WO2019171544A1 - Method for producing semiconductor device and film-like adhesive - Google Patents

Method for producing semiconductor device and film-like adhesive Download PDF

Info

Publication number
WO2019171544A1
WO2019171544A1 PCT/JP2018/009043 JP2018009043W WO2019171544A1 WO 2019171544 A1 WO2019171544 A1 WO 2019171544A1 JP 2018009043 W JP2018009043 W JP 2018009043W WO 2019171544 A1 WO2019171544 A1 WO 2019171544A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
semiconductor element
semiconductor device
semiconductor
Prior art date
Application number
PCT/JP2018/009043
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 中村
大久保 恵介
美千子 彼谷
大輔 山中
達也 矢羽田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020504597A priority Critical patent/JP7115537B2/en
Priority to KR1020207026916A priority patent/KR20200128051A/en
Priority to CN201880090862.4A priority patent/CN111819672A/en
Priority to PCT/JP2018/009043 priority patent/WO2019171544A1/en
Priority to SG11202008637UA priority patent/SG11202008637UA/en
Priority to TW108106384A priority patent/TWI852922B/en
Publication of WO2019171544A1 publication Critical patent/WO2019171544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device and a film adhesive used therefor.
  • stacked MCPs Multi Chip Packages
  • film adhesives are widely used as die bonding adhesives.
  • An example of a multi-stage stacked package using a film adhesive is a wire-embedded package. This is a package in which a wire connected to a semiconductor element to be crimped is crimped while being crimped using a high-fluid film adhesive. It is installed in memory packages for audio equipment.
  • Patent Document 1 includes a resin having a high molecular weight component and a thermosetting component mainly composed of an epoxy resin and a filler having a thickness of 10 to 250 ⁇ m. Adhesive sheets have been proposed.
  • Patent Document 2 proposes an adhesive composition containing a mixture containing an epoxy resin and a phenol resin and an acrylic copolymer.
  • connection reliability of a semiconductor device greatly depends on whether or not a semiconductor element can be mounted without generating a gap on the bonding surface. Therefore, a high-fluid film adhesive is used so that the semiconductor element can be crimped without generating voids, or the melt viscosity is low so that the generated voids can be eliminated in the sealing process of the semiconductor elements. Ingenuity has been made such as using a film adhesive.
  • Patent Document 3 proposes an adhesive sheet having low viscosity and low tack strength.
  • a semiconductor element is bonded to a substrate through a thermosetting adhesive, and then the adhesive is cured by heating in a pressurized atmosphere using a pressure oven or the like.
  • the pressure oven is a device that can heat and pressurize the internal atmosphere, and in the pressure oven, the adhesive is heated while receiving pressure from the surrounding gas. Thereby, the space
  • An object of the present invention is to provide a method for manufacturing a semiconductor device and an adhesive used therefor that can suppress the occurrence of the above.
  • a method of manufacturing a semiconductor device includes: a first wire bonding step of electrically connecting a first semiconductor element to a substrate via a first wire; and thermosetting the second semiconductor element.
  • the melt viscosity at 120 ° C. of the adhesive before the curing treatment is 1000 to 3000 Pa ⁇ s.
  • the present inventors achieve excellent embedding by a thermosetting adhesive heated in a pressurized atmosphere, and highly suppress misalignment of semiconductor elements stacked via this adhesive.
  • the adhesive is not too hard and not too soft in the process of being heated in a pressurized atmosphere.
  • the melt viscosity at 120 ° C. of the adhesive reflects the fluidity of the adhesive when heated in a pressurized atmosphere.
  • the specific range 1000 to 3000 Pa ⁇ s
  • the adhesive is preferably heated at 60 to 175 ° C. for 5 minutes or more in a pressurized atmosphere of 0.1 to 1.0 MPa.
  • the method for manufacturing a semiconductor device may include a step of further stacking a third semiconductor element on the second semiconductor element after the heating and pressing step. In this case, the capacity of the obtained semiconductor device can be increased.
  • the semiconductor device manufacturing method includes a second wire bonding step of electrically connecting the substrate and the second semiconductor element via a second wire, and sealing the second semiconductor element with a resin. And a step of performing. In this case, the reliability of the obtained semiconductor device is further increased.
  • the adhesive according to the present invention is used in a semiconductor device manufacturing process.
  • the adhesive is heated in a pressurized atmosphere, and at least one of the wires on the substrate and at least one of the semiconductor elements are embedded in the adhesive after the curing.
  • the adhesive has a melt viscosity of 1000 to 3000 Pa ⁇ s at 120 ° C.
  • the adhesive is not too hard and not too soft in the process of being heated in a pressurized atmosphere, so that the semiconductor element is positioned while exhibiting good embeddability in the heating and pressing process in the manufacture of a semiconductor device.
  • the occurrence of deviation can be suppressed. Therefore, a semiconductor device showing good connection reliability can be obtained.
  • the adhesive strength of the adhesive after curing with the substrate coated with solder resist ink is preferably 1.0 MPa or more. In this case, the connection reliability of the obtained semiconductor device becomes better.
  • the adhesive curing process is performed by heating in a pressurized atmosphere, it is excellent in embedding of wires and the like, and it is possible to suppress the occurrence of misalignment of the semiconductor element.
  • a method for manufacturing a semiconductor device and an adhesive used therefor can be provided.
  • FIG. 2 is a diagram showing a step subsequent to FIG. 1.
  • FIG. 3 is a diagram showing a step subsequent to FIG. 2.
  • FIG. 4 is a diagram showing a step subsequent to FIG. 3.
  • FIG. 5 is a diagram showing a step subsequent to FIG. 4.
  • FIG. 6 is a diagram showing a step subsequent to FIG. 5.
  • the first semiconductor element Wa with the adhesive 41 is pressure-bonded onto the circuit pattern 94 on the substrate 14, and the circuit pattern 84 on the substrate 14 and the The first semiconductor element Wa is electrically bonded and connected (first wire bonding step).
  • an adhesive sheet is prepared by laminating a thermosetting film adhesive 10 on a base film.
  • the method for manufacturing the film adhesive 10 and the adhesive sheet will be described later.
  • An adhesive sheet is laminated on one side of the semiconductor wafer, and the base film is peeled off, thereby sticking the film adhesive 10 on one side of the semiconductor wafer.
  • the thickness of the semiconductor wafer is, for example, 50 ⁇ m, the size is, for example, 8 inches, and the thickness of the film adhesive 10 is, for example, 135 ⁇ m.
  • the dicing tape 60 is bonded to the film adhesive 10
  • the dicing is performed to 7.5 mm square so that the second semiconductor element Waa and the film attached to the second semiconductor element Waa are formed as shown in FIG.
  • a semiconductor element 102 with a film adhesive provided with the adhesive 10 is obtained (laminating step).
  • the laminating step is preferably performed at 50 to 100 ° C., more preferably 60 to 80 ° C.
  • the temperature in the laminating step is 50 ° C. or higher, good adhesion to the semiconductor wafer can be obtained.
  • the temperature of the laminating process is 100 ° C. or lower, the film-like adhesive 10 can be prevented from flowing excessively during the laminating process, so that it is possible to prevent a change in thickness and the like.
  • a dicing method for example, a method using a rotary blade (blade dicing), a method of cutting a film adhesive or both a wafer and a film adhesive with a laser, and a general purpose such as stretching under normal temperature or cooling conditions The method etc. are mentioned.
  • the semiconductor element 102 with the film adhesive is pressure-bonded to the substrate 14 to which the first semiconductor element Wa is bonded and connected via the first wire 88 so that the film adhesive 10 side faces the substrate 15.
  • the semiconductor element 102 with a film adhesive is placed so that the film adhesive 10 covers the first semiconductor element Wa, and then, as shown in FIG.
  • the second semiconductor element Waa is fixed to the substrate 14 by pressing the second semiconductor element Waa together with the film adhesive 10 (crimping step).
  • the film adhesive 10 is preferably crimped for 0.5 to 3.0 seconds under conditions of 80 to 180 ° C. and 0.01 to 0.50 MPa.
  • the film adhesive 10 is heated under a pressurized atmosphere (heating and pressing process).
  • the second semiconductor element Waa has a larger area than the first semiconductor element Wa, and the film adhesive 10 includes not only the first wire 88 on the substrate 14, The first semiconductor element Wa is also embedded. Since the semiconductor device manufacturing method according to the present embodiment includes the heating and pressurizing step, it is possible to embed a semiconductor element that is generally thicker than a wire and difficult to embed. This is because even if a gap on the bonding surface between the semiconductor element and the substrate remains in the crimping step, the void can be more reliably lost or reduced through the heating and pressing step.
  • the film adhesive 10 used in the present embodiment has a melt viscosity at 120 ° C. of 3000 Pa ⁇ s or less, preferably 2500 Pa ⁇ s or less. Thereby, favorable embedding property is obtained in the above-mentioned pressure-bonding step, and even if a void remains, it is easily lost or reduced easily in the heating and pressing step.
  • the film adhesive 10 used in the present embodiment has a melt viscosity of 1000 Pa ⁇ s or more at 120 ° C. Thereby, in the heating and pressurizing step, occurrence of misalignment of the semiconductor element can be suppressed.
  • heating in a pressurized atmosphere is performed, for example, by putting a semiconductor device being manufactured into a pressing oven.
  • the heating temperature in the pressure oven is, for example, 60 to 175 ° C., preferably 80 to 160 ° C., or 100 to 150 ° C.
  • the pressure in the pressurized atmosphere is, for example, 0.1 to 1.0 MPa, preferably 0.2 to 1.0 MPa, 0.3 to 1.0 MPa, or 0.5 to 1.0 MPa.
  • Heating under a pressurized atmosphere is performed for 5 minutes or more, for example.
  • the circuit pattern 84, the second wire 98, and the second semiconductor element Waa are sealed with the sealing material 42.
  • the semiconductor device 200 can be manufactured through such steps.
  • the first semiconductor element Wa is connected to the substrate 14 via the first wire 88 by wire bonding, and the first semiconductor element Wa is formed on the first semiconductor element Wa.
  • the second semiconductor element Waa larger than the area of the first semiconductor element Wa is pressure-bonded via the film adhesive 10.
