WO2019174528A1 - 玻璃组件制作方法、玻璃组件及显示屏 - Google Patents

玻璃组件制作方法、玻璃组件及显示屏 Download PDF

Info

Publication number
WO2019174528A1
WO2019174528A1 PCT/CN2019/077485 CN2019077485W WO2019174528A1 WO 2019174528 A1 WO2019174528 A1 WO 2019174528A1 CN 2019077485 W CN2019077485 W CN 2019077485W WO 2019174528 A1 WO2019174528 A1 WO 2019174528A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
protective layer
display
component
display area
Prior art date
Application number
PCT/CN2019/077485
Other languages
English (en)
French (fr)
Inventor
余斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019174528A1 publication Critical patent/WO2019174528A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles

Definitions

  • the present disclosure relates to, but is not limited to, the field of electronic technology, and in particular, to a method for fabricating a glass component, a glass component, and a display screen.
  • the glass can be divided into 2D glass, 2.5D glass and 3D glass.
  • Mobile phones usually use 2.5D glass.
  • the 2D glass is a flat glass with no curved regions.
  • 2.5D glass has a surface with a curved area.
  • 3D glass, at least two surfaces are provided with curved glass.
  • the 3D glass shown in Figure 1A is provided with curved regions at the edges of the outer and inner surfaces.
  • the user After the electronic device is shipped out, in order to prevent cracking, the user will put a protective film on the surface of the glass.
  • the protective film When the protective film is attached, in order to avoid sticking or lifting, the area of the protective film is usually smaller than that of the glass.
  • the protective film After the protective film is attached, there are still some exposed regions 101 and 102 at the edge of the glass, as shown in FIG. 1B and FIG. 1C. These exposed areas are relatively fragile parts, which are prone to cracking of the glass due to collision or falling.
  • the glass Especially for 2.5D glass and 3D glass, the glass generally protrudes beyond the frame of the electronic device due to the presence of the curved region. If the above exposed areas are present, the glass is more fragile.
  • embodiments of the present disclosure are directed to providing a method of fabricating a glass component, a glass component, and a display screen, at least partially solving the above problems.
  • an embodiment of the present disclosure provides a method of fabricating a glass assembly, comprising: fabricating a glass; embedding the glass into an injection mold; and injecting plastic into the injection mold in which the glass is embedded, at least in the glass The outer surface forms a protective layer.
  • an embodiment of the present disclosure provides a glass assembly comprising: glass; and a protective layer covering at least an outer surface of the glass and formed by injection molding of a transparent plastic.
  • an embodiment of the present disclosure provides a display screen, including: a display component; a glass component covering an outer surface of the display component, wherein the glass component is fabricated by the above method, or the glass component For the above glass components.
  • Figure 1A is a schematic view showing the structure of 2D, 2.5D and 3D glass
  • 1B is a schematic view of a bare region protected by a protective film in an electronic device
  • 1C is a schematic view of a bare region of an electronic device that is not protected by a protective film
  • FIG. 2 is a schematic flow chart of a method for fabricating a glass component according to an embodiment of the present disclosure
  • FIG. 3 is a schematic view of a glass and glass assembly provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of a method for fabricating a glass assembly according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a display area, a non-display area, and a frame according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a display screen according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a display screen according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a display screen according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flow chart of manufacturing 2D glass according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flow chart of fabricating a 2.5D or 3D glass according to an embodiment of the present disclosure
  • FIG. 11 is a schematic view showing a cutting process of a glass according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic view of a glass provided before and after polishing according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a glass assembly according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a glass assembly according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural view of a glass assembly according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flow chart of a method for fabricating a glass component according to an embodiment of the present disclosure. As shown in FIG. 2, the embodiment provides a method for fabricating a glass component, including:
  • Step S110 making glass
  • Step S120 embedding the glass into an injection mold
  • Step S130 injecting plastic into an injection mold in which the glass is embedded, and forming a protective layer on at least an outer surface of the glass.
  • the glass is no longer directly assembled into the electronic device, but the glass is embedded in the injection mold.
  • plastic is injected into the mold, and a protective layer is formed on at least the entire outer surface of the glass by an injection molding process, thereby forming a glass component with a protective layer.
  • the injection molding process injects a plastic having a flow into a mold, and covers the surface of the glass to form the protective layer in a slit reserved in advance.
  • the protective layer can form a good covering even in a curved region of the glass, and does not cause a phenomenon in which the protective film is attached and lifted.
  • the problem that the edge region of the outer surface of the glass cannot be completely covered does not occur with respect to the adhesion of the protective film after the glass is fabricated, thereby solving the problem that the glass cannot be well protected by the attached protective film, resulting in The problem of glass fragile.
  • a protective film to the outer surface of the glass, sticking and lifting may occur; however, the injection molding of the glass is formed by an injection molding process, and these problems do not exist.
  • the protective layer is formed on the outer surface of the glass directly by the injection molding process in the process of fabricating the glass, the electronic device directly uses the glass component with the protective layer. In this way, even if the user no longer attaches the protective film after leaving the factory, the glass will not be brittle, thus prolonging the service life of the glass. Users can no longer attach a protective film, which is convenient for users.
  • step S130 a transparent plastic is injected into the injection mold so that the surface of the glass can form a transparent protective layer. If the glass is the touch panel of the touch screen, the display of the display screen is not covered.
  • the upper half of Figure 3 shows the glass 102 and the lower half of Figure 3 shows the glass assembly covered with the protective layer 101.
  • the glass assembly includes a glass 102 and a protective layer 101 covering at least the outer surface of the glass 102.
  • the step S130 may further include:
  • Plastic is injected into the injection mold in which the glass is embedded such that the outer surface and the side surface of the glass form the protective layer.
  • the glass may include an outer surface facing the outer side of the electronic device, an inner surface facing the inner side of the electronic device, and a side surface connecting the outer and inner surfaces of the electronic device after being mounted into the electronic device.
  • the protective layer is simultaneously formed on the outer surface and the side surface of the glass.
  • an injection gap for the flow of the plastic can be formed between the outer surface of the glass and the injection mold, and an injection gap is formed between the side surface of the glass and the injection mold.
  • An injection gap for the entry of flowing plastic is not formed between the inner surface of the glass and the injection mold.
  • the step S130 may include injecting plastic into an injection mold in which the glass is embedded such that an outer surface, a side surface, and an edge portion of the inner surface of the glass form the protective layer.
  • an injection gap is formed between the injection mold and the outer surface, the side surface, and the edge portion of the inner surface of the glass, and the flow plastic is injected through the injection hole at the same time on the outer surface of the glass.
  • the edge portions of the side surface and the inner surface form the protective layer.
  • the step S130 may be performed by injecting a high temperature plastic into the injection mold.
  • the protective layer is formed after the high temperature plastic is cooled.
  • the high temperature plastic may be a flowing plastic having a temperature between 200 and 300 degrees Celsius. After the high temperature plastic is cooled to a certain temperature (for example, at a room temperature or a temperature higher than room temperature), the protective layer is hardened. Alternatively, the high temperature plastic may be injection molded at a temperature of 250 to 300 degrees Celsius or 250 to 280 degrees Celsius.
