WO2019174645A1 - 光学镜头、摄像模组及其组装方法 - Google Patents

光学镜头、摄像模组及其组装方法 Download PDF

Info

Publication number
WO2019174645A1
WO2019174645A1 PCT/CN2019/078478 CN2019078478W WO2019174645A1 WO 2019174645 A1 WO2019174645 A1 WO 2019174645A1 CN 2019078478 W CN2019078478 W CN 2019078478W WO 2019174645 A1 WO2019174645 A1 WO 2019174645A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
glue
component
gap
Prior art date
Application number
PCT/CN2019/078478
Other languages
English (en)
French (fr)
Inventor
褚水佳
蒋恒
刘林
向恩来
周凯伦
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820365043.3U external-priority patent/CN208334747U/zh
Priority claimed from CN201810220892.4A external-priority patent/CN110275264B/zh
Priority claimed from CN201810220286.2A external-priority patent/CN110275261B/zh
Priority claimed from CN201810220657.7A external-priority patent/CN110275263B/zh
Priority claimed from CN201820366205.5U external-priority patent/CN208367291U/zh
Priority claimed from CN201820366692.5U external-priority patent/CN208367292U/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to US16/979,688 priority Critical patent/US11899268B2/en
Priority to EP19766724.9A priority patent/EP3767358A4/en
Publication of WO2019174645A1 publication Critical patent/WO2019174645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the present invention relates to the field of optical imaging technology, and in particular, to an optical lens, a camera module, and an assembly method thereof.
  • the factors affecting the lens resolution force are derived from errors in components and their assembly, errors in the thickness of the lens spacer elements, errors in the assembly fit of the lenses, and changes in the refractive index of the lens material.
  • the error of each component and its assembly includes the optical surface thickness of each lens unit, the optical height of the lens, the optical surface type, the radius of curvature, the eccentricity of the lens and the surface, the tilt of the optical surface of the lens, etc.
  • the size depends on the accuracy of the mold and the ability to control the forming accuracy.
  • the error in the thickness of the lens spacer depends on the processing accuracy of the component.
  • the tolerance of the assembly fit of each lens depends on the dimensional tolerances of the components being assembled and the assembly accuracy of the lens.
  • the error introduced by the change in the refractive index of the lens material depends on the stability of the material and the batch consistency.
  • the existing resolution solution is to compensate for the tolerance of the components with high relative sensitivity and the lens rotation to improve the resolution.
  • the tolerance is strict. For example, some sensitive lenses are 1um.
  • the lens eccentricity will bring the 9' image plane tilt, which makes the lens processing and assembly more and more difficult.
  • the process assembly index (CPK) of the lens assembly is low and fluctuates, resulting in the defect rate. high.
  • each structural member such as the sensor chip mounting, motor lens locking process, etc.
  • the assembly process of each structural member may cause the sensor chip to tilt, and multiple tilt stacks may cause the imaging module.
  • the resolution of the module cannot reach the established specifications, which in turn leads to a low yield of the module factory.
  • the module factory compensates for the tilt of the photosensitive chip, the relative offset and tilt of the optical axis of the lens and the optical axis of the photosensitive chip by an Active Alignment process when assembling the imaging lens and the photosensitive module.
  • this process has limited compensation capabilities. Since the aberrations affecting the resolution force are derived from the ability of the optical system (especially the optical imaging lens) itself, when the resolution of the optical imaging lens itself is insufficient, the active calibration process of the existing photosensitive module is difficult to compensate.
  • the applicant proposes an adjustment and determination of the relative positions of the upper and lower sub-lens based on the active calibration process, and then bonding the upper and lower sub-lenses together according to the determined relative positions, thereby producing complete optics.
  • the method of assembling the lens or camera module enhances the Process Capability Index (CPK) of mass-produced optical lenses or camera modules; it enables individual components of materials such as sub-lenses or photosensitive components used to assemble optical lenses or camera modules. The requirements for precision and assembly accuracy are loosened, which reduces the overall cost of the optical imaging lens and camera module.
  • CPK Process Capability Index
  • the lens barrel is directly connected and supports.
  • the upper sub-lens includes an upper barrel 11 and an upper lens 12, and the upper barrel 11 and the upper lens 12 are closely fitted, which is an ideal condition without assembly tolerance.
  • the lower sub-lens includes a lower barrel 11 and a lower lens 12.
  • FIG. 2 is a partial cross-sectional view showing an example of an optical lens manufactured based on an active calibration process in the actual case where the upper sub-lens has assembly tolerances.
  • the upper surface of the upper lens 12 is not closely adhered to the upper lens barrel 11, and there is a gap 50 caused by assembly tolerance therebetween, which makes the upper sub-lens and the lower sub-lens after active calibration.
  • the filling space between the rubber material 40 becomes large, which not only affects the coating of the rubber material, but also makes the rubber material layer thicker relative to the ideal situation shown in FIG. The thicker the glue, the greater the amount of variation that can result.
  • the lens barrel and the lower sub-lens of the upper sub-lens are bonded by a glue material, and the glue material forms a force on the lens barrel during the curing deformation of the glue material, and the force will cause undesired deformation of the lens barrel.
  • This causes the shape and position of the lens mounted in the lens barrel to change.
  • the thicker the glue the greater the above-mentioned undesirable deformation. This results in a deviation of the actual optical system lens position from the optical system's lens position determined by active calibration after the glue is fully cured, which may result in an unsatisfactory imaging quality.
  • the expansion coefficient of the rubber material is fixed, but the rubber material disposed between the upper and lower sub-lens is often uneven (for example, the overflow of the upper and lower lens barrels causes the thickness of the rubber material to be uneven), which is easy. This causes the lens barrel to be deformed by uneven force, which may cause lens variation or may cause positional shift of the upper sub-lens. All of the above problems may result in reduced image quality.
  • the present invention is directed to providing a solution that overcomes at least one of the deficiencies of the prior art.
  • an optical lens comprising: a first lens component including a first lens barrel and at least one first lens mounted in the first lens barrel; and a second lens component A second lens barrel and at least one second lens mounted in the second lens barrel, and the at least one second lens and the at least one first lens together form an imageable optical system; and a glue material, It bonds the first lens component and the second lens component together, and at least a portion of the glue is interposed between the second lens barrel and the first lens, or Between the first barrel and the second lens.
  • a first gap and a second gap are formed between the first lens component and the second lens component, the first gap being closer to an outer side of the optical lens than the second gap;
  • the rubber material comprises a first glue material located in the first gap and a second glue material located in the second gap; and the arrangement position and material of the first glue material and the second glue material are adapted to The first glue and the second glue are sequentially cured at different times.
  • the first rubber material and the second rubber material have different materials, and the second rubber material provides adhesion after curing is greater than the adhesion provided after the first rubber material is cured. force.
  • the first glue is a glue that is cured by light.
  • the second glue is a glue that is cured by heat curing, moisture curing, anaerobic curing, or oxidation.
  • the first glue is a UV glue or a UV thermoset glue.
  • the second glue is a thermoset glue or a UV thermoset glue.
  • the first rubber material and the second rubber material are the same material in a liquid state, and the first rubber material and the second rubber material form different microstructures after curing.
  • the material is such that the adhesion provided by the second glue after curing is greater than the adhesion provided after the first glue is cured.
  • the first glue and the second glue are both UV thermosets.
  • the first glue and the second glue are not in contact with each other.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size in the direction of the optical axis of the optical lens of 30-100 ⁇ m.
  • a difference in size of the second gap from the first gap in an optical axis direction along the optical lens is less than a threshold.
  • the first gap is between an end surface of the first barrel and an end surface of the second barrel.
  • the second gap is between an end face of the first barrel and a non-optical face of a second lens closest to the first barrel, and the second closest to the first barrel
  • the non-optical face of the lens has a roughened surface; or the second gap is between the end face of the second barrel and the non-optical face of the first lens closest to the second barrel, and the most The non-optical face of the first lens adjacent the second barrel has a roughened surface.
  • the glue material is used to support the first lens component and the second lens component after curing to maintain a relative position of the first lens component and the second lens component at The relative position determined by active calibration.
  • the end surface of the second barrel includes a flat surface
  • the first gap is located between the flat surface and an end surface of the first barrel
  • the second gap is located at the flat surface
  • the face is between the non-optical face of the first lens.
  • a third gap is formed between an outer side surface of the first lens that bonds the second lens component and an inner side surface of the first lens barrel, the first lens of the second lens component and the first A lens barrel is fixed to each other by a third glue filled in the third gap.
  • the second gap has a second opening toward an optical axis of the optical lens, and a size of the second opening in a direction along the optical axis is greater than an average of the second gap size.
  • the first gap has a first opening toward an outer side of the optical lens, and a size of the first opening in a direction along the optical axis is larger than an average size of the first gap .
  • the first lens is closer to the front end of the optical lens than the second lens.
  • the end face of the second lens bonded to the first barrel has an annular groove between the second gap and the optical face of the second lens.
  • an end face of the second lens bonded to the first barrel has an annular boss, the second gap being located between the annular boss and the first barrel.
  • an end face of the first lens bonded to the second barrel has an annular boss, the second gap being located between the annular boss and the second barrel.
  • the cross-sectional shape of the boss is trapezoidal or rectangular.
  • a camera module comprising the optical lens provided by the foregoing embodiments.
  • an optical lens assembly method comprising: pre-positioning the first lens component and the second lens component, wherein the first lens component comprises a first lens barrel And at least one first lens mounted in the first barrel, the second lens component including a second barrel and at least one second lens mounted in the second barrel, the predetermined position The at least one second lens and the at least one first lens together form an imageable optical system; adjusting and determining a relative position of the first lens component and the second lens component based on active calibration; Bonding the first lens component and the second lens component, wherein at least a portion of the glue is interposed between the second lens barrel and the first lens, or between the first Between the lens barrel and the second lens.
  • the bonding by the glue material comprises: supporting the first lens component and the second lens component with a cured glue material to make the first lens component and the second lens The relative position of the components remains at the relative position determined by active calibration.
  • the pre-positioning the first lens component and the second lens component further comprises: forming a first gap between the first lens component and the second lens component a second gap, wherein the first gap is closer to an outer side of the optical lens than the second gap;
  • the bonding by the glue material comprises: coating the first glue material and the second glue material respectively on the a first gap and the second gap, wherein a adhesion of the second glue is greater than an adhesion of the first glue; curing the first glue to cause the first lens part and The second lens component is pre-fixed; and the second glue is cured to permanently bond the one lens component and the second lens component.
  • the first gap formed is located at an end surface of the first lens barrel and the Between the end faces of the second lens barrel; and the second gap formed is located at an end face of the first lens barrel and a lens of the at least one second lens closest to the first lens barrel Between the optical faces, or between the end faces of the second barrel and the non-optical face of one of the at least one first lens closest to the second barrel.
  • the first glue is a UV glue or a UV thermoset glue
  • the second glue is a thermosetting glue or a UV thermoset glue
  • a camera module assembly method includes: assembling an optical lens by using the optical lens assembly method described above; and fabricating a camera module by using the assembled optical lens.
  • a camera module assembly method including: pre-positioning the first lens component and the second lens component, wherein the camera module component includes a combination a second lens component and a photosensitive module, and the first lens component includes a first lens barrel and at least one first lens mounted in the first lens barrel, the second lens component including a second lens barrel And at least one second lens mounted in the second barrel, the predetermined position causing the at least one second lens and the at least one first lens to form an imageable optical system; adjusting based on active calibration And determining a relative position of the first lens component and the second lens component; and bonding the first lens component and the second lens component by a glue, wherein at least a portion of the glue is interposed Between the lens barrel and the lens, and between the lens barrel and the lens is between the second lens barrel and the first lens, or between the first lens barrel and the second lens.
  • an optical lens comprising: a first lens component including at least one first lens; a second lens component including a second lens barrel and mounted on the second lens barrel At least one second lens, and the at least one second lens and the at least one first lens together form an imageable optical system; and a glue material that will be the first lens component and the second lens The components are bonded together and at least a portion of the glue is closest to the first of the at least one first lens closest to the second lens component and the at least one second lens Between a second lens of the first lens component.
  • the axis of the first lens closest to the second lens component has a non-zero angle between the axis of the second lens closest to the first lens component.
  • the first lens component further includes a first lens barrel, the first lens being supported and fixed to the first lens barrel.
  • the top and/or outer sides of the first lens bear against the first barrel.
  • the axis of the first barrel coincides or is parallel with the axis of the second barrel.
  • the thickness of the glue between the first barrel and the second barrel is the same in the direction of the optical axis.
  • the first lens component further includes a first lens barrel, and the at least one first lens is mounted inside the first lens barrel.
  • the glue comprises a first glue and a second glue, the second glue being interposed between a first lens of the at least one first lens closest to the second lens part And between a second lens of the at least one second lens that is closest to the first lens component, and the second glue provides an adhesive force greater than an adhesive force provided by the first glue.
  • a first gap and a second gap are formed between the first lens component and the second lens component, and the first glue and the second glue are respectively coated on the first a gap and the second gap, and the first gap is closer to an outer side of the optical lens than the second gap.
  • the first glue is a glue that is cured by light.
  • the second glue is a glue that is cured by heat curing, moisture curing, anaerobic curing, or oxidation.
  • the first glue is a UV glue or a UV thermoset glue.
  • the second glue is a thermoset glue or a UV thermoset glue.
  • the first rubber material and the second rubber material are the same material in a liquid state, and the first rubber material and the second rubber material form different microstructures after curing.
  • the material is such that the adhesion provided by the second glue after curing is greater than the adhesion provided after the first glue is cured.
  • the first glue and the second glue are both UV thermosets.
  • the first glue and the second glue are not in contact with each other.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size in the direction of the optical axis of the optical lens of 30-100 ⁇ m.
  • a difference in size of the second gap from the first gap in an optical axis direction along the optical lens is less than a threshold.
  • the first gap is between an end surface of the first barrel and an end surface of the second barrel.
  • the second gap is located in the non-optical face of one of the at least one first lens closest to the second lens component and the closest to the at least one second lens Between the non-optical faces of a second lens of the first lens component.
  • the non-optical face of one of the at least one first lens closest to the second lens component has a roughened surface.
  • a non-optical face of a second lens of the at least one second lens that is closest to the first lens component has a roughened surface.
  • the glue material is used to support and fix the first lens component and the second lens component to maintain a relative position of the first lens component and the second lens component through The relative position determined by the active calibration.
  • the second gap has a second opening toward an optical axis of the optical lens, and a size of the second opening in a direction along the optical axis is greater than an average of the second gap size.
  • the first gap has a first opening toward an outer side of the optical lens, and a size of the first opening in a direction along the optical axis is larger than an average size of the first gap .
  • the first lens is closer to the front end of the optical lens than the second lens.
  • an end face of the second lens bonded to the first lens has an annular groove between the second gap and an optical face of the second lens.
  • an end surface of the second lens bonded to the first lens has a boss, and the second gap is located between the boss and the first lens.
  • an end surface of the first lens bonded to the second lens has a boss, and the second gap is located between the boss and the second lens.
  • the cross-sectional shape of the boss is rectangular, trapezoidal, triangular or semi-circular.
  • an end surface of the second lens bonded to the first lens has a second boss, and an end surface of the first lens bonded to the second lens has a first boss.
  • the second gap is located between the first boss and the second boss.
  • the end face of the second lens bonded to the first lens has an annular dam located between the optical zone of the second lens and the second gap;
  • a direction perpendicular to the optical axis of the optical lens has a gap of at least 50 ⁇ m between the annular dam and the boss.
  • the non-optical face of the second lens bonded to the first lens has an inwardly recessed step or groove.
  • a camera module comprising the aforementioned optical lens.
  • an optical lens assembly method comprising: pre-positioning the first lens component and the second lens component, wherein the first lens component includes at least one first a second lens component comprising a second lens barrel and at least one second lens mounted in the second lens barrel, the predetermined position causing the at least one second lens and the at least one first lens Co-constituting an imageable optical system; adjusting and determining a relative position of the first lens component and the second lens component based on active calibration; and bonding the first lens component and the second lens by a glue a component, wherein at least a portion of the glue is interposed between the first lens and the second lens.
  • the active calibration includes ingesting the first lens by direct contact with the first lens, and thereby moving the first lens to adjust and determine the first lens and the first The relative position of the two lens components.
  • the actively calibrating further comprises adjusting and determining an angle of an axis of the first lens relative to an axis of the second lens based on the measured resolution of the optical system.
  • the actively calibrating further comprises: moving the first lens along a plane, and determining along the first lens and the second lens component according to the measured resolution of the optical system The relative position of the plane in the direction of movement; movement along the plane includes translation and/or rotation on the plane.
  • the actively calibrating further comprises: moving the first lens in a direction perpendicular to the plane, and determining the first lens and the second lens according to a measured resolution of the optical system The relative position between the components in a direction perpendicular to the plane.
  • the bonding by the glue comprises: applying a glue between the first lens and the second lens to bond the first lens and the second lens Curing to support and secure the first lens and the second lens component such that the relative positions of the first lens and the second lens component are maintained at relative positions determined by active calibration; and the optics
  • the lens assembly method further includes: mounting the first lens barrel to the first lens after curing the glue between the first lens and the second lens.
  • mounting the first barrel to the first lens comprises bearing the first barrel against a top surface and/or an outer side surface of the first lens.
  • mounting the first lens barrel to the first lens further comprises: coating a glue between the first lens barrel and the second lens barrel and bonding the first lens barrel And the second barrel.
  • mounting the first barrel to the first lens further comprises: superposing or paralleling an axis of the first barrel with an axis of the second barrel.
  • the first lens component further includes a first lens barrel, and the at least one first lens is mounted inside the first lens barrel.
  • the bonding by the glue comprises: supporting and fixing the first lens component and the second lens component with the cured glue to make the first lens component and the first The relative position of the two lens components is maintained at a relative position determined by active calibration.
  • the pre-positioning the first lens component and the second lens component further comprises: forming a first gap between the first lens component and the second lens component a second gap, wherein the first gap is closer to an outer side of the optical lens than the second gap; and the bonding by the glue material comprises: coating the first rubber material and the second rubber material separately The first gap and the second gap, wherein the adhesion of the second glue is greater than the adhesion of the first glue; curing the first glue to make the first lens part and The second lens component is pre-fixed; and the second glue is cured to permanently bond the one lens component and the second lens component.
  • the first gap formed is located at an end surface of the first lens barrel and the Between the end faces of the second barrel; and the second gap formed is located in a first lens and the at least one second lens of the at least one first lens that is closest to the second lens component Between a second lens closest to the first lens component.
  • the first glue is a photo-curing glue
  • the second glue is a thermosetting glue
  • a camera module assembly method includes: assembling an optical lens by using the optical lens assembly method described above; and fabricating a camera module by using the assembled optical lens.
  • a camera module assembly method including: pre-positioning the first lens component and the second lens component, wherein the camera module component includes a combination a second lens component and a photosensitive module, and the first lens component includes a first lens barrel and at least one first lens mounted in the first lens barrel, the second lens component including a second lens barrel And at least one second lens mounted in the second barrel, the predetermined position causing the at least one second lens and the at least one first lens to form an imageable optical system; adjusting based on active calibration And determining a relative position of the first lens component and the second lens component; and bonding the first lens component and the second lens component by a glue, wherein at least a portion of the glue is interposed Between the first lens and the second lens.
  • an optical lens comprising: a first lens component including at least one first lens and a light shielding portion on a top surface and a side surface of a non-optical region of the at least one first lens a second lens component including a second lens barrel and at least one second lens located within the second lens barrel, and the at least one first lens and the at least one second lens together form an imageable optical system; And a glue that bonds the first lens component and the second lens component together, and the glue is interposed between the first lens and the second lens component.
  • the axis of the first lens closest to the second lens component has a non-zero angle between the axis of the second lens closest to the first lens component.
  • the light shielding portion is a first lens barrel, and the at least one first lens is mounted in the first lens barrel.
  • the glue is interposed between the first lens of the at least one first lens that is closest to the second lens component and the end surface of the second lens barrel.
  • the glue is interposed between the non-optical face of one of the first lenses closest to the second lens component and the end face of the second barrel.
  • the glue comprises a first glue and a second glue, the second glue being interposed between a first lens of the at least one first lens that is closest to the second lens part And a second lens of the at least one second lens that is closest to the first lens component, and the second glue provides an adhesive force greater than an adhesive force provided by the first glue.
  • a first gap and a second gap are formed between the first lens component and the second lens component, and the first glue and the second glue are respectively coated on the first a gap and the second gap, and the first gap is closer to an outer side of the optical lens than the second gap.
  • the top surface of the second lens barrel includes a second flat surface, and the first gap and the second gap are both located on the second flat surface and the non-optical area of the first lens Between the bottom surfaces.
  • the first gap is between the first lens closest to the second lens component and the end surface of the second lens barrel; and the second gap is located in the A first lens closest to the second lens component and the second lens closest to the first lens component.
  • the non-optical face of one of the at least one first lens closest to the second lens component has a roughened surface.
  • a non-optical face of a second lens of the at least one second lens that is closest to the first lens component has a roughened surface.
  • the glue material is used to support and fix the first lens component and the second lens component to maintain a relative position of the first lens component and the second lens component through The relative position determined by the active calibration.
  • the first glue is a glue that is cured by light.
  • the second glue is a glue that is cured by heat curing, moisture curing, anaerobic curing, or oxidation.
  • the first glue is a UV glue or a UV thermoset glue.
  • the second glue is a thermoset glue or a UV thermoset glue.
  • the first rubber material and the second rubber material are the same material in a liquid state, and the first rubber material and the second rubber material form different microstructures after curing.
  • the material is such that the adhesion provided by the second glue after curing is greater than the adhesion provided after the first glue is cured.
  • the first glue and the second glue are both UV thermosets.
  • the first glue and the second glue are not in contact with each other.
  • the first gap has a size in the direction of the optical axis of the optical lens of 30-100 ⁇ m.
  • the second gap has a size in the direction of the optical axis of the optical lens of 30-100 ⁇ m.
  • a difference in size of the second gap from the first gap in an optical axis direction along the optical lens is less than a threshold.
  • the second gap has a second opening toward an optical axis of the optical lens, and a size of the second opening in a direction along the optical axis is greater than an average of the second gap size.
  • the first gap has a first opening toward an outer side of the optical lens, and a size of the first opening in a direction along the optical axis is larger than an average size of the first gap .
  • the first lens is closer to the front end of the optical lens than the second lens.
  • a first lens closest to the second lens component has a first boss that protrudes toward the second lens component, and the second gap is located at the first protrusion
  • the stage is between the non-optical surface of a second lens that is closest to the first lens component.
  • the non-optical face of a second lens closest to the first lens component has a first groove, the second gap being located at the first boss and the first recess Between the slots.
  • the first boss is annular in a bottom view and the first groove is annular in plan view.
  • the first lens closest to the second lens component has a plurality of first bosses that protrude toward the second lens component, and the plurality of first views in a bottom view a boss is distributed on a circle; and an end surface of the second lens component has a plurality of first grooves for accommodating the plurality of first bosses, and the second gap is located in the plurality of first a boss and the plurality of first grooves.
  • sidewalls of the plurality of first grooves are formed by the second barrel, and a bottom surface of the plurality of first grooves is formed by the one closest to the first lens component A non-optical face of the second lens is formed.
  • the end surface of the second barrel has a second boss facing the first lens component, and the non-optical surface of the first lens closest to the second lens component has a second groove, the second gap being located between the second boss and the second groove.
  • a camera module comprising the aforementioned optical lens.
  • an optical lens assembly method comprising: pre-positioning the first lens component and the second lens component, wherein the first lens component includes at least one first lens, And when the number of the first lenses is plural, the first lenses are fixed to each other by being fitted to each other, and the second lens component includes a second lens barrel and the second lens barrel At least one second lens, the predetermined position causing the at least one second lens to form an imageable optical system together with the at least one first lens; adjusting and determining the first lens component and the a relative position of the second lens component; and bonding the first lens component and the second lens component by a glue, wherein the glue is interposed between the first lens and the second lens component .
  • the active calibration includes ingesting and moving the first lens to adjust and determine a relative position of the first lens and the second lens component.
  • the actively calibrating further comprises adjusting and determining an angle of an axis of the first lens relative to an axis of the second lens based on the measured resolution of the optical system.
  • the actively calibrating further comprises: moving the first lens along a plane, and determining along the first lens and the second lens component according to the measured resolution of the optical system The relative position of the plane in the direction of movement; movement along the plane includes translation and/or rotation on the plane.
  • the actively calibrating further comprises: moving the first lens in a direction perpendicular to the plane, and determining the first lens and the second lens according to a measured resolution of the optical system The relative position between the components in the direction of movement perpendicular to the plane.
  • the bonding by the glue comprises: supporting the at least one first lens and the second lens component with the cured glue to make the first lens component and the second The relative position of the lens components remains at the relative position determined by active calibration.
  • the pre-positioning the first lens component and the second lens component further comprises: forming a first gap between the first lens component and the second lens component a second gap, wherein the first gap is closer to an outer side of the optical lens than the second gap; and the bonding by the glue material comprises: coating the first rubber material and the second rubber material separately The first gap and the second gap, wherein the adhesion of the second glue is greater than the adhesion of the first glue; curing the first glue to make the first lens part and The second lens component is pre-fixed; and the second glue is cured to permanently bond the one lens component and the second lens component.
  • the first gap formed is located closest to the at least one first lens. Between the non-optical face of a first lens of the second lens component and the end face of the second lens barrel; and the second gap formed is located at the one closest to the second lens component Between the first lens and a second lens of the at least one second lens that is closest to the first lens component.
  • the first glue is a UV glue or a UV thermoset glue
  • the second glue is a thermosetting glue or a UV thermoset glue
  • a camera module assembly method includes: assembling an optical lens by using the optical lens assembly method described above; and fabricating a camera module by using the assembled optical lens.
  • a camera module assembly method including: pre-positioning the first lens component and the second lens component, wherein the camera module component includes a combination a second lens component and a photosensitive module, and the first lens component includes at least one first lens, and when the number of the first lenses is plural, the first lenses are mutually fitted to maintain relative relationship with each other Positioned, the second lens component includes a second lens barrel and at least one second lens located in the second lens barrel, the predetermined position forming the at least one second lens together with the at least one first lens An imageable optical system; adjusting and determining a relative position of the first lens component and the second lens component based on active calibration; and bonding the first lens component and the second lens component by a glue, Wherein the glue is interposed between the first lens and the second lens component.
  • the present invention has at least one of the following technical effects:
  • the present invention can reduce the positional deviation of the lens caused by the deformation of the lens barrel, and in particular, can reduce the influence caused by the deformation of the lens barrel directly bonded to the lens.
  • the present invention can directly connect the lens of the upper and lower lens components to the lens barrel and provide a main adhesive force, thereby reducing the influence of the lens variation in the lens component on the lens.
  • the invention can utilize the roughness of the ineffective area of the lens and directly connect with the lens barrel through the glue material, thereby enhancing the strength of the connection of the upper and lower lens parts.
  • the present invention can utilize the direct bonding of the lens of the upper and lower lens components to provide the main adhesive force, thereby reducing the influence of the lens variation in the lens component on the lens.
  • the invention can improve the weather resistance of the optical lens or the camera module.
  • the way the lens is connected to the lens can enhance the weather resistance of the lens when the material is selected as a plastic.
  • the optical lens, the high temperature and high humidity are used as test standards, and the temperature is high. After a high humidity environment, the difference in optical imaging quality is low.
  • the present invention can prevent the glue from contaminating the optical zone of the lens.
  • the present invention can increase the adhesion between the lenses while achieving direct bonding of the lenses of the upper and lower lens members.
  • the present invention can directly bond the lower lens member with the lens of the upper lens component to provide full adhesion, thereby avoiding the influence of the lens variation in the lens component on the lens.
  • the present invention can be directly connected to the lower lens component through the lens of the upper lens component, thereby reducing the manufacturing tolerance of the optical lens or the camera module caused by the assembly tolerance existing between the lens of the upper lens component and the lens barrel.
  • the present invention can be directly connected to the lower lens component through the upper lens component lens to reduce the variation of the upper lens component caused by the thermal expansion coefficient of the lens barrel and the lens.
  • the invention can improve the stability of the optical system and improve the imaging quality of the camera module.
  • the present invention helps to improve the yield of optical lenses or camera modules based on active calibration.
  • the present invention can provide a camera module and an optical lens with better imaging quality.
  • FIG. 1 is a cross-sectional view showing a camera module 1000 according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in one embodiment of the present invention
  • FIG 3 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in another embodiment of the present invention
  • FIG. 4 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention
  • Figure 5 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention
  • FIG. 6 is a flow chart showing an optical lens assembly method in one embodiment of the present invention.
  • Figure 7 shows a flow chart of step 40 in one embodiment of the invention.
  • FIG. 8 is a flow chart showing a method of assembling a camera module according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a camera module 1000' according to another embodiment of the present invention.
  • Figure 10 is a partially enlarged cross-sectional view showing the bonding region of the first lens component 100' and the second lens component 200' in the embodiment shown in Figure 9;
  • FIG. 11 is a cross-sectional view showing a camera module 1000 according to an embodiment of the present invention.
  • Figure 12 is a partially enlarged cross-sectional view showing the bonding region of the first lens component 100 and the second lens component 200 in one embodiment of the present invention
  • Figure 13 is a partially enlarged cross-sectional view showing a bonding region of a first lens component 100 and a second lens component 200 in another embodiment of the present invention
  • Figure 14 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 15 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 16 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention
  • Figure 17 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 18 is a flow chart showing an optical lens assembling method in one embodiment of the present invention.
  • Figure 19 shows a flow chart of step 40 in one embodiment of the invention.
  • FIG. 20 is a flow chart showing a method of assembling a camera module according to another embodiment of the present invention.
  • Figure 21a is a cross-sectional view showing the first lens and the second lens component in a predetermined position according to an embodiment of the present invention
  • 21b is a cross-sectional view showing the positional relationship between the first lens and the second lens component after active calibration according to an embodiment of the present invention
  • Figure 21c is a cross-sectional view showing the mounting of the first lens barrel on the basis of Figure 21b;
  • Figure 21d shows an enlarged schematic view of a partial area in Figure 21a
  • Figure 21e shows an enlarged schematic view of a partial area in Figure 21b
  • Figure 21f shows an enlarged schematic view of a partial area in Figure 21c
  • Figure 21g is an enlarged schematic view showing a partial region of the dispensing position of the glue between the first barrel and the second barrel, based on Figure 21f;
  • Figure 22a illustrates a relative position adjustment mode in active calibration in one embodiment of the present invention
  • Figure 22b illustrates the rotation adjustment in active calibration of another embodiment of the present invention.
  • Figure 22c is a diagram showing the relative position adjustment mode in which the v and w direction adjustments are added in the active calibration according to still another embodiment of the present invention.
  • 23 is a partial cross-sectional view showing an example of an optical lens manufactured based on an active calibration process in an ideal case where the upper sub-lens has no assembly tolerance;
  • Figure 24 is a partial cross-sectional view showing an example of an optical lens manufactured based on an active calibration process in the actual case where the upper sub-lens has assembly tolerances;
  • FIG. 25 is a cross-sectional view showing a camera module 1000 according to an embodiment of the present invention.
  • Figure 26 is a partially enlarged cross-sectional view showing the bonding region of the first lens component 100 and the second lens component 200 in one embodiment of the present invention
  • Figure 27 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in another embodiment of the present invention.
  • Figure 29 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 30 is a top plan view showing the second lens component 200 of the embodiment of Figure 29;
  • Figure 31 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 32 is a flow chart showing an optical lens assembling method in one embodiment of the present invention.
  • Figure 33 shows a flow chart of step 40 in one embodiment of the invention.
  • FIG. 34 is a flow chart showing a method of assembling a camera module according to another embodiment of the present invention.
  • Figure 35 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 36a is a cross-sectional view showing the first lens and the second lens component in a predetermined position according to an embodiment of the present invention
  • 36b is a cross-sectional view showing the positional relationship between the first lens and the second lens component after active calibration according to an embodiment of the present invention
  • Figure 36c shows an enlarged schematic view of a partial area in Figure 36a
  • Figure 36d shows an enlarged schematic view of a partial area in Figure 36b
  • Figure 36e is an enlarged schematic view showing a partial area of the dispensing position of the glue between the first lens and the second barrel based on Figure 36d;
  • Figure 37a illustrates a relative position adjustment mode in active calibration in one embodiment of the invention
  • Figure 37b illustrates rotation adjustment in active calibration of another embodiment of the present invention.
  • Fig. 37c shows a relative position adjustment mode in which the v and w direction adjustments are added in the active calibration according to still another embodiment of the present invention.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first subject discussed below may also be referred to as a second subject, without departing from the teachings of the present application.
  • FIG. 1 is a cross-sectional view showing a camera module 1000 according to an embodiment of the present invention.
  • the camera module 1000 includes an optical lens and a photosensitive assembly 300.