  • the semiconductor device 200 the first wire 88 and the first semiconductor element Wa are embedded in the film adhesive 10. That is, the semiconductor device 200 obtained by the manufacturing method according to the present embodiment is a wire and semiconductor element embedded semiconductor device.
  • the method for manufacturing a semiconductor device according to the present embodiment since the embedding by the film adhesive 10 is good and the semiconductor element is not misaligned, a semiconductor device having good connection reliability is obtained. Can be obtained.
  • the substrate 14 and the second semiconductor element Waa are further electrically connected via the second wire 98, and the second semiconductor element Waa is sealed with the sealing material 42. ing. Thereby, the reliability of the obtained semiconductor device further increases.
  • the thickness of the first semiconductor element Wa is, for example, 10 to 170 ⁇ m, and the thickness of the second semiconductor element Waa is, for example, 20 to 400 ⁇ m.
  • the thickness of the film adhesive 10 is, for example, 20 to 200 ⁇ m, preferably 30 to 200 ⁇ m, and more preferably 40 to 150 ⁇ m.
  • the first semiconductor element Wa embedded in the film adhesive 10 is a controller chip for driving the semiconductor device 200.
  • the substrate 14 is composed of an organic substrate 90 on which two circuit patterns 84 and 94 are formed on the surface.
  • the first semiconductor element Wa is crimped onto the circuit pattern 94 via an adhesive 41
  • the second semiconductor element Waa is a circuit pattern 94 in which the first semiconductor element Wa is not crimped.
  • the semiconductor element Wa and a part of the circuit pattern 84 are pressure-bonded to the substrate 14 via the film adhesive 10.
  • the film adhesive 10 is embedded in the uneven steps due to the circuit patterns 84 and 94 on the substrate 14.
  • the second semiconductor element Waa, the circuit pattern 84, and the second wire 98 are sealed with a resin sealing material 42.
  • FIG. 7 is a cross-sectional view schematically showing the film adhesive 10.
  • the film-like adhesive 10 is thermosetting and can be produced by forming a film-like adhesive composition that can be in a completely cured (C-stage) state after the curing process through a semi-cured (B-stage) state. .
  • the film adhesive 10 has a melt viscosity of 3000 Pa ⁇ s or less at 120 ° C. Thereby, the favorable embedding property is obtained at the time of crimping
  • the film adhesive 10 has a melt viscosity of 1000 Pa ⁇ s or more at 120 ° C. Thereby, generation
  • the upper limit of the melt viscosity may be 2800 Pa ⁇ s, 2500 Pa ⁇ s, or 2200 Pa ⁇ s.
  • the lower limit of the melt viscosity may be 1200 Pa ⁇ s, 1500 Pa ⁇ s, or 2000 Pa ⁇ s.
  • melt viscosity means the measured value when measured using ARES (manufactured by TA Instruments) while increasing the temperature at a rate of temperature increase of 5 ° C./min while applying 5% strain to the film adhesive 10. To do.
  • the film adhesive 10 preferably has an adhesive strength after curing to a substrate coated with a solder resist ink (for example, trade name: AUS308, manufactured by Taiyo Ink Manufacturing Co., Ltd.) of 1.0 MPa or more. In this case, the connection reliability of the obtained semiconductor device becomes better.
  • a solder resist ink for example, trade name: AUS308, manufactured by Taiyo Ink Manufacturing Co., Ltd.
  • the film adhesive 10 includes, for example, (a) a thermosetting component, (b) a high molecular weight component, and (c) a filler, and, if necessary, (d) a curing accelerator, and (e) A coupling agent can be contained.
  • the range of the melt viscosity can be realized, for example, by adjusting (a) thermosetting component, (b) high molecular weight component, (c) filler type and content.
  • the film adhesive 10 can contain 20 to 60% by mass of (a) a thermosetting component based on the total amount of the film adhesive 10.
  • thermosetting component can be a thermosetting resin, and can be an epoxy resin, a phenol resin, or the like having heat resistance and moisture resistance required for mounting a semiconductor element.
  • Examples of the epoxy resin as component (a) include aromatic ring-containing epoxy resins, aliphatic ring-containing epoxy resins, heterocyclic ring-containing epoxy resins, and aliphatic linear epoxy resins.
  • the epoxy resin as component (a) is preferably an aromatic ring-containing epoxy resin.
  • the epoxy resin as component (a) may be a polyfunctional epoxy resin or a bifunctional epoxy resin.
  • Examples of the aromatic ring-containing epoxy resin include epoxy resins represented by the following general formula (1).
  • n represents an integer of 0 to 5.
  • aromatic ring-containing epoxy resin of component (a) other than the above general formula (1) examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, etc., and bifunctional epoxy obtained by modifying them. Resin or the like can be used.
  • an epoxy resin other than the epoxy resins listed above may be used in combination as (a) a thermosetting component.
  • a novolac epoxy resin such as a phenol novolac epoxy resin or a cresol novolac epoxy resin, or a glycidylamine epoxy resin can be used.
  • phenol resin of component (a) an aliphatic ring-containing phenol resin, a heterocyclic ring-containing phenol resin, an aliphatic linear phenol resin, or the like can be used.
  • the phenolic resin examples include Phenolite KA and TD series manufactured by DIC Corporation, and the Millex XLC-series and XL series (for example, Millex XLC-LL) manufactured by Mitsui Chemicals, Inc.
  • the phenolic resin has a water absorption of 2% by mass or less after being put in a constant temperature and humidity chamber of 85 ° C. and 85% RH at 350 ° C. measured with a thermogravimetric analyzer (TGA).
  • TGA thermogravimetric analyzer
  • the heating mass reduction rate temperature increase rate: 5 ° C./min, atmosphere: nitrogen
  • the thermosetting component is at least one of (a1) an epoxy resin whose softening point is room temperature or lower or liquid at room temperature and a phenol resin whose softening point is lower than room temperature or liquid at room temperature (hereinafter referred to as component (a1)). ) And (a2) at least one of an epoxy resin having a softening point higher than room temperature and a phenol resin having a softening point higher than room temperature (hereinafter referred to as component (a2)).
  • room temperature refers to 23 ° C.
  • the epoxy resin of the (a1) component and the (a2) component can be selected from the above epoxy resins depending on the softening point and the state at room temperature. Moreover, as a phenol resin of (a1) component and (a2) component, it can select from the said phenol resin according to the softening point and the state in room temperature.
  • the melt viscosity at 120 ° C. of the film adhesive 10 can be 1000 to 3000 Pa ⁇ s, for example, by adjusting the content of the component (a1) and the component (a2).
  • the epoxy resin and the phenol resin have a ratio of the number of epoxy groups to the number of hydroxyl groups of 0.70 / It is preferably blended so as to be 0.30 to 0.30 / 0.70, more preferably blended so as to be 0.65 / 0.35 to 0.35 / 0.65. More preferably, it is blended so that it becomes 60 / 0.40 to 0.40 / 0.60, and it is blended so that it becomes 0.60 / 0.40 to 0.50 / 0.50. Particularly preferred.
  • the number of epoxy groups in the film adhesive 10 is obtained by dividing the used epoxy resin by the epoxy equivalent, and the number of hydroxyl groups can be obtained by dividing the used phenol resin by the hydroxyl equivalent.
  • the film adhesive 10 can contain 10 to 40% by mass of (b) a high molecular weight component based on the total amount of the film adhesive 10.
  • (B) When content of a high molecular weight component is 40 mass% or less, the meltability at the time of diattaching improves, and there exists a tendency for embedding property to improve. On the other hand, when the content of (b) the high molecular weight component is 10% by mass or more, film formability is easily obtained.
  • the high molecular weight component may be an acrylic resin, and is further obtained by polymerizing a functional monomer having an epoxy group or a glycidyl group such as glycidyl acrylate or glycidyl methacrylate as a crosslinkable functional group.
  • An acrylic resin such as an epoxy group-containing (meth) acrylic copolymer having a glass transition temperature (Tg) of ⁇ 50 ° C. may be used.
  • an epoxy group-containing (meth) acrylic ester copolymer and an epoxy group-containing acrylic rubber can be used, and the component (b) may be an epoxy group-containing acrylic rubber.
  • the epoxy group-containing acrylic rubber is mainly composed of an acrylic ester, and mainly comprises a copolymer of butyl acrylate and acrylonitrile, and a copolymer of ethyl acrylate and acrylonitrile. It is rubber.
  • the weight average molecular weight of the high molecular weight component may be 300,000 or more, and may be 500,000 or more. In addition, the weight average molecular weight of the (b) high molecular weight component may be 1,000,000 or less, and may be 800,000 or less.
  • the weight average molecular weight of the high molecular weight component is 300,000 or more, the film formability tends to be improved.
  • the weight average molecular weight of the high molecular weight component is 1,000,000 or less, the shear viscosity of the uncured film adhesive can be reduced, so that the embedding property becomes better. In addition, the machinability of the uncured film adhesive may be improved, and the quality of dicing may be improved.
  • the glass transition temperature (Tg) of the high molecular weight component can be ⁇ 50 to 50 ° C.
  • flexibility of the film adhesive 10 becomes favorable in the glass transition temperature (Tg) of a high molecular weight component being 50 degrees C or less.
  • the glass transition temperature (Tg) is ⁇ 50 ° C. or higher, the flexibility of the film adhesive does not become too high, so that the film adhesive 10 is easily cut when dicing the semiconductor wafer. For this reason, it is possible to suppress the dicing performance from being deteriorated due to the generation of burrs.
  • the glass transition temperature (Tg) of the high molecular weight component may be -20 ° C to 40 ° C, or -10 ° C to 30 ° C.
  • Tg glass transition temperature
  • the high molecular weight component can have 1 to 15% of structural units having a crosslinkable functional group, based on the total number of structural units, in order to develop a high adhesive force.
  • the structural unit having a crosslinkable functional group is the number of functional monomers in the total number of monomer monomers (number of moles) used in the synthesis of (b) the high molecular weight component.
  • the functional monomer include glycidyl acrylate or glycidyl methacrylate
  • the crosslinkable functional group of the high molecular weight component is derived from the functional group of the functional monomer.
  • the crosslinkable functional group is an epoxy group.
