このため、進行方向を第二進行方向に変えたいにもかかわらず可動子20が位置Pに飛び出してしまう可能性がある。進行方向が第一進行方向から第二進行方向に変わる場合とは、例えば、可動子20をカーブ走行させる場合である。 Next, the operation when the moving direction of the mover 20 is changed from the first moving direction to the second moving direction intersecting the first moving direction will be described with reference to FIG. An inertial force acts on the mover 20 moving along the first traveling direction. For this reason, there is a possibility that the mover 20 may jump out to the position P despite the desire to change the traveling direction to the second traveling direction. The case where the advancing direction changes from the first advancing direction to the second advancing direction is, for example, a case where the mover 20 is driven in a curve.
 そこで、制御回路40は、複数のパターンコイル33のうち可動子20の第一進行方向の前方に位置する複数の第一パターンコイル33aに電流を供給することにより、複数の第一パターンコイル33a及び永久磁石21の間に反発力を生じさせる。第一パターンコイル33aは、第一コイルの一例である。 Therefore, the control circuit 40 supplies current to the plurality of first pattern coils 33a positioned in front of the mover 20 in the first traveling direction among the plurality of pattern coils 33, thereby the plurality of first pattern coils 33a and A repulsive force is generated between the permanent magnets 21. The first pattern coil 33a is an example of a first coil.
 これにより、制御回路40は、複数の第一パターンコイル33aの反発力によって目に見えない壁を形成することができ、可動子20が位置Pに飛び出してしまうことが抑制される。つまり、平面モータ10は、可動子20が移動ルートから外れてしまうことを抑制することができる。なお、反発力によって目に見えない壁を形成する場合、制御回路40は、少なくとも1つの第一パターンコイル33aに電流を供給すればよい。 Thereby, the control circuit 40 can form an invisible wall due to the repulsive force of the plurality of first pattern coils 33a, and the mover 20 is prevented from jumping to the position P. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route. In the case where an invisible wall is formed by the repulsive force, the control circuit 40 may supply current to at least one first pattern coil 33a.
 また、制御回路40は、可動子20を第二進行方向に沿って移動させる場合、複数のパターンコイル33のうち可動子20の第二進行方向の前方に位置する少なくとも1つのパターンコイル33cに電流を供給する。この結果、少なくとも1つのパターンコイル33c及び永久磁石21の間に吸引力が生じる。制御回路40は、少なくとも1つのパターンコイル33cへの電力供給と並行して、複数のパターンコイル33のうち可動子20の第二進行方向の後方に位置する少なくとも1つのパターンコイル33dに電流を供給する。この結果、少なくとも1つのパターンコイル33d及び永久磁石21の間に反発力が生じる。このように、可動子20は、パターンコイル33c及び永久磁石21の間に生じる吸引力、及び、パターンコイル33d及び永久磁石21の間に生じる反発力を使用して第二進行方向に沿って移動するが、吸引力及び反発力の少なくとも一方を使用して移動すればよい。 In addition, when the control circuit 40 moves the mover 20 along the second traveling direction, the control circuit 40 supplies a current to at least one pattern coil 33c located in front of the mover 20 in the second traveling direction. Supply. As a result, an attractive force is generated between at least one pattern coil 33 c and the permanent magnet 21. The control circuit 40 supplies current to at least one pattern coil 33d located behind the mover 20 in the second traveling direction among the plurality of pattern coils 33 in parallel with power supply to the at least one pattern coil 33c. To do. As a result, a repulsive force is generated between the at least one pattern coil 33 d and the permanent magnet 21. Thus, the mover 20 moves along the second traveling direction using the attractive force generated between the pattern coil 33 c and the permanent magnet 21 and the repulsive force generated between the pattern coil 33 d and the permanent magnet 21. However, it is only necessary to move using at least one of a suction force and a repulsive force.
 [動作例2]
 制御回路40は、可動子20が位置Pに飛び出してしまうことを抑制するために、可動子20にブレーキをかけてもよい。図7は、このような平面モータ10の動作例2を説明するための平面図である。
[Operation example 2]
The control circuit 40 may brake the mover 20 in order to prevent the mover 20 from jumping to the position P. FIG. 7 is a plan view for explaining an operation example 2 of such a planar motor 10.
 図7に示されるように、制御回路40は、複数のパターンコイル33のうち可動子20の第一進行方向の後方に位置する複数の第二パターンコイル33bに電流を供給することにより、複数の第二パターンコイル33b及び永久磁石21の間に吸引力を生じさせる。第二パターンコイル33bは、第二コイルの一例である。 As shown in FIG. 7, the control circuit 40 supplies the current to the plurality of second pattern coils 33 b located behind the mover 20 in the first traveling direction among the plurality of pattern coils 33. An attractive force is generated between the second pattern coil 33 b and the permanent magnet 21. The second pattern coil 33b is an example of a second coil.
