WO2019176255A1 - Method of manufacturing tube glass and tube glass - Google Patents

Method of manufacturing tube glass and tube glass Download PDF

Info

Publication number
WO2019176255A1
WO2019176255A1 PCT/JP2019/000655 JP2019000655W WO2019176255A1 WO 2019176255 A1 WO2019176255 A1 WO 2019176255A1 JP 2019000655 W JP2019000655 W JP 2019000655W WO 2019176255 A1 WO2019176255 A1 WO 2019176255A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube glass
laser
laser beam
irradiation
glass
Prior art date
Application number
PCT/JP2019/000655
Other languages
French (fr)
Japanese (ja)
Inventor
太基 田中
和田 正紀
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2019176255A1 publication Critical patent/WO2019176255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/04Forming tubes or rods by drawing from stationary or rotating tools or from forming nozzles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/095Tubes, rods or hollow products

Definitions

  • the present invention relates to a method for manufacturing a tube glass including a cutting step, and the tube glass.
  • tube glass used for medical ampules, lighting fluorescent tubes, and the like is formed by various methods such as the Danner method and the downdraw method.
  • the outline will be described by taking the Danner method as an example.
  • molten glass is supplied to a rotatable sleeve disposed in a muffle furnace.
  • the supplied molten glass becomes tubular while being wound around a rotating sleeve.
  • the tube glass is continuously shape
  • the formed tube glass is cut to a required length by a cutting device to obtain a tube glass product having a predetermined length (see, for example, Patent Document 1).
  • a cutting method of the continuous tube glass by bringing a cutting blade into contact with the outer peripheral surface of the continuous tube glass that is continuously conveyed, a scratch is formed on the outer peripheral surface, and a thermal shock is applied to the scratch.
  • a method of cutting a continuous tube glass is generally employed (see, for example, Patent Document 2).
  • Patent Document 2 can be cut at a relatively high speed while conveying continuous tube glass, and can be easily incorporated into a production line.
  • the scratch formed on the outer peripheral surface of the continuous tube glass is propagated by thermal shock, it is difficult to stabilize the shape of the scratch that becomes the starting point of the crack. For this reason, the fracture surface (cut surface) of the tube glass becomes rough. Therefore, in the method of the same document, an additional cutting process is required to finish the fractured surface flat, resulting in an increase in man-hours.
  • a cleaning process is also required.
  • Patent Document 3 discloses a method capable of preventing the generation of glass powder and cutting the continuous tube glass at high speed.
  • laser light is irradiated inside the continuous tube glass, and cracks are generated inside the continuous tube glass due to multiphoton absorption that occurs in the irradiated region.
  • Stress is applied to the continuous tube glass, and the crack propagates in the circumferential direction inside the continuous tube glass due to the action of the stress.
  • the focal point F of the laser light L is set inside the continuous tube glass G1 conveyed along the longitudinal direction, and this focal point F is an irradiation start position along the circumferential direction of the continuous tube glass G1.
  • the laser beam L is scanned so as to move from the SP to the irradiation end position EP.
  • region C1 containing a 1 or several crack is formed in the irradiation area
  • the continuous tube glass G1 is conveyed in a state where a bending force is applied. For this reason, the crack contained in the internal crack area
  • region C1 progresses in the circumferential direction of the continuous tube glass G1 with the stress provided to the continuous tube glass G1.
  • a region where a crack propagates is referred to as a “crack propagation region” and is denoted by reference characters C2a and C2b.
  • the crack progress areas C2a and C2b are composed of a first crack progress area C2a that progresses from the irradiation start position SP side and a second crack progress area C2b that progresses from the irradiation end position EP side.
  • the laser beam L is scanned in one direction from the irradiation start position SP to the irradiation end position EP inside the continuous tube glass G1.
  • the first crack progress region C2a and the second crack progress region C2b have different degrees of progress (the first crack progress region C2a progresses faster), and as shown in FIG.
  • the first crack progress region C2a that progresses from the position 2 and the second crack progress region C2b that progresses from the irradiation end position EP side do not match at the merge position CP.
  • This invention is made
  • the present invention is for solving the above-described problem, and includes a cutting step.
  • the cutting step focuses on the inside of the tube glass and scans the laser beam from the irradiation start position. And a laser irradiation step for forming a crack due to multiphoton absorption, and a stress applying step for applying a stress to the tube glass so that the crack propagates in a circumferential direction of the tube glass.
  • the first laser beam and the second laser beam, and in the laser irradiation step, the first laser beam and the second laser beam are scanned away from the irradiation start position, Causing the crack formed by the first laser beam and the crack formed by the second laser beam to propagate in opposite directions in the circumferential direction of the tube glass. And butterflies.
  • the first laser beam and the second laser beam are scanned in two directions away from each other in the laser irradiation step.
  • the progress degree of the crack which progresses from the irradiation end position side of the first laser beam and the crack which progresses from the irradiation end position side of the second laser beam becomes equal.
  • the focal point of the first laser beam and the focal point of the second laser beam overlap at the irradiation start position.
  • the first laser beam and the second laser beam are scanned so as to be symmetric with respect to the central axis of the tube glass.
  • the present invention is to solve the above-mentioned problems, and is a tube glass having a laser irradiation trace on an end face, wherein the maximum width of the laser irradiation trace is 10 ⁇ m or more and 150 ⁇ m or less.
  • the present invention is for solving the above-mentioned problems, characterized in that it is a tube glass having a laser irradiation trace on its end face, and the maximum depth of the laser irradiation trace is 50 ⁇ m or more and 500 ⁇ m or less.
  • the present invention is for solving the above-mentioned problems, characterized in that it is a tube glass having a laser cut surface on an end surface, and the maximum step of the cut surface is 500 ⁇ m or less.
  • the quality of the cut surface of the tube glass in the cutting process can be improved.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is sectional drawing of the continuous tube glass at the time of completion
  • FIG. 1 to 11 show an embodiment of a method and apparatus for producing tube glass according to the present invention.
  • the manufacturing apparatus 1 forms a continuous tube glass G1 by the Danner method, and cuts the continuous tube glass G1 to manufacture a tube glass G2 having a predetermined length.
  • the manufacturing apparatus 1 includes a glass melting furnace 2, a sleeve 3, a driving device 4 that rotationally drives the sleeve 3, a muffle furnace 5 that accommodates the sleeve 3, an annealer 6, and a tube for drawing a continuous tube glass G ⁇ b> 1. It mainly includes a drawing device 7, a cutting device 8 for cutting the continuous tube glass G1, and a transport device 9 for transporting the tube glass G2 obtained by cutting the continuous tube glass G1.
  • the XYZ coordinate system is a fixed-side coordinate system.
  • a plane including the X axis and the Y axis is a horizontal plane, and a direction along the Z axis is a vertical direction (a positive Z axis).
  • the side is heaven and the negative side is the ground).
  • the xyz coordinate system is a coordinate system on the moving side (coordinate system on the continuous tube glass G1).
  • the plane including the x axis and the y axis is a horizontal plane and the direction along the z axis. Is the vertical direction.
  • the glass melting furnace 2 generates molten glass M by melting glass raw materials.
  • the glass melting furnace 2 supplies the molten glass M to the upper part of the sleeve 3 in the muffle furnace 5.
  • the sleeve 3 is formed in a cylindrical shape with a refractory material.
  • the sleeve 3 is partially tapered, and is arranged so that the small diameter side end portion 3a of the tapered portion faces obliquely downward.
  • the sleeve 3 is connected to the drive device 4 via the shaft 10.
  • the driving device 4 rotates the sleeve 3 to wind the molten glass M supplied onto the sleeve 3 into a cylindrical shape, and draws it into a tubular shape from the small diameter side end portion 3a.
  • the muffle furnace 5 is disposed below the glass melting furnace 2.
  • the muffle furnace 5 is composed of a refractory material.
  • the sleeve 3 is accommodated in the muffle furnace 5.
  • the annealer 6 is disposed on the downstream side of the muffle furnace 5.
  • the annealer 6 gradually cools the molten glass M drawn into a tubular shape.
  • the molten glass M formed into a tubular shape becomes a continuous tube glass G1 by passing through the annealer 6.
  • the tube drawing device 7 is arranged on the downstream side of the annealer 6.
  • the tube drawing device 7 pulls the continuous tube glass G ⁇ b> 1 that has passed through the annealer 6 at a constant speed and conveys it toward the cutting device 8.
  • the tube drawing device 7 is a continuous tube glass adjusted to have a predetermined outer diameter by pulling in a downstream direction while holding the upper and lower portions of the continuous tube glass G1 with a pair of conveying belts (not shown). G1 is supplied to the cutting device 8.
  • the cutting device 8 cuts the continuous tube glass G1 to form a tube glass G2 having a predetermined length dimension.
  • the thickness of the tube glass G2 in this embodiment is, for example, 0.5 to 2.0 mm, but is not limited to this range.
  • the cutting device 8 includes an internal crack region forming device 11 and a crack propagation device 12.
  • the internal crack region forming device 11 forms internal crack regions C1a and C1b including one or a plurality of cracks as shown in FIG. 6 to be described later in a part of the continuous tube glass G1 in the circumferential direction.
  • the crack propagation device 12 generates a stress in the continuous tube glass G1 that promotes the development of cracks in the internal crack regions C1a and C1b, and propagates the crack over the entire circumference of the continuous tube glass G1.
  • the internal crack region forming apparatus 11 includes a laser oscillator 14, a splitter 15, output adjustment units 16a and 16b, and scanners 17a and 17b.
  • the laser oscillator 14 emits laser light L (for example, picosecond pulse laser light or sub-picosecond pulse laser light) having a predetermined pulse width toward the splitter 15.
  • laser light L for example, picosecond pulse laser light or sub-picosecond pulse laser light
  • the laser oscillator 14 emits, for example, green laser light, but the type of the laser light L is not limited to this.
  • the splitter 15 splits the laser beam L from the laser oscillator 14 into a first laser beam L1 and a second laser beam L2 by a built-in mirror.
  • the output adjusters 16a and 16b include a first output adjuster 16a that adjusts the output of the first laser beam L1, and a second output adjuster 16b that adjusts the output of the second laser beam L2.
  • Each output adjustment part 16a, 16b is comprised by the attenuator (optical attenuator), for example.
  • the first output adjustment unit 16a and the second output adjustment unit 16b adjust the laser beams L1 and L2 incident from the splitter 15 so that the first laser beam L1 and the second laser beam L2 have the same output condition. .
  • the scanners 17a and 17b include a first scanner 17a that scans the first laser light L1 and a second scanner 17b that scans the second laser light L2.
  • the scanners 17a and 17b scan the continuous tube glass G1 with the laser beams L1 and L2 incident via the splitter 15 and the output adjustment units 16a and 16b.
  • Each of the scanners 17a and 17b is configured by, for example, a galvano scanner, but is not limited to this configuration.