  • the crosslinkable functional group of the high molecular weight component includes not only an epoxy group but also a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group or a carboxyl group.
  • the weight average molecular weight is a polystyrene conversion value using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • the glass transition temperature (Tg) is a value measured using a DSC (differential scanning calorimeter) (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
  • the high molecular weight component used in the present invention can also be obtained as a commercial product.
  • trade name “acrylic rubber HTR-860P-3CSP” manufactured by Nagase ChemteX Corporation may be used.
  • the film adhesive 10 is based on the total amount of the film adhesive 10 from the viewpoint of controlling the fluidity and breakability of the uncured film adhesive and the tensile modulus and adhesive force of the cured film adhesive.
  • the filler can be contained in an amount of 20 to 50% by mass.
  • content of a filler is 20 mass% or more, there exists a tendency for the dicing property of an uncured film adhesive to improve, and the adhesive force after hardening improves.
  • the content of the filler (c) is 50% by mass or less, the fluidity of the uncured film adhesive is improved and the embedding property at the time of die attachment tends to be improved.
  • the average particle diameter of the filler may be 0.1 ⁇ m or more from the viewpoint of the fluidity of the film adhesive 10, and may be 0.1 to 5.0 ⁇ m.
  • the “average particle diameter” is a value obtained when analysis is performed using acetone as a solvent by a laser diffraction particle size distribution analyzer.
  • the filler is an improvement in the dicing property of the film adhesive in the B-stage state, an improvement in the handling property of the film adhesive, an improvement in thermal conductivity, an adjustment of the melt viscosity, a thixotropic property, and an adhesive force. From the standpoint of improving the quality, it can be an inorganic filler, and may be a silica filler.
  • the film adhesive 10 may contain (d) a curing accelerator for the purpose of obtaining good curability.
  • a curing accelerator for the purpose of obtaining good curability.
  • the content of the (d) curing accelerator is 0.01 to 0.2% by mass based on the total amount of the film adhesive 10. Can be.
  • the curing accelerator is preferably an imidazole compound.
  • a curing accelerator that is too reactive has a tendency not only to increase the shear viscosity by heating during the production process of the film-like adhesive, but also to cause significant deterioration over time.
  • a curing accelerator having a reactivity that is too low makes it difficult for the film-like adhesive to be completely cured by the thermal history in the manufacturing process of the semiconductor device, and it is mounted in the product uncured, There is a possibility that sufficient adhesiveness cannot be obtained and the connection reliability of the semiconductor device is deteriorated.
  • the adhesive composition of the present embodiment can contain (e) a coupling agent from the viewpoint of improving adhesiveness, in addition to the components (a) to (d).
  • a coupling agent examples include ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and 3- (2-aminoethyl) aminopropyltrimethoxysilane.
  • an adhesive composition obtained by applying the above-described adhesive composition varnish on a base film and drying it can be used as an adhesive sheet. Specifically, first, the components (a) to (c) and, if necessary, other additive components such as the above (d) curing accelerator or (e) coupling agent are mixed and kneaded in an organic solvent. Prepare the varnish.
  • the above mixing and kneading can be performed by using a normal stirrer, a raking machine, a three-roller, and a dispersing machine such as a ball mill, and appropriately combining these.
  • the above drying is not particularly limited as long as the solvent used is sufficiently volatilized, but can be usually heated at 60 ° C. to 200 ° C. for 0.1 to 90 minutes.
  • the organic solvent for producing the varnish is not particularly limited as long as it can uniformly dissolve, knead or disperse the above components, and a conventionally known one can be used.
  • solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, and xylene. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.
  • a polyester film for example, a polyester film, a polypropylene film (OPP film etc.), a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a polyether naphthalate film, a methylpentene film etc. are mentioned. It is done.
  • a varnish layer is formed by applying the obtained varnish on a base film.
  • the solvent is removed from the varnish layer by heat drying to obtain an adhesive sheet.
  • the film adhesive 10 is obtained by removing a base film from an adhesive sheet.
  • the film adhesive 10 obtained in advance and the film adhesive 10 (adhesive sheet) formed on the base film are bonded together.
  • the method of doing is mentioned.
  • the film adhesive 10 preferably has a film thickness of 20 to 200 ⁇ m so that the first semiconductor element, the wire for connecting the semiconductor element, and irregularities such as the wiring circuit of the substrate can be sufficiently filled.
  • the film thickness is 20 ⁇ m or more, there is a tendency that a decrease in adhesive force is suppressed, and when the film thickness is 200 ⁇ m or less, it is economical and can meet the demand for downsizing of the semiconductor device.
  • the film thickness of the film adhesive 10 is more preferably 50 to 200 ⁇ m, further preferably 80 to 200 ⁇ m, and more preferably 100 to It is especially preferable that it is 200 micrometers.
  • the film adhesive 10 can be used as an adhesive sheet 100 in which the film adhesive 10 is laminated on the base film 20 without removing the base film coated with the varnish.
  • the film adhesive 10 can also be used as an adhesive sheet 110 in which a cover film 30 is provided on the side opposite to the surface on which the base film 20 is provided.
  • cover film 30 include a PET film, a PE film, and an OPP film.
  • the film adhesive can also be used as a dicing / die bonding integrated adhesive sheet in which the film adhesive 10 is laminated on a dicing tape. In this case, it is possible to increase the efficiency of the operation in that the laminating process on the semiconductor wafer is performed only once.
  • the dicing tape examples include plastic films such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film.
  • the dicing tape may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment as necessary.
  • the dicing tape can have adhesiveness, and the above-mentioned plastic film may be provided with adhesiveness. Moreover, the adhesive layer may be provided in the single side
  • Examples of such a dicing / die bonding integrated adhesive sheet include an adhesive sheet 120 shown in FIG. 10 and an adhesive sheet 130 shown in FIG.
  • the adhesive sheet 120 uses a dicing tape 60 in which an adhesive layer 50 is provided on a base film 40 that can ensure elongation when a tensile tension is applied, as a supporting base material.
  • the adhesive layer 50 has a structure in which the film adhesive 10 is provided.
  • the adhesive sheet 130 is provided with the base film 20 on the surface of the film adhesive 10 in the adhesive sheet 120.
  • the base film 40 examples include the above-described plastic films described for the dicing tape.
  • the adhesive layer 50 the resin composition which contains a liquid component and a high molecular weight component and has moderate tack strength is mentioned, for example.
  • the dicing tape can be formed by applying the adhesive layer 50 on the base film 40 and drying, or by bonding the adhesive layer applied to the base film such as a PET film and drying to the base film 40. is there.
  • the tack strength is set to a desired value, for example, by adjusting the ratio of the liquid component and the Tg of the high molecular weight component.
  • the semiconductor element When a dicing / die bonding integrated adhesive sheet such as the adhesive sheet 120 and the adhesive sheet 130 is used for manufacturing a semiconductor device, the semiconductor element has an adhesive force that does not scatter during dicing, and can be easily peeled off from the dicing tape during subsequent pickup. is necessary.
  • Such characteristics can be obtained by adjusting the tack strength of the pressure-sensitive adhesive layer as described above, or changing the tack strength due to photoreaction, etc., but picking up is difficult if the tackiness of the film adhesive is too high. May be. Therefore, it is preferable to appropriately adjust the tack strength of the film adhesive 10.
  • the method for example, when the flow of the film-like adhesive 10 at room temperature (25 ° C.) is increased, the adhesive strength and tack strength tend to increase, and when the flow is decreased, the adhesive strength and tack strength tend to decrease. It is mentioned that there is.
  • Examples of the method for increasing the flow include a method for increasing the content of a compound that functions as a plasticizer.
  • Examples of the method for reducing the flow include a method for reducing the content of a compound that functions as a plasticizer.
  • Examples of the plasticizer include monofunctional acrylic monomers, monofunctional epoxy resins, liquid epoxy resins, and acrylic resins.
  • a film prepared in advance is used as a method of laminating the film-like adhesive 10 on the dicing tape 60.
  • a method of laminating the adhesive 10 on the dicing tape 60 by press or hot roll laminating is exemplified.
  • a hot roll laminating method is preferable because it can be continuously manufactured and is efficient.
  • the film thickness of the dicing tape 60 is not particularly limited, and can be appropriately determined based on the knowledge of those skilled in the art depending on the film thickness of the film adhesive 10 or the application of the dicing / die bonding integrated adhesive sheet.
  • the thickness of the dicing tape 60 is 60 ⁇ m or more, the handleability is improved, and the dicing tape 60 can be prevented from being broken by the expansion in the process of separating the semiconductor elements separated by the dicing from the dicing tape 60.
  • the thickness of the dicing tape 60 is preferably 180 ⁇ m or less from the viewpoint of economy and good handleability. Accordingly, the film thickness of the dicing tape 60 is preferably 60 to 180 ⁇ m.
  • the film-like adhesive is described, and the method for manufacturing a semiconductor device using the film-like adhesive has been described.
  • the film-like adhesive is not necessarily in the form of a film, and may be an adhesive. . That is, the film adhesive may be a liquid or paste adhesive.
  • the semiconductor device 200 of FIG. 6 is a wire and semiconductor embedded semiconductor device in which the first wire 88 and the first semiconductor element Wa are both embedded in the film adhesive 10, but the first semiconductor device 200 is not necessarily the first.
  • the semiconductor element Wa may not be embedded. That is, the semiconductor device 200 may be a wire-embedded semiconductor device in which the first wire 88 is embedded in the film adhesive 10. Further, the first wire does not have to be entirely embedded, and it is sufficient that at least a part of the first wire is embedded.
  • the film adhesive 10 When the first semiconductor element Wa is not embedded in the film adhesive 10, the film adhesive 10 has a film thickness of 30 to 200 ⁇ m because the adhesiveness is high and the semiconductor device 200 can be thinned. It may be 40 to 150 ⁇ m, 40 to 100 ⁇ m, or 40 to 80 ⁇ m.
  • the substrate 14 is the organic substrate 90 having the circuit patterns 84 and 94 formed on the surface thereof at two locations.
  • the substrate 14 is not limited to this, and a metal substrate such as a lead frame is used. Also good.
  • the semiconductor device 200 has a configuration in which the second semiconductor element Waa is stacked on the first semiconductor element Wa and the semiconductor elements are stacked in two stages, the configuration of the semiconductor device is not limited thereto. I can't.
