WO2019174463A1 - 一种利用高温液态炉渣固定含砷废物的方法 - Google Patents

一种利用高温液态炉渣固定含砷废物的方法 Download PDF

Info

Publication number
WO2019174463A1
WO2019174463A1 PCT/CN2019/076415 CN2019076415W WO2019174463A1 WO 2019174463 A1 WO2019174463 A1 WO 2019174463A1 CN 2019076415 W CN2019076415 W CN 2019076415W WO 2019174463 A1 WO2019174463 A1 WO 2019174463A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
temperature liquid
containing waste
liquid slag
slag
Prior art date
Application number
PCT/CN2019/076415
Other languages
English (en)
French (fr)
Inventor
柴立元
梁彦杰
赵宗文
刘恢
闵小波
彭兵
杨志辉
柯勇
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2019174463A1 publication Critical patent/WO2019174463A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • B09B3/29Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix involving a melting or softening step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/004Sludge detoxification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags

Definitions

  • the present invention relates to the field of environmental engineering technology, and more particularly to a method for fixing arsenic-containing waste by using high temperature liquid slag.
  • the high-temperature smelting process such as iron smelting and non-ferrous metal smelting
  • a large amount of high-temperature liquid slag is generated, and they are separated from the smelting furnace through the slag discharge port.
  • the amount of smelting slag produced in China was about 315 million tons in 2010, and most of the smelting slag was produced from high-temperature smelting.
  • the high-temperature liquid slag produced by iron smelting and non-ferrous metal smelting is generally cooled by water cooling or natural cooling, and then disposed of by landfill or stacking.
  • the degree of resource utilization is not high, and the heat of high-temperature liquid slag is also made. Loss in vain, not being used effectively.
  • the high-temperature liquid slag produced in the process of iron and steel smelting and non-ferrous metal smelting is mainly composed of silicic calcium slag or iron-silicon slag. These high-temperature liquid slags are prone to form vitreous during cooling, and thus have a certain encapsulation ability for arsenic-containing waste. At present, there is less curing at high temperatures in the curing/stabilization technology for arsenic-containing waste.
  • CN107311455A discloses a method for preparing an arsenic-containing solidified glass by using an arsenic-containing waste residue, wherein a high-temperature heat treatment of the solidified material is required.
  • CN103265171A discloses a method of curing arsenic-containing waste material and a solid arsenic-based crystal product and application produced, wherein curing is required under high pressure. All of the above technologies suffer from high energy consumption and severe requirements for curing equipment.
  • the present invention provides a method for fixing arsenic-containing waste by using high-temperature liquid slag, which not only achieves stable solidification of arsenic-containing waste, but also fully utilizes heat and effective components of high-temperature liquid slag, and is important. Environmental significance.
  • the present invention adopts the following technical solutions:
  • a method for fixing arsenic-containing waste by using high-temperature liquid slag comprises: mixing high-temperature liquid slag with arsenic-containing waste, and cooling to obtain slag solid arsenic.
  • the high-temperature liquid slag is mainly composed of silicon-calcium slag or iron-silicon slag, and the vitreous body is easily formed during the cooling process, so that the arsenic-containing waste has a certain encapsulation ability, and the high-temperature liquid slag is mixed with the arsenic-containing waste to form a final solution.
  • the slag solid arsenic body realizes the solidification of the arsenic-containing waste.
  • the high temperature liquid slag has a tapping temperature higher than 1000 °C.
  • the method further comprises: after the high temperature liquid slag is mixed with the arsenic-containing waste, the temperature of the heat preservation is higher than 1000 ° C, and the heat preservation time is 1-6 h.
  • the arsenic-containing waste is an arsenate, and the arsenate is mixed with a flux and then mixed with the high-temperature liquid slag.
  • the form of arsenate is relatively stable, so it is only necessary to add a flux to reduce the melting temperature of the arsenic-containing waste, so that the arsenic-containing waste is liquid in a fast state, which is favorable for the combination with the high-temperature liquid slag.