 これにより、制御回路40は、複数の第二パターンコイル33bの吸引力によって可動子20にブレーキをかけることができ、可動子20が位置Pに飛び出してしまうことが抑制される。つまり、平面モータ10は、可動子20が移動ルートから外れてしまうことを抑制することができる。なお、可動子20にブレーキをかける場合、制御回路40は、少なくとも1つの第二パターンコイル33bに電流を供給すればよい。 Thereby, the control circuit 40 can brake the mover 20 by the attractive force of the plurality of second pattern coils 33b, and the mover 20 is prevented from jumping to the position P. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route. In addition, when applying a brake to the needle | mover 20, the control circuit 40 should just supply an electric current to the at least 1 2nd pattern coil 33b.
 [動作例3]
 動作例1及び動作例2は、組み合わされてもよい。図8は、このような平面モータ10の動作例3を説明するための平面図である。
[Operation Example 3]
Operation example 1 and operation example 2 may be combined. FIG. 8 is a plan view for explaining an operation example 3 of such a planar motor 10.
 図8に示されるように、制御回路40は、複数のパターンコイル33のうち可動子20の第一進行方向の前方に位置する複数の第一パターンコイル33aに電流を供給することにより、複数の第一パターンコイル33a及び永久磁石21の間に反発力を生じさせる。また、これと並行して、制御回路40は、複数のパターンコイル33のうち可動子20の第一進行方向の後方に位置する複数の第二パターンコイル33bに電流を供給することにより、複数の第二パターンコイル33b及び永久磁石21の間に吸引力を生じさせる。第二コイルの一例である。 As shown in FIG. 8, the control circuit 40 supplies a plurality of first pattern coils 33 a located in front of the mover 20 in the first traveling direction among the plurality of pattern coils 33, thereby A repulsive force is generated between the first pattern coil 33 a and the permanent magnet 21. In parallel with this, the control circuit 40 supplies current to the plurality of second pattern coils 33b located behind the mover 20 in the first advancing direction among the plurality of pattern coils 33. An attractive force is generated between the second pattern coil 33 b and the permanent magnet 21. It is an example of a 2nd coil.
 これにより、制御回路40は、複数の第一パターンコイル33aの反発力によって目に見えない壁を形成し、かつ、複数の第二パターンコイル33bの吸引力によって可動子20にブレーキをかけることができる。したがって、可動子20が位置Pに飛び出してしまうことが抑制される。つまり、平面モータ10は、可動子20が移動ルートから外れてしまうことを抑制することができる。なお、動作例3において、制御回路40は、少なくとも1つの第一パターンコイル33aに電流を供給し、かつ、少なくとも1つの第二パターンコイル33bに電流を供給すればよい。 Thereby, the control circuit 40 forms an invisible wall by the repulsive force of the plurality of first pattern coils 33a, and brakes the mover 20 by the suction force of the plurality of second pattern coils 33b. it can. Therefore, the mover 20 is prevented from jumping to the position P. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route. In the operation example 3, the control circuit 40 may supply current to at least one first pattern coil 33a and supply current to at least one second pattern coil 33b.
 [動作例4]
 可動子20の移動ルートがあらかじめ定められている場合、制御回路40は、複数のパターンコイル33のうち可動子20の移動ルートに沿う複数のパターンコイル33に、永久磁石21との間に反発力を生じさせるような電流を供給してもよい。図9は、このような平面モータ10の動作例4を説明するための平面図である。
[Operation Example 4]
When the movement route of the mover 20 is determined in advance, the control circuit 40 repels force between the plurality of pattern coils 33 along the movement route of the mover 20 and the permanent magnet 21. It is also possible to supply a current that causes FIG. 9 is a plan view for explaining an operation example 4 of such a planar motor 10.
 図9に示されるように、動作例4では、複数のパターンコイル33に、第一コイル群33fと、第二コイル群33gとが含まれる。 As shown in FIG. 9, in the operation example 4, the plurality of pattern coils 33 include a first coil group 33f and a second coil group 33g.