  • a third semiconductor element may be further stacked on the second semiconductor element Waa, or a plurality of semiconductor elements may be further stacked on the second semiconductor element Waa. As the number of stacked semiconductor elements increases, the capacity of the obtained semiconductor device can be increased.
  • the semiconductor element 102 with a film adhesive in which the film adhesive 10 is pasted on the second semiconductor element Waa is prepared before the crimping process. If the two semiconductor elements Waa are pressure-bonded to the substrate 14 via the film adhesive 10, the semiconductor element with a film adhesive as described above may not be prepared.
  • the adhesive sheet 100 shown in FIG. 8 is laminated
  • the adhesive sheet used at the time of lamination is not limited to this.
  • dicing and die bonding integrated adhesive sheets 120 and 130 shown in FIGS. 10 and 11 can be used. In this case, it is not necessary to attach the dicing tape 60 separately when dicing the semiconductor wafer.
  • the laminating step not the semiconductor wafer but a semiconductor element obtained by dividing the semiconductor wafer into pieces may be laminated on the adhesive sheet 100. In this case, the dicing process can be omitted.
  • YDF-8170C (trade name, manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy resin, epoxy equivalent 159, liquid at room temperature).
  • VG-3101L (trade name, manufactured by Printec Co., Ltd., polyfunctional epoxy resin, epoxy equivalent 210, softening point 39-46 ° C.).
  • YDCN-700-10 (trade name, manufactured by Tohto Kasei Co., Ltd., cresol novolac type epoxy resin, epoxy equivalent 210, softening point 75 to 85 ° C.)
  • HP-7200 (trade name, manufactured by DIC Corporation, dicyclopentadiene-containing epoxy resin, epoxy equivalent 247, softening point 55 to 65 ° C.).
  • PSM-4326 (trade name, manufactured by Gunei Chemical Industry Co., Ltd., hydroxyl group equivalent 105, softening point 118-122 ° C.).
  • Millex XLC-LL (trade name, manufactured by Mitsui Chemicals, Inc., phenol resin, hydroxyl group equivalent 175, softening point 77 ° C., water absorption 1 mass%, heating mass reduction rate 4 mass%).
  • Acrylic rubber HTR-860P-3CSP (trade name, manufactured by Nagase ChemteX Corp., weight average molecular weight 800,000, ratio of structural unit having glycidyl functional group 3%, Tg: -7 ° C.).
  • Acrylic rubber HTR-860P-30B-CHN (trade name, manufactured by Nagase ChemteX Corporation, weight average molecular weight 230,000, ratio of structural unit having glycidyl functional group 8%, Tg: ⁇ 7 ° C.).
  • Curesol 2PZ-CN (trade name, 1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Chemicals Co., Ltd.).
  • (Coupling agent) A-1160 (trade name, ⁇ -ureidopropyltriethoxysilane, manufactured by GE Toshiba Corporation).
  • A-189 (trade name, manufactured by GE Toshiba Corporation, ⁇ -mercaptopropyltrimethoxysilane).
  • the obtained varnish was filtered through a 100 mesh filter and vacuum degassed.
  • the varnish after the vacuum defoaming was applied onto a polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m, which was subjected to a release treatment as a base film.
  • PET polyethylene terephthalate
  • the applied varnish was heat-dried in two stages of 90 ° C. for 5 minutes, followed by 140 ° C. for 5 minutes.
  • an adhesive sheet provided with a film adhesive having a thickness of 60 ⁇ m in a B-stage state on a PET film as a base film was obtained.
  • an adhesive sheet provided with a film adhesive having a thickness of 120 ⁇ m was obtained.
  • melt viscosity The melt viscosity of the film adhesive was evaluated by measuring the shear viscosity by the following method. A plurality of the adhesive sheets were prepared, laminated at 60 ° C., and a film adhesive was laminated on the base film so as to have a thickness of about 300 ⁇ m. The base film was peeled and removed from the laminated film adhesive and punched into a 10 mm square in the thickness direction to obtain a square laminate having a 10 mm square and a thickness of 300 ⁇ m.
  • a circular aluminum plate jig having a diameter of 8 mm was set in a dynamic viscoelasticity measuring apparatus ARES (manufactured by TA Instruments), and a laminated body of a film-like adhesive punched out was set here. Then, it measured while heating up to 150 degreeC with the temperature increase rate of 5 degree-C / min, giving 5% distortion at 35 degreeC, and recorded the value of 120 degreeC melt viscosity. The measurement results are shown in Table 2.
  • the film adhesive was heated in a pressure oven and the embedding after pressing was evaluated by the following method.
  • the film-like adhesive (thickness 120 ⁇ m) of the adhesive sheet obtained above was attached to a semiconductor wafer (8 inches) having a thickness of 50 ⁇ m at 70 ° C. Next, they were diced to 7.5 mm square to obtain a semiconductor element with a film adhesive (second semiconductor element).
  • a dicing / die bonding integrated film (trade name: HR-9004-10, manufactured by Hitachi Chemical Co., Ltd., thickness 10 ⁇ m) was attached to a semiconductor wafer (8 inches) having a thickness of 50 ⁇ m at 70 ° C.
  • a chip (first semiconductor element) with HR-9904-10 separated into pieces is pressure-bonded to an evaluation substrate having a maximum surface roughness of 6 ⁇ m under conditions of 130 ° C., 0.20 MPa, 2 seconds, 120 ° C., Heated for 2 hours and semi-cured.
  • the semiconductor element with a film adhesive was placed on the first semiconductor element thus obtained, and this was pressure-bonded under the conditions of 120 ° C., 0.20 MPa, and 2 seconds.
  • the alignment was performed so that the chip with HR-9904-10 that was previously crimped was disposed at the center of the semiconductor element with the film adhesive.
  • the obtained sample was put into a pressure oven, the pressure in the pressure oven was set to 0.7 MPa, the temperature was increased from 35 ° C. to 140 ° C. at a temperature increase rate of 3 ° C./min, and then at 140 ° C. for 30 minutes. Heated.
  • the evaluation sample thus obtained was analyzed with an ultrasonic imaging apparatus SAT (manufactured by Hitachi Construction Machinery, product number FS200II, probe: 25 MHz) to confirm the embeddability.
  • the evaluation criteria for embeddability are as follows. The evaluation results are shown in Table 2.
  • the die shear strength (adhesion strength) of the film adhesive was measured by the following method. First, the film-like adhesive (thickness 120 ⁇ m) of the adhesive sheet obtained above was attached to a semiconductor wafer having a thickness of 400 ⁇ m at 70 ° C. Next, they were diced to 5.0 mm square to obtain a semiconductor element with a film adhesive.
  • the film adhesive side of the separated semiconductor element with a film adhesive is 120 ° C., 0.1 MPa, 5 on a substrate coated with solder resist ink (trade name: AUS308, manufactured by Taiyo Ink Manufacturing Co., Ltd.). A sample was obtained by thermocompression bonding under the conditions for 2 seconds.
  • the adhesive of the obtained sample was cured by heating at 120 ° C. for 2 hours and at 170 ° C. for 3 hours. Further, the cured sample was left for 168 hours under the conditions of 85 ° C. and 60% RH. Thereafter, the sample was allowed to stand for 30 minutes under conditions of 25 ° C. and 50% RH, and the die shear strength was measured at 250 ° C., and this was taken as the adhesive strength.
  • the measurement results are shown in Table 2.
  • the reflow resistance of the film adhesive was evaluated by the following method.
  • An evaluation sample was produced in the same manner as the evaluation sample obtained by the evaluation of the embedding after heating with the pressure oven and after pressing.
  • the obtained evaluation sample was resin-sealed under the conditions of 175 ° C., 6.7 MPa, 90 seconds using a mold sealing material (trade name: CEL-9750ZHF10, manufactured by Hitachi Chemical Co., Ltd.), 175 ° C., The sealing material was cured under conditions of 5 hours to obtain a package.
  • the adhesive sheets of Examples 1 to 4 are superior in embedding property to the adhesive sheets of Comparative Examples 1 to 3, and there is no misalignment of the semiconductor elements. It was confirmed that reflowability was also excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

This method for producing a semiconductor device comprises: a first wire bonding step wherein a first semiconductor element is electrically connected onto a substrate by means of a first wire; a pressure bonding step wherein a second semiconductor element is pressure bonded to the substrate by means of an adhesive that has thermosetting properties; and a heat and pressure application step wherein the adhesive is cured by heating the adhesive in a pressurized atmosphere after the pressure bonding step. By undergoing the heat and pressure application step, at least one of the first semiconductor element and at least a part of the first wire is embedded in the cured adhesive. The melt viscosity of the adhesive at 120°C before curing is 1,000-3,000 Pa·s.

Description

半導体装置の製造方法及びフィルム状接着剤Semiconductor device manufacturing method and film adhesive
 本発明は、半導体装置の製造方法及びそれに用いられるフィルム状接着剤に関する。 The present invention relates to a method for manufacturing a semiconductor device and a film adhesive used therefor.
 携帯電話等の多機能化に伴い、半導体素子を多段に積層し、高容量化したスタックドMCP(Multi Chip Package)が普及している。半導体素子の実装には、フィルム状接着剤がダイボンディング用の接着剤として広く用いられている。フィルム状接着剤を使用した多段積層パッケージの一例としてワイヤ埋込型のパッケージが挙げられる。これは、高流動なフィルム状接着剤を使用して圧着することで、圧着される側の半導体素子に接続しているワイヤを接着剤で覆いながら圧着するパッケージのことであり、携帯電話、携帯オーディオ機器用のメモリパッケージなどに搭載されている。 With the increasing functionality of mobile phones and the like, stacked MCPs (Multi Chip Packages) in which semiconductor elements are stacked in multiple stages to increase capacity have become widespread. For mounting semiconductor elements, film adhesives are widely used as die bonding adhesives. An example of a multi-stage stacked package using a film adhesive is a wire-embedded package. This is a package in which a wire connected to a semiconductor element to be crimped is crimped while being crimped using a high-fluid film adhesive. It is installed in memory packages for audio equipment.
