WO2019174225A1 - 波长转换元件及其制备方法、照明光源 - Google Patents

波长转换元件及其制备方法、照明光源 Download PDF

Info

Publication number
WO2019174225A1
WO2019174225A1 PCT/CN2018/110330 CN2018110330W WO2019174225A1 WO 2019174225 A1 WO2019174225 A1 WO 2019174225A1 CN 2018110330 W CN2018110330 W CN 2018110330W WO 2019174225 A1 WO2019174225 A1 WO 2019174225A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
wavelength conversion
conversion element
molar ratio
powder
Prior art date
Application number
PCT/CN2018/110330
Other languages
English (en)
French (fr)
Inventor
徐梦梦
许颜正
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019174225A1 publication Critical patent/WO2019174225A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to a wavelength conversion component, a preparation method thereof and an illumination light source, and belongs to the technical field of illumination light source manufacturing.
  • the laser diode excites the fluorescent material to excite the fluorescent material for white illumination, and has the advantages of high electro-optical conversion efficiency, high brightness, inefficiency, and small volume.
  • the commonly used excitation light source to generate illumination white light is to use a laser fluorescence scheme: blue laser The light source excites the yellow fluorescent material, and the converted yellow light and the unconverted blue light are mixed to obtain white light. In this scheme, the performance of the fluorescent material has a significant effect on the overall performance of the illumination source.
  • silica gel can only work at 200 ° C for a long time, and can only work for a short time at 250 ° C - 300 ° C, otherwise it may decompose.
  • the temperature of the phosphor sheet may exceed 250 ° C, which may cause the stability of the phosphor sheet to decrease or even crack.
  • the high temperature resistant inorganic binder or glass powder can be used to replace the silica gel, which can effectively improve the high temperature resistance of the fluorescent material.
  • the fluorescent conversion material still has low thermal conductivity and low use temperature (500 ° C - 600 ° C). problem.
  • Ceramic materials Compared with glass, ceramic materials have higher thermal conductivity and can withstand higher temperatures, so they have broad application prospects in the field of high-power laser display.
  • Commonly used ceramic fluorescent materials can be divided into two types, one is to use a ceramic such as Al 2 O 3 as a binder to encapsulate the phosphor, and the other is to directly prepare a fluorescent ceramic to improve the light extraction efficiency. Both types of ceramic fluorescent materials have good heat resistance and still have high luminous efficiency at higher temperatures, but there are also problems such as single illumination wavelength and unfavorable illumination white light with high color rendering index.
  • the blue light component of the white light of the above scheme is derived from a laser light source
  • the yellow light component is derived from a fluorescent material, and the optical expansion amounts of the two are largely different, and the mixed white light has a phenomenon in which the blue light and the yellow light are not uniformly mixed.
  • the technical problem to be solved by the present invention is to provide a wavelength conversion element, a preparation method thereof, and an illumination source by using a first phase RE 3+ : Al 2 O 3 crystal phase and a second phase Ce 3 + : YAG crystal phase is evenly interspersed with multiphase ceramics to make wavelength conversion components, so that the illumination source including the wavelength conversion component has a high color rendering index of a wide spectrum, which effectively improves the color unevenness in the exiting spot.
  • the light extraction efficiency of the light-emitting surface is improved, and it still has good optical properties at a higher temperature.
  • the present invention provides a wavelength conversion element, the material of which is a multi-phase ceramic, the multi-phase ceramic includes a first phase and a second phase which are uniformly interspersed, and the emission spectrum and the first phase of the first phase The excitation light spectrum of the two phases has overlapping regions.
  • the first phase is a RE 3+ :Al 2 O 3 crystal phase
  • the second phase is a Ce 3+ :YAG crystal phase, wherein RE is one or more of Ce, Yb and Nd.
  • the light-emitting surface of the wavelength conversion element is provided with a filter.
  • the first phase is a Ce 3+ :Al 2 O 3 crystal phase
  • a molar ratio of Ce to (Ce+Al) in the Ce 3+ :Al 2 O 3 crystal phase is 0.02-0.1
  • the molar ratio of Ce to (Ce + Al) in the Ce 3+ :YAG crystal phase is 0.001-0.1; the molar ratio of Ce 3+ :Al 2 O 3 and Ce 3+ :YAG is 0.2-5.
  • the first phase is a Yb 3+ :Al 2 O 3 crystal phase, and a molar ratio of Yb to (Yb+Al) in the Yb 3+ :Al 2 O 3 crystal phase is 0.01-0.1,
  • the molar ratio of Ce to (Ce + Al) in the Ce 3+ :Al 2 O 3 crystal phase is 0.02-0.1; the molar ratio of Yb 3+ :Al 2 O 3 and Ce 3+ :Al 2 O 3 is 0.5-10 .
  • the molar ratio of Ce to (Ce+Al) in the Ce 3+ :Al 2 O 3 crystal phase is 0.02-0.1; the first phase is Nd 3+ , Yb 3+ :Al 2 O 3 crystal
  • the phase, or the first phase is a crystal phase composed of Yb 3+ :Al 2 O 3 and Nd 3+ , Yb 3+ :Al 2 O 3 , wherein the molar ratio of Nd to (Nd+Yb+Al) is 0.01 -0.08, and the molar ratio of Yb to (Nd+Yb+Al) is 0.01-0.1; the molar ratio of RE 3+ :Al 2 O 3 and Ce 3+ :Al 2 O 3 is 0.5-10.
  • the present invention also provides a method for preparing a wavelength conversion element, the preparation method comprising: weighing Ce 3+ :Al 2 according to a molar ratio of Ce 3+ :Al 2 O 3 and Ce 3+ :YAG of 0.2-5 After the O 3 powder and the Ce 3+ :YAG powder are mixed with a ball milling solvent containing a sintering aid and a binder, the ball mill is dried, and the ball-milled slurry is dried and sieved to obtain a raw material powder. After pressing, heat treatment, cold isostatic pressing, a ceramic green body is obtained, and the ceramic green body is sintered under a vacuum atmosphere to obtain a multiphase ceramic, and the multiphase ceramic is cut and formed to obtain a wavelength conversion element.
  • the present invention also provides a method for preparing another wavelength conversion element, which comprises: weighing RE 3 according to a molar ratio of RE 3+ :Al 2 O 3 and Ce 3+ :Al 2 O 3 of 0.5-10. + : Al 2 O 3 powder and Ce 3+ :YAG powder, and then ball milled with a ball milling solvent containing a sintering aid and a binder, and the ball-milled slurry is dried and sieved to obtain a raw material powder.
  • the raw material powder is pre-compressed, heat-treated, cooled and isostatically pressed to obtain a ceramic green body, and the ceramic green body is sintered under a vacuum atmosphere to obtain a multi-phase ceramic, and the multi-phase ceramic is cut and formed to obtain a wavelength conversion element;
  • the RE 3+ :Al 2 O 3 powder is Yb 3+ :Al 2 O 3 powder and/or Nd 3+ , Yb 3+ :Al 2 O 3 powder.
  • the present invention also provides an illumination source comprising a laser source and a wavelength conversion element, the wavelength conversion element being a wavelength conversion element as described above.