 第一コイル群33fは、複数の第三パターンコイル33eによって構成される。第一コイル群33fは、複数のパターンコイル33の移動ルートの両方の側方のそれぞれに位置する。ここでの側方とは、移動ルートの延伸方向(言い換えれば、可動子20の進行方向)と交差する方向を意味する。つまり、複数の第三パターンコイル33eは、複数のパターンコイル33のうち可動子20の移動ルートに沿って並んで配置される。なお、第一コイル群33fが移動ルートの両方の側方のそれぞれに位置することは必須ではなく、移動ルートの少なくとも一方の側方に位置すればよい。 The first coil group 33f includes a plurality of third pattern coils 33e. The first coil group 33 f is located on each of both sides of the movement route of the plurality of pattern coils 33. The side here means a direction intersecting with the extending direction of the moving route (in other words, the traveling direction of the mover 20). That is, the plurality of third pattern coils 33 e are arranged side by side along the movement route of the mover 20 among the plurality of pattern coils 33. In addition, it is not essential that the first coil group 33f is located on each of both sides of the moving route, and it is only necessary that the first coil group 33f be located on at least one side of the moving route.
 制御回路40は、第一コイル群33fに、永久磁石21との間に反発力を生じさせるような電流を供給する。この反発力は、可動子20に対して、可動子20の進行方向と交差する方向に作用し、可動子20が移動ルートから外れることを抑制することができる。第一コイル群33fは、可動子20を移動ルートに沿ってガイドするためのガイドコイルとして機能する。 The control circuit 40 supplies the first coil group 33f with a current that generates a repulsive force with the permanent magnet 21. This repulsive force acts on the mover 20 in a direction intersecting the traveling direction of the mover 20, and can prevent the mover 20 from deviating from the movement route. The first coil group 33f functions as a guide coil for guiding the mover 20 along the movement route.
 第二コイル群33gは、可動子20を移動ルートに沿って移動させるための複数のパターンコイル33によって構成される。制御回路40による第二コイル群33gの駆動方法は、動作例1~3と同様である。 The second coil group 33g includes a plurality of pattern coils 33 for moving the mover 20 along the movement route. The method of driving the second coil group 33g by the control circuit 40 is the same as in the first to third operation examples.
 なお、制御回路40は、例えば、可動子20の移動開始前に第一コイル群33fにあらかじめ永久磁石21との間に反発力を生じさせるような電流を供給し、この状態で可動子20の移動を開始させる。つまり、制御回路40は、複数の第三パターンコイル33eの全てに永久磁石21との間に反発力を生じさせるような電流を供給した状態で可動子20を移動ルートに沿って移動開始させる。これにより、平面モータ10は、シンプルな制御によって可動子20が移動ルートから外れてしまうことを抑制することができる。 The control circuit 40 supplies, for example, a current that causes a repulsive force between the first coil group 33f and the permanent magnet 21 in advance before the mover 20 starts moving, and in this state, Start moving. That is, the control circuit 40 starts moving the mover 20 along the movement route in a state where a current that generates a repulsive force between the permanent magnet 21 and all of the plurality of third pattern coils 33e is supplied. Thereby, the planar motor 10 can suppress that the needle | mover 20 remove | deviates from a movement route by simple control.
 制御回路40は、可動子20の移動に合わせて一部の第三パターンコイル33eに順次電流を供給してもよい。図10は、このような平面モータ10の動作例を説明するための平面図である。 The control circuit 40 may sequentially supply current to some of the third pattern coils 33e as the mover 20 moves. FIG. 10 is a plan view for explaining an operation example of such a planar motor 10.
 例えば、可動子20が移動ルート内の位置P1に位置する場合には、制御回路40は、第一コイル群33fのうち可動子20の側方に位置する第三パターンコイル(1)に選択的に電流を供給する。 For example, when the mover 20 is located at the position P1 in the movement route, the control circuit 40 is selective to the third pattern coil (1) located on the side of the mover 20 in the first coil group 33f. To supply current.
 制御回路40は、可動子20の位置が位置P1から位置P2に変わると、第一コイル群33fのうち可動子20の側方に位置する第三パターンコイル(2)に選択的に電流を供給する。同様に、制御回路40は、可動子20が位置P3に位置する場合には、第三パターンコイル(3)に選択的に電流を供給し、可動子20が位置P4に位置する場合には、第三パターンコイル(4)に選択的に電流を供給する。 When the position of the mover 20 changes from the position P1 to the position P2, the control circuit 40 selectively supplies current to the third pattern coil (2) located on the side of the mover 20 in the first coil group 33f. To do. Similarly, the control circuit 40 selectively supplies current to the third pattern coil (3) when the mover 20 is located at the position P3, and when the mover 20 is located at the position P4, A current is selectively supplied to the third pattern coil (4).