  • Each scanner 17a, 17b can scan each laser beam L1, L2 over a wide range along the circumferential direction of the continuous tube glass G1 by an actuator such as a voice coil motor (VCM).
  • VCM voice coil motor
  • the crack propagation device 12 includes a tensile force applying unit 18 and a bending force applying unit 19.
  • the tensile force applying unit 18 applies a tensile force f1 in a direction along the central axis X1 of the continuous tube glass G1.
  • the bending force application unit 19 applies a bending force f2 to the continuous tube glass G1 so that the central axis X1 of the continuous tube glass G1 is curved with a predetermined curvature.
  • the tensile force applying unit 18 includes a gripping unit 20 and a slide driving unit 21.
  • the grip 20 is configured to grip the downstream end of the continuous tube glass G1.
  • the slide drive unit 21 is for moving the grip unit 20 in a direction along the central axis X1 of the continuous tube glass G1.
  • the slide drive unit 21 can move the gripping unit 20 in synchronization with the continuous tube glass G1.
  • the bending force application unit 19 includes a plurality of rollers 22 that sandwich the upper and lower portions of the continuous tube glass G1 in the vertical direction.
  • the position at which the continuous tube glass G1 is supported (clamped) by the plurality of rollers 22 is set so as to bend with a predetermined curvature as the central axis X1 of the continuous tube glass G1 goes downstream.
  • the support part 13 is comprised by the some roller or roller pair arrange
  • the support part 13 guides the continuous tube glass G1 drawn out from the annealer 6 to the downstream side in the transport direction (X-axis direction). In FIG. 2, the support 13 is not shown.
  • the transport device 9 is configured by a belt conveyor or a roller conveyor, but is not limited to this configuration.
  • the conveyance apparatus 9 conveys the tube glass G2 along the direction (for example, Y-axis direction) crossing the conveyance direction (X-axis direction) of the continuous tube glass G1.
  • the molten glass M generated in the glass melting furnace 2 is supplied onto the sleeve 3 that is rotationally driven in the muffle furnace 5.
  • the molten glass M is formed into a tubular shape by the sleeve 3, and then slowly cooled by the annealer 6, and is drawn out from the annealer 6 as a continuous tube glass G ⁇ b> 1.
  • the continuous tube glass G1 is sent to the cutting device 8 via the tube drawing device 7. Then, the cutting process which cut
  • a step of applying stress to the continuous tube glass G1 is executed.
  • stress applying step first, when the downstream end of the continuous tube glass G1 reaches a predetermined position, the grip 20 of the tensile force applying unit 18 grips the downstream end. Thereafter, the slide drive unit 21 moves the grip unit 20 toward the downstream side in the longitudinal direction of the continuous tube glass G1. Thereby, the continuous tube glass G1 is given a tensile force f1 in a direction along the central axis X1 (see FIG. 2).
  • the continuous tube glass G1 passes between a plurality of rollers 22 located on the upstream side of the gripping portion 20. At this time, a bending force f2 is applied to the continuous tube glass G1.
  • the continuous tube glass G1 is curved with a predetermined curvature so that the irradiation side (upper side in FIG. 2) of the laser beams L1 and L2 is convex. As described above, tensile stress and bending stress are applied to the continuous tube glass G1.
  • the laser irradiation process by the internal crack region forming apparatus 11 is executed in a state where each stress is applied to the continuous tube glass G1.
  • the splitter 15 divides the laser light L emitted from the laser oscillator 14 into a first laser light L1 and a second laser light L2.
  • the laser beams L1 and L2 are adjusted to the same output condition (pulse width and output) by the output adjusters 25a and 25b, and then enter the scanners 17a and 17b.
  • the scanners 17a and 17b irradiate the laser beams L1 and L2 toward the continuous tube glass G1 so that the focal points F1 and F2 are aligned with the irradiation start position SP set inside the continuous tube glass G1.
  • the irradiation start positions SP of the laser beams L1 and L2 are set on a vertical center line Z1 passing through the central axis X1 of the continuous tube glass G1.
  • Each of the scanners 17a and 17b has a focal point F1 of the first laser beam L1 and a focal point F2 of the second laser beam L2 that coincide with each other or a part of each of the focal points F1 and F2 overlaps at the irradiation start position SP.
  • the focal points F1 and F2 can be irradiated in a separated state as shown in FIG.
  • the one where the distance between two points is smaller is preferable, and it is preferable that it is 10% or less with respect to the length of the perimeter of the tube glass G2.
  • the scanners 17a and 17b scan the laser beams L1 and L2 toward the irradiation end position EP set at a position away from the irradiation start position SP in the circumferential direction inside the continuous tube glass G1. That is, in FIG. 3, the first scanner 17a scans the first laser light L1 along the counterclockwise direction from the irradiation start position SP, and the second scanner 17b performs the second scan along the clockwise direction from the irradiation start position SP. The laser beam L2 is scanned. When the irradiation start position SP is in a separated state as shown in FIG. 12 described later, the first laser light L1 is set at a position away from the irradiation start position SP of the second laser light L2 in the circumferential direction.
  • the second laser beam L2 is scanned toward the irradiation end position EP (counterclockwise), and the second laser beam L2 is set at a position away from the irradiation start position SP of the first laser beam L1 in the circumferential direction. Scanning towards the end position EP (along clockwise).
  • FIG. 4 shows scanning trajectories of the laser beams L1 and L2 when viewed in a coordinate system based on the moving continuous tube glass G1 (xyz coordinate system shown in FIG. 4).
  • Each of the scanners 17a and 17b emits the laser beams L1 and L2 along the circumferential direction of the continuous tube glass G1 so that the virtual sections X2 perpendicular to the central axis X1 of the continuous tube glass G1 include the focal points F1 and F2. Can scan.
  • the internal crack region forming apparatus 11 moves the focal point F1 of the first laser light L1 from the irradiation start position SP to the irradiation end position EP by the first scanner 17a, and the focal point F2 of the second laser light L2 by the second scanner 17b. Is moved from the irradiation start position SP to the irradiation end position EP. At this time, each scanner 17a, 17b moves the focal point F1 of the first laser light L1 and the focal point F2 of the second laser light L2 in the opposite directions in the circumferential direction of the continuous tube glass G1.
  • FIG. 5 is a plan view showing scanning trajectories of the laser beams L1 and L2 when viewed in the XYZ coordinate system with the fixed side as a reference.
  • the first laser beam L1 forms an angle ⁇ 1 with respect to the central axis X1 while the continuous tube glass G1 moves by a predetermined distance d along the transport direction along the central axis X1. Scanning is performed from the irradiation start position SP to the irradiation end position EP along the direction.
  • the scanning direction of the second laser light L2 is set to be symmetric with respect to the scanning direction of the first laser light L1 with respect to the central axis X1. That is, the second laser light L2 is scanned from the irradiation start position SP to the irradiation end position EP along a direction that forms an angle ⁇ 2 with respect to the central axis X1.
  • the angle ⁇ 2 of the second laser light L2 is set equal to the angle ⁇ 1 of the first laser light L1.
  • the scanning speed of the first laser beam L1 and the scanning speed of the second laser beam L2 are set to be equal.
  • the first laser beam L1 and the second laser beam L2 are scanned so as to form an angle ⁇ 1 and an angle ⁇ 2, respectively, with respect to the central axis X1, so that each focal point F1 is displayed on the virtual cross section X2 shown in FIG. , F2 are included.
  • first internal crack region In the regions irradiated with the laser beams L1 and L2, internal crack regions C1a and C1b including one or more cracks are formed by multiphoton absorption.
  • second internal crack region the internal crack region C1a formed by the second laser beam L2
  • first internal crack region the internal crack region formed by the first laser beam L1
  • second internal crack region the internal crack region formed by the second laser beam L2
  • the first internal crack region C1a and the second internal crack region C1b proceed in the opposite direction (reverse direction) from the irradiation start position SP in the circumferential direction of the continuous tube glass G1.
  • the internal crack region forming apparatus 11 ends the irradiation of the laser beams L1 and L2.
  • a strip-shaped first internal crack region C1a and second internal crack region C1b having a predetermined length are integrally formed inside the continuous tube glass G1.
  • the length of the first internal crack region C1a is equal to the length of the second internal crack region C1b.
  • the code of the integrally formed crack region may also be described as C1.
  • the cracks in the internal crack regions C1a and C1b develop in the circumferential direction due to the action of stress acting on the inside of the continuous tube glass G1.
  • first crack progress region the crack region C2a that progresses from the first internal crack region C1a
  • second crack progress region the crack region C2b that progresses from the second internal crack region C1b
  • the crack progress regions C2a and C2b start to expand in a direction away from the end portions (positions corresponding to the irradiation end position EP) of the internal crack regions C1a and C1b. As shown in FIG. 9, the crack progress regions C2a and C2b continue to expand at the same speed along the circumferential direction thereafter. Finally, the crack progress regions C2a and C2b simultaneously reach a predetermined joining position CP (a position on the center line Z1 and opposite to the irradiation start position SP in the radial direction). At this time, as shown in FIG. 10, at the merge position CP, the first crack progress region C2a and the second crack progress region C2b coincide with each other without causing a positional shift in the longitudinal direction of the continuous tube glass G1.
  • the continuous tube glass G1 is cut.
  • a tube glass G2 having a predetermined length is formed.
  • the manufactured tube glass G2 is sequentially transported in a predetermined direction by the transport device 9 (transport process).
  • the first laser light L1 and the second laser light L2 are scanned symmetrically in two directions away from each other.
  • the first crack progress region C2a and the second crack progress region C2b can be made to coincide at the joining position CP without causing a positional shift.
  • disconnection can be made high quality.
  • the maximum unevenness (maximum step) on the end face of the tube glass G2 can be 500 ⁇ m or less.
  • the end surface of the manufactured tube glass G2 is irradiated so that the focal points F1 and F2 of the laser beams L1 and L2 overlap each other at the irradiation start position SP in the laser irradiation step. Reference) will remain.
  • the maximum width of the laser irradiation mark IM is preferably 10 ⁇ m or more and 150 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less. Further, the maximum depth of the laser irradiation mark IM is preferably 50 ⁇ m or more and 500 ⁇ m or less, and more preferably 50 ⁇ m or more and 300 ⁇ m or less. If it is said width and depth, the cut surface in parts other than a laser irradiation trace (crack progress area etc.) will also become beautiful.
  • this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the irradiation start position SP of the first laser beam L1 and the irradiation start position SP of the second laser beam L2 may be set apart from each other.
  • the distance from the center line Z1 to the irradiation start position SP of the first laser beam L1 and the distance from the center line Z1 to the irradiation start position SP of the second laser beam L2 may be set to be equal. desirable.
  • the method of manufacturing the tube glass G2 by cutting the continuous tube glass G1 is exemplified.
  • the present invention is not limited to this, and the present invention cuts a tube glass of a predetermined length to obtain a plurality of tubes. It is applicable also when manufacturing glass.