 上記スタックドMCPなどの半導体装置に求められる重要な特性の一つとして接続信頼性が挙げられる。接続信頼性を向上させるために、耐熱性、耐湿性、及び耐リフロー性などの特性を考慮したフィルム状接着剤の開発が行われている。このようなフィルム状接着剤として、例えば、特許文献1には、高分子量成分と、エポキシ樹脂を主成分とする熱硬化性成分と、を含む樹脂及びフィラーを含有する、厚さ10~250μmの接着シートが提案されている。また、特許文献2には、エポキシ樹脂とフェノール樹脂とを含む混合物及びアクリル共重合体を含む接着剤組成物が提案されている。 One of the important characteristics required for semiconductor devices such as the above-mentioned stacked MCP is connection reliability. In order to improve connection reliability, development of film adhesives in consideration of characteristics such as heat resistance, moisture resistance, and reflow resistance has been performed. As such a film-like adhesive, for example, Patent Document 1 includes a resin having a high molecular weight component and a thermosetting component mainly composed of an epoxy resin and a filler having a thickness of 10 to 250 μm. Adhesive sheets have been proposed. Patent Document 2 proposes an adhesive composition containing a mixture containing an epoxy resin and a phenol resin and an acrylic copolymer.
 半導体装置の接続信頼性は、接着面に空隙を発生させることなく半導体素子を実装できているか否かによっても大きく左右される。このため、空隙を発生させずに半導体素子を圧着できるように高流動なフィルム状接着剤を使用する、又は発生した空隙を半導体素子の封止工程で消失させることができるように溶融粘度の低いフィルム状接着剤を使用するなどの工夫がなされている。例えば特許文献3には低粘度且つ低タック強度の接着シートが提案されている。 The connection reliability of a semiconductor device greatly depends on whether or not a semiconductor element can be mounted without generating a gap on the bonding surface. Therefore, a high-fluid film adhesive is used so that the semiconductor element can be crimped without generating voids, or the melt viscosity is low so that the generated voids can be eliminated in the sealing process of the semiconductor elements. Ingenuity has been made such as using a film adhesive. For example, Patent Document 3 proposes an adhesive sheet having low viscosity and low tack strength.
国際公開第2005/103180号公報International Publication No. 2005/103180 特開2002-220576号公報JP 2002-220576 A 特開2009-120830号公報JP 2009-120830 A
 ところで、最近、スタックドMCPの製造において、半導体素子を熱硬化性を有する接着剤を介して基板に圧着後、接着剤の硬化処理が加圧オーブン等を使用した加圧雰囲気下で加熱することにより実施されることがある。加圧オーブンは内部の雰囲気を加熱及び加圧することができる装置であり、加圧オーブン中では接着剤が周囲の気体から圧力を受けながら加熱されることになる。これにより、半導体素子の接着面の空隙をより効果的に低減又は消失させることができる。 By the way, recently, in the manufacture of stacked MCP, a semiconductor element is bonded to a substrate through a thermosetting adhesive, and then the adhesive is cured by heating in a pressurized atmosphere using a pressure oven or the like. May be implemented. The pressure oven is a device that can heat and pressurize the internal atmosphere, and in the pressure oven, the adhesive is heated while receiving pressure from the surrounding gas. Thereby, the space | gap of the adhesion surface of a semiconductor element can be reduced or eliminated more effectively.
 しかしながら、従来の接着フィルムは加圧オーブン中で使用されることが想定されたものではないため、半導体素子の位置ずれが発生する、又は、ワイヤ等の埋込性が不十分となる等の点で改善の余地があった。 However, since the conventional adhesive film is not supposed to be used in a pressure oven, the position of the semiconductor element is shifted, or the embedding property of the wire or the like becomes insufficient. There was room for improvement.
 本発明は上記事情に鑑みてなされたものであり、接着剤の硬化処理が加圧雰囲気下での加熱によって実施される場合でも、ワイヤ等の埋込性に優れ、且つ、半導体素子の位置ずれの発生を抑制することが可能な、半導体装置の製造方法及びそれに用いられる接着剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and even when the adhesive curing process is performed by heating in a pressurized atmosphere, the wire is excellent in embeddability and the semiconductor element is misaligned. An object of the present invention is to provide a method for manufacturing a semiconductor device and an adhesive used therefor that can suppress the occurrence of the above.
 本発明に係る半導体装置の製造方法は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のワイヤボンディング工程と、第2の半導体素子を熱硬化性を有する接着剤を介して上記基板に圧着する圧着工程と、上記圧着工程後の接着剤を加圧雰囲気下で加熱することによって上記接着剤を硬化処理する加熱加圧工程と、を備える。上記加熱加圧工程を経ることにより、上記第1のワイヤの少なくとも一部及び上記第1の半導体素子の少なくとも一方が硬化処理後の接着剤に埋め込まれる。上記半導体装置の製造方法において、硬化処理前の上記接着剤の120℃における溶融粘度は1000~3000Pa・sである。 A method of manufacturing a semiconductor device according to the present invention includes: a first wire bonding step of electrically connecting a first semiconductor element to a substrate via a first wire; and thermosetting the second semiconductor element. A pressure-bonding step for pressure-bonding the substrate to the substrate via an adhesive, and a heat-pressing step for curing the adhesive by heating the adhesive after the pressure-bonding step in a pressure atmosphere. Through the heating and pressing step, at least a part of the first wire and at least one of the first semiconductor element are embedded in the adhesive after the curing treatment. In the semiconductor device manufacturing method, the melt viscosity at 120 ° C. of the adhesive before the curing treatment is 1000 to 3000 Pa · s.
 本発明者らは、加圧雰囲気下で加熱される熱硬化性接着剤による優れた埋込性を達成するとともに、この接着剤を介して積層される半導体素子の位置ずれを高度に抑制するには、加圧雰囲気下で加熱される過程において接着剤が硬すぎず、また軟らかすぎないことが有用であるとの知見を得た。そして、種々の温度条件及び接着剤の組成で評価試験を繰り返した結果、接着剤の120℃における溶融粘度が加圧雰囲気下で加熱した際の接着剤の流動性を反映しており、更に、その特定の範囲(1000~3000Pa・s)において、優れた埋込性を達成でき、且つ、半導体素子の位置ずれを高度に抑制できることを見出し、上記発明を完成するに至った。したがって、良好な接続信頼性を示す半導体装置を得ることができる。 The present inventors achieve excellent embedding by a thermosetting adhesive heated in a pressurized atmosphere, and highly suppress misalignment of semiconductor elements stacked via this adhesive. Has found that it is useful that the adhesive is not too hard and not too soft in the process of being heated in a pressurized atmosphere. And as a result of repeating the evaluation test with various temperature conditions and the composition of the adhesive, the melt viscosity at 120 ° C. of the adhesive reflects the fluidity of the adhesive when heated in a pressurized atmosphere. In the specific range (1000 to 3000 Pa · s), it has been found that excellent embedding property can be achieved and that the displacement of the semiconductor element can be highly suppressed, and the present invention has been completed. Therefore, a semiconductor device showing good connection reliability can be obtained.
 上記半導体装置の製造方法の上記加熱加圧工程において、上記接着剤を0.1~1.0MPaの加圧雰囲気下で、60~175℃で、5分間以上加熱することが好ましい。上記条件にて加熱加圧を行うことにより、埋込性がさらに得られやすくなる。 In the heating and pressing step of the semiconductor device manufacturing method, the adhesive is preferably heated at 60 to 175 ° C. for 5 minutes or more in a pressurized atmosphere of 0.1 to 1.0 MPa. By performing heating and pressurization under the above conditions, embedding can be further easily obtained.
 上記半導体装置の製造方法は、上記加熱加圧工程後に、上記第2の半導体素子の上に第3の半導体素子を更に積層する工程を備えていてもよい。この場合、得られる半導体装置の容量を増やすことができる。 The method for manufacturing a semiconductor device may include a step of further stacking a third semiconductor element on the second semiconductor element after the heating and pressing step. In this case, the capacity of the obtained semiconductor device can be increased.
 上記半導体装置の製造方法は、上記基板と上記第2の半導体素子とを第2のワイヤを介して電気的に接続する第2のワイヤボンディング工程と、上記第2の半導体素子を樹脂で封止する工程と、を更に備えていてもよい。この場合、得られる半導体装置の信頼性が更に高まる。 The semiconductor device manufacturing method includes a second wire bonding step of electrically connecting the substrate and the second semiconductor element via a second wire, and sealing the second semiconductor element with a resin. And a step of performing. In this case, the reliability of the obtained semiconductor device is further increased.
 また、本発明に係る接着剤は、半導体装置の製造プロセスにおいて使用される。上記製造プロセスは、上記接着剤を加圧雰囲気下で加熱する硬化処理を経て、基板上のワイヤの少なくとも一部及び半導体素子の少なくとも一方が硬化処理後の上記接着剤に埋め込まれた状態とする工程を含む。上記接着剤の120℃における溶融粘度が1000~3000Pa・sである。 Also, the adhesive according to the present invention is used in a semiconductor device manufacturing process. In the manufacturing process, the adhesive is heated in a pressurized atmosphere, and at least one of the wires on the substrate and at least one of the semiconductor elements are embedded in the adhesive after the curing. Process. The adhesive has a melt viscosity of 1000 to 3000 Pa · s at 120 ° C.
 上記接着剤は、加圧雰囲気下で加熱される過程において硬すぎず、また軟らかすぎないことから、半導体装置の製造における加熱加圧工程において、良好な埋込性を発現しつつ半導体素子が位置ずれの発生を抑制することができる。したがって、良好な接続信頼性を示す半導体装置を得ることができる。 The adhesive is not too hard and not too soft in the process of being heated in a pressurized atmosphere, so that the semiconductor element is positioned while exhibiting good embeddability in the heating and pressing process in the manufacture of a semiconductor device. The occurrence of deviation can be suppressed. Therefore, a semiconductor device showing good connection reliability can be obtained.
 上記接着剤の、ソルダーレジストインキを塗布した上記基板との硬化後の接着力は1.0MPa以上であることが好ましい。この場合、得られる半導体装置の接続信頼性がより良好になる。 The adhesive strength of the adhesive after curing with the substrate coated with solder resist ink is preferably 1.0 MPa or more. In this case, the connection reliability of the obtained semiconductor device becomes better.