  • the flux is one or more of SiO 2 , Na 2 CO 3 , H 3 BO 3 , and glass, and the mass ratio of the arsenate to the flux is (10-30). ): (70-90).
  • the arsenic-containing waste is an arsenic-containing sludge
  • the arsenic-containing sludge is first mixed with the arsenic phase regulating agent and the flux, and then mixed with the high-temperature liquid slag.
  • the arsenic in the arsenic-containing sludge is mainly in the form of arsenic calcium compound, and the arsenic phase modifier can be converted into arsenate. Because arsenate is more stable at high temperatures, it can reduce the volatilization of arsenic during the reaction.
  • the arsenic phase modifier is H 2 O 2 and/or MnO 2 .
  • the flux is one or more of SiO 2 , Na 2 CO 3 , H 3 BO 3 , and glass.
  • the arsenic phase regulator is H 2 O 2
  • the flux is glass.
  • the mass ratio of the H 2 O 2 , the glass to the arsenic-containing sludge is (5-10): (15-30): (60-80).
  • the arsenic phase regulator H 2 O 2 can oxidize trivalent arsenic in the arsenic-containing sludge to a stable pentavalent arsenic in a high temperature state, and avoid arsenic volatilization during the reaction between the arsenic-containing sludge and the high-temperature liquid slag;
  • the flux glass can lower the temperature required for the high-temperature curing reaction, thereby promoting the melt-solidification reaction of arsenic and slag more fully.
  • the arsenic-containing waste is arsenic-containing soot, and the arsenic-containing soot is first mixed with a high-temperature stable arsenic agent and an arsenic phase regulating agent, and then mixed with the high-temperature liquid slag.
  • Arsenic in arsenic-containing soot is mainly in the form of sulfide or oxide, and part of arsenic is trivalent arsenic.
  • Adding arsenic phase regulator is to convert trivalent arsenic into pentavalent arsenic, and pentavalent arsenic is more stable at high temperature.
  • Adding high temperature stable arsenic is to convert oxidized or sulfide arsenic into more stable arsenate and reduce reaction.
  • the high temperature stable arsenic agent is one or more of CaO, Ca(OH) 2 and NaOH.
  • the arsenic phase modifier is H 2 O 2 and/or MnO 2 .
  • the high temperature stable arsenic agent is CaO
  • the arsenic phase regulating agent is H 2 O 2
  • the mass ratio of the H 2 O 2 , the CaO and the arsenic-containing soot is (5-20): (5-10): (70-90).
  • the arsenic in the arsenic-containing soot is mainly As 2 O 3 .
  • the arsenic phase regulator H 2 O 2 the As 2 O 3 can be oxidized to As 2 O 5 ; and the high-temperature stable arsenic agent CaO is added to promote As 2 O 5 . Conversion to Ca 3 (AsO 4 ) 2 allows arsenic to be stable at high temperatures without thermal decomposition.
  • the high temperature liquid slag accounts for 55%-95%, preferably 60%-75%, of the total reactants.
  • the high-temperature liquid slag should be used in a larger amount than the arsenic-containing material to achieve the effect of arsenic-containing materials in high-temperature liquid slag, and not all components in the high-temperature liquid slag can be coated with arsenic-containing materials, that is, high-temperature liquid slag is not an effective component.
  • the high-temperature liquid slag accounted for 60%-75% of the total reactants, and the combined wrapping effect was better.
  • the method for mixing the high temperature liquid slag with the arsenic-containing waste comprises adding the arsenic-containing waste to the high-temperature liquid slag while stirring, or injecting the high-temperature liquid slag into the In arsenic-containing waste.
  • the mixing method of injecting the high-temperature liquid slag into the arsenic-containing waste step by step is simple and convenient, and no additional device is needed, which saves cost.
  • the method of heat preservation comprises heating by electric heating front bed or supplementing high temperature liquid slag.
  • the cooling mode is one or more of natural cooling, blast cooling, and water cooling.
  • the invention fully utilizes the heat and effective components of the high-temperature liquid slag, and efficiently fixes the arsenic-containing waste, and the obtained slag solid arsenic body has high chemical stability, can be stored for a long time or landfilled according to general waste, thereby realizing