Abstract

A cutting step in a method of manufacturing a tube glass includes a laser irradiating step and a stress applying step. In the laser irradiating step, a crack formed by first laser light L1 and a crack formed by second laser light L2 are propagated in circumferentially opposite directions of a tube glass G1 by scanning the first laser light L1 and the second laser light L2 so as to move away from each other from an irradiation start position SP.

Description

管ガラスの製造方法および管ガラスTube glass manufacturing method and tube glass
 本発明は、切断工程を含む管ガラスの製造方法、および管ガラスに関する。 The present invention relates to a method for manufacturing a tube glass including a cutting step, and the tube glass.
 例えば医療用のアンプルや照明用の蛍光管などに用いられる管ガラスは、ダンナー法やダウンドロー法など種々の手法により成形されている。以下、ダンナー法を例にとってその概要を説明する。 For example, tube glass used for medical ampules, lighting fluorescent tubes, and the like is formed by various methods such as the Danner method and the downdraw method. Hereinafter, the outline will be described by taking the Danner method as an example.
 ダンナー法で管ガラスを製造する場合、まずマッフル炉内に配置された回転可能なスリーブに溶融ガラスを供給する。供給された溶融ガラスは、回転するスリーブに巻き付きながら管状となる。そして、この管状となった溶融ガラスをスリーブの先端から管引き装置(牽引装置)で引張り出すことで、管ガラスが連続的に成形される。然る後、成形された管ガラス(連続管ガラス)を切断装置で所要の長さに切断することで、所定長さ寸法の管ガラス製品を得る(例えば、特許文献1を参照)。 When producing tube glass by the Danner method, first, molten glass is supplied to a rotatable sleeve disposed in a muffle furnace. The supplied molten glass becomes tubular while being wound around a rotating sleeve. And the tube glass is continuously shape | molded by pulling out the molten glass used as this tube from the front-end | tip of a sleeve with a tube drawing apparatus (traction | pulling apparatus). Thereafter, the formed tube glass (continuous tube glass) is cut to a required length by a cutting device to obtain a tube glass product having a predetermined length (see, for example, Patent Document 1).
 また、連続管ガラスの切断方法として、連続的に搬送される連続管ガラスの外周面に切断刃を接触させることで、当該外周面に擦り傷を形成すると共に、この擦り傷に熱衝撃を加えることにより、連続管ガラスを切断する方法が一般的に採用されている(例えば、特許文献2を参照)。 Moreover, as a cutting method of the continuous tube glass, by bringing a cutting blade into contact with the outer peripheral surface of the continuous tube glass that is continuously conveyed, a scratch is formed on the outer peripheral surface, and a thermal shock is applied to the scratch. A method of cutting a continuous tube glass is generally employed (see, for example, Patent Document 2).
 特許文献2に記載される方法は、連続管ガラスを搬送しながら比較的高速に切断することができ、生産ラインに容易に組み込むことができる。しかしながら、連続管ガラスの外周面に形成した擦り傷を熱衝撃により進展させることから、クラックの起点となる擦り傷の形状を安定させることが難しい。このため、管ガラスの破断面(切断面)は粗くなる。したがって、同文献の方法では、破断面を平坦に仕上げるために追加の切断加工を必要とし、工数の増加を招いていた。また、この方法では、切断工程で生じたガラス粉が切断後の管ガラスの内周面に付着することから、洗浄工程も必要となる。 The method described in Patent Document 2 can be cut at a relatively high speed while conveying continuous tube glass, and can be easily incorporated into a production line. However, since the scratch formed on the outer peripheral surface of the continuous tube glass is propagated by thermal shock, it is difficult to stabilize the shape of the scratch that becomes the starting point of the crack. For this reason, the fracture surface (cut surface) of the tube glass becomes rough. Therefore, in the method of the same document, an additional cutting process is required to finish the fractured surface flat, resulting in an increase in man-hours. Moreover, in this method, since the glass powder produced in the cutting process adheres to the inner peripheral surface of the cut tube glass, a cleaning process is also required.
 特許文献3には、ガラス粉の発生を防止でき、かつ連続管ガラスを高速に切断する方法が開示される。この方法では、連続管ガラスの内部にレーザ光を照射し、その照射領域に生じる多光子吸収によって当該連続管ガラスの内部にクラックを発生させる。連続管ガラスに応力が付与されており、クラックは、当該応力の作用により、連続管ガラスの内部において円周方向に進展する。 Patent Document 3 discloses a method capable of preventing the generation of glass powder and cutting the continuous tube glass at high speed. In this method, laser light is irradiated inside the continuous tube glass, and cracks are generated inside the continuous tube glass due to multiphoton absorption that occurs in the irradiated region. Stress is applied to the continuous tube glass, and the crack propagates in the circumferential direction inside the continuous tube glass due to the action of the stress.
 以下、この切断方法における、レーザ光の照射方法及びクラックの進展の態様について、図13及び図14を参照しながら詳細に説明する。 Hereinafter, a laser beam irradiation method and a crack propagation mode in this cutting method will be described in detail with reference to FIGS. 13 and 14.
 図13に示すように、長手方向に沿って搬送される連続管ガラスG1の内部に、レーザ光Lの焦点Fを合わせ、この焦点Fが連続管ガラスG1の円周方向に沿って照射開始位置SPから照射終了位置EPまで移動するように、レーザ光Lを走査する。これにより、図14に示すように、連続管ガラスG1の内部におけるレーザ光Lの照射領域には、一又は複数のクラックを含む内部クラック領域C1が形成される。 As shown in FIG. 13, the focal point F of the laser light L is set inside the continuous tube glass G1 conveyed along the longitudinal direction, and this focal point F is an irradiation start position along the circumferential direction of the continuous tube glass G1. The laser beam L is scanned so as to move from the SP to the irradiation end position EP. Thereby, as shown in FIG. 14, the internal crack area | region C1 containing a 1 or several crack is formed in the irradiation area | region of the laser beam L inside the continuous tube glass G1.
 連続管ガラスG1は、曲げ力が付与された状態で搬送されている。このため、内部クラック領域C1に含まれるクラックは、連続管ガラスG1に付与される応力によって、連続管ガラスG1の円周方向に進展する。図14において、クラックが進展する領域を「クラック進展領域」といい、符号C2a,C2bで示す。クラック進展領域C2a,C2bは、照射開始位置SP側から進展する第一クラック進展領域C2aと、照射終了位置EP側から進展する第二クラック進展領域C2bとからなる。 The continuous tube glass G1 is conveyed in a state where a bending force is applied. For this reason, the crack contained in the internal crack area | region C1 progresses in the circumferential direction of the continuous tube glass G1 with the stress provided to the continuous tube glass G1. In FIG. 14, a region where a crack propagates is referred to as a “crack propagation region” and is denoted by reference characters C2a and C2b. The crack progress areas C2a and C2b are composed of a first crack progress area C2a that progresses from the irradiation start position SP side and a second crack progress area C2b that progresses from the irradiation end position EP side.
 図14に示すように、第一クラック進展領域C2aと、第二クラック進展領域C2bとが、半径方向において内部クラック領域C1とは反対の合流位置CPに到達することで、連続管ガラスG1が切断される。 As shown in FIG. 14, when the first crack progress region C2a and the second crack progress region C2b reach the joining position CP opposite to the internal crack region C1 in the radial direction, the continuous tube glass G1 is cut. Is done.
特開2013-159532号公報JP 2013-159532 A 特開2013-129546号公報JP 2013-129546 A 特開2017-7926号公報JP 2017-7926 A
 特許文献3に開示される切断方法では、連続管ガラスG1の内部においてレーザ光Lを照射開始位置SPから照射終了位置EPまで一方向に走査する。このため、第一クラック進展領域C2aと、第二クラック進展領域C2bとの進展度合いが異なり(第一クラック進展領域C2aの方が早く進展する)、図15に示すように、照射開始位置SP側から進行する第一クラック進展領域C2aと、照射終了位置EP側から進行する第二クラック進展領域C2bとが合流位置CPにおいて一致しない場合があった。したがって、この方法では、連続管ガラスG1の切断面に、各クラック進展領域C2a,C2bの不一致による凹凸(段差)が生じることとなり、製造される管ガラスの端面品位の低下を招くおそれがあった。 In the cutting method disclosed in Patent Document 3, the laser beam L is scanned in one direction from the irradiation start position SP to the irradiation end position EP inside the continuous tube glass G1. For this reason, the first crack progress region C2a and the second crack progress region C2b have different degrees of progress (the first crack progress region C2a progresses faster), and as shown in FIG. In some cases, the first crack progress region C2a that progresses from the position 2 and the second crack progress region C2b that progresses from the irradiation end position EP side do not match at the merge position CP. Therefore, in this method, irregularities (steps) due to mismatch between the crack propagation regions C2a and C2b occur on the cut surface of the continuous tube glass G1, and there is a possibility that the end surface quality of the manufactured tube glass is deteriorated. .
 本発明は上記の事情に鑑みてなされたものであり、切断工程における管ガラスの切断面の品位を向上させることを技術的課題とする。 This invention is made | formed in view of said situation, and makes it a technical subject to improve the quality of the cut surface of the tube glass in a cutting process.
 本発明は上記の課題を解決するためのものであり、切断工程を備える、管ガラスの製造方法において、前記切断工程は、前記管ガラスの内部に焦点を合わせてレーザ光を照射開始位置から走査し、多光子吸収によるクラックを形成するレーザ照射工程と、前記クラックが前記管ガラスの円周方向に進展するように前記管ガラスに応力を付与する応力付与工程と、を備え、前記レーザ光は、第一レーザ光と、第二レーザ光とを含み、前記レーザ照射工程では、前記第一レーザ光と前記第二レーザ光とを前記照射開始位置から相互に離れるように走査することにより、前記第一レーザ光により形成される前記クラックと、前記第二レーザ光により形成される前記クラックとを、前記管ガラスの円周方向において相反する方向に進展させることを特徴とする。 The present invention is for solving the above-described problem, and includes a cutting step. In the method for manufacturing a tube glass, the cutting step focuses on the inside of the tube glass and scans the laser beam from the irradiation start position. And a laser irradiation step for forming a crack due to multiphoton absorption, and a stress applying step for applying a stress to the tube glass so that the crack propagates in a circumferential direction of the tube glass. The first laser beam and the second laser beam, and in the laser irradiation step, the first laser beam and the second laser beam are scanned away from the irradiation start position, Causing the crack formed by the first laser beam and the crack formed by the second laser beam to propagate in opposite directions in the circumferential direction of the tube glass. And butterflies.
 このように、本方法では、レーザ照射工程において、第一レーザ光と第二レーザ光とを相互に離れる二方向に走査する。これにより、第一レーザ光の照射終了位置側から進展するクラックと、第二レーザ光の照射終了位置側から進展するクラックとの進展度合いが均等となる。その結果、管ガラスの長手方向における位置ずれを生じさせることなく、合流位置で一致させることができる。したがって、クラックの不一致による切断不良の発生を抑制し、管ガラスの切断面を高品位にできる。 Thus, in this method, the first laser beam and the second laser beam are scanned in two directions away from each other in the laser irradiation step. Thereby, the progress degree of the crack which progresses from the irradiation end position side of the first laser beam and the crack which progresses from the irradiation end position side of the second laser beam becomes equal. As a result, it is possible to make them coincide at the joining position without causing a positional shift in the longitudinal direction of the tube glass. Therefore, it is possible to suppress the occurrence of defective cutting due to crack mismatch and to make the cut surface of the tube glass high quality.