  • the present invention forms a wavelength conversion element by using a multiphase ceramic in which a first phase RE 3+ :Al 2 O 3 crystal phase and a second phase Ce 3+ :YAG crystal phase are evenly interspersed, so as to include the wavelength conversion.
  • the illumination source of the component has a high color rendering index of a wide spectrum, which effectively improves the color unevenness in the exit spot, improves the light extraction efficiency of the light exit surface, and has good optical performance at higher temperatures. .
  • 1 is a schematic view showing the microstructure of a wavelength conversion element of the present invention
  • 2 is a spectrum of an emitted light of a first phase excited by 375 nm excitation light according to an embodiment of the present invention
  • Embodiment 3 is a spectrum of emitted light of a first phase excited by 980 nm excitation light according to Embodiment 2 of the present invention.
  • the present invention provides a wavelength conversion element, the material of which is a multiphase ceramic, and the composite ceramic includes a first phase 11 and a second phase 12 which are uniformly interspersed, the first The spectrum of the emitted light of one phase 11 and the spectrum of the excitation of second phase 12 have overlapping regions.
  • the spectrum of the emitted light of the first phase 11 refers to the spectrum of the laser light emitted by the first phase 11 after the excitation light is absorbed
  • the spectrum of the excitation light of the second phase 12 refers to the excitation light of the second phase for emitting the laser light. spectrum.
  • the spectrum of the emitted light of the first phase 11 and the spectrum of the excitation light of the second phase 12 have overlapping regions such that the first phase 11 is excited to emit a laser light, which can be used as the excitation light of the second phase 12.
  • the first phase 11 is a RE 3+ :Al 2 O 3 crystal phase
  • the second phase 12 is a Ce 3+ :YAG crystal phase, wherein RE is one or more of Ce, Yb and Nd.
  • the first phase RE 3+ :Al 2 O 3 crystal phase in the wavelength conversion element of the present invention is capable of converting light of a first wavelength distribution emitted by a laser light source into light of a second wavelength distribution, and then utilizing a second phase Ce 3+ :
  • the YAG crystal phase converts the light portion of the second wavelength distribution into light of the third wavelength distribution, and the light of the second wavelength distribution that is not completely converted is mixed with the light of the third wavelength distribution to obtain a high color rendering index illumination of a wider spectrum. light source.
  • the invention is not limited thereto, and other materials may be employed as the first phase and the second phase without departing from the spirit of the invention, thereby obtaining the desired illumination source.
  • the wavelength conversion component is a pure ceramic material, has good heat resistance and thermal conductivity, and has good optical properties at higher temperatures.
  • the laser component can be filtered by adding a filter or the like, such as setting a filter on the light-emitting surface of the wavelength conversion component, specifically, when When the laser light source is selected from an infrared laser or an ultraviolet laser, the filter can filter out infrared light or ultraviolet light.
  • the "filtering" may be light that reflects a corresponding wavelength, or may absorb light of a corresponding wavelength.
  • the invention also provides an illumination source comprising a laser source and a wavelength conversion element as described above.
  • the wavelength conversion element of the present invention will be described in detail below with reference to the embodiments.
  • the RE is Ce
  • the first phase RE 3+ : Al 2 O 3 crystal phase is the first phase Ce 3+ : Al 2 O 3 crystal phase
  • the wavelength conversion element is Ce 3+ a composite ceramic composed of YAG and Ce 3+ :Al 2 O 3 , wherein a molar ratio of Ce to (Ce+Al) in the first phase Ce 3+ :Al 2 O 3 crystal phase is 0.02-0.1, second The molar ratio of Ce to (Ce + Al) in the phase Ce 3+ :YAG crystal phase is 0.001-0.1, and the molar ratio of the Ce 3+ :Al 2 O 3 and Ce 3+ :YAG is 0.2-5.
  • the excitation light source is selected as a 375 nm ultraviolet laser, and the laser light source emits excitation light of a first wavelength of 375 nm to the wavelength conversion element, and the first phase Ce 3+ : Al 2 O 3 crystal in the wavelength conversion element.
  • the phase is converted into the light of the second wavelength distribution shown in FIG. 2, and the light of the second wavelength distribution includes a broad blue light spectrum of about 450 nm and a red light spectrum of about 575 nm to 600 nm, wherein the blue light of about 450 nm is further excited.
  • Ce 3+ :Al 2 O 3 obtains light of a third wavelength distribution, and the light of the third wavelength distribution is yellow-green light having a broad spectrum, and then the blue portion and the red portion of the second wavelength distribution are not completely converted.
  • the yellow-green light of the three-wavelength distribution constitutes a white light having a broad spectral distribution and a high color rendering index, and is then emitted from the surface of the wavelength conversion element.
  • the molar ratio of Ce 3+ :Al 2 O 3 and Ce 3+ :YAG needs to be limited, and if the content of Ce 3+ :Al 2 O 3 is small, the excitation light source is When the excitation light is incident on the wavelength conversion element, sufficient blue light cannot be obtained. At this time, the second phase Ce 3+ :YAG crystal phase cannot be completely excited to obtain yellow-green light; or, due to the first phase Ce 3+ : Al 2 O 3 The blue phase emitted by the crystal phase is rare and may be completely absorbed by the second phase Ce 3+ :YAG crystal phase, so that the finally emitted light is not mixed by the blue light and cannot constitute white light. Similarly, when other materials are used as the first phase RE 3+ :Al 2 O 3 crystal phase, those skilled in the art can adjust the content according to the characteristics of the material itself to obtain the desired light.
  • a filter may be disposed on the light-emitting surface of the wavelength conversion element to eliminate the ultraviolet component in the emitted light, so that The emitted light does not contain a laser component.
  • a method of preparing the above wavelength conversion element is provided below.
  • the preparation method comprises: after the Ce 3+ :Al 2 O 3 powder and the Ce 3+ :YAG powder are weighed according to a molar ratio of Ce 3+ :Al 2 O 3 and Ce 3+ :YAG of 0.2-5.
  • the ball mill is mixed with a ball milling solvent containing a sintering aid and a binder, and the ball-milled slurry is dried and sieved to obtain a raw material powder.
  • the raw material powder is pre-compressed, heat-treated, cooled and isostatically pressed to obtain a ceramic green body.
  • the ceramic green body is sintered in a vacuum atmosphere to obtain a multiphase ceramic, and the multiphase ceramic is cut and molded to obtain a wavelength conversion element.
