WO2019171940A1 - リアクトル - Google Patents

リアクトル Download PDF

Info

Publication number
WO2019171940A1
WO2019171940A1 PCT/JP2019/006109 JP2019006109W WO2019171940A1 WO 2019171940 A1 WO2019171940 A1 WO 2019171940A1 JP 2019006109 W JP2019006109 W JP 2019006109W WO 2019171940 A1 WO2019171940 A1 WO 2019171940A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
winding
resin
thermal conductivity
reactor
Prior art date
Application number
PCT/JP2019/006109
Other languages
English (en)
French (fr)
Inventor
伸一郎 山本
浩平 吉川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018175975A external-priority patent/JP7110863B2/ja
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201980013734.4A priority Critical patent/CN111771252B/zh
Priority to US16/977,407 priority patent/US11908613B2/en
Publication of WO2019171940A1 publication Critical patent/WO2019171940A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present disclosure relates to a reactor.
  • This application claims priority based on Japanese Patent Application No. 2018-039159 dated Mar. 05, 2018 and Japanese Patent Application No. 2018-175975 filed Sep. 20, 2018, All descriptions described in the above Japanese application are incorporated.
  • Patent Document 1 includes, as a reactor used in an in-vehicle converter or the like, a coil including a pair of winding parts, a magnetic core disposed inside and outside the winding part, and a resin mold part covering the outer periphery of the magnetic core. Is disclosed.
  • the magnetic core has a plurality of core pieces assembled in an annular shape. The resin mold part is exposed without covering the coil.
  • the reactor of the present disclosure is A coil having a winding part; A magnetic core including an inner core portion disposed in the winding portion and an outer core portion disposed outside the winding portion; An inner resin part filled in at least a part between the winding part and the inner core part, and a resin mold part including an outer resin part covering at least a part of the outer core part, The interval between the winding part and the inner core part is different in the circumferential direction of the winding part, An electrical insulating material interposed at a place where the interval is the narrowest, and a thick part which is interposed at a place where the interval is the widest and forms a part of the inner resin part, The thermal conductivity of the electrical insulating material is ⁇ 1, the interval of the narrowest portion is t1, and the ratio of the interval t1 to the thermal conductivity ⁇ 1 is (interval t1 / thermal conductivity ⁇ 1).
  • the thermal conductivity of the thick part is ⁇ 2, the interval of the widest portion is t2, and the ratio of the interval t2 to the thermal conductivity ⁇ 2 is (interval t2 / thermal conductivity ⁇ 2). (Spacing t1 / thermal conductivity ⁇ 1) ⁇ (spacing t2 / thermal conductivity ⁇ 2) is satisfied.
  • FIG. 1 is a schematic perspective view showing a reactor according to the first embodiment.
  • 2A is a cross-sectional view of the reactor according to the first embodiment, taken along the line (II)-(II) shown in FIG.
  • FIG. 2B is a diagram for explaining the interval between the winding portion and the inner core portion in the reactor shown in FIG. 2A.
  • FIG. 3 is an exploded perspective view illustrating a combination provided in the reactor of the first embodiment.
  • FIG. 4A is a cross-sectional view of the reactor of Embodiment 2 cut along a plane orthogonal to the axial direction of the winding portion.
  • FIG. 4B is a diagram for explaining the interval between the winding portion and the inner core portion in the reactor shown in FIG. 4A.
  • FIG. 5 is a cross-sectional view of the reactor of Embodiment 3 cut along a plane orthogonal to the axial direction of the winding portion.
  • an object of the present disclosure is to provide a reactor having excellent heat dissipation.
  • the reactor of this indication is excellent in heat dissipation.
  • a reactor according to one aspect of the present disclosure is: A coil having a winding part; A magnetic core including an inner core portion disposed in the winding portion and an outer core portion disposed outside the winding portion; An inner resin part filled in at least a part between the winding part and the inner core part, and a resin mold part including an outer resin part covering at least a part of the outer core part, The interval between the winding part and the inner core part is different in the circumferential direction of the winding part, An electrical insulating material interposed at a place where the interval is the narrowest, and a thick part which is interposed at a place where the interval is the widest and forms a part of the inner resin part, The thermal conductivity of the electrical insulating material is ⁇ 1, the interval of the narrowest portion is t1, and the ratio of the interval t1 to the thermal conductivity ⁇ 1 is (interval t1 / thermal conductivity
  • the thermal conductivity of the thick part is ⁇ 2, the interval of the widest portion is t2, and the ratio of the interval t2 to the thermal conductivity ⁇ 2 is (interval t2 / thermal conductivity ⁇ 2). (Spacing t1 / thermal conductivity ⁇ 1) ⁇ (spacing t2 / thermal conductivity ⁇ 2) is satisfied.
  • the reactor of this indication is excellent in heat dissipation for the following reasons.
  • (B) There is a relatively narrow portion between the coil winding portion and the inner core portion of the magnetic core. If at least a part of the relatively narrow portion is provided at a position corresponding to the following heat dissipation location on the outer peripheral surface of the winding portion, it can be said that the distance from the inner core portion to the heat dissipation location of the winding portion is short.
  • Such a reactor of the present disclosure can efficiently dissipate heat from the inner core portion to the winding portion.
  • the heat radiation location of the winding portion include a location where a fluid refrigerant such as the above-described liquid refrigerant can be in direct contact with the winding portion, a location arranged close to the installation target or the cooling mechanism, and the like.
  • the reactor according to the present disclosure is about the thermal conductivity of inclusions existing between the winding part and the inner core part and the interval between the locations where the inclusions are arranged (interval t1 / thermal conductivity.
  • the reactor of this indication is excellent in heat dissipation because the distance from the inner core part to the heat dissipation part of a winding part is short as mentioned above.
  • the case where the constituent material of an electrical insulating material differs from the constituent material of a thick part is demonstrated.
  • the thermal conductivity ⁇ 1 of the electrical insulating material is larger than the thermal conductivity ⁇ 2 of the thick portion, the electrical insulating material is more excellent in thermal conductivity than the thick portion.
  • Such a reactor according to the present disclosure is more excellent in heat dissipation from both the magnitude relationship of thermal conductivity and the magnitude relationship of the intervals t1 and t2. In this case, (interval t1 / thermal conductivity ⁇ 1) is surely smaller than (interval t2 / thermal conductivity ⁇ 2).
  • the thermal conductivity ⁇ 1 of the electrical insulating material is smaller than the thermal conductivity ⁇ 2 of the thick portion.
  • the interval t1 is much smaller than the interval t2
  • heat is easily transferred from the inner core portion to the winding portion even if an electrical insulating material is interposed between the inner core portion and the winding portion. From this, it can be said that “(interval t1 / thermal conductivity ⁇ 1) is smaller than (interval t2 / thermal conductivity ⁇ 2)” is one configuration excellent in heat dissipation.
  • the reactor according to the present disclosure is a ratio of the thermal conductivity of a member interposed between the winding portion and the inner core portion and the interval between the locations where the member is disposed, as one of the configurations excellent in heat dissipation. Specifies the size relationship.
  • the reactor of the present disclosure is excellent in manufacturability for the following reasons.
  • the resin mold portion is formed as follows. At least a part of the space between the winding part and the inner core part is filled with a fluid resin that is a raw material of the resin mold part, and then solidified.
  • the space includes a portion where the interval is relatively wide as a portion where the thick portion is formed. Therefore, the fluid resin is easily filled in the space. As a result, it is easy to form a resin mold part.
  • the electrical insulating material is made of a material different from the thick part and is a molded product independent of the resin mold part, the resin mold part can be formed more easily.
  • Such a reactor is more excellent in manufacturability. This is because the filling of the fluid resin may be performed in a state where an electrical insulating material is disposed in at least a part of the narrowest portion of the space. It is not necessary to fill the flowable resin in a region where the electrical insulating material exists in the space. Of the space, the fluid resin may be filled in a portion where the electrical insulating material is not arranged, that is, a relatively wide portion. Therefore, the fluid resin is easily filled in the space. In addition, the fluid resin is easily filled in the space with no gap and with high accuracy.
  • the reactor of the present disclosure is excellent in strength for the following reasons.
  • the magnetic core provided in the reactor of the present disclosure is integrally held by a resin mold part including an inner resin part and an outer resin part.
  • This resin mold part is easy to raise the connection strength of an inner side resin part and an outer side resin part by a thick part. By being held by such a resin mold portion, the rigidity of the magnetic core can be enhanced.
  • the reactor of the present disclosure can achieve mechanical protection of the magnetic core, protection from the external environment, improvement of electrical insulation with the coil, and the like by the resin mold portion.
  • the above form is more excellent in heat dissipation for the following reasons.
  • the said form equips the said relatively narrow location with a part (thin wall part) of the resin mold part.
  • the thin wall has a higher thermal conductivity than air. Therefore, the said form is easy to improve heat dissipation compared with the case where the air is contained in the said relatively narrow location.
  • the electrical insulating material in the above form is molded independently of the resin mold part.
  • the form including such an electrical insulating material is easy to form the resin mold portion as described above, and is excellent in manufacturability.
  • a configuration in which the thermal conductivity ⁇ 1 of the electrical insulating material is higher than the thermal conductivity ⁇ 2 of the thick portion is more excellent in heat dissipation.
  • the inner resin part provided in the above form is an annular body that is continuous in the circumferential direction of the winding part in a cross section (hereinafter sometimes referred to as a transverse section) in which the reactor is cut by a plane orthogonal to the axial direction of the winding part. is not.
  • the inner resin portion has a boundary with the electrical insulating material in the cross section, and is typically C-shaped with the electrical insulating material as a break. Such an inner resin portion can be elastically deformed to some extent and easily releases stress. Therefore, the inner resin part is difficult to crack due to thermal stress or the like.
  • the interval t1 of the narrowest portion is very small compared to the interval t2. Therefore, even if the thermal conductivity ⁇ 1 is somewhat small, (interval t1 / thermal conductivity ⁇ 1) tends to be small.
  • (interval t1 / thermal conductivity ⁇ 1) is surely smaller than (interval t2 / thermal conductivity ⁇ 2) if the thermal conductivity ⁇ 1 is greater than 1 ⁇ 2 times the thermal conductivity ⁇ 2.
  • Such a form is more excellent in heat dissipation. Moreover, the said form is easy to ensure the space
  • the winding part is a rectangular cylinder
  • the inner core part is a quadrangular prism
  • the portion where the interval between the winding portion and the inner core portion is relatively narrow includes a flat portion sandwiched between one surface of the inner peripheral surface of the winding portion and one surface of the outer peripheral surface of the inner core portion. A form is mentioned.
  • the region where the distance from the inner core portion to the heat radiating portion of the winding portion is short is a flat region, and thus can be said to exist relatively widely.
  • Such a form is more excellent in heat dissipation.
  • the form in which the electric insulating material molded independently of the resin mold portion is interposed in the flat plate-like region is excellent in manufacturability as described above.
  • a configuration in which the thermal conductivity ⁇ 1 of the electrical insulating material is higher than the thermal conductivity ⁇ 2 of the thick portion is more excellent in heat dissipation.
  • the electrical conductivity ⁇ 1 of the electrical insulating material may be higher than the thermal conductivity ⁇ 2 of the thick part.
  • Examples of the electrical insulating material include a form including at least one of insulating paper and insulating film.
  • the said form can make the space
  • (interval t1 / thermal conductivity ⁇ 1) can be reduced. Therefore, the said form is more excellent by heat dissipation.
  • the said form is easy to ensure the space
  • the said electric insulation material has a form provided with the molded object containing the same resin as the constituent resin of the said inner side resin part.
  • the electrical insulating material provided in the above form contains the same resin as the inner resin part. Therefore, the thermal conductivity ⁇ 1 is close to or substantially equal to the thermal conductivity ⁇ 2. However, since the interval t1 is smaller than the interval t2 as described above, the above form is excellent in heat dissipation. In addition, the thermal expansion coefficient of the electrical insulating material is close to or substantially equal to the thermal expansion coefficient of the inner resin portion. Therefore, the said form does not produce a deformation
  • FIG. 2A is a cross-sectional view of the reactor 1 cut along a plane orthogonal to the axial direction of the coil 2.
  • 2A shows only the winding portions 2a and 2b, the inner core portions 31a and 31b, the electrical insulating material 7 and the inner resin portion 61 of the coil 2.
  • FIG. 2B is an explanatory diagram using the same diagram as FIG. 2A.
  • FIG. 2B is a diagram for explaining the distance between the winding part 2a and the inner core part 31a and the distance between the winding part 2b and the inner core part 31b.
  • the lower side in FIG. 1, FIG. 2, FIG. 4 and FIG. This installation direction is an example, and can be changed as appropriate.
  • the installation target 100 side may be referred to as the lower side, and the opposite side of the installation target 100 may be referred to as the upper side.
  • the side where the winding parts 2a and 2b approach may be referred to as the inner side, and the side where the winding parts 2a and 2b leave may be referred to as the outer side.
  • the reactor 1 includes a coil 2 having a winding part, a magnetic core 3 disposed inside and outside the winding part, and a resin mold part 6 that covers at least a part of the magnetic core 3.
  • the coil 2 of this example has a pair of winding parts 2a and 2b. Each winding part 2a, 2b is arranged side by side so that each axis may be parallel.
  • the magnetic core 3 includes inner core portions 31a and 31b disposed in the winding portions 2a and 2b, respectively, and two outer core portions 32 and 32 disposed outside the winding portions 2a and 2b.
  • the resin mold part 6 includes inner resin parts 61 and 61 (see also FIG. 2A) and outer resin parts 62 and 62.
  • One inner resin part 61 is filled in at least a part between one winding part 2a and one inner core part 31a.
  • the other inner resin part 61 is filled in at least a part between the other winding part 2b and the other inner core part 31b.
  • Each outer resin part 62, 62 covers at least a part of each outer core part 32, 32.
  • This resin mold part 6 is exposed without covering the outer peripheral surface of each winding part 2a, 2b.
  • Such a reactor 1 is typically used by being attached to an installation object 100 (FIG. 2A) such as a converter case.
  • interval of the winding part 2a and the inner core part 31a differs in the circumferential direction of the winding part 2a.
  • interval of the winding part 2b and the inner core part 31b differs in the circumferential direction of the winding part 2b.
  • the shape and interval of the space formed by the winding portion 2a and the inner core portion 31a and the shape and interval of the space formed by the winding portion 2b and the inner core portion 31b are substantially equal. All of the above spaces are cylindrical spaces. In addition, all the spaces satisfy the interval g d ⁇ interval g i , g o ⁇ interval g de ⁇ interval g u ⁇ interval g ue (FIG. 2B).
  • the reactor 1 of Embodiment 1 exists in the location where the space
  • the reactor 1 includes an electrical insulating material 7 interposed at a place where the interval is the narrowest and a thick portion 612 interposed at a place where the interval is the widest.
  • the thick part 612 forms a part of the inner resin part 61.
  • the thermal conductivity of the electrical insulating material 7 is ⁇ 1.
  • the interval between the narrowest portions (in this example, the interval g d ) is t1.
  • the ratio of the interval t1 to the thermal conductivity ⁇ 1 is (interval t1 / thermal conductivity ⁇ 1).
  • the thermal conductivity of the thick part 612 is ⁇ 2.
  • the interval of the widest part (in this example, the interval g ue ) is t2.
  • the ratio of the interval t2 to the thermal conductivity ⁇ 2 is (interval t2 / thermal conductivity ⁇ 2).
  • Reactor 1 satisfies (interval t1 / thermal conductivity ⁇ 1) ⁇ (interval t2 / thermal conductivity ⁇ 2).
  • the coil 2 of this example includes cylindrical winding portions 2a and 2b formed by winding a winding in a spiral shape.
  • the following form is mentioned as the coil 2 provided with a pair of winding parts 2a and 2b arranged side by side.
  • the coil 2 includes winding portions 2a and 2b formed by two independent windings 2w and 2w, respectively, and the following connecting portions (this example, FIG. 1).
  • the connecting portion connects one end of both ends of the windings 2w and 2w drawn from the winding portions 2a and 2b.
  • the coil 2 includes winding portions 2a and 2b formed from one continuous winding, and a connecting portion that connects the winding portions 2a and 2b.
  • a connection part consists of a part of winding wound between winding part 2a, 2b.
  • the ends of the windings drawn from the winding portions 2 a and 2 b are connected to an external device such as a power source.
  • an external device such as a power source.
  • connection part of form (i) the form by which the edge parts of winding 2w and 2w are connected directly, and the form connected indirectly are mentioned.
  • welding or crimping can be used.
  • an appropriate metal fitting attached to the end of the winding 2w can be used.
  • a covered wire including a conductor wire and an insulating coating covering the outer periphery of the conductor wire can be cited.
  • the constituent material of the conductor wire include copper.
  • the constituent material of the insulating coating include resins such as polyamideimide.
  • the winding parts 2a and 2b of this example are square cylindrical edgewise coils formed by winding edgewise windings 2w and 2w made of coated rectangular wires. Further, the specifications of the winding portions 2a and 2b of this example, such as the shape, winding direction, and number of turns, are the same. The edgewise coil is easy to increase the space factor and can be made into a small coil 2.
  • the outer peripheral surface of winding part 2a, 2b can contain four rectangular-shaped planes because it is a square cylinder shape. If one of the four planes is, for example, an installation surface, the distance from the installation surface of the winding portions 2a, 2b to the installation object 100 is uniform (FIG. 2A). Or when the said one surface is arrange
  • the shape and size of the winding 2w and the winding portions 2a and 2b can be appropriately changed.
  • the winding may be a coated round wire.
  • the winding portions 2a and 2b may have a cylindrical shape having no corners such as a cylindrical shape or a racetrack-like cylindrical shape.
  • the specification of each winding part 2a, 2b may differ.
  • the entire outer peripheral surfaces of the winding portions 2a and 2b are not covered with the resin mold portion 6 and are exposed.
  • An inner resin portion 61 that is a part of the resin mold portion 6 exists in the winding portions 2a and 2b. At least a part of the inner peripheral surface of the winding parts 2a, 2b is covered with the resin mold part 6.
  • the magnetic core 3 of this example includes two columnar inner core portions 31a and 31b and two columnar outer core portions 32 and 32. Further, in the magnetic core 3 of this example, a gap material (not shown) is provided between the end surfaces 31e, 31e (FIG. 3) of the inner core portions 31a, 31b and the connection surface 32e (FIG. 3) of the outer core portion 32. Prepare. This gap material is made of a constituent resin of the resin mold portion 6.
  • Each of the inner core portions 31a and 31b in this example is composed of one columnar core piece as shown in FIG.
  • Each core piece has the same shape and the same size.
  • Each core piece has a rectangular parallelepiped shape in which the end surface 31e is square.
  • the outer peripheral shape of each core piece is generally similar to the inner peripheral shape of the winding portions 2a and 2b.
  • the corners of each core piece are chamfered. Therefore, the corners of each core piece are difficult to chip.
  • Each of such core pieces is excellent in strength. It is good also as a form by which the corner
  • the outer core portions 32, 32 in this example are both made up of one columnar core piece.
  • Each core piece has the same shape and the same size.
  • Each core piece is a columnar body in which two corners of a rectangular parallelepiped are rounded.
  • the surface of each core piece on the installation object 100 side and the opposing surfaces (upper surface and lower surface in FIG. 3) have a dome shape.
  • the connecting surface 32e to which the inner core portions 31a and 31b of each core piece are connected is a rectangular flat plane.
  • Each core piece has such a size that the lower surface of each core piece protrudes from the lower surface of the inner core parts 31a, 31b in a state where the inner core parts 31a, 31b are connected. This protrusion can increase the magnetic path of the outer core portion 32.
  • the size of the winding portions 2a and 2b in the reactor 1 along the axial direction is likely to be small (easy to be short). From this point, a small reactor 1 can be obtained.
  • the shape, size, and the like of the inner core portions 31a and 31b and the outer core portion 32 can be appropriately changed (see modified examples 4 and 5 described later).
  • the axes Q and Q of the inner core portions 31a and 31b are shifted from the axes P and P of the winding portions 2a and 2b. Even if the winding parts 2a, 2b and the inner core parts 31a, 31b are substantially similar as in this example, if the amount of deviation of the axis Q from the axis P is set, the winding parts 2a, 2b and the inner core
  • interval with part 31a, 31b can be varied in the circumferential direction of winding part 2a, 2b. The deviation amount may be adjusted so that the interval falls within a desired range. Details of the interval will be described later.
  • the core piece include a molded body mainly composed of a soft magnetic material.
  • the soft magnetic material include metals such as iron and iron alloys (eg, Fe—Si alloys, Fe—Ni alloys), and nonmetals such as ferrite.
  • the molded body include a compacted body, a molded body of a composite material, a laminate of plates made of a soft magnetic material, and a sintered body.
  • the green compact is obtained by compression molding a powder made of a soft magnetic material, a coating powder further provided with an insulating coating, and the like.
  • the compact of the composite material is obtained by solidifying a fluid mixture containing soft magnetic powder and resin.
  • the laminate is a laminate of plate materials such as electromagnetic steel plates.
  • Examples of the sintered body include a ferrite core. Either the form in which the constituent material of the inner core parts 31a and 31b and the constituent material of the outer core part 32 are equal, or different forms can be used.
  • the magnetic core 3 may include a gap material as in this example.
  • a gap material either a solid body such as a plate material or an air gap can be used.
  • the solid constituent material is a molded body containing a non-magnetic material such as alumina and a magnetic material in addition to the constituent resin of the resin mold portion 6 as in this example, and has a lower relative permeability than the above-described core piece. Etc.
  • the gap material may be omitted.
  • the interval between the winding portion 2a and the inner core portion 31a is the distance between the inner peripheral surface of the winding portion 2a and the outer peripheral surface of the inner core portion 31a in the cross section.
  • the inner peripheral shape of the winding portion 2a and the outer peripheral shape of the inner core portion 31a are substantially similar.
  • the axis Q of the inner core portion 31a is not coaxial but shifted from the axis P of the winding portion 2a.
  • the axis Q of the inner core portion 31a is shifted from the state in which the axis P and the axis Q are coaxially arranged to the installation target 100 side (lower side).
  • the inner core portion 31a is in a state of being eccentrically arranged on the installation target 100 side.
  • the reactor 1 there are a location where the interval between the winding portion 2a and the inner core portion 31a is relatively wide and a location where the interval is relatively narrow.
  • the interval on the installation target 100 side (lower side) is relatively narrow.
  • interval on the opposite side (upper side) with respect to the installation object 100 is relatively wide.
  • the interval on the installation target 100 side is smaller than the interval on the opposite side to the installation target 100.
  • the gap between the corner portion on the opposite side (upper side) of the inner peripheral surface of the winding portion 2a from the installation target 100 and the upper corner portion of the inner core portion 31a is defined as gue .
  • the distance between the lower corner portion of the winding portion 2a of the inner peripheral surface lower corner portion and the inner core portion 31a of the g de.
  • g i be the interval between the left surface of the inner peripheral surface of the winding portion 2a and the left surface of the inner core portion 31a, that is, the inner interval.
  • the interval g ue is the maximum.
  • Interval g d is the minimum.
  • the reactor 1 of this example satisfies the following with reference to the gap gue which is the maximum value of the gap between the winding part 2a and the inner core part 31a.
  • the interval g u is not less than 80% and less than 100% of the interval g ue .
  • the interval g de is 70% or less of the interval g ue .
  • Distance g i, g o is less than 60% of the interval g ue.
  • the interval g i and the interval g o are equal.
  • Distance g d which is the minimum value of the above interval is not more than 40% of the interval g ue.
  • the region of 70% or less of the maximum value of the distance between the winding part 2a and the inner core part 31a (the gap g ue in this example) It is called a location where the interval is relatively narrow.
  • a region exceeding 70% of the maximum value of the interval is referred to as a portion where the interval is relatively wide.
  • the above-mentioned interval is relatively narrow by applying a cross-hatching with a two-dot chain line to a portion where the interval is relatively narrow. The location is shown virtually.
  • the 2B hatches with the dashed-two dotted line in the location where the said space
  • the location where the interval is relatively narrow is a U-shaped region having intervals g d , g i , g o , g de (see cross-hatching).
  • the location where the above-mentioned interval is relatively narrow contributes to shortening the distance from the inner core portion 31a to the winding portion 2a.
  • the distance from the surface (lower surface) on the installation target 100 side of the inner core portion 31a to the surface (lower surface) on the installation target 100 side in the outer peripheral surface of the winding unit 2a is the same as the winding unit 2a.
  • the reactor 1 of this example can efficiently radiate heat from the inner core portion 31a to the installation target 100 via the winding portion 2a.
  • the distance from the right surface of the inner core portion 31a to the right surface of the outer peripheral surface of the winding portion 2a can be made shorter than the distance from the upper surface of the inner core portion 31a to the upper surface of the winding portion 2a. . Therefore, for example, if the cooling mechanism is brought close to the right surface of the outer peripheral surface of the winding portion 2a, the reactor 1 can efficiently dissipate heat to the cooling mechanism from the right surface of the inner core portion 31a through the winding portion 2a. In this way, the reactor 1 can shorten the distance from the inner core portion 31a to the heat radiation location (here, the lower surface and the right surface) of the winding portion 2a.
  • the reactor 1 is excellent in heat dissipation.
  • the smaller the interval between the relatively narrow portions the larger the interval between the relatively wide portions.
  • the resin mold portion 6 can be easily manufactured, and the reactor 1 is excellent in manufacturability (details will be described later).
  • the interval between the relatively narrow portions is 65% or less, more than 60%, 55% or less, 50% or less of the maximum value of the above-mentioned interval. Preferably there is.
  • the interval t1 at the narrowest portion (here, the interval g d ) is 50% or less of the interval t2 at the widest portion (here, the interval g ue ).
  • the interval t1 of the narrowest portion is preferably 45% or less, more preferably 40% or less, and 35% or less of the maximum value of the interval.
  • the interval t1 of the narrowest portion may be substantially zero.
  • the coil 2 secures electrical insulation, for example, by providing the winding 2w with an insulation coating. It is preferable. In this case, it is preferable that there is no fear of damaging the coil 2 or the like due to vibration or the like during the use of the reactor 1.
  • the interval t1 of the narrowest portion is 5% or more of the maximum value of the above interval, and further 10% or more. It is done.
  • the place with the narrowest interval is a flat plate-like place.
  • the distance g d between the flat portions is 5% to 50% of the maximum value of the distance.
  • the ratio of the above-mentioned interval in the region between the winding part 2a and the inner core part 31a is relatively large, the heat dissipation is excellent. It is because the area
  • the length ratio the ratio of the length of the portion where the interval is relatively narrow with respect to the inner peripheral length of the winding portion 2a (hereinafter referred to as the length ratio). Is 10% or more.
  • the length of the portion where the interval is relatively narrow is the length along the circumferential direction of the winding portion 2a.
  • the length ratio is preferably 15% or more.
  • the length ratio is 50% or more, and further 65% or more. Therefore, it can be said that the reactor 1 of this example includes many places where the said space
  • the length ratio is, for example, 90% or less, there are surely places where the interval is relatively wide.
  • the thick part 612 exists reliably.
  • the length ratio may be 85% or less, and further 80% or less.
  • the ratio of the length of the part where the interval is the narrowest with respect to the inner peripheral length of the winding part 2a is 15% or more.
  • a place where the interval is relatively narrow as in this example includes the following flat plate-like places.
  • the winding part 2a has a rectangular tube shape.
  • the inner core portion 31a has a quadrangular prism shape.
  • the flat plate-like portion is a portion sandwiched between one surface of the inner peripheral surface of the winding portion 2a (here, the surface (lower surface) on the installation target 100 side) and one surface (lower surface) of the outer peripheral surface of the inner core portion 31a.
  • the flat plate portion has a plane area equivalent to the lower surface of the winding portion 2a.
  • the reactor 1 is easy to improve heat dissipation.
  • the interval g d of a flat portion is 40% or less of the maximum value of the interval, is less than half of the maximum value of the interval. Also from this point, the reactor 1 is easy to improve heat dissipation.
  • the reactor 1 of this example includes an interposition member 5.
  • the interposition member 5 is interposed between the winding portions 2 a and 2 b of the coil 2 and the magnetic core 3.
  • the interposition member 5 of this example is typically made of an electrically insulating material, and contributes to increasing the electrical insulation between the coil 2 and the magnetic core 3.
  • the interposing member 5 also contributes to positioning the magnetic core 3 with respect to the winding portions 2a and 2b.
  • the interposition member 5 of this example is provided between the winding portions 2a and 2b and the inner core portions 31a and 31b, between the inner core portions 31a and 31b and the outer core portion 32, and the like. This also contributes to the formation of a predetermined gap. This gap is used for the flow path of the fluid resin.
  • the fluid resin filled in the gap is solidified to form the resin mold part 6.
  • the interposition member 5 of this example is a frame-shaped plate material as shown in FIG. 3, and is disposed between the end surfaces of the winding portions 2a and 2b and the connection surface 32e of the outer core portion 32 (see FIG. 1).
  • the plate material is provided with two through holes 5h and 5h side by side in a direction perpendicular to the axial direction of the winding portions 2a and 2b.
  • a plurality of support pieces 51 are provided on the winding portions 2a and 2b side of the plate material.
  • the support piece 51 positions the inner core portions 31a and 31b.
  • the plate member includes a plurality of support pieces 52 and recesses 54 on the outer core portion 32 side.
  • the support piece 52 prevents the outer core portion 32 from being displaced.
  • the outer core portion 32 is fitted in the recess 54. In FIG. 1, the support pieces 51 and 52 are omitted.
  • the through hole 5h in this example is a + -shaped hole when viewed in the axial direction. Specifically, the four corners of the square hole are each covered with a flat end surface support portion 53, and the through hole 5h has a + shape.
  • the through hole 5h has a + shape.
  • four end portions of the end surfaces 31e and 31e of the inner core portions 31a and 31b are covered with the end surface support portions 53, respectively.
  • the end faces 31e, 31e portions other than the four corners are exposed from the through hole 5h.
  • a predetermined gap is formed between the outer peripheral surfaces of the inner core portions 31a and 31b and the opening edge of the through hole 5h. This gap is used for the flow path of the fluid resin described above.
  • the end surface support portion 53 is interposed between the end surfaces 31 e and 31 e of the inner core portions 31 a and 31 b and the connection surface 32 e of the outer core portion 32.
  • a gap corresponding to the thickness of the end surface support portion 53 is formed between the end surface 31e and the coupling surface 32e. This gap is used as a position where a gap made of the constituent resin of the resin mold portion 6 is formed.
  • the thickness of the end surface support portion 53 is adjusted according to the gap length.
  • the interposition member 5 includes a plurality of support pieces 51 (a total of eight support pieces 51). Each support piece 51 protrudes toward the winding part 2a, 2b from the corner near the opening edge of each through hole 5h, 5h. Four support pieces 51 protrude from corners near one opening edge. Each support piece 51 is a rod-like member extending along the axial direction of the winding portions 2a and 2b. The inner peripheral surface of each support piece 51 has a shape corresponding to the corners of the outer peripheral surfaces of the inner core portions 31a and 31b. In the state in which the coil 2, the magnetic core 3, and the interposition member 5 are assembled, the four support pieces 51 described above support the corners in the vicinity of the end surface 31e among the outer peripheral surfaces of the one inner core portion 31a (or 31b).
  • the inner core portions 31a and 31b are positioned at predetermined positions with respect to the winding portions 2a and 2b. And the space
  • the thickness of the four support pieces 51 is different. Specifically, the thickness of the support pieces 51 and 51 arranged on the installation target 100 side (lower side) is thinner than the thickness of the support pieces 51 and 51 arranged on the opposite side (upper side) of the installation target 100 ( (See the intervening member 5 on the right side of FIG. 3).
  • the interval between the winding portions 2a and 2b and the inner core portions 31a and 31b is appropriately maintained at the predetermined size described above. (See also FIG. 2A).
  • a groove part in which the vicinity of the end face of the winding part 2 a, 2 b and a part of the winding 2 w, 2 w are fitted is provided (See the intervening member 5 on the right side of FIG. 3).
  • the part of the windings 2w and 2w is a drawn portion of the windings 2w and 2w drawn from the winding portions 2a and 2b.
  • the winding portions 2a and 2b are accurately positioned with respect to the interposition member 5 by fitting the vicinity of the end surfaces of the winding portions 2a and 2b and the drawn portion into the groove portion.
  • the reactor 1 can maintain the space
  • the two support pieces 52 and 52 arranged on the outer core portion 32 side in the interposition member 5 prevent the upper and lower positions of the outer core portion 32 from being displaced.
  • Each support piece 52, 52 is a flat tongue piece. Both support pieces 52, 52 are arranged so as to sandwich the upper surface and the lower surface of the outer core portion 32.
  • the connecting surface 32e of the outer core portion 32 and the vicinity thereof are accommodated.
  • the shape and size of the recess 54 are adjusted so that a predetermined gap is provided between the outer peripheral surface of the outer core portion 32 and the inner wall of the recess 54. .
  • This gap is a space that communicates with the gap that forms the gap and the gap between the inner core portions 31a and 31b and the opening edges of the through holes 5h and 5h. These gaps are used for the flow path of the above-described fluid resin.
  • the above-described through holes 5h and 5h are opened. Further, the connection surface 32 e of the outer core portion 32 is in contact with the bottom surface of the recess 54.
  • the interposition member 5 shown in FIG. 3 is an example, and the shape, size, and the like of the interposition member 5 can be changed as appropriate.
  • Examples of the constituent material of the interposition member 5 include an electrically insulating material.
  • Examples of the electrical insulating material include various resins.
  • Examples of the resin include a thermoplastic resin and a thermosetting resin.
  • Specific examples of the thermoplastic resin include polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), polyamide (PA) resin such as nylon 6 and nylon 66, polybutylene terephthalate (PBT) resin, Examples include acrylonitrile / butadiene / styrene (ABS) resin.
  • Specific examples of the thermosetting resin include unsaturated polyester resin, epoxy resin, urethane resin, silicone resin and the like.
  • the interposition member 5 can be manufactured by a known molding method such as injection molding.
  • the resin mold part 6 includes inner resin parts 61 and 61 that cover at least a part of the inner core parts 31a and 31b, and outer resin parts 62 and 62 that cover at least a part of the outer core parts 32 and 32.
  • the resin mold part 6 mechanically protects the core piece.
  • the resin mold part 6 protects the core piece from the external environment (improves corrosion resistance).
  • the resin mold part 6 improves the insulation between the core piece and the coil 2 or surrounding parts.
  • the inner resin parts 61 and 61 of this example mainly cover the area
  • the outer resin parts 62 and 62 of this example mainly cover the area of the outer peripheral surfaces of the outer core parts 32 and 32 excluding the connecting surface 32e. Since the reactor 1 of this example covers the wide range of the outer peripheral surface of the magnetic core 3 by the resin mold part 6, it is easier to obtain the above effect.
  • the resin mold part 6 of this example is an integrated body in which the inner resin parts 61 and 61 and the outer resin parts 62 and 62 are continuously formed. And the resin mold part 6 of this example hold
  • the thickness of the inner resin portion 61 is different in the circumferential direction, and includes a thin portion 610 and a thick portion 612 (FIG. 2A).
  • the thick portion 612 includes a portion having the widest interval among the intervals between the winding portions 2a and 2b and the inner core portions 31a and 31b, and the inner resin portion 61 is filled in the relatively wide interval.
  • Part of The thin portion 610 is filled in at least a part of the portion where the interval is relatively narrow, and forms the other portion of the inner resin portion 61.
  • the inner resin portion 61 of the present example exists in at least a part of a cylindrical space provided between the inner peripheral surface of the winding portion 2a (or 2b) and the outer peripheral surface of the inner core portion 31a (or 31b). . That is, the inner resin parts 61 and 61 exist in the winding parts 2a and 2b.
  • the inner resin portion 61 is formed by filling the cylindrical space with a fluid resin that is a raw material of the resin mold portion 6.
  • the electrical insulating material 7 exists in a part of the cylindrical space. Therefore, the inner resin part 61 has a C-shaped cross section (FIG. 2A).
  • the thickness of the inner resin portion 61 corresponds to the size of the cylindrical space.
  • the thickness of the inner resin portion 61 is along the circumferential direction of the winding portion 2a (or 2b) corresponding to the interval between the winding portion 2a (or 2b) and the inner core portion 31a (or 31b). It is not a uniform thickness. As shown in FIG. 2A, the thickness of the inner resin portion 61 is thin on the installation target 100 side (lower side) and thick on the opposite side (upper side) from the installation target 100. Details of the thickness will be described later.
  • the outer resin portion 62 of this example covers substantially the entire outer surface of the outer core portion 32 along the outer core portion 32 (core piece) except for the connecting surface 32e and the vicinity thereof. That is, the outer resin parts 62, 62 are exposed without being covered by the winding parts 2a, 2b. Further, the outer resin portion 62 of this example has a substantially uniform thickness. The covering region, thickness, etc. of the outer core portion 32 in the outer resin portion 62 can be selected as appropriate.
  • the constituent material of the resin mold portion 6 examples include various resins.
  • An example of the resin is a thermoplastic resin.
  • Specific examples of the thermoplastic resin include PPS resin, PTFE resin, LCP, nylon 6, nylon 66, nylon 10T, nylon 9T, nylon 6T, and other PA resins, PBT resin, and the like.
  • the constituent material may be a composite resin containing a filler (eg, made of alumina or silica) having excellent thermal conductivity in the resin. By including a filler, it can be set as the resin mold part 6 excellent in heat dissipation.
  • the constituent material of the resin mold part 6 and the constituent material of the interposition member 5 may contain the same resin.
  • both the resin mold part 6 and the interposition member 5 are excellent in bondability. Moreover, by including the same resin, the thermal expansion coefficients of both are close or substantially equal. Therefore, peeling due to thermal stress, cracking of the resin mold portion 6 and the like can be suppressed. Injection molding or the like can be used for molding the resin mold portion 6.
  • the reactor 1 of this example includes an inner resin portion 61 and an electrical insulating material 7 between the winding portion 2a and the inner core portion 31a.
  • the reactor 1 includes a thick portion 612 that is a part of the inner resin portion 61 over the entire region where the above-described interval is relatively wide.
  • the reactor 1 includes a thin portion 610 that is a remaining portion of the inner resin portion 61 in a part of the above-described relatively narrow interval, and includes an electrical insulating material 7 in the other portion.
  • the reactor 1 includes the flat electrical insulating material 7 at the above-mentioned narrowest flat plate-like portion among the portions having a relatively narrow interval.
  • the electrical insulating material 7 of this example is a molded body independent of the resin mold portion 6.
  • the inner resin portion 61 of this example is made of a uniform resin. Therefore, the thermal characteristics of the inner resin part 61 are uniform.
  • the thin portion 610 and the thick portion 612 have a thermal conductivity ⁇ 2.
  • the thin portion 610 of the present example exists in the region having the above-described intervals g i , g o , and g de . Therefore, the thin part 610 has a thickness corresponding to the intervals g i , g o , and g de .
  • the thick portion 612 of the present example is a region excluding a portion where the above-mentioned interval is relatively narrow among the regions between the winding portion 2a and the inner core portion 31a (the cross hatching is not applied in FIG.
  • the thick portion 612 is present in a region with a spacing g ue, g u described above. Therefore, the thick portion 612 having a thickness corresponding to the spacing g ue, g u.
  • the electrical insulating material 7 is made of various electrical insulating materials. By interposing the electrical insulating material 7 between the winding part 2a and the inner core part 31a, the electrical insulation of both can be improved.
  • the electrical insulating material 7 it is possible to include a molded body including the same resin as the constituent resin of the inner resin portion 61.
  • the interval t1 here, the interval g d
  • the interval t2 here, the interval g ue
  • this form satisfies (interval t1 / thermal conductivity ⁇ 1) ⁇ (interval t2 / thermal conductivity ⁇ 2) and is excellent in heat dissipation.
  • the smaller the interval t1 the better the heat dissipation.
  • the electrical insulation between the wound portion 2a and the inner core portion 31a is enhanced by both the inner resin portion 61 and the electrical insulating material 7. .
  • the assembly of the inner resin portion 61 and the electrical insulating material 7 can increase the mechanical strength.
  • the thermal expansion coefficient of the inner resin part 61 and the thermal expansion coefficient of the electrical insulating material 7 are substantially equal. For this reason, deformation or cracking of the inner resin portion 61 due to the difference in thermal expansion coefficient is unlikely to occur.
  • the electrical insulating material 7 can easily reduce the difference in thermal expansion coefficient with the inner resin part 61 if at least the resin component is common. If the electrical insulating material 7 consists of composite resin containing a filler and this filler is also excellent in electrical insulation, it will be more excellent in electrical insulation.
  • the electrical insulating material 7 is a material made of a constituent material having a higher thermal conductivity than the constituent material of the inner resin portion 61.
  • the thermal conductivity ⁇ 1 of the electrical insulating material 7 is higher than the thermal conductivity ⁇ 2 of the inner resin portion 61 (thick portion 612) ( ⁇ 1> ⁇ 2).
  • the interval t1 is smaller than the interval t2. Therefore, this form satisfies (interval t1 / thermal conductivity ⁇ 1) ⁇ (interval t2 / thermal conductivity ⁇ 2).
  • the electrical insulating material 7 is disposed in the narrowest portion among the above-described locations where the interval is relatively narrow.
  • the reactor 1 can efficiently transfer heat from the inner core portion 31a to the winding portion 2a through the electrical insulating material 7. Therefore, this form is more excellent in heat dissipation.
  • Examples of the constituent material of the highly heat-conductive electrical insulating material 7 include composite resins containing the above-mentioned fillers and various ceramics. Examples of the ceramic include alumina and aluminum nitride.
  • the resin-made electrical insulating material 7 may be various heat dissipation sheets made of silicone resin or the like.
  • the reactor 1 is excellent in manufacturability if a material having an adhesive layer on one surface of the heat dissipation sheet or the ceramic plate is used as the electrical insulating material 7.
  • the electrical insulating material 7 including the adhesive layer can be attached to the outer peripheral surface of the inner core portion 31a in the manufacturing process of the reactor 1.
  • examples of the highly heat-conductive electrical insulating material 7 include those having an insulating film on the surface of a base material made of metal.
  • examples of the metal include aluminum and alloys thereof.
  • examples of the constituent material of the insulating film include various resins and ceramics such as alumina.
  • the electrical insulating material 7 is one having an inner resin portion 61 (thick portion 612) having a thermal conductivity less than ⁇ 2 ( ⁇ 1 ⁇ 2).
  • the electrical insulating material 7 is disposed at the place where the above-mentioned interval is the narrowest. Therefore, even if the electrical insulating material 7 does not have a thermal conductivity equal to or higher than the thermal conductivity ⁇ 2 of the inner resin portion 61, (interval t1 / thermal conductivity ⁇ 1) ⁇ (interval t2 / thermal conductivity ⁇ 2) This is because heat can be radiated to the winding part 2a because the distance from the inner core part 31a to the winding part 2a is short.
  • the thermal conductivity ⁇ 1 is preferably as large as possible in a range satisfying ⁇ 1 ⁇ 2. Although it depends on the size of the interval t1, if the thermal conductivity ⁇ 2 is 2.5 times or less of the thermal conductivity ⁇ 1 and less than 2 times, the (interval t1 / thermal conductivity ⁇ 1) is (interval t2 / thermal conductivity). It tends to be smaller than the rate ⁇ 2).
  • Examples of the electrical insulating material 7 satisfying ⁇ 1 ⁇ 2 include insulating paper and insulating film. Insulating paper and insulating film are very thin. Examples of the thickness include 10 ⁇ m or more and 200 ⁇ m or less, 180 ⁇ m or less, 150 ⁇ m or less, and further 100 ⁇ m or less. If the electrical insulating material 7 is thin like this, the interval t1 can be reduced according to the thickness of the electrical insulating material 7. Therefore, (interval t1 / thermal conductivity ⁇ 1) can be made much smaller than (interval t2 / thermal conductivity ⁇ 2), and the reactor 1 can improve heat dissipation.
  • the insulating paper examples include those containing cellulose fiber, aramid fiber, and the like.
  • the insulating film examples include those made of a resin such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyimide.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Commercially available insulating paper and commercially available insulating film can be used.
  • the electrical insulating material 7 may be used by cutting an insulating paper or an insulating film according to the size of the arrangement location. If an insulating film provided with an adhesive layer is used, the reactor 1 is excellent in manufacturability as described above.
  • the electrical insulating material 7 of this example is a flat plate material.
  • the flat plate has a thickness of approximately equal to the distance g d.
  • this flat plate material has a plane area equivalent to the location which is not covered with the interposition member 5 among the surface (lower surface) by the side of the installation object 100 in the inner core part 31a.
  • the flat electrical insulating material 7 is present so as to substantially fill the space between the surface (lower surface) on the installation target 100 side and the lower surface of the inner core portion 31a among the inner peripheral surface of the winding portion 2a.
  • the electrical insulating material 7 may be, for example, a bar material instead of the flat plate material.
  • the reactor 1 of this example includes one electrical insulating material 7 for one winding portion 2a.
  • Reactor 1 is excellent in manufacturability because the number of electrical insulating materials 7 is small. This is because it is easy to shorten the assembly time in the manufacturing process of the reactor 1.
  • the electric insulating material 7 of this example is a flat plate material, and the reactor 1 is excellent in manufacturability because it is easy to arrange in a flat plate-like portion.
  • the reactor 1 may include a plurality of electrical insulating materials 7 for one winding portion 2a.
  • the electrical insulating material 7 is the above-described bar material
  • the reactor 1 may be provided with a plurality of bar materials that are separated from each other in the circumferential direction of the winding portion 2a.
  • the proportion of the electrical insulating material 7 occupying the relatively narrow portion of the winding portion 2a can be selected as appropriate.
  • the occupation ratio is an area ratio in the cross section and is 5% or more and 95% or less.
  • the occupation ratio is defined such that the cross-sectional area of the portion where the interval is relatively narrow is 100%. In the illustration of FIG. 2B, the occupation ratio is 100% for a U-shaped portion with cross-hatching. Further, when a plurality of electrical insulating materials 7 are provided, the occupation ratio is a ratio of the total area of the plurality of electrical insulating materials 7.
  • the occupation ratio in this example is 5% or more and 30% or less in terms of the area ratio in the cross section. It can be said that such a reactor 1 has a large number of thin portions 610 in places where the interval is relatively narrow.
  • the strength of the magnetic core 3 can be easily increased by the resin mold part 6 because the thin part 610 and the inner resin part 61 are increased to some extent. This is because, when a plurality of core pieces are integrated by the resin mold portion 6 as in this example, the strength of the magnetic core 3 as an integrated object is easily increased.
  • the occupation ratio of the electrical insulating material 7 may be larger in the above range (5% to 95%). That is, the ratio of the thin portion 610 may be small.
  • the resin mold part 6 is excellent in manufacturability. It is because there are few comparatively narrow places in the filling part of fluid resin, and it is easy to fill fluid resin.
  • the shape and size of the electrical insulating material 7, the arrangement position / number of the electrical insulating materials 7 at the locations where the spacing is relatively narrow, the occupation ratio of the electrical insulating material 7 to the locations where the spacing is relatively narrow, and the like can be selected as appropriate. .
  • the electrical insulating material 7 is substantially present in the narrowest portion among the portions having the relatively small intervals.
  • Such a reactor 1 is easy to manufacture the resin mold part 6, and is excellent in manufacturability.
  • the resin mold part 6 is formed in a state where the electrical insulating material 7 is disposed in the narrowest portion, a portion other than the narrowest portion can be used as a flow path for the flowable resin. Therefore, the flow path is likely to be relatively wide. Therefore, it is easy to fill with fluid resin.
  • the narrowest portion may include the electrical insulating material 7 and a part of the resin mold portion 6. However, from the viewpoint of manufacturability, it is preferable that the narrowest part is only the electric insulating material 7.
  • the reactor 1 of Embodiment 1 is manufactured as follows, for example.
  • a combined body 10 including the coil 2, the magnetic core 3, and the electrical insulating material 7 is produced (FIG. 3).
  • the combined body 10 is housed in a molding die (not shown) of the resin mold portion 6.
  • the magnetic core 3 is covered with a fluid resin while the outer peripheral surfaces of the winding portions 2a and 2b of the coil 2 are exposed.
  • the resin mold part 6 is formed by solidifying the fluid resin.
  • the union 10 of this example includes the interposition member 5.
  • the interposition member 5 By using the interposition member 5, the combined body 10 can be easily constructed.
  • the winding portions 2 a and 2 b are disposed in the groove portion of the interposition member 5.
  • the inner core portions 31a and 31b are assembled until they contact the end surface support portion 53.
  • the outer core portion 32 is accommodated in the recess 54.
  • the coil 2 and the magnetic core 3 can be easily positioned with respect to the interposition member 5.
  • inner core part 31a, 31b and the electrical insulation materials 7 and 7 are inserted in winding part 2a, 2b in order.
  • the electrical insulating materials 7 and 7 are bonded in advance to the inner core portions 31a and 31b, and the bonded materials are simultaneously inserted into the winding portions 2a and 2b.
  • the combined body 10 in which the inner core portions 31a and 31b and the electrical insulating materials 7 and 7 exist in the winding portions 2a and 2b.
  • the flowable resin in one direction from the outer end surface of the one outer core portion 32 to the outer end surface of the other outer core portion 32 with respect to the combined body 10 stored in the molding die.
  • transducing fluid resin in two directions toward the winding part 2a, 2b side from the outer end surface of both the outer core parts 32 and 32, respectively, is mentioned.
  • the fluid resin flows from the outer end surface of the outer core portion 32 through the following gaps in order and is filled in each gap.
  • the fluid resin flows through a gap between the outer peripheral surface of the outer core portion 32 and the inner wall of the recess 54 of the interposition member 5.
  • the fluid resin flows through the gap between the winding portions 2a and 2b of the coil 2 and the outer peripheral surface of the inner core portions 31a and 31b through the gap due to the end face support portion 53 interposed.
  • the resin mold portion 6 is formed by solidifying the fluid resin.
  • the reactor 1 according to the first embodiment can be used for circuit components that perform voltage step-up and step-down operations, such as various converters and components of power converters.
  • the converter include an in-vehicle converter (typically a DC-DC converter) mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle, and a converter for an air conditioner.
  • the reactor 1 of Embodiment 1 is excellent in heat dissipation for the following reasons.
  • (A) The outer peripheral surfaces of the winding portions 2 a and 2 b of the coil 2 are exposed without being substantially covered with the resin mold portion 6. Therefore, the winding parts 2a and 2b can be in direct contact with a fluid refrigerant such as a liquid refrigerant or a wind from a fan, or can be close to the installation object 100 or the cooling mechanism, and have excellent heat dissipation efficiency.
  • a fluid refrigerant such as a liquid refrigerant or a wind from a fan
  • the other portion of the relatively narrow portion is provided at a position corresponding to the surface of the winding portions 2a and 2b from which both are separated (the right surface in the winding portion 2a in FIG. 2A and the left surface in the winding portion 2b). Therefore, for example, if the cooling mechanism is close to the sides of the winding portions 2a and 2b, the distance to the heat radiation location of the winding portions 2a and 2b is short. As a result, the reactor 1 can efficiently dissipate heat from the inner core portions 31a and 31b to the winding portions 2a and 2b, and further to the cooling mechanism.
  • the reactor 1 of this example is further excellent in heat dissipation for the following reasons.
  • D The reactor 1 is provided with the thin part 610 in the above-mentioned relatively narrow location. Therefore, the reactor 1 is excellent in heat conductivity compared with the case where air is contained in the relatively narrow portion.
  • E The surface on the installation target 100 side in the winding portions 2a and 2b and the surface on the side where both are separated are flat surfaces. Therefore, the heat radiation area of winding part 2a, 2b is large, and the reactor 1 is excellent by heat dissipation efficiency.
  • F When the thermal conductivity ⁇ 1 of the electrical insulating material 7 is larger than the thermal conductivity ⁇ 2 of the thick portion 612, the reactor 1 is more excellent in heat dissipation.
  • the reactor 1 of this example further has the following effects.
  • the reactor 1 is excellent in manufacturability.
  • Reactor 1 includes a relatively wide portion as a portion where thick portion 612 is formed in a space between winding portions 2a, 2b and inner resin portions 61, 61. Therefore, the reactor 1 is easy to fill the space with the fluid resin that is the raw material of the resin mold portion 6 and easily form the resin mold portion 6.
  • the electrical insulating material 7 is a molded body independent of the resin mold portion 6. Therefore, it is not necessary to fill the flowable resin in the narrowest portion of the space, and it is easy to fill the flowable resin and can be filled with high accuracy.
  • the reactor 1 includes the interposition member 5 provided with a plurality of support pieces 51 having different thicknesses. Therefore, the reactor 1 adjusts the thickness of the support piece 51 of the interposition member 5 according to a predetermined interval, so that the inner resin portion 61 having a predetermined thickness corresponding to the size of the interval can be accurately obtained. This is because it can be easily molded.
  • the reactor 1 includes the interposition member 5 having the predetermined shape described above. Therefore, the reactor 1 can easily position the coil 2 and the magnetic core 3 via the interposition member 5 and can be easily assembled.
  • the reactor 1 is excellent in mechanical strength by including the electrical insulating material 7 which is a molded body independent of the resin mold portion 6.
  • the cross-sectional shape of the inner resin part 61 is a C-shape. Therefore, the inner resin portion 61 can be elastically deformed to some extent. As a result, the reactor 1 can easily prevent the inner resin part 61 from cracking due to thermal stress or the like.
  • the reactor 1 of the first embodiment can achieve mechanical protection of the magnetic core 3, protection from the external environment, improvement of electrical insulation with the coil 2, and the like by the resin mold portion 6.
  • FIG. 4B is an explanatory diagram using the same diagram as FIG. 4A.
  • FIG. 4B is a diagram illustrating the distance between the winding portions 2a and 2b and the inner core portions 31a and 31b.
  • the basic configuration of the reactor of the second embodiment is the same as that of the reactor 1 of the first embodiment (see FIG. 2A).
  • one of the differences from the first embodiment is that the inner core portions 31a and 31b are unevenly distributed at the corners (inner side) where the winding portions 2a and 2b approach each other.
  • the interval t1 between the winding portions 2a, 2b and the inner core portions 31a, 31b is smaller than that in the first embodiment.
  • the difference will be mainly described, and the detailed description of the same configurations and effects as those of the first embodiment will be omitted.
  • the winding part 2a and the inner core part 31a will be described as an example.
  • the axis Q is closer to the winding parts 2a and 2b from the state where the axis P of the winding part 2a and the axis Q of the inner core part 31a are coaxial ( Inside) and down.
  • the interval between the winding part 2a and the inner core part 31a differs in the circumferential direction of the winding part 2a.
  • the interval gue between the upper corners is the maximum.
  • an interval at a location that is 70% of the maximum value of the interval is defined as an interval g de . If a portion satisfying 70% or less of the maximum value of the interval is a relatively narrow portion, the relatively narrow portion exists in an L shape. In this relatively narrow portion, there are the electrical insulating material 7 and a part of the inner resin portion 61 (thin wall portion 610) (FIG. 4A).
  • the intervals g d and g i which are the minimum values of the intervals are 5% or more and 25% or less of the interval g ue which is the maximum value of the intervals, and are smaller than those of the first embodiment.
  • the interval t1 is likely to be much smaller than the interval t2.
  • An electrical insulating material 7 is present in the narrowest portion.
  • a thin material such as insulating paper or insulating film can be suitably used.
  • the reactor of Embodiment 2 satisfies (interval t1 / thermal conductivity ⁇ 1) ⁇ (interval t2 / thermal conductivity ⁇ 2).
  • interval in one winding part 2a is comparatively narrow is 60% or more and 80% or less, and is larger than Embodiment 1.
  • the reactor of Embodiment 2 is excellent in heat dissipation for the same reason as in Embodiment 1.
  • the heat dissipation is excellent.
  • the reactor of this example since the occupation ratio of the location where the electrical insulating material 7 exists, that is, the location having the interval t1 is larger than that of the first embodiment (see the above-described area ratio), the heat dissipation is excellent.
  • the reactor of this example is excellent in heat dissipation also from the location where the said space
  • the reactor of this example has a relatively wide portion larger than that of the first embodiment as described above. Therefore, the fluid resin is more easily filled in the manufacturing process. Since the resin mold part including the inner resin part 61 is easily manufactured, the reactor of the second embodiment is more excellent in manufacturability. Since relatively wide portions are provided close to and above the winding portions 2a and 2b and the inner core portions 31a and 31b, the fluid resin is easily filled.
  • the reactor of this example is excellent in rigidity as an integral part of the magnetic core by being held in the resin mold part, and has high strength. This is because the thick portions 612 and 612 are provided relatively close to the upper and outer sides of the inner core portions 31a and 31b.
  • the lower side of the inner core portions 31 a and 31 b is protected by the installation target 100. Adjacent inner sides of the inner core portions 31a and 31b are protected by the interposition of the winding portions 2a and 2b.
  • the upper side and the outer side of the inner core portions 31a and 31b are susceptible to external impacts and the like.
  • the reactor of this example can effectively reinforce the upper and outer sides of the inner core portions 31a and 31b by the thick portions 612 and 612.
  • the reactor of this example is provided with an insulating paper or the like at a place where the interval is the narrowest, so that the electric power between the winding parts 2a and 2b and the inner core parts 31a and 31b is larger than when the air is included. Excellent insulation.
  • the reactor of Embodiment 3 With reference to FIG. 5, the reactor of Embodiment 3 is demonstrated.
  • the reactor according to the third embodiment has the same basic configuration as the reactor 1 according to the first embodiment (see FIG. 2A). That is, the interval between the winding part 2a and the inner core part 31a and the interval between the winding part 2b and the inner core part 31b are different in the circumferential direction of the winding parts 2a and 2b.
  • an inner resin part 61 including a thin part 610 and a thick part 612.
  • the reactor according to the third embodiment is different from the reactor 1 according to the first embodiment in that the electric insulating material 7 independent of the resin mold portion 6 is not provided.
  • the difference will be mainly described, and the detailed description of the same configurations and effects as those of the first embodiment will be omitted.
  • the inner resin parts 61 and 61 are continuously formed in a cylindrical shape in the circumferential direction of the winding parts 2a and 2b.
  • the entire portion where the interval is relatively narrow is filled with the constituent resin of the inner resin portion 61, and the thin portions 610 and 610 exist.
  • the interval t1 between the places where the electrical insulating material 7 is arranged is smaller than the interval t2 between the places where the thick portion 612 is arranged (t1 ⁇ t2). Therefore, the reactor of the third embodiment satisfies (interval t1 / thermal conductivity ⁇ 1) ⁇ (interval t2 / thermal conductivity ⁇ 2) and is excellent in heat dissipation.
  • the reactor according to the third embodiment does not require the electrical insulating material 7 independent from the resin mold portion 6, and is excellent in productivity in that the number of assembly steps can be reduced. Further, only the inner resin portions 61 and 61 made of a material having a uniform thermal expansion coefficient exist between the winding portions 2a and 2b and the inner core portions 31a and 31b. Therefore, the reactor of Embodiment 3 is excellent in strength in that the inner resin part 61 is not easily cracked due to the difference in thermal expansion coefficient.
  • the electrical insulating material contains air. In this case, from the viewpoint of securing electrical insulation between the winding portion and the inner core portion, it is preferable that electrical insulation is sufficiently secured by the coil as described above.
  • a plurality of electrical insulating materials are arranged in one winding part.
  • the specifications of the shape, size, constituent material, etc. of the electrical insulating material can all be made equal or different.
  • one winding part may include an insulating paper and a resin molded body.
  • an inner resin portion may be interposed between adjacent electrical insulating materials. Air may be present without interposing the inner resin portion between the adjacent electrical insulating materials. In this case, it is not necessary to fill the narrowest portion with the fluid resin as described above, and the resin mold portion can be easily formed.
  • the outer peripheral shape of the inner core portion is not similar to the inner peripheral shape of the winding portion.
  • the interval between the winding portion and the inner core portion can be changed according to the inner peripheral shape of the winding portion and the outer peripheral shape of the inner core portion.
  • the shape and size of the winding part and the inner core part may be adjusted so that the distance is a desired size.
  • the outer peripheral shape of the inner core portion may be a circular shape, a trapezoidal shape, or the like.
  • the inner peripheral shape of the winding part and the outer peripheral shape of the inner core part are rectangular, and the ratio of the long side length to the short side length is different.
  • the inner core portion is an assembly of a plurality of core pieces and a plurality of gap members (or air gaps) (see Patent Document 1).
  • the assembly of the plurality of core pieces and the solid gap material may be integrated with an adhesive or may be integrated with the inner resin portion 61 of the resin mold portion 6.
  • a reactor is provided with at least one of the following (all are not shown).
  • (6-1) A sensor for measuring a physical quantity of a reactor, such as a temperature sensor, a current sensor, a voltage sensor, or a magnetic flux sensor.
  • the heat radiating plate include a metal plate, a plate material made of a non-metallic inorganic material having excellent thermal conductivity, and the like. If a heat sink is provided at a position corresponding to a location where the distance between the winding portions 2a and 2b is relatively narrow, heat can be radiated efficiently. If it demonstrates using FIG. 2A and FIG. 4A, a heat sink will be provided in the surface (lower surface) by the side of the installation object 100 among the outer peripheral surfaces of winding part 2a, 2b. In FIG. 2A and FIG.
  • the surface by the side of the installation object 100 in winding part 2a, 2b is a position corresponding to the location where the above-mentioned space
  • interval is the narrowest, and the electrical insulating material 7 exists.
  • the heat radiating plate may be provided on the right surface of the outer peripheral surface of the winding portion 2a and on the left surface of the outer peripheral surface of the winding portion 2b. Or you may provide a heat sink in the location in which the thick part 612 exists. This reactor is expected to increase the heat sink from the inner core portions 31a and 31b to the winding portions 2a and 2b through the thick portions 612 and 612 to some extent by the heat radiating plate.
  • the bonding layer include an adhesive layer. It is preferable to use an adhesive having excellent electrical insulation, because even if the heat sink is a metal plate, the insulation between the winding portions 2a and 2b and the heat sink can be enhanced.
  • (6-4) A mounting portion that is integrally formed with the outer resin portion 62 and that fixes the reactor 1 to the installation target 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Abstract

巻回部を有するコイルと、前記巻回部内に配置される内側コア部と、前記巻回部外に配置される外側コア部とを含む磁性コアと、前記巻回部と前記内側コア部との間の少なくとも一部に充填される内側樹脂部を含む樹脂モールド部とを備え、前記巻回部と前記内側コア部との間隔が前記巻回部の周方向に異なっており、前記間隔が最も狭い箇所に介在される電気絶縁材と、前記間隔が最も広い箇所に介在され、前記内側樹脂部の一部をなす厚肉部とを備え、前記電気絶縁材の熱伝導率をλ1、前記最も狭い箇所の間隔をt1、前記熱伝導率λ1に対する前記間隔t1の比率を(間隔t1/熱伝導率λ1)とし、前記厚肉部の熱伝導率をλ2、前記最も広い箇所の間隔をt2、前記熱伝導率λ2に対する前記間隔t2の比率を(間隔t2/熱伝導率λ2)とし、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす、リアクトル。

Description

リアクトル
 本開示は、リアクトルに関する。
 本出願は、2018年03月05日付の日本国出願の特願2018-039159に基づく優先権、及び2018年09月20日付の日本国出願の特願2018-175975に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 特許文献1は、車載コンバータ等に用いられるリアクトルとして、一対の巻回部を備えるコイルと、巻回部の内外に配置される磁性コアと、磁性コアの外周を覆う樹脂モールド部とを備えるものを開示する。上記磁性コアは、環状に組み付けられる複数のコア片を有する。上記樹脂モールド部は、コイルを覆わずに露出させる。
特開2017-135334号公報
 本開示のリアクトルは、
 巻回部を有するコイルと、
 前記巻回部内に配置される内側コア部と、前記巻回部外に配置される外側コア部とを含む磁性コアと、
 前記巻回部と前記内側コア部との間の少なくとも一部に充填される内側樹脂部と、前記外側コア部の少なくとも一部を覆う外側樹脂部とを含む樹脂モールド部とを備え、
 前記巻回部と前記内側コア部との間隔が前記巻回部の周方向に異なっており、
 前記間隔が最も狭い箇所に介在される電気絶縁材と、前記間隔が最も広い箇所に介在され、前記内側樹脂部の一部をなす厚肉部とを備え、
 前記電気絶縁材の熱伝導率をλ1、前記最も狭い箇所の間隔をt1、前記熱伝導率λ1に対する前記間隔t1の比率を(間隔t1/熱伝導率λ1)とし、
 前記厚肉部の熱伝導率をλ2、前記最も広い箇所の間隔をt2、前記熱伝導率λ2に対する前記間隔t2の比率を(間隔t2/熱伝導率λ2)とし、
 (間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす。
図1は、実施形態1のリアクトルを示す概略斜視図である。 図2Aは、実施形態1のリアクトルを図1に示す(II)-(II)切断線で切断した断面図である。 図2Bは、図2Aに示すリアクトルにおいて、巻回部と内側コア部との間隔を説明する図である。 図3は、実施形態1のリアクトルに備えられる組合体を示す分解斜視図である。 図4Aは、実施形態2のリアクトルを巻回部の軸方向に直交する平面で切断した断面図である。 図4Bは、図4Aに示すリアクトルにおいて、巻回部と内側コア部との間隔を説明する図である。 図5は、実施形態3のリアクトルを巻回部の軸方向に直交する平面で切断した断面図である。
[本開示が解決しようとする課題]
 リアクトルに対して、放熱性の更なる向上が望まれている。
 上述のようにコイルが樹脂モールド部から露出されていれば、例えばコイルの巻回部が液体冷媒やファンからの風に直接接触できる。このようなリアクトルは、放熱性に優れる。また、リアクトルが取り付けられる設置対象自体が冷却機構を備えていたり、設置対象とは独立してリアクトルの設置箇所の周囲に冷却機構が設けられていたりする場合には、コイルの巻回部を設置対象や冷却機構に近接できる。このようなリアクトルは、放熱性に優れる。しかし、大電流化に伴うコイルや磁性コアの高温化、リアクトルの小型化に伴う放熱面積の縮小等の理由により、放熱性により優れるリアクトルが望まれる。
 そこで、本開示は、放熱性に優れるリアクトルを提供することを目的の一つとする。
[本開示の効果]
 本開示のリアクトルは、放熱性に優れる。
[本開示の実施形態の説明]
 最初に、本開示の実施態様を列記して説明する。
(1)本開示の一態様に係るリアクトルは、
 巻回部を有するコイルと、
 前記巻回部内に配置される内側コア部と、前記巻回部外に配置される外側コア部とを含む磁性コアと、
 前記巻回部と前記内側コア部との間の少なくとも一部に充填される内側樹脂部と、前記外側コア部の少なくとも一部を覆う外側樹脂部とを含む樹脂モールド部とを備え、
 前記巻回部と前記内側コア部との間隔が前記巻回部の周方向に異なっており、
 前記間隔が最も狭い箇所に介在される電気絶縁材と、前記間隔が最も広い箇所に介在され、前記内側樹脂部の一部をなす厚肉部とを備え、
 前記電気絶縁材の熱伝導率をλ1、前記最も狭い箇所の間隔をt1、前記熱伝導率λ1に対する前記間隔t1の比率を(間隔t1/熱伝導率λ1)とし、
 前記厚肉部の熱伝導率をλ2、前記最も広い箇所の間隔をt2、前記熱伝導率λ2に対する前記間隔t2の比率を(間隔t2/熱伝導率λ2)とし、
 (間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす。
 本開示のリアクトルは、以下の理由により、放熱性に優れる。
(a)コイルの巻回部の外周面が樹脂モールド部に実質的に覆われずに露出されている。そのため、例えば巻回部が液体冷媒やファンからの風に直接接触できる。その他、巻回部を冷却機構自体に、又は冷却機構を備える設置対象に近接させることもできる。このような本開示のリアクトルは、放熱効率に優れる。
(b)コイルの巻回部と磁性コアの内側コア部との間に相対的に狭い箇所がある。
 上記相対的に狭い箇所の少なくとも一部を、巻回部の外周面において以下の放熱箇所に対応する位置に設ければ、内側コア部から巻回部の放熱箇所までの距離が短いといえる。このような本開示のリアクトルは、内側コア部から巻回部に効率よく放熱できる。上記巻回部の放熱箇所は、巻回部において、上述の液体冷媒等の流体冷媒が直接接触し得る箇所や、上述の設置対象又は冷却機構に近接して配置される箇所等が挙げられる。
(c)本開示のリアクトルは、巻回部と内側コア部との間に存在する介在物の熱伝導率と、上記介在物が配置される箇所の間隔とについて、(間隔t1/熱伝導率λ1)が(間隔t2/熱伝導率λ2)よりも小さい、という特定の条件を満たす。
 例えば、電気絶縁材の構成材料と、厚肉部の構成材料とが同じであれば、熱伝導率λ1,λ2が実質的に等しい。しかし、間隔t1が間隔t2よりも小さい。即ち、上述のように内側コア部から巻回部の放熱箇所までの距離が短いことで、本開示のリアクトルは放熱性に優れる。
 一方、電気絶縁材の構成材料と厚肉部の構成材料とが異なる場合を説明する。
 例えば、電気絶縁材の熱伝導率λ1が厚肉部の熱伝導率λ2よりも大きければ、電気絶縁材は厚肉部よりも熱伝導性に優れる。このような本開示のリアクトルは、熱伝導率の大小関係と、間隔t1,t2の大小関係との双方から、放熱性により優れる。なお、この場合には、(間隔t1/熱伝導率λ1)は(間隔t2/熱伝導率λ2)よりも確実に小さい。
 又は、例えば、電気絶縁材の熱伝導率λ1が厚肉部の熱伝導率λ2よりも小さいことが考えられる。しかし、間隔t1が間隔t2よりも非常に小さければ、内側コア部と巻回部との間に電気絶縁材が介在しても、内側コア部から巻回部に伝熱し易いといえる。このことから、「(間隔t1/熱伝導率λ1)が(間隔t2/熱伝導率λ2)よりも小さい」ことは、放熱性に優れる構成の一つといえる。そこで、本開示のリアクトルは、放熱性に優れる構成の一つとして、巻回部と内側コア部との間に介在される部材の熱伝導率とこの部材が配置される箇所の間隔との比率の大小関係を規定する。
 また、本開示のリアクトルは、以下の理由により、製造性にも優れる。本開示のリアクトルの製造過程において、樹脂モールド部は、以下のように形成される。巻回部と内側コア部との間の空間の少なくとも一部に、樹脂モールド部の原料となる流動性樹脂を充填した後、固化する。上記空間は、厚肉部の形成箇所として、上記間隔が相対的に広い箇所を含む。そのため、流動性樹脂は上記空間に充填され易い。ひいては、樹脂モールド部を形成し易い。
 電気絶縁材が厚肉部とは異なる材料で構成されており、樹脂モールド部とは独立した成形物であれば、樹脂モールド部をより形成し易い。このようなリアクトルは製造性により優れる。流動性樹脂の充填は、上記空間のうち、最も狭い箇所の少なくとも一部に電気絶縁材を配置した状態で行えばよいからである。上記空間のうち、電気絶縁材が存在する領域に上記流動性樹脂を充填する必要が無い。上記空間のうち、電気絶縁材が配置されていない箇所、つまり比較的広い箇所に上記流動性樹脂を充填すればよい。そのため、流動性樹脂は上記空間に充填され易い。また、流動性樹脂は、上記空間に隙間なく、かつ精度よく充填され易い。
 更に、本開示のリアクトルは、以下の理由により、強度にも優れる。本開示のリアクトルに備えられる磁性コアは、内側樹脂部と外側樹脂部とを備える樹脂モールド部によって一体に保持される。この樹脂モールド部は、厚肉部によって、内側樹脂部と外側樹脂部との接続強度を高め易い。このような樹脂モールド部に保持されることで、磁性コアは、一体物としての剛性を高められる。
 その他、本開示のリアクトルは、樹脂モールド部によって、磁性コアの機械的保護、外部環境からの保護、コイルとの電気絶縁性の向上等を図ることができる。
(2)本開示のリアクトルの一例として、
 前記巻回部と前記内側コア部との間隔が相対的に狭い箇所の少なくとも一部に充填され、前記内側樹脂部の他部をなす薄肉部を含む形態が挙げられる。
 上記形態は、以下の理由により、放熱性により優れる。上記形態は、上記相対的に狭い箇所に樹脂モールド部の一部(薄肉部)を備える。薄肉部の熱伝導率は空気よりも高い。そのため、上記形態は、上記相対的に狭い箇所内に空気を含む場合に比較して放熱性を高め易い。
(3)上記(2)のリアクトルの一例として、
 前記巻回部と前記内側コア部との間隔が相対的に狭い箇所に前記電気絶縁材と前記薄肉部とを備える形態が挙げられる。
 上記形態における電気絶縁材は、樹脂モールド部とは独立して成形されたものである。このような電気絶縁材を備える形態は、上述のように樹脂モールド部を形成し易く、製造性に優れる。特に、電気絶縁材の熱伝導率λ1が厚肉部の熱伝導率λ2よりも高い形態は、放熱性により優れる。
 また、上記形態は、以下の理由により、熱応力等による内側樹脂部の割れの発生等を防止し易く、機械的強度にも優れる。上記形態に備えられる内側樹脂部は、リアクトルを巻回部の軸方向に直交する平面で切断した断面(以下、横断面と呼ぶことがある)において、巻回部の周方向に連続する環状体ではない。この内側樹脂部は、上記横断面において、電気絶縁材との境界を有し、代表的には電気絶縁材を切れ目とするC字形状である。このような内側樹脂部は、ある程度の弾性変形が可能であり、応力を解放し易い。そのため、内側樹脂部は、熱応力等によって割れ難い。
(4)本開示のリアクトルの一例として、
 前記最も狭い箇所の間隔t1は、前記最も広い箇所の間隔t2の50%以下である形態が挙げられる。
 上記形態では、最も狭い箇所の間隔t1が間隔t2に比較して非常に小さい。そのため、熱伝導率λ1が多少小さくても、(間隔t1/熱伝導率λ1)が小さくなり易い。上記形態では、熱伝導率λ1が熱伝導率λ2の1/2倍超の大きさであれば(間隔t1/熱伝導率λ1)は(間隔t2/熱伝導率λ2)よりも確実に小さい。このような形態は、放熱性により優れる。また、上記形態は、最も広い箇所の間隔t2をより広く確保し易い。このような形態は、上述のように製造過程で流動性樹脂をより充填し易く、製造性により優れる。
(5)本開示のリアクトルの一例として、
 前記巻回部は四角筒状であり、前記内側コア部は四角柱状であり、
 前記巻回部と前記内側コア部との間隔が相対的に狭い箇所は、前記巻回部の内周面の一面と前記内側コア部の外周面の一面とに挟まれる平板状の箇所を含む形態が挙げられる。
 上記形態では、上述の内側コア部から巻回部の放熱箇所までの距離が短い領域は、平板状の領域であるため、比較的広く存在するといえる。このような形態は、放熱性により優れる。上記平板状の領域に、樹脂モールド部とは独立して成形された電気絶縁材が介在される形態は、上述のように製造性にも優れる。特に、電気絶縁材の熱伝導率λ1が厚肉部の熱伝導率λ2よりも高い形態は、放熱性により優れる。
(6)本開示のリアクトルの一例として、
 前記電気絶縁材の熱伝導率λ1は、前記厚肉部の熱伝導率λ2よりも高い形態が挙げられる。
 上記形態は、電気絶縁材の熱伝導率λ1が厚肉部の熱伝導率λ2よりも高いことで、(間隔t1/熱伝導率λ1)が(間隔t2/熱伝導率λ2)よりも確実に小さい。このような形態は、放熱性により優れる。
(7)本開示のリアクトルの一例として、
 前記電気絶縁材は、絶縁紙及び絶縁フィルムの少なくとも一方を含む形態が挙げられる。
 一般に、絶縁紙や絶縁フィルムの厚さは非常に薄い。そのため、上記形態は、絶縁紙や絶縁フィルムが配置される箇所の間隔t1を小さくできる。ひいては、(間隔t1/熱伝導率λ1)を小さくすることができる。従って、上記形態は、放熱性により優れる。また、上記形態は、最も広い箇所の間隔t2をより広く確保し易い。そのため、上記形態は、上述のように製造過程で流動性樹脂をより充填し易く、製造性により優れる。更に、上記形態は、巻回部と内側コア部との間の電気絶縁性にも優れる。間隔t1が小さいものの、空気ではなく、絶縁紙や絶縁フィルムが介在するからである。
(8)本開示のリアクトルの一例として、
 前記電気絶縁材は、前記内側樹脂部の構成樹脂と同じ樹脂を含む成形体を備える形態が挙げられる。
 上記形態に備えられる電気絶縁材は、内側樹脂部と同じ樹脂を含む。そのため、熱伝導率λ1が熱伝導率λ2に近い又は実質的に等しい。しかし、上述のように間隔t1が間隔t2よりも小さいため、上記形態は、放熱性に優れる。また、上記電気絶縁材の熱膨張係数が内側樹脂部の熱膨張係数に近い又は実質的に等しい。従って、上記形態は、上記熱膨張係数の相違に伴う内側樹脂部の変形や割れ等が生じ難く、機械的強度により優れる。更に、上記電気絶縁材は樹脂モールド部とは独立して成形されたものである。そのため、上記形態は、上述のように樹脂モールド部を形成し易く、製造性にも優れる。
[本開示の実施形態の詳細]
 以下、図面を参照して、本開示の実施形態を具体的に説明する。図中の同一符号は同一名称物を示す。
[実施形態1]
 主に図1~図3を参照して、実施形態1のリアクトル1を説明する。
 図2Aは、リアクトル1をコイル2の軸方向に直交する平面で切断した横断面図である。図2Aは、コイル2の巻回部2a,2b、内側コア部31a,31b、電気絶縁材7及び内側樹脂部61のみを示す。この点は、後述する図4A,図5も同様である。
 図2Bは、図2Aと同じ図を用いた説明図である。図2Bは、巻回部2aと内側コア部31aとの間隔、巻回部2bと内側コア部31bとの間隔を説明する図である。
 以下の説明では、図1,図2,図4,図5の紙面下側をリアクトル1の設置側として説明する。この設置方向は例示であり、適宜変更できる。
 また、以下の説明では、設置対象100側を下側と呼び、設置対象100とは反対側を上側と呼ぶことがある。巻回部2a,2bが近付く側を内側と呼び、巻回部2a,2bが離れる側を外側と呼ぶことがある。
(リアクトル)
〈概要〉
 実施形態1のリアクトル1は、図1に示すように、巻回部を有するコイル2と、巻回部内外に配置される磁性コア3と、磁性コア3の少なくとも一部を覆う樹脂モールド部6とを備える。本例のコイル2は一対の巻回部2a,2bを有する。各巻回部2a,2bは各軸が平行するように横並びに配置される。磁性コア3は、巻回部2a,2b内にそれぞれ配置される内側コア部31a,31bと、巻回部2a,2b外に配置される二つの外側コア部32,32とを含む。横並びされる内側コア部31a,31bを挟むように二つの外側コア部32,32が配置される。この配置により、磁性コア3は、環状の閉磁路を形成する。樹脂モールド部6は、内側樹脂部61,61と(図2Aも参照)、外側樹脂部62,62とを含む。一方の内側樹脂部61は、一方の巻回部2aと一方の内側コア部31aとの間の少なくとも一部に充填される。他方の内側樹脂部61は、他方の巻回部2bと他方の内側コア部31bとの間の少なくとも一部に充填される。各外側樹脂部62,62は、各外側コア部32,32の少なくとも一部を覆う。この樹脂モールド部6は、各巻回部2a,2bの外周面を覆わずに露出させる。このようなリアクトル1は、代表的には、コンバータケース等の設置対象100(図2A)に取り付けられて使用される。
 実施形態1のリアクトル1では、図2Aに示すように、巻回部2aと内側コア部31aとの間隔が巻回部2aの周方向に異なっている。また、巻回部2bと内側コア部31bとの間隔が巻回部2bの周方向に異なっている。本例のリアクトル1では、巻回部2aと内側コア部31aとがつくる空間の形状及び間隔と、巻回部2bと内側コア部31bとがつくる空間の形状及び間隔とが実質的に等しい。上記空間はいずれも筒状の空間である。また、上記空間はいずれも、間隔g<間隔g,g<間隔gde<間隔g<間隔gueを満たす(図2B)。
 更に、実施形態1のリアクトル1は、上述の巻回部2a,2bと内側コア部31a,31bとの間隔のうち、間隔が最も狭い箇所に存在する介在物と、間隔が最も広い箇所に存在する介在物とにおいて、以下の特定の条件を満たす。詳しくは、リアクトル1は、間隔が最も狭い箇所に介在される電気絶縁材7と、間隔が最も広い箇所に介在される厚肉部612とを備える。厚肉部612は、内側樹脂部61の一部をなす。
 電気絶縁材7の熱伝導率をλ1とする。
 最も狭い箇所の間隔(本例では間隔g)をt1とする。
 熱伝導率λ1に対する間隔t1の比率を(間隔t1/熱伝導率λ1)とする。
 厚肉部612の熱伝導率をλ2とする。
 最も広い箇所の間隔(本例では間隔gue)をt2とする。
 熱伝導率λ2に対する間隔t2の比率を(間隔t2/熱伝導率λ2)とする。
 リアクトル1は、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす。以下、構成要素ごとに詳細に説明する。
〈コイル〉
 本例のコイル2は、巻線が螺旋状に巻回されてなる筒状の巻回部2a,2bを備える。横並びされる一対の巻回部2a,2bを備えるコイル2として、以下の形態が挙げられる。
(i)コイル2は、独立した2本の巻線2w,2wによってそれぞれ形成される巻回部2a,2bと、以下の接続部とを備える(本例、図1)。接続部は、巻回部2a,2bから引き出される巻線2w,2wの両端部のうち、一方の端部同士を接続する。
(ii)コイル2は、1本の連続する巻線から形成される巻回部2a,2bと、巻回部2a,2bを連結する連結部とを備える。連結部は、巻回部2a,2b間に渡される巻線の一部からなる。
 いずれのコイル2においても、各巻回部2a,2bから引き出される巻線の端部((i)では接続部に用いられていない他方の端部)は、電源等の外部装置が接続される箇所として利用される。形態(i)の接続部は、巻線2w,2wの端部同士が直接的に接続される形態と、間接的に接続される形態とが挙げられる。直接的な接続には、溶接や圧着等が利用できる。間接的な接続には、巻線2wの端部に取り付けられる適宜な金具等が利用できる。
 巻線2wは、導体線と、導体線の外周を覆う絶縁被覆とを備える被覆線が挙げられる。導体線の構成材料は、銅等が挙げられる。絶縁被覆の構成材料は、ポリアミドイミド等の樹脂が挙げられる。本例の巻回部2a,2bは、被覆平角線からなる巻線2w,2wがエッジワイズ巻して形成された四角筒状のエッジワイズコイルである。また、本例の巻回部2a,2bの形状・巻回方向・ターン数等の仕様は同一である。エッジワイズコイルは、占積率を高め易く、小型なコイル2にできる。また、四角筒状であることで巻回部2a,2bの外周面は、四つの長方形状の平面を含むことができる。この四つの平面のうち、一面が例えば設置面であれば、巻回部2a,2bの設置面から設置対象100までの距離が均一的な大きさになる(図2A)。又は、上記一面が例えば冷却機構に近接して配置される場合、この一面から冷却機構までの距離が均一的な大きさになる。そのため、巻回部2a,2bは、設置対象100や冷却機構に効率よく放熱でき、放熱性に優れる。
 なお、巻線2wや巻回部2a,2bの形状、大きさ等は適宜変更できる。例えば、巻線は被覆丸線でもよい。又は、例えば、巻回部2a,2bの形状は円筒状やレーストラック状の筒状等の角部を有しない筒状でもよい。各巻回部2a,2bの仕様が異なってもよい。
 実施形態1のリアクトル1では、巻回部2a,2bの外周面の全体が樹脂モールド部6に覆われず露出される。巻回部2a,2b内には樹脂モールド部6の一部である内側樹脂部61が存在する。巻回部2a,2bの内周面の少なくとも一部は樹脂モールド部6に覆われる。
〈磁性コア〉
 本例の磁性コア3は、二つの柱状の内側コア部31a,31bと、二つの柱状の外側コア部32,32とを備える。更に、本例の磁性コア3は、内側コア部31a,31bの端面31e,31e(図3)と外側コア部32の連結面32e(図3)との間にギャップ材(図示せず)を備える。このギャップ材は、樹脂モールド部6の構成樹脂からなる。
《コア片》
 本例の内側コア部31a,31bはいずれも、図3に示すように一つの柱状のコア片からなる。各コア片は、同一形状、同一の大きさである。また、各コア片は、端面31eが正方形状である直方体状である。各コア片の外周形状は、巻回部2a,2bの内周形状に概ね相似である。各コア片の角部は、C面取りされている。そのため、各コア片の角部が欠け難い。このような各コア片は、強度に優れる。各コア片の角部がR面取りされた形態としてもよい(後述の図4A参照)。
 本例の外側コア部32,32はいずれも、一つの柱状のコア片からなる。各コア片は、同一形状、同一の大きさである。各コア片は、直方体の二つの角部をR面取りしたような柱状体である。各コア片における設置対象100側の面及びその対向面(図3では上面及び下面)の形状がドーム状である。各コア片における内側コア部31a,31bが接続される連結面32eが長方形状の平坦な平面である。また、各コア片は、内側コア部31a,31bが連結された状態において、各コア片の下面が内側コア部31a,31bの下面よりも突出する大きさを有する。この突出によって外側コア部32の磁路を増大することができる。その結果、リアクトル1における巻回部2a,2bの軸方向に沿った大きさが小さくなり易い(短くなり易い)。この点から、小型なリアクトル1とすることができる。
 内側コア部31a,31b,外側コア部32の形状、大きさ等は適宜変更できる(後述の変形例4,5参照)。
 本例では、図2Bに示すように、巻回部2a,2bの軸P,P対して、内側コア部31a,31bの軸Q,Qがずれている。本例のように巻回部2a,2bと内側コア部31a,31bとが概ね相似形状であっても、軸Pに対する軸Qのずれ量を設定すれば、巻回部2a,2bと内側コア部31a,31bとの間隔を巻回部2a,2bの周方向に異ならせることができる。上記間隔が所望の範囲となるように、上記ずれ量を調整するとよい。上記間隔の詳細は後述する。
《構成材料》
 上述のコア片は、軟磁性材料を主体とする成形体等が挙げられる。軟磁性材料は、鉄や鉄合金(例、Fe-Si合金、Fe-Ni合金等)といった金属、フェライト等の非金属等が挙げられる。上記成形体は、圧粉成形体、複合材料の成形体、軟磁性材料からなる板の積層体、焼結体等が挙げられる。圧粉成形体は、軟磁性材料からなる粉末や更に絶縁被覆を備える被覆粉末等が圧縮成形されたものである。複合材料の成形体は、軟磁性粉末と樹脂とを含む流動性の混合体を固化させたものである。積層体は、電磁鋼板等の板材が積層されたものである。焼結体は、フェライトコア等が挙げられる。内側コア部31a,31bの構成材料と外側コア部32の構成材料とが等しい形態、又は異なる形態のいずれも利用できる。
 磁性コア3は、本例のようにギャップ材を備えてもよい。ギャップ材は、板材等の中実体、エアギャップのいずれも利用できる。中実体の構成材料は、本例のように樹脂モールド部6の構成樹脂の他、アルミナ等の非磁性材料、磁性材料を含む成形体であって上述のコア片よりも比透磁率が低いもの等が挙げられる。なお、ギャップ材は省略してもよい。
〈巻回部と内側コア部との間隔〉
 以下、主に図2Bを参照して、巻回部2a,2bと内側コア部31a,31bとの間隔について説明する。
 本例では、コイル2の一方の巻回部2aと磁性コア3の一方の内側コア部31aとの間隔に関する事項は、他方の巻回部2bと他方の内側コア部31bとの間隔に関しても実質的に同じである。そのため、以下、巻回部2a及び内側コア部31aを例にして説明する。なお、巻回部2aと内側コア部31aとの間隔及び後述の介在物と、巻回部2bと内側コア部31bとの間隔及び後述の介在物とを異ならせることもできる。
 ここでの巻回部2aと内側コア部31aとの間隔とは、横断面において、巻回部2aの内周面と内側コア部31aの外周面との距離とする。
 本例では、上述のように巻回部2aの内周形状と内側コア部31aの外周形状とが概ね相似である。但し、図2Bに示すように、巻回部2aの軸Pに対して内側コア部31aの軸Qが同軸ではなくずれている。詳しくは、本例では、軸Pと軸Qとが同軸に配置された状態から、内側コア部31aの軸Qが設置対象100側(下側)にずれて配置されている。いわば、内側コア部31aは、設置対象100側に偏心して配置された状態である。そのため、リアクトル1では、巻回部2aと内側コア部31aとの間隔が相対的に広い箇所と、上記間隔が相対的に狭い箇所とが存在する。本例では、設置対象100側(下側)の間隔が相対的に狭い。また、本例では、設置対象100とは反対側(上側)の間隔が相対的に広い。設置対象100側の間隔は、設置対象100とは反対側の間隔よりも小さい。
 上述の配置状態において、巻回部2aの内周面のうち設置対象100とは反対側(上側)の角部と、内側コア部31aの上側の角部との間隔をgueとする。
 巻回部2aの内周面のうち上面と内側コア部31aの上面との間隔をgとする。
 巻回部2aの内周面のうち下面と内側コア部31aの下面との間隔をgとする。
 巻回部2aの内周面のうち下側の角部と内側コア部31aの下側の角部との間隔をgdeとする。
 巻回部2aの内周面のうち左面と内側コア部31aの左面との間隔、即ち内側の間隔をgとする。
 巻回部2aの内周面のうち右面と内側コア部31aの右面との間隔、即ち外側の間隔をgとする。
 間隔gueが最大である。
 間隔gが最小である。
 また、間隔の大きさは、昇順で、間隔g,g、間隔gde、間隔gである。つまり、リアクトル1は、間隔g<間隔g,g<間隔gde<間隔g<間隔gueを満たす。
 定量的には、巻回部2aと内側コア部31aとの間隔の最大値である間隔gueを基準として、本例のリアクトル1は、以下を満たす。
 間隔gが間隔gueの80%以上100%未満である。
 間隔gdeが間隔gueの70%以下である。
 間隔g,gが間隔gueの60%以下である。間隔gと間隔gとは等しい。
 上述の間隔の最小値である間隔gが間隔gueの40%以下である。
 ここでは、巻回部2aと内側コア部31aとの間の領域において、巻回部2aと内側コア部31aとの間隔の最大値(本例では間隔gue)の70%以下の領域を上記間隔が相対的に狭い箇所と呼ぶ。上記間隔の最大値の70%超の領域を上記間隔が相対的に広い箇所と呼ぶ。図2Bは、巻回部2a,2bと内側コア部31a,31bとの間の領域において、上記間隔が相対的に狭い箇所に二点鎖線でクロスハッチングを付し、上記間隔が相対的に狭い箇所を仮想的に示す。また、図2Bは、上記間隔が相対的に広い箇所に二点鎖線でハッチングを付し、上記間隔が相対的に広い箇所を仮想的に示す。本例では、上記間隔が相対的に狭い箇所は、間隔g,g,g,gdeを有するU字状の領域である(クロスハッチング参照)。
 上述の間隔が相対的に狭い箇所は、内側コア部31aから巻回部2aまでの距離を短くすることに寄与する。本例では、内側コア部31aの設置対象100側の面(下面)から、巻回部2aの外周面のうち、設置対象100側の面(下面)までの距離を、巻回部2aと内側コア部31aとが同軸に配置された場合に比較して、短くできる。そのため、本例のリアクトル1は、内側コア部31aから巻回部2aを経て設置対象100に効率よく放熱できる。又は、本例では、内側コア部31aの右面から巻回部2aの外周面のうち右面までの距離を内側コア部31aの上面から巻回部2aの上面までの距離よりも短くすることができる。そのため、例えば巻回部2aの外周面のうち、右面に冷却機構を近接すれば、リアクトル1は、内側コア部31aの右面から巻回部2aを経て冷却機構に効率よく放熱できる。リアクトル1は、このように内側コア部31aから巻回部2aの放熱箇所(ここでは下面や右面)までの距離を短くできる。
 上述の相対的に狭い箇所の大きさ(間隔)が小さいほど、上述の内側コア部31aから巻回部2aの放熱箇所までの距離を短くできる。この点で、リアクトル1は、放熱性に優れる。また、上記相対的に狭い箇所の間隔が小さいほど、相対的に広い箇所の間隔を大きく確保し易い。この点で、樹脂モールド部6を製造し易く、リアクトル1は製造性に優れる(詳細は後述する)。放熱性の向上、製造性の向上等を望む場合には、上記相対的に狭い箇所の間隔は、上述の間隔の最大値の65%以下、更に60%以下、55%以下、50%以下であることが好ましい。
 巻回部2aと内側コア部31aとの間隔のうち、最も狭い箇所の間隔t1(ここでは間隔g)は、最も広い箇所の間隔t2(ここでは間隔gue)の50%以下であることが好ましい。上述の内側コア部31aから巻回部2aの放熱箇所までの距離がより短く、放熱性により優れるからである。また、最も広い箇所の間隔t2がより広く確保され易い。そのため、樹脂モールド部6を製造し易く、リアクトル1は製造性により優れるからである。放熱性の向上、製造性の向上等を望む場合には、最も狭い箇所の間隔t1は、上記間隔の最大値の45%以下、更に40%以下、35%以下であることが好ましい。
 放熱性の向上、製造性の向上の観点からは、最も狭い箇所の間隔t1は実質的にゼロでも構わない。但し、この場合には、巻回部2aと内側コア部31aとの電気絶縁性を確保する観点から、巻線2wが絶縁被覆を備える等して、コイル2によって電気的絶縁が確保されていることが好ましい。また、この場合には、リアクトル1の使用中に振動等でコイル2等を傷付ける恐れが無いことが好ましい。
 巻回部2aと内側コア部31aとの電気絶縁性の向上等を望む場合には、最も狭い箇所の間隔t1は、上記間隔の最大値の5%以上、更に10%以上であることが挙げられる。
 本例では、上記間隔が最も狭い箇所は、平板状の箇所である。この平板状の箇所の間隔gは、上記間隔の最大値の5%以上50%以下である。
 巻回部2aと内側コア部31aとの間の領域における上述の間隔が相対的に狭い箇所が占める割合が多いほど、放熱性に優れる。上述の内側コア部31aから巻回部2aの放熱箇所までの距離が短い領域が多くなるからである。上述の占有割合が多い形態の一例として、例えば、横断面において、巻回部2aの内周長に対して上記間隔が相対的に狭い箇所の長さの割合(以下、長さ割合と呼ぶ)が10%以上であることが挙げられる。上記間隔が相対的に狭い箇所の長さとは、巻回部2aの周方向に沿った長さである。上記長さ割合が大きいほど、上述の放熱箇所までの距離が短い領域が多い。この点から、リアクトル1は放熱性を高め易い。放熱性の向上を望む場合には、上記長さ割合が15%以上であることが好ましい。本例では、上記長さ割合が50%以上、更に65%以上である。そのため、本例のリアクトル1は、上記間隔が相対的に狭い箇所を多く含むといえる。一方、上記長さ割合が例えば90%以下であれば、上記間隔が相対的に広い箇所が確実に存在する。ひいては、厚肉部612が確実に存在する。厚肉部612の存在割合の増大等を望む場合には、上記長さ割合が85%以下、更に80%以下でもよい。その他、本例では、巻回部2aの内周長に対して上記間隔が最も狭い箇所の長さの割合が15%以上である。
 上述の占有割合が多い形態の別例として、本例のように上記間隔が相対的に狭い箇所が以下の平板状の箇所を含むことが挙げられる。詳しくは、巻回部2aが四角筒状である。内側コア部31aが四角柱状である。平板状の箇所は、巻回部2aの内周面の一面(ここでは設置対象100側の面(下面))と内側コア部31aの外周面の一面(下面)とに挟まれる箇所である。上記平板状の箇所は、巻回部2aの下面と同等程度の平面積を有する。そのため、この形態は、上述の内側コア部31aから巻回部2aの放熱箇所までの距離が短い領域が非常に多いといえる。この点から、リアクトル1は放熱性を高め易い。また、本例では、平板状の箇所の間隔gは上記間隔の最大値の40%以下であり、上記間隔の最大値の半分以下である。この点からもリアクトル1は放熱性を高め易い。
〈介在部材〉
 本例のリアクトル1は、介在部材5を備える。介在部材5は、コイル2の巻回部2a,2bと磁性コア3との間に介在される。本例の介在部材5は、代表的には電気絶縁材料からなり、コイル2と磁性コア3との間の電気絶縁性を高めることに寄与する。また、介在部材5は、巻回部2a,2bに対して磁性コア3を位置決めすることにも寄与する。更に、本例の介在部材5は、リアクトル1の製造過程で、巻回部2a,2bと内側コア部31a,31bとの間、内側コア部31a,31bと外側コア部32との間等に所定の隙間を形成することにも寄与する。この隙間は、流動性樹脂の流路に利用する。上記隙間に充填された流動性樹脂は、固化されて樹脂モールド部6をなす。
 詳しくは、本例の介在部材5は、図3に示すように枠状の板材であり、巻回部2a,2bの端面と外側コア部32の連結面32eとの間に配置される(図1も参照)。板材には、二つの貫通孔5h,5hが巻回部2a,2bの軸方向に直交する方向に横並びに設けられている。この板材における巻回部2a,2b側には複数の支持片51が設けられている。支持片51は、内側コア部31a,31bを位置決めする。上記板材は、外側コア部32側に複数の支持片52と凹部54とを備える。支持片52は、外側コア部32の位置ずれを防止する。凹部54には、外側コア部32が嵌められる。図1は支持片51,52を省略している。
 本例の貫通孔5hは、その軸方向にみて+形状の孔である。詳しくは、正方形状の孔の四隅がそれぞれ平板状の端面支持部53に覆われて、貫通孔5hは+形状をなす。内側コア部31a,31bと介在部材5とを組み付けた状態では、内側コア部31a,31bの端面31e,31eのうち、四つの角部はそれぞれ端面支持部53に覆われる。端面31e,31eのうち、上記四つの角部以外の箇所は貫通孔5hから露出される。内側コア部31a,31bの外周面と貫通孔5hの開口縁との間には所定の隙間が形成される。この隙間は、上述の流動性樹脂の流路に利用される。また、上述の組付状態では、端面支持部53は、内側コア部31a,31bの端面31e,31eと外側コア部32の連結面32eとの間に介在する。この介在によって、端面31eと連結面32eとの間には、端面支持部53の厚さに応じた隙間が形成される。この隙間は、樹脂モールド部6の構成樹脂からなるギャップの形成箇所として利用される。端面支持部53の厚さはギャップ長に応じて調整する。
 介在部材5は、複数の支持片51(合計八つの支持片51)を備える。各支持片51は、各貫通孔5h,5hの開口縁近傍の角部からそれぞれ、巻回部2a,2b側に向かって突出する。一つの開口縁近傍の角部から四つの支持片51が突出する。各支持片51は、巻回部2a,2bの軸方向に沿って延びる棒状の部材である。各支持片51の内周面は、内側コア部31a,31bの外周面の角部に対応した形状である。コイル2と磁性コア3と介在部材5とを組み付けた状態では、上述の四つの支持片51は、一つの内側コア部31a(又は31b)の外周面のうち、端面31e近傍の角部を支持する。この支持によって、各巻回部2a,2bに対して内側コア部31a,31bが所定の位置に位置決めされる。かつ、巻回部2a,2bと内側コア部31a,31bとの間隔は、所定の大きさに規定される。
 本例では、上述の四つの支持片51の厚さが異なる。詳しくは、設置対象100側(下側)に配置される支持片51,51の厚さが、設置対象100とは反対側(上側)に配置される支持片51,51の厚さよりも薄い(図3の右側の介在部材5参照)。このような支持片51に内側コア部31a,31bが支持されることで、巻回部2a,2bと内側コア部31a,31bとの間隔は、上述の所定の大きさに適切に維持される(図2Aも参照)。
 その他、本例では、介在部材5において巻回部2a,2b側の領域には、巻回部2a,2bの端面近傍及び巻線2w,2wの一部が嵌められる溝部が設けられている(図3の右側の介在部材5参照)。上記巻線2w,2wの一部とは、巻回部2a,2bから引き出された巻線2w,2wの引出部分である。巻回部2a,2bの端面近傍及び引出部分を溝部に嵌めることで、介在部材5に対して巻回部2a,2bは精度よく位置決めされる。この介在部材5を介して、巻回部2a,2bに対する内側コア部31a,31bの位置も精度よく決められる。そのため、リアクトル1は、巻回部2a,2bと内側コア部31a,31bとの間隔を精度よく維持できる。
 介在部材5において外側コア部32側に配置される二つの支持片52,52は、外側コア部32の上下の位置ずれを防止する。各支持片52,52は、平板状の舌片である。両支持片52,52は外側コア部32の上面及び下面を挟むように配置される。介在部材5において外側コア部32側に設けられる凹部54には、外側コア部32の連結面32e及びその近傍が収納される。凹部54に外側コア部32が収納された状態において、外側コア部32の外周面と凹部54の内壁との間に所定の隙間が設けられるように凹部54の形状、大きさが調整されている。この隙間は、上述のギャップを形成する隙間、及び内側コア部31a,31bと貫通孔5h,5hの開口縁との隙間に連通した空間である。これらの隙間は、上述の流動性樹脂の流路に利用される。凹部54の底面には、上述の貫通孔5h,5hが開口する。また、凹部54の底面には、外側コア部32の連結面32eが当接される。
 図3に示す介在部材5は例示であり、介在部材5の形状、大きさ等は適宜変更できる。
《構成材料》
 介在部材5の構成材料は、電気絶縁材料が挙げられる。電気絶縁材料の一例として、各種の樹脂等が挙げられる。樹脂の一例として熱可塑性樹脂、熱硬化性樹脂が挙げられる。熱可塑性樹脂の具体例として、ポリフェニレンスルフィド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6、ナイロン66といったポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂等が挙げられる。熱硬化性樹脂の具体例として、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂等が挙げられる。介在部材5は、射出成形等の公知の成形方法によって製造できる。
〈樹脂モールド部〉
 樹脂モールド部6は、内側コア部31a,31bの少なくとも一部を覆う内側樹脂部61,61と、外側コア部32,32の少なくとも一部とを覆う外側樹脂部62,62とを備えることで、例えば以下の効果を奏する。
(A)樹脂モールド部6は、コア片を機械的に保護する。
(B)樹脂モールド部6は、コア片を外部環境から保護する(耐食性を向上する)。
(C)樹脂モールド部6は、コア片とコイル2や周囲部品との間の絶縁性を向上する。
 本例の内側樹脂部61,61は、内側コア部31a,31bの外周面のうち、端面31eの一部及び介在部材5で支持される箇所を除く領域を主として覆う。本例の外側樹脂部62,62は、各外側コア部32,32の外周面のうち連結面32eを除く領域を主として覆う。本例のリアクトル1は、樹脂モールド部6によって磁性コア3の外周面の広い範囲が覆われるため、上記効果をより得易い。
 また、本例の樹脂モールド部6は、内側樹脂部61,61と外側樹脂部62,62とが連続して形成された一体物である。かつ、本例の樹脂モールド部6は、磁性コア3と介在部材5との組物を一体に保持する。そのため、樹脂モールド部6は、上記組物の一体物としての強度の向上にも寄与する。更に、本例の樹脂モールド部6の一部は、上述のように磁気ギャップとしても機能する。
 特に、実施形態1のリアクトル1では、内側樹脂部61の厚さが周方向に異なっており、薄肉部610と厚肉部612とを備える(図2A)。厚肉部612は、巻回部2a,2bと内側コア部31a,31bとの間隔のうち、間隔が最も広い箇所を含み、上記間隔が相対的に広い箇所に充填されて、内側樹脂部61の一部をなす。薄肉部610は、上記間隔が相対的に狭い箇所の少なくとも一部に充填されて、内側樹脂部61の他部をなす。
《内側樹脂部》
 本例の内側樹脂部61は、巻回部2a(又は2b)の内周面と内側コア部31a(又は31b)の外周面との間に設けられる筒状の空間の少なくとも一部に存在する。即ち、内側樹脂部61,61は、各巻回部2a,2b内に存在する。内側樹脂部61は、上記筒状の空間に樹脂モールド部6の原料となる流動性樹脂が充填されて形成される。本例では、上記筒状の空間の一部に電気絶縁材7が存在する。そのため、内側樹脂部61は、横断面形状がC字状である(図2A)。内側樹脂部61の厚さは、筒状の空間の大きさに対応している。即ち、内側樹脂部61の厚さは、巻回部2a(又は2b)と内側コア部31a(又は31b)との間隔に対応して、巻回部2a(又は2b)の周方向に沿って一様な厚さではない。内側樹脂部61の厚さは、図2Aに示すように設置対象100側(下側)が薄く、設置対象100とは反対側(上側)が厚い。厚さの詳細は後述する。
《外側樹脂部》
 本例の外側樹脂部62は、外側コア部32の外周面のうち、連結面32e及びその近傍を除いて実質的に全体を外側コア部32(コア片)に沿って覆う。即ち、外側樹脂部62,62は、巻回部2a,2bに覆われず露出されている。また、本例の外側樹脂部62は、概ね一様な厚さを有する。外側樹脂部62における外側コア部32の被覆領域、厚さ等は適宜選択できる。
《構成材料》
 樹脂モールド部6の構成材料は、各種の樹脂が挙げられる。樹脂の一例として、熱可塑性樹脂が挙げられる。熱可塑性樹脂の具体例として、PPS樹脂、PTFE樹脂、LCP、ナイロン6、ナイロン66、ナイロン10T、ナイロン9T、ナイロン6T等のPA樹脂、PBT樹脂等が挙げられる。上記構成材料は、上記樹脂に熱伝導性に優れるフィラー(例、アルミナやシリカからなるもの等)を含有する複合樹脂でもよい。フィラーを含むことで、放熱性に優れる樹脂モールド部6とすることができる。樹脂モールド部6の構成材料と介在部材5の構成材料とが同じ樹脂を含んでもよい。同じ樹脂を含むことで、樹脂モールド部6と介在部材5との両者は、接合性に優れる。また、同じ樹脂を含むことで、上記両者の熱膨張係数が近い又は実質的に等しい。そのため、熱応力による剥離や樹脂モールド部6の割れ等を抑制することができる。樹脂モールド部6の成形には、射出成形等が利用できる。
〈巻回部と内側コア部との間の介在物〉
 本例では、コイル2の一方の巻回部2aと磁性コア3の一方の内側コア部31aとの間の介在物に関する事項は、他方の巻回部2bと他方の内側コア部31bとの介在物に関しても実質的に同じである。そのため、以下、巻回部2a及び内側コア部31aを例にして説明する。
 本例のリアクトル1は、巻回部2aと内側コア部31aとの間に内側樹脂部61と電気絶縁材7とを備える。詳しくは、リアクトル1は、上述の間隔が相対的に広い箇所の全域に亘って、内側樹脂部61の一部である厚肉部612を備える。リアクトル1は、上述の間隔が相対的に狭い箇所の一部に内側樹脂部61の残部である薄肉部610を備え、他部に電気絶縁材7を備える。特に、リアクトル1は、上記間隔が相対的に狭い箇所のうち、上述の最も狭い平板状の箇所に平板状の電気絶縁材7を備える。本例の電気絶縁材7は、樹脂モールド部6とは独立した成形体である。
《内側樹脂部》
 本例の内側樹脂部61は、一様な樹脂から構成される。そのため、内側樹脂部61の熱特性は一様である。薄肉部610及び厚肉部612は、熱伝導率λ2を有する。本例の薄肉部610は、上述の間隔g,g,gdeを有する領域に存在する。そのため、薄肉部610は、間隔g,g,gdeに応じた厚さを有する。本例の厚肉部612は、巻回部2aと内側コア部31aとの間の領域のうち、上述の間隔が相対的に狭い箇所を除く領域(図2Bではクロスハッチングが付されておらずハッチングのみの領域)に存在する。即ち、厚肉部612は、上述の間隔gue,gを有する領域に存在する。そのため、厚肉部612は、間隔gue,gに応じた厚さを有する。厚肉部612における最も厚い箇所は間隔gue(=間隔t2)に応じた厚さを有する。
《電気絶縁材》
 電気絶縁材7は、各種の電気絶縁材料からなるものである。電気絶縁材7が巻回部2aと内側コア部31aとの間に介在されることで、両者の電気絶縁性を高められる。
<構成材料>
≪λ1=λ2≫
 電気絶縁材7の一例として、内側樹脂部61の構成樹脂と同じ樹脂を含む成形体を備えることが挙げられる。この電気絶縁材7の熱伝導率λ1は、厚肉部612の熱伝導率λ2と実質的に同じである(λ1=λ2)。一方、電気絶縁材7が配置される箇所の間隔t1(ここでは間隔g)は、厚肉部612が配置される箇所の間隔t2(ここでは間隔gue)よりも小さい(t1<t2)。従って、この形態は、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たし、放熱性に優れる。特に、間隔t1が小さいほど、放熱性により優れる。
 また、電気絶縁材7が上記樹脂を含む成形体である場合、内側樹脂部61と電気絶縁材7との双方によって、巻回部2aと内側コア部31aとの間の電気絶縁性が高められる。更に、この場合、内側樹脂部61と電気絶縁材7との組物は、機械的強度を高められる。内側樹脂部61の熱膨張係数と電気絶縁材7の熱膨張係数とが実質的に等しい。そのため、熱膨張係数の相違に伴う内側樹脂部61の変形や割れ等が生じ難いからである。内側樹脂部61の構成材料が上述のフィラーを含む複合樹脂である場合、電気絶縁材7は、少なくとも樹脂成分が共通すれば、内側樹脂部61との熱膨張係数の差を小さくし易い。電気絶縁材7がフィラーを含む複合樹脂からなり、このフィラーが電気絶縁性にも優れるものであれば、電気絶縁性により優れる。
≪λ1>λ2≫
 電気絶縁材7の別例として、内側樹脂部61の構成材料よりも熱伝導率が高い構成材料からなるものが挙げられる。この電気絶縁材7の熱伝導率λ1は内側樹脂部61(厚肉部612)の熱伝導率λ2よりも高い(λ1>λ2)。かつ、上述のように間隔t1が間隔t2よりも小さい。従って、この形態は、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす。特に、上述の間隔が相対的に狭い箇所のうち、最も狭い箇所に電気絶縁材7が配置される。そのため、リアクトル1は、内側コア部31aから電気絶縁材7を経て巻回部2aに熱伝達を効率よく行える。従って、この形態は、放熱性により優れる。特に、熱伝導率λ1が大きいほど、放熱性に優れる。また、間隔t1が小さいほど、放熱性により優れる。
 高熱伝導性の電気絶縁材7の構成材料として、例えば、上述のフィラーを含む複合樹脂、各種のセラミックス等が挙げられる。セラミックスは、例えば、アルミナや窒化アルミニウム等が挙げられる。電気絶縁材7には、上記複合樹脂や、上記セラミックスからなる板材が利用できる。その他、樹脂製の電気絶縁材7は、シリコーン樹脂等からなる各種の放熱シート等でもよい。電気絶縁材7として放熱シートの一面やセラミックス板の一面に接着層を備えるものを利用すれば、リアクトル1は製造性に優れる。接着層を備える電気絶縁材7は、リアクトル1の製造過程で、内側コア部31aの外周面に貼り付けておくことができる。そのため、内側コア部31a及び電気絶縁材7は同時に巻回部2aに挿入できるからである。その他、高熱伝導性の電気絶縁材7として、金属からなる基材の表面に絶縁膜を備えるもの等が挙げられる。上記金属は、アルミニウムやその合金等が挙げられる。上記絶縁膜の構成材料は、各種の樹脂や、アルミナ等のセラミックス等が挙げられる。
≪λ1<λ2≫
 電気絶縁材7の更に別例として、内側樹脂部61(厚肉部612)の熱伝導率λ2未満のものが挙げられる(λ1<λ2)。電気絶縁材7は、上述の間隔が最も狭い箇所に配置される。そのため、電気絶縁材7が内側樹脂部61の熱伝導率λ2と同等以上の熱伝導率を有していなくても、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たせば、内側コア部31aから巻回部2aまでの距離が短いことで、巻回部2aに放熱できるからである。この形態では、特に、間隔t1が小さいほど、放熱性に優れる。また、熱伝導率λ1はλ1<λ2を満たす範囲で大きいほど好ましい。間隔t1の大きさにもよるが、熱伝導率λ2は熱伝導率λ1の2.5倍以下、更に2倍未満であれば、(間隔t1/熱伝導率λ1)が(間隔t2/熱伝導率λ2)よりも小さくなり易い。
 λ1<λ2である電気絶縁材7の一例として、絶縁紙、絶縁フィルム等が挙げられる。絶縁紙や絶縁フィルムは、非常に薄いものが市販されている。上記厚さは例えば10μm以上200μm以下、更に180μm以下、150μm以下、更には100μm以下が挙げられる。電気絶縁材7がこのように薄ければ、電気絶縁材7の厚さに応じて、間隔t1も小さくできる。そのため、(間隔t1/熱伝導率λ1)を(間隔t2/熱伝導率λ2)よりも非常に小さくできて、リアクトル1は放熱性を高められる。
 絶縁紙は、例えば、セルロース繊維、アラミド繊維等を含むものが挙げられる。絶縁フィルムは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド等の樹脂からなるものが挙げられる。市販の絶縁紙、市販の絶縁フィルムを利用することができる。電気絶縁材7は、その配置箇所の大きさに応じて、絶縁紙や絶縁フィルムを切断して利用するとよい。接着層を備える絶縁フィルム等を利用すれば、上述のようにリアクトル1は製造性にも優れる。
<形状>
 本例の電気絶縁材7は、平板材である。この平板材は、間隔gと同等程度の厚さを有する。また、この平板材は、内側コア部31aにおける設置対象100側の面(下面)のうち介在部材5に覆われない箇所と同等程度の平面積を有する。この平板状の電気絶縁材7は、巻回部2aの内周面のうち設置対象100側の面(下面)と内側コア部31aの下面との間を概ね埋めるように存在する。その他、電気絶縁材7は、上記平板材に代えて、例えば棒材等でもよい。
<個数>
 本例のリアクトル1は、一つの巻回部2aに対して一つの電気絶縁材7を備える。電気絶縁材7の個数が少ないことで、リアクトル1は製造性に優れる。リアクトル1の製造過程で組立時間を短くし易いからである。本例の電気絶縁材7は平板材であり、平板状の箇所に配置し易いことからも、リアクトル1は製造性に優れる。リアクトル1は、一つの巻回部2aに対して、複数の電気絶縁材7を備えてもよい。例えば、電気絶縁材7を上述の棒材とする場合、リアクトル1は、巻回部2aの周方向に離間して、複数の棒材を備えてもよい。
<占有割合>
 一つの巻回部2aにおける上述の間隔が相対的に狭い箇所に対する電気絶縁材7が占める割合、いわば最も狭い箇所に電気絶縁材7が占める割合は、適宜選択できる。例えば、上記占有割合は、横断面における面積割合で、5%以上95%以下であることが挙げられる。上記占有割合は、上記間隔が相対的に狭い箇所の横断面積を100%とする。図2Bの例示では、上記占有割合は、クロスハッチングを付したU字状の箇所を100%とする。また、複数の電気絶縁材7を備える場合には、上記占有割合は複数の電気絶縁材7の合計面積の割合とする。本例の上記占有割合は、横断面における面積割合で5%以上30%以下である。このようなリアクトル1は、上記間隔が相対的に狭い箇所に薄肉部610がある程度多く存在するといえる。薄肉部610、ひいては内側樹脂部61がある程度多いことで、樹脂モールド部6によって磁性コア3の強度を高め易い。本例のように複数のコア片が樹脂モールド部6によって一体化される場合、磁性コア3における一体物としての強度が高められ易いからである。一方、上述の電気絶縁材7の占有割合が上述の範囲(5%~95%)でより大きくてもよい。即ち、薄肉部610の割合が少なくてもよい。この場合、樹脂モールド部6は製造性に優れる。流動性樹脂の充填箇所に比較的狭い箇所が少なく、流動性樹脂を充填し易いからである。
 電気絶縁材7の形状、大きさ、上記間隔が相対的に狭い箇所における電気絶縁材7の配置位置・個数、上記間隔が相対的に狭い箇所に対する電気絶縁材7の占有割合等は適宜選択できる。
<その他>
 本例のリアクトル1は、上記間隔が相対的に狭い箇所のうち、最も狭い箇所に実質的に電気絶縁材7のみが存在する。このようなリアクトル1は、樹脂モールド部6を製造し易く、製造性に優れる。リアクトル1の製造過程では、上記最も狭い箇所に電気絶縁材7を配置した状態で樹脂モールド部6を形成すれば、上記最も狭い箇所以外の箇所を流動性樹脂の流路にすることができる。そのため、上記流路が比較的広くなり易い。従って、流動性樹脂が充填され易い。
 なお、上記最も狭い箇所に電気絶縁材7と樹脂モールド部6の一部とを含むこともできる。但し、製造性の点から、上記最も狭い箇所は電気絶縁材7のみとすることが好ましい。
〈リアクトルの製造方法〉
 実施形態1のリアクトル1は、例えば、以下のようにして製造することが挙げられる。コイル2と磁性コア3と電気絶縁材7とを備える組合体10を作製する(図3)。樹脂モールド部6の成形金型(図示せず)に組合体10を収納する。コイル2の巻回部2a,2bの外周面を露出させつつ、磁性コア3を流動性樹脂で覆う。流動性樹脂を固化して、樹脂モールド部6を形成する。
 本例の組合体10は、介在部材5を備える。介在部材5を利用することで、組合体10を容易に構築することができる。詳しくは、介在部材5の溝部に巻回部2a,2bを配置する。端面支持部53に当接するまで内側コア部31a,31bを組み付ける。凹部54に外側コア部32を収納する。このように介在部材5に対して、コイル2及び磁性コア3を容易に位置決めすることができる。また、本例では、内側コア部31a,31bと、電気絶縁材7,7とを順に巻回部2a,2b内に挿入する。又は、内側コア部31a,31bに予め電気絶縁材7,7を接合しておき、接合したものを巻回部2a,2b内に同時に挿入する。こうすることで、巻回部2a,2b内に内側コア部31a,31bと電気絶縁材7,7とが存在する組合体10を構築することができる。
 成形金型に収納された組合体10に対して、例えば、一方の外側コア部32の外端面から他方の外側コア部32の外端面に向かう一方向に流動性樹脂を導入することが挙げられる。又は、両外側コア部32,32の外端面からそれぞれ巻回部2a,2b側に向かって二方向に流動性樹脂を導入することが挙げられる。いずれにしても、流動性樹脂は、外側コア部32の外端面から、以下の隙間を順に流れて各隙間に充填される。まず、流動性樹脂は、外側コア部32の外周面と介在部材5の凹部54の内壁との隙間を流れる。次に、流動性樹脂は、端面支持部53の介在による隙間を経て、コイル2の巻回部2a,2bと内側コア部31a,31bの外周面との隙間を流れる。流動性樹脂の充填後、流動性樹脂を固化することで樹脂モールド部6が形成される。
(用途)
 実施形態1のリアクトル1は、電圧の昇圧動作や降圧動作を行う回路の部品、例えば種々のコンバータや電力変換装置の構成部品等に利用できる。コンバータの一例として、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車等の車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や、空調機のコンバータ等が挙げられる。
(効果)
 実施形態1のリアクトル1は、以下の理由により、放熱性に優れる。
(a)コイル2の巻回部2a,2bの外周面が樹脂モールド部6に実質的に覆われずに露出されている。そのため、巻回部2a,2bは、液体冷媒やファンからの風等といった流体冷媒に直接接触できたり、設置対象100や冷却機構に近接できたりして、放熱効率に優れる。
(b)コイル2の巻回部2a,2bと磁性コア3の内側コア部31a,31bとの間に相対的に狭い箇所がある。この相対的に狭い箇所のうち、最も狭い箇所が巻回部2a,2bにおける設置対象100側の面に対応する位置に設けられる。そのため、内側コア部31a,31bから巻回部2a,2bの放熱箇所までの距離が短い。その結果、リアクトル1は、内側コア部31a,31bから巻回部2a,2bに効率よく放熱でき、更に設置対象100に放熱できる。
 上記相対的に狭い箇所の他部が巻回部2a,2bにおける両者が離れる側の面(図2Aの巻回部2aでは右面、巻回部2bでは左面)に対応する位置に設けられる。そのため、例えば巻回部2a,2bの側方に冷却機構が近接されれば、巻回部2a,2bの放熱箇所までの距離が短い。その結果、リアクトル1は、内側コア部31a,31bから巻回部2a,2bに効率よく放熱でき、更に冷却機構に放熱できる。
(c)リアクトル1は、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす。そのため、電気絶縁材7の熱伝導率λ1が厚肉部612の熱伝導率λ2と同等以上である場合は勿論、熱伝導率λ2よりも小さい場合でも放熱性に優れる。
 本例のリアクトル1は、以下の理由により、放熱性に更に優れる。
(d)リアクトル1は、上述の相対的に狭い箇所に薄肉部610を備える。そのため、リアクトル1は、上記相対的に狭い箇所内に空気を含む場合に比較して熱伝導性に優れる。
(e)巻回部2a,2bにおける設置対象100側の面や、両者が離れる側の面が平板状の平面である。そのため、巻回部2a,2bの放熱面積が広く、リアクトル1は放熱効率により優れる。
(f)電気絶縁材7の熱伝導率λ1が厚肉部612の熱伝導率λ2よりも大きい場合には、リアクトル1は放熱性により優れる。
 本例のリアクトル1は、更に、以下の効果を奏する。
(1)リアクトル1は、製造性に優れる。
(1-1)リアクトル1は、巻回部2a,2bと内側樹脂部61,61との間の空間に、厚肉部612の形成箇所として相対的に広い箇所を含む。そのため、リアクトル1は、上記空間に樹脂モールド部6の原料である流動性樹脂を充填し易く、樹脂モールド部6を形成し易いからである。
(1-2)電気絶縁材7が樹脂モールド部6とは独立した成形体である。そのため、上記空間のうち、最も狭い箇所に流動性樹脂を充填する必要が無く、流動性樹脂を充填し易い上に、精度よく充填できるからである。
(1-3)リアクトル1は、厚さが異なる複数の支持片51が設けられた介在部材5を備える。そのため、リアクトル1は、介在部材5の支持片51の厚さを所定の間隔に応じて調整することで、この間隔の大きさに応じた所定の厚さを有する内側樹脂部61を精度よく、かつ容易に成形できるからである。
(1-4)リアクトル1は、上述の所定の形状を有する介在部材5を備える。そのため、リアクトル1は、介在部材5を介して、コイル2と磁性コア3とを容易に位置決めできて、組み付け易いからである。
(2)リアクトル1は、樹脂モールド部6とは独立した成形体である電気絶縁材7を備えることで、機械的強度にも優れる。内側樹脂部61の横断面形状がC字形状である。そのため、内側樹脂部61はある程度の弾性変形が可能である。その結果、リアクトル1は、熱応力等による内側樹脂部61の割れの発生等を防止し易いからである。
 その他、実施形態1のリアクトル1は、樹脂モールド部6によって磁性コア3の機械的保護、外部環境からの保護、コイル2との電気絶縁性の向上等を図ることができる。
[実施形態2]
 図4A,図4Bを参照して、実施形態2のリアクトルを説明する。
 図4Bは、図4Aと同じ図を用いた説明図である。図4Bは、巻回部2a,2bと内側コア部31a,31bとの間隔を説明する図である。
 実施形態2のリアクトルは、図4Aに示すように、基本的な構成は実施形態1のリアクトル1(図2A参照)と同様である。実施形態2のリアクトルでは、各巻回部2a,2bにおける両者が近付く側(内側)の角部に内側コア部31a,31bが偏在される点が実施形態1との相違点の一つである。また、巻回部2a,2bと内側コア部31a,31bとの間隔のうち、最も狭い箇所の間隔t1が実施形態1よりも小さい点が別の相違点の一つである。
 以下、上記相違点を中心に説明し、実施形態1と重複する構成及び効果は詳細な説明を省略する。また、実施形態1と同様に、巻回部2a及び内側コア部31aを例にして説明する。
 図4Bに示すように、実施形態2のリアクトルでは、巻回部2aの軸Pと内側コア部31aの軸Qとが同軸の状態から、軸Qは、巻回部2a,2bが近付く側(内側)かつ下側にずれている。その結果、巻回部2aと内側コア部31aとの間隔が巻回部2aの周方向に異なる。巻回部2aと内側コア部31aとの間隔のうち、上側の角部の間隔gueが最大である。内側の間隔gと、内側かつ下側の角部の間隔と、設置対象100側(下側)の間隔gとが最小である(g=g=t1)。上側の間隔gと、巻回部2a,2bが離れる側(外側)の間隔gとが等しく、上記間隔の最大値(=間隔gue=t2)の70%超である。外側かつ下側の角部のうち、上記間隔の最大値の70%である箇所の間隔を間隔gdeとする。上記間隔の最大値の70%以下を満たす箇所を相対的に狭い箇所とすれば、相対的に狭い箇所はL字状に存在する。この相対的に狭い箇所には、電気絶縁材7と内側樹脂部61の一部(薄肉部610)とが存在する(図4A)。また、上記間隔の最大値の70%超を満たす箇所を相対的に広い箇所とすれば、相対的に広い箇所は逆L字状に存在する。この相対的に広い箇所に厚肉部612が存在する(図4A)。
 本例では、上記間隔の最小値である間隔g,gは、上記間隔の最大値である間隔gueの5%以上25%以下であり、実施形態1よりも小さい。この点で、間隔t1が間隔t2よりも非常に小さくなり易い。この最も狭い箇所には、電気絶縁材7が存在する。本例の電気絶縁材7には、厚さが薄いもの、例えば絶縁紙や絶縁フィルムが好適に利用できる。電気絶縁材7が絶縁紙や絶縁フィルム等であり、熱伝導率λ1が厚肉部612の熱伝導率λ2よりも大きくても、上述のように間隔t1が間隔t2よりも非常に小さい。このことから、実施形態2のリアクトルは、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす。
 また、本例では、一つの巻回部2aの内周長に対して上述の間隔が相対的に狭い箇所の長さ割合は、40%以上60%以下であり、実施形態1よりも小さい。従って、本例のリアクトルは、上記間隔が相対的に広い箇所を実施形態1よりも多く含むといえる。また、上述のように上記間隔の最小値が実施形態1よりも小さい。そのため、実施形態2のリアクトルは、上記間隔の最大値(=間隔gue=t2)を実施形態1よりも大きく確保し易い。
 更に、本例では、一つの巻回部2aにおける上記間隔が相対的に狭い箇所に対する電気絶縁材7が占める面積割合は、60%以上80%以下であり、実施形態1よりも大きい。従って、本例のリアクトルは、上記間隔が最も狭い箇所に電気絶縁材7を実施形態1よりも多く含むといえる。
 実施形態2のリアクトルは、実施形態1と同様の理由により、放熱性に優れる。特に、間隔t1が間隔t2よりも非常に小さくなり易いことから(上述の間隔g,g,gueの大きさ参照)、放熱性に優れる。本例のリアクトルでは、電気絶縁材7が存在する箇所、即ち間隔t1をとる箇所の占有割合が実施形態1よりも大きいことからも(上述の面積割合参照)、放熱性に優れる。また、本例のリアクトルは、上記間隔が相対的に狭い箇所が、実施形態1と同様に平板状の箇所を含むことからも、放熱性に優れる。
 更に、本例のリアクトルは、上述のように相対的に広い箇所が実施形態1よりも大きい。そのため、製造過程で、流動性樹脂がより充填され易い。内側樹脂部61を含めた樹脂モールド部を製造し易いことで、実施形態2のリアクトルは製造性により優れる。巻回部2a,2b及び内側コア部31a,31bの上側及び外側に相対的に広い箇所が寄せて設けられていることからも、流動性樹脂が充填され易い。
 更に、本例のリアクトルは、樹脂モールド部に保持されることによる磁性コアの一体物としての剛性に優れて、高強度である。内側コア部31a,31bの上側及び外側に相対的に厚肉部612,612が寄せて設けられているからである。ここで、内側コア部31a,31bの下側は設置対象100に保護される。内側コア部31a,31bにおける隣り合う内側は、巻回部2a,2bが介在することで保護される。これに対し、内側コア部31a,31bの上側及び外側は、外部からの衝撃等を受け易いといえる。本例のリアクトルは、このような内側コア部31a,31bの上側及び外側を厚肉部612,612によって効果的に補強できる。
 その他、本例のリアクトルは、上記間隔が最も狭い箇所に絶縁紙等を備えることで、空気を含む場合に比較して、巻回部2a,2bと内側コア部31a,31bとの間の電気絶縁性にも優れる。
[実施形態3]
 図5を参照して、実施形態3のリアクトルを説明する。
 実施形態3のリアクトルは、図5に示すように、基本的な構成は実施形態1のリアクトル1(図2A参照)と同様である。即ち、巻回部2aと内側コア部31aとの間隔、及び巻回部2bと内側コア部31bとの間隔が各巻回部2a,2bの周方向に異なっている。巻回部2a,2bと内側コア部31a,31bとの間には、薄肉部610及び厚肉部612を含む内側樹脂部61が存在する。但し、実施形態3のリアクトルは、実施形態1のリアクトル1に対して、樹脂モールド部6とは独立した電気絶縁材7を備えていない点が異なる。以下、上記相違点を中心に説明し、実施形態1と重複する構成及び効果は詳細な説明を省略する。
 実施形態3のリアクトルでは、内側樹脂部61,61は、各巻回部2a,2bの周方向に連続して筒状に成形されている。上記間隔が相対的に狭い箇所の全体に、内側樹脂部61の構成樹脂が充填されると共に、薄肉部610,610が存在する。この薄肉部610の一部が電気絶縁材7をなす。従って、電気絶縁材7の熱伝導率λ1は、厚肉部612の熱伝導率λ2と実質的に同じである(λ1=λ2)。電気絶縁材7が配置される箇所の間隔t1は、厚肉部612が配置される箇所の間隔t2よりも小さい(t1<t2)。そのため、実施形態3のリアクトルは、(間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たし、放熱性に優れる。
 実施形態3のリアクトルは、樹脂モールド部6とは独立した電気絶縁材7が不要であり、組立工程数を減らせる点で製造性に優れる。また、巻回部2a,2bと内側コア部31a,31bとの間に熱膨張係数が一様な材料からなる内側樹脂部61,61のみが存在する。そのため、実施形態3のリアクトルは、熱膨張係数差に起因する内側樹脂部61の割れ等が生じ難い点で強度にも優れる。
 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、上述の実施形態1~3に対して、以下の少なくとも一つの変更が可能である。
(変形例1)電気絶縁材が空気を含む。
 この場合、巻回部と内側コア部との電気絶縁性の確保の観点から、上述のようにコイルによって電気的絶縁が十分に確保されていることが好ましい。
(変形例2)複数の電気絶縁材(成形体)が一つの巻回部に配置される。
 この場合、電気絶縁材の形状、大きさ、構成材料等の仕様を全て等しくすることもできるし、異ならせることもできる。例えば、一つの巻回部が絶縁紙と、樹脂成形体とを備えてもよい。複数の電気絶縁材を巻回部の周方向に離間して備える場合、隣り合う電気絶縁材の間に内側樹脂部が介在してもよい。上記隣り合う電気絶縁材の間に内側樹脂部が介在せず、空気が存在してもよい。この場合、上述のように最も狭い箇所に流動性樹脂を充填する必要が無く、樹脂モールド部を形成し易い。
(変形例3)上述の間隔が最も狭い箇所が設置対象側以外の位置に設けられる。
 図2Aを用いて説明する。上記間隔が最も狭い箇所を、巻回部2a,2bの内周面のうち設置対象100とは反対側の面(上面)と内側コア部31a,31bの上面との間に設けてもよい。又は、上記間隔が最も狭い箇所を、巻回部2a,2bの内周面のうち両者が離れる側の側面(巻回部2aでは右面、巻回部2bでは左面)と内側コア部31a,31bの側面との間に設けてもよい。この場合、巻回部2a,2bの外周面の上面や上述の側面に冷却機構を近接配置することが挙げられる。
(変形例4)内側コア部の外周形状が巻回部の内周形状に非相似である。
 この場合、巻回部の内周形状及び内側コア部の外周形状に応じて、巻回部と内側コア部との間隔を変更することができる。上記間隔が所望の大きさとなるように、巻回部及び内側コア部の形状、大きさを調整するとよい。例えば、巻回部の内周形状が実施形態1~3で説明した正方形状である場合に、内側コア部の外周形状が円形状、台形状等であることが挙げられる。又は、巻回部の内周形状及び内側コア部の外周形状が長方形状であり、長辺長さと短辺長さとの比が異なることが挙げられる。
(変形例5)内側コア部は、複数のコア片と複数のギャップ材(エアギャップでもよい)との組物である(特許文献1参照)。
 複数のコア片と中実のギャップ材との組物は、接着剤で一体化したり、樹脂モールド部6の内側樹脂部61によって一体化したりすることが挙げられる。
(変形例6)リアクトルが以下の少なくとも一つを備える(いずれも図示せず)。
(6-1)温度センサ、電流センサ、電圧センサ、磁束センサ等のリアクトルの物理量を測定するセンサ。
(6-2)コイル2の巻回部2a,2bの外周面の少なくとも一部に取り付けられる放熱板。
 放熱板は、例えば金属板、熱伝導性に優れる非金属無機材料からなる板材等が挙げられれる。巻回部2a,2bの外周面のうち、上述の間隔が相対的に狭い箇所に対応した位置に放熱板を設けると、効率よく放熱できる。図2A,図4Aを用いて説明すると、放熱板は、巻回部2a,2bの外周面のうち設置対象100側の面(下面)に設けることが挙げられる。図2A,図4Aでは、巻回部2a,2bにおける設置対象100側の面は、上述の間隔が最も狭い箇所に対応した位置であり、電気絶縁材7が存在する。その他、放熱板は、巻回部2aの外周面のうち右面、巻回部2bの外周面のうち左面に設けてもよい。又は、放熱板は、厚肉部612が存在する箇所に設けてもよい。このリアクトルは、放熱板によって、内側コア部31a,31bから厚肉部612,612を介して巻回部2a,2bへの熱引きを多少なりとも高められると期待される。
(6-3)リアクトル1の設置面と設置対象100、又は上記の放熱板との間に介在される接合層。
 接合層は、例えば接着剤層が挙げられる。電気絶縁性に優れる接着剤とすると、放熱板が金属板であっても、巻回部2a,2bと放熱板との間の絶縁性を高められて好ましい。
(6-4)外側樹脂部62に一体に成形され、リアクトル1を設置対象100に固定するための取付部。
 1 リアクトル
 10 組合体
 2 コイル
  2a,2b 巻回部、2w 巻線
 3 磁性コア
  31a,31b 内側コア部、32 外側コア部
  31e 端面、32e 連結面
 5 介在部材
  5h 貫通孔、51,52 支持片、53 端面支持部、54 凹部
 6 樹脂モールド部
  61 内側樹脂部、62 外側樹脂部、610 薄肉部、612 厚肉部
 7 電気絶縁材
 100 設置対象

Claims (8)

  1.  巻回部を有するコイルと、
     前記巻回部内に配置される内側コア部と、前記巻回部外に配置される外側コア部とを含む磁性コアと、
     前記巻回部と前記内側コア部との間の少なくとも一部に充填される内側樹脂部と、前記外側コア部の少なくとも一部を覆う外側樹脂部とを含む樹脂モールド部とを備え、
     前記巻回部と前記内側コア部との間隔が前記巻回部の周方向に異なっており、
     前記間隔が最も狭い箇所に介在される電気絶縁材と、前記間隔が最も広い箇所に介在され、前記内側樹脂部の一部をなす厚肉部とを備え、
     前記電気絶縁材の熱伝導率をλ1、前記最も狭い箇所の間隔をt1、前記熱伝導率λ1に対する前記間隔t1の比率を(間隔t1/熱伝導率λ1)とし、
     前記厚肉部の熱伝導率をλ2、前記最も広い箇所の間隔をt2、前記熱伝導率λ2に対する前記間隔t2の比率を(間隔t2/熱伝導率λ2)とし、
     (間隔t1/熱伝導率λ1)<(間隔t2/熱伝導率λ2)を満たす、
    リアクトル。
  2.  前記巻回部と前記内側コア部との間隔が相対的に狭い箇所の少なくとも一部に充填され、前記内側樹脂部の他部をなす薄肉部を含む請求項1に記載のリアクトル。
  3.  前記巻回部と前記内側コア部との間隔が相対的に狭い箇所に前記電気絶縁材と前記薄肉部とを備える請求項2に記載のリアクトル。
  4.  前記最も狭い箇所の間隔t1は、前記最も広い箇所の間隔t2の50%以下である請求項1から請求項3のいずれか1項に記載のリアクトル。
  5.  前記巻回部は四角筒状であり、前記内側コア部は四角柱状であり、
     前記巻回部と前記内側コア部との間隔が相対的に狭い箇所は、前記巻回部の内周面の一面と前記内側コア部の外周面の一面とに挟まれる平板状の箇所を含む請求項1から請求項4のいずれか1項に記載のリアクトル。
  6.  前記電気絶縁材の熱伝導率λ1は、前記厚肉部の熱伝導率λ2よりも高い請求項1から請求項5のいずれか1項に記載のリアクトル。
  7.  前記電気絶縁材は、絶縁紙及び絶縁フィルムの少なくとも一方を含む請求項1から請求項5のいずれか1項に記載のリアクトル。
  8.  前記電気絶縁材は、前記内側樹脂部の構成樹脂と同じ樹脂を含む成形体を備える請求項1から請求項7のいずれか1項に記載のリアクトル。
PCT/JP2019/006109 2018-03-05 2019-02-19 リアクトル WO2019171940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980013734.4A CN111771252B (zh) 2018-03-05 2019-02-19 电抗器
US16/977,407 US11908613B2 (en) 2018-03-05 2019-02-19 Reactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-039159 2018-03-05
JP2018039159 2018-03-05
JP2018175975A JP7110863B2 (ja) 2018-03-05 2018-09-20 リアクトル
JP2018-175975 2018-09-20

Publications (1)

Publication Number Publication Date
WO2019171940A1 true WO2019171940A1 (ja) 2019-09-12

Family

ID=67847119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006109 WO2019171940A1 (ja) 2018-03-05 2019-02-19 リアクトル

Country Status (1)

Country Link
WO (1) WO2019171940A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144237A (ja) * 2013-12-26 2015-08-06 株式会社オートネットワーク技術研究所 リアクトル
WO2015190215A1 (ja) * 2014-06-11 2015-12-17 株式会社オートネットワーク技術研究所 リアクトル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144237A (ja) * 2013-12-26 2015-08-06 株式会社オートネットワーク技術研究所 リアクトル
WO2015190215A1 (ja) * 2014-06-11 2015-12-17 株式会社オートネットワーク技術研究所 リアクトル

Similar Documents

Publication Publication Date Title
EP2528073B1 (en) Reactor
JP2016096271A (ja) リアクトル
CN112789697B (zh) 电抗器
JP7110863B2 (ja) リアクトル
WO2015178208A1 (ja) リアクトル
WO2019171940A1 (ja) リアクトル
CN111344822B (zh) 电抗器
JP7064718B2 (ja) リアクトル
JP7061291B2 (ja) リアクトル
CN111316389B (zh) 电抗器
WO2018147061A1 (ja) リアクトル
US12009130B2 (en) Reactor
CN112840419B (zh) 电抗器
US12009145B2 (en) Reactor
CN112970080B (zh) 电抗器
JP7022342B2 (ja) リアクトル
WO2020105469A1 (ja) リアクトル
CN111656470B (zh) 电抗器
US20210398728A1 (en) Reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764518

Country of ref document: EP

Kind code of ref document: A1