WO2019239797A1 - Planar motor and control method - Google Patents

Planar motor and control method Download PDF

Info

Publication number
WO2019239797A1
WO2019239797A1 PCT/JP2019/019840 JP2019019840W WO2019239797A1 WO 2019239797 A1 WO2019239797 A1 WO 2019239797A1 JP 2019019840 W JP2019019840 W JP 2019019840W WO 2019239797 A1 WO2019239797 A1 WO 2019239797A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switching
coils
wirings
coil
Prior art date
Application number
PCT/JP2019/019840
Other languages
French (fr)
Japanese (ja)
Inventor
若林 俊一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019239797A1 publication Critical patent/WO2019239797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a planar motor that moves a mover two-dimensionally along a plane and a method for controlling the planar motor.
  • Patent Document 1 discloses a linear electromagnetic microactuator having a drive circuit that can stably drive each movable element while suppressing wasteful power consumption and interference of an undue electromagnetic force. It is disclosed.
  • the present invention provides a planar motor capable of simplifying a wiring pattern and a control method.
  • a planar motor includes a mover having a magnet, a main surface facing the mover, and a stator having a plurality of coils arranged in a matrix along the main surface, A drive circuit, and each of the plurality of coils is configured to flow a first polarity current through the coil and a second polarity current opposite to the first polarity through the coil.
  • the drive circuit includes a power source and a plurality of the switching circuits, and is electrically connected to the switching circuits belonging to the same column among the plurality of switching circuits. And a plurality of sets of switching elements for turning on and off the electrical connection between the wiring and the power supply, and the first circuit belonging to the same row is electrically connected to the first circuit.
  • a plurality of second wirings electrically connected to the second circuit belonging to the same row among the plurality of second circuits, and selected as the plurality of first wirings and the plurality of second wirings is provided.
  • a control method is a planar motor control method, wherein the planar motor includes a mover having a magnet, a main surface facing the mover, and a matrix along the main surface.
  • a stator having a plurality of coils arranged in a shape, and a drive circuit, each of the plurality of coils, a first circuit for flowing a first polarity current to the coil, and the coil Electrically connected to a switching circuit including a second circuit for flowing a current of a second polarity opposite to the first polarity
  • the drive circuit includes a power source and a plurality of the switching circuits, and a plurality of the switching A plurality of sets of switching elements for turning on and off the electrical connection between the wirings and the power supply, the wirings electrically connected to the switching circuits belonging to the same column in the circuit; Belongs to the same row in the circuit A plurality of first wirings electrically connected to the first circuit, a plurality of second wirings electrically connected to the second circuit belonging to the
  • a planar motor capable of simplifying a wiring pattern and a control method are realized.
  • FIG. 1 is a plan view showing a schematic configuration of the planar motor system according to the embodiment.
  • FIG. 2 is a cross-sectional view of the planar motor according to the embodiment.
  • FIG. 3 is a diagram illustrating a specific configuration of the drive circuit according to the embodiment.
  • FIG. 4 is a flowchart of the operation of the planar motor according to the embodiment.
  • plan view means viewing from a direction perpendicular to the main surface of the stator.
  • N pole of the magnet is described as “N”
  • S pole of the magnet is described as “S”.
  • FIG. 1 is a plan view showing a schematic configuration of the planar motor according to the embodiment.
  • FIG. 2 is a cross-sectional view of the planar motor according to the embodiment.
  • a plan view of the mover 20 and the stator 30 is shown.
  • the cover member 31 is not shown in order to show the arrangement of the plurality of coils 33.
  • the detection unit 50 and the drive circuit 60 are not shown.
  • the planar motor 10 includes a mover 20, a stator 30, a detection unit 50, and a drive circuit 60.
  • the planar motor 10 is a linear motor (in other words, an electromagnetic actuator) that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30.
  • the flat motor 10 is used, for example, for transporting luggage in a distribution warehouse.
  • each component of the planar motor 10 will be described in detail.
  • the mover 20 is a moving object in the planar motor 10. As shown in FIG. 2, the mover 20 includes a mover main body 21, a permanent magnet 22, and a ball caster 23.
  • the mover body 21 is a substantially rectangular plate-shaped member.
  • the mover main body 21 is made of, for example, a resin material.
  • the mover main body 21 may be formed of a metal material having a relatively low permeability such as aluminum.
  • the permanent magnet 22 is a magnet for the mover 20 to obtain thrust from the stator 30, and is attached to the mover main body 21.
  • the permanent magnet 22 is, for example, a flat cylindrical neodymium magnet.
  • the shape and material of the permanent magnet 22 are not particularly limited.
  • the permanent magnet 22 may be, for example, a ferrite magnet or an alnico magnet.
  • the mover 20 includes a plurality of permanent magnets 22, for example, but may include at least one permanent magnet 22. In FIG. 2, the permanent magnet 22 is embedded in the mover main body 21. However, the permanent magnet 22 may be attached to the upper surface of the mover main body 21 or attached to the lower surface of the mover main body 21. Also good.
  • the permanent magnet 22 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole.
  • the permanent magnet 22 may be arranged such that the N pole is located closer to the main surface 31a than the S pole.
  • the permanent magnet 22 may be arrange
  • the mover 20 may have an electromagnet instead of the permanent magnet 22.
  • the electromagnet is driven by, for example, a dry battery or a storage battery.
  • the electromagnet may be supplied with power from the coil 33 that does not contribute to the movement of the mover 20.
  • mover 20 should just have the permanent magnet 22 or the electromagnet. That is, the needle
  • the ball caster 23 is a moving mechanism for moving the mover main body 21 along the main surface 31a of the stator 30.
  • the ball caster 23 is attached to the lower surface of the mover main body 21 and abuts on the main surface 31 a of the stator 30.
  • the mover 20 may include a moving mechanism other than the ball caster 23 such as a free caster or a wheel.
  • the stator 30 is a structure for moving the mover 20.
  • the stator 30 is a sheet-like member.
  • the stator 30 includes a cover member 31 and a circuit board 32.
  • the cover member 31 is a sheet-like protective member that suppresses wear and the like of the circuit board 32 and smoothes the surface of the stator 30.
  • the cover member 31 covers the entire top surface of the circuit board 32.
  • the cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle.
  • the upper surface of the cover member 31 is a main surface 31a of the stator 30.
  • the main surface 31 a faces the mover 20.
  • the cover member 31 is formed of an organic material such as melamine resin, urethane resin, or acrylic resin, for example.
  • the cover member 31 may be formed of a silane compound or a metal oxide.
  • Such an organic material, a silane compound, or a metal oxide is suitable for the cover member 31 in terms of wear resistance. If an organic material is employed for the cover member 31, the cover member 31 can be formed by a low-temperature manufacturing process. Further, if an organic material is employed for the cover member 31, it is easy to increase the area of the cover member 31.
  • the circuit board 32 is a thin film-like (in other words, sheet-like) board on which a plurality of coils 33 are formed on the upper surface.
  • the planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle.
  • the base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
  • a plurality of coils 33 are formed on the upper surface of the circuit board 32. As shown in FIG. 1, the plurality of coils 33 are spread in a matrix in a plan view.
  • the plurality of coils 33 are coils for applying thrust to the mover 20.
  • the plurality of coils 33 are magnetized when power is supplied by the drive circuit 60.
  • Each of the plurality of coils 33 is a thin pattern coil that is patterned on the upper surface of the circuit board 32.
  • Each of the plurality of coils 33 is a rectangular winding wire whose winding axis extends in a direction perpendicular to the main surface 31a, but may be another winding shape such as a circular winding shape.
  • Each of the plurality of coils 33 may have, for example, a triangular shape or a wound shape along a polygon such as a hexagon.
  • the coil 33 is formed of a metal material such as copper, for example.
  • the coil 33 is formed by etching, for example.
  • each of the plurality of coils 33 functions as an S-pole magnet when the first polarity current flows, and the second polarity current opposite to the first polarity flows.
  • the upper part functions as an N-pole magnet.
  • the detection unit 50 detects the current position of the mover 20 and outputs position information as a detection result.
  • the detection unit 50 is realized by, for example, a plurality of Hall elements arranged in a matrix corresponding to the arrangement of the plurality of coils 33 in a matrix.
  • the detection unit 50 may be realized by a camera that images the mover 20 and the stator 30 from above.
  • the drive circuit 60 moves the mover 20 along the main surface 31 a by controlling the drive of the plurality of coils 33. As shown in FIG. 2, for example, when the mover 20 is moved in the movement direction, the drive circuit 60 drives the coil 33 a located at the rear of the movement direction, and between the coil 33 a and the permanent magnet 22. Creates a repulsive force. Further, the drive circuit 60 may drive the coil 33b located in the front in the moving direction to generate an attractive force between the coil 33b and the permanent magnet 22.
  • the drive circuit 60 is disposed around the plurality of coils 33 on the circuit board 32, for example.
  • the drive circuit 60 is disposed along, for example, three sides of a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 60 is disposed in a U-shaped region (in other words, a U-shape).
  • the drive circuit 60 may be arranged so as to surround a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 60 may be disposed in a rectangular annular region.
  • FIG. 3 is a diagram showing a specific configuration of the drive circuit 60.
  • the addresses of the coils 33 and the switching circuit 61 arranged in a matrix are indicated by alphabets.
  • the address includes a row address and a column address, the row address is indicated by a lower case alphabet, and the column address is indicated by an upper case alphabet.
  • the address (aB) means that the row address is a and the column address is B.
  • the drive circuit 60 shown in FIG. 3 includes a plurality of switching circuits 61, power supply wirings 62A to 62C, a plurality of first switching elements 63A to 63C, a DC power source 64, an address selection circuit 65, and a first wiring 66a.
  • the detection unit 50 and the plurality of coils 33 are also illustrated.
  • One switching circuit 61 is provided for each of the plurality of coils 33. That is, each of the plurality of coils 33 is electrically connected to the switching circuit 61.
  • the switching circuit 61 includes two second switching elements 161 for flowing a first polarity current through the coil 33 and two second switching elements for flowing a second polarity current opposite to the first polarity through the coil 33.
  • Element 261 is included.
  • the switching circuit 61 includes two second switching elements 161 (hereinafter also referred to as a first circuit) and two second switching elements 261 (hereinafter also referred to as a second circuit). This is an H-bridge circuit configured.
  • Such a circuit configuration is an example, and the switching circuit 61 may have other circuit configurations.
  • Each of the second switching element 161 and the second switching element 261 is, for example, an FET (Field Effect Transistor), but may be other switching elements (transistors).