  • Ce 3+ :YAG powder and Ce 3+ :Al 2 O 3 powder can be directly purchased, or Ce 3+ :Al can be obtained by a known powder preparation method such as a solid phase method or a liquid phase method.
  • 2 O 3 powder and Ce 3+ :YAG powder followed by weighing Ce 3+ :Al 2 O 3 powder according to a molar ratio of Ce 3+ :Al 2 O 3 and Ce 3+ :YAG of 0.2-5
  • Ce 3+ :YAG powder after setting a proper amount of a ball milling solvent containing a sintering aid and a binder, mixing with the above Ce 3+ :Al 2 O 3 powder and Ce 3+ :YAG powder, and then loading into a ball mill In the can.
  • Mg(NO 3 ) 2 and/or TEOS tetraethyl orthosilicate
  • PVB polyvinyl butyral
  • Any one or a combination of common ball milling media such as cetane, dodecane, methanol, n-butanol, ethylene glycol, isopropanol, water, carbon tetrachloride and N-methylpyrrolidone as a ball milling solvent, preferably Ground, the ball milling solvent is ethanol.
  • MgO formed after the decomposition of Mg(NO 3 ) 2 and the SiO 2 formed after the decomposition of TEOS act as a sintering aid in the subsequent sintering process.
  • Mg(NO 3 ) 2 is added in an amount of 0.2 wt% to 0.5 wt% of the total weight of Ce 3+ :Al 2 O 3 powder and Ce 3+ :YAG powder;
  • SiO 2 TEOS was added in an amount of 0.4 wt% to 0.8 wt% of the total weight of the Ce 3+ :Al 2 O 3 powder and the Ce 3+ :YAG powder.
  • PVB acts as a binder to aid in the formation of the ceramic body in an amount of 1% by weight based on the total weight of the Ce 3+ :Al 2 O 3 powder and the Ce 3+ :YAG powder.
  • the ball milling is carried out with an ultra-low wear rate zirconia ball, and the ball milling time is from 1 min to 120 min, preferably from 30 to 50 min. After the ball milling, the slurry is dried to obtain a dry powder, which is then granulated through a 150 mesh sieve to obtain a uniformly mixed raw material powder.
  • the raw material powder is pre-compressed at a pressure of 2.5 MPa to 10 MPa, and heat-treated at 900 ° C - 1000 ° C to remove organic matter in the green body, while decomposing Mg(NO 3 ) 2 into MgO, and decomposing TEOS into SiO 2 , and then 200MPa-250MPa under cold isostatic pressing, the ceramic green body is obtained, sintered in a vacuum atmosphere, the sintering temperature is 1700 ° C - 1800 ° C, and the temperature is kept for 30 min - 6 h, and the composition of Ce 3+ : YAG and Ce 3 + : Al 2 O 3 is obtained . Complex ceramics. Finally, the above-mentioned multiphase ceramic is cut and formed according to actual needs to obtain a wavelength conversion element.
  • the RE is Yb and/or Yb+Nd, that is, the first phase RE 3+ : Al 2 O 3 crystal phase is the first phase Yb 3+ : Al 2 O 3 crystal phase, or is the first One phase Nd 3+ , Yb 3+ : Al 2 O 3 crystal phase, or a crystal phase composed of Yb 3+ :Al 2 O 3 and Nd 3+ , Yb 3+ :Al 2 O 3 .
  • the molar ratio of Yb to (Yb+Al) is preferably 0.01-0.1;
  • One-phase RE 3+ :Al 2 O 3 crystal phase is the first phase Nd 3+ , Yb 3+ :Al 2 O 3 crystal phase, or Yb 3+ :Al 2 O 3 and Nd 3+ , Yb 3+ :
  • a crystal phase composed of Al 2 O 3 together a molar ratio of Nd to (Nd+Yb+Al) is 0.01-0.08, and a molar ratio of Yb to (Nd+Yb+Al) is 0.01-0.1, second phase
  • the molar ratio of Ce to (Ce+Al) in the Ce 3+ :YAG crystal phase is 0.001-0.1, and the molar ratio of the RE 3+ :Al 2 O 3 and Ce 3+ :
  • the RE may be one or more of Ce, Yb, and Nd.
  • the RE may also be Ce+Yb, and ultraviolet light and infrared light may be used together as an excitation light source.
  • a method of preparing the above wavelength conversion element is provided below.
  • the preparation method comprises: weighing RE 3+ : Al 2 O 3 powder and Ce 3+ :YAG according to a molar ratio of RE 3+ :Al 2 O 3 and Ce 3+ :Al 2 O 3 of 0.5-10. After the powder is mixed with a ball milling solvent containing a sintering aid and a binder, the ball mill is dried, and the ball-milled slurry is dried and sieved to obtain a raw material powder, which is obtained by pre-compression, heat treatment, cold isostatic pressing.
  • the ceramic green body is sintered in a vacuum atmosphere to obtain a multi-phase ceramic, and the multi-phase ceramic is cut and formed to obtain a wavelength conversion element, wherein the RE 3+ :Al 2 O 3 powder is Yb 3+ :Al 2 O 3 Powder and / or Nd 3 + , Yb 3 + : Al 2 O 3 powder.
  • 3 is a spectrum of emitted light of a first phase excited by 980 nm excitation light in Embodiment 2 of the present invention, wherein curve 1 is an emission spectrum of 0.05 Nd 3+ , 0.06 Yb 3+ : Al 2 O 3 , and curve 2 is The emission spectrum of 0.06Yb 3+ :Al 2 O 3 . As shown in FIG.
  • the excitation light source is selected as an infrared laser of 980 nm, and the laser light source emits excitation light of a first wavelength of 980 nm and is incident on the wavelength conversion element, and the first phase in the wavelength conversion element is 0.06Yb 3+ : Al 2 O 3 . Converted to 0.05Nd 3+ , 0.06Yb 3+ :Al 2 O 3 to light of a second wavelength distribution as shown in FIG.
  • the light of the second wavelength distribution being a blue-green of a broad spectrum of 460 nm to 520 nm
  • the blue component of the light of the second wavelength distribution further excites Ce 3+ :YAG to obtain light of a third wavelength distribution, and the light of the third wavelength distribution is yellow-green light of a broad spectrum, and then the light of the second wavelength distribution is not
  • the fully converted blue-green light and the yellow-green light of the third wavelength distribution constitute white light having a broad spectral distribution and a high color rendering index, and are then emitted from the surface of the wavelength conversion element.
  • the relative amounts of the first phase and the second phase and/or the amount of impurities of the rare earth doped ions in the two phases can be obtained. Since the first phase and the second phase of the wavelength conversion element are uniformly mixed at the grain level (micrometer scale), the second wavelength distribution light and the third wavelength of the final output white light are uniformly mixed, which can effectively improve the conventional laser illumination scheme. In the middle of the phenomenon of white light color unevenness.
  • a filter may be disposed on the light-emitting surface of the wavelength conversion element to eliminate the infrared component in the emitted light, so that The emitted light does not contain a laser component.
  • the present invention forms a wavelength conversion element by using a multiphase ceramic in which a first phase RE 3+ :Al 2 O 3 crystal phase and a second phase Ce 3+ :YAG crystal phase are evenly interspersed, so as to include the wavelength conversion.
  • the illumination source of the component has a high color rendering index of a wide spectrum, which effectively improves the color unevenness in the exit spot, improves the light extraction efficiency of the light exit surface, and has good optical performance at higher temperatures. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种波长转换元件及其制备方法、照明光源,波长转换元件的材质为复相陶瓷,该复相陶瓷包括均匀穿插分布的第一相和第二相,第一相的发射光光谱和第二相的激发光光谱有重叠区域。将第一相RE 3+:Al 2O 3晶相和第二相Ce 3+:YAG晶相均匀穿插分布的复相陶瓷制成波长转换元件,使得包含该波长转换元件的照明光源拥有较宽光谱的高显色指数,有效的改善出射光斑中颜色不均的现象,提高了出光面的光提取效率,并且其在较高温度下仍具有良好的光学性能。