  • the optical lens includes a first lens component 100, a second lens component 200, and a glue (not shown) that bonds the first lens component 100 and the second lens component 200 together.
  • the first lens component 100 includes a first lens barrel 101 and a first lens 102
  • the second lens component 200 includes a second lens barrel 201 and five second lenses 202.
  • the second lens 202 closest to the first lens component 100 is directly bonded to the first lens barrel 101.
  • the second lens component 200 may further include a motor 203, and the second lens barrel 202 may be installed in the carrier of the motor 203.
  • the photosensitive member 300 includes a wiring board 301, a photosensitive chip 302 mounted on the wiring board 301, a cylindrical supporting body 303 mounted on the wiring board 301 and surrounding the photosensitive chip, and mounted on the cylindrical supporting body 303.
  • the motor 203 is mounted on the top surface of the cylindrical support body 303 to fix the second lens component 200 and the photosensitive member 300 together. It should be noted that in other embodiments of the present invention, the motor 203 of FIG. 1 may also be replaced by other structures such as a cylindrical support, or the motor 203 of FIG. 1 may be eliminated and the second barrel 201 may be directly used. It is mounted on the top surface of the cylindrical support body 303.
  • the motor 203 may also be replaced by other types of optical actuators, such as SMA (shape memory alloy) actuators, MEMS actuators, and the like.
  • the optical actuator refers to a device for causing the optical lens to move relative to the photosensitive chip.
  • FIG. 2 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in one embodiment of the present invention.
  • a first gap and a second gap are formed between the first lens component 100 and the second lens 200.
  • the positions of the first gap and the second gap are indicated by "1" and "2" in Fig. 2, respectively.
  • the glue material includes a first glue material and a second glue material, wherein the first glue material and the second glue material are respectively coated on the first gap and the second gap, and the first gap is closer to the optical than the second gap The outside of the lens (ie, the second gap is closer to the optical axis of the optical lens than the first gap).
  • the first gap is located between the end surface 111 of the first barrel 100 and the end surface 211 of the second barrel 200.
  • the second gap is between the end face 112 of the first barrel 100 and the non-optical face 212 of a second lens 202 closest to the first barrel 100.
  • the non-optical side of one of the lenses is the surface of the portion of the lens that does not participate in optical imaging.
  • the portion of the lens that does not participate in optical imaging may be referred to as a non-optical zone, sometimes referred to as an inactive zone.
  • the non-optical zone of the lens can serve as a support.
  • the rubber material (including the first rubber material and the second rubber material) is used to support the first lens component 100 and the second lens component 200 such that the first lens component 100 and the second component
  • the relative position of the lens component 200 is maintained at a relative position determined by active calibration.
  • the first glue can be used for pre-fixing and the second glue can be used for permanent fixing.
  • the first glue is a UV glue and the UV glue can be cured by exposure.
  • the second adhesive is a thermosetting adhesive that can be cured by baking the lens or module.
  • the surface of the non-optical surface 212 of the second lens 202 coated with the second adhesive material may be roughened to increase the roughness thereof, thereby increasing the surface between the second adhesive material and the non-optical surface 212. Adhesion.
  • the second lens 202 is directly bonded to the end surface 112 of the first lens barrel 101 by the second adhesive material (for example, thermosetting glue), thereby avoiding deformation of the lens barrel 201 during the curing process of the second adhesive material.
  • the second adhesive material for example, thermosetting glue
  • the second gap has a second opening 402 facing the optical axis of the optical lens, and the size of the second opening 402 is larger than the size in the direction along the optical axis The average size of the two gaps. That is, a larger opening is provided between the first lens component 100 and the second lens component 200 on the side close to the optical axis. This prevents the glue from overflowing the effective area of the lens (ie, the optical zone) and causing poor imaging.
  • the surface of the non-optical zone of the second lens 202 may further have a groove 213 which is annular in plan view. The recess 213 can be used to store excess glue to prevent glue from contaminating the lens.
  • the first gap has a first opening 401 facing the outer side of the optical lens, and the size of the first opening 401 in the direction along the optical axis is larger than the average size of the first gap. That is, a larger opening is also provided on the side of the first lens component 100 and the second lens component 200 that is close to the outside.
  • the first lens 102 is closer to the front end of the optical lens than the second lens 202 (the front end of the optical lens refers to the light incident end, and the rear end refers to the end near the photosensitive member).
  • the first adhesive material may also be a UV thermosetting adhesive.
  • the second adhesive can also be UV thermoset.
  • FIG. 3 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in another embodiment of the present invention.
  • the end surface 212 of the second lens 202 bonded to the first barrel 101 has a boss 213.
  • the second gap is located between the boss 213 and the end surface 112 of the first barrel 101.
  • the boss 213 is used instead of the groove design in the embodiment of FIG. 2, which can better prevent the glue from contaminating the lens.
  • the cross-sectional shape of the boss 213 includes, but is not limited to, a trapezoidal shape, a rectangular shape, or the like.
  • FIG. 4 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the difference between this embodiment and the embodiment of FIG. 2 is that the non-optical surface 121 of the first lens 102 is directly bonded to the end surface of the second lens barrel 201.
  • the first gap is located between the end surface 211 of the second barrel 201 and the end surface 111 of the first barrel 101.
  • the second gap is located between the end surface 214 of the second lens barrel 201 and the non-optical surface 121 of the first lens 102.
  • the first gap is coated with a first glue (eg, UV glue or UV thermoset glue) and the second gap is coated with a second glue (eg, a thermoset or UV thermoset).
  • the second gap has a second opening 402 that faces the optical axis of the optical lens, the size of the second opening 402 being greater than the average size of the second gap in the direction along the optical axis. That is, a larger opening is provided between the first lens component 100 and the second lens component 200 on the side close to the optical axis. This prevents the glue from overflowing the effective area of the lens (ie, the optical zone) and causing poor imaging.
  • FIG. 5 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the first lens 102 of the present embodiment adds a boss 215 toward the second barrel 201.
  • the end surface 121 of the first lens piece 102 bonded to the second barrel 201 has a boss 215.
  • the second gap is located between the boss 215 and the end surface 214 of the second barrel 201.
  • the cross-sectional shape of the boss 215 includes, but is not limited to, a trapezoidal shape, a rectangular shape, or the like.
  • Fig. 9 is a cross-sectional view showing a camera module 1000' according to another embodiment of the present invention.
  • the camera module 1000' includes an optical lens and a photosensitive member 300'.
  • the optical lens includes a first lens component 100', a second lens component 200', and a glue material (not shown in FIG. 9) that bonds the first lens component 100' and the second lens component 200' together .
  • the first lens component 100' includes a first lens barrel 101' and a first lens 102'
  • the second lens component 200' includes a second lens barrel 201' and five second lenses 202'.
  • the end face of the second barrel 201' includes a flat surface 211' including a first segment 211a' and a second segment 211b'.
  • first segment 211a' is closer to the outer side of the optical lens than the second segment 211b' (i.e., the second segment 211b' is closer to the optical axis of the optical lens than the first segment 211a').
  • a first gap 410' is formed between the end surface 111' of the first barrel (which may be, for example, the bottom surface) and the first segment 211a'.
  • a second gap 420' is formed between the end surface 121' of the non-optical zone of the first lens 102' (e.g., the bottom surface of the non-optical zone) and the second segment 211b'.
  • the glue material includes a first glue material and a second glue material. And the arrangement position and material of the first rubber material and the second rubber material are adapted to cause the first rubber material and the second rubber material to be sequentially cured at different times.
  • the first adhesive material and the second adhesive material are respectively coated on the first gap and the second gap, and the second adhesive material provides an adhesive force greater than the adhesive force provided by the first adhesive material.
  • the connection strength can be directly applied to the lens, thereby increasing the structural strength of the optical lens.
  • the second adhesive material provides a large adhesive force between the lens barrel and the lens, which can improve the reliability of the optical lens.
  • the first glue may be a UV glue.
  • the second glue may be a thermosetting glue.
  • the UV glue is applied to the first gap and the thermosetting glue is applied to the second gap.
  • the UV glue is cured by direct illumination of the light to pre-fix the relative positions determined by the first lens component and the second lens component in accordance with the active calibration. Then, the pre-fixed optical lens is heated to cure the thermosetting glue at the second gap, thereby enhancing the structural strength of the optical lens and improving the reliability of the optical lens.
  • the first adhesive may also be other photocurable adhesive materials (for example, may be UV thermosetting adhesive).
  • the second glue may also be other glues that are cured by heat, moisture, anaerobic or oxidative curing.
  • the first rubber material and the second rubber material may be the same material in a liquid state, for example, the first rubber material and the second rubber material may all be UV thermosetting glue.
  • the UV thermosetting glues located in the first gap and the second gap are respectively cured in different manners (for example, the UV thermosetting glue directly irradiating the first gap with light is used to complete the photocuring, and then the second gap is performed.
  • the UV thermosetting glue is thermally cured) to form different materials having different microstructures after curing, so that the adhesion of the second adhesive after curing is greater than the viscosity provided after curing of the first adhesive Together.
  • the microstructure may be, for example, a molecular structure, a micron-sized physical form, a molecular ratio, a lattice form, or the like.
  • the first rubber material and the second rubber material may not contact each other to avoid chemical changes after mixing the first rubber material and the second rubber material, thereby affecting the glue property.
  • This embodiment can further enhance the reliability of the optical lens or the camera module by avoiding chemical changes after mixing the first rubber material and the second rubber material.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap and the first gap are along an optical axis direction of the optical lens
  • the difference in size is less than the threshold (the threshold can be less than 100 ⁇ m).
  • the first lens component 100' there is a third gap between the outer side surface 122' of the first lens 102' and the inner side surface 123' of the first lens barrel 101'. 103', the first lens 102' and the first lens barrel 101' may be fixed to each other by a third glue filled in the third gap, thereby forming an integral first lens part 100'.
  • the first gap 410' has a first opening 401' facing the outer side of the optical lens, and the size of the first opening 401' is larger in a direction along the optical axis.
  • the second gap 420' has a second opening 402' toward the optical axis of the optical lens, and the size of the second opening 402' in the direction along the optical axis is larger than the average size of the second gap.
  • the second lens component 200' may further include a motor 203', and the second lens barrel 202' may be mounted within the carrier of the motor 203'.
  • the photosensitive member 300' includes a wiring board 301', a photosensitive chip 302' mounted on the wiring board 301', a cylindrical supporting body 303' mounted on the wiring board 301' and surrounding the photosensitive chip, and mounted on the cylinder The color filter 304' on the support 303'.
  • the motor 203' is mounted on the top surface of the cylindrical support body 303' to fix the second lens component 200' and the photosensitive member 300' together. It should be noted that in other embodiments of the present invention, the motor 203' in Fig.
  • the motor 203' in Fig. 9 may also be replaced by other structures such as a cylindrical support, or the motor 203' in Fig. 9 may be eliminated and the second mirror directly
  • the cylinder 201' is mounted on the top surface of the cylindrical support 303'.
  • the motor 203' may be replaced by other types of optical actuators, such as SMA (shape memory alloy) actuators.
  • the optical actuator refers to a device for causing the optical lens to move relative to the photosensitive chip.
  • the number of lenses of the first lens component and the second lens component can be adjusted as needed.
  • the number of lenses of the first lens component and the second lens component may be two or four, respectively, or three and three, or four and two, respectively, or five and one, respectively.
  • the total number of lenses of the entire optical lens can also be adjusted as needed.
  • the total number of lenses of the optical lens can be six or five or seven.
  • the optical lens of the present application is not limited to two lens components.
  • the number of lens components may be three or four or more.
  • the adjacent two lens components can be regarded as the first lens component and the second lens component described above, respectively.
  • the optical lens may include two first lens components and one second lens component between the two first lens components, and the two first lens components All of the first lenses and all of the second lenses of a second lens component together form an actively calibratable imageable optical system.
  • the optical lens may include two first lens components and two second lens components, and press the first lens component, the second lens component, the first lens component, and the second lens
  • the order of the components is arranged from top to bottom, and all of the first lenses of the two first lens components and all of the second lenses of the two second lens components together form an actively calibratable imageable optical system. Other variations such as these are not repeated here.
  • FIG. 6 shows a flow chart of an optical lens assembly method in one embodiment of the present invention.
  • the method includes:
  • Step 10 preparing a first lens component and a second lens component, wherein the first lens component includes a first lens barrel and at least one first lens mounted in the first lens barrel, the second lens component including a second barrel and at least one second lens mounted in the second barrel.
  • Step 20 pre-positioning the first lens component and the second lens component such that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 30 adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration.
  • Step 40 bonding the first lens component and the second lens component by a glue, wherein at least a portion of the glue is interposed between the lens barrel and the lens, and between the lens barrel and the lens Between the second lens barrel and the first lens, or between the first lens barrel and the second lens.
  • the first lens component and the second lens component are supported by the cured glue material so that the relative positions of the first lens component and the second lens component are maintained by active calibration. relative position.
  • the glue coating may be performed on the gap between the first lens component and the second lens component, and then step 30 is performed to adjust and determine the first The relative position of a lens component and a second lens component.
  • step 40 is performed to cure the glue, thereby supporting the first lens component and the second lens component with the cured glue, thereby making the first lens component and the second lens
  • step 30 may be performed first to adjust and determine the relative positions of the first lens component and the second lens component.
  • the first lens component (or the second lens component) After determining the relative position, the first lens component (or the second lens component) is temporarily removed, and then the glue coating is performed, and then the first lens component (or the second lens component) is moved based on the determined relative position. return. The glue is finally cured such that the relative positions of the first lens component and the second lens component are maintained at relative positions determined by active calibration.
  • a first gap and a second gap are formed between the first lens component and the second lens component, wherein the first gap is smaller than the first The two gaps are close to the outer side of the optical lens.
  • Figure 7 shows a flow chart of step 40 in one embodiment of the invention.
  • the step 40 includes sub-steps:
  • Step 401 applying a first glue and a second glue to the first gap and the second gap, respectively, wherein the adhesion of the second glue is greater than the adhesion of the first glue force.
  • Step 402 curing the first glue to pre-fix the first lens component and the second lens component.
  • Step 403 after the pre-fixing is completed, curing the second glue to permanently bond the lens component and the second lens component.
  • the first glue may be a UV glue
  • the second glue may be a thermosetting glue.
  • step 402 when the first lens barrel and the second lens are bonded by the first glue, the solidification deformation of the glue material has less force on the lens barrel, and thus does not cause undesired deformation of the lens barrel.
  • the first lens component and/or the second lens component are typically ingested (eg, clamped or adsorbed) by an external ingestion mechanism to adjust the relative positions of the first lens component and the second lens component. Pre-fixing may maintain the relative position between the first lens component and the second lens component in a relative position determined by active calibration after disengaging the external ingestion mechanism. That is, after the first gel is cured, the first lens component and the second lens component are supported to maintain the relative positions determined by the active calibration.
  • step 403 since the lens is directly bonded to the corresponding end surface of the lens barrel, the position change of the lens caused by the deformation of the lens barrel can be avoided, thereby ensuring the formation between the first lens part and the second lens part formed after curing.
  • the permanent relative position coincides with the relative position between the first lens component and the second lens component determined by the active calibration.
  • the first adhesive may also be other photocurable adhesive materials (for example, may be UV thermosetting adhesive).
  • the second adhesive may also be other adhesives that are cured by heat curing, moisture curing, anaerobic curing or oxidative curing.
  • the first rubber material and the second rubber material may be the same material in a liquid state, for example, the first rubber material and the second rubber material may all be UV thermosetting glue.
  • the UV thermosetting glues located in the first gap and the second gap are respectively cured in different manners (for example, the UV thermosetting glue directly irradiating the first gap with light is used to complete the photocuring, and then the second gap is performed.
  • the UV thermosetting glue is thermally cured) to form different materials having different microstructures after curing, so that the adhesion of the second adhesive after curing is greater than the viscosity provided after curing of the first adhesive Together.
  • the microstructure may be, for example, a molecular structure, a micron-sized physical form, a molecular ratio, a lattice form, or the like.
  • the first rubber material and the second rubber material may not contact each other to avoid chemical changes after mixing the first rubber material and the second rubber material, thereby affecting the glue property.
  • This embodiment can further enhance the reliability of the optical lens or the camera module by avoiding chemical changes after mixing the first rubber material and the second rubber material.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap and the first gap are along an optical axis direction of the optical lens
  • the difference in size is less than the threshold (the threshold can be less than 100 ⁇ m).
  • the first gap and the second gap are in a dimension along the optical axis direction of the optical lens (for convenience of description, dimensions in the natural axis are along the optical axis direction of the optical lens
  • the reference is ultimately determined by the results of the active calibration, however this size is also related to the design gap of the optical lens during the design phase.
  • the sizes of the first gap and the second gap determined by the active calibration are also reduced. .
  • the smaller first and second gap sizes help to suppress secondary variations in the lens barrel and/or lens caused by the curing of the glue, thereby improving the image quality of the optical lens or the corresponding camera module.
  • the first gap formed is located between an end surface of the first barrel and an end surface of the second barrel.
  • the second gap formed is located between an end surface of the first barrel and a non-optical surface of one of the at least one second lens closest to the first barrel.
  • the second gap formed is located at an end surface of the second barrel and a non-optical surface of a lens of the at least one first lens that is closest to the second barrel. between.
  • a camera module assembly method comprising: assembling an optical lens by using the optical lens assembly method of any of the foregoing embodiments, and then using the assembled optical lens to manufacture a camera module.
  • FIG. 8 is a flowchart of a method for assembling a camera module according to another embodiment of the present invention, the method including:
  • Step 100 preparing a first lens component and a camera module component, wherein the camera module component includes a second lens component and a photosensitive module combined, and the first lens component includes a first lens barrel and is mounted on At least one first lens in the first barrel, the second lens component includes a second barrel and at least one second lens mounted in the second barrel.
  • Step 200 pre-positioning the first lens component and the second lens component such that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 300 adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration.
  • Step 400 bonding the first lens component and the second lens component by a glue, wherein at least a portion of the glue is interposed between the lens barrel and the lens, and between the lens barrel and the lens Between the second lens barrel and the first lens, or between the first lens barrel and the second lens.
  • the second lens component and the photosensitive module are assembled together to form a camera module component, and then the camera module component and the first lens component are assembled to complete Camera module.
  • the process of assembling the camera module component and the first lens component may also be variously modified.
  • the assembly of the camera module component and the first lens component may be implemented by referring to various embodiments of the optical lens assembly method described above. .
  • FIG. 11 is a cross-sectional view showing a camera module 1000 according to an embodiment of the present invention.
  • the camera module 1000 includes an optical lens and a photosensitive assembly 300.
  • the optical lens includes a first lens component 100, a second lens component 200, and a glue 400 that bonds the first lens component 100 and the second lens component 200 together.
  • the first lens component 100 includes a first lens barrel 101 and a first lens 102
  • the second lens component 200 includes a second lens barrel 201 and five second lenses 202.
  • the second lens 202 closest to the first lens component 100 is directly bonded to the first lens 101.
  • the second lens component 200 may further include a motor 203, and the second lens barrel 202 may be mounted in a carrier of the motor 203 (the internal structure of the motor is not shown in FIG. 11).
  • the photosensitive member 300 includes a wiring board 301, a photosensitive chip 302 mounted on the wiring board 301, a cylindrical supporting body 303 mounted on the wiring board 301 and surrounding the photosensitive chip, and mounted on the cylindrical supporting body 303. Color filter 304.
  • the motor 203 is mounted on the top surface of the cylindrical support body 303 to fix the second lens component 200 and the photosensitive member 300 together. It is to be noted that in other embodiments of the present invention, the motor 203 of FIG.
  • the motor 203 of FIG. 11 may also be replaced by other structures such as a cylindrical support, or the motor 203 of FIG. 11 may be eliminated and the second barrel 201 may be directly used. It is mounted on the top surface of the cylindrical support body 303. It is noted that in other embodiments the motor 203 can also be replaced by other types of optical actuators, such as SMA (Shape Memory) actuators, MEMS actuators. Wherein, the optical actuator refers to a device for causing the optical lens to move relative to the photosensitive chip.
  • SMA Shape Memory
  • FIG. 12 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in one embodiment of the present invention.
  • a first gap and a second gap are formed between the first lens component 100 and the second lens 200.
  • the positions of the first gap and the second gap are indicated by "1" and "2" in Fig. 12, respectively.
  • the glue material includes a first glue material and a second glue material, wherein the first glue material and the second glue material are respectively coated on the first gap and the second gap, and the first gap is closer to the optical than the second gap The outside of the lens (ie, the second gap is closer to the optical axis of the optical lens than the first gap).
  • the second glue is interposed between the first lens 102 and the second lens 202.
  • the first gap is located between the end surface 111 of the first barrel 101 and the end surface 211 of the second barrel 201.
  • the second gap is between the non-optical face 112 of the first lens 101 and the non-optical face 212 of a second lens 202 that is closest to the first lens component 100.
  • the non-optical side of one of the lenses is the surface of the lens that is not part of the optical imaging.
  • the portion of the lens that does not participate in optical imaging may be referred to as a non-optical zone, sometimes referred to as an inactive zone.
  • the non-optical zone of the lens can serve as a support.
  • the rubber material (including the first rubber material and the second rubber material) is used for supporting and fixing the first lens component 100 and the second lens component 200 such that the first lens component 100 and the The relative position of the second lens component 200 is maintained at a relative position determined by active calibration.
  • the first glue can be used for pre-fixing and the second glue can be used for permanent fixing.
  • the surface of the non-optical surface 212 of the second lens 202 coated with the second glue may be roughened to increase the roughness thereof, thereby increasing the second and non-optical surfaces 212. The adhesion between the surfaces.
  • the surface of the non-optical face of the first lens 102 can also be roughened to increase its roughness, thereby increasing the adhesion between the second gel and the surface of the non-optical face.
  • the adhesion provided by the second adhesive material can be increased, thereby enabling the adhesion provided by the second adhesive material. It is greater than the adhesion provided by the first adhesive to enhance the reliability of the manufactured optical lens or camera module.
  • the first glue is a UV glue and the UV glue can be cured by exposure.
  • the second adhesive is a thermosetting adhesive that can be cured by baking the lens or module.
  • the thermosetting glue can provide an adhesion greater than that of the UV glue, such that the second glue provides an adhesion greater than the adhesion provided by the first glue.
  • the UV glue is applied to the first gap on the outside (i.e., the side farther from the optical axis), and the thermosetting glue is applied to the second gap located on the inner side (i.e., the side closer to the optical axis).
  • the UV glue is cured by direct illumination of the light to pre-fix the relative positions determined by the first lens component and the second lens component in accordance with the active calibration. Then, the pre-fixed optical lens is heated to solidify the thermosetting glue at the second gap, thereby enhancing the structural strength of the optical lens and improving the reliability of the optical lens.
  • the first adhesive may also be other photocurable adhesive materials (for example, may be UV thermosetting adhesive).
  • the second glue may also be other glues that are cured by heat, moisture, anaerobic or oxidative curing.
  • the first rubber material and the second rubber material may be the same material in a liquid state, for example, the first rubber material and the second rubber material may all be UV thermosetting glue.
  • the UV thermosetting glues located in the first gap and the second gap are respectively cured in different manners (for example, the UV thermosetting glue directly irradiating the first gap with light is used to complete the photocuring, and then the second gap is performed.
  • the UV thermosetting glue is thermally cured) to form different materials having different microstructures after curing, so that the adhesion of the second adhesive after curing is greater than the viscosity provided after curing of the first adhesive Together.
  • the microstructure may be, for example, a molecular structure, a micron-sized physical form, a molecular ratio, a lattice form, or the like.
  • the first rubber material and the second rubber material may not contact each other to avoid chemical changes after mixing the first rubber material and the second rubber material, thereby affecting the glue property.
  • This embodiment can further enhance the reliability of the optical lens or the camera module by avoiding chemical changes after mixing the first rubber material and the second rubber material.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap and the first gap are along an optical axis direction of the optical lens
  • the difference in size is less than the threshold.
  • the second lens 202 is directly bonded to the first lens 101 by the second adhesive material (for example, thermosetting glue), thereby avoiding the first lens barrel 101 and the second during the curing process of the second rubber material.
  • the deformation of the lens barrel 201 causes the positions of the first lens 102 and the second lens 202 to change, thereby improving the imaging quality of the optical lens and the camera module.
  • the non-optical face 112 of the first lens 101 has a first boss 115, which may be annular in plan view.
  • the second gap is formed between the first boss 115 and the non-optical surface 212 of the second lens 202.
  • the second gap has a second opening 402 facing the optical axis of the optical lens, and the size of the second opening 402 in the direction along the optical axis is larger than the average size of the second gap. That is, a larger opening is provided between the first lens component 100 and the second lens component 200 on the side close to the optical axis. This prevents the glue from overflowing the effective area of the lens (ie, the optical zone) and causing poor imaging.
  • the surface of the non-optical zone of the second lens 202 may further have a groove 213 which is annular in plan view.
  • the recess 213 can be used to store excess glue to prevent glue from contaminating the lens.
  • the first gap has a first opening 401 facing the outer side of the optical lens, and the size of the first opening 401 in the direction along the optical axis is larger than the average size of the first gap. That is, a larger opening is also provided on the side of the first lens component 100 and the second lens component 200 that is close to the outside.
  • the first lens 102 is closer to the front end of the optical lens than the second lens 202 (the front end of the optical lens refers to the light incident end, and the rear end refers to the end near the photosensitive member).
  • the first adhesive material may also be a UV thermosetting adhesive.
  • the second adhesive can also be UV thermoset.
  • FIG. 13 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in another embodiment of the present invention.
  • the non-optical surface 112 of the first lens 101 has a first boss 115, and the first boss 115 may be annular in plan view.
  • An end surface 212 of the second lens 202 bonded to the first lens 102 has an annular dam 216 that is annular in plan view, and an annular dam 216 is located between the optical zone of the second lens 202 and the second gap so that The barrier glue flows to the effective area of the lens (ie, the optical zone).
  • the annular dam 216 and the first boss 115 have a gap of at least 50 ⁇ m in order to prevent the annular dam 216 from facing the first and second lens components. Active calibration has an impact.
  • FIG. 14 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the non-optical face of the second lens 202 bonded to the first lens 102 i.e., the surface of the inactive area
  • the step 217 is annular in plan view, which can replace the annular dam 216 in the embodiment of Fig. 13, and the solution to the annular dam 216 can reduce the difficulty of lens processing.
  • FIG. 15 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the non-optical surface of the second lens 202 bonded to the first lens 102 ie, the surface of the inactive area
  • the recess 218 is annular in plan view, which may be substituted for the annular dam 216 of the embodiment of Fig. 13 or the step 217 of the embodiment of Fig. 14.
  • the groove 218 can increase the bonding area between the first lens 102 and the second lens 202 while realizing the stopper, thereby improving the strength of the bonding.
  • FIG. 16 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the end surface 212 of the second lens 202 bonded to the first lens 102 has a boss 213.
  • the second gap is located between the boss 213 and the non-optical face 112 of the first lens 101.
  • the groove 213 is used instead of the groove design in the embodiment of FIG. 12, so that the glue can be prevented from contaminating the lens.
  • the cross-sectional shape of the boss 213 includes, but is not limited to, a trapezoidal shape, a rectangular shape, a triangular shape, a semicircular shape, and the like.
  • the second lens component is placed under the first lens component.
  • a chamfer 402a may be disposed on the annular boss 213 of the second lens component 200 located below to provide a larger opening for the second gap, thereby preventing the glue from contaminating the effective area of the lens (ie, the optical zone). Poor imaging.
  • FIG. 17 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the first lens 102 of the present embodiment adds a first boss 115 facing the second lens 202 compared to the embodiment of FIG.
  • the non-optical surface 112 of the first lens 102 bonded to the second lens 202 has a first boss 115.
  • the first boss 115 is located in the inactive area of the first lens 102 (ie, the non-optical zone).
  • the second gap is located between the first boss 115 and the second boss 212 of the second lens 202.
  • first boss 115 and the second boss 212 include, but are not limited to, trapezoidal, rectangular, triangular, semi-circular, and the like. Both the first boss 115 and the second boss 212 may be chamfered to increase the second opening 402 of the second gap to better disperse the glue.
  • the number of lenses of the first lens component and the second lens component can be adjusted as needed.
  • the number of lenses of the first lens component and the second lens component may be two or four, respectively, or three and three, or four and two, respectively, or five and one, respectively.
  • the total number of lenses of the entire optical lens can also be adjusted as needed.
  • the total number of lenses of the optical lens can be six or five or seven.
  • the optical lens of the present application is not limited to two lens components.
  • the number of lens components may be three or four or more.
  • the adjacent two lens components can be regarded as the first lens component and the second lens component described above, respectively.
  • the optical lens may include two first lens components and one second lens component between the two first lens components, and the two first lens components All of the first lenses and all of the second lenses of a second lens component together form an actively calibratable imageable optical system.
  • the optical lens may include two first lens components and two second lens components, and press the first lens component, the second lens component, the first lens component, and the second lens
  • the order of the components is arranged from top to bottom, and all of the first lenses of the two first lens components and all of the second lenses of the two second lens components together form an actively calibratable imageable optical system. Other variations such as these are not repeated here.
  • Fig. 18 is a flow chart showing an optical lens assembling method in one embodiment of the present invention. Referring to Figure 18, the method includes:
  • Step 10 preparing a first lens component and a second lens component, wherein the first lens component includes a first lens barrel and at least one first lens mounted in the first lens barrel, the second lens component including a second barrel and at least one second lens mounted in the second barrel.
  • Step 20 pre-positioning the first lens component and the second lens component such that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 30 adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration.
  • Step 40 bonding the first lens component and the second lens component by a glue, wherein at least a portion of the glue is interposed between the first lens and the second lens.
  • the first lens component and the second lens component are supported and fixed by the cured glue material to maintain the relative positions of the first lens component and the second lens component through an active calibration Determine the relative position.
  • the glue coating may be performed on the gap between the first lens component and the second lens component, and then step 30 is performed to adjust and determine the first The relative position of a lens component and a second lens component.
  • step 40 is performed to cure the glue, thereby supporting the first lens component and the second lens component with the cured glue, thereby making the first lens component and the second lens
  • step 30 may be performed first to adjust and determine the relative positions of the first lens component and the second lens component.
  • the first lens component (or the second lens component) After determining the relative position, the first lens component (or the second lens component) is temporarily removed, and then the glue coating is performed, and then the first lens component (or the second lens component) is moved based on the determined relative position. return. The glue is finally cured such that the relative positions of the first lens component and the second lens component are maintained at relative positions determined by active calibration.
  • a first gap and a second gap are formed between the first lens component and the second lens component, wherein the first gap is smaller than the first The two gaps are close to the outer side of the optical lens.
  • Figure 19 shows a flow chart of step 40 in one embodiment of the invention.
  • the step 40 includes sub-steps:
  • Step 401 applying a first glue and a second glue to the first gap and the second gap, respectively, wherein the adhesion of the second glue is greater than the adhesion of the first glue force.
  • Step 402 curing the first glue to pre-fix the first lens component and the second lens component.
  • Step 403 curing the second glue to permanently bond the lens component and the second lens component.
  • the first glue may be a UV glue
  • the second glue may be a thermosetting glue.
  • step 403 since the first lens is directly bonded to the corresponding second lens, the change of the lens position caused by the deformation of the first lens barrel and/or the second lens barrel can be avoided, thereby ensuring the first formed after curing.
  • the permanent relative position between the lens and the second lens coincides with the relative position between the first lens component and the second lens component determined by the active calibration.
  • the first gap formed is located between an end surface of the first barrel and an end surface of the second barrel.
  • the formed second gap is located between the non-optical surface of the first lens and the non-optical surface of the second lens.
  • the first adhesive may also be other photocurable adhesive materials (for example, may be UV thermosetting adhesive).
  • the second glue may also be other glues that are cured by heat, moisture, anaerobic or oxidative curing.
  • the first rubber material and the second rubber material may be the same material in a liquid state, for example, the first rubber material and the second rubber material may all be UV thermosetting glue.
  • the UV thermosetting glues located in the first gap and the second gap are respectively cured in different manners (for example, the UV thermosetting glue directly irradiating the first gap with light is used to complete the photocuring, and then the second gap is performed.
  • the UV thermosetting glue is thermally cured) to form different materials having different microstructures after curing, so that the adhesion of the second adhesive after curing is greater than the viscosity provided after curing of the first adhesive Together.
  • the microstructure may be, for example, a molecular structure, a micron-sized physical form, a molecular ratio, a lattice form, or the like.
  • the first rubber material and the second rubber material may not contact each other to avoid chemical changes after mixing the first rubber material and the second rubber material, thereby affecting the glue property.
  • This embodiment can further enhance the reliability of the optical lens or the camera module by avoiding chemical changes after mixing the first rubber material and the second rubber material.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap and the first gap are along an optical axis direction of the optical lens
  • the difference in size is less than the threshold (the threshold is less than 100 ⁇ m).
  • a camera module assembly method comprising: assembling an optical lens by using the optical lens assembly method of any of the foregoing embodiments, and then using the assembled optical lens to manufacture a camera module.
  • FIG. 11 is a flowchart of a method for assembling a camera module according to another embodiment of the present invention, the method including:
  • Step 100 preparing a first lens component and a camera module component, wherein the camera module component includes a second lens component and a photosensitive module combined, and the first lens component includes a first lens barrel and is mounted on At least one first lens in the first barrel, the second lens component includes a second barrel and at least one second lens mounted in the second barrel.
  • Step 200 pre-positioning the first lens component and the second lens component such that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 300 adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration.
  • Step 400 bonding the first lens component and the second lens component by a glue, wherein at least a portion of the glue is interposed between the first lens and the second lens.
  • the second lens component and the photosensitive module are assembled together to form a camera module component, and then the camera module component and the first lens component are assembled to complete Camera module.
  • the process of assembling the camera module component and the first lens component may also be variously modified.
  • the assembly of the camera module component and the first lens component may be implemented by referring to various embodiments of the optical lens assembly method described above. .