 このように、制御回路40は、可動子20が移動ルートに沿って移動するのに合わせて、複数の第三パターンコイル33eのうち可動子20の側方に位置する一部の第三パターンコイル33eに選択的に永久磁石21との間に反発力を生じさせるような電流を供給する。これにより、平面モータ10は、複数の第三パターンコイル33eの全てに電流を供給する場合よりも低い消費電力で可動子20が移動ルートから外れてしまうことを抑制することができる。 As described above, the control circuit 40 includes a part of the third pattern coils located on the side of the mover 20 among the plurality of third pattern coils 33e as the mover 20 moves along the movement route. A current that selectively generates a repulsive force with the permanent magnet 21 is supplied to 33e. Thereby, the planar motor 10 can suppress the mover 20 from moving out of the moving route with lower power consumption than when supplying current to all of the plurality of third pattern coils 33e.
 なお、制御回路40は、複数の第三パターンコイル33eの全てに永久磁石21との間に反発力を生じさせるような電流を供給した状態で可動子20を移動ルートに沿って移動開始させ、その後、可動子20の移動に合わせて、可動子20が通過した領域に位置する第三パターンコイル33eから順に電流の供給をオフしてもよい。つまり、制御回路40は、永久磁石21との間に反発力を生じさせる必要がなくなった第三パターンコイル33eへの電流の供給を順次オフしてもよい。これにより、平面モータ10は、複数の第三パターンコイル33eの全てに電流を供給し続ける場合よりも低い消費電力で可動子20が移動ルートから外れてしまうことを抑制することができる。 The control circuit 40 starts moving the mover 20 along the movement route in a state where a current that generates a repulsive force between the permanent magnet 21 and all of the plurality of third pattern coils 33e is supplied. Thereafter, in accordance with the movement of the mover 20, the supply of current may be turned off in order from the third pattern coil 33e located in the region through which the mover 20 has passed. That is, the control circuit 40 may sequentially turn off the supply of current to the third pattern coil 33e that does not need to generate a repulsive force with the permanent magnet 21. Thereby, the planar motor 10 can suppress the mover 20 from deviating from the movement route with lower power consumption than when the current is continuously supplied to all of the plurality of third pattern coils 33e.
 [変形例]
 可動子20が有する永久磁石21は、扁平円柱状であったが、永久磁石21の形状及び大きさ、並びに、可動子20の本体への取付姿勢については特に限定されない。例えば、永久磁石21は、環状であってもよい。図11は、このような変形例に係る平面モータの平面図であり、図12は、変形例に係る平面モータの断面構造を示す図である。
[Modification]
Although the permanent magnet 21 included in the mover 20 has a flat cylindrical shape, the shape and size of the permanent magnet 21 and the mounting posture of the mover 20 on the main body are not particularly limited. For example, the permanent magnet 21 may be annular. FIG. 11 is a plan view of a planar motor according to such a modification, and FIG. 12 is a diagram illustrating a cross-sectional structure of the planar motor according to the modification.
 図11及び図12に示されるように、変形例に係る平面モータ10aは、可動子20aと、固定子30と、制御回路40(図11及び図12で図示せず)を備える。 11 and 12, the planar motor 10a according to the modification includes a mover 20a, a stator 30, and a control circuit 40 (not shown in FIGS. 11 and 12).
 可動子20aが有する永久磁石21aは、円環状である。永久磁石21aは、内側がN極であり、外側がS極である。つまり、永久磁石21aは、内側面及び外側面の間にS極及びN極が径方向に沿って並ぶ構造を有する。永久磁石21aは、S極及びN極が主面31aに沿うように可動子20の本体に取り付けられる。 The permanent magnet 21a of the mover 20a has an annular shape. The permanent magnet 21a has an N pole on the inside and an S pole on the outside. That is, the permanent magnet 21a has a structure in which the S pole and the N pole are arranged along the radial direction between the inner side surface and the outer side surface. The permanent magnet 21a is attached to the main body of the mover 20 so that the S pole and the N pole are along the main surface 31a.
 このような平面モータ10aも、上記動作例1~動作例4で示される動作を行うことが可能である。また、図12に示されるように、永久磁石21aは、断面視において2つのS極及び2つのN極の合計4つの磁極が固定子30の主面31aと対向する。そうすると、固定子30は、4つの磁極のそれぞれとの間に吸引力及び反発力を発生させて可動子20を移動させることができる。つまり、平面モータ10aは、可動子20への推力を向上することができる。 Such a planar motor 10a can also perform the operations shown in the above operation examples 1 to 4. As shown in FIG. 12, the permanent magnet 21 a has a total of four magnetic poles, that is, two S poles and two N poles, opposed to the main surface 31 a of the stator 30 in a cross-sectional view. Then, the stator 30 can move the mover 20 by generating an attractive force and a repulsive force between each of the four magnetic poles. That is, the planar motor 10a can improve the thrust to the mover 20.