Description

波长转换元件及其制备方法、照明光源 技术领域
本发明涉及一种波长转换元件及其制备方法、照明光源,属于照明光源制造技术领域。
背景技术
目前,照明行业中具有前景的两大照明方式为LED照明和激光照明,但LED存在亮度较低、效率骤降等问题。激光二极管通过激发光源激发荧光材料进行白光照明,具有电光转换效率高、亮度高、无效率骤降现象和体积小等优势,常用激发光源产生照明白光的方案是使用激光荧光方案:蓝色激光作为光源,激发黄色荧光材料,转换得到的黄光和未被转换的蓝光混合得到白光。该方案中,荧光材料的性能对照明光源的整体性能影响显著。
传统的荧光材料通常是利用硅胶封装荧光粉制备的,但是硅胶仅能够在200℃下长期工作,在250℃-300℃只能短时间工作,否则就有可能分解。而随着激发光源的功率的提高,荧光粉片的温度会超过250℃,有可能造成荧光粉片的稳定性下降甚至开裂。利用耐高温的无机粘接剂或玻璃粉代替硅胶,可以有效的提高荧光材料的耐高温性能,但这种荧光转换材料仍然存在热导率低、使用温度较低(500℃-600℃)等问题。
陶瓷材料与玻璃相比,热导率更高,且可以承受更高的温度,因而在高功率激光显示领域,具有广阔的应用前景。常用的陶瓷荧光材料可以分为两类,一类为用Al 2O 3等陶瓷作为粘结剂封装荧光粉,另一类为直接制备荧光陶瓷,为提高出光效率。这两类陶瓷荧光材料均具有较好的耐热性,在较高温度下仍然具有较高的发光效率,但也存在着发光波长单一、不利于得到高显色指数的照明白光等问题。此外,由于上述方案的白光中蓝光成分来源于激光光源,黄光成分来源于荧 光材料,二者光学扩展量相差较大,输出白光中存在蓝光和黄光混合不均匀的现象。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种波长转换元件及其制备方法、照明光源,通过将第一相RE 3+:Al 2O 3晶相和第二相Ce 3+:YAG晶相均匀穿插分布的复相陶瓷制成波长转换元件,使得包含该波长转换元件的照明光源拥有了较宽光谱的高显色指数,有效的改善了出射光斑中颜色不均的现象,提高了出光面的光提取效率,并且其在较高温度下仍具有良好的光学性能。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种波长转换元件,所述波长转换元件的材质为复相陶瓷,所述复相陶瓷包括均匀穿插分布的第一相和第二相,所述第一相的发射光光谱和第二相的激发光光谱有重叠区域。
其中,所述第一相为RE 3+:Al 2O 3晶相,第二相为Ce 3+:YAG晶相,其中,RE为Ce、Yb及Nd中的一种或多种。
为了使出射光中不含激光成分,解决激光照明存在的安全隐患,所述波长转换元件的出光表面设有滤光片。
优选地,所述第一相为Ce 3+:Al 2O 3晶相,所述Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1,所述Ce 3+:YAG晶相中Ce与(Ce+Al)的摩尔比为0.001-0.1;Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5。
优选地,所述第一相为Yb 3+:Al 2O 3晶相,所述Yb 3+:Al 2O 3晶相中Yb和(Yb+Al)的摩尔比为0.01-0.1,所述Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1;Yb 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10。
优选地,所述Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1;所述第一相为Nd 3+,Yb 3+:Al 2O 3晶相,或者第一相为Yb 3+:Al 2O 3与Nd 3+,Yb 3+:Al 2O 3共同组成的晶相,其中,Nd和(Nd+Yb+Al)的摩尔比为0.01-0.08,且Yb和(Nd+Yb+Al)的摩尔比为0.01-0.1;RE 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10。
本发明还提供一种波长转换元件的制备方法,所述制备方法包括: 按照Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5,称取Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体后与包含烧结助剂、粘结剂的球磨溶剂混合球磨,将球磨后的浆料干燥后过筛造粒得到原料粉,所述原料粉经预压制、热处理、冷等静压后得到陶瓷素坯,在真空气氛下烧结陶瓷素坯,获得复相陶瓷,对复相陶瓷切割成型得到波长转换元件。
本发明还提供另一种波长转换元件的制备方法,所述制备方法包括:按照RE 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10,称取RE 3+:Al 2O 3粉体和Ce 3+:YAG粉体后与包含烧结助剂、粘结剂的球磨溶剂混合球磨,将球磨后的浆料干燥后过筛造粒得到原料粉,所述原料粉经预压制、热处理、冷等静压后得到陶瓷素坯,在真空气氛下烧结陶瓷素坯,获得复相陶瓷,对复相陶瓷切割成型得到波长转换元件;
其中,RE 3+:Al 2O 3粉体为Yb 3+:Al 2O 3粉体和/或Nd 3+,Yb 3+:Al 2O 3粉体。
本发明还提供一种照明光源,所述照明光源包括激光光源和波长转换元件,所述波长转换元件为如上所述的波长转换元件。
综上所述,本发明将第一相RE 3+:Al 2O 3晶相和第二相Ce 3+:YAG晶相均匀穿插分布的复相陶瓷制成波长转换元件,使得包含该波长转换元件的照明光源拥有了较宽光谱的高显色指数,有效的改善了出射光斑中颜色不均的现象,提高了出光面的光提取效率,并且其在较高温度下仍具有良好的光学性能。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明波长转换元件的微观结构示意图;