 上記の製造方法において、前記レーザ照射工程では、前記第一レーザ光の前記焦点と前記第二レーザ光の前記焦点とが前記照射開始位置で重なることが望ましい。また、前記レーザ照射工程では、前記第一レーザ光と前記第二レーザ光とを、前記管ガラスの中心軸線に対して対称となるように走査することが望ましい。 In the above manufacturing method, it is desirable that in the laser irradiation step, the focal point of the first laser beam and the focal point of the second laser beam overlap at the irradiation start position. In the laser irradiation step, it is desirable that the first laser beam and the second laser beam are scanned so as to be symmetric with respect to the central axis of the tube glass.
 本発明は上記の課題を解決するためのものであり、端面にレーザ照射痕を有する管ガラスであって、前記レーザ照射痕の最大幅が10μm以上150μm以下であることを特徴とする。 The present invention is to solve the above-mentioned problems, and is a tube glass having a laser irradiation trace on an end face, wherein the maximum width of the laser irradiation trace is 10 μm or more and 150 μm or less.
 本発明は上記の課題を解決するためのものであり、端面にレーザ照射痕を有する管ガラスであって、前記レーザ照射痕の最大深さが50μm以上500μm以下であることを特徴とする。 The present invention is for solving the above-mentioned problems, characterized in that it is a tube glass having a laser irradiation trace on its end face, and the maximum depth of the laser irradiation trace is 50 μm or more and 500 μm or less.
 本発明は上記の課題を解決するためのものであり、端面にレーザ切断面を有する管ガラスであって、前記切断面の最大段差が500μm以下であることを特徴とする。 The present invention is for solving the above-mentioned problems, characterized in that it is a tube glass having a laser cut surface on an end surface, and the maximum step of the cut surface is 500 μm or less.
 本発明によれば、切断工程における管ガラスの切断面の品位を向上させることが可能になる。 According to the present invention, the quality of the cut surface of the tube glass in the cutting process can be improved.
製造装置の側面図である。It is a side view of a manufacturing apparatus. 切断装置の側面図である。It is a side view of a cutting device. 内部クラック領域形成装置の正面図である。It is a front view of an internal crack area | region formation apparatus. レーザ光の照射態様を示す連続管ガラスの斜視図である。It is a perspective view of the continuous tube glass which shows the irradiation aspect of a laser beam. レーザ光の照射態様を示す連続管ガラスの平面図である。It is a top view of the continuous tube glass which shows the irradiation aspect of a laser beam. 照射開始位置からのレーザ光の走査態様を示す連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass which shows the scanning aspect of the laser beam from an irradiation start position. 照射終了位置までレーザ光を照射した場合における連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass at the time of irradiating a laser beam to the irradiation end position. クラックが進展する過程を示す連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass which shows the process in which a crack progresses. クラックが進展する過程を示す連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass which shows the process in which a crack progresses. 図9のX-X線断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 切断工程終了時における連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass at the time of completion | finish of a cutting process. 管ガラスの製造方法に係る他の例を示す連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass which shows the other example which concerns on the manufacturing method of tube glass. 管ガラスの従来の製造方法を示す連続管ガラスの斜視図である。It is a perspective view of the continuous tube glass which shows the conventional manufacturing method of tube glass. 管ガラスの従来の製造方法を示す連続管ガラスの断面図である。It is sectional drawing of the continuous tube glass which shows the conventional manufacturing method of tube glass. 図14のXV-XV線断面図である。It is the XV-XV sectional view taken on the line of FIG.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図11は、本発明に係る管ガラスの製造方法及び製造装置の一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 11 show an embodiment of a method and apparatus for producing tube glass according to the present invention.
 図1に示すように、製造装置1は、ダンナー法によって連続管ガラスG1を成形し、この連続管ガラスG1を切断して所定長さの管ガラスG2を製造する。 As shown in FIG. 1, the manufacturing apparatus 1 forms a continuous tube glass G1 by the Danner method, and cuts the continuous tube glass G1 to manufacture a tube glass G2 having a predetermined length.
 製造装置1は、ガラス溶融炉2と、スリーブ3と、スリーブ3を回転駆動する駆動装置4と、スリーブ3を収容するマッフル炉5と、アニーラ6と、連続管ガラスG1を管引き成形する管引き装置7と、連続管ガラスG1を切断する切断装置8と、連続管ガラスG1を切断して得た管ガラスG2を搬送する搬送装置9とを主に備える。 The manufacturing apparatus 1 includes a glass melting furnace 2, a sleeve 3, a driving device 4 that rotationally drives the sleeve 3, a muffle furnace 5 that accommodates the sleeve 3, an annealer 6, and a tube for drawing a continuous tube glass G <b> 1. It mainly includes a drawing device 7, a cutting device 8 for cutting the continuous tube glass G1, and a transport device 9 for transporting the tube glass G2 obtained by cutting the continuous tube glass G1.
 なお、本実施形態において、XYZ座標系は固定側の座標系であり、本実施形態では、X軸及びY軸を含む平面を水平面、Z軸に沿った方向を鉛直方向(Z軸の正の側を天、負の側を地)としている。また、xyz座標系は移動側の座標系(連続管ガラスG1上の座標系)であり、固定側のXYZ座標系と同じく、x軸及びy軸を含む平面を水平面、z軸に沿った方向を鉛直方向としている。 In this embodiment, the XYZ coordinate system is a fixed-side coordinate system. In this embodiment, a plane including the X axis and the Y axis is a horizontal plane, and a direction along the Z axis is a vertical direction (a positive Z axis). The side is heaven and the negative side is the ground). The xyz coordinate system is a coordinate system on the moving side (coordinate system on the continuous tube glass G1). Like the XYZ coordinate system on the fixed side, the plane including the x axis and the y axis is a horizontal plane and the direction along the z axis. Is the vertical direction.
 ガラス溶融炉2は、ガラス原料を溶融して溶融ガラスMを生成する。ガラス溶融炉2は、溶融ガラスMを、マッフル炉5内のスリーブ3の上部に供給する。 The glass melting furnace 2 generates molten glass M by melting glass raw materials. The glass melting furnace 2 supplies the molten glass M to the upper part of the sleeve 3 in the muffle furnace 5.
 スリーブ3は耐火物により円筒状に形成される。スリーブ3は部分的にテーパ状をなし、テーパ状部分の小径側端部3aが斜め下方に向くように配置されている。スリーブ3は、シャフト10を介して駆動装置4と連結されている。駆動装置4は、スリーブ3を回転駆動することで、当該スリーブ3上に供給された溶融ガラスMを円筒状に巻回して、小径側端部3aの側から管状に引出し成形する。 The sleeve 3 is formed in a cylindrical shape with a refractory material. The sleeve 3 is partially tapered, and is arranged so that the small diameter side end portion 3a of the tapered portion faces obliquely downward. The sleeve 3 is connected to the drive device 4 via the shaft 10. The driving device 4 rotates the sleeve 3 to wind the molten glass M supplied onto the sleeve 3 into a cylindrical shape, and draws it into a tubular shape from the small diameter side end portion 3a.
 マッフル炉5は、ガラス溶融炉2の下方に配置される。マッフル炉5は耐火物により構成される。そして、スリーブ3は、マッフル炉5内に収容される。アニーラ6は、マッフル炉5の下流側に配置される。アニーラ6は、管状に引出し成形された溶融ガラスMを徐冷する。管状に成形された溶融ガラスMは、アニーラ6を通過することにより、連続管ガラスG1となる。 The muffle furnace 5 is disposed below the glass melting furnace 2. The muffle furnace 5 is composed of a refractory material. The sleeve 3 is accommodated in the muffle furnace 5. The annealer 6 is disposed on the downstream side of the muffle furnace 5. The annealer 6 gradually cools the molten glass M drawn into a tubular shape. The molten glass M formed into a tubular shape becomes a continuous tube glass G1 by passing through the annealer 6.
 管引き装置7は、アニーラ6の下流側に配置される。管引き装置7は、アニーラ6を通過した連続管ガラスG1を一定の速度で牽引し、切断装置8に向けて搬送する。管引き装置7は、図示しない一対の搬送ベルトで連続管ガラスG1の上部と下部とを挟持しつつ下流方向へ牽引して管引きすることで、所定の外径寸法に整えられた連続管ガラスG1を切断装置8に供給する。 The tube drawing device 7 is arranged on the downstream side of the annealer 6. The tube drawing device 7 pulls the continuous tube glass G <b> 1 that has passed through the annealer 6 at a constant speed and conveys it toward the cutting device 8. The tube drawing device 7 is a continuous tube glass adjusted to have a predetermined outer diameter by pulling in a downstream direction while holding the upper and lower portions of the continuous tube glass G1 with a pair of conveying belts (not shown). G1 is supplied to the cutting device 8.
 切断装置8は、連続管ガラスG1を切断して、所定の長さ寸法を有する管ガラスG2を形成する。なお、本実施形態における管ガラスG2の厚みは、例えば0.5~2.0mmとされるが、この範囲に限定されるものではない。 The cutting device 8 cuts the continuous tube glass G1 to form a tube glass G2 having a predetermined length dimension. The thickness of the tube glass G2 in this embodiment is, for example, 0.5 to 2.0 mm, but is not limited to this range.
 図2に示すように、切断装置8は、内部クラック領域形成装置11と、クラック進展装置12とを備える。内部クラック領域形成装置11は、連続管ガラスG1の円周方向の一部に、後述する図6に示すような一又は複数のクラックを含む内部クラック領域C1a,C1bを形成する。クラック進展装置12は、内部クラック領域C1a,C1b中のクラックが進展するのを助長する応力を連続管ガラスG1に発生させて、当該クラックを連続管ガラスG1の全周にわたって進展させる。 As shown in FIG. 2, the cutting device 8 includes an internal crack region forming device 11 and a crack propagation device 12. The internal crack region forming device 11 forms internal crack regions C1a and C1b including one or a plurality of cracks as shown in FIG. 6 to be described later in a part of the continuous tube glass G1 in the circumferential direction. The crack propagation device 12 generates a stress in the continuous tube glass G1 that promotes the development of cracks in the internal crack regions C1a and C1b, and propagates the crack over the entire circumference of the continuous tube glass G1.
 図2及び図3に示すように、内部クラック領域形成装置11は、レーザ発振器14と、スプリッタ15と、出力調整部16a,16bと、スキャナ17a,17bとを備える。 2 and 3, the internal crack region forming apparatus 11 includes a laser oscillator 14, a splitter 15, output adjustment units 16a and 16b, and scanners 17a and 17b.
 レーザ発振器14は、所定のパルス幅を有するレーザ光L(例えばピコ秒パルスレーザ光又はサブピコ秒パルスレーザ光)をスプリッタ15に向かって放射する。本実施形態において、レーザ発振器14は、例えばグリーンレーザ光を放出するが、レーザ光Lの種別はこれに限定されない。 The laser oscillator 14 emits laser light L (for example, picosecond pulse laser light or sub-picosecond pulse laser light) having a predetermined pulse width toward the splitter 15. In the present embodiment, the laser oscillator 14 emits, for example, green laser light, but the type of the laser light L is not limited to this.
 スプリッタ15は、内蔵するミラーにより、レーザ発振器14からのレーザ光Lを、第一レーザ光L1及び第二レーザ光L2に分割する。 The splitter 15 splits the laser beam L from the laser oscillator 14 into a first laser beam L1 and a second laser beam L2 by a built-in mirror.
 出力調整部16a,16bは、第一レーザ光L1の出力を調整する第一出力調整部16aと、第二レーザ光L2の出力を調整する第二出力調整部16bとを含む。各出力調整部16a,16bは、例えばアッテネータ(光減衰器)により構成される。第一出力調整部16aと第二出力調整部16bは、第一レーザ光L1と第二レーザ光L2とが同じ出力条件となるように、スプリッタ15から入射した各レーザ光L1,L2を調整する。 The output adjusters 16a and 16b include a first output adjuster 16a that adjusts the output of the first laser beam L1, and a second output adjuster 16b that adjusts the output of the second laser beam L2. Each output adjustment part 16a, 16b is comprised by the attenuator (optical attenuator), for example. The first output adjustment unit 16a and the second output adjustment unit 16b adjust the laser beams L1 and L2 incident from the splitter 15 so that the first laser beam L1 and the second laser beam L2 have the same output condition. .