  • the harmless disposal of arsenic-containing wastes solves the problem of arsenic pollution in a green and sustainable way, and at the same time broadens the resource utilization of high-temperature liquid slag.
  • Embodiment 1 is a process flow diagram of a method for fixing arsenic-containing waste by using high-temperature liquid slag in Embodiment 1;
  • Example 2 is an XRD chart of the high temperature liquid slag in Example 1;
  • Example 3 is an XRD chart of the slag solid arsenate in Example 1.
  • the embodiment provides a method for fixing arsenic-containing waste by using high-temperature liquid slag.
  • the process flow chart is shown in FIG. 1 , wherein the high-temperature liquid slag is a high-temperature liquid slag produced by copper smelting, and the XRD pattern thereof is as shown in FIG. 2 .
  • the arsenic-containing waste is an arsenic-containing waste mainly composed of sodium arsenate (the arsenic content is 32%), and the specific steps are as follows:
  • the main phases in the high temperature liquid slag before the reaction are Fe 2.95 Si 0.05 O 4 and Fe 2 (SiO 4 ) 2 , and no crystal phase is detected in the slag solid arsenic after the reaction.
  • the presence of the glass indicates the formation of a glassy solid arsenic.
  • the present embodiment provides a method for fixing arsenic-containing waste by using high-temperature liquid slag, wherein the high-temperature liquid slag is a high-temperature liquid slag produced by copper smelting, and the arsenic-containing waste is arsenic-containing waste mainly composed of sodium arsenate ( The arsenic content is 32%), the specific steps are as follows:
  • the obtained slag solid arsenic was crushed, and the leaching toxicity test was carried out on the arsenic-containing waste and the slag solid arsenic by the TCLP method.
  • the data is shown in Table 2.
  • the embodiment provides a method for fixing arsenic-containing waste by using a high-temperature liquid slag, wherein the high-temperature liquid slag is a high-temperature liquid slag generated during a lead smelting process, and the arsenic-containing waste is an arsenic-containing sludge (the arsenic content is 21). %),Specific steps are as follows:
  • arsenic phase regulator H 2 O 2 and flux cullet to the arsenic-containing sludge, wherein the mass ratio of H 2 O 2 , cullet to arsenic-containing sludge is 10:30:60, mixing and ball milling to 0.05-0.1mm, wherein the ball-to-batch ratio is 10:1, and then the mixed arsenic-containing material is placed at the bottom of the slag package.
  • the mass ratio of the arsenic-containing material to the high-temperature liquid slag is 40:60, the temperature is 1100 ° C twice.
  • the high temperature liquid slag is poured into the slag package, and the slag package temperature is maintained above 1000 ° C through the electric heating front bed, the holding time is 1 h, and finally cooled to normal temperature by water cooling to obtain slag solid arsenic.
  • the present embodiment provides a method for fixing arsenic-containing waste by using high-temperature liquid slag, wherein the high-temperature liquid slag is a high-temperature liquid slag produced by copper smelting, and the arsenic-containing waste is high arsenic soot produced by copper smelting (the arsenic content is 13.21%), the specific steps are as follows:
  • the slag is poured into the slag bag, and the slag package temperature is maintained above 1000 ° C through the electric heating front bed, the holding time is 1 h, and finally cooled to normal temperature by natural cooling to obtain slag solid arsenic.
  • the present invention provides a method of immobilizing arsenic-containing waste using high temperature liquid slag.
  • the method of the invention comprises: mixing high temperature liquid slag with arsenic-containing waste, and cooling to obtain slag solid arsenic.
  • the invention fully utilizes the heat and effective components of the high-temperature liquid slag, and efficiently fixes the arsenic-containing waste, and the obtained slag solid arsenic body has high chemical stability, can be stored for a long time or landfilled according to general waste, thereby realizing
  • the harmless disposal of arsenic-containing wastes solves the problem of arsenic pollution in a green sustainable development mode, and at the same time broadens the resource utilization of high-temperature liquid slag, which has good economic value and application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种利用高温液态炉渣固定含砷废物的方法,包括:将高温液态炉渣与含砷废物混合反应,冷却得到炉渣固砷体。本方法利用高温液态炉渣的热量和有效组分,对含砷废物进行固定,得到的炉渣固砷体具有较高的化学稳定性,可以长期堆存或者按照一般废物进行填埋,实现了含砷废物的无害化处置,拓宽了高温液态炉渣的资源化利用。