图2为本发明实施例一第一相在375nm激发光激发下的发射光光谱;
图3为本发明实施例二第一相在980nm激发光激发下的发射光光谱。
具体实施方式
图1为本发明波长转换元件的微观结构示意图。如图1所示,本 发明提供一种波长转换元件,所述波长转换元件的材质为复相陶瓷,所述复相陶瓷包括均匀穿插分布的第一相11和第二相12,所述第一相11的发射光光谱和第二相12的激发光光谱有重叠区域。其中,第一相11的发射光光谱是指第一相11吸收激发光后发出的受激光的光谱,第二相12的激发光光谱是指第二相为了发出受激光所需要的激发光的光谱。所述第一相11的发射光光谱和第二相12的激发光光谱有重叠区域,使得第一相11受激发后发射受激光,该受激光可以作为第二相12的激发光。优选地,第一相11为RE 3+:Al 2O 3晶相,第二相12为Ce 3+:YAG晶相,其中,RE为Ce、Yb及Nd中的一种或多种。
本发明波长转换元件中的第一相RE 3+:Al 2O 3晶相能够将激光光源发出的第一波长分布的光转换为第二波长分布的光,之后利用第二相Ce 3+:YAG晶相将第二波长分布的光部分转换为第三波长分布的光,未被完全转换的第二波长分布的光与第三波长分布的光混合,得到较宽光谱的高显色指数照明光源。本发明并不以此为限,还可以在不偏离本发明的精神的情况下采用其他材料来作为第一相和第二相,从而得到所需要的照明光源。
由于上述两种晶相在晶粒级别均匀混合,有效的改善了出射光斑中颜色不均的现象。此外,该波长转换元件的不同晶相之间具有折射率差,有利于提高出光面的光提取效率。同时,该波长转换元件为纯陶瓷材料,具有较好的耐热性和热导率,在较高温度下仍具有良好的光学性能。
为了使出射光中不含激光成分,解决激光照明存在的安全隐患,可通过增加滤光片等方式将激光成分滤波,如在所述波长转换元件的出光表面设置滤光片,具体的,当激光光源选用红外激光或紫外激光时,所述滤光片可以过滤掉红外光或紫外光,此处“过滤”可以是反射相应波长的光,也可以是吸收相应波长的光。
本发明还提供一种照明光源,所述照明光源包括激光光源以及如上所述的波长转换元件。
下面结合实施例对本发明中波长转换元件进行详细介绍。
实施例一
在本实施例中,所述RE为Ce,即第一相RE 3+:Al 2O 3晶相为第一相Ce 3+:Al 2O 3晶相,所述波长转换元件为Ce 3+:YAG和Ce 3+:Al 2O 3组成的复相陶瓷,其中,第一相Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1,第二相Ce 3+:YAG晶相中Ce与(Ce+Al)的摩尔比为0.001-0.1,所述Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5。
图2为本发明实施例一中第一相在375nm激发光激发下的发射光光谱。如图2所示,激发光源选取为375nm的紫外激光器,激光光源发出375nm的第一波长的激发光入射至波长转换元件,被波长转换元件中的第一相Ce 3+:Al 2O 3晶相转换为图2中所示的第二波长分布的光,所述第二波长分布的光包括450nm左右的较宽的蓝光光谱和575nm-600nm左右的红光光谱,其中450nm左右的蓝光进一步激发Ce 3+:Al 2O 3得到第三波长分布的光,第三波长分布的光为光谱较宽的黄绿光,之后第二波长分布的光中未被完全转换的蓝光部分和红光部分与第三波长分布的黄绿光构成了光谱分布较宽、显色指数较高的白光,进而从波长转换元件表面出射。
通过调控Ce 3+:YAG和Ce 3+:Al 2O 3的相对含量和/或Ce离子在两相中的参杂量,可得到不同色温和显色指数的白光输出。由于波长转换元件中第一相RE 3+:Al 2O 3晶相和第二相Ce 3+:YAG晶相在晶粒级别(微米尺度)均匀混合,因而最终输出的白光中第二波长分布的光和第三波长混合较为均匀,可有效改善传统激光照明方案中出射白光光色不均匀的现象。
需要补充的是,在本实施例中,需要对Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比进行限定,若Ce 3+:Al 2O 3的含量较少,在激发光源发出激发光入射至波长转换元件时,无法得到足够的蓝光,此时,第二相Ce 3+:YAG晶相不能完全被激发得到黄绿光;或者,由于第一相Ce 3+:Al 2O 3晶相发出的蓝光很少,可能被第二相Ce 3+:YAG晶相完全吸收,使得最终出射的光没有经过蓝光混合,无法构成白光。类似的,在采用其他材料作为第一相RE 3+:Al 2O 3晶相时,本领域技术人员可以根据材料自身的特性对其含量进行调整,以获得需要的光。
进一步地,为了解决传统激光照明方案中使用部分蓝光激发光作 为出射光带来的安全问题,本实施例中可在波长转换元件的出光表面设置滤光片,消除出射光中的紫外成分,使得出射光中不含激光成分。
下面提供一种上述波长转换元件的制备方法。
所述制备方法包括:按照Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5,称取Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体后与包含烧结助剂、粘结剂的球磨溶剂混合球磨,将球磨后的浆料干燥后过筛造粒得到原料粉,所述原料粉经预压制、热处理、冷等静压后得到陶瓷素坯,在真空气氛下烧结陶瓷素坯,获得复相陶瓷,对复相陶瓷切割成型得到波长转换元件。
