WO2019174029A1 - 一种燃料电池用复合双极板及其双通道三维流场 - Google Patents

一种燃料电池用复合双极板及其双通道三维流场 Download PDF

Info

Publication number
WO2019174029A1
WO2019174029A1 PCT/CN2018/079265 CN2018079265W WO2019174029A1 WO 2019174029 A1 WO2019174029 A1 WO 2019174029A1 CN 2018079265 W CN2018079265 W CN 2018079265W WO 2019174029 A1 WO2019174029 A1 WO 2019174029A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
bipolar plate
expanded graphite
plate
flow
Prior art date
Application number
PCT/CN2018/079265
Other languages
English (en)
French (fr)
Inventor
王树博
谢晓峰
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2018/079265 priority Critical patent/WO2019174029A1/zh
Priority to CN201880002716.1A priority patent/CN109496373B/zh
Publication of WO2019174029A1 publication Critical patent/WO2019174029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections

Definitions

  • the invention relates to a composite bipolar plate for a proton exchange membrane fuel cell and a flow field design.
  • Hydrogen energy is a kind of green renewable new energy source
  • the proton exchange membrane fuel cell is a green power generation device that uses hydrogen as a fuel to directly convert chemical energy in hydrogen into electric energy and discharge only water.
  • the fuel cell technology has been widely used in stationary power stations, portable power sources, electric vehicle drive power sources and the like.
  • Bipolar plate is one of the key materials for proton exchange membrane fuel cells. It plays an important role in supporting the electrode, separating the anode and cathode gas, transporting gaseous fuel, and conducting electrons in the fuel cell.
  • the fuel gas is transported in the flow field trough, and the gas diffusion layer in the membrane electrode diffuses to the surface of the catalytic layer to generate an electrochemical reaction to generate electricity; the moisture generated on the surface of the catalytic layer during the power generation process first passes through the membrane electrode.
  • the gas diffusion layer diffuses to the outer surface of the electrode, and the fuel cell is discharged through the flow of the gas in the flow field groove; and the flow field ridge cannot transport the gas, and only acts as a conduction electron.
  • the object of the present invention is to solve the problems in the prior art and to provide a composite bipolar plate for a fuel cell, which has a special three-dimensional flow field design and can avoid the "flooding" phenomenon of the fuel cell.
  • a composite bipolar plate for a fuel cell having a three-layer structure, characterized in that the three-layer structure is composed of a low gas permeability composite carbon plate disposed in the middle and a porous layer disposed on both sides of the low gas permeability composite carbon plate
  • the gas-permeable expanded graphite plate is composed of a three-dimensional flow field engraved on the porous gas-permeable expanded graphite plate.
  • the three-dimensional flow field is composed of a "lower width and upper narrow" flow channel and a traditional rectangular cross-section flow channel, and the "lower width and upper narrow” flow path remains normal. When closed, the state is opened when needed; the rectangular cross-section flow path remains normally open.
  • the section of the "wide" flow passage in the "lower width and upper narrow” flow passage has a rectangular cross section, and the section of the "narrow” flow passage has an isosceles trapezoidal shape.
  • the rectangular cross-section flow path is the same as the "lower width and upper narrow" flow path inlet, taking a single channel; the flow field exit adopts a dual channel design.
  • the low gas permeability composite carbon plate refers to a porous expanded graphite plate subjected to vacuum impregnation of a phenol resin solution.
  • the "lower and upper narrow” flow path is closed when it is normal, and the open state when needed means that the forced gas reaches a flow perpendicular to the plane of the bipolar plate in the closed state, achieving three-dimensional mass transfer of gas, and is prohibited by higher pressure. Moisture enters, effectively avoiding flooding, and if there is moisture entering the "lower and narrower” flow path, the water is discharged by opening the outlet.
  • the invention also provides a preparation method of a composite bipolar plate for a fuel cell, comprising the following steps:
  • Step 1) using a porous expanded graphite plate as a substrate, vacuum impregnation, washing and drying of the phenolic resin solution to obtain a low gas permeability composite carbon plate;
  • Step 2 placing two porous expanded graphite sheets of the same size on both sides of the low gas permeability composite carbon plate;
  • Step 3 forming a low gas permeability composite carbon plate and porous expanded graphite sheets on both sides by hot press forming, and cooling to obtain a bipolar plate;
  • Step 4 three-dimensional flow field engraving is performed on the porous expanded graphite plate of the bipolar plate; the three-dimensional flow field engraved on the porous expanded graphite plate is arranged in a "lower width and narrower" flow path than the conventional rectangular cross-section flow path.
  • the section of the "wide" flow passage in the "lower width and upper narrow” flow passage has a rectangular cross section, and the section of the "narrow” flow passage has an isosceles trapezoidal shape.
  • the rectangular cross-section flow path is the same as the "lower width and upper narrow” flow path inlet, adopting a single channel, the flow field exit adopts a dual-channel design, the rectangular cross-section flow path outlet adopts a normally open control, and the "lower width and upper narrow” flow path adopts "time" Open and close control.
  • step 1) The specific process in step 1) is:
  • Drying the expanded graphite plate subjected to the ethanol cleaning surface and the drying procedure and conditions are: drying at 40 ° C for 5 hours ⁇ drying at 60 ° C for 5 hours ⁇ drying at 80 ° C for 5 hours.
  • the hot pressing conditions of the hot press forming treatment in the step 3) were 15 MPa, 130 ° C, and 1 hour.
  • the composite bipolar plate preparation method and the three-dimensional flow field design provided by the invention patent firstly make the material of the flow channel groove portion and the ridge portion different by the three-layer composite bipolar plate preparation, and the groove portion is a low gas permeability composite graphite.
  • the plate ensures low gas permeability; the ridge portion is a porous expanded graphite plate, so that the reaction gas and the generated moisture can also be transmitted through the porous structure of the plate, thereby effectively increasing the effective area of gas transmission and improving the efficiency of water discharge;
  • the flow field design is arranged by the spacing between the "lower width and the upper narrow” and the traditional rectangular cross-section flow channel, forcing the reaction gas to obtain a flow direction perpendicular to the plane of the composite bipolar plate, realizing the three-dimensional flow of the reaction gas, improving the gas mass transfer process, and passing Forcing moisture to pass through the traditional rectangular section without affecting the transmission of gas in the "lower and narrower” flow channels, achieving the sub-channel transmission of gas and moisture, effectively reducing the probability of "flooding" of the fuel cell during long-term operation.
  • the invention improves the effective transmission area of the fuel gas, enhances the mass transfer process of the gas, prevents the "water flooding” phenomenon of the fuel cell, and improves the power generation performance of the fuel cell by improving the preparation method of the composite bipolar plate and the three-dimensional flow field design.
  • the purpose of running stability is not limited
  • FIG. 1 is a schematic cross-sectional structural view of a composite bipolar plate for a fuel cell according to the present invention
  • Figure 2 is a schematic diagram of the structure of a "single channel" flow field at the inlet of the flow field;
  • Figure 3 is a schematic diagram of the structure of the "two-channel" flow field at the outlet of the flow field.
  • a composite bipolar plate for a fuel cell has a three-layer structure, and the intermediate layer 1 is composed of a low gas permeability composite carbon plate, and is not engraved in the subsequent flow field engraving process.
  • the loss, as part of the flow field groove, functions to separate the anode and cathode reaction gases;
  • the two sides of the intermediate layer 1 are composed of an expanded graphite plate 2 having a porous structure, and are engraved by the subsequent flow field to form a ridge portion of the composite bipolar plate, so that The reaction gas and the water generated during the power generation process can be transported in the porous structure, and the effect of increasing the effective area of the reaction gas transmission and improving the drainage efficiency of the fuel cell can be exerted.
  • the three-dimensional flow field engraved on the expanded graphite plate 2 is a flow field which is arranged in a "lower width and upper narrow" structure flow path 3 and a conventional rectangular cross-section flow path 4.
  • the "two-channel” control is adopted at the exit of the flow field, and the "open-time-closed” control is adopted at the exit of the flow channel 3 of the "lower width and upper narrow” structure, and the conventional rectangular cross-section flow path 4 adopts the normally open control.
  • the "time-opening-closed" control strategy of the "lower-width-narrow" structural flow channel when the flow channel is in the "closed" state, on the one hand, the internal pressure of the flow channel can be increased, and the reaction gas is forced to be in the vertical bipolar plate plane.
  • the direction flows to achieve three-dimensional flow of the reaction gas; on the other hand, the higher gas pressure and the trapezoidal structure of the flow channel can force the generated water to diffuse or flow to the adjacent conventional rectangular cross-section flow path, thereby ensuring efficient internal flow of the flow path.
  • the gas is transported without affecting the gas transmission efficiency due to the ingress of moisture; the "on" state is an emergency backup valve.
  • the composite bipolar plate is prepared as follows:
  • Step 1 Using a porous expanded graphite sheet having a thickness of 5 mm as a substrate, vacuum impregnation treatment of the phenol resin solution, the vacuum impregnation condition is -0.09 MPa, 5 hours;
  • Step 2 After taking out the vacuum impregnated expanded graphite plate in step 1, the surface residual phenolic resin solution is washed with ethanol;
  • Step 3 Drying the expanded graphite plate on the surface of the ethanol cleaning step in step 2, the drying procedure and conditions are: drying at 40 ° C for 5 hours ⁇ drying at 60 ° C for 5 hours ⁇ drying at 80 ° C 5 hour;
  • Step 4 Place two sheets of porous expanded graphite sheets of the same size and not processed by steps 1 to 3 on both sides of the sheet after drying in step 3;
  • Step 5 The three sheets stacked in step 4 are subjected to hot press forming treatment, and the hot pressing conditions are: 15 MPa, 130 ° C, and 1 hour;
  • Step 6 The hot-pressed composite sheet in step 5 is cooled and used;
  • Step 7 The composite bipolar plate obtained in step 6 is used as a substrate for flow field engraving.
  • the specific characteristics of the flow field engraving are:
  • the "wide” flow channel has a rectangular cross section, the flow channel groove width is 1.7mm, the flow channel groove depth is 0.5mm, and the “narrow” flow channel portion has an isosceles trapezoidal shape, and the bottom edges are respectively 0.4mm and 0.8mm, the channel groove depth is 0.3mm;
  • the flow field outlet adopts a double-channel design.
  • the rectangular cross-section flow passage outlet adopts the normally open control.
  • the “lower width and upper narrow” flow passage adopts the “time-opening and closing” control, and the closed gas reaches the forced gas in the vertical direction.
  • Flow is generated in the plane direction of the bipolar plate to achieve three-dimensional mass transfer of gas, and moisture is prohibited from entering through higher pressure, effectively avoiding flooding, and the open state is an emergency passage, if moisture enters the "lower width and narrower" flow passage Open the outlet to drain the water.
  • the type and parameters of the impregnating resin in the above embodiments are variable, and the listed data are more optimized values.
  • the present invention provides a composite bipolar plate preparation method for a fuel cell and a three-dimensional flow field design thereof, which can effectively increase the effective area of fuel cell gas transmission, improve the drainage efficiency of the fuel cell, and prevent the fuel cell.
  • the phenomenon of “flooding” occurs during long-term operation, thereby improving the power generation performance and long-term operational stability of the fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种燃料电池用复合双极板制备方法及其三维流场设计方案。复合双极板具有三层结构,由中间具有低气体透过率的复合碳板和外侧分别具有多孔结构的膨胀石墨板组成。流场雕刻在外侧多孔膨胀石墨板上,利用外侧膨胀石墨板的多孔结构增加燃料电池气体传输有效面积并提高燃料电池排水效率。雕刻于膨胀石墨板上的三维流场呈"下宽上窄"流道与传统矩形截面流道间隔排列,通过控制"下宽上窄"流道的开闭,达到强制气体在垂直于双极板表面方向产生流动,实现气体的三维传递,从而有效提高燃料电池内部气体传质过程和防止"水淹"现象,提高燃料电池的发电性能和运行稳定性。

Description

一种燃料电池用复合双极板及其双通道三维流场 技术领域
本发明涉及一种质子交换膜燃料电池用复合双极板及流场设计。
背景技术
当前,环境友好的绿色新能源是国际研究热点。氢能是一种绿色可再生新能源,而质子交换膜燃料电池是一种以氢气为燃料,将氢气中的化学能直接转换为电能的仅排出水的绿色发电装置。该燃料电池技术已经被广泛应用于固定式电站、便携式电源、电动汽车驱动电源等领域。
双极板是质子交换膜燃料电池的关键材料之一,在燃料电池中发挥支撑电极、分隔阴阳极气体、传输气体燃料、传导电子等重要作用。传统双极板设计中,燃料气体在流场槽中传输,并经过膜电极中气体扩散层扩散至催化层表面发生电化学反应而发电;发电过程中催化层表面产生的水分,首先经过膜电极的气体扩散层扩散到电极外表面,通过流场槽中气体的流动排出燃料电池;而流场脊部不能传输气体,仅发挥传导电子的作用。在燃料电池长时间运行过程中,由于产生大量的水分,会造成燃料电池的“水淹”现象,“水淹”现象会阻碍气体的传质过程而严重影响燃料电池的发电过程。从而,目前需要通过改进双极板制备和流场设计,达到进一步增加燃料气体的有效传输面积、增强气体的传质过程、防止燃料电池的“水淹”现象,以及提高燃料电池发电性能和运行稳定性的目的。
发明内容
本发明的目的在于解决现有技术中的问题,提供一种燃料电池用复合双极板,该复合双极板具有特殊的三维流场设计,能够避免燃料电池的“水淹”现象。
为实现上述目的,本发明的技术方案如下:
一种燃料电池用复合双极板,具有三层结构,其特征在于,三层结构由设置在中间的低气体透过率复合碳板和设置在低气体透过率复合碳板两侧的多孔透气膨胀石墨板组成,多孔透气膨胀石墨板上雕刻有三维流场,三维流场由“下宽上窄”流道与传统矩形截面流道间隔排列组成,“下宽上窄”流道保持正常时关闭,需要时打开状态;矩形截面流道保持常开状态。
“下宽上窄”流道中“宽”流道部分截面为矩形,“窄”流道部分截面为等腰梯形。
矩形截面流道和“下宽上窄”流道入口相同,采取单通道;流场出口处采取双通道设计。
低气体透过率复合碳板是指进行了酚醛树脂溶液真空浸渍的多孔膨胀石墨板。
“下宽上窄”流道保持正常时关闭,需要时打开状态是指:闭合状态时达到强制气体在垂直于双极板平面方向产生流动,实现气体的三维传质,并且通过较高压力禁止水分进入,有效避免水淹,如果有水分进入“下宽上窄”流道则通过打开出口排出水分。
本发明还提供了一种燃料电池用复合双极板的制备方法,包括如下步骤:
步骤1)、以多孔膨胀石墨板为基材进行酚醛树脂溶液真空浸渍、清洗和烘干处理得到低 气体透过率复合碳板;
步骤2)、将两张尺寸相同的多孔膨胀石墨板置于低气体透过率复合碳板两侧;
步骤3)、将低气体透过率复合碳板和两侧的多孔膨胀石墨板热压固化成型,冷却后得到双极板;
步4)、在双极板的多孔膨胀石墨板上进行三维流场雕刻;雕刻于多孔膨胀石墨板上的三维流场呈“下宽上窄”流道与传统矩形截面流道间隔排列。
“下宽上窄”流道中“宽”流道部分截面为矩形,“窄”流道部分截面为等腰梯形。
矩形截面流道和“下宽上窄”流道入口相同,采取单通道,流场出口处采取双通道设计,矩形截面流道出口采取常开控制,“下宽上窄”流道采取“时开时闭”控制。
步骤1)中的具体工艺为:
1)使用厚度为5mm的多孔膨胀石墨板材为基材,进行酚醛树脂溶液真空浸渍处理,真空浸渍条件是-0.09MPa,5小时;
2)将经过真空浸渍处理的膨胀石墨板取出后,使用乙醇清洗表面残留酚醛树脂溶液;
3)将经过乙醇清洗表面的膨胀石墨板进行烘干处理,烘干程序和条件分别为:40℃下烘干5小时→60℃下烘干5小时→80℃下烘干5小时。
步骤3)中的热压固化成型处理的热压条件为:15MPa、130℃、1小时。
本发明具有的技术效果为:
本发明专利所提供的复合双极板制备方法及其三维流场设计,首先通过三层复合双极板制备使得流道槽部分和脊部分的材料不同,槽部分为低气体透过率复合石墨板材,确保低气体透过率;脊部分为多孔膨胀石墨板材,使得反应气体和产生的水分亦可通过该板材的多孔结构进行传输,从而有效提高气体传输有效面积和提高水分排出效率;其次,通过“下宽上窄”与传统矩形截面流道的间隔排列流场设计,迫使反应气体获得垂直于复合双极板平面的流动方向,实现反应气体的三维流动,提高气体传质过程,并通过迫使水分通过传统矩形截面排出而不影响“下宽上窄”流道中气体的传输,实现气体和水分的分通道传输,有效降低燃料电池在长时运行过程中发生“水淹”现象的概率。
本发明通过改进复合双极板制备方法和三维流场设计,达到进一步增加燃料气体的有效传输面积、增强气体的传质过程、防止燃料电池的“水淹”现象,以及提高燃料电池发电性能和运行稳定性的目的。
附图说明
下面结合附图对本实用新型进一步说明
图1为本发明所述燃料电池用复合双极板的剖面结构示意图;
图2为流场入口处“单通道”流场结构示意图;
图3为流场出口处“双通道”流场结构示意图。
具体实施方式
下面通过实施例对本发明做进一步的描述。
实施例1
如图1所示,一种燃料电池用复合双极板,该复合双极板具有三层结构,中间层1由低气体透过率复合碳板构成,在后续流场雕刻过程中不被雕刻损耗,作为流场槽部分,发挥分隔阴阳极反应气体等作用;中间层1的两侧由具有多孔结构的膨胀石墨板2组成,经后续流场雕刻后构成复合双极板的脊部分,使得反应气体和发电过程中产生的水可在其多孔结构中传输,发挥增大反应气体传输有效面积、提高燃料电池排水效率等作用。雕刻于膨胀石墨板2上的三维流场是呈“下宽上窄”结构流道3与传统矩形截面流道4间隔排列的流场。
流场出口处采取“双通道”控制,“下宽上窄”结构流道3出口处采取“时开时闭”控制,而传统矩形截面流道4采取常开控制。在“下宽上窄”结构流道的“时开时闭”控制策略中,当流道处于“闭”状态时,一方面,可提高流道内部压力,迫使反应气体在垂直双极板平面方向流动,从而实现反应气体的三维流动;另一方面,较高气体压力和流道的梯形结构可迫使产生的水向相邻的传统矩形截面流道扩散或流动,这样可以保证本流道内部高效的气体传输而不会因为水分的进入影响气体传输效率;“开”状态是应急备用阀门,当燃料电池长时间运行过程中发生水分进入“下宽上窄”结构流道中的特殊情况时,可将流道调整到“开”状态,通过气体吹扫排出水分,然后再次调整到“闭”状态长时运行。
该复合双极板采用如下方法制备:
步骤1.使用厚度为5mm的多孔膨胀石墨板材为基材,进行酚醛树脂溶液真空浸渍处理,真空浸渍条件是-0.09MPa,5小时;
步骤2.将步骤1中经过真空浸渍处理的膨胀石墨板取出后,使用乙醇清洗表面残留酚醛树脂溶液;
步骤3.将步骤2中经过乙醇清洗表面的膨胀石墨板进行烘干处理,烘干程序和条件分别为:40℃下烘干5小时→60℃下烘干5小时→80℃下烘干5小时;
步骤4.将2张尺寸相同且未经过步骤1~步骤3处理的多孔膨胀石墨板材置于步骤3烘干后的板材两侧;
步骤5.将步骤4中叠放的三张板材进行热压固化成型处理,热压条件为:15MPa、130℃、1小时;
步骤6.将步骤5中经热压处理的复合板材进行降温后待用;
步骤7.将步骤6中得到的复合双极板作为基材进行流场雕刻,流场雕刻具体特征是:
①流场雕刻在两边外侧未经酚醛树脂溶液真空浸渍处理的多孔膨胀石墨板上,经过酚醛树脂浸渍的膨胀石墨板不被雕刻,从而保持在垂直复合双极板平面方向的低气体透过率,平行于复合双极板平面方向则通过密封圈保持气体不泄露;
②雕刻于膨胀石墨板上的三维流场呈“下宽上窄”流道与传统矩形截面流道间隔排列,如图1;
③矩形截面流道槽宽度1.7mm,流道脊宽度1.5mm,流道槽深0.8mm;
④“下宽上窄”流道,“宽”流道部分截面为矩形,流道槽宽度1.7mm,流道槽深0.5mm,“窄”流道部分截面为等腰梯形,底边分别为0.4mm和0.8mm,流道槽深0.3mm;
⑤矩形截面流道和“下宽上窄”流道入口相同,采取单通道,如图2;
⑥流场出口处采取双通道设计,如图3,矩形截面流道出口采取常开控制,“下宽上窄”流道采取“时开时闭”控制,处于闭合状态时达到强制气体在垂直于双极板平面方向产生流动,实现气体的三维传质,并且通过较高压力禁止水分进入,有效避免水淹,打开状态是应急通道,如果有水分进入“下宽上窄”流道则通过打开出口排出水分。
上述具体实施方式中的浸渍树脂类型和参数均是可变的,所列数据是较为优化的数值。
综上所述,本发明通过提供一种燃料电池用复合双极板制备方法及其三维流场设计方案,可有效增大燃料电池气体传输的有效面积、提高燃料电池的排水效率、防止燃料电池长时运行过程中“水淹”现象的发生,从而提高燃料电池的发电性能和长时运行稳定性。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (10)

  1. 一种燃料电池用复合双极板,具有三层结构,其特征在于,三层结构由设置在中间的低气体透过率复合碳板和设置在低气体透过率复合碳板两侧的多孔透气膨胀石墨板组成,多孔透气膨胀石墨板上雕刻有三维流场,三维流场由“下宽上窄”流道与传统矩形截面流道间隔排列组成,“下宽上窄”流道保持正常时关闭,需要时打开状态;矩形截面流道保持常开状态。
  2. 如权利要求1所述的一种燃料电池用复合双极板,其特征在于,“下宽上窄”流道中“宽”流道部分截面为矩形,“窄”流道部分截面为等腰梯形。
  3. 如权利要求1所述的一种燃料电池用复合双极板,其特征在于,矩形截面流道和“下宽上窄”流道入口相同,采取单通道;流场出口处采取双通道设计。
  4. 如权利要求1所述的一种燃料电池用复合双极板,其特征在于,低气体透过率复合碳板是指进行了酚醛树脂溶液真空浸渍的多孔膨胀石墨板。
  5. 如权利要求1所述的一种燃料电池用复合双极板,其特征在于,“下宽上窄”流道保持正常时关闭,需要时打开状态是指:闭合状态时达到强制气体在垂直于双极板平面方向产生流动,实现气体的三维传质,并且通过较高压力禁止水分进入,有效避免水淹,如果有水分进入“下宽上窄”流道则通过打开出口排出水分。
  6. 一种燃料电池用复合双极板的制备方法,其特征在于,包括如下步骤:
    步骤1)、以多孔膨胀石墨板为基材进行酚醛树脂溶液真空浸渍、清洗和烘干处理得到低气体透过率复合碳板;
    步骤2)、将两张尺寸相同的多孔膨胀石墨板置于低气体透过率复合碳板两侧;
    步骤3)、将低气体透过率复合碳板和两侧的多孔膨胀石墨板热压固化成型,冷却后得到双极板;
    步4)、在双极板的多孔膨胀石墨板上进行三维流场雕刻;雕刻于多孔膨胀石墨板上的三维流场呈“下宽上窄”流道与传统矩形截面流道间隔排列。
  7. 如权利要求6所述的一种燃料电池用复合双极板的制备方法,其特征在于,“下宽上窄”流道中“宽”流道部分截面为矩形,“窄”流道部分截面为等腰梯形。
  8. 如权利要求6所述的一种燃料电池用复合双极板的制备方法,其特征在于,矩形截面流道和“下宽上窄”流道入口相同,采取单通道,流场出口处采取双通道设计,矩形截面流道出口采取常开控制,“下宽上窄”流道采取“时开时闭”控制。
  9. 如权利要求6所述的一种燃料电池用复合双极板的制备方法,其特征在于,步骤1)中的具体工艺为:
    1)使用厚度为5mm的多孔膨胀石墨板材为基材,进行酚醛树脂溶液真空浸渍处理,真空浸渍条件是-0.09MPa,5小时;
    2)将经过真空浸渍处理的膨胀石墨板取出后,使用乙醇清洗表面残留酚醛树脂溶液;
    3)将经过乙醇清洗表面的膨胀石墨板进行烘干处理,烘干程序和条件分别为:40℃下烘干5小时→60℃下烘干5小时→80℃下烘干5小时。
  10. 如权利要求6所述的一种燃料电池用复合双极板的制备方法,其特征在于,步骤3) 中的热压固化成型处理的热压条件为:15MPa、130℃、1小时。
PCT/CN2018/079265 2018-03-16 2018-03-16 一种燃料电池用复合双极板及其双通道三维流场 WO2019174029A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/079265 WO2019174029A1 (zh) 2018-03-16 2018-03-16 一种燃料电池用复合双极板及其双通道三维流场
CN201880002716.1A CN109496373B (zh) 2018-03-16 2018-03-16 一种燃料电池用复合双极板及其双通道三维流场

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079265 WO2019174029A1 (zh) 2018-03-16 2018-03-16 一种燃料电池用复合双极板及其双通道三维流场

Publications (1)

Publication Number Publication Date
WO2019174029A1 true WO2019174029A1 (zh) 2019-09-19

Family

ID=65713891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079265 WO2019174029A1 (zh) 2018-03-16 2018-03-16 一种燃料电池用复合双极板及其双通道三维流场

Country Status (2)

Country Link
CN (1) CN109496373B (zh)
WO (1) WO2019174029A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993982A (zh) * 2019-11-27 2020-04-10 一汽解放汽车有限公司 一种高导电性的柔性石墨双极板及其制备方法
CN113314726A (zh) * 2021-06-04 2021-08-27 大连海事大学 一种箭羽状质子交换膜燃料电池双极板
CN114824344A (zh) * 2022-04-18 2022-07-29 冠驰新能科技(南京)有限公司 石墨-树脂复合双极板及其制备方法和应用
CN117317278A (zh) * 2023-11-28 2023-12-29 山东海化集团有限公司 一种基于石墨烯网络的液流电池用复合双极板的制备方法
CN117317278B (zh) * 2023-11-28 2024-05-28 山东海化集团有限公司 一种基于石墨烯网络的液流电池用复合双极板的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054226B (zh) * 2020-08-18 2022-04-15 深圳市氢瑞燃料电池科技有限公司 一种燃料电池双极板及其制备方法
CN114551928B (zh) * 2021-12-25 2024-02-20 安徽明天氢能科技股份有限公司 一种燃料电池用双电堆并联装置
CN114709441B (zh) * 2022-04-20 2023-09-22 山东大学 一种可变截面流道极板、冷却系统、电池及其控制方法
CN114759210B (zh) * 2022-06-13 2022-09-02 湖南耕驰新能源科技有限公司 一种双极板的制备方法
CN115172795A (zh) * 2022-07-27 2022-10-11 上海氢晨新能源科技有限公司 一种氢燃料电池的极板复合流道

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411020A (zh) * 2006-04-05 2009-04-15 日本皮拉工业株式会社 燃料电池用隔板及其制造方法
CN103413956A (zh) * 2013-08-14 2013-11-27 天津大学 一种质子交换膜燃料电池流道

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858115A1 (fr) * 2003-07-24 2005-01-28 Peugeot Citroen Automobiles Sa Cellule de pile a combustible a forte surface active
CN100468838C (zh) * 2005-12-28 2009-03-11 大连新源动力股份有限公司 一种燃料电池用柔性石墨材料两面带沟槽极板的制造方法
CN100449836C (zh) * 2007-03-13 2009-01-07 北京科技大学 一种质子交换膜燃料电池混合型逐变流场板
CN102544519A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 一种质子交换膜燃料电池双极板结构
CN102569824A (zh) * 2011-12-30 2012-07-11 黄权波 一体化复合电极双极板及其制备方法与应用
DE102015200028A1 (de) * 2015-01-05 2016-07-07 Volkswagen Ag Brennstoffzelle mit vorspringender Bipolarplatte
CN104953140B (zh) * 2015-04-30 2017-08-01 南京航空航天大学 一种燃料电池流场板
DE202015102771U1 (de) * 2015-05-28 2016-08-30 Reinz-Dichtungs-Gmbh Metallische Platte mit wenigstens einer Messstruktur
CN106816610B (zh) * 2015-11-27 2019-05-07 南京工业大学 一种基于迷宫挡板结构流场的质子交换膜燃料电池双极板
KR101926454B1 (ko) * 2016-02-23 2018-12-07 (주)엘지하우시스 연료전지 분리판 및 이를 갖는 연료전지 스택
CN107482238A (zh) * 2017-07-26 2017-12-15 武汉理工大学 一种具有螺旋结构流道的pem电池流场板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411020A (zh) * 2006-04-05 2009-04-15 日本皮拉工业株式会社 燃料电池用隔板及其制造方法
CN103413956A (zh) * 2013-08-14 2013-11-27 天津大学 一种质子交换膜燃料电池流道

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993982A (zh) * 2019-11-27 2020-04-10 一汽解放汽车有限公司 一种高导电性的柔性石墨双极板及其制备方法
CN113314726A (zh) * 2021-06-04 2021-08-27 大连海事大学 一种箭羽状质子交换膜燃料电池双极板
CN113314726B (zh) * 2021-06-04 2024-05-10 大连海事大学 一种箭羽状质子交换膜燃料电池双极板
CN114824344A (zh) * 2022-04-18 2022-07-29 冠驰新能科技(南京)有限公司 石墨-树脂复合双极板及其制备方法和应用
CN114824344B (zh) * 2022-04-18 2024-01-19 冠驰新能科技(南京)有限公司 石墨-树脂复合双极板及其制备方法和应用
CN117317278A (zh) * 2023-11-28 2023-12-29 山东海化集团有限公司 一种基于石墨烯网络的液流电池用复合双极板的制备方法
CN117317278B (zh) * 2023-11-28 2024-05-28 山东海化集团有限公司 一种基于石墨烯网络的液流电池用复合双极板的制备方法

Also Published As

Publication number Publication date
CN109496373B (zh) 2022-05-20
CN109496373A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2019174029A1 (zh) 一种燃料电池用复合双极板及其双通道三维流场
CN109904484B (zh) 一种燃料电池双极板结构及燃料电池
JP5240282B2 (ja) 燃料電池セル
JP5078689B2 (ja) 燃料電池用スタック
JP3690667B2 (ja) 高分子電解質型燃料電池
JP5735858B2 (ja) 局部親水性ガス拡散層とこれを含む燃料電池スタック
JP2000100457A (ja) 燃料電池
WO2007083838A1 (ja) 燃料電池
WO2021128458A1 (zh) 燃料电池堆、双极板及气体扩散层
CN114709441B (zh) 一种可变截面流道极板、冷却系统、电池及其控制方法
TW201820691A (zh) 具引流凹槽之燃料電池雙極板進氣結構
US20160329579A1 (en) Integrated Gas Diffusion Layer With Sealing Function And Method Of Making The Same
KR101755506B1 (ko) 연료 전지용 부품 및 이의 제조 방법
KR100953273B1 (ko) 연료전지용 금속 분리판 및 이를 구비하는 연료전지 스택
KR101013853B1 (ko) 연료전지용 분리판
JP2008277185A (ja) 燃料電池
JP4872252B2 (ja) 燃料電池
JP2008130350A (ja) 燃料電池
CN210052797U (zh) 一种用于测试燃料电池的单电池
JP7122816B2 (ja) 燃料電池用膜電極接合体及びその製造方法
CN115528266A (zh) 一种燃料电池双极板导流区支撑结构
CN115425257A (zh) 一种自调节紧凑型质子交换膜燃料电池的自增湿装置
JP6880202B2 (ja) 燃料電池スタック
JP4635462B2 (ja) 多孔質のセパレータを備える燃料電池
JP4397603B2 (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909918

Country of ref document: EP

Kind code of ref document: A1