  • the active calibration described in this application can adjust the relative positions of the first lens component and the second lens component in a plurality of degrees of freedom.
  • Figure 22a illustrates the relative position adjustment in active calibration in one embodiment of the invention.
  • the first lens component (which may also be the first lens) may move in the x, y, and z directions with respect to the second lens component (ie, the relative position adjustment in this embodiment has three Degree of freedom).
  • the z direction is the direction along the optical axis
  • the x, y direction is the direction perpendicular to the optical axis.
  • the x and y directions are all in one adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • Figure 22b illustrates the rotation adjustment in active calibration of another embodiment of the present invention.
  • the relative position adjustment has an increase in the degree of freedom of rotation, i.e., the adjustment in the r direction, in addition to the three degrees of freedom of FIG.
  • the adjustment in the r direction is the rotation in the adjustment plane P, that is, the rotation about the axis perpendicular to the adjustment plane P.
  • Fig. 22c shows a relative position adjustment manner in which the v and w direction adjustments are added in the active calibration according to still another embodiment of the present invention.
  • the v direction represents the rotation angle of the xoz plane
  • the w direction represents the rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction can be combined into a vector angle, which represents the total tilt state. That is, the tilting posture of the first lens component relative to the second lens component can be adjusted by adjusting the v direction and the w direction (that is, the optical axis of the first lens component relative to the optical axis of the second lens component The slope).
  • the above adjustment of the six degrees of freedom of x, y, z, r, v, w may affect the imaging quality of the optical system (for example, affecting the magnitude of the resolution).
  • the relative position adjustment manner may be to adjust only one of the above six degrees of freedom, or a combination of two or more of them.
  • FIG. 21a to FIG. 21c illustrate an assembly process of an optical lens according to an embodiment of the present invention, and the assembly process includes:
  • Step 1 the second lens component is fixed by a fixing mechanism (not shown), and an ingestion mechanism (not shown) grips (or adsorbs) the first lens 102 of the first lens component 100 to perform a predetermined position, so that the first, The second lens component 100, 200 constitutes an imageable optical system.
  • Figure 21a is a cross-sectional view showing the first lens and the second lens component in a predetermined position in accordance with one embodiment of the present invention.
  • Fig. 21d shows an enlarged schematic view of a partial area in Fig. 21a, the enlarged portion being the area within the circle in Fig. 21a. Referring to FIGS.
  • the first lens component 100 has at least one first bearing surface 102c
  • the second lens component 200 has at least one second bearing surface 202c, at least one of the first bearing surfaces.
  • the 102c and the at least one of the second bearing surfaces 202c constitute at least one gap between the first bearing surface 102c and the second bearing surface 202c.
  • the first lens component 100 is actively adjusted by the ingestion mechanism, and the second lens component 100 is actively adjusted relative to the second bearing surface of the second lens component.
  • the active adjustment includes photographing a reference object, preferably a standard a plate, and obtaining a correction amount from the image information, the correction amount is preferably an MTF value, or may be an SFR or Tv Line value, and after acquiring the relevant correction amount, the ingesting mechanism adjusts the positions of the first and second lens components to Perfecting the optical system, the reference standard of the specific optical system includes the improved optical system having the performance of reducing the aberration and improving the resolution compared to the unadjusted optical system, and the perfect index of the optical system is also on demand.
  • the pre-positioning is the starting step of the subsequent process flow, and the design dimensions of the gap are generally followed when the first and second lens components are pre-positioned.
  • the second lens component is actively adjusted relative to the first bearing surface by an ingesting mechanism, the active adjustment comprising the first bearing surface and the second bearing surface relative to the X axis and/or Or adjusting the Y-axis and/or the Z-axis direction such that the relative positions of the first bearing surface and the second bearing surface are changed, such that the first bearing surface and the second bearing surface are sandwiched Angle, in general, the adjusted angle of the angle does not match the angle of the predetermined position. The angle at which the included angle changes the predetermined position may thus cause a certain error in the adjusted gap and the design gap size.
  • the relative position of the first lens 102 relative to the second lens component 200 is adjusted by an ingestion mechanism, the adjustment of the relative position comprising: adjusting the axis of the first lens component relative to the An angle of an axis of the second lens component, the first lens component is moved along the adjustment plane relative to the second lens component, and the lens component is moved in a direction perpendicular to the adjustment plane, The measured resolution of the optical system imaging (eg, MTF value, SFR value, or Tv Line value) is increased. Wherein the moving along the adjustment plane comprises translation and/or rotation on the adjustment plane. After active calibration, the angle between the axis of the first lens 102 and the axis of the second lens component 200 may not be zero.
  • the axis of the second lens component 200 can be represented by the axis of the second barrel 201 or the second lens 202.
  • Step 2 after the adjusted gap is recorded, the ingesting mechanism moves the first lens component 100 away from the second lens component to expose the second bearing surface 202c. After the dispensing process is performed on the second bearing surface 202c, the ingesting mechanism returns the first lens component 100 to the position at the time of recording.
  • Figure 21b is a cross-sectional view showing the positional relationship of the first lens and the second lens component after active calibration in accordance with one embodiment of the present invention.
  • Fig. 21e shows an enlarged schematic view of a partial area in Fig. 21b, the enlarged portion being the area within the circle in Fig. 21b. It should be noted that the position of the dispensing in this step is indicated by "2" in the figure, but the glue is not shown.
  • the adhesive material is subjected to a curing process including a thermosetting manner to achieve strength supporting the first and second lens components.
  • the first bearing surface 102c is located in the non-optical area of the first lens 102
  • the second bearing surface 202c is located in the non-optical area of the second lens 202, so the rubber material Located between the first bearing surface 102c and the second bearing surface 202c.
  • Step 3 mounting the first lens barrel 101 on the first lens 102 to enhance the structural strength of the first lens component 100 and the second lens 200 and to protect the lens.
  • the first lens barrel 101 is mounted on the top surface and/or the side surface of the first lens 102 by an ingestion mechanism, and may be mounted by using a threaded structure to achieve connection between the first lens barrel and the first lens.
  • Figure 21c shows a schematic cross-sectional view of the first lens barrel mounted on the basis of Figure 21b.
  • Fig. 21f shows an enlarged schematic view of a partial area in Fig. 21c, the enlarged portion being the area within the circle in Fig.
  • Fig. 21g shows an enlarged schematic view of a partial region in which the dispensing position of the glue between the first barrel and the second barrel is added on the basis of Fig. 21f.
  • the "1" is used to mark the dispensing position of the glue between the first barrel and the second barrel.
  • the ingestion mechanism preferably controls the gap between the first barrel and the second barrel to be the same size, that is, no correction is made between the barrel and the barrel, so that The first lens barrel and the second lens barrel have good appearance consistency. Therefore, the rubber material between the first barrel and the second barrel is shown to have the same size of "1" in the optical axis direction.
  • FIG. 25 is a cross-sectional view showing a camera module 1000 according to an embodiment of the present invention.
  • the camera module 1000 includes an optical lens and a photosensitive assembly 300.
  • the optical lens includes a first lens component 100, a second lens component 200, and a glue 400 that bonds the first lens component 100 and the second lens component 200 together.
  • the first lens component 100 includes a first lens barrel 101 and a first lens 102
  • the second lens component 200 includes a second lens barrel 201 and five second lenses 202.
  • the first barrel 101 functions as a light blocking function without supporting the first lens 102.
  • the first barrel 101 can be understood as being attached to the light shielding portion of the first lens 102. Referring to FIG.
  • the first lens barrel 101 surrounds the side surface of the first lens 101.
  • the first lens 102 includes an optical zone 102a and a non-optical zone 102b, and the first lens barrel 101 is attached to the side and top of the non-optical zone 102b.
  • the surface serves to shield the optical zone 102a from light.
  • the thickness of the first lens barrel 101 can be reduced.
  • the wall thickness of the first barrel 101 may be less than the thickness of the barrel required to support the first lens 102. This will help reduce the size of the optical lens or camera module.
  • the first lens 102 is directly bonded to the second lens barrel 102.
  • the gap 50 as shown in FIG. 24 does not cause the thickness of the glue 400 between the first lens component 100 and the second lens component 200 to become thick.
  • additional manufacturing tolerances due to assembly tolerances of the first lens and the first lens barrel as shown in FIG. 24 can be avoided.
  • the second lens component 200 may further include a motor 203, and the second lens barrel 202 may be mounted in a carrier of the motor 203 (the internal structure of the motor is not shown in FIG. 23).
  • the photosensitive member 300 includes a wiring board 301, a photosensitive chip 302 mounted on the wiring board 301, a cylindrical supporting body 303 mounted on the wiring board 301 and surrounding the photosensitive chip, and mounted on the cylindrical supporting body 303. Color filter 304.
  • the motor 203 is mounted on the top surface of the cylindrical support body 303 to fix the second lens component 200 and the photosensitive member 300 together. It is to be noted that in other embodiments of the present invention, the motor 203 of FIG.
  • the motor 203 of FIG. 23 may also be replaced by other structures such as a cylindrical support, or the motor 203 of FIG. 23 may be eliminated and the second barrel 201 may be directly used. It is mounted on the top surface of the cylindrical support body 303. It is noted that in other embodiments the motor 203 may also be replaced by other types of optical actuators, such as SMA (Shape Memory) actuators. Wherein, the optical actuator refers to a device for causing the optical lens to move relative to the photosensitive chip.
  • SMA Shape Memory
  • FIG. 26 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in one embodiment of the present invention.
  • the gap is located between the end face (non-optical face) of the non-optical zone of the first lens 102 and the second barrel 202.
  • the surface of the non-optical face of the first lens 102 may be roughened to increase its roughness, thereby increasing the adhesion between the second gel and the surface of the non-optical face.
  • active calibration may be performed to adjust the relative positions of the first and second lens components 100, 200, and then the first lens 102 and the first lens component 100.
  • Dispensing at the gap of the two lens components 200 for example, UV thermosetting glue
  • the glue material 400 is not contaminated to the first lens barrel 101 portion during dispensing, and then UV exposure is performed, and the curing adhesive material 400 can be received relatively externally.
  • the structure of the camera module or the optical lens is pre-fixed.
  • bake, cure all the glue, and fix the entire camera module or optical lens can also be interchanged.
  • the wall of the first barrel 101 of the first lens component 100 is as thin as possible.
  • the first lens component may also be composed of only one piece of light-shielding lens, wherein the lens shading process can prevent the stray light from affecting the imaging). The embodiment shown in Figure 35 will be further described below.
  • the second barrel 201 may be chamfered to form the gap to form an opening 401b facing the outside, and the chamfer is used to guide the glue that may overflow, preventing the first lens part.
  • the first barrel 101 of 100 is contaminated with glue.
  • the second barrel 201 may also be chamfered to form the gap toward the opening 401a of the optical lens optical axis, thereby diverting the glue that may overflow, preventing the lens from being contaminated by glue.
  • the dimensions of the two openings 401a, 401b in the direction along the optical axis are both larger than the average size of the gap.
  • the first lens 102 is closer to the front end of the optical lens than the second lens 202 (the front end of the optical lens refers to the light incident end, and the rear end refers to the end near the photosensitive member).
  • FIG. 27 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in another embodiment of the present invention.
  • the first lens component 100 and the second lens 200 have a first gap and a second gap therebetween.
  • the positions of the first gap and the second gap are indicated by "1" and "2" in Fig. 27, respectively.
  • the glue material includes a first glue material and a second glue material, wherein the first glue material and the second glue material are respectively coated on the first gap and the second gap, and the first gap is closer to the optical than the second gap The outside of the lens (ie, the second gap is closer to the optical axis of the optical lens than the first gap).
  • the second glue is interposed between the first lens 102 and the second lens 202, and the second glue provides an adhesive force greater than the adhesive force provided by the first glue.
  • the first gap is located between the non-optical surface 111 of the first lens 102 and the end surface 211 of the second barrel 201.
  • the second gap is between the non-optical face 112 of the first lens 101 and the non-optical face 212 of a second lens 202 that is closest to the first lens component 100.
  • the non-optical face 112 of the first lens 101 may be formed with a first boss 112a that is convex toward the second lens component 200 such that the second gap is between the first boss 112a and the non-optical face 212 of the second lens 202.
  • the first boss 112a may have a ring shape in a bottom view.
  • the cross-sectional shape of the first boss 112a is not limited, and for example, the cross-sectional shape thereof may be a trapezoidal shape, a rectangular shape or the like.
  • the wall of the first lens barrel 101 of the first lens component 100 is as thin as possible (for example, the wall thickness of the first lens barrel 101 can be less than The thickness of the barrel wall required to rigidly support the first lens 102), even the first lens component may consist of only one piece of lens that has been shaded (the lens shading process prevents stray light from affecting imaging).
  • the non-optical face of one lens is the surface of the portion of the lens that does not participate in optical imaging.
  • the portion of the lens that does not participate in optical imaging may be referred to as a non-optical zone, sometimes referred to as an inactive zone.
  • the non-optical zone of the lens can serve as a support.
  • the rubber material (including the first rubber material and the second rubber material) is used to support the first lens component 100 and the second lens component 200 such that the first lens component 100 and the second component
  • the relative position of the lens component 200 is maintained at a relative position determined by active calibration.
  • the first glue can be used for pre-fixing and the second glue can be used for permanent fixing.
  • the first glue is a UV glue and the UV glue can be cured by exposure.
  • the second adhesive is a thermosetting adhesive that can be cured by baking the lens or module.
  • the surface of the non-optical surface 212 of the second lens 202 coated with the second adhesive material may be roughened to increase the roughness thereof, thereby increasing the surface between the second adhesive material and the non-optical surface 212.
  • the surfaces of the non-optical faces 111, 112 of the first lens 102 may also be roughened to increase the roughness thereof, thereby increasing the adhesion between the second gel and the surface of the non-optical face.
  • FIG. 28 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • This embodiment is basically the same as the embodiment shown in FIG. 27, except that the non-optical surface 212 of the second lens 202 forms a first groove 212a, and the second gap is located at the first boss 112a and the Between the first grooves 212a.
  • the first boss 112a is annular in a bottom view, and the first groove 212a is annular in plan view. Providing a first groove corresponding to the first boss prevents the glue from overflowing and contaminating the lens.
  • FIG. 29 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • Figure 30 shows a top plan view of the second lens component 200 of the embodiment of Figure 29.
  • the first lens 102 has a plurality of first bosses 112b protruding toward the second lens component 200
  • the end surface 213 of the second lens component 200 has a housing for housing
  • a plurality of first grooves 213b of the plurality of first bosses 112b are disposed, and the second gap is located between the plurality of first bosses 112b and the plurality of first grooves 213b.
  • a plan view (refer to FIG.
  • the plurality of first grooves 213b are distributed on one circle. Accordingly, the plurality of first bosses 112b are also distributed on one circle in the bottom view.
  • the second glue may be applied to the bottom of the first recess 213b to prevent the glue from overflowing to the lens.
  • the solution of the present embodiment also increases the contact area of the first lens component 100 and the second lens component 200, thereby increasing the connection strength of the first lens component 100 and the second lens component 200.
  • the sidewalls of the plurality of first recesses 213b are formed by the second lens barrel 201, and the bottom surfaces of the plurality of first recesses 213b are closest to the first A non-optical face 212 of a second lens 202 of a lens component is formed.
  • FIG. 31 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100 and the second lens component 200 in still another embodiment of the present invention.
  • the first lens component 100 and the second lens 200 have a first gap and a second gap in the embodiment.
  • the glue material includes a first glue material and a second glue material, wherein the first glue material and the second glue material are respectively coated on the first gap and the second gap, and the first gap is closer to the optical than the second gap The outside of the lens (ie, the second gap is closer to the optical axis of the optical lens than the first gap).
  • the second glue provides an adhesion greater than the adhesion provided by the first glue.
  • the end surface of the second lens barrel 201 has a second boss 214a protruding toward the first lens component 100, and the non-optical surface of the first lens 102 has a second groove 114a, and the second gap is located at the Between the two bosses 214a and the second recesses 114a.
  • the first gap is located between the non-optical surface 111 of the first lens 102 and the end surface 211 of the second barrel 201.
  • the second boss 214a may have a ring shape in plan view.
  • the cross-sectional shape of the second boss 214a is not limited, and for example, the cross-sectional shape thereof may be a trapezoidal shape, a rectangular shape, or the like.
  • the second groove 114a may have a ring shape in a bottom view.
  • the wall of the first lens barrel 101 of the first lens component 100 is as thin as possible (for example, the wall thickness of the first lens barrel 101 may be smaller than the rigid support.
  • the thickness of the barrel wall required for the lens 102), even the first lens component may consist of only one piece of lens that has been shaded (where the lens shading process prevents stray light from affecting imaging).
  • the second gap has a second opening 402 that faces an optical axis of the optical lens, the size of the second opening 402 being greater in a direction along the optical axis The average size of the second gap.
  • the first gap has a first opening 401 facing an outer side of the optical lens, and a size of the first opening 401 in a direction along the optical axis is larger than an average size of the first gap.
  • the first opening 401 and the second opening 402 are designed to effectively divert spilled glue from contamination of the optical zone of the lens barrel or lens. Both the first opening 401 and the second opening 402 may be formed by making a chamfer on the end surface of the second barrel 201.
  • Fig. 35 is a partially enlarged cross-sectional view showing a bonding region of the first lens component 100' and the second lens component 200' in still another embodiment of the present invention.
  • the first lens component may be composed of only one lens that has been shaded. Among them, the lens shading treatment can avoid the influence of stray light on imaging.
  • the first lens component 100' includes a first lens 102' and a light blocking portion 101' attached to the first lens 102'.
  • the first lens 102' includes an optical zone 1021' and a non-optical zone 1022' (sometimes referred to as an inactive zone).
  • the optical zone 1021' is the area of the lens that participates in optical imaging.
  • the light shielding portion 101' is formed on the top and outer sides of the non-optical region 1022' to prevent stray light from affecting imaging.
  • the bottom surface of the non-optical zone 1022' may be a first flat surface.
  • the second lens component 200' includes at least one second lens 202' and a second lens barrel 201'. All of the second lenses 202' are mounted inside the second barrel 201'.
  • the top surface of the second barrel 201' includes a second flat surface.
  • a first gap 410' and a second gap 420' are formed between the first flat surface and the second flat surface.
  • the first gap 410' is closer to the outer side of the optical lens than the second gap 420', that is, the second gap 420' is closer to the optical axis of the optical lens than the first gap 410'.
  • the first glue is UV glue, and the UV glue can be cured by exposure.
  • the second adhesive is a thermosetting adhesive that can be cured by baking the lens or module.
  • the portion of the bottom surface of the non-optical region 1022' of the first lens 102' constituting the second gap may be roughened to increase the roughness thereof, thereby increasing the adhesion to the second adhesive.
  • the ingestion mechanism usually needs to grip (or adsorb) the lens component from the outside to adjust the relative positions of the first lens component and the second lens component.
  • the ingestion mechanism grips (or adsorbs) the lens barrel to indirectly move the lens to effect adjustment of the optical system.
  • the lens and the lens barrel are not expected to be installed differently (ie, the relative positions of the lens and the lens barrel are different), and this difference will result in mass production.
  • the gap size between the first lens component and the second lens component is unstable, making it difficult to perform active calibration. The embodiment of Figure 35 can avoid this problem.
  • the first adhesive material and the second adhesive material respectively use UV glue and thermosetting glue.
  • the thermosetting adhesive can provide greater adhesion than the UV adhesive, such that the second adhesive provides greater adhesion than the first adhesive provides.
  • the UV glue is applied to the first gap on the outside (i.e., the side farther from the optical axis), and the thermosetting glue is applied to the second gap located on the inner side (i.e., the side closer to the optical axis).
  • the UV glue is cured by direct illumination of the light to pre-fix the relative positions determined by the first lens component and the second lens component in accordance with the active calibration. Then, the pre-fixed optical lens is heated to solidify the thermosetting glue at the second gap, thereby enhancing the structural strength of the optical lens and improving the reliability of the optical lens.
  • the first adhesive may also be other photocurable adhesive materials (for example, may be UV thermosetting adhesive).
  • the second glue may also be other glues that are cured by heat, moisture, anaerobic or oxidative curing.
  • the first rubber material and the second rubber material may be the same material in a liquid state, for example, the first rubber material and the second rubber material may all be UV thermosetting glue.
  • the UV thermosetting glues located in the first gap and the second gap are respectively cured in different manners (for example, the UV thermosetting glue directly irradiating the first gap with light is used to complete the photocuring, and then the second gap is performed.
  • the UV thermosetting glue is thermally cured) to form different materials having different microstructures after curing, so that the adhesion of the second adhesive after curing is greater than the viscosity provided after curing of the first adhesive Together.
  • the microstructure may be, for example, a molecular structure, a micron-sized physical form, a molecular ratio, a lattice form, or the like.
  • the first rubber material and the second rubber material may not contact each other to avoid chemical changes after mixing the first rubber material and the second rubber material, thereby affecting the glue property.
  • This embodiment can further enhance the reliability of the optical lens or the camera module by avoiding chemical changes after mixing the first rubber material and the second rubber material.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap and the first gap are along an optical axis direction of the optical lens
  • the difference in size is less than the threshold (the threshold is less than 100 ⁇ m).
  • the number of lenses of the first lens component and the second lens component can be adjusted as needed.
  • the number of lenses of the first lens component and the second lens component may be two or four, respectively, or three and three, or four and two, respectively, or five and one, respectively.
  • the total number of lenses of the entire optical lens can also be adjusted as needed.
  • the total number of lenses of the optical lens can be six or five or seven.
  • the first lens component has a plurality of first lenses, the first lenses are held in mutual engagement to maintain a relative positional fixation therebetween.
  • the plurality of first lenses of the first lens component do not require the first lens barrel to provide a supporting function, thereby maintaining the structural stability of the optical system of the first lens component.
  • the first lens (the only one of the first lenses in each of the embodiments) of the foregoing embodiments is composed of a plurality of A first lens of a lens closest to the second lens component can be replaced. That is, the shape and configuration of the first lens in FIGS. 25-40 can be used for a first lens closest to the second lens component among the plurality of first lenses that are fitted to each other, thereby achieving a similar function.
  • Fig. 32 is a flow chart showing an optical lens assembling method in one embodiment of the present invention. Referring to Figure 32, the method includes:
  • Step 10 preparing a first lens component and a second lens component, wherein the first lens component includes at least one first lens, and when the number of the first lenses is plural, the first lenses are mutually fitted The relative positions of each other are fixed, and the second lens component includes a second barrel and at least one second lens located in the second barrel.
  • Step 20 pre-positioning the first lens component and the second lens component such that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 30 adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration.
  • Step 40 bonding the first lens component and the second lens component by a glue material, wherein the glue material is interposed between the first lens and the second lens component.
  • the first lens component and the second lens component are supported by the cured glue material so that the relative positions of the first lens component and the second lens component are maintained by active calibration. relative position.
  • the glue coating may be performed on the gap between the first lens component and the second lens component, and then step 30 is performed to adjust and determine the first The relative position of a lens component and a second lens component.
  • step 40 is performed to cure the glue, thereby supporting the first lens component and the second lens component with the cured glue, thereby making the first lens component and the second lens
  • step 30 may be performed first to adjust and determine the relative positions of the first lens component and the second lens component.
  • the first lens component (or the second lens component) After determining the relative position, the first lens component (or the second lens component) is temporarily removed, and then the glue coating is performed, and then the first lens component (or the second lens component) is moved based on the determined relative position. return. The glue is finally cured such that the relative positions of the first lens component and the second lens component are maintained at relative positions determined by active calibration.
  • a first gap and a second gap are formed between the first lens component and the second lens component, wherein the first gap is smaller than the first The two gaps are close to the outer side of the optical lens.
  • Figure 33 shows a flow chart of step 40 in one embodiment of the invention.
  • the step 40 includes sub-steps:
  • Step 401 applying a first glue and a second glue to the first gap and the second gap, respectively, wherein the adhesion of the second glue is greater than the adhesion of the first glue force.
  • Step 402 curing the first glue to pre-fix the first lens component and the second lens component.
  • Step 403 curing the second glue to permanently bond the lens component and the second lens component.
  • the first glue may be a UV glue
  • the second glue may be a thermosetting glue.
  • step 402 when the first lens barrel and the second lens are bonded by the first glue, the solidification deformation of the glue material has less force on the lens barrel, thereby reducing the deformation of the lens barrel.
  • step 403 since the first lens is directly bonded to the corresponding second lens component, the first gap and the second gap increase due to the assembly tolerance of the first lens barrel and the first lens can be avoided, thereby avoiding the glue.
  • the thickness of the material is too large. If the thickness of the glue is too large, the deformation that will occur when the glue is cured will cause the lens barrel to mutate, which in turn causes the first lens or the second lens to be misaligned.
  • the embodiment can avoid the change of the position of the lens caused by the deformation of the first barrel and/or the second barrel, thereby ensuring the permanent relative position and active between the first lens and the second lens formed after curing.
  • the relative position between the first lens component and the second lens component determined by the calibration is consistent, thereby ensuring that the image quality is as expected.
  • the first gap formed is located in the at least one The non-optical surface of one of the first lenses closest to the second lens component and the end surface of the second lens barrel.
  • the second gap formed is located in a first lens closest to the second lens component and a second lens closest to the first lens component among the first lens and the at least one second lens between.
  • the first glue and the second glue are respectively made of UV glue and thermosetting glue.
  • the thermosetting adhesive can provide greater adhesion than the UV adhesive, such that the second adhesive provides greater adhesion than the first adhesive provides.
  • the UV glue is applied to the first gap on the outside (i.e., the side farther from the optical axis), and the thermosetting glue is applied to the second gap located on the inner side (i.e., the side closer to the optical axis).
  • the UV glue is cured by direct illumination of the light to pre-fix the relative positions determined by the first lens component and the second lens component in accordance with the active calibration. Then, the pre-fixed optical lens is heated to solidify the thermosetting glue at the second gap, thereby enhancing the structural strength of the optical lens and improving the reliability of the optical lens.
  • the first adhesive may also be other photocurable adhesive (e.g., may be a UV thermoset).
  • the second glue may also be other glues that are cured by heat, moisture, anaerobic or oxidative curing.
  • the first rubber material and the second rubber material may be the same material in a liquid state, for example, the first rubber material and the second rubber material may all be UV thermosetting glue.
  • the UV thermosetting glues located in the first gap and the second gap are respectively cured in different manners (for example, the UV thermosetting glue directly irradiating the first gap with light is used to complete the photocuring, and then the second gap is performed.
  • the UV thermosetting glue is thermally cured) to form different materials having different microstructures after curing, so that the adhesion of the second adhesive after curing is greater than the viscosity provided after curing of the first adhesive Together.
  • the microstructure may be, for example, a molecular structure, a micron-sized physical form, a molecular ratio, a lattice form, or the like.
  • the first rubber material and the second rubber material may not contact each other to avoid chemical changes after mixing the first rubber material and the second rubber material, thereby affecting the glue property.
  • This embodiment can further enhance the reliability of the optical lens or the camera module by avoiding chemical changes after mixing the first rubber material and the second rubber material.
  • the first gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap has a size of 30-100 ⁇ m along the optical axis direction of the optical lens.
  • the second gap and the first gap are along an optical axis direction of the optical lens
  • the difference in size is less than the threshold (the threshold is less than 100 ⁇ m).
  • a camera module assembly method comprising: assembling an optical lens by using the optical lens assembly method of any of the foregoing embodiments, and then using the assembled optical lens to manufacture a camera module.
  • FIG. 34 is a flowchart of a method for assembling a camera module according to another embodiment of the present invention, the method including:
  • Step 100 preparing a first lens component and a camera module component, wherein the camera module component includes a second lens component and a photosensitive module combined, wherein the first lens component includes at least one first lens, and
  • the first lens component includes at least one first lens
  • the second lens component includes a second lens barrel and at least the second lens barrel A second lens.
  • the prepared first lens component may include a first lens barrel, the wall of the first lens barrel being thinned as much as possible, and even the first lens component may be only one piece
  • the first lens is made up of shading treatment (lens shading treatment can prevent stray light from affecting imaging).
  • Step 200 pre-positioning the first lens component and the second lens component such that the at least one second lens and the at least one first lens together form an imageable optical system.
  • Step 300 adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration.
  • Step 400 bonding the first lens component and the second lens component by a glue material, wherein the glue material is interposed between the first lens and the second lens component.
  • the second lens component and the photosensitive module are assembled together to form a camera module component, and then the camera module component and the first lens component are assembled to complete Camera module.
  • the process of assembling the camera module component and the first lens component may also be variously modified.
  • the assembly of the camera module component and the first lens component may be implemented by referring to various embodiments of the optical lens assembly method described above. .
  • the active calibration described in this application can adjust the relative positions of the first lens component and the second lens component in a plurality of degrees of freedom.
  • Figure 37a illustrates the relative position adjustment in active calibration in one embodiment of the invention.
  • the first lens component (which may also be the first lens) may move in the x, y, and z directions with respect to the second lens component (ie, the relative position adjustment in this embodiment has three Degree of freedom).
  • the z direction is the direction along the optical axis
  • the x, y direction is the direction perpendicular to the optical axis.
  • the x and y directions are all in one adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • Figure 37b illustrates the rotation adjustment in active calibration of another embodiment of the present invention.
  • the relative position adjustment increases the degree of freedom of rotation, i.e., the adjustment of the r direction, in addition to the three degrees of freedom of FIG.
  • the adjustment in the r direction is the rotation in the adjustment plane P, i.e., the rotation about the axis perpendicular to the adjustment plane P.
  • Fig. 37c shows a relative position adjustment manner in which the v and w direction adjustments are added in the active calibration according to still another embodiment of the present invention.
  • the v direction represents a rotation angle of the xoz plane
  • the w direction represents a rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction may synthesize a vector angle
  • this vector angle represents a total tilt state. That is, the tilting posture of the first lens component relative to the second lens component can be adjusted by adjusting the v direction and the w direction (that is, the optical axis of the first lens component relative to the optical axis of the second lens component The slope).
  • the above adjustment of the six degrees of freedom of x, y, z, r, v, w may affect the imaging quality of the optical system (for example, affecting the magnitude of the resolution).
  • the relative position adjustment manner may be to adjust only one of the above six degrees of freedom, or a combination of two or more of them.
  • FIGS. 36a-b illustrate an assembly process of an optical lens according to an embodiment of the present invention, including:
  • Step 1 the second lens component 200 is fixed by a fixing mechanism (not shown), and an ingestion mechanism (not shown) grips (or adsorbs) the first lens 102 of the first lens component 100 to perform a predetermined position, so that the first The second lens component 100, 200 constitutes an imageable optical system.
  • Figure 36a is a cross-sectional view showing the first lens and the second lens component in a predetermined position in accordance with one embodiment of the present invention.
  • Fig. 36c shows an enlarged schematic view of a partial area in Fig. 36a, the enlarged portion being the area within the circle in Fig. 36a. Referring to FIGS.
  • the first lens component 100 has at least one first bearing surface 102c
  • the second lens component 200 has at least one second bearing surface 201c, at least one of the first bearing surfaces.
  • the 102c and the at least one of the second bearing surfaces 201c constitute at least one gap between the first bearing surface and the second bearing surface.
  • the first lens 102 in this embodiment functions both as a support and as an optical power.
  • the first bearing surface 102c is provided by a non-optical zone of the first lens 102, which in the present embodiment is preferably provided by a second lens barrel 201.
  • Step 2 actively adjusting the first lens component relative to the second bearing surface of the second lens component by an ingesting mechanism, the active adjustment comprising photographing a reference object, preferably a target, and the image
  • the correction amount is obtained in the information, and the correction amount is preferably an MTF value, or may be an SFR or Tv Line value.
  • the ingesting mechanism adjusts the positions of the first and second lens components to complete the optical system.
  • the reference standard of the specific optical system includes the improved optical system having the performance of reducing the aberration and improving the resolution compared to the unadjusted optical system, and the perfect index of the optical system can also be set as needed.
  • Pre-positioning is the starting step of the subsequent process flow, and generally follows the design dimensions of the gap when the first and second lens components are pre-positioned.
  • Figure 36b is a cross-sectional view showing the positional relationship of the first lens and the second lens component after active calibration in accordance with one embodiment of the present invention.
  • Fig. 36d shows an enlarged schematic view of a partial area in Fig. 36b, the enlarged portion being the area within the circle in Fig. 36b.
  • the angle between the axis of the first lens 102 and the axis of the second lens component 200 may not be zero, in which case the first bearing surface 102c and the second bearing surface 201c are not parallel.
  • the second lens component is actively adjusted relative to the first bearing surface by an ingesting mechanism, the active adjustment comprising the first bearing surface and the second bearing surface relative to the X axis and/or Or adjusting the Y-axis and/or the Z-axis direction such that the relative positions of the first bearing surface and the second bearing surface are changed, such that the first bearing surface and the second bearing surface are sandwiched Angle, in general, the adjusted angle of the angle does not match the angle of the predetermined position. The angle at which the included angle changes the predetermined position may thus cause a certain error in the adjusted gap and the design gap size.
  • the relative position of the first lens 102 relative to the second lens component 200 is adjusted by an ingestion mechanism, and the adjustment of the relative position includes: adjusting the axis of the first lens component relative to the An angle of an axis of the second lens component, the first lens component is moved along the adjustment plane relative to the second lens component, and the first lens component is along the second lens component Moving perpendicular to the direction of the adjustment plane, thereby increasing the measured resolution of the optical system imaging (eg, MTF value, SFR value, or Tv Line value).
  • the moving along the adjustment plane comprises translation and/or rotation on the adjustment plane.
  • the angle between the axis of the first lens 102 and the axis of the second lens component 200 may not be zero.
  • the axis of the second lens component 200 can be represented by the axis of the second barrel 201 or the second lens 202.
  • Step 3 After the determined gap is recorded, the ingestion mechanism moves the first lens component 100 away from the second lens component to expose the second bearing surface 201c. Performing a dispensing process on the second bearing surface 201c, then returning the first lens component 100 to the position at the time of recording by the ingesting mechanism, and then curing the glue to support and fix the first lens component and The second lens component.
  • Figure 36e shows an enlarged schematic view of a partial region of the dispensing position of the glue between the first lens and the second barrel, based on Figure 36d. The position of the dispensing in this step is indicated by "2".
  • the light shielding portion in this embodiment can be blackened, which can greatly reduce the size of the first lens component, and the glue material is completely Between the first lens and the second lens component, the chain reaction of the lens variation caused by the variation of the lens is avoided by the variation of the lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种光学镜头,包括:第一镜头部件(100),其包括第一镜筒(101)和安装在第一镜筒内的至少一个第一镜片(102);第二镜头部件(200),其包括第二镜筒(201)和安装在第二镜筒内的至少一个第二镜片(202),并且至少一个第二镜片与至少一个第一镜片共同构成可成像的光学系;以及胶材,其将第一镜头部件和第二镜头部件粘结在一起,并且胶材的至少一部分介于镜筒和镜片之间;其中镜筒和镜片之间是第二镜筒与第一镜片之间,或者是第一镜筒与第二镜片之间。还提供了相应的光学镜头组装方法、摄像模组及光学镜头和摄像模组组装方法。可以减小镜筒形变造成的镜片位置偏移;可以提高光学镜头或摄像模组的成像品质。