具体来说,可以直接购买商用的Ce 3+:YAG粉体和Ce 3+:Al 2O 3粉体,或者采用固相法或液相法等公知的粉体制备方法得到Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体,之后按照Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5,称取Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体,配置适量的含烧结助剂和粘结剂的球磨溶剂后,与上述Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体混合后装入球磨罐中。优选地,选用Mg(NO 3) 2和/或TEOS(四乙基原硅酸盐)作为烧结助剂,选用PVB(聚乙烯醇缩丁醛)作为粘结剂,选用乙醇、硬脂酸、十六烷烃、十二烷烃、甲醇、正丁醇、乙二醇、异丙醇、水、四氯化碳和N-甲基吡咯烷酮等常用球磨介质中的任一种或组合作为球磨溶剂,优选地,球磨溶剂为乙醇。Mg(NO 3) 2分解之后生成的MgO与TEOS分解之后生成的SiO 2在后续烧结过程中起到烧结助剂的作用。按照MgO的理论添加量为Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体总重量的0.2wt%-0.5wt%添加Mg(NO 3) 2;按照SiO 2的理论添加量为Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体总重量的0.4wt%-0.8wt%添加TEOS。PVB作为粘结剂,有助于陶瓷坯体成型,添加量为Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体总重量的1wt%。用超低磨失率的氧化锆球进行球磨,球磨时间为1min-120min,优选为30-50min。球磨后,将浆料干燥得到干粉,之后过150目筛造粒,得到混合均匀的原料粉。将该原料粉在2.5MPa-10MPa压强下进行预压制,在900℃-1000℃热处理,除去坯体中的有机物,同时使得Mg(NO 3) 2分解为MgO,TEOS分解为SiO 2,然后在200MPa-250MPa下冷等静压,得到陶瓷素坯,在真空气氛下烧结, 烧结温度为1700℃-1800℃,保温30min-6h,获得Ce 3+:YAG和Ce 3+:Al 2O 3组成的复相陶瓷。最后按照实际需要将上述复相陶瓷切割成型,得到波长转换元件。
实施例二
在本实施例中,所述RE为Yb和/或Yb+Nd,即第一相RE 3+:Al 2O 3晶相为第一相Yb 3+:Al 2O 3晶相,或者为第一相Nd 3+,Yb 3+:Al 2O 3晶相,或者为Yb 3+:Al 2O 3与Nd 3+,Yb 3+:Al 2O 3共同组成的晶相。其中,当第一相RE 3+:Al 2O 3晶相为第一相Yb 3+:Al 2O 3晶相时,Yb和(Yb+Al)的摩尔比优选为0.01-0.1;当第一相RE 3+:Al 2O 3晶相为第一相Nd 3+,Yb 3+:Al 2O 3晶相时,或者为Yb 3+:Al 2O 3与Nd 3+,Yb 3+:Al 2O 3共同组成的晶相时,Nd和(Nd+Yb+Al)的摩尔比为0.01-0.08,且Yb和(Nd+Yb+Al)的摩尔比为0.01-0.1,第二相Ce 3+:YAG晶相中Ce与(Ce+Al)的摩尔比为0.001-0.1,所述RE 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10。
需要补充的是,上述两个实施例分别为采用了RE为Ce,以及所述RE为Yb和/或Yb+Nd的实施例,但本发明并不以此为限,对于本领域的普通技术人员来讲,在本发明原理的基础上,显然还可以在不偏离本发明的精神的情况下想到除了上述实施方式以外的其它替换实施方式。所述RE可以为Ce、Yb及Nd中的一种或多种,例如,所述RE还可以为Ce+Yb,此时可以采用紫外光和红外光共同作为激发光源。
下面提供一种上述波长转换元件的制备方法。
所述制备方法包括:按照RE 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10,称取RE 3+:Al 2O 3粉体和Ce 3+:YAG粉体后与包含烧结助剂、粘结剂的球磨溶剂混合球磨,将球磨后的浆料干燥后过筛造粒得到原料粉,所述原料粉经预压制、热处理、冷等静压后得到陶瓷素坯,在真空气氛下烧结陶瓷素坯,获得复相陶瓷,对复相陶瓷切割成型得到波长转换元件,其中,RE 3+:Al 2O 3粉体为Yb 3+:Al 2O 3粉体和/或Nd 3+,Yb 3+:Al 2O 3粉体。
上述制备方法中的具体步骤和工艺参数与实施例一类似,本领域技术人员可以根据实际需要进行调整,在此不再赘述。
下面以波长转换元件的第一相为0.06Yb 3+:Al 2O 3和0.05Nd 3+,0.06Yb 3+:Al 2O 3复相陶瓷进行介绍。图3为本发明实施例二中第一相在980nm激发光激发下的发射光光谱,其中,曲线1为0.05Nd 3+,0.06Yb 3+:Al 2O 3的发射光光谱,曲线2为0.06Yb 3+:Al 2O 3的发射光光谱。如图3所示,激发光源选取为980nm的红外激光器,激光光源发出980nm的第一波长的激发光入射至波长转换元件,被波长转换元件中的第一相0.06Yb 3+:Al 2O 3与0.05Nd 3+,0.06Yb 3+:Al 2O 3转换为图3中所示的第二波长分布的光,所述第二波长分布的光为460nm-520nm的较宽谱线的蓝绿光,第二波长分布的光中的蓝光成分进一步激发Ce 3+:YAG得到第三波长分布的光,第三波长分布的光为光谱较宽的黄绿光,之后第二波长分布的光中未被完全转换的蓝绿光与第三波长分布的黄绿光构成了光谱分布较宽、显色指数较高的白光,进而从波长转换元件表面出射。
通过调控第一相与第二相的相对含量和/或稀土参杂离子在两相中的参杂量,可得到不同色温和显色指数的白光输出。由于波长转换元件中第一相和第二相在晶粒级别(微米尺度)均匀混合,因而最终输出的白光中第二波长分布的光和第三波长混合较为均匀,可有效改善传统激光照明方案中出射白光光色不均匀的现象。
进一步地,为了解决传统激光照明方案中使用部分蓝光激发光作为出射光带来的安全问题,本实施例中可在波长转换元件的出光表面设置滤光片,消除出射光中的红外成分,使得出射光中不含激光成分。
综上所述,本发明将第一相RE 3+:Al 2O 3晶相和第二相Ce 3+:YAG晶相均匀穿插分布的复相陶瓷制成波长转换元件,使得包含该波长转换元件的照明光源拥有了较宽光谱的高显色指数,有效的改善了出射光斑中颜色不均的现象,提高了出光面的光提取效率,并且其在较高温度下仍具有良好的光学性能。