 本発明によれば、接着剤の硬化処理が加圧雰囲気下での加熱によって実施される場合でも、ワイヤ等の埋込性に優れ、且つ、半導体素子の位置ずれの発生を抑制することが可能な、半導体装置の製造方法及びそれに用いられる接着剤を提供することができる。 According to the present invention, even when the adhesive curing process is performed by heating in a pressurized atmosphere, it is excellent in embedding of wires and the like, and it is possible to suppress the occurrence of misalignment of the semiconductor element. In addition, a method for manufacturing a semiconductor device and an adhesive used therefor can be provided.
本発明の一実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 図1の後続の工程を示す図である。FIG. 2 is a diagram showing a step subsequent to FIG. 1. 図2の後続の工程を示す図である。FIG. 3 is a diagram showing a step subsequent to FIG. 2. 図3の後続の工程を示す図である。FIG. 4 is a diagram showing a step subsequent to FIG. 3. 図4の後続の工程を示す図である。FIG. 5 is a diagram showing a step subsequent to FIG. 4. 図5の後続の工程を示す図である。FIG. 6 is a diagram showing a step subsequent to FIG. 5. 本発明の一実施形態に係る接着剤を示す断面図である。It is sectional drawing which shows the adhesive agent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接着剤を用いて得られる接着シートの一例を示す断面図である。It is sectional drawing which shows an example of the adhesive sheet obtained using the adhesive agent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接着剤を用いて得られる接着シートの別の例を示す断面図である。It is sectional drawing which shows another example of the adhesive sheet obtained using the adhesive agent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接着剤を用いて得られる接着シートの別の例を示す断面図である。It is sectional drawing which shows another example of the adhesive sheet obtained using the adhesive agent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接着剤を用いて得られる接着シートの別の例を示す断面図である。It is sectional drawing which shows another example of the adhesive sheet obtained using the adhesive agent which concerns on one Embodiment of this invention.
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。なお、本明細書における「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. In this specification, “(meth) acryl” means “acryl” and “methacryl” corresponding to it.
(半導体装置の製造方法)
 本実施形態に係る半導体装置の製造方法について以下に説明する。まず、図1に示すように、基板14上の回路パターン94上に、接着剤41付き第1の半導体素子Waを圧着し、第1のワイヤ88を介して基板14上の回路パターン84と第1の半導体素子Waとを電気的にボンディング接続する(第1のワイヤボンディング工程)。
(Method for manufacturing semiconductor device)
A method for manufacturing a semiconductor device according to this embodiment will be described below. First, as shown in FIG. 1, the first semiconductor element Wa with the adhesive 41 is pressure-bonded onto the circuit pattern 94 on the substrate 14, and the circuit pattern 84 on the substrate 14 and the The first semiconductor element Wa is electrically bonded and connected (first wire bonding step).
 次に、図2に示すフィルム状接着剤付き半導体素子を得る。まず、基材フィルム上に熱硬化性を有するフィルム状接着剤10が積層された接着シートを準備する。フィルム状接着剤10及び接着シートの製造方法については後述する。半導体ウェハの片面に、接着シートをラミネートし、基材フィルムを剥がすことで、半導体ウェハの片面にフィルム状接着剤10を貼り付ける。半導体ウェハの厚さは例えば50μmであり、サイズは例えば8インチであり、フィルム状接着剤10の厚さは例えば135μmである。そして、フィルム状接着剤10にダイシングテープ60を貼り合わせた後、7.5mm角にダイシングすることにより、図2に示すように、第2の半導体素子Waaと、この上に貼付されたフィルム状接着剤10とを備えるフィルム状接着剤付き半導体素子102が得られる(ラミネート工程)。 Next, a semiconductor element with a film adhesive shown in FIG. 2 is obtained. First, an adhesive sheet is prepared by laminating a thermosetting film adhesive 10 on a base film. The method for manufacturing the film adhesive 10 and the adhesive sheet will be described later. An adhesive sheet is laminated on one side of the semiconductor wafer, and the base film is peeled off, thereby sticking the film adhesive 10 on one side of the semiconductor wafer. The thickness of the semiconductor wafer is, for example, 50 μm, the size is, for example, 8 inches, and the thickness of the film adhesive 10 is, for example, 135 μm. Then, after the dicing tape 60 is bonded to the film adhesive 10, the dicing is performed to 7.5 mm square so that the second semiconductor element Waa and the film attached to the second semiconductor element Waa are formed as shown in FIG. A semiconductor element 102 with a film adhesive provided with the adhesive 10 is obtained (laminating step).
 ラミネート工程は、50~100℃で行うことが好ましく、60~80℃で行うことがより好ましい。ラミネート工程の温度が50℃以上であると、半導体ウェハと良好な密着性を得ることができる。ラミネート工程の温度が100℃以下であると、ラミネート工程中にフィルム状接着剤10が過度に流動することが抑えられるため、厚みの変化等を引き起こすことを防止できる。 The laminating step is preferably performed at 50 to 100 ° C., more preferably 60 to 80 ° C. When the temperature in the laminating step is 50 ° C. or higher, good adhesion to the semiconductor wafer can be obtained. When the temperature of the laminating process is 100 ° C. or lower, the film-like adhesive 10 can be prevented from flowing excessively during the laminating process, so that it is possible to prevent a change in thickness and the like.
 ダイシング方法としては、例えば、回転刃を用いる方法(ブレードダイシング)、レーザーによりフィルム状接着剤又はウェハとフィルム状接着剤との両方を切断する方法、及び、常温又は冷却条件下での伸張など汎用の方法等が挙げられる。 As a dicing method, for example, a method using a rotary blade (blade dicing), a method of cutting a film adhesive or both a wafer and a film adhesive with a laser, and a general purpose such as stretching under normal temperature or cooling conditions The method etc. are mentioned.
 そして、フィルム状接着剤付き半導体素子102を、フィルム状接着剤10側が基板15に向くように、第1の半導体素子Waが第1のワイヤ88を介してボンディング接続された基板14に圧着する。具体的には、図3に示すように、フィルム状接着剤付き半導体素子102を、フィルム状接着剤10が第1の半導体素子Waを覆うように載置し、次いで、図4に示すように、第2の半導体素子Waaをフィルム状接着剤10と共に基板14に圧着させることで基板14に第2の半導体素子Waaを固定する(圧着工程)。圧着工程では、フィルム状接着剤10を80~180℃、0.01~0.50MPaの条件で0.5~3.0秒間圧着することが好ましい。 Then, the semiconductor element 102 with the film adhesive is pressure-bonded to the substrate 14 to which the first semiconductor element Wa is bonded and connected via the first wire 88 so that the film adhesive 10 side faces the substrate 15. Specifically, as shown in FIG. 3, the semiconductor element 102 with a film adhesive is placed so that the film adhesive 10 covers the first semiconductor element Wa, and then, as shown in FIG. The second semiconductor element Waa is fixed to the substrate 14 by pressing the second semiconductor element Waa together with the film adhesive 10 (crimping step). In the crimping step, the film adhesive 10 is preferably crimped for 0.5 to 3.0 seconds under conditions of 80 to 180 ° C. and 0.01 to 0.50 MPa.
 圧着工程の後、フィルム状接着剤10は加圧雰囲気下で加熱される(加熱加圧工程)。図4に示すように、第2の半導体素子Waaは、第1の半導体素子Waよりも大きい面積を有しており、フィルム状接着剤10は基板14上の第1のワイヤ88のみならず、第1の半導体素子Waをも埋め込んでいる。本実施形態に係る半導体装置の製造方法が上記加熱加圧工程を備えることで、一般的にワイヤよりも厚く、埋込が困難である半導体素子をも埋め込むことが可能となる。圧着工程で仮に半導体素子と基板との接着面の空隙が残っている場合であっても、加熱加圧工程を経ることにより空隙をより確実に消失又は低減させることができるからである。更に、本実施形態において用いられるフィルム状接着剤10は、120℃において、3000Pa・s以下、好ましくは2500Pa・s以下の溶融粘度を有する。これにより、上記圧着工程において良好な埋込性が得られ、仮に空隙が残っている場合にも、加熱加圧工程において良好に消失又は低減しやすくなる。一方、本実施形態において用いられるフィルム状接着剤10は、120℃において、1000Pa・s以上の溶融粘度を有する。これにより、加熱加圧工程おいて、半導体素子の位置ずれの発生を抑制することができる。 After the pressure-bonding process, the film adhesive 10 is heated under a pressurized atmosphere (heating and pressing process). As shown in FIG. 4, the second semiconductor element Waa has a larger area than the first semiconductor element Wa, and the film adhesive 10 includes not only the first wire 88 on the substrate 14, The first semiconductor element Wa is also embedded. Since the semiconductor device manufacturing method according to the present embodiment includes the heating and pressurizing step, it is possible to embed a semiconductor element that is generally thicker than a wire and difficult to embed. This is because even if a gap on the bonding surface between the semiconductor element and the substrate remains in the crimping step, the void can be more reliably lost or reduced through the heating and pressing step. Furthermore, the film adhesive 10 used in the present embodiment has a melt viscosity at 120 ° C. of 3000 Pa · s or less, preferably 2500 Pa · s or less. Thereby, favorable embedding property is obtained in the above-mentioned pressure-bonding step, and even if a void remains, it is easily lost or reduced easily in the heating and pressing step. On the other hand, the film adhesive 10 used in the present embodiment has a melt viscosity of 1000 Pa · s or more at 120 ° C. Thereby, in the heating and pressurizing step, occurrence of misalignment of the semiconductor element can be suppressed.
 加熱加圧工程において、加圧雰囲気下での加熱は、例えば、製造中の半導体装置を加圧オーブン中に投入することにより行われる。加圧オーブン中の加熱温度は例えば60~175℃であり、80~160℃、又は100~150℃であることが好ましい。加圧雰囲気における圧力は例えば0.1~1.0MPaであり、0.2~1.0MPa、0.3~1.0MPa、又は0.5~1.0MPaであることが好ましい。加圧雰囲気下での加熱は例えば5分間以上行われる。上記条件にて加熱加圧を行うことにより、埋込性がさらに得られやすくなる。 In the heating and pressing step, heating in a pressurized atmosphere is performed, for example, by putting a semiconductor device being manufactured into a pressing oven. The heating temperature in the pressure oven is, for example, 60 to 175 ° C., preferably 80 to 160 ° C., or 100 to 150 ° C. The pressure in the pressurized atmosphere is, for example, 0.1 to 1.0 MPa, preferably 0.2 to 1.0 MPa, 0.3 to 1.0 MPa, or 0.5 to 1.0 MPa. Heating under a pressurized atmosphere is performed for 5 minutes or more, for example. By performing heating and pressurization under the above conditions, embedding can be further easily obtained.