  • the method further comprises: reducing the thickness of the protective layer by using a thinning process.
  • the protective layer may have a thickness of 0.3 to 0.7 mm, for example, between 0.4 and 0.7 mm, between 0.3 and 0.4 mm, or between 0.3 and 0.6 mm. However, in some cases, if it is desired to further reduce the thickness of the protective layer, the thickness of the protective layer may be reduced by a thinning process.
  • the above thickness of the protective layer can function to protect the glass, and does not excessively thicken the electronic device, and can facilitate the lightening and thinning of the electronic device.
  • the thickness of the protective layer after the injection molding is completed may be 0.3 to 0.6 mm.
  • the thickness of the protective layer is reduced to 0.2 to 0.4 mm by a thinning process (for example, a polishing process). This thickness ensures the strength of the glass and does not affect the overall thickness of the electronic device.
  • a polishing process or a soaking process using a plastic soluble solution may be employed to reduce the thickness of the protective layer.
  • a polishing process is preferably employed to reduce the thickness of the protective layer. The bump on the protective layer can also be removed while the thickness of the protective layer can be uniformly reduced by the polishing process.
  • the method further includes: step S111, providing a light shielding layer on an inner surface corresponding to the non-display area of the glass;
  • the step S120 may include a step S121 of embedding the glass provided with the light shielding layer into the injection mold.
  • the light shielding layer may be formed in the non-display area of the inner surface by ink printing or the like, or the light shielding layer may be provided by attaching a light shielding film or the like.
  • the high temperature resistant ink in order to prevent the light shielding layer from resisting the high temperature in the injection molding process, can be printed in the non-display area by ink printing.
  • the highest temperature corresponding to the high temperature resistance of the high temperature resistant ink will not be lower than the injection temperature.
  • the light-shielding film is a high-temperature resistant light-shielding film. Similarly, the highest temperature corresponding to the high temperature resistance of the light-shielding film will not be lower than the injection temperature.
  • an appearance layer may also be disposed on the basis of the light shielding layer, and the color of the appearance layer is consistent with the appearance color of the electronic device.
  • the appearance of a white-shell phone is white
  • the appearance of a red-shell phone is red
  • the light shielding layer is formed of a black pigment or a light shielding film.
  • step S130 may include:
  • the glass Injecting plastic into an injection mold in which the glass is embedded, forming the protective layer in a designated area of an outer surface, a side surface, and an inner surface of the glass, wherein the glass includes a display area and is located in the display area a surrounding non-display area, the designated area being an area of the non-display area adjacent to the side surface, and the designated area is smaller than the non-display area; the side surface connecting the outer surface and the inner side a surface, the outer surface being opposite the inner surface.
  • the glass provided by the embodiment of the present disclosure may be any one of 2D glass, 2.5D glass or 3D glass.
  • the step S110 may include: fabricating a first type of glass, wherein an outer surface of the first type of glass is provided with a curved area.
  • the first type of glass herein may be the 2.5D glass, i.e., the outer surface is provided with a curved region that is curved inwardly.
  • the step S110 may include: fabricating a second type of glass, wherein the inner surface and the outer surface of the second type of glass are each provided with a curved area, wherein the inner surface and the The outer surface is the opposite surface.
  • the second type of glass can include the aforementioned 3D glass.
  • the 3D glass can be divided into: single glass and hyperbolic glass.
  • a single curved glass is a glass that is bent only in one direction.
  • Hyperbolic glass is a glass that is bent in both directions at the same time.
  • a single curved glass is a glass that is bent only in the X direction
  • a hyperbolic glass includes a glass that is bent in the X direction and the Y direction at the same time.
  • the X direction and the Y direction are different directions, for example, the X direction and the Y direction are opposite directions to each other; or, the X direction is a vertical direction of the Y direction.
  • the method further includes: providing a light shielding on a side of the protective layer facing a central position of the inner surface of the glass a layer, and/or a light shielding layer is disposed on a portion of the protective layer covering the inner surface of the glass.
  • the light shielding layer can be realized by printing ink or applying a light-shielding paint or sticking a light-shielding film.
  • the step of providing a light shielding layer on a side of the protective layer facing a central position of the inner surface of the glass may include: applying a light-shielding coating on a side of the protective layer to form the light shielding layer.
  • the step of providing the light shielding layer on the portion of the protective layer covering the inner surface of the glass may include printing the light shielding layer on a portion where the protective layer covers the inner surface of the glass.
  • the process of printing a light-shielding layer herein may include a screen printing process.
  • the protective layer may be an elastic protective layer having a certain elasticity.
  • the size of the mounting area provided by the frame of the electronic device may be slightly smaller than the size of the glass component, so that the glass component can pass through the compression elastic protective layer. It is installed smoothly into the installation area, and the glass components are tightly matched with the installation area. This tight fit eliminates the need to specifically connect the frame to the glass assembly. Due to the elasticity of the elastic protective layer, the gap between the glass component and the frame body can be made small enough to allow liquid to pass, and thus the electronic device using the glass component is also provided with waterproofing effect.
  • the elastic injection molding surface layer is deformed by its own elasticity, so that a part of the injection molding surface layer protrudes from the frame. This part can change the user's grip on the electronic device. The user basically does not see the installation gap. In this way, the problem of the installation gap caused by poor mounting is avoided.
  • the protective layer adopts an elastic protective layer.
  • the anti-collision or anti-drop process of the electronic device not only the impact force acting on the glass by the structural buffer portion of the protective layer itself but also the impact energy of the absorption portion due to the elastic deformation can be further reduced, thereby further reducing the impact force on the glass. Therefore, the phenomenon of glass breakage is further reduced.
  • the present embodiment provides a glass assembly comprising: a glass 102; and a protective layer 101 covering at least the outer surface of the glass 102 and formed by injection molding of a transparent plastic.
  • the protective layer 101 covers the outer and side surfaces of the glass 102.
  • the protective layer 101 covers the outer surface, the side surface, and the edge portion of the inner surface of the glass 102. If the protective layer 101 simultaneously surrounds the outer surface, the side surface, and the edge portion of the inner surface, a stable fit between the protective layer 101 and the glass 102 can be ensured, and the mutual disengagement of the glass assembly in the electronic device due to improper operation can be reduced.
  • the glass 102 includes a display area 102a and a non-display area 102b and is mounted within the bezel 102c.
  • the protective layer 101 covers a designated area of the inner surface, and the glass 102 includes a display area and a non-display area located around the display area, the designated area being close to the side surface in the non-display area a region, and the designated region is smaller than the non-display region.
  • the glass 102 includes: a first type of glass 102, wherein an outer surface of the first type of glass 102 is provided with a curved area; or a second type of glass 102, wherein an inner surface of the second type of glass 102 And the outer surface is provided with a curved area and the inner surface and the outer surface are opposite faces.
  • the glass 102 includes a display area and a non-display area located around the display area; a light shielding layer 105 is disposed in the non-display area of the injection molding protective layer 101 and the inner surface of the glass 102. Refer to Figures 13 to 15.