 スキャナ17a,17bは、第一レーザ光L1を走査する第一スキャナ17aと、第二レーザ光L2を走査する第二スキャナ17bとを含む。各スキャナ17a,17bは、スプリッタ15及び各出力調整部16a,16bを経由して入射した各レーザ光L1,L2を連続管ガラスG1に対して走査する。各スキャナ17a,17bは、例えばガルバノスキャナにより構成されるが、この構成に限定されるものではない。各スキャナ17a,17bは、例えばボイスコイルモータ(VCM)等のアクチュエータにより、各レーザ光L1,L2を連続管ガラスG1の円周方向に沿って広範囲に走査できる。 The scanners 17a and 17b include a first scanner 17a that scans the first laser light L1 and a second scanner 17b that scans the second laser light L2. The scanners 17a and 17b scan the continuous tube glass G1 with the laser beams L1 and L2 incident via the splitter 15 and the output adjustment units 16a and 16b. Each of the scanners 17a and 17b is configured by, for example, a galvano scanner, but is not limited to this configuration. Each scanner 17a, 17b can scan each laser beam L1, L2 over a wide range along the circumferential direction of the continuous tube glass G1 by an actuator such as a voice coil motor (VCM).
 図2に示すように、クラック進展装置12は、引張り力付与部18と、曲げ力付与部19とを備える。引張り力付与部18は、連続管ガラスG1の中心軸線X1に沿った向きに引張り力f1を付与する。曲げ力付与部19は、連続管ガラスG1の中心軸線X1が所定の曲率で湾曲するように、連続管ガラスG1に曲げ力f2を付与する。 As shown in FIG. 2, the crack propagation device 12 includes a tensile force applying unit 18 and a bending force applying unit 19. The tensile force applying unit 18 applies a tensile force f1 in a direction along the central axis X1 of the continuous tube glass G1. The bending force application unit 19 applies a bending force f2 to the continuous tube glass G1 so that the central axis X1 of the continuous tube glass G1 is curved with a predetermined curvature.
 引張り力付与部18は、把持部20と、スライド駆動部21とを備える。把持部20は、連続管ガラスG1の下流側端部を把持するように構成される。スライド駆動部21は、連続管ガラスG1の中心軸線X1に沿った向きに把持部20を移動させるためのものである。スライド駆動部21は、連続管ガラスG1と同期して把持部20を移動させることができる。 The tensile force applying unit 18 includes a gripping unit 20 and a slide driving unit 21. The grip 20 is configured to grip the downstream end of the continuous tube glass G1. The slide drive unit 21 is for moving the grip unit 20 in a direction along the central axis X1 of the continuous tube glass G1. The slide drive unit 21 can move the gripping unit 20 in synchronization with the continuous tube glass G1.
 曲げ力付与部19は、連続管ガラスG1の上下方向における上部及び下部を挟持する複数のローラ22を含む。複数のローラ22による連続管ガラスG1の支持(挟持)位置は、連続管ガラスG1の中心軸線X1が下流側に向かうにつれて所定の曲率で湾曲するように設定されている。 The bending force application unit 19 includes a plurality of rollers 22 that sandwich the upper and lower portions of the continuous tube glass G1 in the vertical direction. The position at which the continuous tube glass G1 is supported (clamped) by the plurality of rollers 22 is set so as to bend with a predetermined curvature as the central axis X1 of the continuous tube glass G1 goes downstream.
 支持部13は、連続管ガラスG1の長手方向に沿って所定の間隔で配置される複数のローラ又はローラ対により構成される。支持部13は、アニーラ6から引出された連続管ガラスG1を、搬送方向(X軸方向)の下流側へと案内する。なお、図2では、支持部13の記載を省略している。 The support part 13 is comprised by the some roller or roller pair arrange | positioned at predetermined intervals along the longitudinal direction of the continuous tube glass G1. The support part 13 guides the continuous tube glass G1 drawn out from the annealer 6 to the downstream side in the transport direction (X-axis direction). In FIG. 2, the support 13 is not shown.
 搬送装置9は、ベルトコンベア又はローラコンベアにより構成されるが、この構成に限定されるものではない。搬送装置9は、連続管ガラスG1の搬送方向(X軸方向)と交差する方向(例えばY軸方向)に沿って管ガラスG2を搬送する。 The transport device 9 is configured by a belt conveyor or a roller conveyor, but is not limited to this configuration. The conveyance apparatus 9 conveys the tube glass G2 along the direction (for example, Y-axis direction) crossing the conveyance direction (X-axis direction) of the continuous tube glass G1.
 以下、上記構成の製造装置1を使用して管ガラスG2を製造する方法について説明する。 Hereinafter, a method of manufacturing the tube glass G2 using the manufacturing apparatus 1 having the above-described configuration will be described.
 まず、図1に示すように、ガラス溶融炉2で生成された溶融ガラスMが、マッフル炉5内の、回転駆動されているスリーブ3上に供給される。溶融ガラスMは、スリーブ3により管状に構成された後、アニーラ6で徐冷され、連続管ガラスG1となってアニーラ6から引出される。連続管ガラスG1は、管引き装置7を経由して切断装置8に送られる。その後、切断装置8により、連続管ガラスG1を切断して管ガラスG2を形成する切断工程が実行される。 First, as shown in FIG. 1, the molten glass M generated in the glass melting furnace 2 is supplied onto the sleeve 3 that is rotationally driven in the muffle furnace 5. The molten glass M is formed into a tubular shape by the sleeve 3, and then slowly cooled by the annealer 6, and is drawn out from the annealer 6 as a continuous tube glass G <b> 1. The continuous tube glass G1 is sent to the cutting device 8 via the tube drawing device 7. Then, the cutting process which cut | disconnects the continuous tube glass G1 and forms the tube glass G2 with the cutting device 8 is performed.
 切断工程では、連続管ガラスG1に応力を付与する工程(応力付与工程)が実行される。応力付与工程では、まず連続管ガラスG1の下流側端部が所定位置に到達したときに、引張り力付与部18の把持部20は、当該下流側端部を把持する。その後、スライド駆動部21は、連続管ガラスG1の長手方向の下流側に向けて把持部20を移動させる。これにより、連続管ガラスG1には、その中心軸線X1に沿った向きの引張り力f1が付与される(図2参照)。 In the cutting step, a step of applying stress to the continuous tube glass G1 (stress applying step) is executed. In the stress applying step, first, when the downstream end of the continuous tube glass G1 reaches a predetermined position, the grip 20 of the tensile force applying unit 18 grips the downstream end. Thereafter, the slide drive unit 21 moves the grip unit 20 toward the downstream side in the longitudinal direction of the continuous tube glass G1. Thereby, the continuous tube glass G1 is given a tensile force f1 in a direction along the central axis X1 (see FIG. 2).
 また、連続管ガラスG1は、把持部20の上流側に位置する複数のローラ22間を通過する。このとき、連続管ガラスG1には、曲げ力f2が付与される。連続管ガラスG1は、各レーザ光L1,L2の照射側(図2における上側)が凸となるように、所定の曲率で湾曲する。以上により、連続管ガラスG1には、引張り応力及び曲げ応力が付与される。 Further, the continuous tube glass G1 passes between a plurality of rollers 22 located on the upstream side of the gripping portion 20. At this time, a bending force f2 is applied to the continuous tube glass G1. The continuous tube glass G1 is curved with a predetermined curvature so that the irradiation side (upper side in FIG. 2) of the laser beams L1 and L2 is convex. As described above, tensile stress and bending stress are applied to the continuous tube glass G1.
 上記のように連続管ガラスG1に各応力が付与された状態で、内部クラック領域形成装置11によるレーザ照射工程が実行される。レーザ照射工程では、スプリッタ15は、レーザ発振器14から放出されたレーザ光Lを、第一レーザ光L1及び第二レーザ光L2に分割する。各レーザ光L1,L2は、各出力調整部25a,25bによって、同一の出力条件(パルス幅、出力)に調整された後、各スキャナ17a,17bに入射する。 As described above, the laser irradiation process by the internal crack region forming apparatus 11 is executed in a state where each stress is applied to the continuous tube glass G1. In the laser irradiation step, the splitter 15 divides the laser light L emitted from the laser oscillator 14 into a first laser light L1 and a second laser light L2. The laser beams L1 and L2 are adjusted to the same output condition (pulse width and output) by the output adjusters 25a and 25b, and then enter the scanners 17a and 17b.
 各スキャナ17a,17bは、連続管ガラスG1の内部に設定される照射開始位置SPに焦点F1,F2が合うにように、連続管ガラスG1に向かって各レーザ光L1,L2を照射する。図3に示すように、各レーザ光L1,L2の照射開始位置SPは、連続管ガラスG1の中心軸線X1を通る鉛直方向の中心線Z1上に設定される。 The scanners 17a and 17b irradiate the laser beams L1 and L2 toward the continuous tube glass G1 so that the focal points F1 and F2 are aligned with the irradiation start position SP set inside the continuous tube glass G1. As shown in FIG. 3, the irradiation start positions SP of the laser beams L1 and L2 are set on a vertical center line Z1 passing through the central axis X1 of the continuous tube glass G1.
 各スキャナ17a,17bは、照射開始位置SPにおいて、第一レーザ光L1の焦点F1と、第二レーザ光L2の焦点F2とが一致するか、または各焦点F1,F2の一部同士が重なるように、当該各レーザ光L1,L2を照射する。これに限らず、各焦点F1,F2は、後述する図12に示すように離間した状態で照射され得る。なお、各焦点F1,F2が離間した状態で照射される場合、2点間の距離は小さい方が好ましく、管ガラスG2の全周の長さに対して10%以下であることが好ましい。 Each of the scanners 17a and 17b has a focal point F1 of the first laser beam L1 and a focal point F2 of the second laser beam L2 that coincide with each other or a part of each of the focal points F1 and F2 overlaps at the irradiation start position SP. Are irradiated with the laser beams L1 and L2. Not limited to this, the focal points F1 and F2 can be irradiated in a separated state as shown in FIG. In addition, when it irradiates in the state which each focus F1, F2 spaced apart, the one where the distance between two points is smaller is preferable, and it is preferable that it is 10% or less with respect to the length of the perimeter of the tube glass G2.
 各スキャナ17a,17bは、連続管ガラスG1の内部において、照射開始位置SPから円周方向に離れた位置に設定される照射終了位置EPに向かって各レーザ光L1,L2を走査する。すなわち、図3において、第一スキャナ17aは、照射開始位置SPから反時計回りに沿って第一レーザ光L1を走査し、第二スキャナ17bは、照射開始位置SPから時計回りに沿って第二レーザ光L2を走査する。なお、照射開始位置SPが、後述する図12に示すように離間した状態である場合、第一レーザ光L1は、第二レーザ光L2の照射開始位置SPから円周方向に離れた位置に設定される照射終了位置EPに向かって(反時計回りに沿って)走査され、第二レーザ光L2は、第一レーザ光L1の照射開始位置SPから円周方向に離れた位置に設定される照射終了位置EPに向かって(時計回りに沿って)走査される。 The scanners 17a and 17b scan the laser beams L1 and L2 toward the irradiation end position EP set at a position away from the irradiation start position SP in the circumferential direction inside the continuous tube glass G1. That is, in FIG. 3, the first scanner 17a scans the first laser light L1 along the counterclockwise direction from the irradiation start position SP, and the second scanner 17b performs the second scan along the clockwise direction from the irradiation start position SP. The laser beam L2 is scanned. When the irradiation start position SP is in a separated state as shown in FIG. 12 described later, the first laser light L1 is set at a position away from the irradiation start position SP of the second laser light L2 in the circumferential direction. The second laser beam L2 is scanned toward the irradiation end position EP (counterclockwise), and the second laser beam L2 is set at a position away from the irradiation start position SP of the first laser beam L1 in the circumferential direction. Scanning towards the end position EP (along clockwise).
 図4は、移動する連続管ガラスG1を基準とする座標系(同図に示すxyz座標系)で見た場合における各レーザ光L1,L2の走査軌跡を示す。各スキャナ17a,17bは、連続管ガラスG1の中心軸線X1に直交する仮想断面X2に焦点F1,F2が含まれるように、連続管ガラスG1の円周方向に沿って各レーザ光L1,L2を走査できる。 FIG. 4 shows scanning trajectories of the laser beams L1 and L2 when viewed in a coordinate system based on the moving continuous tube glass G1 (xyz coordinate system shown in FIG. 4). Each of the scanners 17a and 17b emits the laser beams L1 and L2 along the circumferential direction of the continuous tube glass G1 so that the virtual sections X2 perpendicular to the central axis X1 of the continuous tube glass G1 include the focal points F1 and F2. Can scan.