  • the 2nd switching element 161 and the 2nd switching element 261 are arrange
  • the circuit board 32 may have a COS (Chip On Sheet) structure in which integrated circuits corresponding to the second switching element 161 and the second switching element 261 are mounted.
  • the integrated circuit is disposed, for example, on the lower surface of the circuit board 32 so as not to hinder the movement of the mover 20.
  • the second switching element 161 and the second switching element 261 may be formed as a hybrid IC.
  • each of the second switching element 161 and the second switching element 261 may be a thin film transistor (TFT: Thin Film Transistor).
  • the power supply wirings 62A to 62C are wirings that are arranged one by one for each column and extend in the column direction. Each of the power supply wirings 62A to 62C is electrically connected to a first circuit belonging to the same column among the plurality of first circuits. For example, the power supply wiring 61 ⁇ / b> A is electrically connected to a plurality of first circuits whose column addresses are A.
  • the plurality of first switching elements 63A to 63C turn on and off the electrical connection between the power supply wirings 62A to 62C and the DC power source 64.
  • the first switching element 63A turns on and off the electrical connection between the power supply wiring 62A and the DC power supply 64.
  • Each of the first switching elements 63A to 63C is, for example, an FET, but may be other switching elements (transistors).
  • the first switching elements 63A to 63C may be arranged on the circuit board 32 or may be arranged outside the circuit board 32.
  • the circuit board 32 When the first switching elements 63A to 63C are arranged on the circuit board 32, the circuit board 32 has a COS (Chip On Sheet) structure in which an integrated circuit corresponding to the first switching elements 63A to 63C is mounted. May be.
  • the first switching elements 63A to 63C may be formed as a hybrid IC.
  • each of the first switching elements 63A to 63C may be a thin film transistor.
  • the address selection circuit 65 turns on the first switching elements 63A to 63C corresponding to the column address notified from the control unit.
  • the address selection circuit 65 is electrically connected to the control terminals (that is, gates) of the first switching elements 63A to 63C, and applies a voltage to the control terminals.
  • the first wirings 66a to 66b are wirings that are arranged one by one for each row and extend in the row direction.
  • the first wirings 66a to 66b are patterned on the circuit board 32 by a metal material such as copper.
  • Each of the first wirings 66a to 66b is electrically connected to a first circuit belonging to the same row among the plurality of first circuits.
  • the first wiring 66a is electrically connected to a plurality of first circuits (more specifically, gates of the plurality of second switching elements 161) whose row address is a.
  • the first scan circuit 67 selectively applies a voltage to the first wirings 66a to 66b.
  • the first scan circuit 67 applies a voltage to the first wiring corresponding to the row address notified from the control unit 70.
  • the second switching element 161 connected to the first wiring to which the voltage is applied is turned on.
  • the second wirings 68a to 68b are wirings that are arranged one by one for each row and extend in the row direction.
  • the second wirings 68a to 68b are patterned on the circuit board 32 by a metal material such as copper.
  • Each of the second wirings 68a to 68b is electrically connected to a second circuit belonging to the same row among the plurality of second circuits.
  • the second wiring 68a is electrically connected to a plurality of second circuits (more specifically, gates of the plurality of second switching elements 261) whose row address is a.
  • the second scan circuit 69 selectively applies a voltage to the second wirings 68a to 68b.
  • the second scan circuit 69 applies a voltage to the second wiring corresponding to the row address notified from the control unit 70.
  • the second switching element 261 connected to the second wiring to which the voltage is applied is turned on.
  • the control unit 70 is a control device that performs control to selectively drive the plurality of coils 33 by notifying the address selection circuit 65, the first scan circuit 67, and the second scan circuit 69 of the address.
  • the control unit 70 is realized by, for example, a microcomputer, but may be realized by a processor or a circuit.
  • the control unit 70 may be realized by a combination of two or more of a microcomputer, a processor, and a circuit.
  • the DC power supply 64 may include a current limiting circuit and the like, and may be configured to change the current value supplied to the coil 33 based on the control of the control unit 70. That is, the magnetic flux density generated by the coil 33 may be changeable.
  • the current may be analog-controlled or PWM (Pulse Width Modulation) controlled.
  • planar motor 10 employs a method of switching the magnetic poles (N pole and S pole) of the coil 33 by controlling the direction of the current flowing through one coil 33.
  • FIG. 4 is a flowchart of the operation of the planar motor 10.
  • control unit 70 performs control to selectively apply a voltage to the plurality of first wirings 66a to 66b and the plurality of second wirings 68a to 68b (S11). Specifically, the control unit 70 notifies the row address to one of the first scan circuit 67 and the second scan circuit 69, whereby the plurality of first wirings 66a to 66b and the plurality of second wirings 68a. A voltage is selectively applied to any one of ⁇ 68b. As a result, the first circuit (second switching element 161) and the second circuit (second switching element 261) belonging to the row indicated by the row address are selectively turned on.
  • the control unit 70 periodically repeats the notification of the row address so that, for example, a voltage is applied to the plurality of first wirings 66a to 66b and the plurality of second wirings 68a to 68b once.
  • scan control Such control is described as scan control.
  • the order in which the row address is notified is not particularly limited.
  • the control unit 70 alternately notifies the row address to the first scan circuit 67 and the second scan circuit 69 so that the voltage is alternately applied to the first wiring and the second wiring.
  • the control unit 70 may notify the address so that the voltage is applied once to all the second wirings after the voltage is applied to all the first wirings once.
  • the control unit 70 performs the scan control, while the second switching element 161 or the second switching element 261 corresponding to the driving target coil 33 is turned on, and the first switching element corresponding to the driving target coil 33. Is turned on (S12). Specifically, the control unit 70 notifies the address selection circuit 65 of the column address of the drive target coil 33, thereby turning on the first switching element corresponding to the drive target coil 33 via the address selection circuit 65. To do. Such control is also described as address control.
  • the control unit 70 turns on the first switching element 63A during a period in which voltage is applied to the first wiring 66a. To do. Then, since the two second switching elements 161 connected to the coil 33 belonging to the address (aA) are in the ON state, a first polarity current flows through the coil 33, and the coil 33 Functions as a magnet.
  • the control unit 70 performs the first switching element 63C during the period in which the voltage is applied to the second wiring 68b. Turn on. Then, since the two second switching elements 261 connected to the coil 33 belonging to the address (bC) are in the ON state, a second polarity current flows through the coil 33, and the coil 33 Functions as a magnet.
  • the drive circuit 60 can passively drive the plurality of coils 33.
  • the drive circuit 60 determines which coil 33 is to be driven by the current position of the mover 20 detected by the detection unit 50. As shown in FIG. 2, the drive circuit 60 generates a repulsive force between the coil 33 a and the permanent magnet 22, for example, with the coil 33 a located behind the current position of the mover 20 as a drive target. . Further, the drive circuit 60 may generate an attractive force between the coil 33b and the permanent magnet 22 with the coil 33b positioned in front of the position of the source of the mover as a driving target.
  • the first wirings 66a to 66b and the second wirings 68a to 68b are selected one by one in a predetermined order. However, selection of some wirings may be skipped under certain conditions, or the wirings may be selected randomly ignoring the order.
  • the first wirings 66a to 66b and the second wirings 68a to 68b are the targets of scan control
  • the first switching elements 63A to 63C are the targets of address control.
  • the switching elements 63A to 63C may be subject to scan control
  • the first wirings 66a to 66b and the second wirings 68a to 68b may be subject to address control.
  • the first scan circuit 67 is disposed on the left side of the plurality of coils 33
  • the second scan circuit 69 is disposed on the right side of the plurality of coils 33.
  • both the first scan circuit 67 and the second scan circuit 69 may be disposed on the left side of the plurality of coils 33
  • both the first scan circuit 67 and the second scan circuit 69 are on the right side of the plurality of coils 33. May be arranged.
  • the drive circuit 60 is arranged along two sides of a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 60 is arranged in an L-shaped region.
  • the first wirings 66a to 66b and the second wirings 68a to 68b are arranged corresponding to the rows of the plurality of coils 33 arranged in a matrix, and the power supply wirings 62A to 62C are It has been described that the coils 33 are arranged corresponding to the rows of the coils 33. However, rows and columns are only distinguished for convenience.
  • the first wirings 66a to 66b and the second wirings 68a to 68b are arranged corresponding to the rows of the plurality of coils 33, and the power supply wirings 62A to 62C are connected to the power supply wiring 62A. It can be considered that .about.62C are arranged corresponding to the rows of the plurality of coils 33.
  • the planar motor 10 includes the mover 20 having the permanent magnet 22, the main surface 31a facing the mover 20, and the plurality of coils 33 arranged in a matrix along the main surface 31a.
  • the stator 30 has a drive circuit 60.
  • the permanent magnet 22 is an example of a magnet.
  • Each of the plurality of coils 33 includes a first circuit for flowing a first polarity current to the coil 33 and a second circuit for flowing a second polarity current opposite to the first polarity to the coil 33. It is electrically connected to the switching circuit 61 including it.
  • the drive circuit 60 includes a DC power supply 64 and a plurality of switching circuits 61.
  • the drive circuit 60 turns on and off the power supply wiring electrically connected to the switching circuits 61 belonging to the same column among the plurality of switching circuits 61 and the electrical connection between the power supply wiring and the DC power supply 64.
  • a plurality of sets of one switching element are provided.
  • the drive circuit 60 includes a plurality of first wirings electrically connected to the first circuits belonging to the same row among the plurality of first circuits.
  • the drive circuit 60 includes a plurality of second wirings electrically connected to the second circuits belonging to the same row among the plurality of second circuits.
  • the drive circuit 60 includes a control unit 70 that performs control to selectively apply voltages to the plurality of first wirings and the plurality of second wirings.
  • the first wiring is shared by the coil groups belonging to the same row, and the second wiring is shared by the coil groups belonging to the same column, so that the number of wirings for driving the coil 33 is increased. Can be reduced. Therefore, the wiring pattern can be simplified.
  • the direction of the current flowing through each of the plurality of coils 33 can be switched by the switching circuit 61. That is, each of the plurality of coils 33 can be selectively functioned as either a S-pole or N-pole magnet.
  • the switching circuit 61 is an H bridge circuit configured by two second switching elements 161 included in the first circuit and two second switching elements 261 included in the second circuit.
  • Such a planar motor 10 can switch the direction of the current flowing through each of the plurality of coils 33 by an H bridge circuit.