Description

光学镜头、摄像模组及其组装方法
交叉引用
本申请要求于2018年3月16日向中国专利局提交的、发明名称为“光学镜头、摄像模组及其组装方法”的第201810220286.2号发明专利申请、于2018年3月16日向中国专利局提交的、名称为“光学镜头和摄像模组”的第201820365043.3号实用新型专利申请、于2018年3月16日向中国专利局提交的、发明名称为“光学镜头、摄像模组及其组装方法”的第201810220892.4号发明专利申请、于2018年3月16日向中国专利局提交的、名称为“光学镜头和摄像模组”的第201820366692.5号实用新型专利申请的优先权、于2018年3月16日向中国专利局提交的、发明名称为“光学镜头、摄像模组及其组装方法”的第201810220657.7号发明专利申请、于2018年3月16日向中国专利局提交的、名称为“光学镜头和摄像模组”的第201820366205.5号实用新型专利申请的优先权上述专利申请的全部内容通过引用并入本文。
技术领域
本发明涉及光学成像技术领域,具体地说,本发明涉及光学镜头、摄像模组及其组装方法。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素,小尺寸,大光圈是现有摄像模组不可逆转的发展趋势。当前,市场对摄像模组的成像质量 提出了越来越高的需求。影响既定光学设计的摄像模组解像力的因素包括光学成像镜头的品质和模组封装过程中的制造误差。
具体来说,在光学成像镜头的制造过程中,影响镜头解像力因素来自于各元件及其装配的误差、镜片间隔元件厚度的误差、各镜片的装配配合的误差以及镜片材料折射率的变化等。其中,各元件及其装配的误差包含各镜片单体的光学面厚度、镜片光学面矢高、光学面面型、曲率半径、镜片单面及面间偏心,镜片光学面倾斜等误差,这些误差的大小取决于模具精度与成型精度控制能力。镜片间隔元件厚度的误差取决于元件的加工精度。各镜片的装配配合的误差取决于被装配元件的尺寸公差以及镜头的装配精度。镜片材料折射率的变化所引入的误差则取决于材料的稳定性以及批次一致性。
上述各个元件影响解像力的误差存在累积恶化的现象,这个累计误差会随着透镜数量的增多而不断增大。现有解像力解决方案为对于对各相对敏感度高的元件的尺寸进行公差控制、镜片回转进行补偿提高解像力,但是由于高像素大光圈的镜头较敏感,要求公差严苛,如:部分敏感镜头1um镜片偏心会带来9′像面倾斜,导致镜片加工及组装难度越来越大,同时由于在组装过程中反馈周期长,造成镜头组装的过程能力指数(CPK)低、波动大,导致不良率高。且如上所述,因为影响镜头解像力的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且不能满足市场日益提高的成像品质需求。
另一方面,在摄像模组的加工过程中,各个结构件的组装过程(例如感光芯片贴装、马达镜头锁附过程等)都可能导致感光芯片倾斜,多项倾斜叠加,可能导致成像模组的解析力不能达到既定规格,进而造成模组厂良品率低下。近些年来,模组厂通过在将成像镜头和感光模组组装时,通过主动校准(Active Alignment)工艺对感光芯片的倾斜、镜头光轴和感光芯片光轴的相对偏移和倾斜进行补偿。然而这种工艺补偿能力有限。由于多种影响解像力的像差来源于光学系统(特别是光学成像镜头)本身的能力,当光学成像镜头本身的解像力不足 时,现有的感光模组主动校准工艺是难以补偿的。
为克服上述缺陷,本申请人提出了一种基于主动校准工艺调整和确定上、下子镜头的相对位置,然后将上、下子镜头按照所确定的相对位置粘结在一起,进而制造出完整的光学镜头或摄像模组的组装方法。这种解决方案能够提升大批量生产的光学镜头或摄像模组的过程能力指数(CPK);能够使得对物料(例如用于组装光学镜头或摄像模组的子镜头或感光组件)的各个元件的精度及其装配精度的要求变宽松,进而降低光学成像镜头以及摄像模组的整体成本;能够在组装过程中对摄像模组的各种像差进行实时调整,降低不良率,降低生产成本,提升成像品质。然而,基于上、下子镜头的主动校准和粘结是一种全新的生产工艺,要基于这种生产工艺实现稳定可靠的大批量生产,仍面临诸多挑战。例如,上子镜头的镜片和镜筒之间存在组装公差,而这种组装公差可能给基于主动校准工艺制造的光学镜头带来制造公差。具体来说,图1示出了在上子镜头无组装公差的理想情况下,基于主动校准工艺制造的光学镜头的一个示例的局部剖面示意图,该示例中,上子镜头的镜筒与下子镜头的镜筒直接连接,并起到支撑作用。其中上子镜头包括上镜筒11和上镜片12,上镜筒11和上镜片12紧密贴合,属于无组装公差的理想情况。下子镜头包括下镜筒11和下镜片12。当上下子镜头通过胶材40粘合在一起时,胶材可以具有一个很薄的厚度。图2示出了在上子镜头有组装公差的实际情况下,基于主动校准工艺制造的光学镜头的一个示例的局部剖面示意图。参考图2,上子镜头中,上镜片12的上表面未与上镜筒11紧密的贴合,二者之间具有组装公差导致的间隙50,这使得在主动校准后,上子镜头和下子镜头之间的胶材40填充空间变大,不但影响胶材涂布,还会使得胶材层相对于图1所示的理想情况变厚。而胶材越厚其可能导致的变异量就越大。具体来说,利用胶材将上子镜头的镜筒和下子镜头进行粘结,胶材固化形变过程中,胶材会对镜筒形成作用力,该作用力将导致镜筒发生不期望的形变,进而导致安装在该镜筒内的镜片形状和位置发生变化。而胶材越厚,上述不期望的形变就越大。这导致胶材完全固化后实际的光学系统的镜片位置与主动校准所确定的光学系统 的镜片位置存在偏差,这可能导致成像质量达不到预期。再例如,胶材的膨胀系数是固定的,但布置在上、下子镜头之间的胶材往往是不均匀的(例如上、下镜筒产生溢胶会导致胶材厚度不均),这容易导致镜筒受力不均造成形变,进而造成镜片变异,或者可能导致上子镜头发生位置偏移。以上问题均可能导致成像质量降低。
发明内容
本发明旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。
根据本发明的一个方面,提供了一种光学镜头,包括:第一镜头部件,其包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片;第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;以及胶材,其将所述第一镜头部件和所述第二镜头部件粘结在一起,并且所述胶材的至少一部分介于所述第二镜筒与所述第一镜片之间,或者介于所述第一镜筒与所述第二镜片之间。
在一个实施例中,所述第一镜头部件和所述第二镜头部件之间具有第一间隙和第二间隙,所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;所述胶材包括位于所述第一间隙的第一胶材和位于所述第二间隙的第二胶材;并且所述第一胶材和所述第二胶材的布置位置和材料适于使所述第一胶材和所述第二胶材在不同的时间被先后固化。
在一个实施例中,所述第一胶材和所述第二胶材具有不同材质,并且所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
在一个实施例中,所述第一胶材为通过光固化的胶材。
在一个实施例中,所述第二胶材为通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在一个实施例中,所述第一胶材为UV胶或UV热固胶。
在一个实施例中,所述第二胶材为热固胶或UV热固胶。
在一个实施例中,所述第一胶材和所述第二胶材在液态时为相同材质,并且所述第一胶材和所述第二胶材在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
在一个实施例中,所述第一胶材和所述第二胶材均为UV热固胶。
在一个实施例中,所述第一胶材和所述第二胶材彼此不接触。
在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
在一个实施例中,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
在一个实施例中,所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间。
在一个实施例中,所述第二间隙位于所述第一镜筒的端面与最靠近第一镜筒的第二镜片的非光学面之间,并且所述最靠近第一镜筒的第二镜片的非光学面具有经过粗糙化处理的表面;或者所述第二间隙位于所述第二镜筒的端面与最靠近第二镜筒的第一镜片的非光学面之间,并且所述最靠近第二镜筒的第一镜片的非光学面具有经过粗糙化处理的表面。
在一个实施例中,所述胶材用于在固化后支撑所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
在一个实施例中,所述第二镜筒的端面包括一段平整面,所述第一间隙位于所述平整面与所述第一镜筒的端面之间,所述第二间隙位于所述平整面与所述第一镜片的非光学面之间。
在一个实施例中,粘结第二镜头部件的第一镜片的外侧面和所述第一镜筒的内侧面之间具有第三间隙,所述第二镜头部件的第一镜片和所述第一镜筒通过填充在所述第三间隙的第三胶材彼此固定。
在一个实施例中,所述第二间隙具有朝向所述光学镜头的光轴的第二开口,在沿着所述光轴的方向上所述第二开口的尺寸大于所述第二间隙的平均尺寸。
在一个实施例中,所述第一间隙具有朝向所述光学镜头的外侧的第一开口,在沿着所述光轴的方向上所述第一开口的尺寸大于所述第一间隙的平均尺寸。
在一个实施例中,所述第一镜片比所述第二镜片靠近所述光学镜头的前端。
在一个实施例中,与所述第一镜筒粘结的第二镜片的端面具有环形凹槽,所述环形凹槽位于所述第二间隙与该第二镜片的光学面之间。
在一个实施例中,与所述第一镜筒粘结的第二镜片的端面具有环形凸台,所述第二间隙位于所述环形凸台与所述第一镜筒之间。
在一个实施例中,与所述第二镜筒粘结的第一镜片的端面具有环形凸台,所述第二间隙位于所述环形凸台与所述第二镜筒之间。
在一个实施例中,所述凸台的截面形状为梯形或矩形。
根据本发明的另一方面,还提供了一种摄像模组,包括前述实施例所提供的光学镜头。
根据本发明的又一方面,还提供了一种光学镜头组装方法,包括:对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于所述第二镜筒与所述第一镜片之间,或者介于所述第一镜筒与所述第二镜片之间。
在一个实施例中,所述的通过胶材粘结包括:利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位 置。
在一个实施例中,所述的对所述第一镜头部件和所述第二镜头部件进行预定位还包括:使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;所述的通过胶材粘结包括:将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力;固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定;以及固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。
在一个实施例中,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤中,所形成的所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间;并且,所形成的所述第二间隙位于所述第一镜筒的端面与所述至少一个第二镜片中最靠近所述第一镜筒的一个镜片的非光学面之间,或者位于所述第二镜筒的端面与所述至少一个第一镜片中最靠近所述第二镜筒的一个镜片的非光学面之间。
在一个实施例中,在所述的通过胶材粘结的步骤中,所述第一胶材为UV胶或UV热固胶,所述第二胶材为热固胶或UV热固胶。
根据本发明的再一方面,还提供了一种摄像模组组装方法,包括:利用前述的光学镜头组装方法组装光学镜头;以及利用所组装的光学镜头制作摄像模组。
根据本发明的再一方面,还提供了一种摄像模组组装方法,包括:对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于镜筒和镜片之间,并且所述的镜筒和镜片之间是所述第二镜筒与 所述第一镜片之间,或者是所述第一镜筒与所述第二镜片之间。
根据本发明的再一方面,提供了一种光学镜头,包括:第一镜头部件,其包括至少一个第一镜片;第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;以及胶材,其将所述第一镜头部件和所述第二镜头部件粘结在一起,并且所述胶材的至少一部分介于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片之间。
在一个实施例中,所述最靠近所述第二镜头部件的一个第一镜片的轴线与所述最靠近所述第一镜头部件的一个第二镜片的轴线之间具有不为零的夹角。
在一个实施例中,所述第一镜头部件还包括第一镜筒,所述第一镜片承靠并固定于所述第一镜筒。
在一个实施例中,所述第一镜片的顶面和/或外侧面承靠于所述第一镜筒。
在一个实施例中,所述第一镜筒的轴线与所述第二镜筒的轴线重合或平行。
在一个实施例中,所述第一镜筒和所述第二镜筒之间的胶材在光轴方向上的厚度相同。
在一个实施例中,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
在一个实施例中,所述胶材包括第一胶材和第二胶材,所述第二胶材介于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片之间,并且所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。
在一个实施例中,所述第一镜头部件和所述第二镜头部件之间具有第一间隙和第二间隙,所述第一胶材和所述第二胶材分别涂覆在所 述第一间隙和所述第二间隙,并且所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
在一个实施例中,所述第一胶材为通过光固化的胶材。
在一个实施例中,所述第二胶材为通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在一个实施例中,所述第一胶材为UV胶或UV热固胶。
在一个实施例中,所述第二胶材为热固胶或UV热固胶。
在一个实施例中,所述第一胶材和所述第二胶材在液态时为相同材质,并且所述第一胶材和所述第二胶材在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
在一个实施例中,所述第一胶材和所述第二胶材均为UV热固胶。
在一个实施例中,所述第一胶材和所述第二胶材彼此不接触。
在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
在一个实施例中,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
在一个实施例中,所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间。
在一个实施例中,所述第二间隙位于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片的非光学面与所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片的非光学面之间。
在一个实施例中,所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片的非光学面具有经过粗糙化处理的表面。
在一个实施例中,所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片的非光学面具有经过粗糙化处理的表面。
在一个实施例中,所述胶材用于支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相 对位置保持在通过主动校准所确定的相对位置。
在一个实施例中,所述第二间隙具有朝向所述光学镜头的光轴的第二开口,在沿着所述光轴的方向上所述第二开口的尺寸大于所述第二间隙的平均尺寸。
在一个实施例中,所述第一间隙具有朝向所述光学镜头的外侧的第一开口,在沿着所述光轴的方向上所述第一开口的尺寸大于所述第一间隙的平均尺寸。
在一个实施例中,所述第一镜片比所述第二镜片靠近所述光学镜头的前端。
在一个实施例中,与所述第一镜片粘结的所述第二镜片的端面具有环形凹槽,所述环形凹槽位于所述第二间隙与该第二镜片的光学面之间。
在一个实施例中,与所述第一镜片粘结的所述第二镜片的端面具有凸台,所述第二间隙位于所述凸台与所述第一镜片之间。
在一个实施例中,与所述第二镜片粘结的所述第一镜片的端面具有凸台,所述第二间隙位于所述凸台与所述第二镜片之间。
在一个实施例中,所述凸台的截面形状为矩形、梯形、三角形或半圆形。
在一个实施例中,与所述第一镜片粘结的所述第二镜片的端面具有第二凸台,与所述第二镜片粘结的所述第一镜片的端面具有第一凸台,所述第二间隙位于所述第一凸台与所述第二凸台之间。
在一个实施例中,与所述第一镜片粘结的所述第二镜片的端面具有环形坝,所述环形坝位于该第二镜片的光学区与所述第二间隙之间;并且,在垂直于所述光学镜头的光轴的方向上,所述环形坝与所述凸台之间具有至少50μm的间隙。
在一个实施例中,与所述第一镜片粘结的所述第二镜片的非光学面具有向内凹进的台阶或者凹槽。
根据本发明的再一方面,还提供了一种摄像模组,包括前述的光学镜头。
根据本发明的再一方面,还提供了一种光学镜头组装方法,包括:对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述第一 镜头部件包括至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于所述第一镜片和所述第二镜片之间。
在一个实施例中,所述主动校准包括:通过与所述第一镜片的直接接触来摄取所述第一镜片,进而移动所述第一镜片以调节和确定所述第一镜片与所述第二镜头部件的相对位置。
在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜片的轴线相对于所述第二镜片的轴线的夹角。
在一个实施例中,所述主动校准还包括:沿着平面移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置;沿着所述平面的移动包括在所述平面上的平移和/或转动。
在一个实施例中,所述主动校准还包括:沿着垂直于所述平面的方向移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的在垂直于所述平面的方向上的相对位置。
在一个实施例中,所述通过胶材粘结包括:在所述第一镜片与所述第二镜片之间涂覆胶材,使所述第一镜片与所述第二镜片之间的胶材固化以支撑并固定所述第一镜片和所述第二镜头部件,使所述第一镜片和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置;以及所述光学镜头组装方法还包括:在使所述第一镜片与所述第二镜片之间的胶材固化后,将第一镜筒安装于所述第一镜片。
在一个实施例中,将第一镜筒安装于所述第一镜片包括:使所述第一镜筒承靠于所述第一镜片的顶面和/或外侧面。
在一个实施例中,将第一镜筒安装于所述第一镜片还包括:在所述第一镜筒和所述第二镜筒之间涂布胶材并粘结所述第一镜筒和所述 第二镜筒。
在一个实施例中,将第一镜筒安装于所述第一镜片还包括:使所述第一镜筒的轴线与所述第二镜筒的轴线重合或平行。
在一个实施例中,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
在一个实施例中,所述的通过胶材粘结包括:利用固化的胶材支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
在一个实施例中,所述的对所述第一镜头部件和所述第二镜头部件进行预定位还包括:使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;以及所述的通过胶材粘结包括:将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力;固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定;以及固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。
在一个实施例中,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤中,所形成的所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间;并且,所形成的所述第二间隙位于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片之间。
在一个实施例中,在所述的通过胶材粘结的步骤中,所述第一胶材为光固胶,所述第二胶材为热固胶。
根据本发明的再一方面,还提供了一种摄像模组组装方法,包括:利用前述的光学镜头组装方法组装光学镜头;以及利用所组装的光学镜头制作摄像模组。
根据本发明的再一方面,还提供了一种摄像模组组装方法,包括:对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述摄像 模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于所述第一镜片与所述第二镜片之间。
根据本发明的再一方面,提供了一种光学镜头,包括:第一镜头部件,其包括至少一个第一镜片以及位于所述至少一个第一镜片的非光学区的顶面和侧面的遮光部;第二镜头部件,其包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片,并且至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;以及胶材,其将所述第一镜头部件和所述第二镜头部件粘结在一起,并且所述胶材介于所述第一镜片和所述第二镜头部件之间。
在一个实施例中,所述最靠近所述第二镜头部件的一个第一镜片的轴线与所述最靠近所述第一镜头部件的一个第二镜片的轴线之间具有不为零的夹角。
在一个实施例中,所述遮光部为第一镜筒,所述至少一个第一镜片安装在所述第一镜筒内。
在一个实施例中,所述胶材介于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片和所述第二镜筒的端面之间。
在一个实施例中,所述胶材介于所述最接近所述第二镜头部件的一个第一镜片的非光学面和所述第二镜筒的端面之间。
在一个实施例中,所述胶材包括第一胶材和第二胶材,所述第二胶材介于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片之间,并且所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。
在一个实施例中,所述第一镜头部件和所述第二镜头部件之间具有第一间隙和第二间隙,所述第一胶材和所述第二胶材分别涂覆在所述第一间隙和所述第二间隙,并且所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
在一个实施例中,所述第二镜筒的顶面包括第二平整面,所述第一间隙和所述第二间隙均位于所述第二平整面与所述第一镜片的非光学区的底面之间。
在一个实施例中,所述第一间隙位于所述的最接近所述第二镜头部件的一个第一镜片与所述第二镜筒的端面之间;以及所述第二间隙位于所述的最接近所述第二镜头部件的一个第一镜片与所述的最接近所述第一镜头部件的一个第二镜片之间。
在一个实施例中,所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片的非光学面具有经过粗糙化处理的表面。
在一个实施例中,所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片的非光学面具有经过粗糙化处理的表面。
在一个实施例中,所述胶材用于支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
在一个实施例中,所述第一胶材为通过光固化的胶材。
在一个实施例中,所述第二胶材为通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在一个实施例中,所述第一胶材为UV胶或UV热固胶。
在一个实施例中,所述第二胶材为热固胶或UV热固胶。
在一个实施例中,所述第一胶材和所述第二胶材在液态时为相同材质,并且所述第一胶材和所述第二胶材在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
在一个实施例中,所述第一胶材和所述第二胶材均为UV热固胶。
在一个实施例中,所述第一胶材和所述第二胶材彼此不接触。
在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向 上的尺寸为30-100μm。
在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
在一个实施例中,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
在一个实施例中,所述第二间隙具有朝向所述光学镜头的光轴的第二开口,在沿着所述光轴的方向上所述第二开口的尺寸大于所述第二间隙的平均尺寸。
在一个实施例中,所述第一间隙具有朝向所述光学镜头的外侧的第一开口,在沿着所述光轴的方向上所述第一开口的尺寸大于所述第一间隙的平均尺寸。
在一个实施例中,所述第一镜片比所述第二镜片靠近所述光学镜头的前端。
在一个实施例中,所述的最接近所述第二镜头部件的一个第一镜片具有朝向所述第二镜头部件凸出的第一凸台,并且所述第二间隙位于所述第一凸台与所述的最接近所述第一镜头部件的一个第二镜片的非光学面之间。
在一个实施例中,所述的最接近所述第一镜头部件的一个第二镜片的非光学面具有第一凹槽,所述第二间隙位于所述第一凸台和所述第一凹槽之间。
在一个实施例中,所述第一凸台在仰视图中呈环形,且所述第一凹槽在俯视图中呈环形。
在一个实施例中,所述的最接近所述第二镜头部件的一个第一镜片具有朝向所述第二镜头部件凸出的多个第一凸台,且在仰视图中所述多个第一凸台分布在一个圆上;并且所述第二镜头部件的端面具有用于容纳所述多个第一凸台的多个第一凹槽,所述第二间隙位于所述多个第一凸台和所述多个第一凹槽之间。
在一个实施例中,所述多个第一凹槽的侧壁由所述第二镜筒形成,所述多个第一凹槽的底面由所述的最接近所述第一镜头部件的一个第二镜片的非光学面形成。
在一个实施例中,所述第二镜筒的端面具有朝向所述第一镜头部件的第二凸台,且所述的最接近所述第二镜头部件的一个第一镜片的非光学面具有第二凹槽,所述第二间隙位于所述第二凸台和所述第二凹槽之间。
根据本发明的再一方面,还提供了一种摄像模组,其包括前述的光学镜头。
根据本发明的再一方面,还提供了一种光学镜头组装方法,包括:对所述第一镜头部件和所述第二镜头部件进行预定位,其中第一镜头部件包括至少一个第一镜片,并且当所述第一镜片的数目为多个时这些第一镜片通过互相嵌合来保持彼此之间的相对位置固定,第二镜头部件包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材介于所述第一镜片和所述第二镜头部件之间。
在一个实施例中,所述主动校准包括:摄取并移动所述第一镜片以调节和确定所述第一镜片与所述第二镜头部件的相对位置。
在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜片的轴线相对于所述第二镜片的轴线的夹角。
在一个实施例中,所述主动校准还包括:沿着平面移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置;沿着所述平面的移动包括在所述平面上的平移和/或转动。
在一个实施例中,所述主动校准还包括:沿着垂直于所述平面的方向移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的在垂直于所述平面的移动方向上的相对位置。
在一个实施例中,所述的通过胶材粘结包括:利用固化的胶材支 撑所述至少一个第一镜片和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
在一个实施例中,所述的对所述第一镜头部件和所述第二镜头部件进行预定位还包括:使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;以及所述的通过胶材粘结包括:将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力;固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定;以及固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。
在一个实施例中,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤中,所形成的所述第一间隙位于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片的非光学面与所述第二镜筒的端面之间;并且,所形成的所述第二间隙位于所述的最接近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片之间。
在一个实施例中,在所述的通过胶材粘结的步骤中,所述第一胶材为UV胶或UV热固胶,所述第二胶材为热固胶或UV热固胶。
根据本发明的再一方面,还提供了一种摄像模组组装方法,包括:利用前述的光学镜头组装方法组装光学镜头;以及利用所组装的光学镜头制作摄像模组。
根据本发明的再一方面,还提供了一种摄像模组组装方法,包括:对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且第一镜头部件包括至少一个第一镜片,并且当所述第一镜片的数目为多个时这些第一镜片通过互相嵌合来保持彼此之间的相对位置固定,第二镜头部件包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;基于主动校准来调整和确定所述第一镜头部件和所 述第二镜头部件的相对位置;以及通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材介于所述第一镜片和所述第二镜头部件之间。
与现有技术相比,本发明具有下列至少一个技术效果:
1、本发明可以减少镜筒形变造成的镜片位置偏移,尤其是可以减少直接与镜片粘结的镜筒的形变所造成的影响。
2、本发明可以利用上下镜头部件的镜片直接与镜筒连接并提供主要的粘接力,从而降低镜头部件中镜筒变异对镜片的影响。
3、本发明可以利用增加镜片无效区域的粗糙度,并直接与镜筒通过胶材连接,增强了上下镜头部件连接的强度。
4、本发明可以利用上下镜头部件的镜片直接粘接来提供主要的粘接力,从而降低镜头部件中镜筒变异对镜片的影响。
5、本发明可以提高光学镜头或摄像模组的耐候性。例如镜片与镜片连接的方式,能够增强镜筒选材为塑料时的耐候性,例如在进行摄像模组、光学镜头的耐候性和光学成像质量实验中以高温和高湿作为测验标准,经过高温和高湿的环境后,光学成像质量的差异量较低。
6、本发明可以避免溢胶污染镜片的光学区。
7、本发明可以在实现上下镜头部件的镜片直接粘接的同时,增加镜片之间的粘合力。
8、本发明可以利用上镜头部件的镜片直接粘接下镜头部件来提供全部粘接力,从而避免镜头部件中镜筒变异对镜片的影响。
9、本发明可以通过上镜头部件镜片与下镜头部件直接连接,减小因上镜头部件镜片和镜筒之间存在的组装公差所带来的光学镜头或摄像模组制造公差。
10、本发明可以通过上镜头部件镜片与下镜头部件直接连接,降低因镜筒和镜片热膨胀系数所造成的上镜头部件的变异。
11、本发明可以改善光学系统的稳定性,提高摄像模组的成像品质。
12、本发明有助于提升基于主动校准制作光学镜头或摄像模组的良率。
13、本发明可以提供具有更好的成像品质的摄像模组和光学镜头。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本发明一个实施例的摄像模组1000的剖面示意图;
图2示出了本发明一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图3示出了本发明另一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图4示出了本发明又一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图5示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图6示出了本发明一个实施例中的光学镜头组装方法的流程图;
图7示出了本发明一个实施例中步骤40的流程图;
图8示出了本发明的另一个实施例的摄像模组组装方法的流程图;
图9示出了本发明另一个实施例的摄像模组1000’的剖面示意图;
图10示出了图9所示实施例中第一镜头部件100’和第二镜头部件200’的粘结区域的局部放大剖面示意图;
图11示出了本发明一个实施例的摄像模组1000的剖面示意图;
图12示出了本发明一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图13示出了本发明另一个实施例中第一镜头部件100和第二镜头 部件200的粘结区域的局部放大剖面示意图;
图14示出了本发明又一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图15示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图16示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图17示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图18示出了本发明一个实施例中的光学镜头组装方法的流程图;
图19示出了本发明一个实施例中步骤40的流程图;
图20示出了本发明的另一个实施例的摄像模组组装方法的流程图;
图21a示出了本发明一个实施例的第一镜片与第二镜头部件预定位后的剖面示意图;
图21b示出了本发明一个实施例的第一镜片与第二镜头部件主动校准后的位置关系的剖面示意图;
图21c示出了在图21b的基础上安装第一镜筒的剖面示意图;
图21d示出了图21a中的局部区域的放大示意图;
图21e示出了图21b中的局部区域的放大示意图;
图21f示出了图21c中的局部区域的放大示意图;
图21g示出了在图21f的基础上增加了第一镜筒和第二镜筒之间的胶材的点胶位置的局部区域的放大示意图;
图22a示出了本发明一个实施例中的主动校准中相对位置调节方式;
图22b示出了本发明另一个实施例的主动校准中的旋转调节;
图22c示出了本发明又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式;
图23示出了在上子镜头无组装公差的理想情况下,基于主动校准工艺制造的光学镜头的一个示例的局部剖面示意图;
图24示出了在上子镜头有组装公差的实际情况下,基于主动校准工艺制造的光学镜头的一个示例的局部剖面示意图;
图25示出了本发明一个实施例的摄像模组1000的剖面示意图;
图26示出了本发明一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图27示出了本发明另一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图28示出了本发明又一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图29示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图30示出了图29实施例的第二镜头部件200的俯视示意图;