Description

一种利用高温液态炉渣固定含砷废物的方法
交叉引用
本申请要求2018年3月14日提交的专利名称为“一种利用高温液态炉渣固定含砷废物的方法”的第201810210196.5号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及环境工程技术领域,更具体地,涉及一种利用高温液态炉渣固定含砷废物的方法。
背景技术
在钢铁冶炼、有色金属冶炼等高温冶炼过程中产生大量的高温液态炉渣,它们通过排渣口脱离熔炼炉。据报道,2010年我国冶炼渣产生量约为3.15亿吨,其中大部分冶炼渣都产自于高温冶炼过程中。目前,对于钢铁冶炼和有色金属冶炼产生的高温液态炉渣一般采取水冷或者自然冷却的方式进行冷却,然后采取填埋或堆置的方式处置,资源化利用程度不高,也使得高温液态炉渣的热量白白损失,没有得到有效利用。
钢铁冶炼、有色金属冶炼等过程中产生的高温液态炉渣以硅钙渣或者铁硅渣为主。这些高温液态炉渣在冷却的过程中容易形成玻璃体,因而对含砷废物具有一定的包裹能力。目前关于含砷废物的固化/稳定化技术中采用高温固化的较少。CN107311455A公开了一种利用含砷废渣制备含砷固化玻璃的方法,其中需要对固化物料进行高温热处理。CN103265171A公开了一种固化含砷废料的方法及生成的固砷类水晶产品和应用,其中需要在高压下进行固化。上述技术都存在能耗高且对固化设备要求严苛的缺陷。
发明内容
针对现有技术存在的不足,本发明提供一种利用高温液态炉渣固定含砷废物的方法,既实现了含砷废物的稳定固化,又充分利用了高温液态炉 渣的热量和有效组分,具有重要的环保意义。
为实现上述目的,本发明采用以下的技术方案:
一种利用高温液态炉渣固定含砷废物的方法,包括:将高温液态炉渣与含砷废物混合反应,冷却得到炉渣固砷体。
上述技术方案中,高温液态炉渣以硅钙渣或者铁硅渣为主,在冷却的过程中容易形成玻璃体,因而对含砷废物具有一定的包裹能力,将高温液态炉渣与含砷废物混合最终形成炉渣固砷体,实现了含砷废物的固化。
上述技术方案中,优选地,所述高温液态炉渣的出炉温度高于1000℃。温度越高,传热越快,越有利于含砷废物熔融,促使高温液态炉渣基本结构单元和含砷废物的结合,从而使砷以更加稳定的形态被固定在高温液态炉渣结构中。
上述技术方案中,还包括在将所述高温液态炉渣与所述含砷废物混合后进行保温,所述保温的温度为高于1000℃,保温时间为1-6h。
上述技术方案中,所述含砷废物为砷酸盐,先将所述砷酸盐与助熔剂混合后,再与所述高温液态炉渣混合反应。砷酸盐的形式比较稳定,因此只需要加入助熔剂,降低含砷废物的熔化温度,使含砷废物较快呈液态,有利于与高温液态炉渣的结合。
上述技术方案中,所述助熔剂为SiO 2、Na 2CO 3、H 3BO 3、玻璃中的一种或多种,所述砷酸盐与所述助熔剂的质量比为(10-30):(70-90)。
上述技术方案中,所述含砷废物为含砷污泥,先将所述含砷污泥与砷物相调控剂和助熔剂混合后,再与所述高温液态炉渣混合反应。含砷污泥中砷主要以砷钙化合物的形式存在,加入砷物相调控剂能使其转变为砷酸盐。因为砷酸盐高温下更稳定,所以反应过程中能降低砷的挥发。所述砷物相调控剂为H 2O 2和/或MnO 2。所述助熔剂为SiO 2、Na 2CO 3、H 3BO 3、玻璃中的一种或多种。
上述技术方案中,优选地,所述砷物相调控剂为H 2O 2,所述助熔剂为玻璃。所述H 2O 2、所述玻璃与所述含砷污泥的质量比为 (5-10):(15-30):(60-80)。其中,砷物相调控剂H 2O 2可以将含砷污泥中的三价砷氧化成高温状态下稳定的五价砷,避免含砷污泥与高温液态炉渣反应过程中砷的挥发;助熔剂玻璃可以降低高温固化反应所需要的温度,进而促使砷与炉渣的熔融固化反应更加充分。