  • the stator 30 includes a circuit board 32 on which a plurality of coils 33 are formed, and the drive circuit 60 is disposed around the plurality of coils 33 on the circuit board 32.
  • Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 60 disposed around the plurality of coils 33.
  • the plurality of coils 33 are formed in a rectangular area on the circuit board 32, and the drive circuit 60 is disposed around the rectangular area along the three sides of the rectangular area.
  • Such a planar motor 10 can drive a plurality of coils 33 by a drive circuit 60 arranged along three sides of a rectangular region where the plurality of coils 33 are formed.
  • the planar motor 10 further includes a detection unit 50 that detects the current position of the mover 20. Based on the detected current position of the mover 20, the control unit 70 determines the coil 33 to be supplied with power from the DC power supply 64 next.
  • Such a planar motor 10 can determine the coil 33 to be driven based on the current position of the mover 20.
  • the present invention may be realized as a method for controlling the planar motor 10.
  • a voltage is selectively applied to the plurality of first wirings 66a to 66b and the plurality of second wirings 68a to 68b.
  • planar motor according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
  • the planar motor is used for transporting luggage in a distribution warehouse, but may be used for purposes other than the transportation of luggage.
  • the coil was a thin film pattern coil, a coil
  • winding coil may be sufficient as a coil.
  • a rectifying element such as a diode may be connected in series to each of the plurality of coils. Thereby, it is suppressed that the electric current of a reverse direction flows into a coil.
  • the planar motor may include a stator having another laminated structure that can realize the characteristic function of the present invention.
  • the planar motor may include, for example, a stator in which another layer is provided between layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. .
  • each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment.
  • Other materials may be included to the extent that can be realized.
  • another processing unit may execute a process executed by a specific processing unit. Further, the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
  • the components such as the control unit may be realized by executing a software program suitable for the components.
  • Components such as the control unit may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the components such as the control unit may be realized by hardware.
  • the component such as the control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the general or specific aspect of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention may be realized as a planar motor control method (that is, a method of controlling a planar motor).
  • the present invention may be realized as a program for causing a computer to execute such a control method.
  • the present invention may be realized as a computer-readable non-transitory recording medium in which the program is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

This planar motor comprises a driving circuit (60). Each of a plurality of switching circuits (61) of the driving circuit (60) includes: a first circuit for causing a first-polarity current to flow in a coil (33); and a second circuit for causing a second-polarity current, which is the reverse of the first polarity, to flow in the coil (33). The driving circuit (60) includes first switching elements (63A-63C) and power feeding lines (62A-62C) that are electrically connected to the switching circuits (61), from among the plurality of switching circuits (61), which belong to the same row.

Description

平面モータ、及び、制御方法Planar motor and control method
 本発明は、可動子を平面に沿って二次元的に移動させる平面モータ、及び、平面モータの制御方法に関する。 The present invention relates to a planar motor that moves a mover two-dimensionally along a plane and a method for controlling the planar motor.
 可動子を平面に沿って二次元的に移動させる平面モータが知られている。このような平面モータとして、特許文献1には、無駄な電力消費、及び、不当な電磁力の干渉を抑えて各可動子を安定よく駆動することかできるドライブ回路を備えるリニア電磁型マイクロアクチュエータが開示されている。 A planar motor that moves a mover two-dimensionally along a plane is known. As such a planar motor, Patent Document 1 discloses a linear electromagnetic microactuator having a drive circuit that can stably drive each movable element while suppressing wasteful power consumption and interference of an undue electromagnetic force. It is disclosed.
特開2000-125536号公報JP 2000-125536 A
 平面モータにおいて、固定子に設けられた複数のコイルを駆動するために、複数のコイルのそれぞれに個別に2本の制御線を接続すると、複数のコイルの数×2本の制御線が必要となり、配線パターンが複雑化する。 In a planar motor, in order to drive a plurality of coils provided on a stator, if two control lines are individually connected to each of the plurality of coils, the number of the plurality of coils × two control lines are required. The wiring pattern becomes complicated.
 本発明は、配線パターンの簡素化が可能な平面モータ、及び、制御方法を提供する。 The present invention provides a planar motor capable of simplifying a wiring pattern and a control method.
 本発明の一態様に係る平面モータは、磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される複数のコイルを有する固定子と、駆動回路とを備え、前記複数のコイルのそれぞれは、当該コイルに第一極性の電流を流すための第一回路、及び、当該コイルに前記第一極性と逆の第二極性の電流を流すための第二回路を含む切替回路に電気的に接続され、前記駆動回路は、電源、及び、複数の前記切替回路を備え、複数の前記切替回路のうち同一の列に属する前記切替回路に電気的に接続された配線、及び、前記配線と前記電源との電気的な接続をオン及びオフするスイッチング素子を複数組備え、複数の前記第一回路のうち同一の行に属する前記第一回路に電気的に接続された第一配線を複数備え、複数の前記第二回路のうち同一の行に属する前記第二回路に電気的に接続された第二配線を複数備え、複数の前記第一配線、及び、複数の前記第二配線に選択的に電圧を印加する制御を行う制御部を備える。 A planar motor according to an aspect of the present invention includes a mover having a magnet, a main surface facing the mover, and a stator having a plurality of coils arranged in a matrix along the main surface, A drive circuit, and each of the plurality of coils is configured to flow a first polarity current through the coil and a second polarity current opposite to the first polarity through the coil. And the drive circuit includes a power source and a plurality of the switching circuits, and is electrically connected to the switching circuits belonging to the same column among the plurality of switching circuits. And a plurality of sets of switching elements for turning on and off the electrical connection between the wiring and the power supply, and the first circuit belonging to the same row is electrically connected to the first circuit. Multiple first wirings connected together A plurality of second wirings electrically connected to the second circuit belonging to the same row among the plurality of second circuits, and selected as the plurality of first wirings and the plurality of second wirings In addition, a control unit that performs control to apply a voltage is provided.
 本発明の一態様に係る制御方法は、平面モータの制御方法であって、前記平面モータは、磁石を有する可動子と、前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される複数のコイルを有する固定子と、駆動回路とを備え、前記複数のコイルのそれぞれは、当該コイルに第一極性の電流を流すための第一回路、及び、当該コイルに前記第一極性と逆の第二極性の電流を流すための第二回路を含む切替回路に電気的に接続され、前記駆動回路は、電源、及び、複数の前記切替回路を備え、複数の前記切替回路のうち同一の列に属する前記切替回路に電気的に接続された配線、及び、前記配線と前記電源との電気的な接続をオン及びオフするスイッチング素子を複数組備え、複数の前記第一回路のうち同一の行に属する前記第一回路に電気的に接続された第一配線を複数備え、複数の前記第二回路のうち同一の行に属する前記第二回路に電気的に接続された第二配線を複数備え、前記制御方法は、複数の前記第一配線、及び、複数の前記第二配線に選択的に電圧を印加する。 A control method according to an aspect of the present invention is a planar motor control method, wherein the planar motor includes a mover having a magnet, a main surface facing the mover, and a matrix along the main surface. A stator having a plurality of coils arranged in a shape, and a drive circuit, each of the plurality of coils, a first circuit for flowing a first polarity current to the coil, and the coil Electrically connected to a switching circuit including a second circuit for flowing a current of a second polarity opposite to the first polarity, the drive circuit includes a power source and a plurality of the switching circuits, and a plurality of the switching A plurality of sets of switching elements for turning on and off the electrical connection between the wirings and the power supply, the wirings electrically connected to the switching circuits belonging to the same column in the circuit; Belongs to the same row in the circuit A plurality of first wirings electrically connected to the first circuit, a plurality of second wirings electrically connected to the second circuit belonging to the same row among the plurality of second circuits, In the control method, a voltage is selectively applied to the plurality of first wirings and the plurality of second wirings.
 本発明によれば、配線パターンの簡素化が可能な平面モータ、及び、制御方法が実現される。 According to the present invention, a planar motor capable of simplifying a wiring pattern and a control method are realized.
図1は、実施の形態に係る平面モータシステムの概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of the planar motor system according to the embodiment. 図2は、実施の形態に係る平面モータの断面図である。FIG. 2 is a cross-sectional view of the planar motor according to the embodiment. 図3は、実施の形態に係る駆動回路の具体的構成を示す図である。FIG. 3 is a diagram illustrating a specific configuration of the drive circuit according to the embodiment. 図4は、実施の形態に係る平面モータの動作のフローチャートである。FIG. 4 is a flowchart of the operation of the planar motor according to the embodiment.
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態において、「平面視」とは、固定子の主面に垂直な方向から見ることを意味する。図面において、磁石のN極は、「N」と記載され、磁石のS極は、「S」と記載される。 In the following embodiments, “plan view” means viewing from a direction perpendicular to the main surface of the stator. In the drawing, the N pole of the magnet is described as “N”, and the S pole of the magnet is described as “S”.
 (実施の形態)
 [全体構成]
 以下、実施の形態に係る平面モータの構成について図面を用いて説明する。図1は、実施の形態に係る平面モータの概略構成を示す平面図である。図2は、実施の形態に係る平面モータの断面図である。図1において、可動子20及び固定子30については平面図が示されている。図1においては、複数のコイル33の配置を示すために、カバー部材31は図示が省略されている。図2において、検知部50及び駆動回路60は図示が省略されている。
(Embodiment)
[overall structure]
Hereinafter, the structure of the planar motor according to the embodiment will be described with reference to the drawings. FIG. 1 is a plan view showing a schematic configuration of the planar motor according to the embodiment. FIG. 2 is a cross-sectional view of the planar motor according to the embodiment. In FIG. 1, a plan view of the mover 20 and the stator 30 is shown. In FIG. 1, the cover member 31 is not shown in order to show the arrangement of the plurality of coils 33. In FIG. 2, the detection unit 50 and the drive circuit 60 are not shown.
 図1及び図2に示されるように、実施の形態に係る平面モータ10は、可動子20と、固定子30と、検知部50と、駆動回路60とを備える。平面モータ10は、固定子30が有する主面31aに沿って可動子20を2次元的に移動させるリニアモータ(言い換えれば、電磁アクチュエータ)である。平面モータ10は、例えば、物流倉庫内で荷物の運搬に用いられる。以下、このような平面モータ10の各構成要素について詳細に説明する。 As shown in FIGS. 1 and 2, the planar motor 10 according to the embodiment includes a mover 20, a stator 30, a detection unit 50, and a drive circuit 60. The planar motor 10 is a linear motor (in other words, an electromagnetic actuator) that moves the mover 20 two-dimensionally along the main surface 31 a of the stator 30. The flat motor 10 is used, for example, for transporting luggage in a distribution warehouse. Hereinafter, each component of the planar motor 10 will be described in detail.