 内部クラック領域形成装置11は、第一スキャナ17aによって第一レーザ光L1の焦点F1を照射開始位置SPから照射終了位置EPへと移動させるとともに、第二スキャナ17bによって第二レーザ光L2の焦点F2を照射開始位置SPから照射終了位置EPへと移動させる。このとき、各スキャナ17a,17bは、第一レーザ光L1の焦点F1と、第二レーザ光L2の焦点F2とを、連続管ガラスG1の円周方向において逆方向に移動させる。 The internal crack region forming apparatus 11 moves the focal point F1 of the first laser light L1 from the irradiation start position SP to the irradiation end position EP by the first scanner 17a, and the focal point F2 of the second laser light L2 by the second scanner 17b. Is moved from the irradiation start position SP to the irradiation end position EP. At this time, each scanner 17a, 17b moves the focal point F1 of the first laser light L1 and the focal point F2 of the second laser light L2 in the opposite directions in the circumferential direction of the continuous tube glass G1.
 図5は、固定側を基準とするXYZ座標系で見た場合における各レーザ光L1,L2の走査軌跡を示す平面図である。同図に示すように、中心軸線X1に沿った搬送方向に沿って、連続管ガラスG1が所定距離dだけ移動する間に、第一レーザ光L1は、中心軸線X1に対して角度θ1をなす方向に沿って照射開始位置SPから照射終了位置EPへと走査される。 FIG. 5 is a plan view showing scanning trajectories of the laser beams L1 and L2 when viewed in the XYZ coordinate system with the fixed side as a reference. As shown in the drawing, the first laser beam L1 forms an angle θ1 with respect to the central axis X1 while the continuous tube glass G1 moves by a predetermined distance d along the transport direction along the central axis X1. Scanning is performed from the irradiation start position SP to the irradiation end position EP along the direction.
 一方、第二レーザ光L2の走査方向は、中心軸線X1に対して第一レーザ光L1の走査方向と対称となるように設定される。すなわち、第二レーザ光L2は、中心軸線X1に対して角度θ2をなす方向に沿って照射開始位置SPから照射終了位置EPへと走査される。第二レーザ光L2の角度θ2は、第一レーザ光L1の角度θ1と等しく設定される。また、第一レーザ光L1の走査速度と、第二レーザ光L2の走査速度についても等しく設定される。このように、第一レーザ光L1及び第二レーザ光L2が中心軸線X1に対してそれぞれ角度θ1、角度θ2をなすように走査されることで、図4に示す仮想断面X2に、各焦点F1,F2が含まれる。 On the other hand, the scanning direction of the second laser light L2 is set to be symmetric with respect to the scanning direction of the first laser light L1 with respect to the central axis X1. That is, the second laser light L2 is scanned from the irradiation start position SP to the irradiation end position EP along a direction that forms an angle θ2 with respect to the central axis X1. The angle θ2 of the second laser light L2 is set equal to the angle θ1 of the first laser light L1. Further, the scanning speed of the first laser beam L1 and the scanning speed of the second laser beam L2 are set to be equal. As described above, the first laser beam L1 and the second laser beam L2 are scanned so as to form an angle θ1 and an angle θ2, respectively, with respect to the central axis X1, so that each focal point F1 is displayed on the virtual cross section X2 shown in FIG. , F2 are included.
 各レーザ光L1,L2を照射した領域には、多光子吸収により、一又は複数のクラックが含まれる内部クラック領域C1a,C1bが形成される。以下、第一レーザ光L1により形成される内部クラック領域C1aを「第一内部クラック領域」といい、第二レーザ光L2により形成される内部クラック領域C1bを「第二内部クラック領域」という。 In the regions irradiated with the laser beams L1 and L2, internal crack regions C1a and C1b including one or more cracks are formed by multiphoton absorption. Hereinafter, the internal crack region C1a formed by the first laser beam L1 is referred to as “first internal crack region”, and the internal crack region C1b formed by the second laser beam L2 is referred to as “second internal crack region”.
 図6に示すように、第一内部クラック領域C1aと第二内部クラック領域C1bは、連続管ガラスG1の円周方向において、照射開始位置SPから相反する方向(逆向き)に進行する。 As shown in FIG. 6, the first internal crack region C1a and the second internal crack region C1b proceed in the opposite direction (reverse direction) from the irradiation start position SP in the circumferential direction of the continuous tube glass G1.
 図7に示すように、各焦点F1,F2が照射終了位置EPまで移動すると、内部クラック領域形成装置11は、各レーザ光L1,L2の照射を終了する。これにより、連続管ガラスG1の内部には、所定長さを有する帯状の第一内部クラック領域C1a及び第二内部クラック領域C1bが一体的に形成される。この場合において、第一内部クラック領域C1aの長さは、第二内部クラック領域C1bの長さと等しくなる。なお、本明細書において、一体的に形成されたクラック領域の符号もC1と記載する場合がある。 As shown in FIG. 7, when the focal points F1 and F2 move to the irradiation end position EP, the internal crack region forming apparatus 11 ends the irradiation of the laser beams L1 and L2. As a result, a strip-shaped first internal crack region C1a and second internal crack region C1b having a predetermined length are integrally formed inside the continuous tube glass G1. In this case, the length of the first internal crack region C1a is equal to the length of the second internal crack region C1b. In the present specification, the code of the integrally formed crack region may also be described as C1.
 さらに、切断工程では、連続管ガラスG1の内部に作用する応力の作用により、内部クラック領域C1a,C1b中のクラックが円周方向に進展する。以下、第一内部クラック領域C1aから進展するクラックの領域C2aを「第一クラック進展領域」といい、第二内部クラック領域C1bから進展するクラックの領域C2bを「第二クラック進展領域」という。 Furthermore, in the cutting step, the cracks in the internal crack regions C1a and C1b develop in the circumferential direction due to the action of stress acting on the inside of the continuous tube glass G1. Hereinafter, the crack region C2a that progresses from the first internal crack region C1a is referred to as a “first crack progress region”, and the crack region C2b that progresses from the second internal crack region C1b is referred to as a “second crack progress region”.
 図8に示すように、各クラック進展領域C2a,C2bは、各内部クラック領域C1a,C1bの終端部(照射終了位置EPに相当する位置)から互いに遠ざかる向きに拡大を開始する。図9に示すように、各クラック進展領域C2a,C2bは、その後も円周方向に沿って同じ速度で拡大し続ける。最終的に、各クラック進展領域C2a,C2bは、所定の合流位置CP(中心線Z1上であって照射開始位置SPとは半径方向において反対の位置)に、同時に到達する。このとき、図10に示すように、合流位置CPにおいて、第一クラック進展領域C2aと、第二クラック進展領域C2bとは、連続管ガラスG1の長手方向における位置ずれを生じることなく、一致する。 As shown in FIG. 8, the crack progress regions C2a and C2b start to expand in a direction away from the end portions (positions corresponding to the irradiation end position EP) of the internal crack regions C1a and C1b. As shown in FIG. 9, the crack progress regions C2a and C2b continue to expand at the same speed along the circumferential direction thereafter. Finally, the crack progress regions C2a and C2b simultaneously reach a predetermined joining position CP (a position on the center line Z1 and opposite to the irradiation start position SP in the radial direction). At this time, as shown in FIG. 10, at the merge position CP, the first crack progress region C2a and the second crack progress region C2b coincide with each other without causing a positional shift in the longitudinal direction of the continuous tube glass G1.
 図11に示すように、第一クラック進展領域C2aと第二クラック進展領域C2bとが繋がり、連結クラックC2となると、連続管ガラスG1が切断される。この切断により、所定長さを有する管ガラスG2が形成される。製造された管ガラスG2は、搬送装置9によって所定の方向に順次搬送される(搬送工程)。 As shown in FIG. 11, when the first crack progress region C2a and the second crack progress region C2b are connected to form a connected crack C2, the continuous tube glass G1 is cut. By this cutting, a tube glass G2 having a predetermined length is formed. The manufactured tube glass G2 is sequentially transported in a predetermined direction by the transport device 9 (transport process).
 以上説明した本実施形態に係る管ガラスG2の製造方法によれば、レーザ照射工程において、第一レーザ光L1と第二レーザ光L2とを相互に離れる二方向に対称的に走査することで、第一クラック進展領域C2aと、第二クラック進展領域C2bとを、合流位置CPで、位置ずれを生ずることなく一致させることができる。これにより、切断後の管ガラスG2の端面を高品位にできる。具体的には、管ガラスG2の端面の最大凹凸(最大段差)を、500μm以下にすることができる。 According to the method for manufacturing the tube glass G2 according to the present embodiment described above, in the laser irradiation step, the first laser light L1 and the second laser light L2 are scanned symmetrically in two directions away from each other. The first crack progress region C2a and the second crack progress region C2b can be made to coincide at the joining position CP without causing a positional shift. Thereby, the end surface of the tube glass G2 after a cutting | disconnection can be made high quality. Specifically, the maximum unevenness (maximum step) on the end face of the tube glass G2 can be 500 μm or less.
 また、製造された管ガラスG2の端面には、レーザ照射工程において照射開始位置SPに各レーザ光L1,L2の焦点F1,F2が重なるように照射されたことによって、レーザ照射痕IM(図11参照)が残存することとなる。 Further, the end surface of the manufactured tube glass G2 is irradiated so that the focal points F1 and F2 of the laser beams L1 and L2 overlap each other at the irradiation start position SP in the laser irradiation step. Reference) will remain.
 レーザ照射痕IMの最大幅は、10μm以上150μm以下であることが好ましく、より好ましくは、30μm以上100μm以下である。また、レーザ照射痕IMの最大深さは、50μm以上500μm以下であることが好ましく、より好ましくは、50μm以上300μm以下である。上記の幅、及び深さであれば、レーザ照射痕以外の部分(クラック進展領域等)における切断面もきれいになる。 The maximum width of the laser irradiation mark IM is preferably 10 μm or more and 150 μm or less, and more preferably 30 μm or more and 100 μm or less. Further, the maximum depth of the laser irradiation mark IM is preferably 50 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less. If it is said width and depth, the cut surface in parts other than a laser irradiation trace (crack progress area etc.) will also become beautiful.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In addition, this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect. The present invention can be variously modified without departing from the gist of the present invention.
 上記の実施形態では、照射開始位置SPにおいて、各焦点F1,F2が少なくとも重なるように各レーザ光L1,L2を照射する例を示したが、本発明はこの構成に限定されるものではない。例えば図12に示すように、第一レーザ光L1の照射開始位置SPと、第二レーザ光L2の照射開始位置SPとを離間させて設定してもよい。この場合において、中心線Z1から第一レーザ光L1の照射開始位置SPまでの距離と、中心線Z1から第二レーザ光L2の照射開始位置SPまでの距離とが、相等しく設定されることが望ましい。 In the above embodiment, the example in which the laser beams L1 and L2 are irradiated so that the focal points F1 and F2 overlap at the irradiation start position SP has been described, but the present invention is not limited to this configuration. For example, as shown in FIG. 12, the irradiation start position SP of the first laser beam L1 and the irradiation start position SP of the second laser beam L2 may be set apart from each other. In this case, the distance from the center line Z1 to the irradiation start position SP of the first laser beam L1 and the distance from the center line Z1 to the irradiation start position SP of the second laser beam L2 may be set to be equal. desirable.
 上記の実施形態では、連続管ガラスG1を切断して管ガラスG2を製造する方法を例示したが、これに限らず、本発明は、所定の長さの管ガラスを切断して、複数の管ガラスを製造する場合にも適用できる。 In the above embodiment, the method of manufacturing the tube glass G2 by cutting the continuous tube glass G1 is exemplified. However, the present invention is not limited to this, and the present invention cuts a tube glass of a predetermined length to obtain a plurality of tubes. It is applicable also when manufacturing glass.
 F1     焦点
 F2     焦点
 G1     連続管ガラス
 G2     管ガラス
 IM     レーザ照射痕
 L1     第一レーザ光
 L2     第二レーザ光
 X1     連続管ガラスの中心線
 SP     照射開始位置
 EP     照射終了位置
F1 focus F2 focus G1 continuous tube glass G2 tube glass IM laser irradiation trace L1 first laser light L2 second laser light X1 center line of continuous tube glass SP irradiation start position EP irradiation end position