上述技术方案中,所述含砷废物为含砷烟灰,先将所述含砷烟灰与高温稳砷剂和砷物相调控剂混合后,再与所述高温液态炉渣混合反应。含砷烟灰中砷主要以硫化物或氧化物的形式存在,且部分砷为三价砷。加入砷物相调控剂是将三价砷转变为五价砷,五价砷在高温下更稳定,加入高温稳砷剂是将氧化或者硫化物的砷转变为更稳定的砷酸盐,减少反应中的砷挥发。所述高温稳砷剂为CaO、Ca(OH) 2、NaOH中的一种或多种。所述砷物相调控剂为H 2O 2和/或MnO 2
上述技术方案中,优选地,所述高温稳砷剂为CaO,所述砷物相调控剂为H 2O 2,所述H 2O 2、所述CaO与所述含砷烟灰的质量比为(5-20):(5-10):(70-90)。含砷烟灰中砷主要为As 2O 3,通过加入砷物相调控剂H 2O 2,可以将As 2O 3氧化成As 2O 5;再添加高温稳砷剂CaO,促使As 2O 5转变成Ca 3(AsO 4) 2,使砷能在高温下稳定、不发生热分解。
上述技术方案中,所述高温液态炉渣占总反应物的质量分数为55%-95%,优选为60%-75%。高温液态炉渣的用量要大于含砷物料的用量,才能达到高温液态炉渣包裹含砷物料的效果,而且高温液态炉渣中不是所有组分都能包裹含砷物料,即高温液态炉渣不全是有效组分,最终发现高温液态炉渣占总反应物的质量分数为60%-75%,结合包裹效果较好。
上述技术方案中,所述高温液态炉渣与所述含砷废物混合的方式包括边搅拌边向所述高温液态炉渣中加入所述含砷废物,或者将所述高温液态炉渣分步倾注入所述含砷废物中。采取将所述高温液态炉渣分步倾注入所述含砷废物中这种混合方式,操作简便,无需额外装置,节约成本。
上述技术方案中,所述保温的方法包括采用电热前床加热,或者补充高温液态炉渣。
上述技术方案中,所述冷却方式为自然冷却、鼓风冷却、水冷中的一种或多种。
本发明相对于现有技术具有的有益效果:
本发明充分利用了高温液态炉渣的热量和有效组分,对含砷废物进行高效固定,得到的炉渣固砷体具有较高的化学稳定性,可以长期堆存或者按照一般废物进行填埋,实现了含砷废物的无害化处置,以绿色可持续发展的方式解决了砷污染问题,同时拓宽了高温液态炉渣的资源化利用。
附图说明
图1为实施例1中利用高温液态炉渣固定含砷废物的方法的工艺流程图;
图2为实施例1中高温液态炉渣的XRD图;
图3为实施例1中炉渣固砷体的XRD图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例仅用于说明本发明,并不用来限制本发明的保护范围。
实施例1
本实施例提供了一种利用高温液态炉渣固定含砷废物的方法,工艺流程图如图1所示,其中所述高温液态炉渣为炼铜产生的高温液态炉渣,其XRD图如图2所示,所述含砷废物为以砷酸钠为主的含砷废物(砷含量为32%),具体步骤如下:
向含砷废物中添加助熔剂H 3BO 3,其中H 3BO 3与含砷废物的质量比为20:80,进行混合并球磨至0.05-0.2mm,其中球料比为10:1,然后将混合好的含砷物料置于渣包底部,按照含砷物料与高温液态炉渣质量比为30:70,分两次将1150℃的高温液态炉渣倾倒至渣包中,并通过电热前床维持渣包温度高于1000℃,保持时间为1h,最后通过水冷方式冷却至常温,得到炉渣固砷体,其XRD图如图3所示。
由图2和图3可以看出,反应前高温液态炉渣中的主要物相为 Fe 2.95Si 0.05O 4和Fe 2(SiO 4) 2,反应后炉渣固砷体中没有检测到任何晶体物相的存在,表明形成了玻璃态固砷体。
对所得炉渣固砷体进行破碎,采用TCLP法对含砷废物和炉渣固砷体进行浸出毒性测试,数据见表1。
表1含砷废物固化前后砷浸出毒性浓度