 [可動子]
 まず、可動子20について説明する。可動子20は、平面モータ10における移動対象物である。図2に示されるように、可動子20は、可動子本体21と、永久磁石22と、ボールキャスタ23とを備える。
[Mover]
First, the mover 20 will be described. The mover 20 is a moving object in the planar motor 10. As shown in FIG. 2, the mover 20 includes a mover main body 21, a permanent magnet 22, and a ball caster 23.
 可動子本体21は、略矩形板状の部材である。可動子本体21は、例えば、樹脂材料によって形成される。可動子本体21は、アルミニウムなどの比較的透磁率の低い金属材料によって形成されてもよい。 The mover body 21 is a substantially rectangular plate-shaped member. The mover main body 21 is made of, for example, a resin material. The mover main body 21 may be formed of a metal material having a relatively low permeability such as aluminum.
 永久磁石22は、可動子20が固定子30から推力を得るための磁石であり、可動子本体21に取り付けられる。永久磁石22は、例えば、平たい円柱状のネオジム磁石である。永久磁石22の形状及び材料は特に限定されない。永久磁石22は、例えば、フェライト磁石、または、アルニコ磁石などであってもよい。可動子20は、例えば、複数の永久磁石22を備えるが、少なくとも1つの永久磁石22を備えればよい。図2では、永久磁石22は、可動子本体21内に埋め込まれているが、永久磁石22は、可動子本体21の上面に取り付けられてもよいし、可動子本体21の下面に取り付けられてもよい。 The permanent magnet 22 is a magnet for the mover 20 to obtain thrust from the stator 30, and is attached to the mover main body 21. The permanent magnet 22 is, for example, a flat cylindrical neodymium magnet. The shape and material of the permanent magnet 22 are not particularly limited. The permanent magnet 22 may be, for example, a ferrite magnet or an alnico magnet. The mover 20 includes a plurality of permanent magnets 22, for example, but may include at least one permanent magnet 22. In FIG. 2, the permanent magnet 22 is embedded in the mover main body 21. However, the permanent magnet 22 may be attached to the upper surface of the mover main body 21 or attached to the lower surface of the mover main body 21. Also good.
 図2の例では、永久磁石22は、S極及びN極の並び方向が主面31aに交差し、S極がN極よりも主面31a寄りに位置するように配置されている。しかしながら、永久磁石22は、N極がS極よりも主面31a寄りに位置するように配置されてもよい。また、永久磁石22は、S極及びN極の並び方向が主面31aに沿うように配置されてもよい。 In the example of FIG. 2, the permanent magnet 22 is arranged so that the arrangement direction of the S pole and the N pole intersects the main surface 31a, and the S pole is located closer to the main surface 31a than the N pole. However, the permanent magnet 22 may be arranged such that the N pole is located closer to the main surface 31a than the S pole. Moreover, the permanent magnet 22 may be arrange | positioned so that the arrangement direction of a south pole and a north pole may follow the main surface 31a.
 なお、可動子20は、永久磁石22に代えて電磁石を有してもよい。この場合、電磁石は、例えば、乾電池または蓄電池によって駆動される。電磁石は、可動子20の移動に寄与していないコイル33から給電されてもよい。このように、可動子20は、永久磁石22または電磁石を有していればよい。つまり、可動子20は、磁石を有していればよい。 The mover 20 may have an electromagnet instead of the permanent magnet 22. In this case, the electromagnet is driven by, for example, a dry battery or a storage battery. The electromagnet may be supplied with power from the coil 33 that does not contribute to the movement of the mover 20. Thus, the needle | mover 20 should just have the permanent magnet 22 or the electromagnet. That is, the needle | mover 20 should just have a magnet.
 ボールキャスタ23は、可動子本体21を固定子30の主面31aに沿って移動させるための移動機構である。ボールキャスタ23は、可動子本体21の下面に取り付けられ、固定子30の主面31aに当接する。なお、可動子20は、自在キャスタまたは車輪など、ボールキャスタ23以外の移動機構を備えてもよい。 The ball caster 23 is a moving mechanism for moving the mover main body 21 along the main surface 31a of the stator 30. The ball caster 23 is attached to the lower surface of the mover main body 21 and abuts on the main surface 31 a of the stator 30. The mover 20 may include a moving mechanism other than the ball caster 23 such as a free caster or a wheel.
 [固定子]
 次に、固定子30について説明する。固定子30は、可動子20を移動させるための構造体である。実施の形態では、固定子30は、シート状の部材である。図2に示されるように、固定子30は、カバー部材31と、回路基板32とを有する。
[stator]
Next, the stator 30 will be described. The stator 30 is a structure for moving the mover 20. In the embodiment, the stator 30 is a sheet-like member. As shown in FIG. 2, the stator 30 includes a cover member 31 and a circuit board 32.
 カバー部材31は、回路基板32の摩耗等を抑制し、かつ、固定子30の表面を平滑化するためのシート状の保護部材である。カバー部材31は、回路基板32の上面の全部を覆う。カバー部材31の平面視形状は、矩形であるが、円形等その他の形状であってもよい。カバー部材31の上面は、固定子30が有する主面31aとなる。主面31aは、可動子20と対向する。 The cover member 31 is a sheet-like protective member that suppresses wear and the like of the circuit board 32 and smoothes the surface of the stator 30. The cover member 31 covers the entire top surface of the circuit board 32. The cover member 31 has a rectangular shape in plan view, but may be other shapes such as a circle. The upper surface of the cover member 31 is a main surface 31a of the stator 30. The main surface 31 a faces the mover 20.
 カバー部材31は、例えば、メラミン樹脂、ウレタン樹脂、または、アクリル樹脂などの有機材料によって形成される。カバー部材31は、シラン化合物または金属酸化物によって形成されてもよい。このような有機材料、シラン化合物、または金属酸化物は、摩耗耐性の点でカバー部材31に適している。カバー部材31に有機材料が採用されれば、カバー部材31が低温の製造プロセスで形成できる。また、カバー部材31に有機材料が採用されれば、カバー部材31の大面積化が容易である。 The cover member 31 is formed of an organic material such as melamine resin, urethane resin, or acrylic resin, for example. The cover member 31 may be formed of a silane compound or a metal oxide. Such an organic material, a silane compound, or a metal oxide is suitable for the cover member 31 in terms of wear resistance. If an organic material is employed for the cover member 31, the cover member 31 can be formed by a low-temperature manufacturing process. Further, if an organic material is employed for the cover member 31, it is easy to increase the area of the cover member 31.
 回路基板32は、上面にコイル33が複数形成される薄膜状(言い換えれば、シート状)の基板である。回路基板32の平面視形状は、矩形であるが、円形等その他の形状であってもよい。回路基板32の基材は、例えば、ガラエポなどの樹脂材料によって形成される。 The circuit board 32 is a thin film-like (in other words, sheet-like) board on which a plurality of coils 33 are formed on the upper surface. The planar view shape of the circuit board 32 is rectangular, but may be other shapes such as a circle. The base material of the circuit board 32 is formed of, for example, a resin material such as glass epoxy.
 回路基板32の上面には、複数のコイル33が形成される。図1に示されるように、平面視において、複数のコイル33は、マトリクス状に敷き詰められている。 A plurality of coils 33 are formed on the upper surface of the circuit board 32. As shown in FIG. 1, the plurality of coils 33 are spread in a matrix in a plan view.
 複数のコイル33は、可動子20に推力を与えるためのコイルである。複数のコイル33は、駆動回路60によって電力が供給されて磁化する。複数のコイル33のそれぞれは、回路基板32の上面にパターン形成された薄膜状のパターンコイルである。 The plurality of coils 33 are coils for applying thrust to the mover 20. The plurality of coils 33 are magnetized when power is supplied by the drive circuit 60. Each of the plurality of coils 33 is a thin pattern coil that is patterned on the upper surface of the circuit board 32.
 複数のコイル33のそれぞれは、巻回軸が主面31aに垂直な方向に沿う矩形巻回状の配線であるが、円形巻回状等、他の巻回状であってもよい。複数のコイル33のそれぞれは、例えば、三角形、または、六角形等の多角形に沿う巻回形状であってもよい。コイル33は、例えば、銅などの金属材料によって形成される。コイル33は、例えば、エッチングによって形成される。 Each of the plurality of coils 33 is a rectangular winding wire whose winding axis extends in a direction perpendicular to the main surface 31a, but may be another winding shape such as a circular winding shape. Each of the plurality of coils 33 may have, for example, a triangular shape or a wound shape along a polygon such as a hexagon. The coil 33 is formed of a metal material such as copper, for example. The coil 33 is formed by etching, for example.
 以下の実施の形態では、複数のコイル33のそれぞれは、第一極性の電流が流れた場合に上側がS極の磁石として機能し、第一極性と反対の第二極性の電流が流れた場合に上側がN極の磁石として機能するものとして説明が行われる。 In the following embodiments, each of the plurality of coils 33 functions as an S-pole magnet when the first polarity current flows, and the second polarity current opposite to the first polarity flows. The upper part functions as an N-pole magnet.
 [検知部]
 検知部50は、可動子20の現在の位置を検知し、検知結果として位置情報を出力する。検知部50は、例えば、複数のコイル33のマトリクス状の配置に対応してマトリクス状に配置された複数のホール素子によって実現される。検知部50は、上方から可動子20及び固定子30を撮像するカメラによって実現されてもよい。
[Detector]
The detection unit 50 detects the current position of the mover 20 and outputs position information as a detection result. The detection unit 50 is realized by, for example, a plurality of Hall elements arranged in a matrix corresponding to the arrangement of the plurality of coils 33 in a matrix. The detection unit 50 may be realized by a camera that images the mover 20 and the stator 30 from above.
 [駆動回路]
 次に、駆動回路60について説明する。駆動回路60は、複数のコイル33の駆動を制御することにより、可動子20を主面31aに沿って移動させる。図2に示されるように、駆動回路60は、例えば、可動子20を移動方向に移動させる場合、移動方向の後方に位置するコイル33aを駆動して、コイル33aと永久磁石22との間に反発力を生じさせる。また、駆動回路60は、移動方向の前方に位置するコイル33bを駆動して、コイル33bと永久磁石22との間に吸引力を生じさせてもよい。
[Drive circuit]
Next, the drive circuit 60 will be described. The drive circuit 60 moves the mover 20 along the main surface 31 a by controlling the drive of the plurality of coils 33. As shown in FIG. 2, for example, when the mover 20 is moved in the movement direction, the drive circuit 60 drives the coil 33 a located at the rear of the movement direction, and between the coil 33 a and the permanent magnet 22. Creates a repulsive force. Further, the drive circuit 60 may drive the coil 33b located in the front in the moving direction to generate an attractive force between the coil 33b and the permanent magnet 22.