 次いで、図5に示すように、基板14と第2の半導体素子Waaとを第2のワイヤ98を介して電気的に接続した後(第2のワイヤボンディング工程)、図6に示すように、回路パターン84、第2のワイヤ98及び第2の半導体素子Waaを封止材42で封止する。このような工程を経ることで半導体装置200を製造することができる。 Next, as shown in FIG. 5, after electrically connecting the substrate 14 and the second semiconductor element Waa via the second wire 98 (second wire bonding step), as shown in FIG. The circuit pattern 84, the second wire 98, and the second semiconductor element Waa are sealed with the sealing material 42. The semiconductor device 200 can be manufactured through such steps.
 本実施形態に係る製造方法によって得られた半導体装置200では、基板14上に第1のワイヤ88を介して第1の半導体素子Waがワイヤボンディング接続されると共に、第1の半導体素子Wa上に、第1の半導体素子Waの面積よりも大きい第2の半導体素子Waaがフィルム状接着剤10を介して圧着されている。また、半導体装置200では、第1のワイヤ88及び第1の半導体素子Waがフィルム状接着剤10に埋め込まれている。すなわち、本実施形態に係る製造方法によって得られた半導体装置200はワイヤ及び半導体素子埋込型の半導体装置である。また、本実施形態に係る半導体装置の製造方法によれば、フィルム状接着剤10による埋込性が良好であり、半導体素子の位置ずれがないことから、良好な接続信頼性を有する半導体装置を得ることができる。 In the semiconductor device 200 obtained by the manufacturing method according to the present embodiment, the first semiconductor element Wa is connected to the substrate 14 via the first wire 88 by wire bonding, and the first semiconductor element Wa is formed on the first semiconductor element Wa. The second semiconductor element Waa larger than the area of the first semiconductor element Wa is pressure-bonded via the film adhesive 10. In the semiconductor device 200, the first wire 88 and the first semiconductor element Wa are embedded in the film adhesive 10. That is, the semiconductor device 200 obtained by the manufacturing method according to the present embodiment is a wire and semiconductor element embedded semiconductor device. In addition, according to the method for manufacturing a semiconductor device according to the present embodiment, since the embedding by the film adhesive 10 is good and the semiconductor element is not misaligned, a semiconductor device having good connection reliability is obtained. Can be obtained.
 また、半導体装置200では、基板14と第2の半導体素子Waaとが更に第2のワイヤ98を介して電気的に接続されると共に、第2の半導体素子Waaが封止材42により封止されている。これにより、得られる半導体装置の信頼性が更に高まる。 In the semiconductor device 200, the substrate 14 and the second semiconductor element Waa are further electrically connected via the second wire 98, and the second semiconductor element Waa is sealed with the sealing material 42. ing. Thereby, the reliability of the obtained semiconductor device further increases.
 第1の半導体素子Waの厚みは例えば10~170μmであり、第2の半導体素子Waaの厚みは例えば20~400μmである。フィルム状接着剤10の厚みは例えば20~200μmであり、好ましくは30~200μmであり、より好ましくは40~150μmである。フィルム状接着剤10内部に埋め込まれている第1の半導体素子Waは、半導体装置200を駆動するためのコントローラチップである。 The thickness of the first semiconductor element Wa is, for example, 10 to 170 μm, and the thickness of the second semiconductor element Waa is, for example, 20 to 400 μm. The thickness of the film adhesive 10 is, for example, 20 to 200 μm, preferably 30 to 200 μm, and more preferably 40 to 150 μm. The first semiconductor element Wa embedded in the film adhesive 10 is a controller chip for driving the semiconductor device 200.
 基板14は、表面に回路パターン84,94がそれぞれ二箇所ずつ形成された有機基板90からなる。第1の半導体素子Waは、回路パターン94上に接着剤41を介して圧着されており、第2の半導体素子Waaは、第1の半導体素子Waが圧着されていない回路パターン94、第1の半導体素子Wa、及び回路パターン84の一部を覆うようにフィルム状接着剤10を介して基板14に圧着されている。基板14上の回路パターン84,94に起因する凹凸の段差には、フィルム状接着剤10が埋め込まれている。そして、樹脂製の封止材42により、第2の半導体素子Waa、回路パターン84及び第2のワイヤ98が封止されている。 The substrate 14 is composed of an organic substrate 90 on which two circuit patterns 84 and 94 are formed on the surface. The first semiconductor element Wa is crimped onto the circuit pattern 94 via an adhesive 41, and the second semiconductor element Waa is a circuit pattern 94 in which the first semiconductor element Wa is not crimped. The semiconductor element Wa and a part of the circuit pattern 84 are pressure-bonded to the substrate 14 via the film adhesive 10. The film adhesive 10 is embedded in the uneven steps due to the circuit patterns 84 and 94 on the substrate 14. The second semiconductor element Waa, the circuit pattern 84, and the second wire 98 are sealed with a resin sealing material 42.
(フィルム状接着剤)
 次に、本実施形態に係る接着剤について、フィルム状接着剤を例に挙げて説明する。フィルム状接着剤は上記半導体装置の製造方法に使用される。図7は、フィルム状接着剤10を模式的に示す断面図である。フィルム状接着剤10は、熱硬化性であり、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化物(Cステージ)状態となり得る接着剤組成物をフィルム状に成形することにより作製できる。
(Film adhesive)
Next, the adhesive according to this embodiment will be described by taking a film adhesive as an example. The film adhesive is used in the method for manufacturing the semiconductor device. FIG. 7 is a cross-sectional view schematically showing the film adhesive 10. The film-like adhesive 10 is thermosetting and can be produced by forming a film-like adhesive composition that can be in a completely cured (C-stage) state after the curing process through a semi-cured (B-stage) state. .
 フィルム状接着剤10は、120℃において、3000Pa・s以下の溶融粘度を有する。これにより、半導体素子を圧着時に良好な埋込性が得られ、加圧オーブン中で良好にボイドを消失又は低減することができる。一方で、フィルム状接着剤10は、120℃において、1000Pa・s以上の溶融粘度を有する。これにより、加圧加熱工程における半導体素子の位置ずれの発生を抑制することができる。上記溶融粘度の上限値は、2800Pa・s、2500Pa・s、又は2200Pa・sであってもよい。上記溶融粘度の下限値は、1200Pa・s、1500Pa・s、又は2000Pa・sであってもよい。 The film adhesive 10 has a melt viscosity of 3000 Pa · s or less at 120 ° C. Thereby, the favorable embedding property is obtained at the time of crimping | bonding a semiconductor element, and a void can be lose | disappeared or reduced favorably in a pressurization oven. On the other hand, the film adhesive 10 has a melt viscosity of 1000 Pa · s or more at 120 ° C. Thereby, generation | occurrence | production of the position shift of the semiconductor element in a pressurization heating process can be suppressed. The upper limit of the melt viscosity may be 2800 Pa · s, 2500 Pa · s, or 2200 Pa · s. The lower limit of the melt viscosity may be 1200 Pa · s, 1500 Pa · s, or 2000 Pa · s.
 なお、溶融粘度は、ARES(TA Instruments社製)を用い、フィルム状接着剤10に5%の歪みを与えながら5℃/分の昇温速度で昇温させながら測定した場合の測定値を意味する。 In addition, melt viscosity means the measured value when measured using ARES (manufactured by TA Instruments) while increasing the temperature at a rate of temperature increase of 5 ° C./min while applying 5% strain to the film adhesive 10. To do.
 また、フィルム状接着剤10は、ソルダーレジストインキ(例えば、商品名:AUS308、太陽インキ製造(株)製)を塗布した基板への硬化後の接着力が1.0MPa以上であることが好ましい。この場合、得られる半導体装置の接続信頼性がより良好になる。 The film adhesive 10 preferably has an adhesive strength after curing to a substrate coated with a solder resist ink (for example, trade name: AUS308, manufactured by Taiyo Ink Manufacturing Co., Ltd.) of 1.0 MPa or more. In this case, the connection reliability of the obtained semiconductor device becomes better.
 フィルム状接着剤10は、例えば、(a)熱硬化性成分、(b)高分子量成分、及び、(c)フィラー、並びに、必要に応じて、(d)硬化促進剤、及び、(e)カップリング剤を含有することができる。上記溶融粘度の範囲は、例えば、(a)熱硬化性成分、(b)高分子量成分、(c)フィラーの種類及び含有量等を調整することで実現できる。 The film adhesive 10 includes, for example, (a) a thermosetting component, (b) a high molecular weight component, and (c) a filler, and, if necessary, (d) a curing accelerator, and (e) A coupling agent can be contained. The range of the melt viscosity can be realized, for example, by adjusting (a) thermosetting component, (b) high molecular weight component, (c) filler type and content.
 フィルム状接着剤10は、フィルム状接着剤10の全量を基準として、(a)熱硬化性成分を20~60質量%含有することができる。 The film adhesive 10 can contain 20 to 60% by mass of (a) a thermosetting component based on the total amount of the film adhesive 10.
 (a)熱硬化性成分は熱硬化性樹脂であることができ、半導体素子を実装する場合に要求される耐熱性及び耐湿性を有するエポキシ樹脂及びフェノール樹脂等であることができる。 (A) The thermosetting component can be a thermosetting resin, and can be an epoxy resin, a phenol resin, or the like having heat resistance and moisture resistance required for mounting a semiconductor element.