Figure PCTCN2019076415-appb-000001
实施例2
本实施例提供了一种利用高温液态炉渣固定含砷废物的方法,其中所述高温液态炉渣为炼铜产生的高温液态炉渣,所述含砷废物为以砷酸钠为主的含砷废物(砷含量为32%),具体步骤如下:
向含砷废物中添加助熔剂碎玻璃,其中碎玻璃与含砷废物的质量比为30:80,进行混合并球磨至0.05-0.2mm,其中球料比为10:1,然后将混合好的含砷物料置于渣包底部,按照含砷物料与高温液态炉渣质量比为30:70,分两次将1150℃的高温液态炉渣倾倒至渣包中,并通过电热前床维持渣包温度高于1000℃,保持时间为1h,最后通过水冷方式冷却至常温,得到炉渣固砷体。
对所得炉渣固砷体进行破碎,采用TCLP法对含砷废物和炉渣固砷体进行浸出毒性测试,数据见表2。
表2含砷废物固化前后砷浸出毒性浓度
Figure PCTCN2019076415-appb-000002
实施例3
本实施例提供了一种利用高温液态炉渣固定含砷废物的方法,其中所述高温液态炉渣为铅冶炼过程中产生的高温液态炉渣,所述含砷废物为含砷污泥(砷含量为21%),具体步骤如下:
向含砷污泥中添加砷物相调控剂H 2O 2和助熔剂碎玻璃,其中H 2O 2、 碎玻璃与含砷污泥的质量比为10:30:60,进行混合并球磨至0.05-0.1mm,其中球料比为10:1,然后将混合好的含砷物料置于渣包底部,按照含砷物料与高温液态炉渣质量比为40:60,分两次将1100℃的高温液态炉渣倾倒至渣包中,并通过电热前床维持渣包温度高于1000℃,保持时间为1h,最后通过水冷方式冷却至常温,得到炉渣固砷体。
对所得炉渣固砷体进行破碎,采用TCLP法对含砷污泥和炉渣固砷体进行浸出毒性测试,数据见表3。
表3含砷污泥固化前后砷浸出毒性浓度
Figure PCTCN2019076415-appb-000003
实施例4
本实施例提供了一种利用高温液态炉渣固定含砷废物的方法,其中所述高温液态炉渣为炼铜产生的高温液态炉渣,所述含砷废物为铜熔炼产生的高砷烟灰(砷含量为13.21%),具体步骤如下:
向高砷烟灰中添加高温稳砷剂CaO和砷物相调控剂H 2O 2,其中CaO、H 2O 2与高砷烟灰的质量比为10:20:70,进行混合并球磨至0.05-0.1mm,其中球料比为10:1,然后将混合好的含砷物料置于渣包底部,按照含砷物料与高温液态炉渣质量比为25:75,分两次将1150℃的高温液态炉渣倾倒至渣包中,并通过电热前床维持渣包温度高于1000℃,保持时间为1h,最后通过自然冷却方式冷却至常温,得到炉渣固砷体。
对所得炉渣固砷体进行破碎,采用TCLP法对高砷烟灰和炉渣固砷体进行浸出毒性测试,数据见表4。
表4高砷烟灰固化前后砷浸出毒性浓度
Figure PCTCN2019076415-appb-000004
实施例5
其余与实施例4相同,不同的是没有加入砷物相调控剂H 2O 2
对所得炉渣固砷体进行破碎,采用TCLP法对高砷烟灰和炉渣固砷体进行浸出毒性测试,数据见表5。
表5高砷烟灰固化前后砷浸出毒性浓度
Figure PCTCN2019076415-appb-000005
实施例6
其余与实施例4相同,不同的是没有加入高温稳砷剂CaO。
对所得炉渣固砷体进行破碎,采用TCLP法对高砷烟灰和炉渣固砷体进行浸出毒性测试,数据见表6。
表6高砷烟灰固化前后砷浸出毒性浓度
Figure PCTCN2019076415-appb-000006