 駆動回路60は、例えば、回路基板32上の複数のコイル33の周辺に配置される。駆動回路60は、例えば、マトリクス状に配置された複数のコイル33が形成される矩形の領域の3辺に沿って配置される。つまり、駆動回路60は、コ字状(言い換えれは、U字状)の領域に配置される。駆動回路60は、マトリクス状に配置された複数のコイル33が形成される矩形の領域を囲むように配置されてもよい。つまり、駆動回路60は、矩形環状の領域に配置されてもよい。 The drive circuit 60 is disposed around the plurality of coils 33 on the circuit board 32, for example. The drive circuit 60 is disposed along, for example, three sides of a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 60 is disposed in a U-shaped region (in other words, a U-shape). The drive circuit 60 may be arranged so as to surround a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 60 may be disposed in a rectangular annular region.
 以下、駆動回路60の具体的構成について説明する。図3は、駆動回路60の具体的構成を示す図である。なお、以下の説明では、マトリクス状に配置されたコイル33及び切替回路61のアドレスがアルファベットで示される。アドレスには、行アドレス及び列アドレスが含まれ、行アドレスはアルファベットの小文字で示され、列アドレスはアルファベットの大文字で示される。例えば、アドレス(a-B)は、行アドレスがa、列アドレスがBであることを意味する。 Hereinafter, a specific configuration of the drive circuit 60 will be described. FIG. 3 is a diagram showing a specific configuration of the drive circuit 60. In the following description, the addresses of the coils 33 and the switching circuit 61 arranged in a matrix are indicated by alphabets. The address includes a row address and a column address, the row address is indicated by a lower case alphabet, and the column address is indicated by an upper case alphabet. For example, the address (aB) means that the row address is a and the column address is B.
 図3に示される駆動回路60は、複数の切替回路61と、給電配線62A~62Cと、複数の第一スイッチング素子63A~63Cと、直流電源64と、アドレス選択回路65と、第一配線66a~66bと、第一スキャン回路67と、第二配線68a~68bと、第二スキャン回路69と、制御部70とを備える。図3では、検知部50及び複数のコイル33も図示されている。なお、図3におけるコイル33、切替回路61、スイッチング素子、及び、配線などの数については一例である。 The drive circuit 60 shown in FIG. 3 includes a plurality of switching circuits 61, power supply wirings 62A to 62C, a plurality of first switching elements 63A to 63C, a DC power source 64, an address selection circuit 65, and a first wiring 66a. To 66b, a first scan circuit 67, second wirings 68a to 68b, a second scan circuit 69, and a control unit. In FIG. 3, the detection unit 50 and the plurality of coils 33 are also illustrated. In addition, about the number of the coils 33, the switching circuit 61, the switching element, wiring, etc. in FIG. 3, it is an example.
 切替回路61は、複数のコイル33のそれぞれに1つずつ設けられる。つまり、複数のコイル33のそれぞれは、切替回路61に電気的に接続される。切替回路61は、コイル33に第一極性の電流を流すための2つの第二スイッチング素子161、及び、コイル33に第一極性と逆の第二極性の電流を流すための2つの第二スイッチング素子261を含む。切替回路61は、具体的には、2つの第二スイッチング素子161(以下、第一回路とも記載される)、及び、2つの第二スイッチング素子261(以下、第二回路とも記載される)によって構成されるHブリッジ回路である。なお、このような回路構成は一例であり、切替回路61はその他の回路構成であってもよい。 One switching circuit 61 is provided for each of the plurality of coils 33. That is, each of the plurality of coils 33 is electrically connected to the switching circuit 61. The switching circuit 61 includes two second switching elements 161 for flowing a first polarity current through the coil 33 and two second switching elements for flowing a second polarity current opposite to the first polarity through the coil 33. Element 261 is included. Specifically, the switching circuit 61 includes two second switching elements 161 (hereinafter also referred to as a first circuit) and two second switching elements 261 (hereinafter also referred to as a second circuit). This is an H-bridge circuit configured. Such a circuit configuration is an example, and the switching circuit 61 may have other circuit configurations.
 第二スイッチング素子161及び第二スイッチング素子261のそれぞれは、例えば、FET(Field Effect Transistor)であるが、その他のスイッチング素子(トランジスタ)であってもよい。第二スイッチング素子161及び第二スイッチング素子261は、例えば、回路基板32(図3では図示せず)内に配置される。 Each of the second switching element 161 and the second switching element 261 is, for example, an FET (Field Effect Transistor), but may be other switching elements (transistors). The 2nd switching element 161 and the 2nd switching element 261 are arrange | positioned in the circuit board 32 (not shown in FIG. 3), for example.
 回路基板32は、第二スイッチング素子161及び第二スイッチング素子261に相当する集積回路が実装されたCOS(Chip On Sheet)構造を有してもよい。この場合、集積回路は、可動子20の移動を妨げないように、例えば、回路基板32の下面に配置される。第二スイッチング素子161及び第二スイッチング素子261は、ハイブリッドIC化されていてもよい。 The circuit board 32 may have a COS (Chip On Sheet) structure in which integrated circuits corresponding to the second switching element 161 and the second switching element 261 are mounted. In this case, the integrated circuit is disposed, for example, on the lower surface of the circuit board 32 so as not to hinder the movement of the mover 20. The second switching element 161 and the second switching element 261 may be formed as a hybrid IC.
 また、第二スイッチング素子161及び第二スイッチング素子261のそれぞれは、薄膜トランジスタ(TFT:Thin Film Transistor)であってもよい。 Also, each of the second switching element 161 and the second switching element 261 may be a thin film transistor (TFT: Thin Film Transistor).
 給電配線62A~62Cは、列ごとに1つずつ配置される、列方向に延在する配線である。給電配線62A~62Cのそれぞれは、複数の第一回路のうち同一の列に属する第一回路に電気的に接続される。例えば、給電配線61Aは、列アドレスがAである複数の第一回路に電気的に接続される。 The power supply wirings 62A to 62C are wirings that are arranged one by one for each column and extend in the column direction. Each of the power supply wirings 62A to 62C is electrically connected to a first circuit belonging to the same column among the plurality of first circuits. For example, the power supply wiring 61 </ b> A is electrically connected to a plurality of first circuits whose column addresses are A.
 複数の第一スイッチング素子63A~63Cは、給電配線62A~62Cと直流電源64との電気的な接続をオン及びオフする。例えば、第一スイッチング素子63Aは、給電配線62Aと直流電源64との電気的な接続をオン及びオフする。 The plurality of first switching elements 63A to 63C turn on and off the electrical connection between the power supply wirings 62A to 62C and the DC power source 64. For example, the first switching element 63A turns on and off the electrical connection between the power supply wiring 62A and the DC power supply 64.
 第一スイッチング素子63A~63Cのそれぞれは、例えば、FETであるが、その他のスイッチング素子(トランジスタ)であってもよい。第一スイッチング素子63A~63Cは、回路基板32に配置されてもよいし、回路基板32外に配置されてもよい。 Each of the first switching elements 63A to 63C is, for example, an FET, but may be other switching elements (transistors). The first switching elements 63A to 63C may be arranged on the circuit board 32 or may be arranged outside the circuit board 32.
 なお、第一スイッチング素子63A~63Cが回路基板32に配置される場合、回路基板32は、第一スイッチング素子63A~63Cに相当する集積回路が実装されたCOS(Chip On Sheet)構造を有してもよい。第一スイッチング素子63A~63Cは、ハイブリッドIC化されていてもよい。 When the first switching elements 63A to 63C are arranged on the circuit board 32, the circuit board 32 has a COS (Chip On Sheet) structure in which an integrated circuit corresponding to the first switching elements 63A to 63C is mounted. May be. The first switching elements 63A to 63C may be formed as a hybrid IC.
 また、第一スイッチング素子63A~63Cが回路基板32に配置される場合、第一スイッチング素子63A~63Cのそれぞれは、薄膜トランジスタであってもよい。 Further, when the first switching elements 63A to 63C are disposed on the circuit board 32, each of the first switching elements 63A to 63C may be a thin film transistor.
 アドレス選択回路65は、制御部から通知された列アドレスに対応する第一スイッチング素子63A~63Cをオンする。アドレス選択回路65は、第一スイッチング素子63A~63Cの制御端子(つまり、ゲート)に電気的に接続され、制御端子に電圧を印加する。 The address selection circuit 65 turns on the first switching elements 63A to 63C corresponding to the column address notified from the control unit. The address selection circuit 65 is electrically connected to the control terminals (that is, gates) of the first switching elements 63A to 63C, and applies a voltage to the control terminals.
 第一配線66a~66bは、行ごとに1つずつ配置される、行方向に延在する配線である。第一配線66a~66bは、例えば、回路基板32上に、銅などの金属材料によってパターン形成される。 The first wirings 66a to 66b are wirings that are arranged one by one for each row and extend in the row direction. For example, the first wirings 66a to 66b are patterned on the circuit board 32 by a metal material such as copper.
 第一配線66a~66bのそれぞれは、複数の第一回路のうち同一の行に属する第一回路に電気的に接続される。例えば、第一配線66aは、行アドレスがaである複数の第一回路(より詳細には、複数の第二スイッチング素子161のゲート)に電気的に接続される。 Each of the first wirings 66a to 66b is electrically connected to a first circuit belonging to the same row among the plurality of first circuits. For example, the first wiring 66a is electrically connected to a plurality of first circuits (more specifically, gates of the plurality of second switching elements 161) whose row address is a.
 第一スキャン回路67は、第一配線66a~66bに選択的に電圧を印加する。第一スキャン回路67は、例えば、制御部70から通知された行アドレスに対応する第一配線に電圧を印加する。この結果、電圧が印加された第一配線に接続された第二スイッチング素子161がオンする。 The first scan circuit 67 selectively applies a voltage to the first wirings 66a to 66b. For example, the first scan circuit 67 applies a voltage to the first wiring corresponding to the row address notified from the control unit 70. As a result, the second switching element 161 connected to the first wiring to which the voltage is applied is turned on.