 [効果等]
 以上説明したように、平面モータ10は、永久磁石21を有する可動子20と、可動子20と対向する主面31a、及び、主面31aに沿って配置される複数のパターンコイル33を有する固定子30と、複数のパターンコイル33に供給される電流を制御することにより、可動子20を主面31aに沿って移動させる制御回路40とを備える。制御回路40は、可動子20の進行方向を第一進行方向から第一進行方向と交差する第二進行方向に変更する場合、第一制御、及び、第二制御の少なくとも一方を行う。第一制御は、複数のパターンコイル33のうち可動子20の第一進行方向の前方に位置する第一パターンコイル33aに電流を供給することにより、第一パターンコイル33a及び永久磁石21の間に反発力を生じさせる制御である。第二制御は、複数のパターンコイル33のうち可動子20の第一進行方向の後方に位置する第二パターンコイル33bに電流を供給することにより、第二パターンコイル33b及び永久磁石21の間に吸引力を生じさせる制御である。永久磁石21は、磁石の一例であり、パターンコイル33は、コイルの一例である。第一パターンコイル33aは、第一コイルの一例であり、第二パターンコイル33bは、第二コイルの一例である。
[Effects]
As described above, the flat motor 10 is fixed to the movable element 20 having the permanent magnet 21, the main surface 31a facing the movable element 20, and the plurality of pattern coils 33 arranged along the main surface 31a. A child 30 and a control circuit 40 that moves the mover 20 along the main surface 31a by controlling the current supplied to the plurality of pattern coils 33 are provided. The control circuit 40 performs at least one of the first control and the second control when changing the traveling direction of the mover 20 from the first traveling direction to the second traveling direction intersecting the first traveling direction. The first control supplies current between the first pattern coil 33a and the permanent magnet 21 by supplying current to the first pattern coil 33a that is located in front of the mover 20 in the first traveling direction among the plurality of pattern coils 33. This is a control that generates a repulsive force. In the second control, a current is supplied to the second pattern coil 33b located behind the movable element 20 in the first traveling direction among the plurality of pattern coils 33, so that the second control coil 33b and the permanent magnet 21 are interposed. This is a control that generates a suction force. The permanent magnet 21 is an example of a magnet, and the pattern coil 33 is an example of a coil. The first pattern coil 33a is an example of a first coil, and the second pattern coil 33b is an example of a second coil.
 このような平面モータ10は、可動子20が第一進行方向の前方に飛び出してしまうことを抑制することができる。つまり、平面モータ10は、可動子20が移動ルートから外れてしまうことを抑制することができる。 Such a planar motor 10 can suppress the mover 20 from jumping forward in the first traveling direction. That is, the planar motor 10 can suppress the mover 20 from deviating from the movement route.
 また、例えば、制御回路40は、複数のパターンコイル33のうち可動子20の移動ルートに沿って並ぶ複数の第三パターンコイル33eであって、移動ルートの側方に位置する複数の第三パターンコイル33eに、永久磁石21との間に反発力を生じさせるような電流を供給する。 Further, for example, the control circuit 40 includes a plurality of third pattern coils 33e arranged along the movement route of the mover 20 among the plurality of pattern coils 33, and a plurality of third patterns positioned on the side of the movement route. A current that generates a repulsive force with the permanent magnet 21 is supplied to the coil 33e.
 このような平面モータ10は、可動子20が移動ルートから外れてしまうことを抑制することができる。 Such a planar motor 10 can suppress the mover 20 from moving off the moving route.
 また、例えば、制御回路40は、可動子20が移動ルートに沿って移動するのに合わせて、複数の第三パターンコイル33eのうちの可動子20の側方に位置する一部の第三パターンコイル33eに選択的に永久磁石21との間に反発力を生じさせるような電流を供給する。 Further, for example, the control circuit 40 includes a part of the third pattern located on the side of the mover 20 among the plurality of third pattern coils 33e as the mover 20 moves along the movement route. A current that selectively generates a repulsive force between the coil 33e and the permanent magnet 21 is supplied to the coil 33e.
 このような平面モータ10は、平面モータ10は、複数の第三パターンコイル33eの全てに電流を供給する場合よりも低い消費電力で可動子20が移動ルートから外れてしまうことを抑制することができる。 Such a planar motor 10 suppresses the mover 20 from moving off the moving route with lower power consumption than when the planar motor 10 supplies current to all of the plurality of third pattern coils 33e. it can.