Claims (6)

  1.  切断工程を備える、管ガラスの製造方法において、
     前記切断工程は、前記管ガラスの内部に焦点を合わせてレーザ光を照射開始位置から走査し、多光子吸収によるクラックを形成するレーザ照射工程と、前記クラックが前記管ガラスの円周方向に進展するように前記管ガラスに応力を付与する応力付与工程と、を備え、
     前記レーザ光は、第一レーザ光と、第二レーザ光とを含み、
     前記レーザ照射工程では、前記第一レーザ光と前記第二レーザ光とを前記照射開始位置から相互に離れるように走査することにより、前記第一レーザ光により形成される前記クラックと、前記第二レーザ光により形成される前記クラックとを、前記管ガラスの円周方向において相反する方向に進展させることを特徴とする管ガラスの製造方法。
    In the manufacturing method of a tube glass provided with a cutting process,
    The cutting step focuses on the inside of the tube glass, scans the laser beam from the irradiation start position, and forms a crack due to multiphoton absorption, and the crack propagates in the circumferential direction of the tube glass. And a stress applying step for applying stress to the tube glass,
    The laser beam includes a first laser beam and a second laser beam,
    In the laser irradiation step, the first laser light and the second laser light are scanned so as to be away from the irradiation start position, whereby the crack formed by the first laser light and the second laser light are scanned. A method for producing a tube glass, characterized by causing the cracks formed by laser light to propagate in opposite directions in the circumferential direction of the tube glass.
  2.  前記レーザ照射工程では、前記第一レーザ光の前記焦点と前記第二レーザ光の前記焦点とが前記照射開始位置で重なる請求項1に記載の管ガラスの製造方法。 The tube glass manufacturing method according to claim 1, wherein, in the laser irradiation step, the focal point of the first laser beam and the focal point of the second laser beam overlap at the irradiation start position.
  3.  前記レーザ照射工程では、前記第一レーザ光と前記第二レーザ光とを、前記管ガラスの中心軸線に対して対称となるように走査する請求項1又は2に記載の管ガラスの製造方法。 The method for producing a tube glass according to claim 1 or 2, wherein in the laser irradiation step, the first laser beam and the second laser beam are scanned so as to be symmetrical with respect to a central axis of the tube glass.
  4.  端面にレーザ照射痕を有する管ガラスであって、
     前記レーザ照射痕の最大幅が10μm以上150μm以下であることを特徴とする管ガラス。
    A tube glass having a laser irradiation mark on its end face,
    A tube glass, wherein the laser irradiation mark has a maximum width of 10 μm to 150 μm.
  5.  端面にレーザ照射痕を有する管ガラスであって、
     前記レーザ照射痕の最大深さが50μm以上500μm以下であることを特徴とする管ガラス。
    A tube glass having a laser irradiation mark on its end face,
    A tube glass, wherein the laser irradiation mark has a maximum depth of 50 μm or more and 500 μm or less.
  6.  端面にレーザ切断面を有する管ガラスであって、
     前記切断面の最大段差が500μm以下であることを特徴とする管ガラス。
    A tube glass having a laser cut surface at its end face,
    The tube glass, wherein the cut surface has a maximum step of 500 μm or less.
PCT/JP2019/000655 2018-03-12 2019-01-11 Method of manufacturing tube glass and tube glass WO2019176255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-044366 2018-03-12
JP2018044366A JP2019156670A (en) 2018-03-12 2018-03-12 Manufacturing method of tube glass, and tube glass