  • an embodiment of the present disclosure further provides a display screen, including:
  • the display component 103 can be a liquid crystal display component 103 or an electronic ink display component 103 or an organic light emitting diode (OLED) display component 103 and the like display component 103 having a display function;
  • OLED organic light emitting diode
  • a glazing unit covering the outer surface of the display assembly 103 for protecting the display assembly 103.
  • the glass component is a glass component produced by the above-described glass component manufacturing method. That is, the glass component in the display screen according to the present embodiment includes: a glass 102 and a protective layer 101 covering at least the outer surface of the glass 102.
  • the display screen further includes a touch component 104.
  • the touch component 104 is located between the display component 103 and the glass 102 or within the display component 103.
  • the display assembly can include: two support glasses 102 and a display layer between the support glasses 102; the touch assembly 104 can include a touch circuit etched on an outer surface of the support glass 102.
  • the display component 103 includes a liquid crystal display (LCD) module, including: two supporting glasses 102 and a liquid crystal molecular layer between the two supporting glasses 102, and polarized light on the surfaces of the two supporting glasses 102. board.
  • LCD liquid crystal display
  • the touch circuit can be a circuit that is etched on the outer surface of a support glass 102. At this time, the touch control circuit is located between the support glass 102 of the LCD module and the polarizing plate inside the display module. In some embodiments, the touch circuit may also be a circuit etched on the polarizing plate. At this time, the touch circuit is located between the glass 102 and the LCD module on the outer surface of the LCD module. In some embodiments, the touch circuit can also be an electrical circuit etched on the inner surface of the glass 102. Similarly, at this time, the touch component 104 is located between the glass 102 and the LCD module.
  • the method may further include: after forming the protective layer 101, etching the inner surface of the glass 102 to form the touch Circuit.
  • the touch circuit may include, but is not limited to, an array composed of a plurality of transistors capable of detecting touches and the like.
  • the component provided with the touch circuit may be referred to as a touch panel. As described above, the touch panel may be located between the glass 102 and the display component 103 or may be located inside the display component 103.
  • the touch component is located between the glass and the display component; in FIG. 8, the touch component is located within the display component.
  • the outer surface of the display is directly adjacent to the glass of the glass assembly.
  • the present example provides a glass assembly that can include a Touch Plane (TP) cover that can be glass in a glass assembly.
  • the glass is roughly classified into 2D glass, 2.5D glass, and 3D glass.
  • 2D glass refers to glass that is flat on both the front and back sides.
  • the 2.5D glass has a flat surface on one side and a curved arc on the other side.
  • 3D glass refers to glass with curvature on both sides.
  • 3D glass is divided into single curved glass and hyperbolic glass according to the difference of XY curvature.
  • a single curved glass refers to a glass having a certain curvature in the X direction or the Y direction
  • a hyperbolic glass refers to a glass having a certain curvature in the X direction and the Y direction.
  • 2D glass can be produced as shown in Figure 9, including: cutting, engraving, polishing, chemical strengthening, re-grinding and silk screen printing.
  • the opening is a raw material for processing the glass, and then the glass is obtained by engraving.
  • Polishing may include: edge polishing, front polishing, and reverse polishing; and edge polishing may include various unnecessary or undesirable portions such as burrs of the edges being cut off by a grinding or polishing process or the like.
  • Chemical strengthening can enhance the strength of the glass; back grinding is re-grinding after chemical strengthening to give the glass the desired shape.
  • the silk screen may include forming the aforementioned light shielding layer by a silk screen process. If you start making a glass-free glass, you don't need to perform rough grinding and regrind.
  • Figure 11 shows the process of cutting a large piece of glass into small glass of the desired size and then rendering the glass into the desired shape by a grinding process.
  • the left side of Fig. 12 is the shape before polishing, and the right side of Fig. 12 is the shape after polishing.
  • Bending can make the glass have a curved area by various hot bending processes. For example, heating a portion of the glass causes the glass to partially soften and form a particular curved shape.
  • the light shielding layer may be formed on the inner surface of the glass by the spraying process in this example.
  • the present example also provides a display comprising: fabricating the glass using the glass making process described above.
  • a display comprising: fabricating the glass using the glass making process described above.
  • 2.5D glass or 3D glass is produced according to the molding requirements of the electronic device, and polished and reinforced to print ink in a non-display area of the inner surface of the glass.
  • the TP cover can be used as an insert for in-mold injection to form a protective layer.
  • Injection molding high flow transparent plastic the glass is not in a crystalline state, an amorphous state, a polycrystalline state or a mixed state, but various specific glass states which are very stable.
  • the glassy state is very stable at room temperature.
  • the temperature at which the glass is deformed is above 700 degrees Celsius, while the typical plastic injection temperature is about 200-300 degrees Celsius.
  • the non-display area of the glass has a large planar area for placement in the mold adsorption unit.
  • the black area of Figure 5 is the non-display area of the cover, which is printed with high temperature resistant ink. It is usually printed on the back of the glass (ie the inner surface).
  • the active area may be a display area of the display component.
  • the visible area also known as the Visual Area, VA area
  • VA area generally corresponds to the touch area.
  • the VA zone is slightly larger than the AA zone.
  • the touch area can be an area where the touch operation is detected.
  • the protective layer covers the front side of the glass (ie, the outer surface as described above), the side surface (ie, the side surface as described above), and the back side portion area (eg, the non-display area and the non-touch area).
  • optical glass Optically Clear Adhesive, OCA
  • OCA optical Clear Adhesive
  • the display touch module can include a display component and a touch component, and the touch component can be an outer surface of the display component or can be located inside the display component.
  • the display component and the touch component are overlapped, and the non-touch component is slightly larger than the non-display component.
  • the bottom surface of the glass wrapped by the plastic is a certain distance D from the AA area, that is, the ink edge.
  • the distance D can avoid the display component or the display touch module, and can prevent the plastic from entering the display area, as shown in FIG.
  • the distance D can be generally 0.7 to 1.2 mm depending on the display component or the package structure of the display touch module.
  • the surface quality and hardness of the protective layer are low, and it is necessary to polish a transparent protective layer and harden the surface.
  • the thickness of the injection-coated protective layer is generally around 0.4 mm. If the product needs to be thinner, the thickness of the protective layer can be reduced to about 0.2 mm and then hardened.
  • the ink is printed in a planar area 107 of the underside of the glass wrapped by the protective layer. Generally, the appearance color is printed first, and then multiple layers of black are printed.
  • the side area 106 of the protective layer (the side facing the center of the glass) is coated with a light-shielding ink. This step mainly prevents the LCD light from diffusing onto the outer surface of the plastic-wrapped glass under the fully-fitted LCD during operation, as shown in FIG. 14 and FIG.
  • Figures 16 and 17 show two alternatives for electronic device assembly, respectively. Since the cover portion of the touch screen module has plastic protection around and on the front side, as shown in FIG. 16, a hidden front case 108 can be used, and a front frame structure frame is disposed around the touch screen cover. As shown in FIG. 17, a structure having a front case 109 and a rear case 110 can also be employed.
  • the touch screen module herein includes the foregoing display component and touch component.
  • the front case and the front case in FIGS. 16 and 17 may be the frame in which the glass unit is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种玻璃组件制作方法、玻璃组件及显示屏,玻璃组件制作方法,包括:制作玻璃(102),将玻璃(102)嵌入到注塑模具内;以及向嵌入有玻璃(102)的注塑模具内注入塑料,至少在玻璃(102)的外表面形成保护层(101)。