 また、例えば、制御回路40は、複数の第三パターンコイル33eに永久磁石21との間に反発力を生じさせるような電流を供給した状態で可動子20を移動ルートに沿って移動開始させる。 Also, for example, the control circuit 40 starts moving the mover 20 along the movement route in a state where a current that generates a repulsive force between the plurality of third pattern coils 33e and the permanent magnet 21 is supplied.
 このような平面モータ10は、シンプルな制御によって可動子20が移動ルートから外れてしまうことを抑制することができる。 Such a planar motor 10 can suppress the mover 20 from moving out of the moving route by simple control.
 また、例えば、永久磁石21のS極及びN極の並び方向は、主面31aと交差する。 For example, the arrangement direction of the S pole and the N pole of the permanent magnet 21 intersects the main surface 31a.
 このような平面モータ10は、S極及びN極の並び方向が主面31aと交差する永久磁石21を有する可動子20が移動ルートから外れてしまうことを抑制することができる。 Such a planar motor 10 can suppress the mover 20 having the permanent magnet 21 in which the arrangement direction of the S pole and the N pole intersects the main surface 31a from being removed from the moving route.
 また、例えば、平面モータ10aにおいては、可動子20aは、永久磁石21aを有し、永久磁石21aのS極及びN極の並び方向は、主面30aに沿う。 For example, in the planar motor 10a, the mover 20a has a permanent magnet 21a, and the arrangement direction of the S pole and the N pole of the permanent magnet 21a is along the main surface 30a.
 このような平面モータ10aは、S極及びN極の並び方向が主面31aに沿う永久磁石21aを有する可動子20aが移動ルートから外れてしまうことを抑制することができる。 Such a planar motor 10a can suppress the mover 20a having the permanent magnet 21a in which the arrangement direction of the S-pole and the N-pole is along the main surface 31a from deviating from the moving route.
 また、例えば、固定子30は、回路基板32を備え、複数のパターンコイル33のそれぞれは、回路基板32上にパターン形成されたパターンコイルである。回路基板32は、基板の一例である。 Also, for example, the stator 30 includes a circuit board 32, and each of the plurality of pattern coils 33 is a pattern coil that is patterned on the circuit board 32. The circuit board 32 is an example of a board.
 このような平面モータ10においては、固定子30の小型化及び薄型化が容易となる。 In such a planar motor 10, the stator 30 can be easily reduced in size and thickness.
 また、例えば、複数のパターンコイル33は、主面31aに沿ってマトリクス状に配置される。 Further, for example, the plurality of pattern coils 33 are arranged in a matrix along the main surface 31a.
 このような平面モータ10は、マトリクス状に配置された複数のパターンコイル33によって可動子20を移動させることができる。 Such a planar motor 10 can move the mover 20 by a plurality of pattern coils 33 arranged in a matrix.
 (他の実施の形態)
 以上、実施の形態に係る平面モータについて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
The planar motor according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、固定子は薄膜状のパターンコイルを有していたが、固定子が備えるコイルは、パターンコイルに限定されない。固定子は、パターンコイルに代えて複数の巻線コイルを備えてもよい。また、上記実施の形態では、複数のパターンコイルは、マトリクス状に配置されたが、マトリクス状以外のレイアウトで配置されてもよい。例えば、パターンコイルが六角形に沿う巻回形状を有する場合には、複数のパターンコイルは、ハニカム状に配置されてもよい。 For example, in the above embodiment, the stator has a thin film pattern coil, but the coil provided in the stator is not limited to the pattern coil. The stator may include a plurality of winding coils instead of the pattern coil. Moreover, in the said embodiment, although the some pattern coil was arrange | positioned at matrix form, you may arrange | position by layouts other than a matrix form. For example, when the pattern coil has a winding shape along a hexagon, the plurality of pattern coils may be arranged in a honeycomb shape.
 また、上記実施の形態の固定子の模式断面図に示される積層構造は一例である。平面モータは、本発明の特徴的な機能を実現できる他の積層構造を有する固定子を備えてもよい。平面モータは、例えば、上記実施の形態で説明された積層構造と同様の機能を実現できる範囲で、上記実施の形態の積層構造の層間に別の層が設けられた固定子を備えてもよい。 Also, the laminated structure shown in the schematic cross-sectional view of the stator of the above embodiment is an example. The planar motor may include a stator having another laminated structure that can realize the characteristic function of the present invention. The planar motor may include, for example, a stator in which another layer is provided between layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. .