Publications (1)

Publication Number Publication Date
WO2019176255A1 true WO2019176255A1 (en) 2019-09-19

Family

ID=67906616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000655 WO2019176255A1 (en) 2018-03-12 2019-01-11 Method of manufacturing tube glass and tube glass

Country Status (2)

Country Link
JP (1) JP2019156670A (en)
WO (1) WO2019176255A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387558A (en) * 2021-06-30 2021-09-14 杭州富通通信技术股份有限公司 Processing technology of prefabricated rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171124A (en) * 1997-07-07 1999-03-16 Schott Ruhrglas Gmbh Production of breaking point in glass article
WO2016208248A1 (en) * 2015-06-25 2016-12-29 日本電気硝子株式会社 Tube glass cutting method and cutting device, and tube glass product manufacturing method
WO2017068819A1 (en) * 2015-10-20 2017-04-27 日本電気硝子株式会社 Method for cutting and device for cutting tube glass, and method for manufacturing tube glass product
WO2017073118A1 (en) * 2015-10-30 2017-05-04 日本電気硝子株式会社 Method and device for cutting tubular glass, and method for manufacturing tubular glass
JP2017529311A (en) * 2014-07-11 2017-10-05 コーニング インコーポレイテッド Glass cutting system and method by creating perforations with a pulsed laser in a glass article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171124A (en) * 1997-07-07 1999-03-16 Schott Ruhrglas Gmbh Production of breaking point in glass article
JP2017529311A (en) * 2014-07-11 2017-10-05 コーニング インコーポレイテッド Glass cutting system and method by creating perforations with a pulsed laser in a glass article
WO2016208248A1 (en) * 2015-06-25 2016-12-29 日本電気硝子株式会社 Tube glass cutting method and cutting device, and tube glass product manufacturing method
WO2017068819A1 (en) * 2015-10-20 2017-04-27 日本電気硝子株式会社 Method for cutting and device for cutting tube glass, and method for manufacturing tube glass product
WO2017073118A1 (en) * 2015-10-30 2017-05-04 日本電気硝子株式会社 Method and device for cutting tubular glass, and method for manufacturing tubular glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387558A (en) * 2021-06-30 2021-09-14 杭州富通通信技术股份有限公司 Processing technology of prefabricated rod
CN113387558B (en) * 2021-06-30 2022-09-23 杭州富通通信技术股份有限公司 Processing technology of prefabricated rod

Also Published As

Publication number Publication date
JP2019156670A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6757491B2 (en) Tube glass cutting method and cutting device, and tube glass product manufacturing method
WO2017073118A1 (en) Method and device for cutting tubular glass, and method for manufacturing tubular glass
US8539795B2 (en) Methods for cutting a fragile material
KR101751368B1 (en) Method for cutting glass film
EP2429961B1 (en) Methods for cutting a fragile material
TWI380963B (en) Method for processing brittle material substrates
TWI375602B (en)
TWI675011B (en) Methods of separating a glass web
TWI518044B (en) Scribing method of brittle material substrate
TW200950913A (en) Method for processing fragile material substrate
WO2019176255A1 (en) Method of manufacturing tube glass and tube glass
US10508052B2 (en) Tube glass cutting method and cutting device, and tube glass product manufacturing method
TWI527650B (en) Laser processing apparatus
JP2018123041A (en) Method and apparatus for manufacturing glass tube
JP6673061B2 (en) Method for manufacturing glass articles
WO2016208248A1 (en) Tube glass cutting method and cutting device, and tube glass product manufacturing method
JP2019189472A (en) Method for producing tube glass and tube glass
JP5825551B2 (en) Glass plate cutting method and glass plate cutting device
JP7095471B2 (en) Tubular glass cutting method
JP2019059653A (en) Production method of glass substrate
JP2020029379A (en) Cutting apparatus of tubular glass, and cutting method of tubular glass
US20220081343A1 (en) Method and apparatus for cutting glass sheets
WO2013051424A1 (en) Device for laser-machining glass substrate
JP2013075817A (en) Method of cutting glass plate
CN109175714A (en) A kind of laser rotary-cut mark method on hard brittle material surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767721

Country of ref document: EP

Kind code of ref document: A1