 第二配線68a~68bは、行ごとに1つずつ配置される、行方向に延在する配線である。第二配線68a~68bは、例えば、回路基板32上に、銅などの金属材料によってパターン形成される。 The second wirings 68a to 68b are wirings that are arranged one by one for each row and extend in the row direction. For example, the second wirings 68a to 68b are patterned on the circuit board 32 by a metal material such as copper.
 第二配線68a~68bのそれぞれは、複数の第二回路のうち同一の行に属する第二回路に電気的に接続される。例えば、第二配線68aは、行アドレスがaである複数の第二回路(より詳細には、複数の第二スイッチング素子261のゲート)に電気的に接続される。 Each of the second wirings 68a to 68b is electrically connected to a second circuit belonging to the same row among the plurality of second circuits. For example, the second wiring 68a is electrically connected to a plurality of second circuits (more specifically, gates of the plurality of second switching elements 261) whose row address is a.
 第二スキャン回路69は、第二配線68a~68bに選択的に電圧を印加する。第二スキャン回路69は、例えば、制御部70から通知された行アドレスに対応する第二配線に電圧を印加する。この結果、電圧が印加された第二配線に接続された第二スイッチング素子261がオンする。 The second scan circuit 69 selectively applies a voltage to the second wirings 68a to 68b. For example, the second scan circuit 69 applies a voltage to the second wiring corresponding to the row address notified from the control unit 70. As a result, the second switching element 261 connected to the second wiring to which the voltage is applied is turned on.
 制御部70は、アドレス選択回路65、第一スキャン回路67、及び、第二スキャン回路69にアドレスを通知することにより、複数のコイル33を選択的に駆動する制御を行う制御装置である。制御部70は、例えば、マイクロコンピュータによって実現されるが、プロセッサまたは回路によって実現されてもよい。制御部70は、マイクロコンピュータ、プロセッサ、及び、回路のうち2つ以上の組み合わせによって実現されてもよい。 The control unit 70 is a control device that performs control to selectively drive the plurality of coils 33 by notifying the address selection circuit 65, the first scan circuit 67, and the second scan circuit 69 of the address. The control unit 70 is realized by, for example, a microcomputer, but may be realized by a processor or a circuit. The control unit 70 may be realized by a combination of two or more of a microcomputer, a processor, and a circuit.
 なお、直流電源64は、電流制限回路などを備え、制御部70の制御に基づいてコイル33に供給する電流値を変更可能な構成であってもよい。つまり、コイル33が発する磁束密度は、変更可能であってもよい。この場合、電流はアナログ制御されてもよいし、PWM(Pulse Width Modulation)制御されてもよい。 The DC power supply 64 may include a current limiting circuit and the like, and may be configured to change the current value supplied to the coil 33 based on the control of the control unit 70. That is, the magnetic flux density generated by the coil 33 may be changeable. In this case, the current may be analog-controlled or PWM (Pulse Width Modulation) controlled.
 [平面モータの動作]
 次に、平面モータ10の動作について説明する。平面モータ10では、1つのコイル33に流れる電流の向きを制御することにより当該コイル33の磁極(N極及びS極)を切り替える方法が採用されている。以下、平面モータ10の動作について、図3に加えて図4を参照しながら説明する。図4は、平面モータ10の動作のフローチャートである。
[Operation of planar motor]
Next, the operation of the planar motor 10 will be described. The planar motor 10 employs a method of switching the magnetic poles (N pole and S pole) of the coil 33 by controlling the direction of the current flowing through one coil 33. Hereinafter, the operation of the planar motor 10 will be described with reference to FIG. 4 in addition to FIG. 3. FIG. 4 is a flowchart of the operation of the planar motor 10.
 まず、制御部70は、複数の第一配線66a~66b、及び、複数の第二配線68a~68bに選択的に電圧を印加する制御を行う(S11)。制御部70は、具体的には、行アドレスを第一スキャン回路67及び第二スキャン回路69のいずれかに通知することにより、複数の第一配線66a~66b、及び、複数の第二配線68a~68bのいずれか1つに選択的に電圧を印加する。この結果、行アドレスが示す行に属する第一回路(第二スイッチング素子161)及び第二回路(第二スイッチング素子261)が選択的にオンされる。 First, the control unit 70 performs control to selectively apply a voltage to the plurality of first wirings 66a to 66b and the plurality of second wirings 68a to 68b (S11). Specifically, the control unit 70 notifies the row address to one of the first scan circuit 67 and the second scan circuit 69, whereby the plurality of first wirings 66a to 66b and the plurality of second wirings 68a. A voltage is selectively applied to any one of ˜68b. As a result, the first circuit (second switching element 161) and the second circuit (second switching element 261) belonging to the row indicated by the row address are selectively turned on.
 制御部70は、例えば、複数の第一配線66a~66b、及び、複数の第二配線68a~68bに1回ずつ電圧が印加されるように行アドレスを通知することを周期的に繰り返す。以下では、このような制御は、スキャン制御と記載される。なお、行アドレスが通知される順序は、特に限定されない。例えば、制御部70は、第一配線及び第二配線に交互に電圧が印加されるように、第一スキャン回路67及び第二スキャン回路69に交互に行アドレスを通知する。制御部70は、全ての第一配線に1回ずつ電圧が印加された後、全ての第二配線に1回ずつ電圧が印加されるようにアドレスを通知してもよい。 The control unit 70 periodically repeats the notification of the row address so that, for example, a voltage is applied to the plurality of first wirings 66a to 66b and the plurality of second wirings 68a to 68b once. Hereinafter, such control is described as scan control. The order in which the row address is notified is not particularly limited. For example, the control unit 70 alternately notifies the row address to the first scan circuit 67 and the second scan circuit 69 so that the voltage is alternately applied to the first wiring and the second wiring. The control unit 70 may notify the address so that the voltage is applied once to all the second wirings after the voltage is applied to all the first wirings once.
 制御部70は、スキャン制御を行う一方で、駆動対象のコイル33に対応する第二スイッチング素子161または第二スイッチング素子261がオンされている期間に駆動対象のコイル33に対応する第一スイッチング素子をオンする(S12)。制御部70は、具体的には、駆動対象のコイル33の列アドレスをアドレス選択回路65に通知することにより、アドレス選択回路65を介して駆動対象のコイル33に対応する第一スイッチング素子をオンする。このような制御は、アドレス制御とも記載される。 The control unit 70 performs the scan control, while the second switching element 161 or the second switching element 261 corresponding to the driving target coil 33 is turned on, and the first switching element corresponding to the driving target coil 33. Is turned on (S12). Specifically, the control unit 70 notifies the address selection circuit 65 of the column address of the drive target coil 33, thereby turning on the first switching element corresponding to the drive target coil 33 via the address selection circuit 65. To do. Such control is also described as address control.
 制御部70は、例えば、アドレス(a-A)に属するコイル33をS極の磁石として機能させる場合には、第一配線66aに電圧が印加されている期間に、第一スイッチング素子63Aをオンする。そうすると、アドレス(a-A)に属するコイル33に接続された2つの第二スイッチング素子161がオン状態であるため、当該コイル33には第一極性の電流が流れ、当該コイル33は、S極の磁石として機能する。 For example, in the case where the coil 33 belonging to the address (aA) functions as an S pole magnet, the control unit 70 turns on the first switching element 63A during a period in which voltage is applied to the first wiring 66a. To do. Then, since the two second switching elements 161 connected to the coil 33 belonging to the address (aA) are in the ON state, a first polarity current flows through the coil 33, and the coil 33 Functions as a magnet.
 また、制御部70は、例えば、アドレス(b-C)に属するコイル33をN極の磁石として機能させる場合には、第二配線68bに電圧が印加されている期間に、第一スイッチング素子63Cをオンする。そうすると、アドレス(b-C)に属するコイル33に接続された2つの第二スイッチング素子261がオン状態であるため、当該コイル33には第二極性の電流が流れ、当該コイル33は、N極の磁石として機能する。 Further, for example, when the coil 33 belonging to the address (b-C) is caused to function as an N-pole magnet, the control unit 70 performs the first switching element 63C during the period in which the voltage is applied to the second wiring 68b. Turn on. Then, since the two second switching elements 261 connected to the coil 33 belonging to the address (bC) are in the ON state, a second polarity current flows through the coil 33, and the coil 33 Functions as a magnet.
 このように、駆動回路60は複数のコイル33をパッシブマトリクス駆動することができる。 Thus, the drive circuit 60 can passively drive the plurality of coils 33.
 なお、どのコイル33を駆動対象のコイル33とするかは、検知部50によって検知される可動子20の現在の位置によって定められる。上記図2に示されるように、駆動回路60は、例えば、可動子20の現在の位置の後方に位置するコイル33aを駆動対象として、コイル33aと永久磁石22との間に反発力を生じさせる。また、駆動回路60は、可動子の源の位置の前方に位置するコイル33bを駆動対象として、コイル33bと永久磁石22との間に吸引力を生じさせてもよい。 It should be noted that which coil 33 is to be driven is determined by the current position of the mover 20 detected by the detection unit 50. As shown in FIG. 2, the drive circuit 60 generates a repulsive force between the coil 33 a and the permanent magnet 22, for example, with the coil 33 a located behind the current position of the mover 20 as a drive target. . Further, the drive circuit 60 may generate an attractive force between the coil 33b and the permanent magnet 22 with the coil 33b positioned in front of the position of the source of the mover as a driving target.
 [変形例]
 なお、上記のスキャン制御においては、第一配線66a~66b、及び、第二配線68a~68bは所定の順番で1つずつ選択される。しかしながら、一定の条件下で一部の配線の選択がスキップされてもよいし、配線が順番を無視してランダムに選択されてもよい。
[Modification]
In the scan control described above, the first wirings 66a to 66b and the second wirings 68a to 68b are selected one by one in a predetermined order. However, selection of some wirings may be skipped under certain conditions, or the wirings may be selected randomly ignoring the order.
 また、上記実施の形態では、第一配線66a~66b、及び、第二配線68a~68bがスキャン制御の対象とされ、第一スイッチング素子63A~63Cがアドレス制御の対象とされたが、第一スイッチング素子63A~63Cがスキャン制御の対象とされ、第一配線66a~66b、及び、第二配線68a~68bがアドレス制御の対象とされてもよい。 In the above embodiment, the first wirings 66a to 66b and the second wirings 68a to 68b are the targets of scan control, and the first switching elements 63A to 63C are the targets of address control. The switching elements 63A to 63C may be subject to scan control, and the first wirings 66a to 66b and the second wirings 68a to 68b may be subject to address control.