 また、上記実施の形態では、固定子が有する積層構造の各層を構成する主たる材料について例示しているが、固定子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。例えば、カバー部材及び回路基板の間には磁性体層が設けられてもよい。磁性体層は、例えば、酸化鉄、酸化クロム、コバルト、または、フェライトなどの材料によって形成される。このような磁性体層によれば、可動子の移動に寄与する磁束の量を向上させることができる。つまり、パターンコイルが発する磁束を効率的に利用できる。 In the above embodiment, the main material constituting each layer of the laminated structure of the stator is illustrated, but each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment. Other materials may be included to the extent that can be realized. For example, a magnetic layer may be provided between the cover member and the circuit board. The magnetic layer is formed of a material such as iron oxide, chromium oxide, cobalt, or ferrite, for example. According to such a magnetic layer, the amount of magnetic flux contributing to the movement of the mover can be improved. That is, the magnetic flux generated by the pattern coil can be used efficiently.
 また、上記実施の形態において、制御部等の構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In the above embodiment, the components such as the control unit may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。例えば、本発明は、平面モータの制御方法として実現されてもよい。 In addition, it is realized by variously conceiving various modifications conceived by those skilled in the art for each embodiment, or by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention. This form is also included in the present invention. For example, the present invention may be realized as a method for controlling a planar motor.
 10、10a 平面モータ
 20、20a 可動子
 21、21a 永久磁石(磁石)
 30 固定子
 31a 主面
 32 回路基板(基板)
 33 パターンコイル(コイル)
 33a 第一パターンコイル(第一コイル)
 33b 第二パターンコイル(第二コイル)
 33e 第三パターンコイル(第三コイル)
 40 制御回路
10, 10a planar motor 20, 20a mover 21, 21a permanent magnet (magnet)
30 Stator 31a Main surface 32 Circuit board (board)
33 Pattern coil (coil)
33a First pattern coil (first coil)
33b Second pattern coil (second coil)
33e Third pattern coil (third coil)
40 Control circuit

Claims (8)

  1.  磁石を有する可動子と、
     前記可動子と対向する主面、及び、前記主面に沿って配置される複数のコイルを有する固定子と、
     前記複数のコイルに供給される電流を制御することにより、前記可動子を前記主面に沿って移動させる制御回路とを備え、
     前記制御回路は、前記可動子の進行方向を第一進行方向から前記第一進行方向と交差する第二進行方向に変更する場合、第一制御、及び、第二制御の少なくとも一方を行い、
     前記第一制御は、前記複数のコイルのうち前記可動子の前記第一進行方向の前方に位置する第一コイルに電流を供給することにより、前記第一コイル及び前記磁石の間に反発力を生じさせる制御であり、
     前記第二制御は、前記複数のコイルのうち前記可動子の前記第一進行方向の後方に位置する第二コイルに電流を供給することにより、前記第二コイル及び前記磁石の間に吸引力を生じさせる制御である
     平面モータ。
    A mover having a magnet;
    A main surface facing the mover, and a stator having a plurality of coils arranged along the main surface;
    A control circuit that moves the mover along the main surface by controlling the current supplied to the plurality of coils;
    The control circuit performs at least one of the first control and the second control when changing the traveling direction of the mover from the first traveling direction to the second traveling direction intersecting the first traveling direction,
    The first control supplies a repulsive force between the first coil and the magnet by supplying a current to a first coil located in front of the first moving direction of the mover among the plurality of coils. Control
    In the second control, an attractive force is applied between the second coil and the magnet by supplying a current to a second coil located behind the mover in the first traveling direction among the plurality of coils. Planar motor that is the control to be generated.
  2.  前記制御回路は、前記複数のコイルのうち前記可動子の移動ルートに沿って並ぶ複数の第三コイルであって、前記移動ルートの側方に位置する複数の第三コイルに、前記磁石との間に反発力を生じさせるような電流を供給する
     請求項1に記載の平面モータ。
    The control circuit includes a plurality of third coils arranged along a movement route of the mover among the plurality of coils, and a plurality of third coils located on the side of the movement route are connected to the magnet. The planar motor according to claim 1, wherein a current that generates a repulsive force between the planar motors is supplied.
  3.  前記制御回路は、前記可動子が前記移動ルートに沿って移動するのに合わせて、前記複数の第三コイルのうちの前記可動子の側方に位置する一部の第三コイルに選択的に前記磁石との間に反発力を生じさせるような電流を供給する
     請求項2に記載の平面モータ。
    The control circuit selectively selects a part of the third coils located on the side of the mover among the plurality of third coils as the mover moves along the movement route. The planar motor according to claim 2, wherein a current that generates a repulsive force is supplied to the magnet.