Description

玻璃组件制作方法、玻璃组件及显示屏 技术领域
本公开涉及但不限于电子技术领域,尤其涉及一种玻璃组件制作方法、玻璃组件及显示屏。
背景技术
近些年,随着手机或平板电脑的发展(例如,屏幕逐渐变大),出现了边缘为弧形的表面玻璃。根据弧形的类型,玻璃可以分为2D玻璃、2.5D玻璃和3D玻璃。手机通常采用2.5D玻璃。
如图1A所示,2D玻璃为平面玻璃,没有弯曲区域。2.5D玻璃,有一个表面设置有弯曲区域。3D玻璃,至少两个表面设置有弯曲玻璃。在图1A中展示的3D玻璃在外表面和内表面的边缘均设置有弯曲区域。
在电子设备出厂之后,为了防止摔裂,用户会在玻璃的表面贴一层保护膜。在贴保护膜时,为了避免贴歪或者翘起的现象,通常情况下,保护膜的面积比玻璃小一点。这样,在保护膜贴上之后,玻璃的边缘位置处仍有部分裸露区域101和102,具体可如图1B及图1C所示。而这些裸露区域是比较脆弱的部分,容易因碰撞或掉落等原因导致玻璃的碎裂。
尤其对于2.5D玻璃和3D玻璃,由于弯曲区域的存在,通常玻璃突出于电子设备的框体之外。若存在上述裸露区域,导致玻璃更加易碎。
发明内容
有鉴于此,本公开实施例期望提供一种玻璃组件制作方法、玻璃组件及显示屏,至少部分解决上述问题。
第一方面,本公开实施例提供一种玻璃组件制作方法,包括:制作玻璃;将所述玻璃嵌入到注塑模具内;以及向嵌入有所述玻璃的注塑模具内注入塑料,至少在所述玻璃的外表面形成保护层。
第二方面,本公开实施例提供一种玻璃组件,包括:玻璃;以及 保护层,至少覆盖在所述玻璃的外表面,且通过透明塑料的注塑形成。
第三方面,本公开实施例提供一种显示屏,包括:显示组件;覆盖在所述显示组件外表面的玻璃组件,其中,所述玻璃组件是由上述方法所制作,或者,所述玻璃组件为上述玻璃组件。
附图说明
图1A为2D、2.5D和3D玻璃的结构示意图;
图1B为电子设备中未被保护膜保护的裸露区域的示意图;
图1C为电子设备中未被保护膜保护的裸露区域的示意图;
图2为本公开实施例提供的一种玻璃组件制作方法的流程示意图;
图3为本公开实施例提供的玻璃及玻璃组件的示意图;
图4为本公开实施例提供的一种玻璃组件制作方法的流程示意图;
图5为本公开实施例提供的一种显示区域、非显示区域及框体的结构示意图;
图6为本公开实施例提供的一种显示屏的结构示意图;
图7为本公开实施例提供的一种显示屏的结构示意图;
图8为本公开实施例提供的一种显示屏的结构示意图;
图9为本公开实施例提供的一种制作2D玻璃的流程示意图;
图10为本公开实施例提供的一种制作2.5D或3D玻璃的流程示意图;
图11为本公开实施例提供的一种玻璃的切割过程的示意图;
图12为本公开实施例提供的玻璃在抛光前后的示意图;
图13为本公开实施例提供的一种玻璃组件的结构示意图;
图14为本公开实施例提供的一种玻璃组件的结构示意图;
图15为本公开实施例提供的一种玻璃组件的结构示意图;
图16为本公开实施例提供的一种电子设备的结构示意图;
图17为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步 的详细阐述。
图2为本公开实施例提供的一种玻璃组件制作方法的流程示意图。如图2所示,本实施例提供一种玻璃组件制作方法,包括:
步骤S110:制作玻璃;
步骤S120:将所述玻璃嵌入到注塑模具内;以及
步骤S130:向嵌入有所述玻璃的注塑模具内注入塑料,至少在所述玻璃的外表面形成保护层。
在本实施例中,在完成玻璃的制作之后,不再直接将玻璃组装到电子设备中,而是会将玻璃嵌入到注塑模具中。然后,向模具内注入塑料,通过注塑工艺在玻璃的至少整个外表面形成保护层,从而形成带有保护层的玻璃组件。注塑工艺是将具有流动的塑料注入到模具中,在模具预先保留的缝隙内覆盖在玻璃的表面形成所述保护层。该保护层即便在玻璃的弯曲区域也可以形成很好的覆盖,不会产生保护膜贴歪及翘起的现象。如此,一方面,相对于在玻璃制作之后贴附保护膜,不会出现在玻璃的外表面的边缘区域无法被完全遮盖的问题,从而解决了利用贴附保护膜无法很好的保护玻璃,导致的玻璃易碎的问题。另一方面,通过在玻璃的外表面贴附保护膜,可能会出现贴歪及翘起的现象;但是通过注塑工艺形成玻璃的注塑保护层,不会存在这些问题。另外,由于在玻璃的制作的工程中,直接通过注塑工艺在玻璃的外表面形成保护层,电子设备直接使用带有保护层的玻璃组件。这样,电子设备出厂之后用户即便不再贴附保护膜,玻璃也不会出现易碎的现象,从而延长了玻璃的使用寿命。用户可以不再贴附保护膜,也方便了用户使用。
在步骤S130中,向注塑模具内注入透明塑料,从而可以使得玻璃的表面形成透明的保护层。若该玻璃为触控屏的触控盖板时,不会遮盖显示屏的显示。
图3的上半部分示出了玻璃102,图3的下半部分示出了覆盖有保护层101的玻璃组件。如图3所示,玻璃组件包括:玻璃102及至少覆盖在玻璃102的外表面的保护层101。
在一些实施例中,所述步骤S130还可包括:
向嵌入有所述玻璃的注塑模具内注入塑料,使得所述玻璃的外表面及侧表面形成所述保护层。
玻璃可包括安装到电子设备内之后,朝向电子设备的外侧的外表面、朝向电子设备内侧的内表面,及连接电子设备的外表面及内表面的侧表面。
在本实施例中,同时在玻璃的外表面和侧表面形成所述保护层。在步骤S120中将玻璃嵌入到注塑模具中之后,可以在玻璃的外表面与注塑模具之间形成有可供流动塑料进入的注塑间隙,在玻璃的侧表面与注塑模具之间形成注塑间隙,而在玻璃的内表面与注塑模具之间未形成有可供流动塑料进入的注塑间隙。在步骤S130中通过模具上的注塑孔注入流动塑料之后,流动塑料填充到各个注塑间隙内,从而在玻璃的外表面及侧表面形成有所述保护层。