图31示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图32示出了本发明一个实施例中的光学镜头组装方法的流程图;
图33示出了本发明一个实施例中步骤40的流程图;
图34示出了本发明的另一个实施例的摄像模组组装方法的流程图;
图35示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图;
图36a示出了本发明一个实施例的第一镜片与第二镜头部件预定位后的剖面示意图;
图36b示出了本发明一个实施例的第一镜片与第二镜头部件主动校准后的位置关系的剖面示意图;
图36c示出了图36a中的局部区域的放大示意图;
图36d示出了图36b中的局部区域的放大示意图;
图36e示出了在图36d基础上增加了第一镜片和第二镜筒之间的胶材的点胶位置的局部区域的放大示意图;
图37a示出了本发明一个实施例中的主动校准中相对位置调节方式;
图37b示出了本发明另一个实施例的主动校准中的旋转调节;以及
图37c示出了本发明又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。 还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本发明一个实施例的摄像模组1000的剖面示意图。该摄像模组1000包括光学镜头和感光组件300。其中,光学镜头包括第一镜头部件100、第二镜头部件200和将所述第一镜头部件100和第二镜头部件200粘结在一起的胶材(图中未示出)。其中,第一镜头部件100包括第一镜筒101和一个第一镜片102,第二镜头部件200包括第二镜筒201和五个第二镜片202。本实施例中,最靠近第一镜头部件100的第二镜片202直接与第一镜筒101粘结。本实施例中,第二镜头部件200还可以包括马达203,第二镜筒202可以安装在马达203的载体内。所述感光组件300包括线路板301、安装在线路板301上的感光芯片302、安装在线路板301上且围绕所述感光芯片的筒状支撑体303、以及安装在筒状支撑体303上的滤色片304。所述筒状支撑体303的顶面安装所述马达203从而将第二镜头部件200与感光组件300固定在一起。需要注意,在本发明的其它实施例中,图1中的马达203也可以被诸如筒状支撑体的其它结构代替,或者图1中的马达203也可以被取消并直接将第二镜筒201安装在筒状支撑体303的顶面。需注意,在其它实施例中所述马达203也可以被其它类型的光学致动器替换,例如SMA(形状记忆合金)致动器,MEMS致动器等。其中,光学致动器是指用于促使光学镜头相对于感光芯片移动的器件。
进一步地,图2示出了本发明一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。参考图2,在本实施例中,所述第一镜头部件100和所述第二镜头200之间具有第一间隙和第二间隙。图2中用“①”和“②”分别标出了第一间隙和第二间隙的位置。所述胶材包括第一胶材和第二胶材,其中,第一胶 材和第二胶材分别涂覆在第一间隙和第二间隙,并且第一间隙比第二间隙靠近所述光学镜头的外侧(即第二间隙比第一间隙靠近所述光学镜头的光轴)。并且,第二胶材介于所述的镜筒和镜片之间,并且所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。参考图2,第一间隙位于第一镜筒100的端面111与第二镜筒200的端面211之间。第二间隙位于第一镜筒100的端面112与最靠近所述第一镜筒100的一个第二镜片202的非光学面212之间。其中一个镜片的非光学面是该镜片的不参与光学成像的部分的表面。镜片的不参与光学成像的部分可以称为非光学区,有时也称为无效区。本实施例中,镜片的非光学区可以起到支撑作用。本实施例中,所述胶材(包括第一胶材和第二胶材)用于支撑第一镜头部件100和第二镜头部件200,以使所述第一镜头部件100和所述第二镜头部件200的相对位置保持在通过主动校准所确定的相对位置。其中第一胶材可用于预固定,第二胶材用于永久固定。在一个实施例中,第一胶材为UV胶,UV胶可通过曝光来固化。第二胶材为热固胶,热固胶可通过将镜头或模组进行烘烤来固化。本实施例中,涂布第二胶材的第二镜片202的非光学面212的表面可以做粗糙化处理以加大其粗糙程度,进而增加第二胶材与非光学面212的表面之间的粘合力。
上述实施例中,第二镜片202通过第二胶材(例如热固胶)直接与第一镜筒101的端面112粘结,这样就避免了在第二胶材固化过程中因镜筒201形变而导致第二镜片202的位置和形状发生改变,进而提高光学镜头和摄像模组的成像品质。
进一步地,仍然参考图2,在一个实施例中,第二间隙具有朝向所述光学镜头的光轴的第二开口402,在沿着所述光轴的方向上第二开口402的尺寸大于第二间隙的平均尺寸。也就是说,第一镜头部件100和第二镜头部件200之间靠近光轴一侧设置较大开口。这样可以避免胶水溢出污染镜片的有效区域(即光学区)而造成成像不良。进一步地,第二镜片202的非光学区的表面还可以具有一凹槽213,该凹槽213在俯视图中呈环形。该凹槽213可以用于储存多余的胶水,防止胶水污染镜片。进一步地,第一间隙具有朝向光学镜头的外侧的 第一开口401,在沿着所述光轴的方向上第一开口401的尺寸大于所述第一间隙的平均尺寸。也就是说,第一镜头部件100和第二镜头部件200之间靠近外界的一侧也设置较大开口。在一个实施例中,第一镜片102比所述第二镜片202靠近所述光学镜头的前端(光学镜头的前端是指光入射端,后端是指靠近感光组件的一端)。
上述实施例中,第一胶材也可以采用UV热固胶。第二胶材也可以采用UV热固胶。
进一步地,图3示出了本发明另一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。参考图3,本实施例中,与所述第一镜筒101粘结的第二镜片202的端面212具有凸台213。所述第二间隙位于所述凸台213与所述第一镜筒101的端面112之间。本实施例中,利用凸台213代替了图2实施例中的凹槽设计,这样可以更好的防止溢胶污染镜片。凸台213的截面形状包括但不限于梯形、矩形等形状。
图4示出了本发明又一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。在本实施例与图2的实施例的区别是第一镜片102的非光学面121与所述第二镜筒201的端面直接粘结。参考图4,第一间隙位于第二镜筒201的端面211与第一镜筒101的端面111之间。第二间隙位于第二镜筒201的端面214与第一镜头102的非光学面121之间。第一间隙涂布第一胶材(例如UV胶或UV热固胶),第二间隙涂布第二胶材(例如热固胶或UV热固胶)。第二间隙具有朝向所述光学镜头的光轴的第二开口402,在沿着所述光轴的方向上第二开口402的尺寸大于第二间隙的平均尺寸。也就是说,第一镜头部件100和第二镜头部件200之间靠近光轴一侧设置较大开口。这样可以避免胶水溢出污染镜片的有效区域(即光学区)而造成成像不良。
进一步地,图5示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。相比图4的实施例,本实施例的第一镜片102增加了一个朝向第二镜筒201的凸台215。具体来说,本实施例中,与所述第二镜筒201粘结的第一镜 片102的端面121具有凸台215。所述第二间隙位于所述凸台215与所述第二镜筒201的端面214之间。这样涂覆在凸台215的胶材溢出时可以向凸台两侧疏导,由此可以避免胶水污染镜片有效区域。凸台215的截面形状包括但不限于梯形、矩形等形状。
进一步地,图9示出了本发明另一个实施例的摄像模组1000’的剖面示意图。该摄像模组1000’包括光学镜头和感光组件300’。其中,光学镜头包括第一镜头部件100’、第二镜头部件200’和将所述第一镜头部件100’和第二镜头部件200’粘结在一起的胶材(图9中未示出)。其中,第一镜头部件100’包括第一镜筒101’和一个第一镜片102’,第二镜头部件200’包括第二镜筒201’和五个第二镜片202’。进一步地,图10示出了图9所示实施例中第一镜头部件100’和第二镜头部件200’的粘结区域的局部放大剖面示意图。本实施例中,第二镜筒201’的端面(例如可以是顶面)包括一平整面211’,该平整面211’包括第一分段211a’和第二分段211b’。其中,第一分段211a’比第二分段211b’靠近所述光学镜头的外侧(即第二分段211b’比第一分段211a’靠近所述光学镜头的光轴)。第一镜筒的端面111’(例如可以是底面)与所述第一分段211a’之间形成第一间隙410’。第一镜片102’的非光学区的端面121’(例如可以是非光学区的底面)与所述第二分段211b’之间形成第二间隙420’。所述胶材包括第一胶材和第二胶材。并且所述第一胶材和所述第二胶材的布置位置和材料适于使所述第一胶材和所述第二胶材在不同的时间被先后固化。本实施例中,第一胶材和第二胶材分别涂覆在第一间隙和第二间隙,并且所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。一方面,由于第二胶材位于内侧并直接粘结镜片,可以直接给镜片以连接强度,从而增加光学镜头的结构强度。另一方面,第二胶材在镜筒和镜片之间提供较大的粘合力,可以提高光学镜头的可靠性。
在一个实施例中,第一胶材可以是UV胶。第二胶材可以是热固胶。UV胶涂覆在第一间隙,热固胶涂覆在第二间隙。UV胶通过光的直接照射进行固化,以对第一镜头部件和第二镜头部件按照主动校准所确定的相对位置进行预固定。然后再对预固定后的光学镜头进行加 热,以使其第二间隙处的热固胶固化,从而增强光学镜头的结构强度,提高光学镜头的可靠性。
需注意,在其它实施例中,第一胶材还可以是其它通过光固化的胶材(例如可以是UV热固胶)。第二胶材还可以是其它通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在另一个实施例中,第一胶材和第二胶材可以是在液态时相同材质,例如第一胶材和第二胶材可以均采用UV热固胶。然而,位于第一间隙和第二间隙的UV热固胶分别采用不同的方式进行固化(例如可以先用光直接照射第一间隙的UV热固胶使其完成光固化,然后再对第二间隙的UV热固胶进行热固化),从而在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。所述的微观结构例如可以是分子结构、微米级的物理形态、分子比例、晶格形态等。
进一步地,在一个实施例中,所述第一胶材和所述第二胶材可以彼此不接触,以避免第一胶材和第二胶材混合后产生化学变化,影响胶水特性。由于避免了第一胶材和第二胶材混合后产生化学变化,本实施例可以进一步增强光学镜头或摄像模组的可靠性。
进一步地,在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,当第一胶材和第二胶材使用液态时(即未固化时)相同的材料时,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值(该阈值可以小于100μm)。
进一步地,仍然参考图10,在一个实施例中,第一镜头部件100’中,第一镜片102’的外侧面122’与第一镜筒101’的内侧面123’之间具有第三间隙103’,第一镜片102’和第一镜筒101’可以通过填充在所述第三间隙的第三胶材彼此固定,从而形成整体的第一镜头部件100’。
进一步地,仍然参考图10,在一个实施例中,第一间隙410’具有朝向光学镜头的外侧的第一开口401’,在沿着所述光轴的方向上第一 开口401’的尺寸大于所述第一间隙410’的平均尺寸。第二间隙420’具有朝向所述光学镜头的光轴的第二开口402’,在沿着所述光轴的方向上第二开口402’的尺寸大于第二间隙的平均尺寸。
进一步地,仍然参考图9,一个实施例中,第二镜头部件200’还可以包括马达203’,第二镜筒202’可以安装在马达203’的载体内。所述感光组件300’包括线路板301’、安装在线路板301’上的感光芯片302’、安装在线路板301’上且围绕所述感光芯片的筒状支撑体303’、以及安装在筒状支撑体303’上的滤色片304’。所述筒状支撑体303’的顶面安装所述马达203’从而将第二镜头部件200’与感光组件300’固定在一起。需要注意,在本发明的其它实施例中,图9中的马达203’也可以被诸如筒状支撑体的其它结构代替,或者图9中的马达203’也可以被取消并直接将第二镜筒201’安装在筒状支撑体303’的顶面。需注意,在其它实施例中所述马达203’也可以被其它类型的光学致动器替换,例如SMA(形状记忆合金)致动器。其中,光学致动器是指用于促使光学镜头相对于感光芯片移动的器件。
需要注意,上述实施例中,第一镜头部件和第二镜头部件的镜片数目可以根据需要调整。例如第一镜头部件和第二镜头部件的镜片数量可以分别为二和四,也可以分别为三和三,也可以分别为四和二,也可以分别为五和一。整个光学镜头的镜片总数也可以根据需要调整,例如光学镜头的镜片总数可以是六,也可以是五或七。
还需要注意,本申请的光学镜头,镜头部件不限于两个,例如镜头部件的数目也可以是三或四等大于二的数目。当组成光学镜头的镜头部件超过两个时,可以将相邻的两个镜头部件分别视为前文所述的第一镜头部件和前文所述的第二镜头部件。例如,当光学镜头的镜头部件的数目为三时,光学镜头可包括两个第一镜头部件和位于这两个第一镜头部件之间的一个第二镜头部件,并且这两个第一镜头部件的所有第一镜片和一个第二镜头部件的所有第二镜片共同构成进行主动校准的可成像光学系。当光学镜头的镜头部件的数目为四时,光学镜头可包括两个第一镜头部件和两个第二镜头部件,并按第一镜头部件、 第二镜头部件、第一镜头部件、第二镜头部件的次序自上而下排列,并且这两个第一镜头部件的所有第一镜片和两个第二镜头部件的所有第二镜片共同构成进行主动校准的可成像光学系。诸如此类的其它变形本文中不再一一赘述。
进一步地,图6示出了本发明一个实施例中的光学镜头组装方法的流程图。参考图6,该方法包括:
步骤10,准备第一镜头部件和第二镜头部件,其中所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。
步骤20,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系。
步骤30,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤40,通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于镜筒和镜片之间,并且所述的镜筒和镜片之间是所述第二镜筒与所述第一镜片之间,或者是所述第一镜筒与所述第二镜片之间。本步骤中,利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,可以在执行步骤30前,在所述第一镜头部件和所述第二镜头部件之间的间隙进行胶材涂布,然后再执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,执行步骤40使胶材固化,从而利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,进而使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。而在另一个实施例中,可以先执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,暂时将第一 镜头部件(或第二镜头部件)移开,然后进行胶材涂布,再基于所确定的相对位置将第一镜头部件(或第二镜头部件)移回。最后固化胶材,使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,所述步骤30中,使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
进一步地,图7示出了本发明一个实施例中步骤40的流程图。参考图7,所述步骤40包括子步骤:
步骤401,将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力。
步骤402,固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定。
步骤403,在完成预固定后,固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。其中,第一胶材可以为UV胶,第二胶材可以为热固胶。
步骤402中,利用第一胶材将第一镜筒和第二镜头进行粘结时,胶材固化形变对镜筒形成作用力较小,因此不会导致镜筒发生不期望的形变。并且,在主动校准阶段,第一镜头部件和/或第二镜头部件通常由外部摄取机构摄取(例如夹持或吸附),以调整第一镜头部件和第二镜头部件的相对位置。预固定可以使第一镜头部件和第二镜头部件之间的相对位置在脱离外部摄取机构后仍保持在主动校准所确定的相对位置。也就是说,第一胶材固化后为第一镜头部件和第二镜头部件提供支撑以使得二者保持在主动校准所确定的相对位置。而在步骤403中,由于镜片直接与对应的镜筒端面粘结,可避免因镜筒形变所导致的镜片位置变化,从而确保了固化后所形成的第一镜头部件和第二镜头部件之间的永久相对位置与主动校准所确定的第一镜头部件和第二镜头部件之间的相对位置一致。
需注意,在其它实施例中,第一胶材还可以是其它通过光固化的胶材(例如可以是UV热固胶)。第二胶材还可以是其它通过热固化、 湿气固化、厌氧固化或氧化固化的胶材。
在另一个实施例中,第一胶材和第二胶材可以是在液态时相同材质,例如第一胶材和第二胶材可以均采用UV热固胶。然而,位于第一间隙和第二间隙的UV热固胶分别采用不同的方式进行固化(例如可以先用光直接照射第一间隙的UV热固胶使其完成光固化,然后再对第二间隙的UV热固胶进行热固化),从而在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。所述的微观结构例如可以是分子结构、微米级的物理形态、分子比例、晶格形态等。
进一步地,在一个实施例中,所述第一胶材和所述第二胶材可以彼此不接触,以避免第一胶材和第二胶材混合后产生化学变化,影响胶水特性。由于避免了第一胶材和第二胶材混合后产生化学变化,本实施例可以进一步增强光学镜头或摄像模组的可靠性。
进一步地,在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,当第一胶材和第二胶材使用液态时(即未固化时)相同的材料时,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值(该阈值可以小于100μm)。
需注意,第一间隙和第二间隙在沿着所述光学镜头的光轴方向上的尺寸(为便于描述,本自然段中在沿着所述光学镜头的光轴方向上的尺寸均用尺寸来指代)最终是由主动校准结果所确定的,然而该尺寸也与光学镜头在设计阶段的设计间隙有关。在设计阶段,当第一镜头部件和第二镜头部件的结构面之间预留的设计间隙的尺寸较小时,主动校准所确定的第一间隙和第二间隙的尺寸也会随之的减小。较小的第一间隙和第二间隙的尺寸有助于抑制胶材固化所导致的镜筒和/或镜片的二次变异,从而提高光学镜头或相应摄像模组的成像质量。
进一步地,在一个实施例中,所述步骤10中,所形成的所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间。并且,所 形成的所述第二间隙位于所述第一镜筒的端面与所述至少一个第二镜片中最靠近所述第一镜筒的一个镜片的非光学面之间。而在另一个实施例中,所形成的所述第二间隙位于所述第二镜筒的端面与所述至少一个第一镜片中最靠近所述第二镜筒的一个镜片的非光学面之间。
进一步地,根据本发明的一个实施例,还提供了一种摄像模组组装方法,包括:利用前述任一实施例的光学镜头组装方法组装光学镜头,然后利用所组装的光学镜头制作摄像模组。
进一步地,图8示出了本发明的另一个实施例的摄像模组组装方法的流程图,该方法包括:
步骤100,准备第一镜头部件和摄像模组部件,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。
步骤200,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系。
步骤300,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤400,通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于镜筒和镜片之间,并且所述的镜筒和镜片之间是所述第二镜筒与所述第一镜片之间,或者是所述第一镜筒与所述第二镜片之间。
可以看出,与前一实施例相比,本实施例中第二镜头部件和感光模组先组装在一起构成摄像模组部件,然后再将摄像模组部件与第一镜头部件组装,得到完整的摄像模组。将摄像模组部件与第一镜头部件组装的流程还可以有多种变形,例如可参考前文所述的光学镜头组装方法的多个实施例,来实现摄像模组部件与第一镜头部件的组装。
图11示出了本发明一个实施例的摄像模组1000的剖面示意图。 该摄像模组1000包括光学镜头和感光组件300。其中,光学镜头包括第一镜头部件100、第二镜头部件200和将所述第一镜头部件100和第二镜头部件200粘结在一起的胶材400。其中,第一镜头部件100包括第一镜筒101和一个第一镜片102,第二镜头部件200包括第二镜筒201和五个第二镜片202。本实施例中,最靠近第一镜头部件100的第二镜片202直接与第一镜片101粘结。本实施例中,第二镜头部件200还可以包括马达203,第二镜筒202可以安装在马达203的载体内(图11中未示出马达的内部结构)。所述感光组件300包括线路板301、安装在线路板301上的感光芯片302、安装在线路板301上且围绕所述感光芯片的筒状支撑体303、以及安装在筒状支撑体303上的滤色片304。所述筒状支撑体303的顶面安装所述马达203从而将第二镜头部件200与感光组件300固定在一起。需要注意,在本发明的其它实施例中,图11中的马达203也可以被诸如筒状支撑体的其它结构代替,或者图11中的马达203也可以被取消并直接将第二镜筒201安装在筒状支撑体303的顶面。需注意,在其它实施例中所述马达203也可以被其它类型的光学致动器替换,例如SMA(形状记忆合金)致动器、MEMS致动器。其中,光学致动器是指用于促使光学镜头相对于感光芯片移动的器件。
进一步地,图12示出了本发明一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。参考图12,在本实施例中,所述第一镜头部件100和所述第二镜头200之间具有第一间隙和第二间隙。图12中用“①”和“②”分别标出了第一间隙和第二间隙的位置。所述胶材包括第一胶材和第二胶材,其中,第一胶材和第二胶材分别涂覆在第一间隙和第二间隙,并且第一间隙比第二间隙靠近所述光学镜头的外侧(即第二间隙比第一间隙靠近所述光学镜头的光轴)。并且,第二胶材介于第一镜片102和第二镜片202之间。参考图12,第一间隙位于第一镜筒101的端面111与第二镜筒201的端面211之间。第二间隙位于第一镜片101的非光学面112与最靠近所述第一镜头部件100的一个第二镜片202的非光学面212之间。其中一个镜片的非光学面是该镜片的不参与光学成像的部分的表 面。镜片的不参与光学成像的部分可以称为非光学区,有时也称为无效区。本实施例中,镜片的非光学区可以起到支撑作用。本实施例中,所述胶材(包括第一胶材和第二胶材)用于支撑和固定第一镜头部件100和第二镜头部件200,以使所述第一镜头部件100和所述第二镜头部件200的相对位置保持在通过主动校准所确定的相对位置。其中第一胶材可用于预固定,第二胶材用于永久固定。进一步地,在一个实施例中,涂布第二胶材的第二镜片202的非光学面212的表面可以做粗糙化处理以加大其粗糙程度,进而增加第二胶材与非光学面212的表面之间的粘合力。第一镜片102的非光学面的表面也可以做粗糙化处理以加大其粗糙程度,进而增加第二胶材与非光学面的表面之间的粘合力。通过对第一镜片102和/或第二镜片202的非光学面的表面粗糙化处理,可以使第二胶材提供的粘合力增大,从而使得所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力,以增强所制作的光学镜头或摄像模组的可靠性。
在一个实施例中,第一胶材为UV胶,UV胶可通过曝光来固化。第二胶材为热固胶,热固胶可通过将镜头或模组进行烘烤来固化。热固胶固化后可提供大于UV胶的粘合力,从而使得所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。UV胶涂覆在位于外侧(即距离光轴较远的一侧)的第一间隙,热固胶涂覆在位于内侧(即距离光轴较近的一侧)的第二间隙。UV胶通过光的直接照射进行固化,以对第一镜头部件和第二镜头部件按照主动校准所确定的相对位置进行预固定。然后再对预固定后的光学镜头进行加热,以使其第二间隙处的热固胶固化,从而增强光学镜头的结构强度,提高光学镜头的可靠性。
需注意,在其它实施例中,第一胶材还可以是其它通过光固化的胶材(例如可以是UV热固胶)。第二胶材还可以是其它通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在另一个实施例中,第一胶材和第二胶材可以是在液态时相同材质,例如第一胶材和第二胶材可以均采用UV热固胶。然而,位于第一间隙和第二间隙的UV热固胶分别采用不同的方式进行固化(例如 可以先用光直接照射第一间隙的UV热固胶使其完成光固化,然后再对第二间隙的UV热固胶进行热固化),从而在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。所述的微观结构例如可以是分子结构、微米级的物理形态、分子比例、晶格形态等。
进一步地,在一个实施例中,所述第一胶材和所述第二胶材可以彼此不接触,以避免第一胶材和第二胶材混合后产生化学变化,影响胶水特性。由于避免了第一胶材和第二胶材混合后产生化学变化,本实施例可以进一步增强光学镜头或摄像模组的可靠性。
进一步地,在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,当第一胶材和第二胶材使用液态时(即未固化时)相同的材料时,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
上述实施例中,第二镜片202通过第二胶材(例如热固胶)直接与第一镜片101粘结,这样就避免了在第二胶材固化过程中因第一镜筒101和第二镜筒201形变而导致第一镜片102和第二镜片202的位置发生改变,进而提高光学镜头和摄像模组的成像品质。
进一步地,仍然参考图12,在一个实施例中,第一镜片101的非光学面112具有第一凸台115,第一凸台115可以在俯视图中呈环形。所述第一凸台115与所述第二镜片202的非光学面212之间构成所述第二间隙。并且,第二间隙具有朝向所述光学镜头的光轴的第二开口402,在沿着所述光轴的方向上第二开口402的尺寸大于第二间隙的平均尺寸。也就是说,第一镜头部件100和第二镜头部件200之间靠近光轴一侧设置较大开口。这样可以避免胶水溢出污染镜片的有效区域(即光学区)而造成成像不良。进一步地,第二镜片202的非光学区的表面还可以具有一凹槽213,该凹槽213在俯视图中呈环形。该凹槽213可以用于储存多余的胶水,防止胶水污染镜片。进一步地,第 一间隙具有朝向光学镜头的外侧的第一开口401,在沿着所述光轴的方向上第一开口401的尺寸大于所述第一间隙的平均尺寸。也就是说,第一镜头部件100和第二镜头部件200之间靠近外界的一侧也设置较大开口。在一个实施例中,第一镜片102比所述第二镜片202靠近所述光学镜头的前端(光学镜头的前端是指光入射端,后端是指靠近感光组件的一端)。
上述实施例中,第一胶材也可以采用UV热固胶。第二胶材也可以采用UV热固胶。
进一步地,图13示出了本发明另一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。参考图13,本实施例中,第一镜片101的非光学面112具有第一凸台115,第一凸台115可以在俯视图中呈环形。与所述第一镜片102粘结的第二镜片202的端面212具有在俯视图中呈环形的环形坝216,环形坝216位于该第二镜片202的光学区与所述第二间隙之间,以便阻挡胶水向镜片有效区域(即光学区)流动。并且,在垂直于所述光学镜头的光轴的方向上,所述环形坝216与所述第一凸台115之间具有至少50μm的间隙,以便防止环形坝216对第一、第二镜头部件的主动校准造成影响。
进一步地,图14示出了本发明又一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例中,与所述第一镜片102粘结的所述第二镜片202的非光学面(即无效区域的表面)具有向内凹进的台阶217,以便阻挡溢胶污染镜片有效区域。台阶217在俯视图中呈环形,它可以替代图13实施例中的环形坝216,并且相对于环形坝216的方案可降低镜片加工的难度。
进一步地,图15示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例中,与所述第一镜片102粘结的所述第二镜片202的非光学面(即无效区域的表面)具有向内凹进的凹槽218,以便阻挡溢胶污染镜片有效区域。并且,凹槽218在俯视图中呈环形,它可以替代图13实施例中的环形坝216或者图14实施例中的台阶217。凹槽218可以在实现挡胶 的同时,做到增大第一镜片102和第二镜片202之间的粘接面积,从而提高粘接的强度。
进一步地,图16示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例中,与所述第一镜片102粘结的第二镜片202的端面212具有凸台213。所述第二间隙位于所述凸台213与所述第一镜片101的非光学面112之间。本实施例中,利用凸台213代替了图12实施例中的凹槽设计,这样可以更好的防止溢胶污染镜片。凸台213的截面形状包括但不限于梯形、矩形、三角形、半圆形等形状。通常来说,在主动校准和粘结过程中个,第二镜头部件置于第一镜头部件下方。此时,可以在位于下方的第二镜头部件200的环状凸台213上设置倒角402a来为所述第二间隙设置较大开口,从而防止胶水污染镜片的有效区域(即光学区)造成成像不良。
进一步地,图17示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例中,相比图16的实施例,本实施例的第一镜片102增加了一个朝向第二镜片202的第一凸台115。具体来说,本实施例中,与所述第二镜片202粘结的第一镜片102的非光学面112具有第一凸台115。该第一凸台115位于第一镜片102的无效区(即非光学区)。所述第二间隙位于所述第一凸台115与所述第二镜片202的第二凸台212之间。本实施例中,涂覆在第二凸台212的胶材溢出时可以向凸台两侧疏导,由此可以避免胶水污染镜片有效区域。第一凸台115和第二凸台212的截面形状包括但不限于梯形、矩形、三角形、半圆形等形状。第一凸台115和第二凸台212均可设置倒角以增大第二间隙的第二开口402,从而更好地疏导溢胶。
需要注意,上述实施例中,第一镜头部件和第二镜头部件的镜片数目可以根据需要调整。例如第一镜头部件和第二镜头部件的镜片数量可以分别为二和四,也可以分别为三和三,也可以分别为四和二,也可以分别为五和一。整个光学镜头的镜片总数也可以根据需要调整,例如光学镜头的镜片总数可以是六,也可以是五或七。
还需要注意,本申请的光学镜头,镜头部件不限于两个,例如镜头部件的数目也可以是三或四等大于二的数目。当组成光学镜头的镜头部件超过两个时,可以将相邻的两个镜头部件分别视为前文所述的第一镜头部件和前文所述的第二镜头部件。例如,当光学镜头的镜头部件的数目为三时,光学镜头可包括两个第一镜头部件和位于这两个第一镜头部件之间的一个第二镜头部件,并且这两个第一镜头部件的所有第一镜片和一个第二镜头部件的所有第二镜片共同构成进行主动校准的可成像光学系。当光学镜头的镜头部件的数目为四时,光学镜头可包括两个第一镜头部件和两个第二镜头部件,并按第一镜头部件、第二镜头部件、第一镜头部件、第二镜头部件的次序自上而下排列,并且这两个第一镜头部件的所有第一镜片和两个第二镜头部件的所有第二镜片共同构成进行主动校准的可成像光学系。诸如此类的其它变形本文中不再一一赘述。
进一步地,图18示出了本发明一个实施例中的光学镜头组装方法的流程图。参考图18,该方法包括:
步骤10,准备第一镜头部件和第二镜头部件,其中所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。
步骤20,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系。
步骤30,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤40,通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于第一镜片和第二镜片之间。本步骤中,利用固化的胶材支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,可以在执行步骤30前,在所述第一 镜头部件和所述第二镜头部件之间的间隙进行胶材涂布,然后再执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,执行步骤40使胶材固化,从而利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,进而使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。而在另一个实施例中,可以先执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,暂时将第一镜头部件(或第二镜头部件)移开,然后进行胶材涂布,再基于所确定的相对位置将第一镜头部件(或第二镜头部件)移回。最后固化胶材,使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,所述步骤30中,使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
进一步地,图19示出了本发明一个实施例中步骤40的流程图。参考图19,所述步骤40包括子步骤:
步骤401,将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力。
步骤402,固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定。
步骤403,固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。其中,第一胶材可以为UV胶,第二胶材可以为热固胶。
步骤403中,由于第一镜片直接与对应的第二镜片粘结,可避免因第一镜筒和/或第二镜筒形变所导致的镜片位置变化,从而确保了固化后所形成的第一镜片和第二镜片之间的永久相对位置与主动校准所确定的第一镜头部件和第二镜头部件之间的相对位置一致。
进一步地,在一个实施例中,所述步骤10中,所形成的所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间。并且,所形成的所述第二间隙位于所述第一镜片的非光学面和所述第二镜片的 非光学面之间。
需注意,在其它实施例中,第一胶材还可以是其它通过光固化的胶材(例如可以是UV热固胶)。第二胶材还可以是其它通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在另一个实施例中,第一胶材和第二胶材可以是在液态时相同材质,例如第一胶材和第二胶材可以均采用UV热固胶。然而,位于第一间隙和第二间隙的UV热固胶分别采用不同的方式进行固化(例如可以先用光直接照射第一间隙的UV热固胶使其完成光固化,然后再对第二间隙的UV热固胶进行热固化),从而在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。所述的微观结构例如可以是分子结构、微米级的物理形态、分子比例、晶格形态等。
进一步地,在一个实施例中,所述第一胶材和所述第二胶材可以彼此不接触,以避免第一胶材和第二胶材混合后产生化学变化,影响胶水特性。由于避免了第一胶材和第二胶材混合后产生化学变化,本实施例可以进一步增强光学镜头或摄像模组的可靠性。