Claims (9)

  1. 一种波长转换元件,所述波长转换元件的材质为复相陶瓷,其特征在于,所述复相陶瓷包括均匀穿插分布的第一相(11)和第二相(12),所述第一相的发射光光谱和第二相的激发光光谱有重叠区域。
  2. 如权利要求1所述的波长转换元件,其特征在于,所述第一相(11)为RE 3+:Al 2O 3晶相,第二相(12)为Ce 3+:YAG晶相,其中,RE为Ce、Yb及Nd中的一种或多种。
  3. 如权利要求2所述的波长转换元件,其特征在于,所述波长转换元件的出光表面设有滤光片。
  4. 如权利要求2所述的波长转换元件,其特征在于,所述第一相(11)为Ce 3+:Al 2O 3晶相,所述Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1,所述Ce 3+:YAG晶相中Ce与(Ce+Al)的摩尔比为0.001-0.1;Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5。
  5. 如权利要求2所述的波长转换元件,其特征在于,所述第一相(11)为Yb 3+:Al 2O 3晶相,所述Yb 3+:Al 2O 3晶相中Yb和(Yb+Al)的摩尔比为0.01-0.1,所述Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1;Yb 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10。
  6. 如权利要求2所述的波长转换元件,其特征在于,所述Ce 3+:Al 2O 3晶相中Ce与(Ce+Al)的摩尔比为0.02-0.1;所述第一相(11)为Nd 3+,Yb 3+:Al 2O 3晶相,或者第一相为Yb 3+:Al 2O 3与Nd 3+,Yb 3+:Al 2O 3共同组成的晶相,其中,Nd和(Nd+Yb+Al)的摩尔比为0.01-0.08,且Yb和(Nd+Yb+Al)的摩尔比为0.01-0.1;RE 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10。
  7. 一种波长转换元件的制备方法,其特征在于,所述制备方法包 括:按照Ce 3+:Al 2O 3和Ce 3+:YAG的摩尔比为0.2-5,称取Ce 3+:Al 2O 3粉体和Ce 3+:YAG粉体后与包含烧结助剂、粘结剂的球磨溶剂混合球磨,将球磨后的浆料干燥后过筛造粒得到原料粉,所述原料粉经预压制、热处理、冷等静压后得到陶瓷素坯,在真空气氛下烧结陶瓷素坯,获得复相陶瓷,对复相陶瓷切割成型得到波长转换元件。
  8. 一种波长转换元件的制备方法,其特征在于,所述制备方法包括:按照RE 3+:Al 2O 3和Ce 3+:Al 2O 3的摩尔比为0.5-10,称取RE 3+:Al 2O 3粉体和Ce 3+:YAG粉体后与包含烧结助剂、粘结剂的球磨溶剂混合球磨,将球磨后的浆料干燥后过筛造粒得到原料粉,所述原料粉经预压制、热处理、冷等静压后得到陶瓷素坯,在真空气氛下烧结陶瓷素坯,获得复相陶瓷,对复相陶瓷切割成型得到波长转换元件;
    其中,RE 3+:Al 2O 3粉体为Yb 3+:Al 2O 3粉体和/或Nd 3+,Yb 3+:Al 2O 3粉体。
  9. 一种照明光源,所述照明光源包括激光光源和波长转换元件,其特征在于,所述波长转换元件为权利要求1-6中任一项所述的波长转换元件。
PCT/CN2018/110330 2018-03-16 2018-10-16 波长转换元件及其制备方法、照明光源 WO2019174225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219116.2 2018-03-16
CN201810219116.2A CN110272279B (zh) 2018-03-16 2018-03-16 波长转换元件及其制备方法、照明光源