在一些实施例中,所述步骤S130可包括:向嵌入有所述玻璃的注塑模具内注入塑料,使得所述玻璃的外表面、侧表面及内表面的边缘部分形成所述保护层。
此时,在玻璃嵌入到注塑模具中后,在注塑模具与玻璃的外表面、侧表面及内表面的边缘部分之间均形成有注塑间隙,通过注塑孔注入流动塑料可同时在玻璃的外表面、侧表面及内表面的边缘部分形成所述保护层。
在一些实施例中,所述步骤S130中可以通过向注塑模具内注入高温塑料。在高温塑料冷却之后,会形成所述保护层。所述高温塑料可为温度在200至300摄氏度之间的流动塑料。高温塑料冷却到一定温度(例如,室温或高于室温的某个温度)之后,会硬化形成所述保护层。可选地,高温塑料的注塑温度可为250到300摄氏度,或者,250至280摄氏度。
可选地,所述方法还包括:利用减薄制作工艺减小所述保护层的厚度。
为了实现电子设备的轻薄化,在进行注塑时会严格控制注塑间隙,从而达到控制保护层的厚度的目的。所述保护层的厚度可为0.3至0.7mm,例如,在0.4至0.7mm之间、在0.3至0.4mm之间或在0.3至 0.6mm之间。但是在一些情况下,如需要进一步减小保护层的厚度,则可以通过减薄工艺减小所述保护层的厚度。所述保护层的上述厚度可以起到保护玻璃的作用,也不会过多的增厚电子设备,可以便于实现电子设备的轻薄化。例如,保护层完成注塑之后的厚度可为0.3到0.6mm。通过减薄工艺(例如,抛光工艺)将保护层的厚度减小到0.2至0.4mm。该厚度可以保证玻璃的强度,也不会影响电子设备的整体厚度。
在本实施例中,可以采用抛光工艺或者使用塑料可溶性溶液的浸泡工艺,来减小所述保护层的厚度。在本实施例中优选采用抛光工艺减小所述保护层的厚度。通过抛光工艺可以均匀减小所述保护层的厚度的同时,还可以去除保护层上的凸点。
可选地,如图4所示,所述方法还包括:步骤S111,在所述玻璃的非显示区域对应的内表面设置遮光层;
所述步骤S120可包括步骤S121,将设置有遮光层的所述玻璃嵌入到注塑模具内。
在步骤S111中,可以通过油墨印刷等在所述内表表面的非显示区内形成有所述遮光层,还可以通过贴附遮光膜片等设置所述遮光层。
在本实施例中,为了避免所述遮光层抵挡注塑过程中的高温,可利用油墨印刷在非显示区内印刷耐高温油墨。该耐高温油墨的耐高温性对应的最高温度,将不低于注塑温度。再例如,遮光膜片是耐高温的遮光膜片。同样,该遮光膜片的耐高温性对应的最高温度,将不低于注塑温度。
在一些实施例中,在所述遮光层的基础上还可以设置有外观层,外观层的颜色与电子设备的外观颜色一致。例如,白色外壳手机的外观层呈白色,红色外壳手机的外观层为红色。一般遮光层由黑色颜料或遮光膜片形成的。为了更好的呈现外观层,需要在外观层与遮光层之间设置过渡层。遮光层、过渡层及外观层的颜色,一般由深至浅。
可选地,所述步骤S130可包括:
向嵌入有所述玻璃的注塑模具内注入塑料,在所述玻璃的外表面、侧表面及内表面的指定区域内形成所述保护层,其中,所述玻璃包括 显示区域和位于所述显示区周围的非显示区,所述指定区域为所述非显示区中靠近所述侧表面的区域,且所述指定区域小于所述非显示区;所述侧表面连接所述外表面及所述内表面,所述外表面与所述内表面为相反的表面。
本公开实施例提供的玻璃可为2D玻璃、2.5D玻璃或3D玻璃中的任意一种。例如,在一些实施例中,所述步骤S110可包括:制作第一类玻璃,其中,所述第一类玻璃的外表面设置弯曲区域。这里的第一类玻璃可为所述2.5D玻璃,即外表面设置有向内弯曲的弯曲区域。又例如,在一些实施例中,所述步骤S110可包括:制作第二类玻璃,其中,所述第二类玻璃的内表面及外表面均设置有弯曲区域,其中,所述内表面和所述外表面为相对面。在一些实施例中,所述第二类玻璃可包括前述的3D玻璃。该3D玻璃有可以分为:单曲玻璃和双曲玻璃。单曲玻璃为仅向一个方向弯曲的玻璃。双曲玻璃为同时向两个方向均弯曲的玻璃。例如,单曲玻璃为仅向X方向弯曲的玻璃,双曲玻璃同时包括向X方向和Y方向弯曲部分的玻璃。X方向和Y方向为不同的方向,例如,X方向和Y方向互为相反方向;或者,X方向为Y方向的垂直方向。
在一些实施例中,若所述保护层覆盖了所述玻璃的内表面的边缘部分,所述方法还包括:在所述保护层的朝向所述玻璃的内表面所在的中心位置的侧面设置遮光层,和/或,在所述保护层覆盖在所述玻璃的内表面所在部分上设置遮光层。通过该遮光层的设置,可以防止玻璃组件应用到显示设备上时,显示设备的光线的通过保护层泄露。在本实施例中,该遮光层可以通过印刷油墨或涂抹遮光涂料或者粘贴遮光膜片等方式来实现。可选地,在所述保护层的朝向所述玻璃的内表面所在的中心位置的侧面设置遮光层的步骤可包括:在该保护层的侧面涂抹遮光涂料,形成所述遮光层。在所述保护层覆盖在所述玻璃的内表面所在部分上设置遮光层的步骤可包括:在所述保护层覆盖在所述玻璃的内表面所在部分印刷所述遮光层。此处的印刷遮光层的工艺可包括丝网印刷工艺。
在一些实施例中,所述保护层可为具有一定弹性的弹性保护层。 此时,若将这种玻璃组件安装到电子设备的框体中,电子设备的框体提供的安装区域的尺寸可略小于所述玻璃组件的尺寸,如此,使得玻璃组件通过压缩弹性保护层可以顺利安装到安装区域内,同时玻璃组件与安装区域实现紧配合。这种紧配合使得不用专门设置框体与玻璃组件的连接器件。由于弹性保护层的弹性,可以使得玻璃组件与框体之间的间隙足够小,以至不容许液体通过,这样,采用本玻璃组件的电子设备还具备有防水作用。此外,玻璃组件安装到框体之后,弹性注塑表面层因为自身的弹性形变,会使得注塑表面层的一部分突出框体。该部分可以改变用户握持电子设备手感。用户基本上看不到安装间隙。这样,避免了安装不良导致的安装间隙的问题。
在本实施例中所述保护层采用弹性保护层。在电子设备的防撞或防摔的过程中,不仅可以因为保护层自身的结构缓冲部分作用于玻璃的冲击力,而且还可以因为弹性形变吸收部分冲击能量,从而进一步减少玻璃受到的冲击力。因此,进一步减少玻璃破碎的现象。