进一步地,在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,当第一胶材和第二胶材使用液态时(即未固化时)相同的材料时,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值(该阈值小于100μm)。
进一步地,根据本发明的一个实施例,还提供了一种摄像模组组装方法,包括:利用前述任一实施例的光学镜头组装方法组装光学镜头,然后利用所组装的光学镜头制作摄像模组。
进一步地,图11示出了本发明的另一个实施例的摄像模组组装方法的流程图,该方法包括:
步骤100,准备第一镜头部件和摄像模组部件,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜 头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。
步骤200,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系。
步骤300,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤400,通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于第一镜片和第二镜片之间。
可以看出,与前一实施例相比,本实施例中第二镜头部件和感光模组先组装在一起构成摄像模组部件,然后再将摄像模组部件与第一镜头部件组装,得到完整的摄像模组。将摄像模组部件与第一镜头部件组装的流程还可以有多种变形,例如可参考前文所述的光学镜头组装方法的多个实施例,来实现摄像模组部件与第一镜头部件的组装。
进一步地,本申请中所述的主动校准可以在多个自由度上对第一镜头部件和第二镜头部件的相对位置进行调整。图22a示出了本发明一个实施例中的主动校准中相对位置调节方式。在该调节方式中,所述第一镜头部件(也可以是第一镜片)可以相对于所述第二镜头部件沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
图22b示出了本发明另一个实施例的主动校准中的旋转调节。在该实施例中,相对位置调整除了具有图3的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,图22c示出了本发明又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面 的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一镜头部件相对于第二镜头部件的倾斜姿态(也就是所述第一镜头部件的光轴相对于所述第二镜头部件的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本发明的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
进一步地,图21a至图21c示出了本发明一实施例的光学镜头的组装流程,该组装流程包括:
步骤1,第二镜头部件通过固定机构(未示出)固定,摄取机构(未示出)夹取(或吸附)第一镜头部件100的第一镜片102进行预定位,使得所述第一、第二镜头部件100、200构成可成像的光学系统。图21a示出了本发明一个实施例的第一镜片与第二镜头部件预定位后的剖面示意图。图21d示出了图21a中的局部区域的放大示意图,所放大部分为图21a中的圆圈内的区域。参考图21a和图21d,所述第一镜头部件100具有至少一第一承靠面102c,所述第二镜头部件200具有至少一第二承靠面202c,至少一所述第一承靠面102c和至少一所述第二承靠面202c构成了位于所述第一承靠面102c和所述第二承靠面202c之间的至少一间隙。通过摄取机构摄取所述第一镜头部件100,使第一镜头部件100相对所述第二镜头部件的第二承靠面进行主动调整,所述主动调整包括对一参照物进行拍摄,优选为标板,并且从图像信息中获取校正量,校正量优选为MTF值,也可以是SFR或Tv Line值,获取相关校正量后,所述摄取机构调整所述第一、第二镜头部件的位置以完善所述光学系统,具体光学系统的参考标准包括完善后的所述光学系统具有相较于未进行调整的光学系统有减少像差,提高解像力的性能,光学系统的完善指标也可是按需所设。预定位作为后续工艺流程的开始步骤,在第一、第二镜头部件预定位时一般遵 从间隙的设计尺寸。
在一个实施例中,通过摄取机构使所述第二镜头部件相对于所述第一承靠面进行主动调整,所述主动调整包括第一承靠面和第二承靠面相对X轴和/或Y轴和/或Z轴方向的调整,以使所述第一承靠面和第二承靠面相对位置发生变化,从而所述第一承靠面和所述第二承靠面成一夹角,一般来说,调整后的该夹角的大小与预定位时的夹角不一致。该夹角改变预定位时的所述间隙的尺寸,因此可能导致调整后的该间隙与设计间隙尺寸有一定误差。
在一个实施例中,通过摄取机构使第一镜片102相对于所述第二镜头部件200的相对位置进行调整,对相对位置的调整包括:通过调节所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角,使所述第一镜头部件相对于所述第二镜头部件沿着调整平面移动,以及沿着垂直于所述调整平面的方向移动所述镜头部件,使所述光学系成像的实测解像力(例如MTF值、SFR值或Tv Line值)提升。其中,所述沿着调整平面移动包括在所述调整平面上平移和/或转动。在主动校准后,第一镜片102的轴线与第二镜头部件200的轴线的夹角可以不为零。第二镜头部件200的轴线可以用第二镜筒201或第二镜片202的轴线代表。
步骤2,调整后的间隙被记录后,摄取机构移动第一镜头部件100离开第二镜头部件以暴露所述第二承靠面202c。在第二承靠面202c上进行点胶处理后,所述摄取机构使所述第一镜头部件100回复至记录时的位置。图21b示出了本发明一个实施例的第一镜片与第二镜头部件主动校准后的位置关系的剖面示意图。图21e示出了图21b中的局部区域的放大示意图,所放大部分为图21b中的圆圈内的区域。需注意图中用“②”标出了本步骤中点胶的位置,但未示出胶材。摄取机构使所述第一镜头部件回复至记录时的位置后,对胶材进行固化处理,所述固化方式包括热固的方式,以达到支撑第一、第二镜头部件的强度。本实施例中,所述第一承靠面102c位于所述第一镜片102的非光学区,所述第二承靠面202c位于所述第二镜片202的非光学区,因此所述胶材位于所述第一承靠面102c和所述第二承靠面202c之间。
步骤3,在所述第一镜片102上安装第一镜筒101,以增强第一镜头部件100和第二镜头200的结构强度并对镜片起到一定的保护作用。所述第一镜筒101通过摄取机构安装在所述第一镜片102的顶面和/或侧面上,安装的方式可以是采用螺纹结构,实现对第一镜筒和第一镜片的连接。本实施例中优选通过在第一镜片的顶面上涂布有一胶材,该胶材起到连接并固定第一镜筒和第一镜片的作用。图21c示出了在图21b的基础上安装第一镜筒的剖面示意图。图21f示出了图21c中的局部区域的放大示意图,所放大部分为图21b中的圆圈内的区域。进一步地,图21g示出了在图21f的基础上增加了第一镜筒和第二镜筒之间的胶材的点胶位置的局部区域的放大示意图。其中用“①”标出了第一镜筒和第二镜筒之间的胶材的点胶位置。
特别地,在一个实施例中,所述摄取机构优选控制所述第一镜筒和所述第二镜筒之间的间隙为相同尺寸,即镜筒和镜筒之间未进行校正,以使所述第一镜筒和第二镜筒的外观一致性好。因此所述第一镜筒和第二镜筒之间的胶材示意为“①”在光轴方向上的尺寸相同。
图25示出了本发明一个实施例的摄像模组1000的剖面示意图。该摄像模组1000包括光学镜头和感光组件300。其中,光学镜头包括第一镜头部件100、第二镜头部件200和将所述第一镜头部件100和第二镜头部件200粘结在一起的胶材400。其中,第一镜头部件100包括第一镜筒101和一个第一镜片102,第二镜头部件200包括第二镜筒201和五个第二镜片202。本实施例中,第一镜筒101起到遮光作用,而不具有支撑所述第一镜片102的功能。换句话说,第一镜筒101可以理解为附着于第一镜片102的遮光部。参考图25,第一镜筒101包围第一镜片101的侧面,具体来说,第一镜片102包括光学区102a和非光学区102b,第一镜筒101附着于非光学区102b的侧面和顶面,以对光学区102a起到遮光作用。本实施例中,由于第一镜筒101不需要起到支撑第一镜片102的作用,因此可以第一镜筒101的厚度可以减小。例如,所述第一镜筒101的筒壁厚度可以小于支撑所述第一镜片102所需的筒壁厚度。这样将有助于减小光学镜头或摄像 模组的体积。本实施例中,第一镜片102直接与第二镜筒102粘结。由于第一镜片102直接与第二镜筒102粘结,因此如图24所示的间隙50不会导致第一镜头部件100和第二镜头部件200之间的胶材400的厚度变厚。这样,在基于主动校准的光学镜头制造中,图24所示的因第一镜片和第一镜筒的组装公差而带来额外的制造公差可以被避免。
进一步地,仍然参考图25,一个实施例中,第二镜头部件200还可以包括马达203,第二镜筒202可以安装在马达203的载体内(图23中未示出马达的内部结构)。所述感光组件300包括线路板301、安装在线路板301上的感光芯片302、安装在线路板301上且围绕所述感光芯片的筒状支撑体303、以及安装在筒状支撑体303上的滤色片304。所述筒状支撑体303的顶面安装所述马达203从而将第二镜头部件200与感光组件300固定在一起。需要注意,在本发明的其它实施例中,图23中的马达203也可以被诸如筒状支撑体的其它结构代替,或者图23中的马达203也可以被取消并直接将第二镜筒201安装在筒状支撑体303的顶面。需注意,在其它实施例中所述马达203也可以被其它类型的光学致动器替换,例如SMA(形状记忆合金)致动器。其中,光学致动器是指用于促使光学镜头相对于感光芯片移动的器件。
进一步地,图26示出了本发明一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。参考图26,在本实施例中,所述第一镜头部件100和所述第二镜头200之间具有间隙(图26中用“①”标出)。具体来说,该间隙位于第一镜片102的非光学区的端面(非光学面)与第二镜筒202之间。第一镜片102的非光学面的表面可以做粗糙化处理以加大其粗糙程度,进而增加第二胶材与非光学面的表面之间的粘合力。在组装第一镜头部件100和第二镜头部件200时,可以先进行主动校准,调整第一、第二镜头部件100、200的相对位置,接着在第一镜头部件100的第一镜片102与第二镜头部件200的间隙处点胶(例如UV热固胶),在点胶时使胶材400不沾染到第一镜筒101部分,然后进行UV曝光,固化胶材400相对靠外的能接收到光的部分,以对摄像模组或者光学镜头的结构进行预固定。最后进行烘烤,固化所有胶水,固定整个摄像模组或者光 学镜头。当然在另一实施例中,点胶与主动校准的顺序也可以互换。
参考图26,在一个实施例中,为尽可能的使胶水能被曝光固化,第一镜头部件100的第一镜筒101的筒壁尽可能减薄。进一步地,在另一实施例中,第一镜头部件还可以仅由一片做了遮光处理的镜片构成,其中镜片遮光处理可以避免杂光对成像造成影响)。图35所示的实施例将在下文做进一步地描述。
进一步地,仍然参考图26,在一个实施例中,第二镜筒201可以设置倒角以使所述间隙形成朝向外界的开口401b,倒角用于疏导可能溢出的胶水,防止第一镜头部件100的第一镜筒101沾染胶水。第二镜筒201还可以设置倒角以使所述间隙形成朝向光学镜头光轴的开口401a,从而疏导可能溢出的胶水,避免镜片被胶水污染。两个开口401a、401b在沿着光轴的方向上的尺寸均大于间隙的平均尺寸。
上述实施例中,第一镜片102比所述第二镜片202靠近所述光学镜头的前端(光学镜头的前端是指光入射端,后端是指靠近感光组件的一端)。
进一步地,图27示出了本发明另一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例中第一镜头部件100和第二镜头200之间具有第一间隙和第二间隙。图27中用“①”和“②”分别标出了第一间隙和第二间隙的位置。所述胶材包括第一胶材和第二胶材,其中,第一胶材和第二胶材分别涂覆在第一间隙和第二间隙,并且第一间隙比第二间隙靠近所述光学镜头的外侧(即第二间隙比第一间隙靠近所述光学镜头的光轴)。并且,第二胶材介于第一镜片102和第二镜片202之间,所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。参考图27,第一间隙位于第一镜片102的非光学面111与第二镜筒201的端面211之间。第二间隙位于第一镜片101的非光学面112与最靠近所述第一镜头部件100的一个第二镜片202的非光学面212之间。第一镜片101的非光学面112可以形成以朝向第二镜头部件200凸起的第一凸台112a,这样第二间隙位于第一凸台112a与第二镜片202的非光学面212之间。所述第一凸台112a在仰视图中可以呈环形。第一凸台112a的截面形状不 限,例如其截面形状可以是梯形、矩形等形状。
在一个实施例中,为尽可能的使胶水能被曝光固化,第一镜头部件100的第一镜筒101的筒壁尽可能减薄(例如所述第一镜筒101的筒壁厚度可以小于刚性支撑所述第一镜片102所需的筒壁厚度),甚至第一镜头部件可仅由一片做了遮光处理的镜片构成(镜片遮光处理避免杂光对成像造成影响)。本文中,一个镜片的非光学面是该镜片的不参与光学成像的部分的表面。镜片的不参与光学成像的部分可以称为非光学区,有时也称为无效区。本实施例中,镜片的非光学区可以起到支撑作用。本实施例中,所述胶材(包括第一胶材和第二胶材)用于支撑第一镜头部件100和第二镜头部件200,以使所述第一镜头部件100和所述第二镜头部件200的相对位置保持在通过主动校准所确定的相对位置。其中第一胶材可用于预固定,第二胶材用于永久固定。在一个实施例中,第一胶材为UV胶,UV胶可通过曝光来固化。第二胶材为热固胶,热固胶可通过将镜头或模组进行烘烤来固化。本实施例中,涂布第二胶材的第二镜片202的非光学面212的表面可以做粗糙化处理以加大其粗糙程度,进而增加第二胶材与非光学面212的表面之间的粘合力。第一镜片102的非光学面111、112的表面也可以做粗糙化处理以加大其粗糙程度,进而增加第二胶材与非光学面的表面之间的粘合力。
进一步地,图28示出了本发明又一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例与图27所示的实施例基本一致,区别仅在于第二镜片202的非光学面212形成一第一凹槽212a,所述第二间隙位于所述第一凸台112a和所述第一凹槽212a之间。所述第一凸台112a在仰视图中呈环形,且所述第一凹槽212a在俯视图中呈环形。设置与第一凸台对应的第一凹槽可以防止胶水溢出而污染镜片。
进一步地,图29示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。图30示出了图29实施例的第二镜头部件200的俯视示意图。参考图29和30,本实施例中,第一镜片102具有朝向所述第二镜头部件200凸出的多个 第一凸台112b,所述第二镜头部件200的端面213具有用于容纳所述多个第一凸台112b的多个第一凹槽213b,所述第二间隙位于所述多个第一凸台112b和所述多个第一凹槽213b之间。在俯视图中(参考图30),所述多个第一凹槽213b分布在一个圆上。相应地,在仰视图中所述多个第一凸台112b也分布在一个圆上。本实施例中,第二胶水可以涂在第一凹槽213b的底部,可以防止胶水溢出污染到镜片。并且,本实施例的方案还增大了第一镜头部件100和第二镜头部件200的接触面积,从而增加第一镜头部件100和第二镜头部件200的连接强度。
仍然参考图29,在一个实施例中,所述多个第一凹槽213b的侧壁由所述第二镜筒201形成,所述多个第一凹槽213b的底面由最接近所述第一镜头部件的一个第二镜片202的非光学面212形成。
进一步地,图31示出了本发明再一个实施例中第一镜头部件100和第二镜头部件200的粘结区域的局部放大剖面示意图。本实施例中,本实施例中第一镜头部件100和第二镜头200之间具有第一间隙和第二间隙。所述胶材包括第一胶材和第二胶材,其中,第一胶材和第二胶材分别涂覆在第一间隙和第二间隙,并且第一间隙比第二间隙靠近所述光学镜头的外侧(即第二间隙比第一间隙靠近所述光学镜头的光轴)。所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。第二镜筒201的端面具有向第一镜头部件100凸起的第二凸台214a,且所述第一镜片102的非光学面具有第二凹槽114a,所述第二间隙位于所述第二凸台214a和所述第二凹槽114a之间。第一间隙位于第一镜片102的非光学面111与第二镜筒201的端面211之间。所述第二凸台214a在俯视图中可以呈环形。第二凸台214a的截面形状不限,例如其截面形状可以是梯形、矩形等形状。所述第二凹槽114a在仰视图中可以呈环形。为尽可能的使胶水能被曝光固化,第一镜头部件100的第一镜筒101的筒壁尽可能减薄(例如所述第一镜筒101的筒壁厚度可以小于刚性支撑所述第一镜片102所需的筒壁厚度),甚至第一镜头部件可仅由一片做了遮光处理的镜片构成(其中镜片遮光处理避免杂光对成像造成影响)。
仍然参考图31,在一个实施例中,所述第二间隙具有朝向所述光 学镜头的光轴的第二开口402,在沿着所述光轴的方向上所述第二开口402的尺寸大于所述第二间隙的平均尺寸。所述第一间隙具有朝向所述光学镜头的外侧的第一开口401,在沿着所述光轴的方向上所述第一开口401的尺寸大于所述第一间隙的平均尺寸。这种第一开口401和第二开口402的设计可以有效地疏导溢出的胶水,避免镜筒或镜片的光学区被污染。第一开口401和第二开口402均可以通过在第二镜筒201的端面制作倒角来形成。
进一步地,图35示出了本发明再一个实施例中第一镜头部件100’和第二镜头部件200’的粘结区域的局部放大剖面示意图。本实施例中,第一镜头部件可仅由一片做了遮光处理的镜片构成。其中镜片遮光处理可以避免杂光对成像造成影响。参考图35,第一镜头部件100’包括一个第一镜片102’和附着于第一镜片102’的遮光部101’。其中第一镜片102’包括光学区1021’和非光学区1022’(有时也称为无效区)。其中光学区1021’是镜片中参与光学成像的区域。遮光部101’形成在非光学区1022’的顶面和外侧面,以避免杂光对成像造成影响。非光学区1022’的底面可以是一第一平整面。第二镜头部件200’包括至少一个第二镜片202’和第二镜筒201’。所有第二镜片202’均安装在第二镜筒201’的内部。第二镜筒201’的顶面包括一第二平整面。第一平整面和第二平整面之间形成第一间隙410’和第二间隙420’。其中第一间隙410’比第二间隙420’靠近所述光学镜头的外侧,即第二间隙420’比第一间隙410’靠近所述光学镜头的光轴。第一胶材为UV胶,UV胶可通过曝光来固化。第二胶材为热固胶,热固胶可通过将镜头或模组进行烘烤来固化。本实施例中,第一镜片102’的非光学区1022’的底面的构成第二间隙的部分可以做粗糙化处理以加大其粗糙程度,进而增加其与第二胶材的粘合力。第一胶材和第二胶材固化后可以使第一镜头部件100’和第二镜头部件200’的相对位置保持在主动校准所确定的相对位置。由于遮光部101’附着于第一镜片102’上,取消了第一镜筒,避免了第一镜片与第一镜筒的组装公差,因此也就避免了因该组装公差所带来的胶材变厚(如图24所示)所导致的二次变异问题。另一方面,在主动校准过程中,摄取机构通常需要从外侧夹取(或 吸附)镜头部件以便调整第一镜头部件和第二镜头部件的相对位置。当镜头部件具有镜筒时,摄取机构夹取(或吸附)镜筒从而间接地移动镜片来实现光学系统的调整。在第一镜头部件(例如上子镜头)存在组装公差时,镜片和镜筒出现不被期望的安装差异(即镜片和镜筒的相对位置出现了差异),这种差异将导致批量生产时,第一镜头部件和第二镜头部件之间的间隙尺寸不稳定,不便于进行主动校准。而图35的实施例可以避免这一问题。
进一步地,前述实施例中,第一胶材和第二胶材分别采用了UV胶和热固胶。一般而言,热固胶固化后可提供大于UV胶的粘合力,从而使得所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。UV胶涂覆在位于外侧(即距离光轴较远的一侧)的第一间隙,热固胶涂覆在位于内侧(即距离光轴较近的一侧)的第二间隙。UV胶通过光的直接照射进行固化,以对第一镜头部件和第二镜头部件按照主动校准所确定的相对位置进行预固定。然后再对预固定后的光学镜头进行加热,以使其第二间隙处的热固胶固化,从而增强光学镜头的结构强度,提高光学镜头的可靠性。
需注意,在其它实施例中,第一胶材还可以是其它通过光固化的胶材(例如可以是UV热固胶)。第二胶材还可以是其它通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在另一个实施例中,第一胶材和第二胶材可以是在液态时相同材质,例如第一胶材和第二胶材可以均采用UV热固胶。然而,位于第一间隙和第二间隙的UV热固胶分别采用不同的方式进行固化(例如可以先用光直接照射第一间隙的UV热固胶使其完成光固化,然后再对第二间隙的UV热固胶进行热固化),从而在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。所述的微观结构例如可以是分子结构、微米级的物理形态、分子比例、晶格形态等。
进一步地,在一个实施例中,所述第一胶材和所述第二胶材可以彼此不接触,以避免第一胶材和第二胶材混合后产生化学变化,影响胶水特性。由于避免了第一胶材和第二胶材混合后产生化学变化,本 实施例可以进一步增强光学镜头或摄像模组的可靠性。
进一步地,在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,当第一胶材和第二胶材使用液态时(即未固化时)相同的材料时,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值(该阈值小于100μm)。
上述实施例中,第一镜头部件和第二镜头部件的镜片数目可以根据需要调整。例如第一镜头部件和第二镜头部件的镜片数量可以分别为二和四,也可以分别为三和三,也可以分别为四和二,也可以分别为五和一。整个光学镜头的镜片总数也可以根据需要调整,例如光学镜头的镜片总数可以是六,也可以是五或七。特别地,在一个优选实施例中,当第一镜头部件具有多个第一镜片时,这些第一镜片通过互相嵌合来保持彼此之间的相对位置固定。换句话说,第一镜头部件的多个第一镜片不需要第一镜筒来提供支撑功能,即可保持第一镜头部件的光学系统的结构稳定。并且,通过胶材粘结第一镜头部件和第二镜头部件时,前文所述的各个实施例中的第一镜片(这些实施例中仅有单个第一镜片)由互相嵌合的多个第一镜片中最接近第二镜头部件的一个第一镜片来替代即可。也就是说,图25-40中的第一镜片的形状和结构可用于互相嵌合的多个第一镜片中最接近第二镜头部件的一个第一镜片,从而实现类似的功能。
进一步地,图32示出了本发明一个实施例中的光学镜头组装方法的流程图。参考图32,该方法包括:
步骤10,准备第一镜头部件和第二镜头部件,其中所述第一镜头部件包括至少一个第一镜片,并且当所述第一镜片的数目为多个时这些第一镜片通过互相嵌合来保持彼此之间的相对位置固定,第二镜头部件包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片。
步骤20,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统。
步骤30,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤40,通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,胶材介于所述第一镜片和所述第二镜头部件之间。本步骤中,利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,可以在执行步骤30前,在所述第一镜头部件和所述第二镜头部件之间的间隙进行胶材涂布,然后再执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,执行步骤40使胶材固化,从而利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,进而使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。而在另一个实施例中,可以先执行步骤30以调整和确定第一镜头部件和第二镜头部件的相对位置。在确定该相对位置后,暂时将第一镜头部件(或第二镜头部件)移开,然后进行胶材涂布,再基于所确定的相对位置将第一镜头部件(或第二镜头部件)移回。最后固化胶材,使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
进一步地,在一个实施例中,所述步骤30中,使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
进一步地,图33示出了本发明一个实施例中步骤40的流程图。参考图33,所述步骤40包括子步骤:
步骤401,将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力。
步骤402,固化所述第一胶材以使所述第一镜头部件和所述第二 镜头部件预固定。
步骤403,固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。其中,第一胶材可以为UV胶,第二胶材可以为热固胶。
步骤402中,利用第一胶材将第一镜筒和第二镜头进行粘结时,胶材固化形变对镜筒形成作用力较小,从而减小镜筒的形变。而在步骤403中,由于第一镜片直接与对应的第二镜头部件粘结,可避免因第一镜筒和第一镜片组装公差而造成的第一间隙和第二间隙增大,进而避免胶材厚度过大。如果胶材厚度过大,胶材固化时将产生的形变将导致镜筒变异,进而导致第一镜片或第二镜片错位。因此,本实施例可避免因第一镜筒和/或第二镜筒形变所导致的镜片位置变化,从而确保了固化后所形成的第一镜片和第二镜片之间的永久相对位置与主动校准所确定的第一镜头部件和第二镜头部件之间的相对位置一致,进而确保成像质量达到预期。
进一步地,在一个实施例中,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤(步骤30)中,所形成的所述第一间隙位于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片的非光学面与所述第二镜筒的端面之间。并且,所形成的所述第二间隙位于所述的最接近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片之间。
前述实施例中,第一胶材和第二胶材分别采用了UV胶和热固胶。一般而言,热固胶固化后可提供大于UV胶的粘合力,从而使得所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。UV胶涂覆在位于外侧(即距离光轴较远的一侧)的第一间隙,热固胶涂覆在位于内侧(即距离光轴较近的一侧)的第二间隙。UV胶通过光的直接照射进行固化,以对第一镜头部件和第二镜头部件按照主动校准所确定的相对位置进行预固定。然后再对预固定后的光学镜头进行加热,以使其第二间隙处的热固胶固化,从而增强光学镜头的结构强度,提高光学镜头的可靠性。
需注意,在其它实施例中,第一胶材还可以是其它通过光固化的 胶材(例如可以是UV热固胶)。第二胶材还可以是其它通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
在另一个实施例中,第一胶材和第二胶材可以是在液态时相同材质,例如第一胶材和第二胶材可以均采用UV热固胶。然而,位于第一间隙和第二间隙的UV热固胶分别采用不同的方式进行固化(例如可以先用光直接照射第一间隙的UV热固胶使其完成光固化,然后再对第二间隙的UV热固胶进行热固化),从而在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。所述的微观结构例如可以是分子结构、微米级的物理形态、分子比例、晶格形态等。
进一步地,在一个实施例中,所述第一胶材和所述第二胶材可以彼此不接触,以避免第一胶材和第二胶材混合后产生化学变化,影响胶水特性。由于避免了第一胶材和第二胶材混合后产生化学变化,本实施例可以进一步增强光学镜头或摄像模组的可靠性。
进一步地,在一个实施例中,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,在一个实施例中,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
进一步地,当第一胶材和第二胶材使用液态时(即未固化时)相同的材料时,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值(该阈值小于100μm)。
进一步地,根据本发明的一个实施例,还提供了一种摄像模组组装方法,包括:利用前述任一实施例的光学镜头组装方法组装光学镜头,然后利用所组装的光学镜头制作摄像模组。
进一步地,图34示出了本发明的另一个实施例的摄像模组组装方法的流程图,该方法包括:
步骤100,准备第一镜头部件和摄像模组部件,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,其中所述第一镜 头部件包括至少一个第一镜片,并且当所述第一镜片的数目为多个时这些第一镜片通过互相嵌合来保持彼此之间的相对位置固定,第二镜头部件包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片。本步骤中,为尽可能的使胶水能被曝光固化,所准备的第一镜头部件可以包括第一镜筒,第一镜筒的筒壁尽可能减薄,甚至第一镜头部件可仅由一片做了遮光处理的第一镜片构成(镜片遮光处理可以避免杂光对成像造成影响)。
步骤200,对所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统。
步骤300,基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置。
步骤400,通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材介于第一镜片和第二镜头部件之间。
可以看出,与前一实施例相比,本实施例中第二镜头部件和感光模组先组装在一起构成摄像模组部件,然后再将摄像模组部件与第一镜头部件组装,得到完整的摄像模组。将摄像模组部件与第一镜头部件组装的流程还可以有多种变形,例如可参考前文所述的光学镜头组装方法的多个实施例,来实现摄像模组部件与第一镜头部件的组装。
进一步地,本申请中所述的主动校准可以在多个自由度上对第一镜头部件和第二镜头部件的相对位置进行调整。图37a示出了本发明一个实施例中的主动校准中相对位置调节方式。在该调节方式中,所述第一镜头部件(也可以是第一镜片)可以相对于所述第二镜头部件沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
图37b示出了本发明另一个实施例的主动校准中的旋转调节。在该实施例中,相对位置调整除了具有图25的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调 整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,图37c示出了本发明又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一镜头部件相对于第二镜头部件的倾斜姿态(也就是所述第一镜头部件的光轴相对于所述第二镜头部件的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本发明的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
进一步地,图36a~b示出了本发明一个实施例的光学镜头的组装流程,包括:
步骤1,第二镜头部件200通过固定机构(未示出)固定,摄取机构(未示出)夹取(或吸附)第一镜头部件100的第一镜片102进行预定位,使得所述第一、第二镜头部件100、200构成可成像的光学系统。图36a示出了本发明一个实施例的第一镜片与第二镜头部件预定位后的剖面示意图。图36c示出了图36a中的局部区域的放大示意图,所放大部分为图36a中的圆圈内的区域。参考图36a和图36c,所述第一镜头部件100具有至少一第一承靠面102c,所述第二镜头部件200具有至少一第二承靠面201c,至少一所述第一承靠面102c和至少一所述第二承靠面201c构成了位于所述第一承靠面和所述第二承靠面之间的至少一间隙。本实施例中的第一镜片102既起到支撑作用,又起到提高光学能力的作用。所述第一承靠面102c由第一镜片102的非光学区提供,所述第二承靠面201c在本实施例中优选由第二镜筒201提供。
步骤2:通过摄取机构使所述第一镜头部件相对所述第二镜头部件的第二承靠面进行主动调整,所述主动调整包括对一参照物进行拍 摄,优选为标板,并且从图像信息中获取校正量,校正量优选为MTF值,也可以是SFR或Tv Line值,获取相关校正量后,所述摄取机构调整所述第一、第二镜头部件的位置以完善所述光学系统,具体光学系统的参考标准包括完善后的所述光学系统具有相较于未进行调整的光学系统有减少像差,提高解像力的性能,光学系统的完善指标也可是按需所设。预定位作为后续工艺流程的开始步骤,在第一、第二镜头部件预定位时一般遵从间隙的设计尺寸。图36b示出了本发明一个实施例的第一镜片与第二镜头部件主动校准后的位置关系的剖面示意图。图36d示出了图36b中的局部区域的放大示意图,所放大部分为图36b中的圆圈内的区域。参考图36b和36d,经过主动校准,第一镜片102的轴线与第二镜头部件200的轴线的夹角可以不为零,此时第一承靠面102c和第二承靠面201c不平行。
在一个实施例中,通过摄取机构使所述第二镜头部件相对于所述第一承靠面进行主动调整,所述主动调整包括第一承靠面和第二承靠面相对X轴和/或Y轴和/或Z轴方向的调整,以使所述第一承靠面和第二承靠面相对位置发生变化,从而所述第一承靠面和所述第二承靠面成一夹角,一般来说,调整后的该夹角的大小与预定位时的夹角不一致。该夹角改变预定位时的所述间隙的尺寸,因此可能导致调整后的该间隙与设计间隙尺寸有一定误差。由图上可知,参考实际的试验,由于第一镜头部件和第二镜头部件由于组装,生产时的误差导致第一、第二镜头部件的光学系统的一致性不高,经过调整后发生了相较于步骤1中的预定位变化的情况。
在另一个实施例中,通过摄取机构使第一镜片102相对于所述第二镜头部件200的相对位置进行调整,对相对位置的调整包括:通过调节所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角,使所述第一镜头部件相对于所述第二镜头部件沿着调整平面移动,以及使所述第一镜头部件相对于所述第二镜头部件沿着垂直于调整平面的方向移动,从而使所述光学系成像的实测解像力(例如MTF值、SFR值或Tv Line值)提升。其中,所述沿着调整平面移动包括在所述调整平面上平移和/或转动。在主动校准后,第一镜片102的轴线与 第二镜头部件200的轴线的夹角可以不为零。第二镜头部件200的轴线可以用第二镜筒201或第二镜片202的轴线代表。
步骤3:调整后所确定的间隙被记录后,摄取机构移动第一镜头部件100离开第二镜头部件以暴露所述第二承靠面201c。在第二承靠面201c上进行点胶处理,然后通过所述摄取机构使所述第一镜头部件100回复至记录时的位置,再使胶材固化以支撑和固定所述第一镜头部件和所述第二镜头部件。图36e示出了在图36d基础上增加了第一镜片和第二镜筒之间的胶材的点胶位置的局部区域的放大示意图。其中用“②”标出了本步骤中点胶的位置。值得一提的是,由于取消了第一镜头部件的镜筒,本实施例中的所述遮光部可以采用涂黑处理,可以很大程度上减少第一镜头部件的尺寸,同时胶材完全地介于第一镜片和第二镜头部件之间,避免了由胶水变异带动镜筒变异,镜筒变异带动镜片变异的连锁反应。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (127)