最后,以上仅为本发明的较佳实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明提供一种利用高温液态炉渣固定含砷废物的方法。本发明所述方法包括:将高温液态炉渣与含砷废物混合反应,冷却得到炉渣固砷体。本发明充分利用了高温液态炉渣的热量和有效组分,对含砷废物进行高效固定,得到的炉渣固砷体具有较高的化学稳定性,可以长期堆存或者按照一般废物进行填埋,实现了含砷废物的无害化处置,以绿色可持续发展的方式解决了砷污染问题,同时拓宽了高温液态炉渣的资源化利用,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种利用高温液态炉渣固定含砷废物的方法,其特征在于,包括:将高温液态炉渣与含砷废物混合反应,冷却得到炉渣固砷体。
  2. 根据权利要求1所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述高温液态炉渣的出炉温度高于1000℃。
  3. 根据权利要求1所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,还包括在将所述高温液态炉渣与所述含砷废物混合后进行保温,所述保温的温度为高于1000℃,保温时间为1-6h。
  4. 根据权利要求1所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述含砷废物为砷酸盐,先将所述砷酸盐与助熔剂混合后,再与所述高温液态炉渣混合反应。
  5. 根据权利要求4所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述助熔剂为SiO 2、Na 2CO 3、H 3BO 3、玻璃中的一种或多种,所述砷酸盐与所述助熔剂的质量比为(10-30):(70-90)。
  6. 根据权利要求1所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述含砷废物为含砷污泥,先将所述含砷污泥与砷物相调控剂和助熔剂混合后,再与所述高温液态炉渣混合反应。
  7. 根据权利要求6所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述砷物相调控剂为H 2O 2,所述助熔剂为玻璃,所述H 2O 2、所述玻璃与所述含砷污泥的质量比为(5-10):(15-30):(60-80)。
  8. 根据权利要求1所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述含砷废物为含砷烟灰,先将所述含砷烟灰与高温稳砷剂和砷物相调控剂混合后,再与所述高温液态炉渣混合反应。
  9. 根据权利要求8所述的一种利用高温液态炉渣固定含砷废物的方法,其特征在于,所述砷物相调控剂为H 2O 2,所述高温稳砷剂为CaO,所述H 2O 2、所述CaO与所述含砷烟灰的质量比为(5-20):(5-10):(70-90)。
  10. 根据权利要求1-9任一项所述的一种利用高温液态炉渣固定含砷 废物的方法,其特征在于,所述高温液态炉渣占总反应物的质量分数为55%-95%,优选为60%-75%。
PCT/CN2019/076415 2018-03-14 2019-02-28 一种利用高温液态炉渣固定含砷废物的方法 WO2019174463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810210196.5A CN108620409A (zh) 2018-03-14 2018-03-14 一种利用高温液态炉渣固定含砷废物的方法
CN201810210196.5 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019174463A1 true WO2019174463A1 (zh) 2019-09-19