如图3所示,本实施例提供一种玻璃组件,包括:玻璃102;以及保护层101,所述保护层至少覆盖在所述玻璃102的外表面,且通过透明塑料的注塑形成。
在一些实施例中,所述保护层101覆盖在所述玻璃102的所述外表面及侧表面。
在一些实施例中,所述保护层101覆盖在所述玻璃102的所述外表面、侧表面及内表面的边缘部分。若保护层101同时包围外表面、侧表面及内表面的边缘部分,可以确保保护层101与玻璃102之间的稳定贴合,减少玻璃组件在组装在电子设备中因操作不当导致的相互脱离。
如图5所示,所述玻璃102包括显示区域102a和非显示区域102b并且安装在边框102c内。所述保护层101覆盖所述内表面的指定区域,所述玻璃102包括显示区域和位于所述显示区周围的非显示区,所述指定区域为所述非显示区中靠近所述侧表面的区域,且所述指定区域小于所述非显示区。
此外,所述玻璃102包括:第一类玻璃102,其中,所述第一类 玻璃102的外表面设置弯曲区域;或,第二类玻璃102,其中,所述第二类玻璃102的内表面及外表面均设置有弯曲区域并且所述内表面和所述外表面为相对面。
在一些实施例中,所述玻璃102包括显示区域和位于所述显示区周围的非显示区;在所述注塑保护层101与所述玻璃102的内表面的非显示区内设置有遮光层105,参考图13至图15所示。
如图6所示,本公开的一个实施例还提供一种显示屏,包括:
显示组件103,该显示组件103可为液晶显示组件103或者是电子墨水显示组件103或者是有机发光二极管(OLED)显示组件103等各种具有显示功能的显示组件103;以及
覆盖在所述显示组件103外表面的玻璃组件,该玻璃组件用于保护显示组件103。
在本实施例中,该玻璃组件为利用前述玻璃组件制作方法制作的玻璃组件。也就是说,根据本实施例的显示屏中的玻璃组件包括:玻璃102及至少覆盖在玻璃102的外表面的保护层101。
采用这种玻璃102不需要再贴附保护膜,而且不会存在裸露区域。
可选地,所述显示屏还包括触控组件104。触控组件104位于所述显示组件103与所述玻璃102之间或者位于所述显示组件103之内。
所述显示组件可包括:两个支撑玻璃102及位于支撑玻璃102之间的显示层;所述触控组件104可包括蚀刻在所述支撑玻璃102外表面的触控电路。例如,所述显示组件103包括液晶显示(Liquid Crystal Display,LCD)模组,包括:两个支撑玻璃102及位于两个支撑玻璃102之间的液晶分子层、位于两个支撑玻璃102表面的偏光板。
触控电路可为蚀刻在一个支撑玻璃102的外表面的电路。此时,所述触控该电路在显示模组的内部位于所述LCD模组的支撑玻璃102与偏光板之间。在一些实施例中,所述触控电路还可为蚀刻在所述偏光板的电路。此时,所述触控电路是在所述LCD模组的外表面上位于所述玻璃102和所述LCD模组之间。在一些实施例中,所述触控电路还可为蚀刻在所述玻璃102的内表面的电路。同样地,此时,触控组件104位于玻璃102和LCD模组之间。若触控电路蚀刻在玻璃102的 内表面,在制作所述玻璃组件时,所述方法还可包括:在形成所述保护层101之后,在所述玻璃102的内表面蚀刻形成所述触控电路。所述触控电路可包括但不局限于由多个能够检测触控的晶体管等组成的阵列。设置有所述触控电路的部件可以称为触控面板。如上文所述,所述触控面板可以位于所述玻璃102与显示组件103之间,也可以位于显示组件103内部。
在图7中,触控组件位于玻璃及显示组件之间;在图8中,触控组件位于显示组件内。显示屏的外表面直接与玻璃组件的玻璃相邻。
以下将结合具体示例对本公开进行详细描述。
示例1:
本示例提供一种玻璃组件可包括:触摸面板(Touch Plane,TP)盖板,该TP盖板可为玻璃组件中的玻璃。玻璃大致分为2D玻璃、2.5D玻璃和3D玻璃。2D玻璃是指正反面均是平面的玻璃。2.5D玻璃为一面是平面,另一面的边缘有一定弧度的玻璃。而3D玻璃是指两面都有弧度的玻璃。3D玻璃根据XY向弧度的不同,又分为单曲玻璃和双曲玻璃。单曲玻璃是指X向或Y向有一定弧度的玻璃,双曲玻璃是指X向和Y向均有一定弧度的玻璃。
2D玻璃的制作可如图9所示,包括:开料、精雕、抛光、化学强化、返磨及丝印等操作。开料为处理玻璃的制作原料,然后通过雕刻获得玻璃。抛光可包括:边缘抛光、正面抛光和反面抛光等;边缘抛光可包括:通过研磨或抛光工艺等切除掉边缘的毛刺等各种不必要或不良的部分。化学强化可以增强玻璃的强度;返磨为在化学强化之后的再次研磨,使得玻璃呈现所需的形状。丝印可包括通过丝印工艺形成前述的遮光层。若开始制作的为免磨玻璃,则可以直接不需要执行粗磨及返磨。图11示出将一片大的玻璃切割成所需尺寸的小玻璃,然后通过研磨工艺使得玻璃呈现所需形状的过程。图12的左侧为抛光前的形状,图12的右侧为抛光后的形状。
2.5D及3D玻璃的制作可如图10所示,包括:
开料、精雕、抛光、热弯、化学强化、返磨、喷涂等操作。弯曲成型可以通过各种热弯工艺使得玻璃具有弯曲区域。例如,对玻璃的 局部进行加热,使得玻璃局部柔化并形成特定弯曲形状。在本示例中利用喷涂工艺可以再玻璃的内表面形成所述遮光层。
本示例还提供一种显示屏,包括:利用上述玻璃制作工艺制作玻璃。例如,根据电子设备的造型需求,制作2.5D玻璃或3D玻璃,并抛光强化,在玻璃内表面的非显示区域内印刷油墨。