  1. 一种光学镜头,其特征在于,包括:
    第一镜头部件,其包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片;
    第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;以及
    胶材,其将所述第一镜头部件和所述第二镜头部件粘结在一起,并且所述胶材的至少一部分介于所述第二镜筒与所述第一镜片之间,或者介于所述第一镜筒与所述第二镜片之间。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第一镜头部件和所述第二镜头部件之间具有第一间隙和第二间隙,所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;所述胶材包括位于所述第一间隙的第一胶材和位于所述第二间隙的第二胶材;并且所述第一胶材和所述第二胶材的布置位置和材料适于使所述第一胶材和所述第二胶材在不同的时间被先后固化。
  3. 根据权利要求2所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材具有不同材质,并且所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
  4. 根据权利要求3所述的光学镜头,其特征在于,所述第一胶材为通过光固化的胶材。
  5. 根据权利要求3所述的光学镜头,其特征在于,所述第二胶材为通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
  6. 根据权利要求3所述的光学镜头,其特征在于,所述第一胶 材为UV胶或UV热固胶。
  7. 根据权利要求3所述的光学镜头,其特征在于,所述第二胶材为热固胶或UV热固胶。
  8. 根据权利要求2所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材在液态时为相同材质,并且所述第一胶材和所述第二胶材在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
  9. 根据权利要求8所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材均为UV热固胶。
  10. 根据权利要求2所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材彼此不接触。
  11. 根据权利要求2所述的光学镜头,其特征在于,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
  12. 根据权利要求2所述的光学镜头,其特征在于,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
  13. 根据权利要求2所述的光学镜头,其特征在于,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
  14. 根据权利要求3所述的光学镜头,其特征在于,所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间。
  15. 根据权利要求3所述的光学镜头,其特征在于,所述第二间 隙位于所述第一镜筒的端面与最靠近第一镜筒的第二镜片的非光学面之间,并且所述最靠近第一镜筒的第二镜片的非光学面具有经过粗糙化处理的表面;或者所述第二间隙位于所述第二镜筒的端面与最靠近第二镜筒的第一镜片的非光学面之间,并且所述最靠近第二镜筒的第一镜片的非光学面具有经过粗糙化处理的表面。
  16. 根据权利要求1所述的光学镜头,其特征在于,所述胶材用于在固化后支撑所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
  17. 根据权利要求3所述的光学镜头,其特征在于,所述第二镜筒的端面包括一段平整面,所述第一间隙位于所述平整面与所述第一镜筒的端面之间,所述第二间隙位于所述平整面与所述第一镜片的非光学面之间。
  18. 根据权利要求17所述的光学镜头,其特征在于,粘结第二镜头部件的第一镜片的外侧面和所述第一镜筒的内侧面之间具有第三间隙,所述第二镜头部件的第一镜片和所述第一镜筒通过填充在所述第三间隙的第三胶材彼此固定。
  19. 根据权利要求15所述的光学镜头,其特征在于,所述第二间隙具有朝向所述光学镜头的光轴的第二开口,在沿着所述光轴的方向上所述第二开口的尺寸大于所述第二间隙的平均尺寸。
  20. 根据权利要求15所述的光学镜头,其特征在于,所述第一间隙具有朝向所述光学镜头的外侧的第一开口,在沿着所述光学镜头的光轴的方向上所述第一开口的尺寸大于所述第一间隙的平均尺寸。
  21. 根据权利要求1所述的光学镜头,其特征在于,所述第一镜 片比所述第二镜片靠近所述光学镜头的前端。
  22. 根据权利要求15所述的光学镜头,其特征在于,与所述第一镜筒粘结的第二镜片的端面具有环形凹槽,所述环形凹槽位于所述第二间隙与该第二镜片的光学面之间。
  23. 根据权利要求15所述的光学镜头,其特征在于,与所述第一镜筒粘结的第二镜片的端面具有环形凸台,所述第二间隙位于所述环形凸台与所述第一镜筒之间。
  24. 根据权利要求15所述的光学镜头,其特征在于,与所述第二镜筒粘结的第一镜片的端面具有环形凸台,所述第二间隙位于所述环形凸台与所述第二镜筒之间。
  25. 根据权利要求23或24所述的光学镜头,其特征在于,所述凸台的截面形状为梯形或矩形。
  26. 一种摄像模组,其特征在于,包括权利要求1-25中任一项所述的光学镜头。
  27. 一种光学镜头组装方法,其特征在于,包括:
    对第一镜头部件和第二镜头部件进行预定位,使所述第二镜头部件至少一个第二镜片与所述第一镜头部件的至少一个第一镜片共同构成可成像的光学系,所述至少一个第一镜片安装在所述第一镜头部件的第一镜筒内,所述至少一个第二镜片安装在所述第二镜头部件的第二镜筒内;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所 述胶材的至少一部分介于所述第二镜头部件的第二镜筒与所述第一镜片之间,或者介于所述第一镜头部件的第一镜筒与所述第二镜片之间。
  28. 根据权利要求27所述的光学镜头组装方法,其特征在于,所述的通过胶材粘结包括:
    利用固化的胶材支撑所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
  29. 根据权利要求27所述的光学镜头组装方法,其特征在于,所述的对所述第一镜头部件和所述第二镜头部件进行预定位还包括:使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;
    所述的通过胶材粘结包括:
    将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力;
    固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定;以及
    固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。
  30. 根据权利要求29所述的光学镜头组装方法,其特征在于,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤中,所形成的所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间;并且,所形成的所述第二间隙位于所述第一镜筒的端面与所述至少一个第二镜片中最靠近所述第一镜筒的一个镜片的非光学面之间,或者位于所述第二镜筒的端面与所述至少一个第一镜片中最靠近所述第二镜筒的一个镜片的非光学面之间。
  31. 根据权利要求29所述的光学镜头,其特征在于,在所述的 通过胶材粘结的步骤中,所述第一胶材为UV胶或UV热固胶,所述第二胶材为热固胶或UV热固胶。
  32. 一种摄像模组组装方法,其特征在于,包括:
    利用权利要求27-31中任一项所述的光学镜头组装方法组装光学镜头;以及
    利用所组装的光学镜头制作摄像模组。
  33. 一种摄像模组组装方法,其特征在于,包括:
    对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于镜筒和镜片之间,并且所述的镜筒和镜片之间是所述第二镜筒与所述第一镜片之间,或者是所述第一镜筒与所述第二镜片之间。
  34. 一种光学镜头,其特征在于,包括:
    第一镜头部件,其包括至少一个第一镜片;
    第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;以及
    胶材,其将所述第一镜头部件和所述第二镜头部件粘结在一起,并且所述胶材的至少一部分介于所述至少一个第一镜片中最靠近所述 第二镜头部件的一个第一镜片和所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片之间。
  35. 根据权利要求34所述的光学镜头,其特征在于,所述最靠近所述第二镜头部件的一个第一镜片的轴线与所述最靠近所述第一镜头部件的一个第二镜片的轴线之间具有不为零的夹角。
  36. 根据权利要求35所述的光学镜头,其特征在于,所述第一镜头部件还包括第一镜筒,所述第一镜片承靠并固定于所述第一镜筒。
  37. 根据权利要求36所述的光学镜头,其特征在于,所述第一镜片的顶面和/或外侧面承靠于所述第一镜筒。
  38. 根据权利要求36所述的光学镜头,其特征在于,所述第一镜筒的轴线与所述第二镜筒的轴线重合或平行。
  39. 根据权利要求36所述的光学镜头,其特征在于,所述第一镜筒和所述第二镜筒之间的胶材在光轴方向上的厚度相同。
  40. 根据权利要求34所述的光学镜头,其特征在于,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
  41. 根据权利要求40所述的光学镜头,其特征在于,所述胶材包括第一胶材和第二胶材,所述第二胶材介于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片之间,并且所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。
  42. 根据权利要求41所述的光学镜头,其特征在于,所述第一 镜头部件和所述第二镜头部件之间具有第一间隙和第二间隙,所述第一胶材和所述第二胶材分别涂覆在所述第一间隙和所述第二间隙,并且所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
  43. 根据权利要求42所述的光学镜头,其特征在于,所述第一胶材为通过光固化的胶材。
  44. 根据权利要求42所述的光学镜头,其特征在于,所述第二胶材为通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
  45. 根据权利要求42所述的光学镜头,其特征在于,所述第一胶材为UV胶或UV热固胶。
  46. 根据权利要求42所述的光学镜头,其特征在于,所述第二胶材为热固胶或UV热固胶。
  47. 根据权利要求42所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材在液态时为相同材质,并且所述第一胶材和所述第二胶材在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
  48. 根据权利要求47所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材均为UV热固胶。
  49. 根据权利要求42所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材彼此不接触。
  50. 根据权利要求42所述的光学镜头,其特征在于,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
  51. 根据权利要求42所述的光学镜头,其特征在于,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
  52. 根据权利要求42所述的光学镜头,其特征在于,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
  53. 根据权利要求42所述的光学镜头,其特征在于,所述第一间隙位于所述第一镜筒的端面与所述第二镜筒的端面之间。
  54. 根据权利要求42所述的光学镜头,其特征在于,所述第二间隙位于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片的非光学面与所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片的非光学面之间。
  55. 根据权利要求54所述的光学镜头,其特征在于,所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片的非光学面具有经过粗糙化处理的表面。
  56. 根据权利要求54所述的光学镜头,其特征在于,所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片的非光学面具有经过粗糙化处理的表面。
  57. 根据权利要求40所述的光学镜头,其特征在于,所述胶材用于支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
  58. 根据权利要求54所述的光学镜头,其特征在于,所述第二间隙具有朝向所述光学镜头的光轴的第二开口,在沿着所述光轴的方 向上所述第二开口的尺寸大于所述第二间隙的平均尺寸。
  59. 根据权利要求53所述的光学镜头,其特征在于,所述第一间隙具有朝向所述光学镜头的外侧的第一开口,在沿着所述光学镜头的光轴的方向上所述第一开口的尺寸大于所述第一间隙的平均尺寸。
  60. 根据权利要求48所述的光学镜头,其特征在于,所述第一镜片比所述第二镜片靠近所述光学镜头的前端。
  61. 根据权利要求60所述的光学镜头,其特征在于,与所述第一镜片粘结的所述第二镜片的端面具有环形凹槽,所述环形凹槽位于所述第二间隙与该第二镜片的光学面之间。
  62. 根据权利要求60所述的光学镜头,其特征在于,与所述第一镜片粘结的所述第二镜片的端面具有凸台,所述第二间隙位于所述凸台与所述第一镜片之间。
  63. 根据权利要求60所述的光学镜头,其特征在于,与所述第二镜片粘结的所述第一镜片的端面具有凸台,所述第二间隙位于所述凸台与所述第二镜片之间。
  64. 根据权利要求62或63所述的光学镜头,其特征在于,所述凸台的截面形状为矩形、梯形、三角形或半圆形。
  65. 根据权利要求60所述的光学镜头,其特征在于,与所述第一镜片粘结的所述第二镜片的端面具有第二凸台,与所述第二镜片粘结的所述第一镜片的端面具有第一凸台,所述第二间隙位于所述第一凸台与所述第二凸台之间。
  66. 根据权利要求63所述的光学镜头,其特征在于,与所述第 一镜片粘结的所述第二镜片的端面具有环形坝,所述环形坝位于该第二镜片的光学区与所述第二间隙之间;并且,在垂直于所述光学镜头的光轴的方向上,所述环形坝与所述凸台之间具有至少50μm的间隙。
  67. 根据权利要求63所述的光学镜头,其特征在于,与所述第一镜片粘结的所述第二镜片的非光学面具有向内凹进的台阶或者凹槽。
  68. 一种摄像模组,其特征在于,包括权利要求34-67中任一项所述的光学镜头。
  69. 一种光学镜头组装方法,其特征在于,包括:
    对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述第一镜头部件包括至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于所述第一镜片和所述第二镜片之间。
  70. 根据权利要求69所述的光学镜头组装方法,其特征在于,所述主动校准包括:通过与所述第一镜片的直接接触来摄取所述第一镜片,进而移动所述第一镜片以调节和确定所述第一镜片与所述第二镜头部件的相对位置。
  71. 根据权利要求70所述的光学镜头组装方法,其特征在于,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定 所述第一镜片的轴线相对于所述第二镜片的轴线的夹角。
  72. 根据权利要求71所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着平面移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置;沿着所述平面的移动包括在所述平面上的平移和/或转动。
  73. 根据权利要求72所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着垂直于所述平面的方向移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的在垂直于所述平面的方向上的相对位置。
  74. 根据权利要求72所述的光学镜头组装方法,其特征在于,所述通过胶材粘结包括:在所述第一镜片与所述第二镜片之间涂覆胶材,使所述第一镜片与所述第二镜片之间的胶材固化以支撑并固定所述第一镜片和所述第二镜头部件,使所述第一镜片和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置;以及
    所述光学镜头组装方法还包括:
    在使所述第一镜片与所述第二镜片之间的胶材固化后,将第一镜筒安装于所述第一镜片。
  75. 根据权利要求69所述的光学镜头组装方法,其特征在于,将第一镜筒安装于所述第一镜片包括:使所述第一镜筒承靠于所述第一镜片的顶面和/或外侧面。
  76. 根据权利要求75所述的光学镜头组装方法,其特征在于,将第一镜筒安装于所述第一镜片还包括:在所述第一镜筒和所述第二镜筒之间涂布胶材并粘结所述第一镜筒和所述第二镜筒。
  77. 根据权利要求76所述的光学镜头组装方法,其特征在于,将第一镜筒安装于所述第一镜片还包括:使所述第一镜筒的轴线与所述第二镜筒的轴线重合或平行。
  78. 根据权利要求69所述的光学镜头组装方法,其特征在于,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
  79. 根据权利要求78所述的光学镜头组装方法,其特征在于,所述的通过胶材粘结包括:
    利用固化的胶材支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
  80. 根据权利要求78所述的光学镜头组装方法,其特征在于,所述的对所述第一镜头部件和所述第二镜头部件进行预定位还包括:使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;以及
    所述的通过胶材粘结包括:
    将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力;
    固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定;以及
    固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。
  81. 根据权利要求79所述的光学镜头组装方法,其特征在于,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤中,所形成的所述第一间隙位于所述第一镜筒的端面与所述第二镜筒 的端面之间;并且,所形成的所述第二间隙位于所述至少一个第一镜片中最靠近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最靠近所述第一镜头部件的一个第二镜片之间。
  82. 根据权利要求80所述的光学镜头组装方法,其特征在于,在所述的通过胶材粘结的步骤中,所述第一胶材为光固胶,所述第二胶材为热固胶。
  83. 一种摄像模组组装方法,其特征在于,包括:
    利用权利要求69-82中任一项所述的光学镜头组装方法组装光学镜头;以及
    利用所组装的光学镜头制作摄像模组。
  84. 一种摄像模组组装方法,其特征在于,包括:
    对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且所述第一镜头部件包括第一镜筒和安装在所述第一镜筒内的至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材的至少一部分介于所述第一镜片与所述第二镜片之间。
  85. 一种光学镜头,其特征在于,包括:
    第一镜头部件,其包括至少一个第一镜片以及位于所述至少一个第一镜片的非光学区的顶面和侧面的遮光部;
    第二镜头部件,其包括第二镜筒和位于所述第二镜筒内的至少一 个第二镜片,并且至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;以及
    胶材,其将所述第一镜头部件和所述第二镜头部件粘结在一起,并且所述胶材介于所述第一镜片和所述第二镜头部件之间。
  86. 根据权利要求85所述的光学镜头,其特征在于,所述最靠近所述第二镜头部件的一个第一镜片的轴线与所述最靠近所述第一镜头部件的一个第二镜片的轴线之间具有不为零的夹角。
  87. 根据权利要求85所述的光学镜头,其特征在于,所述遮光部为第一镜筒,所述至少一个第一镜片安装在所述第一镜筒内。
  88. 根据权利要求85所述的光学镜头,其特征在于,所述胶材介于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片和所述第二镜筒的端面之间。
  89. 根据权利要求88所述的光学镜头,其特征在于,所述胶材介于所述最接近所述第二镜头部件的一个第一镜片的非光学面和所述第二镜筒的端面之间。
  90. 根据权利要求85所述的光学镜头,其特征在于,所述胶材包括第一胶材和第二胶材,所述第二胶材介于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片之间,并且所述第二胶材提供的粘合力大于所述第一胶材提供的粘合力。
  91. 根据权利要求90所述的光学镜头,其特征在于,所述第一镜头部件和所述第二镜头部件之间具有第一间隙和第二间隙,所述第一胶材和所述第二胶材分别涂覆在所述第一间隙和所述第二间隙,并且所述第一间隙比所述第二间隙靠近所述光学镜头的外侧。
  92. 根据权利要求91所述的光学镜头,其特征在于,所述第二镜筒的顶面包括第二平整面,所述第一间隙和所述第二间隙均位于所述第二平整面与所述第一镜片的非光学区的底面之间。
  93. 根据权利要求92所述的光学镜头,其特征在于,所述第一间隙位于所述的最接近所述第二镜头部件的一个第一镜片与所述第二镜筒的端面之间;以及所述第二间隙位于所述的最接近所述第二镜头部件的一个第一镜片与所述的最接近所述第一镜头部件的一个第二镜片之间。
  94. 根据权利要求85所述的光学镜头,其特征在于,所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片的非光学面具有经过粗糙化处理的表面。
  95. 根据权利要求94所述的光学镜头,其特征在于,所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片的非光学面具有经过粗糙化处理的表面。
  96. 根据权利要求85所述的光学镜头,其特征在于,所述胶材用于支撑并固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
  97. 根据权利要求91所述的光学镜头,其特征在于,所述第一胶材为通过光固化的胶材。
  98. 根据权利要求91所述的光学镜头,其特征在于,所述第二胶材为通过热固化、湿气固化、厌氧固化或氧化固化的胶材。
  99. 根据权利要求91所述的光学镜头,其特征在于,所述第一胶材为UV胶或UV热固胶。
  100. 根据权利要求91所述的光学镜头,其特征在于,所述第二胶材为热固胶或UV热固胶。
  101. 根据权利要求91所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材在液态时为相同材质,并且所述第一胶材和所述第二胶材在固化后形成具有不同微观结构的不同材质,以使所述第二胶材固化后提供的粘合力大于所述第一胶材固化后提供的粘合力。
  102. 根据权利要求101所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材均为UV热固胶。
  103. 根据权利要求91所述的光学镜头,其特征在于,所述第一胶材和所述第二胶材彼此不接触。
  104. 根据权利要求91所述的光学镜头,其特征在于,所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
  105. 根据权利要求91所述的光学镜头,其特征在于,所述第二间隙在沿着所述光学镜头的光轴方向上的尺寸为30-100μm。
  106. 根据权利要求91所述的光学镜头,其特征在于,所述第二间隙与所述第一间隙在沿着所述光学镜头的光轴方向上的尺寸的差异小于阈值。
  107. 根据权利要求91所述的光学镜头,其特征在于,所述第二间隙具有朝向所述光学镜头的光轴的第二开口,在沿着所述光轴的方向上所述第二开口的尺寸大于所述第二间隙的平均尺寸。
  108. 根据权利要求91所述的光学镜头,其特征在于,所述第一间隙具有朝向所述光学镜头的外侧的第一开口,在沿着所述光轴的方向上所述第一开口的尺寸大于所述第一间隙的平均尺寸。
  109. 根据权利要求85所述的光学镜头,其特征在于,所述第一镜片比所述第二镜片靠近所述光学镜头的前端。
  110. 根据权利要求93所述的光学镜头,其特征在于,所述的最接近所述第二镜头部件的一个第一镜片具有朝向所述第二镜头部件凸出的第一凸台,并且所述第二间隙位于所述第一凸台与所述的最接近所述第一镜头部件的一个第二镜片的非光学面之间。
  111. 根据权利要求110所述的光学镜头,其特征在于,所述的最接近所述第一镜头部件的一个第二镜片的非光学面具有第一凹槽,所述第二间隙位于所述第一凸台和所述第一凹槽之间。
  112. 根据权利要求111所述的光学镜头,其特征在于,所述第一凸台在仰视图中呈环形,且所述第一凹槽在俯视图中呈环形。
  113. 根据权利要求110所述的光学镜头,其特征在于,所述的最接近所述第二镜头部件的一个第一镜片具有朝向所述第二镜头部件凸出的多个第一凸台,且在仰视图中所述多个第一凸台分布在一个圆上;并且所述第二镜头部件的端面具有用于容纳所述多个第一凸台的多个第一凹槽,所述第二间隙位于所述多个第一凸台和所述多个第一凹槽之间。
  114. 根据权利要求113所述的光学镜头,其特征在于,所述多个第一凹槽的侧壁由所述第二镜筒形成,所述多个第一凹槽的底面由所述的最接近所述第一镜头部件的一个第二镜片的非光学面形成。
  115. 根据权利要求93所述的光学镜头,其特征在于,所述第二镜筒的端面具有朝向所述第一镜头部件的第二凸台,且所述的最接近所述第二镜头部件的一个第一镜片的非光学面具有第二凹槽,所述第二间隙位于所述第二凸台和所述第二凹槽之间。
  116. 一种摄像模组,其特征在于,包括权利要求85-115中任一项所述的光学镜头。
  117. 一种光学镜头组装方法,其特征在于,包括:
    对所述第一镜头部件和所述第二镜头部件进行预定位,其中第一镜头部件包括至少一个第一镜片,第二镜头部件包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材介于所述第一镜片和所述第二镜头部件之间。
  118. 根据权利要求117所述的光学镜头组装方法,其特征在于,所述主动校准包括:摄取并移动所述第一镜片以调节和确定所述第一镜片与所述第二镜头部件的相对位置。
  119. 根据权利要求118所述的光学镜头组装方法,其特征在于,所述主动校准还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜片的轴线相对于所述第二镜片的轴线的夹角。
  120. 根据权利要求119所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着平面移动所述第一镜片,根据所述光学系 统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置;沿着所述平面的移动包括在所述平面上的平移和/或转动。
  121. 根据权利要求120所述的光学镜头组装方法,其特征在于,所述主动校准还包括:沿着垂直于所述平面的方向移动所述第一镜片,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的在垂直于所述平面的移动方向上的相对位置。
  122. 根据权利要求117所述的光学镜头组装方法,其特征在于,所述的通过胶材粘结包括:
    利用固化的胶材支撑所述至少一个第一镜片和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在通过主动校准所确定的相对位置。
  123. 根据权利要求117所述的光学镜头组装方法,其特征在于,所述的对所述第一镜头部件和所述第二镜头部件进行预定位还包括:使所述第一镜头部件和所述第二镜头部件之间形成第一间隙和第二间隙,其中所述第一间隙比所述第二间隙靠近所述光学镜头的外侧;以及
    所述的通过胶材粘结包括:
    将第一胶材和第二胶材分别涂覆在所述第一间隙和所述第二间隙,其中所述第二胶材的粘合力大于所述第一胶材的粘合力;
    固化所述第一胶材以使所述第一镜头部件和所述第二镜头部件预固定;以及
    固化所述第二胶材以使所述一镜头部件和所述第二镜头部件永久结合。
  124. 根据权利要求123所述的光学镜头组装方法,其特征在于,在所述的对所述第一镜头部件和所述第二镜头部件进行预定位步骤 中,所形成的所述第一间隙位于所述至少一个第一镜片中最接近所述第二镜头部件的一个第一镜片的非光学面与所述第二镜筒的端面之间;并且,所形成的所述第二间隙位于所述的最接近所述第二镜头部件的一个第一镜片和所述至少一个第二镜片中最接近所述第一镜头部件的一个第二镜片之间。
  125. 根据权利要求124所述的光学镜头组装方法,其特征在于,在所述的通过胶材粘结的步骤中,所述第一胶材为UV胶或UV热固胶,所述第二胶材为热固胶或UV热固胶。
  126. 一种摄像模组组装方法,其特征在于,包括:
    利用权利要求117-125中任一项所述的光学镜头组装方法组装光学镜头;以及
    利用所组装的光学镜头制作摄像模组。
  127. 一种摄像模组组装方法,其特征在于,包括:
    对所述第一镜头部件和所述第二镜头部件进行预定位,其中所述摄像模组部件包括结合在一起的第二镜头部件和感光模组,并且第一镜头部件包括至少一个第一镜片,并且当所述第一镜片的数目为多个时这些第一镜片通过互相嵌合来保持彼此之间的相对位置固定,第二镜头部件包括第二镜筒和位于所述第二镜筒内的至少一个第二镜片,所述预定位使所述至少一个第二镜片与所述至少一个第一镜片共同构成可成像的光学系统;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过胶材粘结所述第一镜头部件和所述第二镜头部件,其中,所述胶材介于所述第一镜片和所述第二镜头部件之间。
PCT/CN2019/078478 2018-03-16 2019-03-18 光学镜头、摄像模组及其组装方法 WO2019174645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/979,688 US11899268B2 (en) 2018-03-16 2019-03-18 Optical lens, camera module and assembly method therefor
EP19766724.9A EP3767358A4 (en) 2018-03-16 2019-03-18 OPTICAL LENS, CAMERA MODULE AND ASSEMBLY PROCEDURE FOR IT