Family

ID=63706225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076415 WO2019174463A1 (zh) 2018-03-14 2019-02-28 一种利用高温液态炉渣固定含砷废物的方法

Country Status (2)

Country Link
CN (1) CN108620409A (zh)
WO (1) WO2019174463A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620409A (zh) * 2018-03-14 2018-10-09 中南大学 一种利用高温液态炉渣固定含砷废物的方法
CN109621278A (zh) * 2019-01-14 2019-04-16 昆明理工大学 一种含砷石膏渣与铜渣协同固化的方法
CN111530895A (zh) * 2020-05-19 2020-08-14 宁夏大学 一种高稳定固化砷渣和尾矿渣的方法
CN112718793B (zh) * 2020-12-15 2022-03-11 紫金矿业集团股份有限公司 一种含亚砷酸盐的含砷物料直接玻璃化固砷方法
CN116197209A (zh) * 2023-01-17 2023-06-02 广西凯玺有色金属有限公司 一种砷酸钙玻璃固化的清洁处理方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005461A1 (en) * 2012-07-02 2014-01-02 Environmental Services Company Ltd. Method for stabilizing waste and hazardous waste
CN103553197A (zh) * 2013-11-05 2014-02-05 红河学院 利用冶炼炉渣除去工业废水中砷锑的方法
CN105537247A (zh) * 2016-01-27 2016-05-04 湖南有色金属研究院 一种利用工业废渣固化含砷废渣的方法
CN106966678A (zh) * 2017-04-05 2017-07-21 北京科技大学 一种协同固化砷的胶结充填料及其制备方法
CN108620409A (zh) * 2018-03-14 2018-10-09 中南大学 一种利用高温液态炉渣固定含砷废物的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282067A (ja) * 1999-03-31 2000-10-10 Mitsubishi Materials Corp 炭素系原料の分解方法
CN101372405B (zh) * 2007-08-22 2011-09-21 马洪刚 一种建筑材料及其制备方法
CN105597262B (zh) * 2015-12-18 2017-11-24 湖南恒凯环保科技投资有限公司 一种用于高浓度含砷废渣稳定固化的药剂及方法
CN106630648A (zh) * 2016-12-15 2017-05-10 武汉钢铁股份有限公司 熔融高炉渣生产发泡玻璃的方法
CN107311455A (zh) * 2017-08-07 2017-11-03 中南大学 一种利用含砷废渣制备含砷固化玻璃的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005461A1 (en) * 2012-07-02 2014-01-02 Environmental Services Company Ltd. Method for stabilizing waste and hazardous waste
CN103553197A (zh) * 2013-11-05 2014-02-05 红河学院 利用冶炼炉渣除去工业废水中砷锑的方法
CN105537247A (zh) * 2016-01-27 2016-05-04 湖南有色金属研究院 一种利用工业废渣固化含砷废渣的方法
CN106966678A (zh) * 2017-04-05 2017-07-21 北京科技大学 一种协同固化砷的胶结充填料及其制备方法
CN108620409A (zh) * 2018-03-14 2018-10-09 中南大学 一种利用高温液态炉渣固定含砷废物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAN, TAOYUN ET AL.: "Study on Harmless Treatment and Recycling Technology of Arsenic-Containing Mixed Salt", MINERAL RESOURCES AND GEOLOGY, vol. 27, no. Zl, 15 October 2013 (2013-10-15), pages 68 - 71, ISSN: 1001-5663 *

Also Published As

Publication number Publication date
CN108620409A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2019174463A1 (zh) 一种利用高温液态炉渣固定含砷废物的方法
CN108640523B (zh) 一种垃圾焚烧灰渣协同酸洗污泥制备微晶玻璃的方法
WO2015106486A1 (zh) 一种重金属废石膏减量化无害化资源处置方法
CN105964652A (zh) 一种针对垃圾焚烧飞灰的固化稳定化处理方法
CN101892332A (zh) 一种熔渣节能保温剂
CN104810072B (zh) 一种含硫高放废液玻璃陶瓷固化基材的制备方法
CN101138670A (zh) 工业废渣高温还原解毒铬渣新方法
CN111889487A (zh) 多源固废协同处理的等离子体熔融固化重金属方法
CN105016710B (zh) 利用污泥低温烧结制备陶粒的方法
CN110563336A (zh) 一种铝灰渣无需除盐除氮制备微晶玻璃的方法
CN108261712A (zh) 一种垃圾焚烧飞灰固化剂、制备方法及飞灰处置方法
CN112209638A (zh) 一种采用火法冶炼得到的含铁熔渣制备人造石材的方法
CN109368952A (zh) 一种重金属污泥与有机硅废物无害化协同处置的方法
CN108580513A (zh) 一种硫化砷渣热压烧结固化方法
CN108275966B (zh) 一种利用生活垃圾焚烧飞灰制作耐火砖的方法
CN111943715A (zh) 一种基于改性污泥烧制陶粒的方法
CN105963902A (zh) 一种硫化砷渣无害化处理的方法
CN112547762A (zh) 一种工业废酸处理粉煤灰及飞灰以废治废处理工艺
JPH07225299A (ja) 硫酸ナトリウム含有放射性廃液の固化処理方法
CN108191320B (zh) 一种利用生活垃圾焚烧飞灰制作防水氯氧镁耐火砖的方法
CN109437609A (zh) 一种镁渣造粒方法
CN113713313B (zh) 一种处理飞灰中重金属的方法
CN113337719A (zh) 一种含砷烟尘综合利用及无害化处理工艺
CN113501679B (zh) 协同利用垃圾焚烧飞灰和钢渣制备高强度砖的方法
CN110143770B (zh) 一种现排炉渣三元复合无机胶凝材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768687

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19768687

Country of ref document: EP

Kind code of ref document: A1