 また、上記図3では、第一スキャン回路67が複数のコイル33の左側に配置され、第二スキャン回路69が複数のコイル33の右側に配置された。しかしながら、第一スキャン回路67及び第二スキャン回路69の両方が複数のコイル33の左側に配置されてもよいし、第一スキャン回路67及び第二スキャン回路69の両方が複数のコイル33の右側に配置されてもよい。この場合、駆動回路60は、例えば、マトリクス状に配置された複数のコイル33が形成される矩形の領域の二辺に沿って配置される。つまり、駆動回路60は、L字状の領域に配置される。 Further, in FIG. 3, the first scan circuit 67 is disposed on the left side of the plurality of coils 33, and the second scan circuit 69 is disposed on the right side of the plurality of coils 33. However, both the first scan circuit 67 and the second scan circuit 69 may be disposed on the left side of the plurality of coils 33, and both the first scan circuit 67 and the second scan circuit 69 are on the right side of the plurality of coils 33. May be arranged. In this case, for example, the drive circuit 60 is arranged along two sides of a rectangular region where the plurality of coils 33 arranged in a matrix are formed. That is, the drive circuit 60 is arranged in an L-shaped region.
 また、上記実施の形態では、第一配線66a~66b、及び、第二配線68a~68bは、マトリクス状に配置された複数のコイル33の行に対応して配置され、給電配線62A~62Cは、複数のコイル33の列に対応して配置されると説明された。しかしながら、行と列とは便宜上区別されているだけである。回路基板32を異なる方向から見れば、第一配線66a~66b、及び、第二配線68a~68bが、複数のコイル33の列に対応して配置され、給電配線62A~62Cが、給電配線62A~62Cは、複数のコイル33の行に対応して配置されていると考えることもできる。 In the above embodiment, the first wirings 66a to 66b and the second wirings 68a to 68b are arranged corresponding to the rows of the plurality of coils 33 arranged in a matrix, and the power supply wirings 62A to 62C are It has been described that the coils 33 are arranged corresponding to the rows of the coils 33. However, rows and columns are only distinguished for convenience. When the circuit board 32 is viewed from different directions, the first wirings 66a to 66b and the second wirings 68a to 68b are arranged corresponding to the rows of the plurality of coils 33, and the power supply wirings 62A to 62C are connected to the power supply wiring 62A. It can be considered that .about.62C are arranged corresponding to the rows of the plurality of coils 33. FIG.
 [効果等]
 以上説明したように、平面モータ10は、永久磁石22を有する可動子20と、可動子20と対向する主面31a、及び、主面31aに沿ってマトリクス状に配置される複数のコイル33を有する固定子30と、駆動回路60とを備える。永久磁石22は、磁石の一例である。複数のコイル33のそれぞれは、当該コイル33に第一極性の電流を流すための第一回路、及び、当該コイル33に第一極性と逆の第二極性の電流を流すための第二回路を含む切替回路61に電気的に接続される。駆動回路60は、直流電源64、及び、複数の切替回路61を備える。駆動回路60は、複数の切替回路61のうち同一の列に属する切替回路61に電気的に接続された給電配線、及び、給電配線と直流電源64との電気的な接続をオン及びオフする第一スイッチング素子を複数組備える。駆動回路60は、複数の第一回路のうち同一の行に属する第一回路に電気的に接続された第一配線を複数備える。駆動回路60は、複数の第二回路のうち同一の行に属する第二回路に電気的に接続された第二配線を複数備える。駆動回路60は、複数の第一配線、及び、複数の第二配線に選択的に電圧を印加する制御を行う制御部70を備える。
[Effects]
As described above, the planar motor 10 includes the mover 20 having the permanent magnet 22, the main surface 31a facing the mover 20, and the plurality of coils 33 arranged in a matrix along the main surface 31a. The stator 30 has a drive circuit 60. The permanent magnet 22 is an example of a magnet. Each of the plurality of coils 33 includes a first circuit for flowing a first polarity current to the coil 33 and a second circuit for flowing a second polarity current opposite to the first polarity to the coil 33. It is electrically connected to the switching circuit 61 including it. The drive circuit 60 includes a DC power supply 64 and a plurality of switching circuits 61. The drive circuit 60 turns on and off the power supply wiring electrically connected to the switching circuits 61 belonging to the same column among the plurality of switching circuits 61 and the electrical connection between the power supply wiring and the DC power supply 64. A plurality of sets of one switching element are provided. The drive circuit 60 includes a plurality of first wirings electrically connected to the first circuits belonging to the same row among the plurality of first circuits. The drive circuit 60 includes a plurality of second wirings electrically connected to the second circuits belonging to the same row among the plurality of second circuits. The drive circuit 60 includes a control unit 70 that performs control to selectively apply voltages to the plurality of first wirings and the plurality of second wirings.
 このような平面モータ10では、第一配線が同一の行に属するコイル群によって共用され、第二配線が同一の列に属するコイル群によって共用されるため、コイル33を駆動するための配線の本数を減らすことができる。したがって、配線パターンの簡素化が可能となる。また、平面モータ10では、切替回路61により、複数のコイル33のそれぞれに流れる電流の方向を切り替えることができる。つまり、複数のコイル33のそれぞれをS極及びN極のいずれかの磁石として選択的に機能させることができる。 In such a planar motor 10, the first wiring is shared by the coil groups belonging to the same row, and the second wiring is shared by the coil groups belonging to the same column, so that the number of wirings for driving the coil 33 is increased. Can be reduced. Therefore, the wiring pattern can be simplified. In the planar motor 10, the direction of the current flowing through each of the plurality of coils 33 can be switched by the switching circuit 61. That is, each of the plurality of coils 33 can be selectively functioned as either a S-pole or N-pole magnet.
 また、例えば、切替回路61は、第一回路に含まれる2つの第二スイッチング素子161、及び、第二回路に含まれる2つの第二スイッチング素子261によって構成されるHブリッジ回路である。 Also, for example, the switching circuit 61 is an H bridge circuit configured by two second switching elements 161 included in the first circuit and two second switching elements 261 included in the second circuit.
 このような平面モータ10は、Hブリッジ回路により、複数のコイル33のそれぞれに流れる電流の方向を切り替えることができる。 Such a planar motor 10 can switch the direction of the current flowing through each of the plurality of coils 33 by an H bridge circuit.
 また、例えば、固定子30は、複数のコイル33が形成される回路基板32を備え、駆動回路60は、回路基板32上の複数のコイル33の周辺に配置される。 Further, for example, the stator 30 includes a circuit board 32 on which a plurality of coils 33 are formed, and the drive circuit 60 is disposed around the plurality of coils 33 on the circuit board 32.
 このような平面モータ10は、複数のコイル33の周辺に配置された駆動回路60によって複数のコイル33を駆動することができる。 Such a planar motor 10 can drive the plurality of coils 33 by the drive circuit 60 disposed around the plurality of coils 33.
 また、例えば、複数のコイル33は、回路基板32上の矩形の領域に形成され、駆動回路60は、矩形の領域の周辺に、矩形の領域の3辺に沿って配置される。 Also, for example, the plurality of coils 33 are formed in a rectangular area on the circuit board 32, and the drive circuit 60 is disposed around the rectangular area along the three sides of the rectangular area.
 このような平面モータ10は、複数のコイル33が形成された矩形の領域の3辺に沿って配置された駆動回路60によって複数のコイル33を駆動することができる。 Such a planar motor 10 can drive a plurality of coils 33 by a drive circuit 60 arranged along three sides of a rectangular region where the plurality of coils 33 are formed.
 また、例えば、平面モータ10は、さらに、可動子20の現在の位置を検知する検知部50を備える。制御部70は、検知された可動子20の現在の位置に基づいて、次に直流電源64からの電力の供給の対象となるコイル33を決定する。 Further, for example, the planar motor 10 further includes a detection unit 50 that detects the current position of the mover 20. Based on the detected current position of the mover 20, the control unit 70 determines the coil 33 to be supplied with power from the DC power supply 64 next.
 このような平面モータ10は、可動子20の現在の位置に基づいて駆動対象のコイル33を決定することができる。 Such a planar motor 10 can determine the coil 33 to be driven based on the current position of the mover 20.
 また、本発明は、平面モータ10の制御方法として実現されてもよい。このような制御方法は、複数の第一配線66a~66b、及び、複数の第二配線68a~68bに選択的に電圧を印加する。 Further, the present invention may be realized as a method for controlling the planar motor 10. In such a control method, a voltage is selectively applied to the plurality of first wirings 66a to 66b and the plurality of second wirings 68a to 68b.
 これにより、平面モータ10と同様の効果が得られる。 Thereby, the same effect as the planar motor 10 can be obtained.
 (その他の実施の形態)
 以上、実施の形態に係る平面モータについて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
The planar motor according to the embodiment has been described above, but the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、平面モータは、物流倉庫における荷物の搬送に使用されたが、荷物の搬送以外の用途で使用されてもよい。また、上記実施の形態では、コイルは薄膜状のパターンコイルであったが、コイルは巻線コイルであってもよい。 For example, in the above-described embodiment, the planar motor is used for transporting luggage in a distribution warehouse, but may be used for purposes other than the transportation of luggage. Moreover, in the said embodiment, although the coil was a thin film pattern coil, a coil | winding coil may be sufficient as a coil.
 また、上記実施の形態において、複数のコイルのそれぞれには、ダイオードなどの整流素子が直列接続されてもよい。これにより、コイルに逆方向の電流が流れることが抑制される。 In the above embodiment, a rectifying element such as a diode may be connected in series to each of the plurality of coils. Thereby, it is suppressed that the electric current of a reverse direction flows into a coil.
 また、上記実施の形態の固定子の模式断面図に示される積層構造は一例である。平面モータは、本発明の特徴的な機能を実現できる他の積層構造を有する固定子を備えてもよい。平面モータは、例えば、上記実施の形態で説明された積層構造と同様の機能を実現できる範囲で、上記実施の形態の積層構造の層間に別の層が設けられた固定子を備えてもよい。 Also, the laminated structure shown in the schematic cross-sectional view of the stator of the above embodiment is an example. The planar motor may include a stator having another laminated structure that can realize the characteristic function of the present invention. The planar motor may include, for example, a stator in which another layer is provided between layers of the stacked structure of the above embodiment as long as the same function as the stacked structure described in the above embodiment can be realized. .