TP盖板可以作为嵌件进行模内注塑,形成保护层。注塑高流动性透明塑料。这里,玻璃不是晶态,非晶态,多晶态或混合态,而各种特定都非常稳定的玻璃态。玻璃态在常温下非常稳定。玻璃发生形变的温度在700摄氏度以上,而一般的塑料注塑温度约200-300摄氏度。玻璃的非显示区域有很大的平面区域,用于放置在模具吸附装置中。图5黑色区域是盖板的非显示区域,该区域印刷的耐高温油墨。一般印刷在玻璃背面(即内表面)。如图13至图15的剖面图所示,活跃区域(又称,Active Area,AA区)可为显示组件的显示区域。可视区(又称,Visual Area,VA区)通常对应于触控区。可选地,VA区略大于所述可AA区。触控区可为检测到触控操作的区域。保护层覆盖了玻璃的正面(即前述的外表面)、侧面(即前述的侧表面)及背面部分区域(例如,非显示区及非触控区)。例如,利用光学胶(Optically Clear Adhesive,OCA)黏合玻璃和显示触控模组,以保证了玻璃组件和显示组件的有足够的结合力,确保显示屏的结构稳定。所述显示触控模组可包括显示组件及触控组件,所述触控组件可为显示组件的外表面,也可以位于所述显示组件的内部。在一些特殊情况下,为了方便避免电子设备边缘触控导致的误操作,重叠设置的显示组件和触控组件,非触控组件略大于非显示组件。
塑料包裹的玻璃底面部分距离AA区即油墨边沿,有一定距离D。此距离D可以避让显示组件或显示触控模组,同时可以防止塑胶进入显示区,具体可如图13所示。根据显示组件或显示触控模组的封装结构,距离D一般可为0.7至1.2mm。保护层表面质量及硬度较低,需要抛光透明的保护层,并硬化其表面。注塑的保护层的厚度一般在0.4mm左右。若产品需要更薄,则保护层的厚度可以降低至约0.2mm再硬化。
在保护层包裹的玻璃底面的平面区域107内印刷油墨。一般先印刷外观色,再印刷多层黑。保护层的侧面区域106(朝向玻璃中心的侧面)涂遮光油墨。该步骤主要防止全贴合后的LCD在工作时LCD的光通过塑料包裹的玻璃底面扩散到外表面上,如图14所示及图15所示。
图16及图17分别示出了电子设备装配的两种方案。由于触屏模组的盖板部分四周及正面均有塑胶保护,如图16所示,可采用隐藏式前壳108,触屏盖板周围设置无前壳结构边框。如图17所示,也可采用具有前壳109和后壳110的结构。此处的触屏模组包括:前述的显示组件和触控组件。图16及图17中的前壳及前壳可为前述安装玻璃组件的框体。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种玻璃组件制作方法,包括:
    制作玻璃;
    将所述玻璃嵌入到注塑模具内;以及
    向嵌入有所述玻璃的注塑模具内注入塑料,至少在所述玻璃的外表面形成保护层。
  2. 根据权利要求1所述的方法,其中,
    所述向嵌入有所述玻璃的注塑模具内注入塑料,至少在所述玻璃的外表面形成保护层的步骤,包括:
    向嵌入有所述玻璃的注塑模具内注入塑料,使得所述玻璃的外表面及侧表面形成所述保护层;或者
    向嵌入有所述玻璃的注塑模具内注入塑料,使得所述玻璃的外表面、侧表面及内表面的边缘部分形成所述保护层,其中所述侧表面连接所述外表面及所述内表面。
  3. 根据权利要求1或2所述的方法,还包括:
    在所述玻璃的非显示区域对应的内表面设置遮光层,并且
    所述将所述玻璃嵌入到注塑模具内的步骤,包括:
    将设置有遮光层的所述玻璃嵌入到注塑模具内。
  4. 根据权利要求1或2所述的方法,其中,
    所述向嵌入有所述玻璃的注塑模具内注入塑料,至少在所述玻璃的外表面形成保护层的步骤,包括:
    向嵌入有所述玻璃的注塑模具内注入塑料,在所述玻璃的外表面、侧表面及内表面的指定区域内形成所述保护层,其中,所述玻璃包括显示区域和位于所述显示区周围的非显示区,所述指定区域为所述非显示区中靠近所述侧表面的区域,且所述指定区域小于所述非显示区;所述侧表面连接所述外表面及所述内表面,所述外表面与所述内表面 为相反的表面。
  5. 一种玻璃组件,包括:
    玻璃;以及
    保护层,至少覆盖在所述玻璃的外表面,且通过透明塑料的注塑形成。
  6. 根据权利要求5所述的玻璃组件,其中,
    所述保护层,覆盖在所述玻璃的所述外表面及侧表面;或者
    所述注塑保护层,覆盖在所述玻璃的所述外表面、侧表面及内表面的边缘部分,其中,所述内表面为所述外表面的相反面,所述侧表面连接所述外表面及所述内表面。
  7. 根据权利要求6所述的玻璃组件,其中,
    所述玻璃包括显示区域和非显示区域;
    其中,所述保护层覆盖所述内表面的指定区域,所述玻璃包括显示区域和位于所述显示区周围的非显示区,所述指定区域为所述非显示区中靠近所述侧表面的区域,且所述指定区域小于所述非显示区。
  8. 根据权利要求5所述的玻璃组件,其中,
    所述玻璃包括显示区域和位于所述显示区周围的非显示区;
    在所述保护层与所述玻璃的内表面的非显示区内设置有遮光层。
  9. 一种显示屏,包括:
    显示组件;以及
    覆盖在所述显示组件外表面的玻璃组件,其中,所述玻璃组件是根据权利要求1至4中任一项所述的方法制作,或者,所述玻璃组件是根据权利要求5至8中任一项所述的玻璃组件。
  10. 根据权利要求9所述的显示屏,其中,所述玻璃组件包括玻 璃及保护层,并且所述显示屏还包括:
    触控组件,其中,所述触控组件位于所述显示组件与所述玻璃之间,或者,位于所述显示组件内。
PCT/CN2019/077485 2018-03-14 2019-03-08 玻璃组件制作方法、玻璃组件及显示屏 WO2019174528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810210858.9 2018-03-14
CN201810210858.9A CN110271135A (zh) 2018-03-14 2018-03-14 玻璃组件制作方法、玻璃组件及显示屏

Publications (1)

Publication Number Publication Date
WO2019174528A1 true WO2019174528A1 (zh) 2019-09-19

Family

ID=67908645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077485 WO2019174528A1 (zh) 2018-03-14 2019-03-08 玻璃组件制作方法、玻璃组件及显示屏

Country Status (2)

Country Link
CN (1) CN110271135A (zh)
WO (1) WO2019174528A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619608A (zh) * 2022-04-19 2022-06-14 吴秀兰 一种电子设备保护膜的成型方法和电子设备保护膜
WO2024197530A1 (zh) * 2023-03-27 2024-10-03 京东方科技集团股份有限公司 显示盖板及制作方法、显示模组及制作方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150237756A1 (en) * 2014-02-20 2015-08-20 Motorola Mobility Llc Method and apparatus for seamlessly affixing a protective film to an electronic device
CN104924623A (zh) * 2015-04-20 2015-09-23 广东欧珀移动通信有限公司 显示屏组件的成型工艺
CN107364065A (zh) * 2017-08-14 2017-11-21 深圳市康利邦科技有限公司 曲面玻璃屏保护膜的一体成型加工工艺及其保护膜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130177729A1 (en) * 2012-01-05 2013-07-11 GM Global Technology Operations LLC Article attachable to an exterior surface of a vehicle and method of forming the article
CN109836032B (zh) * 2013-05-07 2023-05-02 康宁股份有限公司 制备成型玻璃制品的方法和设备
CN204990246U (zh) * 2015-09-24 2016-01-20 广东欧珀移动通信有限公司 一种2.5d盖板玻璃及电子显示屏
CN205142299U (zh) * 2015-10-28 2016-04-06 东莞酷派软件技术有限公司 一种显示屏盖板
CN205364725U (zh) * 2016-01-26 2016-07-06 广东欧珀移动通信有限公司 一种2.5d盖板玻璃及电子显示屏
CN105657102B (zh) * 2016-03-22 2017-09-15 广东欧珀移动通信有限公司 一种移动终端的屏幕镜片结构及其制作方法
CN205983430U (zh) * 2016-07-25 2017-02-22 维沃移动通信有限公司 一种曲面玻璃触摸屏结构及移动终端
TWI775767B (zh) * 2016-08-12 2022-09-01 德商科思創德意志股份有限公司 具有體積全息照相之成型體及其製造方法
CN106585045B (zh) * 2016-11-03 2018-03-20 东莞市冠和光学玻璃有限公司 一种手机盖板贴合模具及其工艺
CN206441041U (zh) * 2016-12-07 2017-08-25 深圳市恒久瑞电子科技有限公司 一种3d玻璃保护盖结构
CN107639787A (zh) * 2017-09-08 2018-01-30 王小娟 一种玻璃瓶表面注塑形成硅胶层的工艺方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150237756A1 (en) * 2014-02-20 2015-08-20 Motorola Mobility Llc Method and apparatus for seamlessly affixing a protective film to an electronic device
CN104924623A (zh) * 2015-04-20 2015-09-23 广东欧珀移动通信有限公司 显示屏组件的成型工艺
CN107364065A (zh) * 2017-08-14 2017-11-21 深圳市康利邦科技有限公司 曲面玻璃屏保护膜的一体成型加工工艺及其保护膜

Also Published As

Publication number Publication date
CN110271135A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
JP6050962B2 (ja) ガラス一体型成形品の製造方法、ガラス一体型成形品
KR101707421B1 (ko) 커버글라스 및 이의 제조 방법
KR20120091871A (ko) 표시 장치 및 그 제조방법
KR100941830B1 (ko) 전자제품 케이스 및 그 제조방법
WO2019174528A1 (zh) 玻璃组件制作方法、玻璃组件及显示屏
TW201437039A (zh) 透明面材及使用其之顯示裝置
KR20150000075A (ko) 보호용 윈도우의 제조 방법 및 이를 이용하여 제작한 표시 장치
EP4135307A1 (en) Camera decoration member, manufacturing method, and electronic device
TWI534501B (zh) 一種液晶顯示裝置及其製作方法
KR20180111456A (ko) 디스플레이 장치
KR100588773B1 (ko) 무선단말기의 키패드 및 그 제조방법
US20130335347A1 (en) Touch display devices, cover lens thereof and bonding equipment for fabricating touch display device
CN211210133U (zh) 保护盖板及电子设备
KR102509978B1 (ko) 복합시트와 이중층을 가지는 휴대통신기기 하우징용 백커버의 제조방법
KR101216613B1 (ko) 터치 스크린 패널용 글라스 코팅된 플라스틱 윈도우 및 그 제조방법
CN110996576A (zh) 保护盖板及其制备方法和电子设备
CN110205042B (zh) 手机防爆膜生产工艺
CN114327120A (zh) 曲面结构及其制造方法和显示设备
KR102068069B1 (ko) 장식시트를 가지는 곡면 글라스 성형방법
JP2012098973A (ja) ガラス複合体及びそのガラス複合体を用いた入力装置
KR20130043374A (ko) 터치 타입 휴대폰용 윈도우 패널 및 이의 제조 방법
CN212199086U (zh) 渐进式玻璃保护贴
KR101397169B1 (ko) 투명 윈도우 제조방법 및 투명 윈도우
CN219577445U (zh) 外壳结构及电子装置
EP3978262A1 (en) Curved structure and manufacturing method thereof, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19768306

Country of ref document: EP

Kind code of ref document: A1