  4.  前記制御回路は、前記複数の第三コイルに前記磁石との間に反発力を生じさせるような電流を供給した状態で前記可動子を前記移動ルートに沿って移動開始させる
     請求項2に記載の平面モータ。
    The control circuit starts moving the mover along the movement route in a state where a current that generates a repulsive force between the plurality of third coils and the magnet is supplied to the plurality of third coils. Planar motor.
  5.  前記可動子は、前記磁石として永久磁石を有し、
     前記永久磁石のS極及びN極の並び方向は、前記主面と交差する
     請求項1~4のいずれか1項に記載の平面モータ。
    The mover has a permanent magnet as the magnet,
    The flat motor according to any one of claims 1 to 4, wherein an arrangement direction of the S pole and the N pole of the permanent magnet intersects the main surface.
  6.  前記可動子は、前記磁石として永久磁石を有し、
     前記永久磁石のS極及びN極の並び方向は、前記主面に沿う
     請求項1に記載の平面モータ。
    The mover has a permanent magnet as the magnet,
    The planar motor according to claim 1, wherein an arrangement direction of the S pole and the N pole of the permanent magnet is along the main surface.
  7.  前記固定子は、基板を備え、
     前記複数のコイルのそれぞれは、前記基板上にパターン形成されたパターンコイルである
     請求項1~6のいずれか1項に記載の平面モータ。
    The stator includes a substrate,
    The planar motor according to any one of claims 1 to 6, wherein each of the plurality of coils is a pattern coil formed in a pattern on the substrate.
  8.  前記複数のコイルは、前記主面に沿ってマトリクス状に配置される
     請求項1~7のいずれか1項に記載の平面モータ。
    The flat motor according to any one of claims 1 to 7, wherein the plurality of coils are arranged in a matrix along the main surface.
PCT/JP2019/006836 2018-03-13 2019-02-22 Flat motor WO2019176507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505729A JPWO2019176507A1 (en) 2018-03-13 2019-02-22 Plane motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046008 2018-03-13
JP2018046008 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176507A1 true WO2019176507A1 (en) 2019-09-19

Family

ID=67907804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006836 WO2019176507A1 (en) 2018-03-13 2019-02-22 Flat motor

Country Status (2)

Country Link
JP (1) JPWO2019176507A1 (en)
WO (1) WO2019176507A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159901A (en) * 1997-08-11 1999-03-02 Murata Mach Ltd Carrier moving device
JP3215335B2 (en) * 1996-10-29 2001-10-02 株式会社富士電機総合研究所 Linear electromagnetic microactuator
JP2003037992A (en) * 2001-07-24 2003-02-07 Fuji Electric Corp Res & Dev Ltd Linear electromagnetic type micro actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215335B2 (en) * 1996-10-29 2001-10-02 株式会社富士電機総合研究所 Linear electromagnetic microactuator
JPH1159901A (en) * 1997-08-11 1999-03-02 Murata Mach Ltd Carrier moving device
JP2003037992A (en) * 2001-07-24 2003-02-07 Fuji Electric Corp Res & Dev Ltd Linear electromagnetic type micro actuator

Also Published As

Publication number Publication date
JPWO2019176507A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP5387570B2 (en) Multi-degree-of-freedom actuator and stage device
JP2004088992A (en) Production of voice-coil type linear actuators, arrangement using the actuators, and the actuators
JP2009071946A5 (en)
JP2010130740A (en) Movable magnet-type linear motor
WO2017150198A1 (en) Sheet separation device, sheet separation method, and manufacturing method for sheet-like secondary battery
JP2007009949A (en) Hybrid type magnetic bearing
WO2019176507A1 (en) Flat motor
JP3736381B2 (en) Vibration type linear actuator
JP5589507B2 (en) Mover and stator of linear drive unit
JP2001112228A (en) Movable magnet type linear actuator
WO2019225284A1 (en) Planar motor and control method
JP2005218203A (en) Actuator and bonding apparatus
EP3270493B1 (en) A multi-degree of freedom electromagnetic machine with input amplitude modulation control
JP2019161834A (en) Plane motor
JPWO2019150718A1 (en) Linear motor, manufacturing method of linear motor
WO2004059821A1 (en) Driving unit
JP2019030067A (en) Planar motor
JP6846722B2 (en) Plane motor
JP2019115134A (en) Planar motor
WO2019058735A1 (en) Planar motor
WO2019142605A1 (en) Planar motor
JPH02246762A (en) Linear motor
JP2020089109A (en) Magnetic carrier, and control method
WO2019239797A1 (en) Planar motor and control method
JP6761186B2 (en) Linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767739

Country of ref document: EP

Kind code of ref document: A1