Publications (1)

Publication Number Publication Date
WO2019174225A1 true WO2019174225A1 (zh) 2019-09-19

Family

ID=67908608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110330 WO2019174225A1 (zh) 2018-03-16 2018-10-16 波长转换元件及其制备方法、照明光源

Country Status (2)

Country Link
CN (1) CN110272279B (zh)
WO (1) WO2019174225A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806577A (zh) * 2021-01-22 2022-07-29 中强光电股份有限公司 波长转换材料及其制造方法、波长转换装置以及投影装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555128A (zh) * 2003-01-20 2009-10-14 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
CN206669352U (zh) * 2017-01-25 2017-11-24 深圳市绎立锐光科技开发有限公司 一种荧光模块及相关光源
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712768B2 (ja) * 2010-05-10 2015-05-07 信越化学工業株式会社 波長変換部材、発光装置、及び波長変換部材の製造方法
JP2013203762A (ja) * 2012-03-27 2013-10-07 Shin-Etsu Chemical Co Ltd 波長変換部品及びその製造方法並びに発光装置
US11286419B2 (en) * 2016-07-29 2022-03-29 The Regents Of The University Of California Ce:YAG/A12O3 composites for laser-excited solid-state white lighting
CN107689554B (zh) * 2016-08-06 2020-10-20 深圳光峰科技股份有限公司 一种波长转换装置及其制备方法、发光装置和投影装置
CN107540369B (zh) * 2017-02-28 2020-05-15 江苏罗化新材料有限公司 发光陶瓷、led封装结构及发光陶瓷的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555128A (zh) * 2003-01-20 2009-10-14 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
CN206669352U (zh) * 2017-01-25 2017-11-24 深圳市绎立锐光科技开发有限公司 一种荧光模块及相关光源
CN107540368A (zh) * 2017-02-28 2018-01-05 江苏罗化新材料有限公司 复相半透明荧光陶瓷的制备方法和led模组

Also Published As

Publication number Publication date
CN110272279A (zh) 2019-09-24
CN110272279B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
Zhou et al. Efficient spectral regulation in Ce: Lu 3 (Al, Cr) 5 O 12 and Ce: Lu 3 (Al, Cr) 5 O 12/Ce: Y 3 Al 5 O 12 transparent ceramics with high color rendering index for high-power white LEDs/LDs
Liu et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices
Tang et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs
Park et al. Phosphor in glass with Eu3+ and Pr3+-doped silicate glasses for LED color conversion
Yi et al. Fabrication of Ce: YAG, Ce, Cr: YAG and Ce: YAG/Ce, Cr: YAG dual-layered composite phosphor ceramics for the application of white LEDs
JP5454473B2 (ja) 蛍光体セラミックス及びその製造方法、並びに発光素子
EP3543221B1 (en) Light-emitting ceramic and light-emitting device
US9085733B2 (en) Yttrium aluminum garnet phosphor, method for preparing the same, and light-emitting diode containing the same
WO2017211135A1 (zh) 一种发光陶瓷
CN101325238B (zh) 白光发光二极管及其发光转换层
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
CN106479500A (zh) 一种发光玻璃陶瓷及其制法与在led照明器件中的应用
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
WO2018028265A1 (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
WO2009083867A1 (en) Color filter for a light emitting device
Tian et al. Optimization of Ce3+ concentration and Y4MgSi3O13 phase in Mg2+‐Si4+ Co‐doped Ce: YAG ceramic phosphors
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
WO2019174225A1 (zh) 波长转换元件及其制备方法、照明光源
TWI510448B (zh) Wideband luminescent materials and white light luminescent materials
Liu et al. Spectrum regulation of YAG: Ce/YAG: Cr/YAG: Pr phosphor ceramics with barcode structure prepared by tape casting
KR102295679B1 (ko) 형광체 및 발광 장치
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
Lin et al. Eu3+ doped (Y0. 75Sc0. 25) 2O3 red-emitting ceramics with excellent photoluminescence properties for LEDs
CN114497326A (zh) 一种荧光转换复合层及制备方法和白光发光器件
CN109020558B (zh) 一种大功率暖白光固态照明用SiAlON荧光透明陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909819

Country of ref document: EP

Kind code of ref document: A1