 また、上記実施の形態では、固定子が有する積層構造の各層を構成する主たる材料について例示しているが、固定子が有する積層構造の各層には、上記実施の形態の積層構造と同様の機能を実現できる範囲で他の材料が含まれてもよい。 In the above embodiment, the main material constituting each layer of the laminated structure of the stator is illustrated, but each layer of the laminated structure of the stator has the same function as the laminated structure of the above embodiment. Other materials may be included to the extent that can be realized.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。 In the above embodiment, another processing unit may execute a process executed by a specific processing unit. Further, the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
 また、上記実施の形態において、制御部などの構成要素は、当該構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。制御部などの構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, the components such as the control unit may be realized by executing a software program suitable for the components. Components such as the control unit may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、制御部などの構成要素は、ハードウェアによって実現されてもよい。例えば、制御部などの構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, the components such as the control unit may be realized by hardware. For example, the component such as the control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。例えば、本発明は、平面モータの制御方法(つまり、平面モータを制御する方法)として実現されてもよい。本発明は、このような制御方法をコンピュータに実行させるためのプログラムとして実現されてもよい。本発明は、当該プログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 The general or specific aspect of the present invention may be realized by a recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. For example, the present invention may be realized as a planar motor control method (that is, a method of controlling a planar motor). The present invention may be realized as a program for causing a computer to execute such a control method. The present invention may be realized as a computer-readable non-transitory recording medium in which the program is recorded.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by variously conceiving various modifications conceived by those skilled in the art for each embodiment, or by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention. This form is also included in the present invention.
 10 平面モータ
 20 可動子
 22 永久磁石(磁石)
 30 固定子
 31a 主面
 33、33a、33b コイル
 50 検知部
 60 駆動回路
 61 切替回路
 62A、62B、62C 給電配線(配線)
 63A、63B、63C 第一スイッチング素子
 64 直流電源(電源)
 65 アドレス選択回路
 66a、66b 第一配線
 67 第一スキャン回路
 68a、68b 第二配線
 69 第二スキャン回路
 70 制御部
 161、261 第二スイッチング素子
10 plane motor 20 mover 22 permanent magnet (magnet)
30 Stator 31a Main surface 33, 33a, 33b Coil 50 Detector 60 Drive circuit 61 Switching circuit 62A, 62B, 62C Power supply wiring (wiring)
63A, 63B, 63C First switching element 64 DC power supply (power supply)
65 Address selection circuit 66a, 66b 1st wiring 67 1st scan circuit 68a, 68b 2nd wiring 69 2nd scan circuit 70 Control part 161,261 2nd switching element

Claims (6)

  1.  磁石を有する可動子と、
     前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される複数のコイルを有する固定子と、
     駆動回路とを備え、
     前記複数のコイルのそれぞれは、当該コイルに第一極性の電流を流すための第一回路、及び、当該コイルに前記第一極性と逆の第二極性の電流を流すための第二回路を含む切替回路に電気的に接続され、
     前記駆動回路は、
      電源、及び、複数の前記切替回路を備え、
      複数の前記切替回路のうち同一の列に属する前記切替回路に電気的に接続された配線、及び、前記配線と前記電源との電気的な接続をオン及びオフするスイッチング素子を複数組備え、
      複数の前記第一回路のうち同一の行に属する前記第一回路に電気的に接続された第一配線を複数備え、
      複数の前記第二回路のうち同一の行に属する前記第二回路に電気的に接続された第二配線を複数備え、
      複数の前記第一配線、及び、複数の前記第二配線に選択的に電圧を印加する制御を行う制御部を備える
     平面モータ。
    A mover having a magnet;
    A main surface facing the mover; and a stator having a plurality of coils arranged in a matrix along the main surface;
    Drive circuit,
    Each of the plurality of coils includes a first circuit for flowing a first polarity current through the coil and a second circuit for flowing a second polarity current opposite to the first polarity through the coil. Electrically connected to the switching circuit,
    The drive circuit is
    A power source, and a plurality of the switching circuits,
    A plurality of switching elements for turning on and off the electrical connection between the wiring and the power supply, and the wiring electrically connected to the switching circuit belonging to the same column among the plurality of switching circuits;
    A plurality of first wirings electrically connected to the first circuit belonging to the same row among the plurality of first circuits,
    A plurality of second wirings electrically connected to the second circuit belonging to the same row among the plurality of second circuits,
    A planar motor comprising a control unit that performs control to selectively apply a voltage to the plurality of first wires and the plurality of second wires.
  2.  前記切替回路は、前記第一回路に含まれる2つのスイッチング素子、及び、前記第二回路に含まれる2つのスイッチング素子によって構成されるHブリッジ回路である
     請求項1に記載の平面モータ。
    The planar motor according to claim 1, wherein the switching circuit is an H-bridge circuit configured by two switching elements included in the first circuit and two switching elements included in the second circuit.
  3.  前記固定子は、前記複数のコイルが形成される基板を備え、
     前記駆動回路は、前記基板上の前記複数のコイルの周辺に配置される
     請求項1に記載の平面モータ。
    The stator includes a substrate on which the plurality of coils are formed,
    The planar motor according to claim 1, wherein the drive circuit is disposed around the plurality of coils on the substrate.
  4.  前記複数のコイルは、前記基板上の矩形の領域に形成され、
     前記駆動回路は、前記矩形の領域の周辺に、前記矩形の領域の3辺に沿って配置される
     請求項3に記載の平面モータ。
    The plurality of coils are formed in a rectangular region on the substrate,
    The planar motor according to claim 3, wherein the drive circuit is disposed along the three sides of the rectangular area around the rectangular area.
  5.  さらに、前記可動子の現在の位置を検知する検知部を備え、
     前記制御部は、検知された前記可動子の現在の位置に基づいて、次に前記電源からの電力の供給の対象となるコイルを決定する
     請求項1~4のいずれか1項に記載の平面モータ。
    Furthermore, a detection unit for detecting the current position of the mover,
    The plane according to any one of claims 1 to 4, wherein the control unit determines a coil to be supplied with power from the power source next based on the detected current position of the movable element. motor.
  6.  平面モータの制御方法であって、
     前記平面モータは、
     磁石を有する可動子と、
     前記可動子と対向する主面、及び、前記主面に沿ってマトリクス状に配置される複数のコイルを有する固定子と、
     駆動回路とを備え、
     前記複数のコイルのそれぞれは、当該コイルに第一極性の電流を流すための第一回路、及び、当該コイルに前記第一極性と逆の第二極性の電流を流すための第二回路を含む切替回路に電気的に接続され、
     前記駆動回路は、
      電源、及び、複数の前記切替回路を備え、
      複数の前記切替回路のうち同一の列に属する前記切替回路に電気的に接続された配線、及び、前記配線と前記電源との電気的な接続をオン及びオフするスイッチング素子を複数組備え、
      複数の前記第一回路のうち同一の行に属する前記第一回路に電気的に接続された第一配線を複数備え、
      複数の前記第二回路のうち同一の行に属する前記第二回路に電気的に接続された第二配線を複数備え、
     前記制御方法は、複数の前記第一配線、及び、複数の前記第二配線に選択的に電圧を印加する
     制御方法。
    A method for controlling a planar motor,
    The planar motor is
    A mover having a magnet;
    A main surface facing the mover; and a stator having a plurality of coils arranged in a matrix along the main surface;
    Drive circuit,
    Each of the plurality of coils includes a first circuit for flowing a first polarity current through the coil and a second circuit for flowing a second polarity current opposite to the first polarity through the coil. Electrically connected to the switching circuit,
    The drive circuit is
    A power source, and a plurality of the switching circuits,
    A plurality of switching elements for turning on and off the electrical connection between the wiring and the power source, and the wiring electrically connected to the switching circuit belonging to the same column among the plurality of switching circuits;
    A plurality of first wirings electrically connected to the first circuit belonging to the same row among the plurality of first circuits,
    A plurality of second wirings electrically connected to the second circuit belonging to the same row among the plurality of second circuits,
    The control method is a control method in which a voltage is selectively applied to the plurality of first wirings and the plurality of second wirings.
PCT/JP2019/019840 2018-06-13 2019-05-20 Planar motor and control method WO2019239797A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018113131 2018-06-13
JP2018-113131 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019239797A1 true WO2019239797A1 (en) 2019-12-19

Family

ID=68842842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019840 WO2019239797A1 (en) 2018-06-13 2019-05-20 Planar motor and control method

Country Status (1)

Country Link
WO (1) WO2019239797A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159901A (en) * 1997-08-11 1999-03-02 Murata Mach Ltd Carrier moving device
JPH1169760A (en) * 1997-08-21 1999-03-09 Fuji Electric Corp Res & Dev Ltd Linear electromagnetic micro actuator
JP2004117052A (en) * 2002-09-24 2004-04-15 Polymatech Co Ltd Film sensor, electric actuator, and input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1159901A (en) * 1997-08-11 1999-03-02 Murata Mach Ltd Carrier moving device
JPH1169760A (en) * 1997-08-21 1999-03-09 Fuji Electric Corp Res & Dev Ltd Linear electromagnetic micro actuator
JP2004117052A (en) * 2002-09-24 2004-04-15 Polymatech Co Ltd Film sensor, electric actuator, and input device

Similar Documents

Publication Publication Date Title
WO2019225284A1 (en) Planar motor and control method
JP5895774B2 (en) motor
JP5211593B2 (en) Brushless electric machine
JP2007312449A (en) Periodic magnetic field generator and motor employing the same
JP2010130740A (en) Movable magnet-type linear motor
JP2004117052A (en) Film sensor, electric actuator, and input device
US11276518B2 (en) Haptic engine module with array-riddled-of-dual (AROD) magnets
JP6846722B2 (en) Plane motor
WO2019239797A1 (en) Planar motor and control method
WO2019208144A1 (en) Planar motor and control method
JP2019030067A (en) Planar motor
JPWO2019058735A1 (en) Flat motor
JP2001112228A (en) Movable magnet type linear actuator
JP2012039680A (en) Linear motor and linear motor device
JP2020089109A (en) Magnetic carrier, and control method
JP2000125536A (en) Linear electromagnetic micro actuator
KR20180126040A (en) Motor structure
JP2019193329A (en) Flat surface motor system
JP4518148B2 (en) Brushless rotary motor, robot with brushless rotary motor, and moving body with brushless rotary motor
US7394975B2 (en) Drive circuit for a sensored brushless DC motor
JP2005218203A (en) Actuator and bonding apparatus
JP2019193458A (en) Planar motor
JP2019115134A (en) Planar motor
WO2019176507A1 (en) Flat motor
JP2004040894A (en) Electromagnetic actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP