WO2019174503A1 - 轮胎的定位方法、装置、电子控制单元及胎压传感器 - Google Patents

轮胎的定位方法、装置、电子控制单元及胎压传感器 Download PDF

Info

Publication number
WO2019174503A1
WO2019174503A1 PCT/CN2019/077123 CN2019077123W WO2019174503A1 WO 2019174503 A1 WO2019174503 A1 WO 2019174503A1 CN 2019077123 W CN2019077123 W CN 2019077123W WO 2019174503 A1 WO2019174503 A1 WO 2019174503A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency signal
high frequency
tire pressure
tire
low frequency
Prior art date
Application number
PCT/CN2019/077123
Other languages
English (en)
French (fr)
Inventor
罗永良
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Priority to EP19767719.8A priority Critical patent/EP3753756A4/en
Publication of WO2019174503A1 publication Critical patent/WO2019174503A1/zh
Priority to US17/022,377 priority patent/US11351820B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0437Means for detecting electromagnetic field changes not being part of the signal transmission per se, e.g. strength, direction, propagation or masking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0438Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver
    • B60C23/044Near field triggers, e.g. magnets or triggers with 125 KHz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0438Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver
    • B60C23/0442Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver the transmitted signal comprises further information, e.g. instruction codes, sensor characteristics or identification data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0444Antenna structures, control or arrangements thereof, e.g. for directional antennas, diversity antenna, antenna multiplexing or antennas integrated in fenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0462Structure of transmission protocol

Definitions

  • the present application relates to the field of automotive technology, and in particular, to a tire positioning method, device, electronic control unit and tire pressure sensor.
  • the tire pressure monitoring system uses the tire pressure sensor fixed in the tire of the car to monitor the main parameters such as the pressure and temperature of the car tire in real time under running or stationary state to ensure the pressure of the tire and The temperature is maintained within the standard range to reduce the probability of punctures, damage, and reduce fuel consumption and damage to automotive parts.
  • the TPMS includes a tire pressure sensor mounted on each tire for collecting data such as tire pressure, temperature, etc. in real time, and transmitting the data to an electronic control device included in the TPMS, which can position the tire And monitoring the state of the tire based on data transmitted by the tire pressure sensor corresponding to the tire.
  • Embodiments of the present invention provide a positioning method, device, electronic control unit, and tire pressure sensor for accurately positioning a tire.
  • an embodiment of the present invention provides a method for positioning a tire, including:
  • One of the L exciter groups is sequentially controlled to transmit a low frequency signal during the transmission period, and L is an integer greater than one;
  • N is an integer greater than one
  • the tires corresponding to the N tire pressure sensors are determined according to the corresponding relationship between the actuator group and the M tire pressure sensors determined in each transmission period.
  • the sequentially controlling one of the L exciter groups to transmit the low frequency signal during the transmission period includes:
  • the number of exciters included in the L-1 exciter groups is N; and the second low frequency signal is used to trigger the tire pressure sensor to switch to an active mode.
  • the location attributes of the first exciter groups are different during each transmission cycle; the location attributes of the first exciter group are provided by the exciters included in the first exciter group The same location attribute is determined.
  • the receiving the high frequency signals of the N tire pressure sensors according to the low frequency signal feedback includes:
  • determining, according to the high frequency signal, a correspondence between one of the L actuator groups and the M tire pressure sensors including:
  • the determining the M high frequency signals corresponding to the first exciter group among the N high frequency signals includes:
  • the high frequency signal is determined to correspond to the first exciter group.
  • the bytes are used to accumulate the number of received frames of the first low frequency signal received by the tire pressure sensor.
  • the method further includes:
  • Determining whether a byte associated with the first low frequency signal in the high frequency signal changes comprises:
  • the high frequency signal is valid, it is determined whether a byte associated with the first low frequency signal in the high frequency signal changes.
  • the determining whether the high frequency signal is valid includes:
  • the sequentially controlling one of the L exciter groups to transmit the low frequency signal during the transmission period includes:
  • one of the L exciter groups is sequentially controlled to transmit a low frequency signal during the transmission period.
  • the triggering condition comprises:
  • the detected traveling speed of the vehicle is greater than or equal to a preset speed threshold; or,
  • the detected vehicle stops driving for a time greater than or equal to a preset time threshold
  • a trigger signal input by the user is detected.
  • the method further includes:
  • the tire corresponding to the tire pressure sensor transmitting the J high frequency signals is a spare tire, wherein J is a positive integer.
  • the method further includes:
  • the tire corresponding to the tire pressure sensor that determines to send the J high frequency signals is a spare tire, including:
  • the tire pressure sensor If the J high frequency signals are transmitted by the tire pressure sensor in the normal mode, it is determined that the tire corresponding to the tire pressure sensor that transmits the J high frequency signals is a spare tire.
  • an embodiment of the present invention provides a method for positioning a tire, including:
  • the method further includes:
  • a delay of feeding back the high frequency signal is performed according to the delay time.
  • an embodiment of the present invention provides a positioning device for a tire, including:
  • a low frequency signal transmitting module configured to sequentially control one of the L exciter groups to transmit a low frequency signal in a transmission period, where L is an integer greater than one;
  • a high frequency signal receiving module configured to receive a high frequency signal fed back by the N tire pressure sensors according to the low frequency signal, where N is an integer greater than one;
  • a first determining module configured to determine, according to the high frequency signal, a correspondence between one of the L exciter groups and the M tire pressure sensors, where M is an integer greater than 1;
  • a second determining module configured to determine, according to the correspondence between the actuator group and the M tire pressure sensors determined in each transmission period, after the number of the sending periods reaches a preset threshold, Corresponding tires.
  • the low frequency signal sending module includes:
  • a first low frequency signal sending module configured to control the first exciter group to send the first low frequency signal during the sending period
  • a second low frequency signal sending module configured to control the L-1 exciter groups to send the second low frequency signal
  • the number of exciters included in the L-1 exciter groups is N; and the second low frequency signal is used to trigger the tire pressure sensor to switch to an active mode.
  • the location attributes of the first exciter groups are different during each transmission cycle; the location attributes of the first exciter group are provided by the exciters included in the first exciter group The same location attribute is determined.
  • the high frequency signal receiving module is specifically configured to:
  • the first determining module is specifically configured to:
  • the first determining module determines M high frequency signals corresponding to the first exciter group among the N high frequency signals, including:
  • the high frequency signal is determined to correspond to the first exciter group.
  • the bytes are used to accumulate the number of received frames of the first low frequency signal received by the tire pressure sensor.
  • the apparatus further includes:
  • a determining module configured to determine whether the high frequency signal is valid
  • the first determining module determines whether a byte related to the first low frequency signal in the high frequency signal changes, including:
  • the determining module determines that the high frequency signal is valid, determining whether a byte related to the first low frequency signal in the high frequency signal changes.
  • the determining module is specifically configured to:
  • the low frequency signal sending module is specifically configured to:
  • one of the L exciter groups is sequentially controlled to transmit a low frequency signal during the transmission period.
  • the triggering condition comprises:
  • the detected traveling speed of the vehicle is greater than or equal to a preset speed threshold; or,
  • the detected vehicle stops driving for a time greater than or equal to a preset time threshold
  • a trigger signal input by the user is detected.
  • the apparatus further includes:
  • the third confirmation module is configured to: if the J high frequency signals are received within the preset time period, determine that the tire corresponding to the tire pressure sensor that sends the J high frequency signals is a spare tire, wherein J is a positive integer.
  • the apparatus further includes:
  • a fourth confirmation module configured to determine whether the J high frequency signals are sent by the tire pressure sensor in a normal mode
  • the third confirmation module determines that the tire corresponding to the tire pressure sensor that sends the J high frequency signals is a spare tire, and includes:
  • the fourth confirmation module determines that the J high frequency signals are transmitted by the tire pressure sensor in the normal mode, it is determined that the tire corresponding to the tire pressure sensor that transmits the J high frequency signals is a spare tire.
  • an embodiment of the present invention provides a positioning device for a tire, including:
  • a low frequency signal receiving module configured to receive a low frequency signal sent by the exciter
  • a feedback module configured to feed back a high frequency signal to the tire pressure electronic control unit according to the low frequency signal, wherein the high frequency signal is used to determine a tire corresponding to the tire pressure sensor by the tire pressure electronic control unit.
  • the apparatus further includes:
  • a delay module configured to delay a delay of the high frequency signal according to the delay time.
  • an electronic control unit including:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor
  • the at least one processor is operative to execute the instructions to implement a method of positioning a tire as described above.
  • an embodiment of the present invention provides a tire pressure sensor, including:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor
  • the at least one processor is operative to execute the instructions to implement a method of positioning a tire as described above.
  • an embodiment of the present invention provides a tire pressure monitoring system, an electronic control unit, and a tire pressure sensor;
  • the electronic control unit is configured to perform a positioning method of the tire as described above;
  • the tire pressure sensor is used to perform the positioning method of the tire as described above.
  • the low frequency signal is sent by sequentially controlling one of the L exciter groups in the transmission period, and the high frequency signal fed by the N tire pressure sensors according to the low frequency signal is received, according to the high frequency.
  • the signal determines a correspondence between one of the L actuator groups and the M tire pressure sensors, and after the number of the transmission cycles reaches a preset threshold, according to the actuator group determined in each transmission cycle Corresponding to the M tire pressure sensors, tires corresponding to the respective N tire pressure sensors are determined. In the above manner, the positioning accuracy of the tire can be improved.
  • FIG. 1 is a schematic diagram of an application environment of a tire positioning method according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for positioning a tire according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of sequentially controlling one of the L exciter groups to transmit a low frequency signal in one transmission cycle according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method for positioning a tire according to another embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method for positioning a tire according to another embodiment of the present invention.
  • FIG. 6 is a schematic view of a positioning device for a tire according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a positioning device for a tire according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a positioning device for a tire according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of hardware of an electronic control unit according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a tire pressure sensor according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a tire pressure monitoring system according to an embodiment of the present invention.
  • the tire pressure monitoring system provides real-time automatic monitoring of various conditions of the tire through the tire pressure sensor installed in the tire, thereby providing effective safety for driving.
  • the positioning of the tire has the problems of low positioning efficiency and inaccurate positioning.
  • an embodiment of the present invention provides a tire positioning method, device, electronic control unit, and tire pressure sensor.
  • the positioning method of the tire can be applied to various vehicles having tires, and the following description of the present invention uses an automobile as an example of a vehicle.
  • the positioning of the tire refers to determining the tire corresponding to each of the tire pressure sensors, that is, determining which tire information of the received tire pressure sensor is, so that the user can obtain the tire pressure value of each tire in real time, such as the pressure of each tire. , temperature and other data.
  • the positioning of the tire mainly refers to the positioning of the front, rear, left and right tires of the automobile. In some automobiles, if it includes a spare tire, the positioning of the tire may also include positioning of the spare tire.
  • FIG. 1 is a schematic diagram of an application environment of a tire positioning method according to an embodiment of the present invention.
  • the application environment includes: a car 1.
  • the automobile 1 includes a left front tire 11, a right front tire 12, a right rear tire 13, a left rear tire 14, a spare tire 15, and a TPMS.
  • the TPMS comprises an electronic control unit (ECU) of tire pressure, a plurality of actuators, a plurality of tire pressure sensors, and a display (such as a meter tire pressure display).
  • ECU electronice control unit
  • the TPMS is specifically described below by taking the TPMS including four exciters and five tire pressure sensors as an example. It will be appreciated that in some other embodiments, the exciter and tire pressure sensor may be other suitable quantities, that is, the specific number thereof is not limited.
  • the above four exciters may be any exciter capable of transmitting a low frequency signal.
  • the four exciters are respectively installed near the front, rear, left and right four tires.
  • an exciter is disposed near the left front tire 11, and the exciter is defined as: a left front exciter TPMI1; an exciter is disposed near the right front tire 12, the exciter is defined as: a right front exciter TPMI2; and a right rear tire 13 is disposed adjacent to An exciter is defined as: a right rear exciter TPMI3; an exciter is disposed adjacent to the left rear tire 14, the exciter being defined as: a left rear exciter TPMI4.
  • a synchronous clock is shared between the exciters, and is wired and connected to the ECU through a multi-way selection switch, so that the ECU transmits an excitation signal through the multi-way selection switch control exciter, such as transmitting a low frequency signal.
  • the exciter having the same position attribute can be divided into one exciter group.
  • the position attribute refers to a relative position for characterizing the installation of the exciter.
  • the position of the TPMI1 is close to the position of the left front tire 11, and the position attribute of the TPMI1 includes the left and the first two attributes. Therefore, based on the location attribute, four exciters can be composed of four exciter groups:
  • an exciter group each having a left attribute including a left front exciter TPMI1 and a left rear exciter TPMI4;
  • an exciter group each having a pre-attribute, the group including a left front exciter TPMI1 and a right front exciter TPMI2;
  • Exciter groups each having a post attribute including a right rear exciter TPMI3 and a left rear exciter TPMI4.
  • the ECU can control each exciter group to simultaneously transmit low frequency signals through a multi-way selection switch, that is, the ECU can control the exciter group with left attribute to transmit low frequency signals, control the exciter group with right attribute to transmit low frequency signals, and control the pre-attribute
  • the exciter group sends the low frequency signal and controls the exciter group with the post attribute to send the low frequency signal in four ways.
  • the time of transmission of the low frequency signal combined by any three of the four modes is defined as one transmission period.
  • the low frequency signal may include the first low frequency signal or the second low frequency signal.
  • the first low frequency signal LF1 is used for counting, and the second low frequency signal LF2 is used to trigger the tire pressure sensor to switch to the active mode.
  • the spare tire 15 is shielded by metal such as the trunk, and the low frequency signal is not received. Therefore, it is meaningless to provide the exciter near the spare tire 15
  • the positioning does not require excitation by the exciter, ie four exciters are included in the application environment.
  • tire pressure sensors of the five tire pressure sensors are respectively built in the front, rear, left and right tires, and the other tire pressure sensor is built in the spare tire 15 .
  • a tire pressure sensor is built in each tire. Further, each of the tire air pressure sensors is communicably connected to the ECU to communicate with the ECU. The tire pressure sensor can be wirelessly connected to the ECU through wireless communication technology. The individual tire pressure sensors built into the front, rear, left and right tires are also communicatively coupled to the exciter for communication with the exciter.
  • N is an integer greater than 1, that is, four tire pressure sensors receive low frequency signals transmitted from the exciter, and according to the low frequency
  • the signal feeds back the high frequency signal to the ECU.
  • the tire pressure sensor only counts the number of signal receiving frames for the LF1, and does not feed back the high frequency signal; for the LF2, the tire pressure sensor feeds back the high frequency signal so that the ECU can position the front, rear, left and right tires.
  • the remaining one of the five tire pressure sensors is built in the spare tire 15 so that the ECU determines the tire corresponding to the spare tire 15 based on the high frequency signal transmitted from the tire pressure sensor.
  • the above ECU may be any suitable type of electronic control unit having a certain logic operation capability and providing a function capable of realizing the positioning of the tire. It can be implemented by one of the ECUs in the car, or by an ECU that is independent of the car system, and is not limited herein.
  • the ECU and the four exciters are respectively controlled by the multiplexer to control the exciter to transmit a low frequency signal.
  • the ECU is communicatively coupled to the five tire pressure sensors, for example, to the five tire pressure sensors via a wireless communication module of the ECU.
  • the ECU is coupled to the meter tire pressure display to transmit tire detection information, such as pressure, temperature, and the like corresponding to each tire, to the meter tire pressure display.
  • the above instrument tire pressure display can be any display having a display function.
  • the meter tire pressure display and the ECU are connected by a bus or the like to intuitively display the tire pressure value corresponding to each tire obtained by the ECU, such as pressure and temperature of each tire.
  • the positioning method of the tire provided by the embodiment of the present invention can be further extended to other suitable application environments, and is not limited to the application environment shown in FIG. 1 , and should not be construed as an embodiment of the present invention. limits. Although only five tires, four actuators, five tire pressure sensors, one display, and one ECU are shown in FIG. 1, those skilled in the art can understand that the application environment may also include the actual application process. More or fewer tires, exciters, tire pressure sensors, displays, and ECUs.
  • FIG. 2 is a schematic flow chart of a method for positioning a tire according to an embodiment of the present invention.
  • the positioning method of the tire according to the embodiment of the present invention can be performed by the ECU in the above-described automobile 1, and the method can also be executed by the ECU of other vehicles, which is not limited herein.
  • the positioning method of the tire includes:
  • one exciter set includes at least two exciters, and at least two exciters have the same positional attribute.
  • the position attribute refers to a relative position for characterizing the installation of the exciter.
  • the position attribute of the left front exciter TPMI1 installed close to the left front tire 11 includes: a left attribute and a previous attribute;
  • the positional attributes of the right front exciter TPMI2 mounted adjacent to the right front tire 12 include: a right attribute and a previous attribute;
  • the positional attributes of the right rear exciter TPMI3 installed close to the right rear tire 13 include: a right attribute and a post attribute;
  • the positional attributes of the left front exciter TPMI4 mounted adjacent to the left rear tire 14 include: a left attribute and a rear attribute.
  • the left front exciter TPMI1 and the left rear exciter TPMI4 form an exciter group each having a left attribute
  • the right front exciter TPMI2 and the right rear exciter TPMI3 form an exciter group each having a right attribute;
  • the left front exciter TPMI1 and the right front exciter TPMI2 form an exciter group each having a pre-attribute
  • the right rear exciter TPMI3 and the left rear exciter TPMI4 form an exciter group each having a post attribute.
  • the low frequency signal sent by each exciter group may be a first low frequency signal or a second low frequency signal.
  • the first low frequency signal is mainly used for counting, and the tire pressure sensor does not feed back the high frequency signal after receiving the first low frequency signal.
  • the sequence format of the first low frequency signal may be: including two bytes of data: A, C; and, the number of frames sent by each first low frequency signal is N1, and N1 is randomly set between Nx and Ny.
  • the second low frequency signal is mainly used to trigger the tire pressure sensor to switch to an active mode to ensure that the corresponding tire pressure sensor can feed back the high frequency signal.
  • a and C are fixed numbers, for example, a number preset in the ECU
  • B and X are variable random numbers, for example, numbers randomly generated in the ECU.
  • the ECU sequentially controls one of the L exciter groups to transmit low frequency signals during the transmission period, including:
  • the number of exciters included in the L-1 exciter groups is N; and the second low frequency signal is used to trigger the tire pressure sensor to switch to an active mode.
  • N is an integer greater than one.
  • the exciters included in the L-1 actuator groups respectively correspond to the tire pressure sensors built in the front, rear, left and right tires to ensure each exciter included in the L-1 actuator groups.
  • the number of tire pressure sensors that can trigger the corresponding tire pressure sensor to be switched to the active mode, that is, built in the front, rear, left, and right tires, is equal to the number of actuators included in the L-1 actuator groups, both of which are N.
  • the number of tire pressure sensors is four, that is, the number of exciters included in the L-1 actuator groups is four.
  • one actuator group includes two exciters, and therefore, for the car shown in Fig. 1, L may be three.
  • a transmission period refers to the time required for each of the L exciter groups to complete the transmission of the low frequency signal.
  • L 3, four exciter groups can be composed for the four exciters in FIG. 1, and the transmission time of the low-frequency signals combined by any three exciter groups in the four exciter groups is defined as one transmission. cycle. Therefore, the ECU sequentially controls one of the three exciter groups to transmit a low frequency signal during the transmission period, for example, sequentially controlling an exciter group having a left attribute to transmit a low frequency signal, and controlling an exciter group having a pre-attribute to transmit a low frequency signal. And controlling the exciter group with the post attribute to send a low frequency signal.
  • a position attribute of each first exciter group is different in each transmission period; a position attribute of the first exciter group is determined by the same position attribute possessed by each exciter included in the first exciter group .
  • the exciter group having the left attribute is the first exciter group, in which the ECU controls the TPMI1 and the TPMI4 in the exciter group having the left attribute to synchronously transmit the first.
  • Low frequency signal LF11 (A1, C1), the number of frames sent by the first low frequency signal LF11 is N11;
  • the ECU controls the TPMI1 and the TPMI2 in the exciter group having the pre-attribute to synchronously transmit the second low-frequency signal LF21 (A1, B1, X1);
  • the ECU re-controls TPMI3 and TPMI4 in the exciter group having the post attribute to synchronously transmit the second low frequency signal LF21 (A1, B1, X1).
  • the ECU controls the exciter group having the left attribute to send the LF11, and after the preset time t1, controls the excitation with the pre-attribute.
  • the device group sends the second low frequency signal LF21, and after the preset time t2, the exciter group with the post attribute is controlled to send the second low frequency signal LF21 to prevent the stacking between the data.
  • the exciter group having the right attribute is the first exciter group, in which the ECU controls the TPMI2 and the TPMI3 in the exciter group having the right attribute to synchronously transmit the first low frequency signal.
  • LF12 (A2, C2), the number of frames sent by the first low frequency signal LF12 is N12;
  • the ECU controls the TPMI1 and the TPMI2 in the exciter group having the pre-attribute to synchronously transmit the second low-frequency signal LF22 (A2, B2, X2);
  • the ECU re-controls TPMI3 and TPMI4 in the exciter group having the post attribute to synchronously transmit the second low frequency signal LF22 (A2, B2, X2).
  • the exciter group having the pre-attribute is the first exciter group, and in the cycle, the ECU controls the TPMI1 and the TPMI2 in the exciter group having the pre-attribute to synchronously transmit the first low-frequency signal LF13 (A3, C3), The number of frames sent by the first low frequency signal LF13 is N13;
  • the ECU controls TPMI1 and TPMI4 in the exciter group having the left attribute to synchronously transmit the second low frequency signal LF23 (A3, B3, X3);
  • the ECU re-controls TPMI2 and TPMI3 in the exciter group having the right attribute to synchronously transmit the second low frequency signal LF23 (A3, B3, X3).
  • a condition that triggers the transmission of a low frequency signal can be set.
  • the sequentially controlling one of the L exciter groups to transmit the low frequency signal in the sending period includes: sequentially controlling one of the L exciter groups in the sending period when the trigger condition is met The group sends low frequency signals.
  • the triggering condition includes: the detected driving speed of the vehicle (such as a car) is greater than or equal to a preset speed threshold, wherein the preset speed threshold may be set according to a driving habit of the user; or the detected vehicle
  • the time for stopping the driving is greater than or equal to the preset time threshold, wherein the preset time threshold may be set according to the driving habit of the user, and is usually detected once a day; or, the trigger signal input by the user is detected.
  • the tire pressure sensor or the tire is transposed, the trigger signal for detecting the user input is strong in real time.
  • the tire pressure sensor since the tire pressure sensor only counts the number of signal receiving frames for the first low frequency signal LF1, the high frequency signal is not fed back; for the second low frequency signal LF2, the tire pressure sensor is triggered to switch to the active mode, so that The tire pressure sensor recovers data according to a specific format to generate a high frequency signal, thereby transmitting the high frequency signal to the ECU for positioning, and therefore, the ECU receives the high frequency signals of the N tire pressure sensors according to the low frequency signal feedback.
  • the high frequency signal includes the following information: sensor identification code: ID; sensor status byte: S; pressure byte: P; temperature byte: T; and check code CC.
  • the sensor status byte S is used to characterize whether the tire pressure sensor is activated.
  • Determining, according to the high frequency signal, a correspondence between one of the L exciter groups and the M tire pressure sensors comprising: determining the N high frequency signals and the first exciter Group corresponding to M high frequency signals; determining that the first exciter group corresponds to M tire pressure sensors transmitting the M high frequency signals.
  • the determining the M high frequency signals corresponding to the first exciter group among the N high frequency signals includes: determining whether a byte related to the first low frequency signal in the high frequency signal occurs Changing; if the byte associated with the first low frequency signal in the high frequency signal changes, determining that the high frequency signal corresponds to the first exciter group.
  • the byte is used to accumulate the number of received frames of the first low frequency signal received by the tire pressure sensor.
  • the automobile includes an ECU, four exciters, a left front tire, a right front tire, a left rear tire, a right rear tire, and a tire pressure sensor (that is, a total of four tire pressure sensors) built in each tire.
  • L is 3
  • N is 4
  • M is 2.
  • the ECU In the transmission period in which the exciter group having the left attribute is the first exciter group, the ECU strobes the exciter group (including TPMI1 and TPMI4) having the left attribute through the multi-way selection switch, and controls the synchronous transmission of the TPMI1 and the TPMI4.
  • a low frequency signal LF11 (A1, C1), the tire pressure sensor corresponding to TPMI1 and TPMI4 will record the number of frames currently receiving LF11, such as N8, N9 respectively; then after the preset time t1, the ECU passes the multipath
  • the selector switch strobes the exciter group with the previous attribute (including TPMI1 and TPMI2), controls the TPMI1 and TPMI2 to synchronously transmit the LF21 (A1, B1, X1); after the preset time t2, the ECU strobes through the multi-way selection switch.
  • control TPMI3 and TPMI4 After the attribute of the exciter group (including TPMI3 and TPMI4), control TPMI3 and TPMI4 to send LF21 (A1, B1, X1) synchronously;
  • the status word bytes E1, E2, E3, E4 in the high frequency signal and the pressure bytes P1, P2, P3, P4 it can be known that the built in the left front tire, the right front tire, the left rear tire, the right rear
  • the four tire pressure sensors in the tire are all activated by the second low frequency signal LF21, and the bytes associated with the first low frequency signal LF11, that is, the temperature bytes T1 and T4, can be known from the high frequency signal.
  • the tire pressure sensor corresponding to the temperature byte is subjected to the low frequency excitation from the first low frequency signal LF11, and the T2 and T3 temperature bytes are unchanged, indicating the tire pressure corresponding to the temperature byte.
  • the sensor is not subjected to the low frequency excitation from the first low frequency signal LF11. At this point, the positioning of the left wheel (left front tire, left rear tire) is completed, that is, the correspondence between the first exciter group and the left front tire and the left rear tire in the transmission period is determined. relationship.
  • the right wheel is positioned (gate TPMI2 and TPMI3, control synchronous transmission LF12; after t1, strobe TPMI1 and TPMI2, control synchronous transmission of LF22, t2, then strobe TPMI3 and TPMI4, control synchronous transmission LF22)
  • Front wheel positioning (gate TPMI1 and TPMI2, control synchronous transmission of LF12; after t1, strobe TPMI1 and TPMI4, control synchronous transmission of LF22, t2, then strobe TPMI2 and TPMI3, control synchronous transmission of LF22) and rear wheel positioning (Gated TPMI3 and TPMI4, control synchronous transmission of LF12; after t1, strobe TPMI1 and TPMI4, control synchronous transmission of LF22, t2, then strobe TPMI2 and TPMI3, control synchronous transmission LF22) are similar to the principle of revolving Therefore, it will not be described here.
  • the left exciter can determine that the first exciter group having the left attribute corresponds to the left front tire and the left rear tire; and the right wheel positioning can determine that the first exciter group having the right attribute corresponds to the right front tire and the right rear tire.
  • the front wheel positioning can determine that the first exciter group having the pre-attribute corresponds to the left front tire and the right front tire; and the rear wheel positioning can determine that the first exciter group having the rear attribute corresponds to the left rear tire and the right rear tire .
  • the tire positioning of the front, rear, left and right tires is performed, as long as three tires in the front, rear, left and right tires are determined, the remaining one tire is obviously also determined. Therefore, in order to improve the positioning efficiency, the number of transmission cycles is reached for the automobile in FIG.
  • the tires corresponding to the N tire pressure sensors are respectively determined, thereby completing the positioning of the tire, that is, determining the received
  • the information on the tire pressure sensor is information on which tire.
  • the exciter group having the left attribute is used as the transmission period of the first exciter group to implement the left wheel positioning; then, the exciter group having the right attribute is used as the transmission period of the first exciter group to realize the right wheel positioning. Finally, the exciter group with the pre-attribute is used as the transmission period of the first exciter group to realize the front wheel positioning, thereby completing the positioning of the front, rear, left and right tires.
  • the N tires may also be determined according to the corresponding relationship between the actuator group and the M tire pressure sensors determined in each transmission cycle.
  • the tires correspond to the respective tires to complete the positioning of the tires.
  • the exciter group with the left attribute is used as the transmission period of the first exciter group to realize the left wheel positioning; then, the exciter group having the pre-attribute is used as the transmission period of the first exciter group to realize the front wheel positioning.
  • the temperature byte changes to the left front tire; in the first transmission period, the temperature byte changes, and in the second transmission period, the temperature byte does not change.
  • the correspondence between one of the L actuator groups and the M tire pressure sensors is determined by the high frequency signal, and then the actuator group and the M groups determined according to each transmission period are determined.
  • FIG. 4 is a schematic flow chart of a method for positioning a tire according to another embodiment of the present invention.
  • the positioning method of the tire according to the embodiment of the present invention can be performed by the ECU in the above-described automobile 1, and the method can also be executed by the ECU of other vehicles, which is not limited herein.
  • the positioning method of the tire includes:
  • Step 401 in the embodiment of the present invention is similar to step 201 in the foregoing embodiment, and step 402 is similar to step 202 in the above embodiment, and therefore, details are not described herein again.
  • determining, according to the high frequency signal, a correspondence between one of the L actuator groups and the M tire pressure sensors including: determining the N high frequency signals and the An M high frequency signal corresponding to an exciter group; determining that the first exciter group corresponds to M tire pressure sensors transmitting the M high frequency signals.
  • the determining the M high frequency signals corresponding to the first exciter group among the N high frequency signals includes: determining whether a byte related to the first low frequency signal in the high frequency signal changes And if the byte associated with the first low frequency signal changes in the high frequency signal, determining that the high frequency signal corresponds to the first exciter group.
  • the determining whether the high frequency signal is valid or not includes: determining, according to the high frequency signal, a number of received frames of the first low frequency signal by the tire pressure sensor that transmits the high frequency signal; Whether the ratio of the number of received frames to the number of transmission frames of the first low frequency signal is greater than or equal to a preset ratio threshold; if the ratio of the number of received frames to the number of transmitted frames of the first low frequency signal is greater than or equal to The preset ratio threshold is determined to determine that the high frequency signal is valid.
  • the proportional threshold may be based on a transmission loss setting of the communication or the user may customize the setting according to experience.
  • the proportional threshold is set to 0.5
  • the number of transmission frames of the first low frequency signal is N1
  • the tire pressure sensor actually targets the first low frequency.
  • the number of received frames of the signal is Nc.
  • determining whether the byte related to the first low frequency signal in the high frequency signal changes in the step 403 includes: if the high frequency signal is valid, determining high Whether the byte associated with the first low frequency signal changes in the frequency signal. That is, only if the high frequency signal is valid, whether the high frequency signal corresponds to the first exciter group can be determined based on whether the byte associated with the first low frequency signal changes in the high frequency signal. In order to further ensure the accuracy of the positioning of the tire.
  • the tire corresponding to the pressure sensor is a spare tire.
  • the preset time period tp is greater than the transmission period Tp, for example, Tp ⁇ 2/3tp, to ensure that even if the tire pressure sensor feedbacks the positioning interaction of the high frequency signal according to the low frequency signal, the tire pressure sensor built in the spare tire can be sent.
  • the high frequency signal can be received by the ECU.
  • the tire pressure sensor transmits a plurality of high frequency signals, and the time interval of each high frequency signal transmission is random. As long as the ECU receives the J high frequency signals, it is determined that the J high frequency signals are transmitted.
  • the tire corresponding to the signal tire pressure sensor is a spare tire.
  • the tire pressure sensor built in the spare tire is shielded by the metal such as the trunk, the low frequency signal is not received, and the tire pressure sensor in the embodiment of the present invention switches to the second low frequency signal LF2 after receiving the second low frequency signal LF2.
  • the data of the normal mode is not transmitted within the preset time period tp; therefore, the ECU needs to determine whether the J high frequency signals are transmitted by the tire pressure sensor in the normal mode to perform positioning of the spare tire.
  • the tire corresponding to the tire pressure sensor that determines the transmission of the J high-frequency signals in the above step 406 is a spare tire, including: if the J high-frequency signals are generated by the tire pressure sensor In the normal mode, it is determined that the tire corresponding to the tire pressure sensor that transmits the J high-frequency signals is a spare tire.
  • the steps 405-407 may not be mandatory in different embodiments, and in addition, those skilled in the art may understand that, according to the description of the embodiments of the present invention, In different embodiments, the steps 401-407 may have different execution orders without contradiction.
  • the correspondence between one of the L actuator groups and the M tire pressure sensors is determined by the high frequency signal, and then the actuator group and the M groups determined according to each transmission period are determined.
  • FIG. 5 is a schematic flow chart of a method for positioning a tire according to another embodiment of the present invention.
  • the positioning method of the tire according to the embodiment of the present invention can be performed by the tire pressure sensor in the above-described automobile 1, and the method can also be performed by the tire pressure sensor of other vehicles, which is not limited herein.
  • the positioning method of the tire includes:
  • the tire pressure sensor built into the four tires of the front, rear, left and right tires can receive the low frequency signal sent by the exciter.
  • the tire pressure sensor receives the L actuators sequentially controlled by the tire pressure electronic control unit (ECU) during the transmission cycle.
  • the low frequency signal in step 501 in the embodiment of the present invention is similar to the low frequency signal in step 201 in the above embodiment, and therefore, details are not described herein.
  • the tire pressure sensor only counts the number of signal receiving frames and does not feed back the high frequency signal.
  • the tire pressure sensor feeds back the high frequency signal for the positioning of the front, rear, left and right tires.
  • a tire pressure sensor built in four tires of front, rear, left and right tires according to the high frequency signal fed back by the low frequency signal to the ECU, so that the ECU can determine one of the L actuator groups according to the high frequency signal and
  • M is an integer greater than 1, so that the ECU determines the actuator group and the M tire pressure sensors according to each transmission period after the number of the transmission cycles reaches a preset threshold.
  • each tire corresponding to each tire pressure sensor is determined, that is, the positioning of the tire is completed.
  • the high frequency signal in step 502 in the embodiment of the present invention is used to determine the tire pressure corresponding to the tire pressure sensor by the tire pressure electronic control unit and the tire pressure is determined by steps 202-204 in the above embodiment.
  • the tires corresponding to the sensors are similar and therefore will not be described here.
  • the delay time refers to the time from when the tire pressure sensor receives the second low frequency signal LF2 to when the high frequency signal is transmitted.
  • the delay time may be set based on a preset transmission mechanism, and the preset transmission mechanism may be determined based on the number of frames in which the tire pressure sensor receives the first low frequency signal.
  • the tire pressure sensor cumulatively receives the number of frames of the first low frequency signal LF1, and Rx is a random number, which may be a randomly generated number in the system.
  • the tire pressure sensor built in the left front tire cumulatively receives the number of frames of the first low frequency signal LF1 of 20, and the tire pressure sensor built in the right front tire cumulatively receives the number of frames of the first low frequency signal LF1 of 30, which is built in the left front.
  • the tire tire pressure sensor corresponds to a delay time of 20+Rx; the tire pressure sensor built into the right front tire corresponds to a delay time of 30+Rx.
  • an exciter group synchronously transmits a low frequency signal
  • the tire pressure sensor does not delay feedback the high frequency signal after receiving the low frequency signal, it may cause a high frequency signal transmitted between the tire pressure sensors located on the same side.
  • a stack that is, a high-frequency signal sent by two tire pressure sensors from the same side received by the ECU, a delay occurs, so that the delay of the high-frequency signal needs to be fed back according to the delay time. To prevent the phenomenon of stacking.
  • the tire pressure sensor built in the left front tire passes the time 20+Rx and then feeds back the high-frequency signal; the tire pressure sensor built in the right front tire passes the time 30+Rx. Feedback high frequency signals to prevent stacking.
  • the steps 503-504 may not be mandatory in different embodiments, and in addition, those skilled in the art may understand that, according to the description of the embodiments of the present invention, In different embodiments, the steps 501-504 may have different execution orders without contradiction.
  • the tire pressure sensor feeds the high frequency signal to the tire pressure electronic control unit according to the low frequency signal, so that the tire pressure electronic control unit can determine the tire corresponding to the tire pressure sensor according to the high frequency signal, thereby completing the positioning of the tire.
  • the positioning method of the tire can improve the positioning efficiency and the accuracy of the positioning, and in the process of completing the tire positioning, the identification code of the tire pressure sensor corresponding to the tire is not required to be input by using an additional communication device or manually.
  • FIG. 6 is a schematic diagram of a positioning device for a tire according to an embodiment of the present invention.
  • the positioning device of the tire according to the embodiment of the present invention may be disposed in an ECU in the above-described automobile 1, and the device may be disposed in an ECU of another vehicle, which is not limited herein.
  • the positioning device 60 of the tire includes:
  • the low frequency signal transmitting module 601 is configured to sequentially control one of the L exciter groups to transmit a low frequency signal during the transmission period, where L is an integer greater than 1.
  • the low frequency signal includes a first low frequency signal or a second low frequency signal.
  • the low frequency signal sending module 601 includes: a first low frequency signal transmitting module 6011, configured to control the first exciter group to transmit the first low frequency signal in the sending period; and a second low frequency signal sending module 6012 to control the L- One exciter group transmits a second low frequency signal.
  • the number of exciters included in the L-1 exciter groups is N; the second low frequency signal is used to trigger the tire pressure sensor to switch to an active mode, so that the tire pressure sensor feeds back the high frequency according to the low frequency signal. signal.
  • the positional attributes of the respective first exciter groups are different in each transmission cycle.
  • a condition that triggers the transmission of a low frequency signal can be set.
  • the low frequency signal sending module 601 is specifically configured to: when the trigger condition is met, sequentially control one of the L exciter groups to transmit a low frequency signal in the sending period.
  • the triggering condition includes: the detected driving speed of the vehicle (such as a car) is greater than or equal to a preset speed threshold, wherein the preset speed threshold may be set according to a driving habit of the user; or the detected vehicle
  • the time for stopping the driving is greater than or equal to the preset time threshold, wherein the preset time threshold may be set according to the driving habit of the user, and is usually detected once a day; or, the trigger signal input by the user is detected.
  • the trigger signal for detecting the user input is strong in real time.
  • the high frequency signal receiving module 602 is configured to receive a high frequency signal fed back by the N tire pressure sensors according to the low frequency signal, where N is an integer greater than 1.
  • the high frequency signal receiving module 602 is specifically configured to: receive the N tire pressure sensors in the activated state N high frequency signals fed back.
  • the first determining module 603 is configured to determine, according to the high frequency signal, a correspondence between one of the L exciter groups and the M tire pressure sensors, where M is an integer greater than 1.
  • the first determining module 603 is specifically configured to: determine M high frequency signals corresponding to the first exciter group among the N high frequency signals; determine the first exciter group and send the M The M tire pressure sensors of the high frequency signal correspond.
  • the first determining module 603 determines M high frequency signals corresponding to the first exciter group among the N high frequency signals, including: determining that the high frequency signal is related to the first low frequency signal Whether the byte changes; if the byte associated with the first low frequency signal in the high frequency signal changes, it is determined that the high frequency signal corresponds to the first exciter group.
  • the byte is used to accumulate the number of received frames of the first low frequency signal received by the tire pressure sensor.
  • the second determining module 604 is configured to determine the N tire pressure sensors according to the correspondence between the actuator group and the M tire pressure sensors determined in each sending period after the number of the sending periods reaches a preset threshold. Corresponding tires.
  • the second determining module 604 can determine the corresponding ones of the N tire pressure sensors according to the corresponding relationship between the actuator group and the M tire pressure sensors determined in each sending cycle. The tire, thereby completing the positioning of the tire, that is, determining which tire information the received tire pressure sensor information is.
  • the exciter group having the left attribute is used as the transmission period of the first exciter group to implement the left wheel positioning; then, the exciter group having the right attribute is used as the transmission period of the first exciter group to realize the right wheel positioning. Finally, the exciter group with the pre-attribute is used as the transmission period of the first exciter group to realize the front wheel positioning, thereby completing the positioning of the front, rear, left and right tires.
  • the second determining module 604 when the second determining module 604 detects that the number of transmission periods reaches 2, according to the correspondence between the actuator group and the M tire pressure sensors determined in each transmission period, The second determining module 604 can also determine the tires corresponding to the N tire pressure sensors, thereby completing the positioning of the tire. First, the exciter group with the left attribute is used as the transmission period of the first exciter group to realize the left wheel positioning; then, the exciter group having the pre-attribute is used as the transmission period of the first exciter group to realize the front wheel positioning.
  • the temperature byte changes to the left front tire; in the first transmission period, the temperature byte changes, and in the second transmission period, the temperature byte does not change. It is the left rear tire; the temperature byte does not change during the first transmission cycle, and the right front tire changes during the second transmission cycle; the temperature bytes are not in the 2 transmission cycles. The change is the right rear tire; thus the positioning of the front, rear, left and right tires is completed.
  • the positioning device 60 for the tire can perform the positioning method of the tire provided in Embodiment 1 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the positioning method of the tire provided in Embodiment 1 of the present invention can be performed by the positioning device 60 for the tire.
  • FIG. 7 is a schematic diagram of a positioning device for a tire according to another embodiment of the present invention.
  • the positioning device of the tire according to the embodiment of the present invention may be disposed in an ECU in the above-described automobile 1, and the device may be disposed in an ECU of another vehicle, which is not limited herein.
  • the positioning device 70 of the tire includes:
  • the low frequency signal transmitting module 701 is configured to sequentially control one of the L exciter groups to transmit a low frequency signal during the transmission period, where L is an integer greater than 1.
  • the low frequency signal may comprise a first low frequency signal or a second low frequency signal.
  • the low frequency signal sending module 701 includes: a first low frequency signal transmitting module 7011, configured to control the first exciter group to transmit the first low frequency signal in the sending period; and a second low frequency signal sending module 7012 to control the L- One exciter group transmits a second low frequency signal.
  • the number of exciters included in the L-1 exciter groups is N; the second low frequency signal is used to trigger the tire pressure sensor to switch to an active mode, so that the tire pressure sensor feeds back the high frequency according to the low frequency signal. signal.
  • the positional attributes of the respective first exciter groups are different in each transmission cycle.
  • the high frequency signal receiving module 702 is configured to receive a high frequency signal fed back by the N tire pressure sensors according to the low frequency signal, where N is an integer greater than 1.
  • the first determining module 703 is configured to determine, according to the high frequency signal, a correspondence between one of the L exciter groups and the M tire pressure sensors, where M is an integer greater than 1.
  • the first determining module 703 is specifically configured to: determine M high frequency signals corresponding to the first exciter group among the N high frequency signals; determine the first exciter group and send the M The M tire pressure sensors of the high frequency signal correspond.
  • the first determining module 703 determines M high frequency signals corresponding to the first exciter group among the N high frequency signals, including: determining that the high frequency signal is related to the first low frequency signal Whether the byte changes; if the byte associated with the first low frequency signal in the high frequency signal changes, it is determined that the high frequency signal corresponds to the first exciter group.
  • the byte is used to accumulate the number of received frames of the first low frequency signal received by the tire pressure sensor.
  • the second determining module 704 is configured to determine the N tire pressure sensors according to the correspondence between the actuator group and the M tire pressure sensors determined in each transmission period after the number of the sending periods reaches a preset threshold. Corresponding tires.
  • the determining module 705 is configured to determine whether the high frequency signal is valid.
  • the determining module 705 is specifically configured to: determine, according to the high frequency signal, a number of received frames of the first low frequency signal by the tire pressure sensor that sends the high frequency signal; and determine the number of received frames and Whether the ratio of the number of transmission frames of the first low frequency signal is greater than or equal to a preset ratio threshold; if the ratio of the number of received frames to the number of transmission frames of the first low frequency signal is greater than or equal to a preset ratio threshold, It is determined that the high frequency signal is valid.
  • the proportional threshold may be based on a communication loss setting of the communication or the user may customize the setting based on experience.
  • the first determining module 703 determines whether a byte related to the first low frequency signal in the high frequency signal changes, including: if the determining module determines the The high frequency signal is valid, and it is determined whether the byte associated with the first low frequency signal in the high frequency signal changes. That is, only when the determining module 705 determines that the high frequency signal is valid, the first determining module 703 determines the high frequency based on whether a byte related to the first low frequency signal changes in the high frequency signal.
  • a signal corresponds to the first set of actuators to further ensure the accuracy of the positioning of the tire.
  • the third confirmation module 706 is configured to: if the J high frequency signals are received within the preset time period, determine that the tire corresponding to the tire pressure sensor that sends the J high frequency signals is a spare tire, where J is a positive integer.
  • the low frequency signal transmitting module 701 sequentially controls one of the L exciter groups to transmit a low frequency signal in a transmission period, and if the third confirmation module 706 receives J high frequency signals within a preset time period, It is determined that the tire corresponding to the tire pressure sensor that transmits the J high-frequency signals is a spare tire.
  • the preset time period tp is greater than the transmission period Tp, for example, Tp ⁇ 2/3tp, to ensure that even if the tire pressure sensor feedbacks the positioning interaction of the high frequency signal according to the low frequency signal, the tire pressure sensor built in the spare tire can be sent.
  • the high frequency signal can be received by the third validation module 706.
  • the tire pressure sensor transmits a plurality of high frequency signals, and the time interval of each high frequency signal transmission is random, as long as the third confirmation module 706 receives the J high frequency signals, it can be determined to send the The tire corresponding to the J high-frequency signal tire pressure sensor is a spare tire.
  • the fourth confirmation module 707 is configured to determine whether the J high frequency signals are sent by the tire pressure sensor in a normal mode.
  • the tire pressure sensor built in the spare tire is shielded by the metal such as the trunk, the low frequency signal is not received, and the tire pressure sensor in the embodiment of the present invention switches to the second low frequency signal LF2 after receiving the second low frequency signal LF2.
  • the data of the normal mode is not sent in the preset time period tp; therefore, it is determined by the fourth confirmation module 707 whether the J high frequency signals are sent by the tire pressure sensor in the normal mode. The positioning of the spare tire.
  • the third confirmation module 706 determines that the tire corresponding to the tire pressure sensor that transmits the J high frequency signals is a spare tire, and includes: if the fourth confirmation module determines the J heights The frequency signal is transmitted by the tire pressure sensor in a normal mode, and the third confirmation module 706 determines that the tire corresponding to the tire pressure sensor that transmits the J high frequency signals is a spare tire.
  • the positioning device 70 for the tire can perform the positioning method of the tire provided by Embodiment 2 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the method of positioning the tire provided in Embodiment 2 of the present invention reference may be made to the method of positioning the tire provided in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a positioning device for a tire according to another embodiment of the present invention.
  • the positioning device of the tire according to the embodiment of the present invention may be disposed in the tire pressure sensor of the automobile 1 , and the device may also be disposed in the tire pressure sensor of other vehicles, which is not limited herein.
  • the positioning device 80 of the tire includes:
  • the low frequency signal receiving module 801 is configured to receive the low frequency signal sent by the exciter.
  • the low frequency signal receiving module 801 of the tire pressure sensor built in the four tires of the front, rear, left and right tires can receive the low frequency signal sent by the exciter. Specifically, the low frequency signal receiving module 801 receives the transmission by the tire pressure electronic control unit (ECU). The first low frequency signal LF1 or the second excitation signal LF2 transmitted by one of the L exciter groups is sequentially controlled in the cycle.
  • ECU tire pressure electronic control unit
  • the feedback module 802 is configured to feed back a high frequency signal to the tire pressure electronic control unit according to the low frequency signal, and the high frequency signal is used to determine a tire corresponding to the tire pressure sensor by the tire pressure electronic control unit.
  • the feedback module 802 only counts the number of signal receiving frames for the LF1, and does not feed back the high frequency signal; for the LF2, the feedback module 802 feeds back the high frequency signal for positioning the front, rear, left and right tires.
  • the feedback module 802 of the tire pressure sensor built in the four tires of the front, rear, left and right tires is sent to the ECU according to the high frequency signal fed back by the low frequency signal, so that the ECU can determine one of the L actuator groups according to the high frequency signal.
  • M is an integer greater than 1, so that the ECU determines the exciter group and M according to each transmission period after the number of the transmission periods reaches a preset threshold.
  • the corresponding relationship of the tire pressure sensors determines the tires corresponding to the respective tire pressure sensors, that is, the positioning of the tires is completed.
  • the preset module 803 is configured to preset a delay time.
  • the delay time refers to the time after the low frequency signal receiving module 801 receives the second low frequency signal LF2 and the feedback module 802 sends the high frequency signal.
  • the preset module 803 may determine a delay time based on a preset sending mechanism, and the preset sending mechanism may be determined based on a number of frames in which the tire pressure sensor receives the first low frequency signal.
  • Tx is the corresponding low frequency signal receiving module 801 cumulatively receives the number of frames of the first low frequency signal LF1
  • Rx is a random number, which may be a randomly generated number in the system.
  • the low frequency signal receiving module 801 of the tire pressure sensor built in the left front tire cumulatively receives the number of frames of the first low frequency signal LF1 of 20
  • the low frequency signal receiving module 801 of the tire pressure sensor built in the right front tire cumulatively receives the first low frequency.
  • the number of frames of the signal LF1 is 30, and the delay time corresponding to the tire pressure sensor built in the left front tire is 20+Rx; the delay time corresponding to the tire pressure sensor built in the right front tire is 30+Rx.
  • the delay module 804 is configured to perform a delay of feeding back the high frequency signal according to the delay time.
  • the low frequency signal receiving module 801 does not delay the feedback of the high frequency signal through the delay module 804 after receiving the low frequency signal, the tire pressure sensor on the same side may be caused.
  • the high frequency signal sent by the feedback module 802 is overlapped, that is, the high frequency signal sent by the feedback module 802 of the two tire pressure sensors received from the same side of the ECU overlaps, so the delay is required.
  • the module 804 performs a delay of feeding back the high frequency signal according to the delay time to prevent the stacking phenomenon.
  • the feedback module 802 of the tire pressure sensor built in the left front tire passes the time 20+Rx and then feeds back the high-frequency signal through the delay module 804; 804 causes the feedback module 802 of the tire pressure sensor built into the right front tire to re-feed back the high frequency signal over time 30+Rx to prevent stacking.
  • the positioning device 80 of the tire can perform the positioning method of the tire provided in Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the positioning device 80 can perform the positioning method of the tire provided in Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 9 is a schematic structural diagram of hardware of an electronic control unit according to an embodiment of the present invention. As shown in FIG. 9, the electronic control unit 90 includes:
  • One or more processors 901 and memory 902, one processor 901 is taken as an example in FIG.
  • the processor 901 and the memory 902 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 902 is a non-volatile computer readable storage medium that can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as the tires provided in Embodiment 2 or Embodiment 3 of the present invention.
  • the program instruction/module corresponding to the positioning method for example, the low frequency signal transmitting module 701, the high frequency signal receiving module 702, the first determining module 703, the second determining module 704, the determining module 705, and the third confirming module shown in FIG. 706 and a fourth confirmation module 707).
  • the processor 901 executes various functional applications and data processing of the electronic control unit by executing non-volatile software programs, instructions, and modules stored in the memory 902, that is, the method provided in the method embodiment 1 or the embodiment 2 is implemented. The method of positioning the tire.
  • the memory 902 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the electronic control unit, and the like.
  • memory 902 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 902 can optionally include memory remotely located relative to processor 901, which can be connected to the electronic control unit over a network.
  • Embodiments of the network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules, instructions are stored in the memory 902, when executed by the one or more processors 901, to implement the positioning method of the tire provided by Embodiment 1 or Embodiment 2 of the present invention, for example
  • the method steps 401 to 407 in FIG. 4 described above are performed, or the functions of the modules 701-707 in FIG. 7 are implemented.
  • the electronic control unit can also include a communication interface for enabling communication with other devices, such as tire pressure sensors and the like.
  • Other devices included in the electronic control unit are not limited herein.
  • the electronic control unit may perform the positioning method of the tire provided by Embodiment 1 or Embodiment 2 of the present invention, and has a corresponding functional module and a beneficial effect of the execution method.
  • the electronic control unit may perform the positioning method of the tire provided by Embodiment 1 or Embodiment 2 of the present invention, and has a corresponding functional module and a beneficial effect of the execution method.
  • An embodiment of the present invention provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction is When the electronic control unit is executed, the electronic control unit is caused to implement the positioning method of the tire provided in Embodiment 1 or Embodiment 2 of the present invention.
  • the method steps 401 to 407 in FIG. 4 described above are performed, or the functions of the modules 701-707 in FIG. 7 are implemented.
  • An embodiment of the present invention provides a non-transitory computer readable storage medium storing computer-executable instructions for causing an electronic control unit to implement Embodiment 1 of the present invention. Or the positioning method of the tire provided in Embodiment 2. For example, the method steps 401 to 407 in FIG. 4 described above are performed, or the functions of the modules 701-707 in FIG. 7 are implemented.
  • FIG. 10 is a schematic structural diagram of a tire pressure sensor according to an embodiment of the present invention. As shown in FIG. 10, the tire pressure sensor 100 includes:
  • One or more processors 1001 and a memory 1002, one processor 1001 is taken as an example in FIG.
  • the processor 1001 and the memory 1002 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 1002 is a non-volatile computer readable storage medium, and can be used for storing non-volatile software programs, non-volatile computer-executable programs, and modules, such as the positioning method of the tire provided by Embodiment 3 of the present invention.
  • Program instructions/modules for example, low frequency signal receiving module 801, feedback module 802, preset module 803, and delay module 804 shown in FIG. 8).
  • the processor 1001 performs various functional applications and data processing of the tire pressure sensor by executing non-volatile software programs, instructions, and modules stored in the memory 1002, that is, the positioning method of the tire provided by the method embodiment 3 is implemented. .
  • the memory 1002 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to the use of the tire pressure sensor, and the like. Further, the memory 1002 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some embodiments, the memory 1002 can optionally include a memory remotely located relative to the processor 1001 that can be connected to the tire pressure sensor via a network. Embodiments of the network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules, instructions are stored in the memory 1002, and when executed by the one or more processors 1001, implement a positioning method of the tire provided by Embodiment 3 of the present invention, for example, performing the above description
  • the method steps 501 to 504 in FIG. 5 implement the functions of the modules 801-804 in FIG.
  • the tire pressure sensor may further include a communication interface for enabling communication with other devices, such as an electronic control unit or the like.
  • Other devices included in the tire pressure sensor are not limited herein.
  • the tire pressure sensor can perform the positioning method of the tire provided by Embodiment 3 of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the method of positioning the tire provided in embodiment 3 of the present invention For details of the techniques not described in detail in the tire pressure sensor embodiment, reference may be made to the method of positioning the tire provided in embodiment 3 of the present invention.
  • An embodiment of the present invention provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction is When the tire pressure sensor is executed, the tire pressure sensor is caused to implement the positioning method of the tire provided in Embodiment 3 of the present invention. For example, performing the method steps 501 through 504 of FIG. 5 described above implements the functions of the modules 801-804 of FIG.
  • An embodiment of the present invention provides a non-transitory computer readable storage medium storing computer-executable instructions for implementing a tire pressure sensor to implement Embodiment 3 of the present invention.
  • the method of positioning the tires provided. For example, performing the method steps 501 through 504 of FIG. 5 described above implements the functions of the modules 801-804 of FIG.
  • the tire pressure monitoring system 110 includes an electronic control unit 90 and a tire pressure sensor 100, and the electronic control unit 90 and the tire pressure.
  • the sensor 100 is communicatively coupled.
  • the electronic control unit is configured to perform the positioning method of the tire provided in Embodiment 1 or Embodiment 2 of the present invention; the tire pressure sensor is used to perform the positioning method of the tire provided in Embodiment 3 of the present invention.
  • the tire pressure monitoring system 110 can achieve high positioning efficiency and high positioning accuracy, and no additional communication equipment is needed in completing the tire positioning process. Or manually input the identification code of the tire pressure sensor corresponding to the tire.
  • the electronic control unit 90 provided in Embodiment 7 of the present invention and the tire pressure sensor 100 provided in Embodiment 8 of the present invention.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical. Modules can be located in one place or distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, by hardware.
  • One of ordinary skill in the art can understand that all or part of the process of implementing the embodiment method can be completed by computer program related hardware, the program can be stored in a computer readable storage medium, and the program is executed.
  • the flow of an embodiment of the methods as described may be included.
  • the storage medium may be a read-only memory (ROM) or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种轮胎的定位方法,包括:在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数;接收N个胎压传感器根据低频信号反馈的高频信号,N为大于1的整数;根据高频信号确定L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数;在发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定N个胎压传感器各自对应的轮胎。该轮胎的定位方法定位准确可靠。还涉及一种轮胎的定位装置、电子控制单元及胎压传感器、胎压监测系统。

Description

轮胎的定位方法、装置、电子控制单元及胎压传感器
本申请要求于2018年3月16日提交中国专利局、申请号为201810217093.1、申请名称为“轮胎的定位方法、装置、电子控制单元及胎压传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,尤其涉及一种轮胎的定位方法、装置、电子控制单元及胎压传感器。
背景技术
胎压监测系统(tire pressure monitoring system,TPMS),利用固定于汽车轮胎内的胎压传感器在行车或静止的状态下对汽车轮胎的压力和温度等主要参数进行实时监测,以确保轮胎的压力和温度维持在标准范围内,起到减少爆胎、毁胎的概率,降低油耗和汽车部件的损坏的作用。TPMS包括安装在每一轮胎上的的胎压传感器,其用于实时采集汽车轮胎压力、温度等数据,并将数据传送到TPMS所包括的电子控制设备中,该电子控制设备可以对轮胎进行定位,进而根据该轮胎对应的胎压传感器所传输的数据来监测该轮胎的状态。
当前,如何提升电子控制设备对轮胎的定位精准度,成为本领域人员研究课题。
发明内容
本发明实施例提供一种定位准确的轮胎的定位方法、装置、电子控制单元及胎压传感器。
本发明实施例公开了如下技术方案:
第一方面,本发明实施例提供了一种轮胎的定位方法,包括:
在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数;
接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数;
根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数;
在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
在一些实施例中,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,包括:
在所述发送周期内控制第一激励器组发送第一低频信号;
控制L-1个激励器组发送第二低频信号;
其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式。
在一些实施例中,在各发送周期内,各第一激励器组的位置属性不同;所述第一激励器组的位置属性是由所述第一激励器组中包括的各激励器具备的相同的位置属性确定的。
在一些实施例中,所述接收N个胎压传感器根据所述低频信号反馈的高频信号,包括:
接收所述N个胎压传感器在所述激活状态下反馈的N个高频信号。
在一些实施例中,所述根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,包括:
确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;
确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
在一些实施例中,所述确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:
判断高频信号中与所述第一低频信号相关的字节是否发生变化;
若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。
在一些实施例中,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
在一些实施例中,所述方法还包括:
判断所述高频信号是否有效;
所述判断高频信号中与所述第一低频信号相关的字节是否发生变化,包括:
若所述高频信号有效,判断高频信号中与所述第一低频信号相关的字节是否发生变化。
在一些实施例中,所述判断所述高频信号是否有效,包括:
根据所述高频信号,确定发送所述高频信号的胎压传感器最新一次对所述第一低频信号的接收帧数;
判断所述接收帧数与对所述第一低频信号的发送帧数的比例是否大于或等于预设比例阈值;
若所述接收帧数与对所述第一低频信号的发送帧数的比例大于或等于预 设比例阈值,确定所述高频信号有效。
在一些实施例中,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,包括:
当满足触发条件时,在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号。
在一些实施例中,所述触发条件包括:
检测到的交通工具的行驶速度大于或等于预设速度阈值;或者,
检测到的交通工具停止行驶的时间大于或等于预设时间阈值;或者,
检测到用户输入的触发信号。
在一些实施例中,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号之后,所述方法还包括:
若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,其中,J为正整数。
在一些实施例中,所述方法还包括:
确定所述J个高频信号是否是由所述胎压传感器在常规模式下发送的;
所述确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,包括:
若所述J个高频信号是由所述胎压传感器在常规模式下发送的,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
第二方面,本发明实施例提供了一种轮胎的定位方法,包括:
接收激励器发送的低频信号;
根据所述低频信号向胎压电子控制单元反馈高频信号,所述高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎。
在一些实施例中,所述方法还包括:
预设延时时间;
根据所述延时时间,进行反馈所述高频信号的延时。
第三方面,本发明实施例提供了一种轮胎的定位装置,包括:
低频信号发送模块,用于在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数;
高频信号接收模块,用于接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数;
第一确定模块,用于根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数;
第二确定模块,用于在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
在一些实施例中,所述低频信号发送模块包括:
第一低频信号发送模块,用于在所述发送周期内控制第一激励器组发送第一低频信号;
第二低频信号发送模块,用于控制L-1个激励器组发送第二低频信号;
其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式。
在一些实施例中,在各发送周期内,各第一激励器组的位置属性不同;所述第一激励器组的位置属性是由所述第一激励器组中包括的各激励器具备的相同的位置属性确定的。
在一些实施例中,所述高频信号接收模块具体用于:
接收所述N个胎压传感器在所述激活状态下反馈的N个高频信号。
在一些实施例中,所述第一确定模块具体用于:
确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;
确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
在一些实施例中,所述第一确定模块确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:
判断高频信号中与所述第一低频信号相关的字节是否发生变化;
若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。
在一些实施例中,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
在一些实施例中,所述装置还包括:
判断模块,用于判断所述高频信号是否有效;
所述第一确定模块判断高频信号中与所述第一低频信号相关的字节是否发生变化,包括:
若所述判断模块判断到所述高频信号有效,判断高频信号中与所述第一低频信号相关的字节是否发生变化。
在一些实施例中,所述判断模块具体用于:
根据所述高频信号,确定发送所述高频信号的胎压传感器最新一次对所述第一低频信号的接收帧数;
判断所述接收帧数与对所述第一低频信号的发送帧数的比例是否大于或等于预设比例阈值;
若所述接收帧数与对所述第一低频信号的发送帧数的比例大于或等于预设比例阈值,确定所述高频信号有效。
在一些实施例中,所述低频信号发送模块具体用于:
当满足触发条件时,在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号。
在一些实施例中,所述触发条件包括:
检测到的交通工具的行驶速度大于或等于预设速度阈值;或者,
检测到的交通工具停止行驶的时间大于或等于预设时间阈值;或者,
检测到用户输入的触发信号。
在一些实施例中,所述装置还包括:
第三确认模块,用于若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,其中,J为正整数。
在一些实施例中,所述装置还包括:
第四确认模块,用于确定所述J个高频信号是否是由所述胎压传感器在常规模式下发送的;
所述第三确认模块确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,包括:
若第四确认模块确定到所述J个高频信号是由所述胎压传感器在常规模式下发送的,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
第四方面,本发明实施例提供了一种轮胎的定位装置,包括:
低频信号接收模块,用于接收激励器发送的低频信号;
反馈模块,用于根据所述低频信号向胎压电子控制单元反馈高频信号,所述高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎。
在一些实施例中,所述装置还包括:
预设模块,用于预设延时时间;
延时模块,用于根据所述延时时间,进行反馈所述高频信号的延时。
第五方面,本发明实施例提供了一种电子控制单元,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令;
所述至少一个处理器用于执行所述指令,以实现如上所述的轮胎的定位方法。
第六方面,本发明实施例提供了一种胎压传感器,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令;
所述至少一个处理器用于执行所述指令,以实现如上所述的轮胎的定位方法。
第七方面,本发明实施例提供了一种胎压监测系统,电子控制单元和胎压传感器;
其中,所述电子控制单元和所述胎压传感器连接;
所述电子控制单元用于执行如上所述的轮胎的定位方法;
所述胎压传感器用于执行如上所述的轮胎的定位方法。
本发明实施例,通过在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,并接收N个胎压传感器根据所述低频信号反馈的高频信号,可以根据该高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,并在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。通过上述方式,可以提升对轮胎的定位准确性。
附图说明
图1是本发明实施例提供的轮胎的定位方法的应用环境的示意图;
图2是本发明其中一实施例提供的一种轮胎的定位方法的流程示意图;
图3是本发明实施例提供的在一个发送周期中依次控制L个激励器组中的一个激励器组发送低频信号的示意图;
图4是本发明另一实施例提供的一种轮胎的定位方法的流程示意图;
图5是本发明另一实施例提供的一种轮胎的定位方法的流程示意图;
图6是本发明其中一实施例提供的一种轮胎的定位装置的示意图;
图7是本发明另一实施例提供的一种轮胎的定位装置的示意图;
图8是本发明另一实施例提供的一种轮胎的定位装置的示意图;
图9是本发明实施例提供的电子控制单元硬件结构示意图;
图10是本发明实施例提供的胎压传感器硬件结构示意图;
图11是本发明实施例提供的胎压监测系统的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
胎压监测系统通过安装在轮胎中的胎压传感器,对轮胎的各种状况进行实时自动监测,从而为行驶提供有效的安全保障,然而,对于轮胎的定位存在定位效率低、定位不准确的问题。基于此,本发明实施例提供了一种轮胎的定位方法、装置、电子控制单元及胎压传感器。该轮胎的定位方法可应用于各种具 有轮胎的交通工具,以下对本发明的描述使用汽车作为交通工具的示例。其中,轮胎的定位是指确定胎压传感器各自对应的轮胎,也即确定接收到的胎压传感器的信息为哪个轮胎的信息,以便用户可以实时获取各个轮胎的胎压值,如各个轮胎的压力、温度等数据。通常对于轮胎的定位主要是指对于汽车的前后左右轮胎的定位,在一些汽车中如果其包括有备胎的,该轮胎的定位还可以包括对备胎的定位。
请参阅图1,为本发明实施例提供的轮胎的定位方法的应用环境的示意图。如图1所示,该应用环境包括:汽车1。其中,所述汽车1包括左前轮胎11、右前轮胎12、右后轮胎13、左后轮胎14、备胎15以及TPMS。其中,所述TPMS包括胎压的电子控制单元(Electronic Control Unit,ECU)、若干个激励器、若干个胎压传感器、显示器(如仪表胎压显示器)。下面以所述TPMS包括四个激励器、五个胎压传感器为例对所述TPMS进行具体说明。可以理解的是,在一些其它实施例中,所述激励器和胎压传感器还可以为其它合适的数量,也即其具体数量不受限制。
其中,上述四个激励器可以是任意能够发送低频信号的激励器。所述四个激励器分别安装在前后左右四个轮胎附近。
具体的,左前轮胎11附近设置有一激励器,该激励器定义为:左前激励器TPMI1;右前轮胎12附近设置有一激励器,该激励器定义为:右前激励器TPMI2;右后轮胎13附近设置有一激励器,该激励器定义为:右后激励器TPMI3;左后轮胎14附近设置有一激励器,该激励器定义为:左后激励器TPMI4。
各个激励器之间,共用同步时钟,并且通过多路选择开关和ECU有线相连,以便ECU通过多路选择开关控制激励器发送激励信号,如发送低频信号。
并且,根据激励器的位置属性,可以将具备相同的位置属性的激励器划分到一个激励器组中。其中,所述位置属性是指用于表征激励器安装的相对位置,例如,TPMI1安装靠近于左前轮胎11的位置,则TPMI1的位置属性包括左、前两个属性。因此,基于位置属性,四个激励器可组成的四个激励器组:
(1)均具有左属性的激励器组,该组包括左前激励器TPMI1和左后激励器TPMI4;
(2)均具有右属性的激励器组,该组包括右前激励器TPMI2和左后激励器TPMI3;
(3)均具有前属性的激励器组,该组包括左前激励器TPMI1和右前激励器TPMI2;
(4)均具有后属性的激励器组,该组包括右后激励器TPMI3和左后激励器TPMI4。
ECU可以通过多路选择开关控制各个激励器组同时发送低频信号,也即,ECU可以控制具有左属性的激励器组发送低频信号、控制具有右属性的激励器组发送低频信号、控制具有前属性的激励器组发送低频信号及控制具有后属性的激励器组发送低频信号四种方式。
并且,将四种方式中的任意三种方式组合完成的低频信号的发送的时间定义为一个发送周期。其中,低频信号可以包括第一低频信号或第二低频信号。所述第一低频信号LF1用于计数,所述第二低频信号LF2用于触发胎压传感器切换为激活模式。
可以理解的是,由于在实际情况下,备胎15受到后备箱等金属的屏蔽作用,是接收不到低频信号的,因此,在备胎15附近设置激励器是无意义的,因而对于备胎的定位无需借助激励器的激励,也即对于该应用环境中包括四个激励器即可。
其中,所述五个胎压传感器中的四个胎压传感器分别内置于前后左右轮胎中,另一个胎压传感器内置于备胎15中。
具体的,每个轮胎中内置有一个胎压传感器。并且,各个胎压传感器分别与ECU通信连接,以便与ECU进行通信。胎压传感器可以与ECU通过无线通信技术实现无线通信连接。内置于前后左右轮胎中的各个胎压传感器还与激励器通信连接,以便与激励器进行通信。
例如,接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数,也即,四个胎压传感器接收来自所述激励器发送的低频信号,并根据所述低频信号向ECU反馈高频信号。其中,胎压传感器对于LF1,只做信号接收帧数的计数,不反馈高频信号;对于LF2,胎压传感器反馈高频信号,以便ECU进行前后左右轮胎的定位。而且,五个胎压传感器中的剩余的一个胎压传感器内置于备胎15,以便ECU根据该胎压传感器发送的高频信号,确定备胎15所对应的轮胎。
其中,上述ECU可以为任何合适类型的,具有一定逻辑运算能力,提供能够实现轮胎的定位的功能的电子控制单元。可以由汽车中的某一个ECU实现,或者由独立于汽车系统的ECU实现,在此不予限定。所述ECU通过多路选择开关分别与四个激励器,以控制所述激励器发送低频信号。ECU与五个胎压传感器通信连接,例如,通过ECU的无线通信模块与所述五个胎压传感器进行通信连接。ECU与所述仪表胎压显示器连接,以将轮胎检测信息,如各个轮胎所对应的压力、温度等数据发送至仪表胎压显示器。
其中,上述仪表胎压显示器可以是任意具有显示功能的显示器。所述仪表胎压显示器与ECU之间通过总线等方式进行连接,以便直观的为用户展示ECU得到的各个轮胎所对应的胎压值,如各个轮胎的压力、温度等数据。
可以理解的是,上述对于汽车1各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
需要说明的是,本发明实施例提供的轮胎的定位方法还可以进一步的拓展到其他合适的应用环境中,而不限于图1中所示的应用环境,并不应理解为对本发明的实施例的限制。虽然图1中仅显示了五个轮胎、四个激励器、五个胎压传感器、一个显示器以及一个ECU,但本领域技术人员可以理解的是,在实际应用过程中,该应用环境还可以包括更多或者更少的轮胎、激励器、胎 压传感器、显示器以及ECU。
实施例1:
图2为本发明其中一实施例提供的一种轮胎的定位方法的流程示意图。本发明实施例的轮胎的定位方法可由上述汽车1中的ECU执行,该方法还可由其它交通工具的ECU执行,在此不予限定。
请参阅图2,所述轮胎的定位方法包括:
201:在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数。
在本发明实施例中,一个激励器组包括至少两个激励器,并且至少两个激励器具有相同的位置属性。其中,所述位置属性是指用于表征激励器安装的相对位置。
如图1所示,安装靠近于左前轮胎11的左前激励器TPMI1的位置属性包括:左属性与前属性两个;
安装靠近于右前轮胎12的右前激励器TPMI2的位置属性包括:右属性与前属性两个;
安装靠近于右后轮胎13的右后激励器TPMI3的位置属性包括:右属性与后属性两个;
安装靠近于左后轮胎14的左前激励器TPMI4的位置属性包括:左属性与后属性两个。
从而,左前激励器TPMI1和左后激励器TPMI4组成一个均具有左属性的激励器组;
右前激励器TPMI2和右后激励器TPMI3组成一个均具有右属性的激励器组;
左前激励器TPMI1和右前激励器TPMI2组成一个均具有前属性的激励器组;
右后激励器TPMI3和左后激励器TPMI4组成一个均具有后属性的激励器组。
其中,各个激励器组发送的低频信号可以为第一低频信号或第二低频信号。
所述第一低频信号主要用于计数,胎压传感器接收到所述第一低频信号后并不会反馈高频信号。
其中,所述第一低频信号的序列格式可以为:包含两个字节数据:A、C;并且,每个第一低频信号发送的帧数为N1,N1为在Nx至Ny之间随机设定的数。例如,下限Nx设置为10次,上限Ny设置为80次时,N1可以为10至80之间的随机数,如N1=20等。
所述第二低频信号主要用于触发胎压传感器切换为激活模式,以保证对应的胎压传感器可以反馈高频信号。所述第二低频信号的序列格式可以为:包含 三个字节数据:A,B,X;每个第二低频信号发送的帧数为N2,N2为固定值,该固定值只要能保证可激活对应的胎压传感器,如设置为N2=50等。其中,A,C都是固定的数,例如,预设于ECU中的数,B,X为可变的随机数,例如,在ECU中随机生成的数。
ECU在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,包括:
在所述发送周期内控制第一激励器组发送第一低频信号;控制L-1个激励器组发送第二低频信号。
其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式。其中,N为大于1的整数。
在本发明实施例中,所述L-1个激励器组中包括的激励器分别与内置于前后左右轮胎中的胎压传感器对应,以保证L-1个激励器组中包括的各个激励器能触发对应的胎压传感器切换为激活模式的,也即内置于前后左右轮胎中的胎压传感器的数量与L-1个激励器组中包括的激励器的数量相等,均为N。
如图1所示汽车,胎压传感器为4个,也即L-1个激励器组中包括的激励器的数量为4。并且对于图1所示的汽车,一个激励器组包括两个激励器,因此,对于图1所示的汽车,L可以为3。
一个发送周期是指L个激励器组中的各个激励器组均完成低频信号的发送所需的时间。当L=3时,对于图1中的四个激励器可以组成四个激励器组,将四个激励器组中的任意三个激励器组组合完成的低频信号的发送的时间定义为一个发送周期。因此,ECU在发送周期内依次控制3个激励器组中的一个激励器组发送低频信号,例如,依次控制具有左属性的激励器组发送低频信号、控制具有前属性的激励器组发送低频信号及控制具有后属性的激励器组发送低频信号。
在各发送周期内,各第一激励器组的位置属性不同;所述第一激励器组的位置属性是由所述第一激励器组中包括的各激励器具备的相同的位置属性确定的。
如图3所示,在一个发送周期中,具有左属性的激励器组为第一激励器组,则在该周期中,ECU控制具有左属性的激励器组中的TPMI1和TPMI4同步发送第一低频信号LF11(A1,C1),该第一低频信号LF11发送的帧数为N11;
然后ECU控制具有前属性的激励器组中的TPMI1和TPMI2同步发送第二低频信号LF21(A1,B1,X1);
ECU再控制具有后属性的激励器组中的TPMI3和TPMI4同步发送第二低频信号LF21(A1,B1,X1)。
可选地,各激励器组发送低频信号之间可存在预设的时间间隔,例如,ECU控制具有左属性的激励器组发送完LF11,经过预设时间t1后,再控制具有前属性的激励器组发送第二低频信号LF21,经过预设时间t2后,再控制具有后属性的激励器组发送第二低频信号LF21,以防止数据之间的叠包。
类似的,在另一个发送周期中,具有右属性的激励器组为第一激励器组,则在该周期中,ECU控制具有右属性的激励器组中的TPMI2和TPMI3同步发送第一低频信号LF12(A2,C2),该第一低频信号LF12发送的帧数为N12;
然后ECU控制具有前属性的激励器组中的TPMI1和TPMI2同步发送第二低频信号LF22(A2,B2,X2);
ECU再控制具有后属性的激励器组中的TPMI3和TPMI4同步发送第二低频信号LF22(A2,B2,X2)。
或者,具有前属性的激励器组为第一激励器组,则在该周期中,ECU控制具有前属性的激励器组中的TPMI1和TPMI2同步发送第一低频信号LF13(A3,C3),该第一低频信号LF13发送的帧数为N13;
然后ECU控制具有左属性的激励器组中的TPMI1和TPMI4同步发送第二低频信号LF23(A3,B3,X3);
ECU再控制具有右属性的激励器组中的TPMI2和TPMI3同步发送第二低频信号LF23(A3,B3,X3)。
在一些实施例中,为了减少不必要的电量消耗,可以设定触发发送低频信号的条件。
具体的,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,包括:当满足触发条件时,在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号。
其中,所述触发条件包括:检测到的交通工具(如汽车)的行驶速度大于或等于预设速度阈值,其中,预设速度阈值可以根据用户的驾驶习惯设定;或者,检测到的交通工具停止行驶的时间大于或等于预设时间阈值,其中,预设时间阈值可以根据用户的驾驶习惯设定,通常每天检测一次即可;或者,检测到用户输入的触发信号。对于胎压传感器或者轮胎换位时,检测用户输入的触发信号实时性较强。
202:接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数。
在本发明实施例中,由于胎压传感器对于第一低频信号LF1,只做信号接收帧数的计数,不反馈高频信号;对于第二低频信号LF2会触发胎压传感器切换为激活模式,使得胎压传感器按照特定格式回复数据,以生成高频信号,从而将高频信号发送给ECU,以便进行定位,因此,所述ECU接收N个胎压传感器根据所述低频信号反馈的高频信号具体包括:接收所述N个胎压传感器在所述激活状态下反馈的N个高频信号。对于包含有左前轮胎、右前轮胎、左后轮胎、右后轮胎四个轮胎的汽车来说,各轮胎中内置有一个胎压传感器,因此,对于前后左右轮胎的定位,胎压传感器共有四个,也即:N=4。
为了进行前后左右轮胎的定位,所述高频信号中包括以下信息:传感器识别码:ID;传感器状态字节:S;压力字节:P;温度字节:T;以及校验码CC。
其中,部分字节的主要功能说明如下:
传感器状态字节S,用于表征胎压传感器是否被激活。在常规模式下的状态字为D,在胎压传感器低频激活时的状态字为E;其中,D是固定的数,E满足以下公式:E=E0+(B&0x0F)。其中,E0为某一固定数,B是第二低频信号LF2中的第二个字节;0x0F是十六进制数据,转换为十进制是15,二进制是1111;&用作逻辑与的运算符。
压力字节P,在常规模式时,表示胎压传感器实际检测到的压力值;在胎压传感器低频激活状态时,P=X;即低频激活时,压力字节等于胎压传感器接收到的第二低频信号LF2中的第三个字节的数据。
温度字节T:常规模式时,表示胎压传感器实际检测到的温度信息。在胎压传感器收到第一低频信号LF1之后,记录当前收到的帧数Nc,此时温度字节表示累计收到LF1的帧数Ns,且Ns满足:T=Ns=Nc+N0,N0为上一次胎压传感器收到的LF1的累计帧数;如果在两次LF2之间,没有收到LF1,则该温度字节不进行累加;当收到LF2激活后,即胎压传感器发出该温度字节的值。例如,胎压传感器之前累计收到LF1的帧数为12次,本次收到LF1的帧数为10次,则在下一次LF2激励时,温度字节T=12+10=22。
203:根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数。
所述根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,包括:确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
进一步的,所述确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:判断高频信号中与所述第一低频信号相关的字节是否发生变化;若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。其中,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
下面以对图1中的汽车进行轮胎的定位(左轮定位、右轮定位、前轮定位、后轮定位)来对确定所述N个高频信号中与所述第一激励器组对应的M个高频信号进行具体说明。其中,汽车包括ECU、四个激励器、左前轮胎、右前轮胎、左后轮胎、右后轮胎以及内置于各轮胎中的胎压传感器(也即共有四个胎压传感器)。此时,L为3,N为4,M为2。
左轮定位:
在以具有左属性的激励器组为第一激励器组的发送周期内,ECU通过多路选择开关选通均具有左属性的激励器组(包括TPMI1和TPMI4),控制TPMI1和TPMI4同步发送第一低频信号LF11(A1,C1),与TPMI1和TPMI4对应的胎压传感器则会分别记录当前接收到LF11的帧数,如分别为N8,N9;然后间隔预设时间t1后,ECU通过多路选择开关选通具有前属性的激励器组(包括TPMI1和TPMI2),控制TPMI1和TPMI2同步发送LF21(A1,B1,X1);再过预设时间 t2后,ECU通过多路选择开关选通具有后属性的激励器组(包括TPMI3和TPMI4),控制TPMI3和TPMI4同步发送LF21(A1,B1,X1);
则ECU会接收到4个胎压传感器在所述激活状态下根据所述低频信号反馈的四种高频信号:(1)传感器识别码:ID1,传感器状态字节:E1,压力字节:P1,温度字节:T1,以及校验码CC 1;其中E1=E0+(B1&0x0F);P1=X1,T1=N3+N8,N3为该胎压传感器接收到第一低频信号LF1的初始累计次数,N8为接收到第一低频信号LF11的帧数;(2)传感器识别码:ID4,传感器状态字节:E4,压力字节:P4,温度字节:T4,以及校验码CC 4;其中E4=E0+(B1&0x0F);P4=X1,T4=N6+N9,N6为该胎压传感器接收到第一低频信号LF1的初始累计次数,N9为接收到第一低频信号LF11的帧数;(3)传感器识别码:ID2,传感器状态字节:E2,压力字节:P2,温度字节:T2,以及校验码CC2;其中E2=E0+(B1&0x0F);P2=X1,T2=T12,T12为该胎压传感器接收到第一低频信号LF1的初始累计次数;(4)传感器识别码:ID3,传感器状态字节:E3,压力字节:P3,温度字节:T3,以及校验码CC3;其中E3=E0+(B1&0x0F);P3=X1,T3=T13,T12为该胎压传感器接收到第一低频信号LF1的初始累计次数;
从而,通过高频信号中的状态字字节E1,E2,E3,E4,以及压力字节P1,P2,P3,P4,可以得知,内置于左前轮胎、右前轮胎、左后轮胎、右后轮胎中的四个胎压传感器均被第二低频信号LF21激活过,且通过高频信号中与所述第一低频信号LF11相关的字节也即温度字节T1和T4,可以得知,其均存在变化,因此表明该温度字节所对应的胎压传感器受到了来自第一低频信号LF11的低频激励,而T2和T3温度字节,均无变化,表明该温度字节所对应的胎压传感器没有受到来自第一低频信号LF11的低频激励,至此,左轮(左前轮胎,左后轮胎)定位完成,也即确定了该发送周期内的第一激励器组与左前轮胎、左后轮胎的对应关系。
右轮定位、前轮定位及后轮定位:
可以理解的是,右轮定位(选通TPMI2和TPMI3,控制同步发送LF12;t1后,再选通TPMI1和TPMI2,控制同步发送LF22,t2后,再选通TPMI3和TPMI4,控制同步发送LF22)、前轮定位(选通TPMI1和TPMI2,控制同步发送LF12;t1后,再选通TPMI1和TPMI4,控制同步发送LF22,t2后,再选通TPMI2和TPMI3,控制同步发送LF22)及后轮定位(选通TPMI3和TPMI4,控制同步发送LF12;t1后,再选通TPMI1和TPMI4,控制同步发送LF22,t2后,再选通TPMI2和TPMI3,控制同步发送LF22)均与左轮定位的原理类似,因此,在此处不作赘述。
因此,通过左轮定位可以确定具有左属性的第一激励器组与左前轮胎、左后轮胎相对应;通过右轮定位可以确定具有右属性的第一激励器组与右前轮胎、右后轮胎相对应;通过前轮定位可以确定具有前属性的第一激励器组与左前轮胎、右前轮胎相对应;通过后轮定位可以确定具有后属性的第一激励器组 与左后轮胎、右后轮胎相对应。
204:在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
在进行前后左右轮胎的轮胎定位时,只要确定了前后左右轮胎中的三个轮胎,剩余的一个轮胎显然也是确定的,因此,为了提高定位效率,对于图1中的汽车,发送周期的数量达到3时,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,便确定所述N个胎压传感器各自对应的轮胎,从而完成轮胎的定位,也即确定接收到的胎压传感器的信息为哪个轮胎的信息。例如,首先,以具有左属性的激励器组为第一激励器组的发送周期,实现左轮定位;然后,以具有右属性的激励器组为第一激励器组的发送周期,实现右轮定位;最后,以具有前属性的激励器组为第一激励器组的发送周期,实现前轮定位,从而完成前后左右轮胎的定位。
在一些实施例中,为了进一步提高定位效率,当发送周期的数量达到2时,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,也可确定所述N个胎压传感器各自对应的轮胎,从而完成轮胎的定位。首先,以具有左属性的激励器组为第一激励器组的发送周期,实现左轮定位;然后,以具有前属性的激励器组为第一激励器组的发送周期,实现前轮定位。其中,在2个发送周期中,温度字节均发生变化的则为左前轮胎;在第一个发送周期中温度字节发生变化,而在第二个发送周期中温度字节未发生变化的则为左后轮胎;在第一个发送周期中温度字节未发生变化,而在第二个发送周期中温度字节发生变化的则为右前轮胎;在2个发送周期中,温度字节均未发生变化的则为右后轮胎;从而完成前后左右轮胎的定位。
在本发明实施例中,通过高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,进而根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,并且由于L个激励器组中的各个激励器组中的激励器与轮胎的对应关系又是预先确定的,从而确定所述N个胎压传感器各自对应的轮胎,从而完成轮胎的定位,以便提高定位效率及定位的准确性,且完成轮胎定位的过程中,无需借助额外通信设备或人工输入轮胎对应的胎压传感器的身份识别码。
实施例2:
图4为本发明另一实施例提供的一种轮胎的定位方法的流程示意图。本发明实施例的轮胎的定位方法可由上述汽车1中的ECU执行,该方法还可由其它交通工具的ECU执行,在此不予限定。
请参阅图4,所述轮胎的定位方法包括:
401:在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数。
402:接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数。
本发明实施例中的步骤401与上述实施例中的步骤201相似,步骤402与上述实施例中的步骤202相似,因此,在此处便不再赘述。
403:根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数;
具体的,所述根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,包括:确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
进一步,所述确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:判断高频信号中与所述第一低频信号相关的字节是否发生变化;若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。
此外,确定所述N个高频信号中与所述第一激励器组对应的M个高频信号的具体实施方式与上述实施例中的步骤203相似,此处便不再赘述。
404:在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
405:判断所述高频信号是否有效;
在进行轮胎的定位的过程中,为了保证高频信号的有效性,需对所述高频信号是否有效进行判断。其中,所述判断所述高频信号是否有效,具体包括:根据所述高频信号,确定发送所述高频信号的胎压传感器最新一次对所述第一低频信号的接收帧数;判断所述接收帧数与对所述第一低频信号的发送帧数的比例是否大于或等于预设比例阈值;若所述接收帧数与对所述第一低频信号的发送帧数的比例大于或等于预设比例阈值,确定所述高频信号有效。所述比例阈值可以基于通信的传输损耗设定或用户根据经验进行自定义设定,例如,比例阈值设置为0.5,第一低频信号的发送帧数为N1,胎压传感器实际对该第一低频信号的接收帧数为Nc,当Nc≥N1*0.5时,所述高频信号有效,也即低频信号的接收成功率大于或等于50%,所述高频信号有效。
在本发明实施例中,基于步骤405,所述步骤403中的判断高频信号中与所述第一低频信号相关的字节是否发生变化,具有包括:若所述高频信号有效,判断高频信号中与所述第一低频信号相关的字节是否发生变化。也即只有在所述高频信号有效的前提下,才能去基于高频信号中与所述第一低频信号相关的字节是否发生变化确定所述高频信号与所述第一激励器组对应,以便进一步保证轮胎的定位的准确性。
406:若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,其中,J为正整数。
所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号之后,若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。该预设时间段tp大于发送周期Tp,例如,Tp≤2/3tp,以保证即使有胎压传感器根据低频信号反馈高频信号的定位交互,也可以让内置于备胎中的胎压传感器发送的高频信号可被ECU收到。在预设时间段tp内,胎压传感器发送若干个高频信号,且各个高频信号发送的时间间隔随机,只要保证ECU接收到J个高频信号,即可确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
407:确定所述J个高频信号是否是由所述胎压传感器在常规模式下发送的。
由于内置于备胎中的胎压传感器受到后备箱等金属的屏蔽作用,接收不到低频信号,再加上本发明实施例中的胎压传感器在收到第二低频信号LF2后,会切换为激活模式,预设时间段tp内不发送常规模式的数据;因此,ECU需判断所述J个高频信号是否是由所述胎压传感器在常规模式下发送的,以进行备胎的定位。也即,基于步骤407,上述步骤406中的确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,包括:若所述J个高频信号是由所述胎压传感器在常规模式下发送的,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
可以理解的是,在一些其它实施例中,所述步骤405-407在不同的实施例中,可以不是必选步骤,另外,本领域普通技术人员,根据本发明实施例的描述可以理解,在不同实施例中,在不矛盾的情况下,所述步骤401-407可以有不同的执行顺序。
还需要说明的是,本发明实施例中所述步骤401-407中未详尽描述的技术细节,可参考上述实施例的具体描述。
在本发明实施例中,通过高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,进而根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,并且由于L个激励器组中的各个激励器组中的激励器与轮胎的对应关系又是预先确定的,从而确定所述N个胎压传感器各自对应的轮胎,从而完成轮胎的定位,以便提高定位效率及定位的准确性,且完成轮胎定位的过程中,无需借助额外通信设备或人工输入轮胎对应的胎压传感器的身份识别码。
实施例3:
图5为本发明另一实施例提供的一种轮胎的定位方法的流程示意图。本发明实施例的轮胎的定位方法可由上述汽车1中的胎压传感器执行,该方法还可由其它交通工具的胎压传感器执行,在此不予限定。
请参阅图5,所述轮胎的定位方法包括:
501:接收激励器发送的低频信号;
内置于前后左右轮胎四个轮胎中的胎压传感器均可接收到激励器发送的低频信号,具体的,胎压传感器接收由胎压电子控制单元(ECU)在发送周期内依次控制L个激励器组中的一个激励器组发送的第一低频信号LF1或第二激励信号LF2。此外,本发明实施例中的步骤501中的低频信号与上述实施例中的步骤201中的低频信号相似,因此,在此处便不再赘述。
502:根据所述低频信号向胎压电子控制单元反馈高频信号,所述高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎。
胎压传感器对于LF1,只做信号接收帧数的计数,不反馈高频信号;对于LF2,胎压传感器反馈高频信号,以便进行前后左右轮胎的定位。内置于前后左右轮胎四个轮胎中的胎压传感器根据所述低频信号反馈的高频信号至ECU,以便ECU可根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数,进而以便ECU在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定各个胎压传感器各自对应的轮胎,也即完成轮胎的定位。
此外,本发明实施例中的步骤502中的高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎的具体实施方式与上述实施例中的通过步骤202-204确定胎压传感器对应的轮胎相似,因此,在此处便不再赘述。
503:预设延时时间。
在本发明实施例中,所述延时时间是指胎压传感器接收到第二低频信号LF2之后到发送高频信号的时间。所述延时时间可以基于预设的发送机制进行设置,该预设的发送机制可以为基于胎压传感器接收到第一低频信号的帧数确定的。例如,该预设的发送机制为:延时时间Td=Tx+Rx;其中,Td为胎压传感器从接收完成LF2之后,到发送第一帧高频信号之间的延时,Tx为对应的胎压传感器累计接收到第一低频信号LF1的帧数,Rx为随机数,可为系统中随机生成的数。例如,内置于左前轮胎的胎压传感器累计接收到第一低频信号LF1的帧数为20,内置于右前轮胎的胎压传感器累计接收到第一低频信号LF1的帧数为30,则内置于左前轮胎的胎压传感器所对应的延时时间为20+Rx;内置于右前轮胎的胎压传感器所对应的延时时间为30+Rx。
504:根据所述延时时间,进行反馈所述高频信号的延时。
由于一个激励器组是同步发送低频信号,若胎压传感器在接收到低频信号后,不进行延时反馈所述高频信号,可能会导致位于同一侧的胎压传感器发送的高频信号之间出现叠包,也即ECU接收到的来自同一侧的两个胎压传感器发送的高频信号之间出现叠包,因此需要根据所述延时时间,进行反馈所述高频信号的延时,以防止叠包现象。例如,当具有前属性的激励器组发送第二低频信号后,内置于左前轮胎的胎压传感器经过时间20+Rx再反馈高频信号;内置于右前轮胎的胎压传感器经过时间30+Rx再反馈高频信号,以防止叠包。
需要说明的是,本发明实施例中所述步骤501-504中未详尽描述的技术细节,可参考上述实施例的具体描述。
可以理解的是,在一些其它实施例中,所述步骤503-504在不同的实施例中,可以不是必选步骤,另外,本领域普通技术人员,根据本发明实施例的描述可以理解,在不同实施例中,在不矛盾的情况下,所述步骤501-504可以有不同的执行顺序。
在本发明实施例中,胎压传感器根据低频信号向胎压电子控制单元反馈高频信号,以便胎压电子控制单元可根据该高频信号确定胎压传感器对应的轮胎,从而完成轮胎的定位。该轮胎的定位方法可以提高定位效率及定位的准确性,且完成轮胎定位的过程中,无需借助额外通信设备或人工输入轮胎对应的胎压传感器的身份识别码。
实施例4:
图6为本发明其中一实施例提供的一种轮胎的定位装置的示意图。本发明实施例的轮胎的定位装置可配置于上述汽车1中的ECU中,该装置还可配置于其它交通工具的ECU中,在此不予限定。
参照图6,所述轮胎的定位装置60包括:
低频信号发送模块601,用于在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数。
一个激励器组包括至少两个激励器,并且至少两个激励器具有相同的位置属性。其中,所述位置属性是指用于表征激励器安装的相对位置。所述低频信号包括第一低频信号或第二低频信号。所述低频信号发送模块601包括:第一低频信号发送模块6011,用于在所述发送周期内控制第一激励器组发送第一低频信号;第二低频信号发送模块6012,用于控制L-1个激励器组发送第二低频信号。其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式,以便胎压传感器根据所述低频信号反馈高频信号。而且在各发送周期内,各第一激励器组的位置属性不同。
在一些实施例中,为了减少不必要的电量消耗,可以设定触发发送低频信号的条件。具体的,所述低频信号发送模块601具体用于:当满足触发条件时,在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号。其中,所述触发条件包括:检测到的交通工具(如汽车)的行驶速度大于或等于预设速度阈值,其中,预设速度阈值可以根据用户的驾驶习惯设定;或者,检测到的交通工具停止行驶的时间大于或等于预设时间阈值,其中,预设时间阈值可以根据用户的驾驶习惯设定,通常每天检测一次即可;或者,检测到用户输入的触发信号。对于胎压传感器或者轮胎换位时,检测用户输入的触发信号实时性较强。
高频信号接收模块602,用于接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数。
由于胎压传感器对于第一低频信号LF1,只做信号接收帧数的计数,不反馈高频信号;对于第二低频信号LF2会触发胎压传感器切换为激活模式,使得 胎压传感器按照特定格式回复数据,以生成高频信号,从而将高频信号发送给高频信号接收模块602,因此,所述高频信号接收模块602具体用于:接收所述N个胎压传感器在所述激活状态下反馈的N个高频信号。
第一确定模块603,用于根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数。
所述第一确定模块603具体用于:确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
进一步的,所述第一确定模块603确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:判断高频信号中与所述第一低频信号相关的字节是否发生变化;若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。其中,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
第二确定模块604,用于在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
在进行前后左右轮胎的轮胎定位时,只要确定了前后左右轮胎中的三个轮胎,剩余的一个轮胎显然也是确定的,因此,为了提高定位效率,对于图1中的汽车,当第二确定模块604检测到发送周期的数量达到3时,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,第二确定模块604便可确定所述N个胎压传感器各自对应的轮胎,从而完成轮胎的定位,也即确定接收到的胎压传感器的信息为哪个轮胎的信息。例如,首先,以具有左属性的激励器组为第一激励器组的发送周期,实现左轮定位;然后,以具有右属性的激励器组为第一激励器组的发送周期,实现右轮定位;最后,以具有前属性的激励器组为第一激励器组的发送周期,实现前轮定位,从而完成前后左右轮胎的定位。
在一些实施例中,为了进一步提高定位效率,当第二确定模块604检测到发送周期的数量达到2时,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,第二确定模块604也可确定所述N个胎压传感器各自对应的轮胎,从而完成轮胎的定位。首先,以具有左属性的激励器组为第一激励器组的发送周期,实现左轮定位;然后,以具有前属性的激励器组为第一激励器组的发送周期,实现前轮定位。其中,在2个发送周期中,温度字节均发生变化的则为左前轮胎;在第一个发送周期中温度字节发生变化,而在第二个发送周期中温度字节未发生变化的则为左后轮胎;在第一个发送周期中温度字节未发生变化,而在第二个发送周期中温度字节发生变化的则为右前轮胎;在2个发送周期中,温度字节均未发生变化的则为右后轮胎;从而完成前后左右轮胎的定位。
需要说明的是,在本发明实施例中,所述轮胎的定位装置60可执行本发 明实施例1提供的轮胎的定位方法,具备执行方法相应的功能模块和有益效果。未在轮胎的定位装置60的实施例中详尽描述的技术细节,可参见本发明实施例1提供的轮胎的定位方法。
实施例5:
图7为本发明另一实施例提供的一种轮胎的定位装置的示意图。本发明实施例的轮胎的定位装置可配置于上述汽车1中的ECU中,该装置还可配置于其它交通工具的ECU中,在此不予限定。
参照图7,所述轮胎的定位装置70包括:
低频信号发送模块701,用于在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数。
所述低频信号可以包括第一低频信号或第二低频信号。所述低频信号发送模块701包括:第一低频信号发送模块7011,用于在所述发送周期内控制第一激励器组发送第一低频信号;第二低频信号发送模块7012,用于控制L-1个激励器组发送第二低频信号。其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式,以便胎压传感器根据所述低频信号反馈高频信号。而且在各发送周期内,各第一激励器组的位置属性不同。
高频信号接收模块702,用于接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数。
第一确定模块703,用于根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数。
所述第一确定模块703具体用于:确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
进一步的,所述第一确定模块703确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:判断高频信号中与所述第一低频信号相关的字节是否发生变化;若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。其中,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
第二确定模块704,用于在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
判断模块705,用于判断所述高频信号是否有效。
在进行轮胎的定位的过程中,为了保证高频信号的有效性,需通过判断模块705对所述高频信号是否有效进行判断。其中,所述判断模块705具体用于:根据所述高频信号,确定发送所述高频信号的胎压传感器最新一次对所述第一低频信号的接收帧数;判断所述接收帧数与对所述第一低频信号的发送帧数的 比例是否大于或等于预设比例阈值;若所述接收帧数与对所述第一低频信号的发送帧数的比例大于或等于预设比例阈值,确定所述高频信号有效。所述比例阈值可以基于通信的传输损耗设定或用户根据经验进行自定义设定。
在本发明实施例中,基于判断模块705,所述第一确定模块703判断高频信号中与所述第一低频信号相关的字节是否发生变化,包括:若所述判断模块判断到所述高频信号有效,判断高频信号中与所述第一低频信号相关的字节是否发生变化。也即只有在判断模块705确定所述高频信号有效的前提下,所述第一确定模块703才基于高频信号中与所述第一低频信号相关的字节是否发生变化确定所述高频信号与所述第一激励器组对应,以便进一步保证轮胎的定位的准确性。
第三确认模块706,用于若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,其中,J为正整数。
所述低频信号发送模块701在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号之后,若第三确认模块706在预设时间段内接收到J个高频信号,则确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。该预设时间段tp大于发送周期Tp,例如,Tp≤2/3tp,以保证即使有胎压传感器根据低频信号反馈高频信号的定位交互,也可以让内置于备胎中的胎压传感器发送的高频信号可被第三确认模块706收到。在预设时间段tp内,胎压传感器发送若干个高频信号,且各个高频信号发送的时间间隔随机,只要保证第三确认模块706接收到J个高频信号,即可确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
第四确认模块707,用于确定所述J个高频信号是否是由所述胎压传感器在常规模式下发送的。
由于内置于备胎中的胎压传感器受到后备箱等金属的屏蔽作用,接收不到低频信号,再加上本发明实施例中的胎压传感器在收到第二低频信号LF2后,会切换为激活模式,预设时间段tp内不发送常规模式的数据;因此,需通过第四确认模块707判断所述J个高频信号是否是由所述胎压传感器在常规模式下发送的,以进行备胎的定位。也即,基于第四确认模块707,上述第三确认模块706确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,包括:若第四确认模块确定到所述J个高频信号是由所述胎压传感器在常规模式下发送的,第三确认模块706确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
需要说明的是,在本发明实施例中,所述轮胎的定位装置70可执行本发明实施例2提供的轮胎的定位方法,具备执行方法相应的功能模块和有益效果。未在轮胎的定位装置70的实施例中详尽描述的技术细节,可参见本发明实施例2提供的轮胎的定位方法。
实施例6:
图8为本发明另一实施例提供的一种轮胎的定位装置的示意图。本发明实施例的轮胎的定位装置可配置于上述汽车1中的胎压传感器中,该装置还可配置于其它交通工具的胎压传感器中,在此不予限定。
参照图8,所述轮胎的定位装置80包括:
低频信号接收模块801,用于接收激励器发送的低频信号。
内置于前后左右轮胎四个轮胎中的胎压传感器的低频信号接收模块801均可接收到激励器发送的低频信号,具体的,低频信号接收模块801接收由胎压电子控制单元(ECU)在发送周期内依次控制L个激励器组中的一个激励器组发送的第一低频信号LF1或第二激励信号LF2。
反馈模块802,用于根据所述低频信号向胎压电子控制单元反馈高频信号,所述高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎。
反馈模块802对于LF1,只做信号接收帧数的计数,不反馈高频信号;对于LF2,反馈模块802反馈高频信号,以便进行前后左右轮胎的定位。内置于前后左右轮胎四个轮胎中的胎压传感器的反馈模块802根据所述低频信号反馈的高频信号至ECU,以便ECU可根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数,进而以便ECU在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定各个胎压传感器各自对应的轮胎,也即完成轮胎的定位。
预设模块803,用于预设延时时间。
在本发明实施例中,所述延时时间是指低频信号接收模块801接收到第二低频信号LF2之后到反馈模块802发送高频信号的时间。所述预设模块803可以基于预设的发送机制确定延时时间,该预设的发送机制可以为基于胎压传感器接收到第一低频信号的帧数确定的。例如,该预设的发送机制为:延时时间Td=Tx+Rx;其中,Td为低频信号接收模块801从接收完成LF2之后,到反馈模块802发送第一帧高频信号之间的延时,Tx为对应的低频信号接收模块801累计接收到第一低频信号LF1的帧数,Rx为随机数,可为系统中随机生成的数。例如,内置于左前轮胎的胎压传感器的低频信号接收模块801累计接收到第一低频信号LF1的帧数为20,内置于右前轮胎的胎压传感器的低频信号接收模块801累计接收到第一低频信号LF1的帧数为30,则内置于左前轮胎的胎压传感器所对应的延时时间为20+Rx;内置于右前轮胎的胎压传感器所对应的延时时间为30+Rx。
延时模块804,用于根据所述延时时间,进行反馈所述高频信号的延时。
由于一个激励器组是同步发送低频信号,若低频信号接收模块801在接收到低频信号后,不通过延时模块804进行延时反馈所述高频信号,可能会导致位于同一侧的胎压传感器的反馈模块802发送的高频信号之间出现叠包,也即ECU接收到的来自同一侧的两个胎压传感器的反馈模块802发送的高频信号之间出现叠包,因此需要通过延时模块804根据所述延时时间,进行反馈所述高 频信号的延时,以防止叠包现象。例如,当具有前属性的激励器组发送第二低频信号后,通过延时模块804使内置于左前轮胎的胎压传感器的反馈模块802经过时间20+Rx再反馈高频信号;通过延时模块804使内置于右前轮胎的胎压传感器的反馈模块802经过时间30+Rx再反馈高频信号,以防止叠包。
需要说明的是,在本发明实施例中,所述轮胎的定位装置80可执行本发明实施例3提供的轮胎的定位方法,具备执行方法相应的功能模块和有益效果。未在轮胎的定位装置80的实施例中详尽描述的技术细节,可参见本发明实施例3提供的轮胎的定位方法。
实施例7:
图9为本发明实施例提供的电子控制单元硬件结构示意图,如图9所示,所述电子控制单元90包括:
一个或多个处理器901以及存储器902,图9中以一个处理器901为例。
处理器901和存储器902可以通过总线或者其他方式连接,图9中以通过总线连接为例。
存储器902作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例2或实施例3提供的轮胎的定位方法对应的程序指令/模块(例如,附图7所示的低频信号发送模块701、高频信号接收模块702、第一确定模块703、第二确定模块704、判断模块705、第三确认模块706以及第四确认模块707)。处理器901通过运行存储在存储器902中的非易失性软件程序、指令以及模块,从而执行电子控制单元的各种功能应用以及数据处理,即实现所述方法实施例1或实施例2提供的轮胎的定位方法。
存储器902可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子控制单元使用所创建的数据等。此外,存储器902可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器902可选包括相对于处理器901远程设置的存储器,这些远程存储器可以通过网络连接至电子控制单元。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块、指令存储在所述存储器902中,当被所述一个或者多个处理器901执行时,以实现本发明实施例1或实施例2提供的轮胎的定位方法,例如,执行以上描述的图4中的方法步骤401至步骤407,或实现图7中的模块701-707的功能。
示例性地,该电子控制单元还可以包括通信接口,该通信接口用以实现与其他设备,如胎压传感器等,进行通信。电子控制单元包括的其他装置在此不予限定。
所述电子控制单元可执行本发明实施例1或实施例2提供的轮胎的定位方法,具备执行方法相应的功能模块和有益效果。未电子控制单元实施例中详尽描述的技术细节,可参见本发明实施例1或实施例2提供的轮胎的定位方法。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述电子控制单元执行时,使所述电子控制单元实现本发明实施例1或实施例2提供的轮胎的定位方法。例如,执行以上描述的图4中的方法步骤401至步骤407,或实现图7中的模块701-707的功能。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使电子控制单元实现本发明实施例1或实施例2提供的轮胎的定位方法。例如,执行以上描述的图4中的方法步骤401至步骤407,或实现图7中的模块701-707的功能。
实施例8:
图10为本发明实施例提供的胎压传感器硬件结构示意图,如图10所示,所述胎压传感器100包括:
一个或多个处理器1001以及存储器1002,图10中以一个处理器1001为例。
处理器1001和存储器1002可以通过总线或者其他方式连接,图10中以通过总线连接为例。
存储器1002作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例3提供的轮胎的定位方法对应的程序指令/模块(例如,附图8所示的低频信号接收模块801、反馈模块802、预设模块803以及延时模块804)。处理器1001通过运行存储在存储器1002中的非易失性软件程序、指令以及模块,从而执行胎压传感器的各种功能应用以及数据处理,即实现所述方法实施例3提供的轮胎的定位方法。
存储器1002可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据胎压传感器使用所创建的数据等。此外,存储器1002可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器1002可选包括相对于处理器1001远程设置的存储器,这些远程存储器可以通过网络连接至胎压传感器。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块、指令存储在所述存储器1002中,当被所述一个或者多个处理器1001执行时,实现本发明实施例3提供的轮胎的定位方法,例如,执行以上描述的图5中的方法步骤501至步骤504,实现图8中的模块 801-804的功能。
示例性地,该胎压传感器还可以包括通信接口,该通信接口用以实现与其他设备,如电子控制单元等,进行通信。胎压传感器包括的其他装置在此不予限定。
所述胎压传感器可执行本发明实施例3提供的轮胎的定位方法,具备执行方法相应的功能模块和有益效果。未在胎压传感器实施例中详尽描述的技术细节,可参见本发明实施例3提供的轮胎的定位方法。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述胎压传感器执行时,使所述胎压传感器实现本发明实施例3提供的轮胎的定位方法。例如,执行以上描述的图5中的方法步骤501至步骤504,实现图8中的模块801-804的功能。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使胎压传感器实现本发明实施例3提供的轮胎的定位方法。例如,执行以上描述的图5中的方法步骤501至步骤504,实现图8中的模块801-804的功能。
实施例9:
图11为本发明实施例提供的胎压监测系统的示意图,如图11所示,胎压监测系统110包括:电子控制单元90和胎压传感器100,所述电子控制单元90与所述胎压传感器100通信连接。所述电子控制单元用于执行本发明实施例1或实施例2提供的轮胎的定位方法;所述胎压传感器用于执行本发明实施例3提供的轮胎的定位方法。
通过所述电子控制单元90和所述胎压传感器100,使得所述胎压监测系统110可以实现定位效率高及定位的准确性高的效果,且完成轮胎定位的过程中,无需借助额外通信设备或人工输入轮胎对应的胎压传感器的身份识别码。未在所述胎压监测系统110实施例中详尽描述的技术细节,可参见本发明实施例7提供的电子控制单元90及本发明实施例8提供的胎压传感器100。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质 中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种轮胎的定位方法,其特征在于,包括:
    在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数;
    接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数;
    根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数;
    在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
  2. 根据权利要求1所述的方法,其特征在于,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,包括:
    在所述发送周期内控制第一激励器组发送第一低频信号;
    控制L-1个激励器组发送第二低频信号;
    其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式。
  3. 根据权利要求2所述的方法,其特征在于,在各发送周期内,各第一激励器组的位置属性不同;所述第一激励器组的位置属性是由所述第一激励器组中包括的各激励器具备的相同的位置属性确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述接收N个胎压传感器根据所述低频信号反馈的高频信号,包括:
    接收所述N个胎压传感器在所述激活状态下反馈的N个高频信号。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,包括:
    确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;
    确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
  6. 根据权利要求5所述的方法,其特征在于,所述确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:
    判断高频信号中与所述第一低频信号相关的字节是否发生变化;
    若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。
  7. 根据权利要求6所述的方法,其特征在于,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    判断所述高频信号是否有效;
    所述判断高频信号中与所述第一低频信号相关的字节是否发生变化,包括:
    若所述高频信号有效,判断高频信号中与所述第一低频信号相关的字节是否发生变化。
  9. 根据权利要求8所述的方法,其特征在于,所述判断所述高频信号是否有效,包括:
    根据所述高频信号,确定发送所述高频信号的胎压传感器最新一次对所述第一低频信号的接收帧数;
    判断所述接收帧数与对所述第一低频信号的发送帧数的比例是否大于或等于预设比例阈值;
    若所述接收帧数与对所述第一低频信号的发送帧数的比例大于或等于预设比例阈值,确定所述高频信号有效。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,包括:
    当满足触发条件时,在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号。
  11. 根据权利要求10所述的方法,其特征在于,所述触发条件包括:
    检测到的交通工具的行驶速度大于或等于预设速度阈值;或者,
    检测到的交通工具停止行驶的时间大于或等于预设时间阈值;或者,
    检测到用户输入的触发信号。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号之后,所述方法还包括:
    若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,其中,J为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    确定所述J个高频信号是否是由所述胎压传感器在常规模式下发送的;
    所述确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,包括:
    若所述J个高频信号是由所述胎压传感器在常规模式下发送的,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
  14. 一种轮胎的定位方法,其特征在于,包括:
    接收激励器发送的低频信号;
    根据所述低频信号向胎压电子控制单元反馈高频信号,所述高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    预设延时时间;
    根据所述延时时间,进行反馈所述高频信号的延时。
  16. 一种轮胎的定位装置,其特征在于,包括:
    低频信号发送模块,用于在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号,L为大于1的整数;
    高频信号接收模块,用于接收N个胎压传感器根据所述低频信号反馈的高频信号,N为大于1的整数;
    第一确定模块,用于根据所述高频信号确定所述L个激励器组中的一个激励器组与M个胎压传感器的对应关系,M为大于1的整数;
    第二确定模块,用于在所述发送周期的数量达到预设阈值后,根据每个发送周期内确定的激励器组与M个胎压传感器的对应关系,确定所述N个胎压传感器各自对应的轮胎。
  17. 根据权利要求16所述的装置,其特征在于,所述低频信号发送模块包括:
    第一低频信号发送模块,用于在所述发送周期内控制第一激励器组发送第一低频信号;
    第二低频信号发送模块,用于控制L-1个激励器组发送第二低频信号;
    其中,所述L-1个激励器组中包括的激励器的数量为N;所述第二低频信号用于触发胎压传感器切换为激活模式。
  18. 根据权利要求17所述的装置,其特征在于,在各发送周期内,各第一激励器组的位置属性不同;所述第一激励器组的位置属性是由所述第一激励器组中包括的各激励器具备的相同的位置属性确定的。
  19. 根据权利要求18所述的装置,其特征在于,所述高频信号接收模块 具体用于:
    接收所述N个胎压传感器在所述激活状态下反馈的N个高频信号。
  20. 根据权利要求19所述的装置,其特征在于,所述第一确定模块具体用于:
    确定所述N个高频信号中与所述第一激励器组对应的M个高频信号;
    确定所述第一激励器组与发送所述M个高频信号的M个胎压传感器相对应。
  21. 根据权利要求20所述的装置,其特征在于,所述第一确定模块确定所述N个高频信号中与所述第一激励器组对应的M个高频信号,包括:
    判断高频信号中与所述第一低频信号相关的字节是否发生变化;
    若高频信号中与所述第一低频信号相关的字节发生变化,确定所述高频信号与所述第一激励器组对应。
  22. 根据权利要求21所述的装置,其特征在于,所述字节用于累计胎压传感器接收到所述第一低频信号的接收帧数。
  23. 根据权利要求22所述的装置,其特征在于,所述装置还包括:
    判断模块,用于判断所述高频信号是否有效;
    所述第一确定模块判断高频信号中与所述第一低频信号相关的字节是否发生变化,包括:
    若所述判断模块判断到所述高频信号有效,判断高频信号中与所述第一低频信号相关的字节是否发生变化。
  24. 根据权利要求23所述的装置,其特征在于,所述判断模块具体用于:
    根据所述高频信号,确定发送所述高频信号的胎压传感器最新一次对所述第一低频信号的接收帧数;
    判断所述接收帧数与对所述第一低频信号的发送帧数的比例是否大于或等于预设比例阈值;
    若所述接收帧数与对所述第一低频信号的发送帧数的比例大于或等于预设比例阈值,确定所述高频信号有效。
  25. 根据权利要求16-24任一项所述的装置,其特征在于,所述低频信号发送模块具体用于:
    当满足触发条件时,在发送周期内依次控制L个激励器组中的一个激励器组发送低频信号。
  26. 根据权利要求25所述的装置,其特征在于,所述触发条件包括:
    检测到的交通工具的行驶速度大于或等于预设速度阈值;或者,
    检测到的交通工具停止行驶的时间大于或等于预设时间阈值;或者,
    检测到用户输入的触发信号。
  27. 根据权利要求16-26任一项所述的装置,其特征在于,所述装置还包括:
    第三确认模块,用于若在预设时间段内接收到J个高频信号,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,其中,J为正整数。
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    第四确认模块,用于确定所述J个高频信号是否是由所述胎压传感器在常规模式下发送的;
    所述第三确认模块确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎,包括:
    若第四确认模块确定到所述J个高频信号是由所述胎压传感器在常规模式下发送的,确定发送所述J个高频信号的胎压传感器对应的轮胎为备胎。
  29. 一种轮胎的定位装置,其特征在于,包括:
    低频信号接收模块,用于接收激励器发送的低频信号;
    反馈模块,用于根据所述低频信号向胎压电子控制单元反馈高频信号,所述高频信号用于由所述胎压电子控制单元确定胎压传感器对应的轮胎。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    预设模块,用于预设延时时间;
    延时模块,用于根据所述延时时间,进行反馈所述高频信号的延时。
  31. 一种电子控制单元,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令;
    所述至少一个处理器用于执行所述指令,以实现如权利要求1-13任一项所述的方法。
  32. 一种胎压传感器,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令;
    所述至少一个处理器用于执行所述指令,以实现如权利要求14-15任一项所述的方法。
  33. 一种胎压监测系统,其特征在于,包括电子控制单元和胎压传感器;
    其中,所述电子控制单元和所述胎压传感器连接;
    所述电子控制单元用于执行如权利要求1-13任一项所述的方法;
    所述胎压传感器用于执行如权利要求14-15任一项所述的方法。
PCT/CN2019/077123 2018-03-16 2019-03-06 轮胎的定位方法、装置、电子控制单元及胎压传感器 WO2019174503A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19767719.8A EP3753756A4 (en) 2018-03-16 2019-03-06 TIRE POSITIONING PROCESS AND APPARATUS, ELECTRONIC CONTROL UNIT AND TIRE PRESSURE SENSOR
US17/022,377 US11351820B2 (en) 2018-03-16 2020-09-16 Tire positioning method and apparatus, electronic control unit and tire pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810217093.1A CN108501630B (zh) 2018-03-16 2018-03-16 轮胎的定位方法、装置、电子控制单元及胎压传感器
CN201810217093.1 2018-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/022,377 Continuation US11351820B2 (en) 2018-03-16 2020-09-16 Tire positioning method and apparatus, electronic control unit and tire pressure sensor

Publications (1)

Publication Number Publication Date
WO2019174503A1 true WO2019174503A1 (zh) 2019-09-19

Family

ID=63376908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077123 WO2019174503A1 (zh) 2018-03-16 2019-03-06 轮胎的定位方法、装置、电子控制单元及胎压传感器

Country Status (4)

Country Link
US (1) US11351820B2 (zh)
EP (1) EP3753756A4 (zh)
CN (2) CN111361364B (zh)
WO (1) WO2019174503A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111361364B (zh) * 2018-03-16 2022-09-02 深圳市道通科技股份有限公司 轮胎的定位方法、装置、电子控制单元及胎压传感器
CN111452569A (zh) * 2020-04-16 2020-07-28 深圳市全昇科技有限公司 一种用于轮胎压力检测的传感器定位识别系统及方法
CN111452571A (zh) * 2020-04-16 2020-07-28 深圳市全昇科技有限公司 一种用于卡车的胎压传感器的定位识别系统及方法
US20230035256A1 (en) * 2021-07-29 2023-02-02 I Yuan Precision Industrial Co., Ltd. Automobile tire pressure display
CN114193983B (zh) * 2021-12-28 2024-04-12 知轮(杭州)科技有限公司 一种车辆轮胎传感器的识别结构及定位方法
CN114193981B (zh) * 2021-12-28 2024-04-12 知轮(杭州)科技有限公司 一种货运车辆轮胎传感器的识别结构及定位方法
CN114323031B (zh) * 2021-12-28 2023-10-20 知轮(杭州)科技有限公司 一种汽车车胎传感器的轮位定位装置和定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102555697A (zh) * 2010-12-17 2012-07-11 联创汽车电子有限公司 汽车轮胎气压监测系统中胎压传感器定位的方法
CN205059098U (zh) * 2015-10-18 2016-03-02 惠州市物联微电子有限公司 一种轮胎气压监测装置
US20170158000A1 (en) * 2015-12-07 2017-06-08 Wegmann Automotive Gmbh & Co. Kg Cross-Platform Universal Tire Pressure Monitoring Sensor
CN106827975A (zh) * 2017-01-17 2017-06-13 深圳市道通合创软件开发有限公司 胎压传感器识别方法及相关装置、系统
US20170334253A1 (en) * 2016-05-23 2017-11-23 Gofull Technology Co., Ltd. Wireless Tire Pressure Monitoring System and Operating Method Thereof
CN108501630A (zh) * 2018-03-16 2018-09-07 深圳市道通科技股份有限公司 轮胎的定位方法、装置、电子控制单元及胎压传感器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710708B2 (en) * 1999-02-05 2004-03-23 Schrader-Bridgeport International, Inc. Method and apparatus for a remote tire pressure monitoring system
US7202777B2 (en) * 2004-01-09 2007-04-10 Denso Corporation Tire condition monitoring system
FR2889595B1 (fr) * 2005-08-04 2007-10-19 Siemens Vdo Automotive Sas Procede et dispositif de localisation de la position d'une roue d'un vehicule
KR20070080888A (ko) * 2006-02-09 2007-08-14 주식회사 현대오토넷 타이어 압력 모니터링 시스템의 저주파수 시동기 일체형타이어 압력 모니티링 시스템 수신기 및 타이어 위치 학습방법
CN101241633A (zh) * 2008-01-15 2008-08-13 吴仓荣 具设定及收发储存无线电子传感器数据的系统装置
US7986222B2 (en) * 2009-02-24 2011-07-26 Infineon Technologies Ag Tire position identification system and method
FR2956768B1 (fr) * 2010-02-22 2012-09-21 Continental Automotive France Procede et dispositif de localisation des roues d'un vehicule
US8564428B2 (en) * 2010-06-15 2013-10-22 Honda Motor Co., Ltd. Memorizing location of tires in TPMS and smart entry system
KR101670803B1 (ko) * 2010-11-18 2016-10-31 현대모비스 주식회사 타이어 공기압 모니터링 시스템에서의 센서위치 인식장치 및 그 방법
CN102431398A (zh) * 2011-10-20 2012-05-02 惠州市德赛西威汽车电子有限公司 一种胎压监测系统及其自适应匹配方法
TW201319540A (zh) * 2011-11-11 2013-05-16 Delta Electronics Inc 輪胎位置識別系統及方法
US9031738B2 (en) * 2013-01-24 2015-05-12 Trw Automotive U.S. Llc Method and apparatus for determining tire condition and location using wheel speed sensors and acceleration sensors
CN104627267A (zh) * 2013-11-12 2015-05-20 重庆金美通信有限责任公司 一种胎压产品下线定位系统的实现方法
CN204451863U (zh) * 2015-02-05 2015-07-08 白云飞 一种tpms发射器无线匹配装置
JP6451588B2 (ja) * 2015-10-20 2019-01-16 株式会社オートネットワーク技術研究所 タイヤ空気圧監視システム、検出装置及び監視装置
CN105150777B (zh) * 2015-10-28 2017-03-22 上海泰好电子科技有限公司 胎压监测系统的低频自动匹配方法及装置
CN205029098U (zh) 2015-10-28 2016-02-10 高择(宁波)科技有限公司 用于汽车电器总成的连接器
CN106240252A (zh) * 2016-09-05 2016-12-21 江铃汽车股份有限公司 一种汽车及单向胎压监测学习方法、系统
CN106864183B (zh) * 2017-01-20 2019-02-26 合肥杰发科技有限公司 轮胎自定位方法及装置、轮胎压力监控系统
GB2567888B (en) * 2017-10-31 2020-09-30 Schrader Electronics Ltd Tire sensor location method and apparatus
CN107791756A (zh) * 2017-11-17 2018-03-13 东南(福建)汽车工业有限公司 集成peps的轮胎压力监测系统匹配学习装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102555697A (zh) * 2010-12-17 2012-07-11 联创汽车电子有限公司 汽车轮胎气压监测系统中胎压传感器定位的方法
CN205059098U (zh) * 2015-10-18 2016-03-02 惠州市物联微电子有限公司 一种轮胎气压监测装置
US20170158000A1 (en) * 2015-12-07 2017-06-08 Wegmann Automotive Gmbh & Co. Kg Cross-Platform Universal Tire Pressure Monitoring Sensor
US20170334253A1 (en) * 2016-05-23 2017-11-23 Gofull Technology Co., Ltd. Wireless Tire Pressure Monitoring System and Operating Method Thereof
CN106827975A (zh) * 2017-01-17 2017-06-13 深圳市道通合创软件开发有限公司 胎压传感器识别方法及相关装置、系统
CN108501630A (zh) * 2018-03-16 2018-09-07 深圳市道通科技股份有限公司 轮胎的定位方法、装置、电子控制单元及胎压传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753756A4

Also Published As

Publication number Publication date
CN111361364B (zh) 2022-09-02
US20200406690A1 (en) 2020-12-31
EP3753756A4 (en) 2021-01-06
CN108501630A (zh) 2018-09-07
CN111361364A (zh) 2020-07-03
US11351820B2 (en) 2022-06-07
CN108501630B (zh) 2020-04-24
EP3753756A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2019174503A1 (zh) 轮胎的定位方法、装置、电子控制单元及胎压传感器
EP3370389B1 (en) Cooperative cloud-edge vehicle anomaly detection
US11084335B2 (en) Tire location positioning method and apparatus and tire pressure monitoring system
JP6500875B2 (ja) 車載ネットワークシステム、及び、車載ネットワークシステムにおける通信制御方法
JP6394561B2 (ja) 車載記録システム及び車載制御装置
US10726645B2 (en) Vehicle diagnostic operation
US8798287B2 (en) Vehicle sound simulation system
JP5907173B2 (ja) 車両用データ記録装置
CN103112324A (zh) 通用轮胎压力监测传感器
CN109774725A (zh) 用于自适应巡航控制的前方车辆监控
CN103336522A (zh) 车辆故障查询系统、控制器及车辆
CN106314044B (zh) 胎压监测系统的匹配方法、系统及车辆
EP3088218A1 (en) Tire valve registration system
JP2015058822A (ja) タイヤid登録システム
US11288054B2 (en) Vehicular communication system
JP2014071839A (ja) 情報処理装置、情報処理方法およびプログラム
JP6894043B2 (ja) Dsiプロトコルに基づいて自動車両におけるセンサ装置を動作させるための方法
JP2012150653A (ja) 車両の挙動データ記憶制御システム、電子制御装置
CN109774388A (zh) 一种车辆轮胎异常检测方法、系统及相关设备
JP6041030B2 (ja) 車両用データ記録装置
JP6115374B2 (ja) 車両制御システムおよびマスタecu
CN215552861U (zh) 一种机动车喇叭自动禁鸣系统
JP5716593B2 (ja) 車両用盗難防止装置及び車両用盗難防止システム
CN112230572B (zh) 集成控制芯片及其控制方法,存储介质,车辆
KR101509907B1 (ko) 차량 제어기의 상태 진단 방법 및 그 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019767719

Country of ref document: EP

Effective date: 20200915