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201820365043.3U CN208334747U (zh) 2018-03-16 2018-03-16 光学镜头和摄像模组
CN201810220892.4A CN110275264B (zh) 2018-03-16 2018-03-16 光学镜头、摄像模组及其组装方法
CN201810220286.2A CN110275261B (zh) 2018-03-16 2018-03-16 光学镜头、摄像模组及其组装方法
CN201820366692.5 2018-03-16
CN201810220657.7A CN110275263B (zh) 2018-03-16 2018-03-16 光学镜头、摄像模组及其组装方法
CN201820366205.5U CN208367291U (zh) 2018-03-16 2018-03-16 光学镜头和摄像模组
CN201820366692.5U CN208367292U (zh) 2018-03-16 2018-03-16 光学镜头和摄像模组
CN201820365043.3 2018-03-16
CN201820366205.5 2018-03-16
CN201810220657.7 2018-03-16
CN201810220286.2 2018-03-16
CN201810220892.4 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174645A1 true WO2019174645A1 (zh) 2019-09-19

Family

ID=67908575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078478 WO2019174645A1 (zh) 2018-03-16 2019-03-18 光学镜头、摄像模组及其组装方法

Country Status (3)

Country Link
US (1) US11899268B2 (zh)
EP (1) EP3767358A4 (zh)
WO (1) WO2019174645A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534389A (zh) * 2021-06-29 2021-10-22 江西晶超光学有限公司 镜头、摄像模组和镜头组装方法
EP4273606A4 (en) * 2021-01-08 2024-06-26 Ningbo Sunny Opotech Co., Ltd. LENS AND CAMERA MODULE WITH LENS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221683A1 (en) * 2021-01-12 2022-07-14 Zebra Technologies Corporation Optical assemblies and methods of forming the same with light-curable adhesive

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153947A (zh) * 2006-09-26 2008-04-02 鸿富锦精密工业(深圳)有限公司 镜头模组及其制造方法
CN101251634A (zh) * 2007-02-21 2008-08-27 日本电产三协株式会社 光学元件的固定结构
CN101571617A (zh) * 2008-04-30 2009-11-04 旭丽电子(广州)有限公司 镜头模组
CN101963692A (zh) * 2009-07-21 2011-02-02 鸿富锦精密工业(深圳)有限公司 镜头模组及其组装方法
CN102449523A (zh) * 2009-08-31 2012-05-09 松下电器产业株式会社 透镜镜筒、摄像装置及携带式终端装置
CN105093471A (zh) * 2014-05-20 2015-11-25 株式会社电装 用于成像设备的透镜模块
CN105717602A (zh) * 2014-12-23 2016-06-29 三星电机株式会社 镜头组件以及包括该镜头组件的相机模块
CN205982793U (zh) * 2016-07-20 2017-02-22 瑞声声学科技(苏州)有限公司 镜头模组
CN206362958U (zh) * 2016-12-30 2017-07-28 上饶市宇瞳光学有限公司 一种镜片及应用该镜片的镜头模组

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809047B2 (ja) 2000-05-10 2006-08-16 シャープ株式会社 対物レンズ鏡筒駆動装置及び光情報記録再生装置
US7092174B2 (en) 2001-05-18 2006-08-15 Konica Corporation Image pickup lens, image pickup apparatus and method for forming image pickup lens
TWI336022B (en) 2004-10-29 2011-01-11 Altus Technology Inc Digital still camera lens module
WO2009125640A1 (ja) 2008-04-09 2009-10-15 日立マクセル株式会社 レンズユニット、カメラモジュール、及びレンズユニットの製造方法
JP2010191345A (ja) * 2009-02-20 2010-09-02 Hitachi Maxell Ltd レンズユニット、カメラモジュール、及びレンズユニットの製造方法
EP2881774B1 (en) 2012-07-31 2019-04-24 Sony Corporation Lens attachment mechanism, lens attachment method and imaging device
KR20140076761A (ko) * 2012-12-13 2014-06-23 삼성전기주식회사 렌즈 모듈
KR101983169B1 (ko) 2014-04-18 2019-05-28 삼성전기주식회사 렌즈 모듈, 렌즈 모듈의 제조 방법 및 렌즈 모듈을 포함하는 카메라 모듈
WO2015191001A1 (en) 2014-06-10 2015-12-17 Heptagon Micro Optics Pte. Ltd. Optoelectronic modules including hybrid arrangements of beam shaping elements, and imaging devices incorporating the same
WO2017052268A2 (ko) 2015-09-24 2017-03-30 엘지이노텍(주) 카메라 모듈
CN105445885B (zh) 2015-10-30 2019-06-18 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN105445889B (zh) 2015-12-02 2019-01-01 宁波舜宇光电信息有限公司 采用分体式镜头的摄像模组及其组装方法
CN105487190B (zh) * 2015-12-16 2018-10-23 宁波舜宇光电信息有限公司 集成对焦机构的分体式镜头及其组装方法和摄像模组
CN206209175U (zh) 2016-03-04 2017-05-31 宁波舜宇光电信息有限公司 光学镜头和摄像模组
CN107167893B (zh) * 2016-03-08 2019-10-18 光宝电子(广州)有限公司 影像调焦结构
US10859784B2 (en) * 2017-02-06 2020-12-08 Lite-On Electronics (Guangzhou) Limited Optical assembly and camera module
CN208367291U (zh) 2018-03-16 2019-01-11 宁波舜宇光电信息有限公司 光学镜头和摄像模组
CN208367292U (zh) 2018-03-16 2019-01-11 宁波舜宇光电信息有限公司 光学镜头和摄像模组

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153947A (zh) * 2006-09-26 2008-04-02 鸿富锦精密工业(深圳)有限公司 镜头模组及其制造方法
CN101251634A (zh) * 2007-02-21 2008-08-27 日本电产三协株式会社 光学元件的固定结构
CN101571617A (zh) * 2008-04-30 2009-11-04 旭丽电子(广州)有限公司 镜头模组
CN101963692A (zh) * 2009-07-21 2011-02-02 鸿富锦精密工业(深圳)有限公司 镜头模组及其组装方法
CN102449523A (zh) * 2009-08-31 2012-05-09 松下电器产业株式会社 透镜镜筒、摄像装置及携带式终端装置
CN105093471A (zh) * 2014-05-20 2015-11-25 株式会社电装 用于成像设备的透镜模块
CN105717602A (zh) * 2014-12-23 2016-06-29 三星电机株式会社 镜头组件以及包括该镜头组件的相机模块
CN205982793U (zh) * 2016-07-20 2017-02-22 瑞声声学科技(苏州)有限公司 镜头模组
CN206362958U (zh) * 2016-12-30 2017-07-28 上饶市宇瞳光学有限公司 一种镜片及应用该镜片的镜头模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767358A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273606A4 (en) * 2021-01-08 2024-06-26 Ningbo Sunny Opotech Co., Ltd. LENS AND CAMERA MODULE WITH LENS
CN113534389A (zh) * 2021-06-29 2021-10-22 江西晶超光学有限公司 镜头、摄像模组和镜头组装方法

Also Published As

Publication number Publication date
US11899268B2 (en) 2024-02-13
US20210048595A1 (en) 2021-02-18
EP3767358A4 (en) 2021-05-19
EP3767358A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
TWI722068B (zh) 光學鏡片、光學鏡頭
CN110275261B (zh) 光学镜头、摄像模组及其组装方法
TWI731261B (zh) 攝像模組鏡頭和攝像模組及其組裝方法
WO2019174645A1 (zh) 光学镜头、摄像模组及其组装方法
CN208367291U (zh) 光学镜头和摄像模组
WO2019174644A1 (zh) 可成像光学器件及其制造方法
TWI505704B (zh) 相機模組組裝方法及相機模組
EP4180852A1 (en) Adjustable optical lens and camera module and manufacturing method and applications thereof
JP7080260B2 (ja) マルチレンズグループアセンブリ、撮影モジュール及びその組み立て方法、電子機器
TWI720579B (zh) 光學鏡頭、攝像模組及其組裝方法
JP2010532492A (ja) 異なる素材からなるレンズユニット及びこれを備えるカメラモジュール、並びにその製造方法
EP3761099B1 (en) Optical lens assembly, camera module, and assembling method therefor
WO2020073735A1 (zh) 一体式镜筒、光学镜头、摄像模组及组装方法
US20220187561A1 (en) Optical lens, camera module and manufacturing method thereof
WO2020042788A1 (zh) 多群组镜头、摄像模组及其制造方法
CN110275263B (zh) 光学镜头、摄像模组及其组装方法
CN110275260B (zh) 可成像光学器件及其制造方法
CN110275264B (zh) 光学镜头、摄像模组及其组装方法
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
TW201518777A (zh) 透鏡陣列、透鏡陣列層疊體及這些的製造方法
EP3835843B1 (en) Optical lens, camera module and assembling method
CN110542969B (zh) 光学镜头、摄像模组及其组装方法
WO2020156027A1 (zh) 光学镜头、摄像模组及其组装方法
CN112534328B (zh) 光学镜头、摄像模组及其组装方法
CN112166358B (zh) 光学镜头、摄像模组及其组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019766724

Country of ref document: EP