 (a)成分のエポキシ樹脂としては、芳香環含有エポキシ樹脂、脂肪族環含有エポキシ樹脂、複素環含有エポキシ樹脂、及び脂肪族線状エポキシ樹脂等が挙げられる。(a)成分のエポキシ樹脂は、芳香環含有エポキシ樹脂であることが好ましい。また、(a)成分のエポキシ樹脂は、多官能エポキシ樹脂であってもよく、二官能エポキシ樹脂であってもよい。 Examples of the epoxy resin as component (a) include aromatic ring-containing epoxy resins, aliphatic ring-containing epoxy resins, heterocyclic ring-containing epoxy resins, and aliphatic linear epoxy resins. The epoxy resin as component (a) is preferably an aromatic ring-containing epoxy resin. The epoxy resin as component (a) may be a polyfunctional epoxy resin or a bifunctional epoxy resin.
 芳香環含有エポキシ樹脂としては、下記一般式(1)で表されるエポキシ樹脂が挙げられる。式(1)中、nは0~5の整数を示す。
Figure JPOXMLDOC01-appb-C000001
Examples of the aromatic ring-containing epoxy resin include epoxy resins represented by the following general formula (1). In the formula (1), n represents an integer of 0 to 5.
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)以外の(a)成分の芳香環含有エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びビスフェノールE型エポキシ樹脂等、並びにこれらを変性させた二官能エポキシ樹脂などを使用することができる。 Examples of the aromatic ring-containing epoxy resin of component (a) other than the above general formula (1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, etc., and bifunctional epoxy obtained by modifying them. Resin or the like can be used.
 さらに、上記に挙げたエポキシ樹脂以外のエポキシ樹脂を(a)熱硬化性成分として併用してもよい。例えば、フェノールノボラック型エポキシ樹脂若しくはクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、又はグリシジルアミン型エポキシ樹脂などを使用することができる。 Furthermore, an epoxy resin other than the epoxy resins listed above may be used in combination as (a) a thermosetting component. For example, a novolac epoxy resin such as a phenol novolac epoxy resin or a cresol novolac epoxy resin, or a glycidylamine epoxy resin can be used.
 (a)成分のフェノール樹脂としては、脂肪族環含有フェノール樹脂、複素環含有フェノール樹脂、及び脂肪族線状フェノール樹脂等を使用することができる。 As the phenol resin of component (a), an aliphatic ring-containing phenol resin, a heterocyclic ring-containing phenol resin, an aliphatic linear phenol resin, or the like can be used.
 具体的なフェノール樹脂としては、DIC(株)製のフェノライトKA、TDシリーズ、三井化学株式会社製のミレックスXLC-シリーズとXLシリーズ(例えば、ミレックスXLC-LL)等が挙げられる。フェノール樹脂は、耐熱性の観点から、85℃、85%RHの恒温恒湿槽に48時間投入後の吸水率が2質量%以下で、熱重量分析計(TGA)で測定した350℃での加熱質量減少率(昇温速度:5℃/分、雰囲気:窒素)が5質量%未満のものであることができる。 Specific examples of the phenolic resin include Phenolite KA and TD series manufactured by DIC Corporation, and the Millex XLC-series and XL series (for example, Millex XLC-LL) manufactured by Mitsui Chemicals, Inc. From the viewpoint of heat resistance, the phenolic resin has a water absorption of 2% by mass or less after being put in a constant temperature and humidity chamber of 85 ° C. and 85% RH at 350 ° C. measured with a thermogravimetric analyzer (TGA). The heating mass reduction rate (temperature increase rate: 5 ° C./min, atmosphere: nitrogen) can be less than 5% by mass.
 (a)熱硬化性成分は、(a1)軟化点が室温以下又は室温で液体であるエポキシ樹脂及び軟化点が室温以下又は室温で液体であるフェノール樹脂の少なくとも一方(以下、(a1)成分という)と、(a2)軟化点が室温より高いエポキシ樹脂及び軟化点が室温より高いフェノール樹脂の少なくとも一方(以下、(a2)成分という)とを含むことができる。なお、本明細書において室温は23℃を指す。 (A) The thermosetting component is at least one of (a1) an epoxy resin whose softening point is room temperature or lower or liquid at room temperature and a phenol resin whose softening point is lower than room temperature or liquid at room temperature (hereinafter referred to as component (a1)). ) And (a2) at least one of an epoxy resin having a softening point higher than room temperature and a phenol resin having a softening point higher than room temperature (hereinafter referred to as component (a2)). In this specification, room temperature refers to 23 ° C.
 (a1)成分及び(a2)成分のエポキシ樹脂としては、軟化点及び室温での状態に応じて、上記エポキシ樹脂から選択することができる。また、(a1)成分及び(a2)成分のフェノール樹脂としては、軟化点及び室温での状態に応じて、上記フェノール樹脂から選択することができる。 The epoxy resin of the (a1) component and the (a2) component can be selected from the above epoxy resins depending on the softening point and the state at room temperature. Moreover, as a phenol resin of (a1) component and (a2) component, it can select from the said phenol resin according to the softening point and the state in room temperature.
 フィルム状接着剤10の120℃における溶融粘度が1000~3000Pa・sとなるようにするには、例えば、(a1)成分及び(a2)成分の含有量を調整することでも実現できる。 The melt viscosity at 120 ° C. of the film adhesive 10 can be 1000 to 3000 Pa · s, for example, by adjusting the content of the component (a1) and the component (a2).
 フィルム状接着剤10が、(a)熱硬化性成分として、エポキシ樹脂及びフェノール樹脂の両方を含む場合、エポキシ樹脂及びフェノール樹脂は、エポキシ基の数の水酸基の数に対する比が、0.70/0.30~0.30/0.70となるように配合されることが好ましく、0.65/0.35~0.35/0.65となるように配合されることがより好ましく、0.60/0.40~0.40/0.60となるように配合されることが更に好ましく、0.60/0.40~0.50/0.50となるように配合されることが特に好ましい。フィルム状接着剤10中のエポキシ基の数は、使用したエポキシ樹脂をエポキシ当量で割ったものであり、水酸基の数は、使用したフェノール樹脂を水酸基当量で割ったものとして求めることができる。上記範囲となるように配合することにより、作製したフィルム状接着剤が硬化性を有しやすくなり、未硬化の状態でのフィルム状接着剤の粘度が高くなることを抑制し、流動性を向上させやすくなる。 When the film adhesive 10 contains both an epoxy resin and a phenol resin as the (a) thermosetting component, the epoxy resin and the phenol resin have a ratio of the number of epoxy groups to the number of hydroxyl groups of 0.70 / It is preferably blended so as to be 0.30 to 0.30 / 0.70, more preferably blended so as to be 0.65 / 0.35 to 0.35 / 0.65. More preferably, it is blended so that it becomes 60 / 0.40 to 0.40 / 0.60, and it is blended so that it becomes 0.60 / 0.40 to 0.50 / 0.50. Particularly preferred. The number of epoxy groups in the film adhesive 10 is obtained by dividing the used epoxy resin by the epoxy equivalent, and the number of hydroxyl groups can be obtained by dividing the used phenol resin by the hydroxyl equivalent. By blending so as to be in the above range, the prepared film-like adhesive is likely to have curability, and the viscosity of the film-like adhesive in an uncured state is suppressed from increasing, thereby improving fluidity. It becomes easy to let you.
 また、ソルダーレジストインキを塗布した基板との硬化後の接着力を1.0MPa以上とするためには、例えば、(a2)成分の含有量を減らす、(c)フィラーの含有量を増やす、(d)硬化促進剤を増やすことで調整することができる。 Moreover, in order to make the adhesive force after hardening with the board | substrate which apply | coated the soldering resist ink to 1.0 Mpa or more, for example, reduce content of (a2) component, (c) increase content of filler, ( d) It can be adjusted by increasing the curing accelerator.
 フィルム状接着剤10は、フィルム状接着剤10の全量を基準として、(b)高分子量成分を、10~40質量%含有することができる。(b)高分子量成分の含有量が40質量%以下であると、ダイアッタチ時の溶融性が向上し、埋込性が向上する傾向がある。一方で、(b)高分子量成分の含有量が10質量%以上であると、成膜性が得られやすくなる。 The film adhesive 10 can contain 10 to 40% by mass of (b) a high molecular weight component based on the total amount of the film adhesive 10. (B) When content of a high molecular weight component is 40 mass% or less, the meltability at the time of diattaching improves, and there exists a tendency for embedding property to improve. On the other hand, when the content of (b) the high molecular weight component is 10% by mass or more, film formability is easily obtained.
 (b)高分子量成分はアクリル系樹脂であることができ、更に、グリシジルアクリレート又はグリシジルメタクリレート等のエポキシ基又はグリシジル基を架橋性官能基として有する官能性モノマーを重合して得た、-50℃~50℃のガラス転移温度(Tg)を有する、エポキシ基含有(メタ)アクリル共重合体等のアクリル系樹脂であってもよい。 (B) The high molecular weight component may be an acrylic resin, and is further obtained by polymerizing a functional monomer having an epoxy group or a glycidyl group such as glycidyl acrylate or glycidyl methacrylate as a crosslinkable functional group. An acrylic resin such as an epoxy group-containing (meth) acrylic copolymer having a glass transition temperature (Tg) of ˜50 ° C. may be used.
 このような樹脂として、エポキシ基含有(メタ)アクリル酸エステル共重合体、及び、エポキシ基含有アクリルゴム等を使用することができ、(b)成分はエポキシ基含有アクリルゴムであってもよい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリル等との共重合体、及び、エチルアクリレートとアクリロニトリル等との共重合体などからなる、エポキシ基を有しているゴムである。 As such a resin, an epoxy group-containing (meth) acrylic ester copolymer and an epoxy group-containing acrylic rubber can be used, and the component (b) may be an epoxy group-containing acrylic rubber. The epoxy group-containing acrylic rubber is mainly composed of an acrylic ester, and mainly comprises a copolymer of butyl acrylate and acrylonitrile, and a copolymer of ethyl acrylate and acrylonitrile. It is rubber.
 (b)高分子量成分の重量平均分子量は、30万以上であることができ、50万以上であってもよい。また、(b)高分子量成分の重量平均分子量は100万以下であることができ、80万以下であってもよい。(b)高分子量成分の重量平均分子量が30万以上であると、成膜性が向上する傾向がある。(b)高分子量成分の重量平均分子量が100万以下であると未硬化フィルム状接着剤のずり粘度を低減できるため、埋込性がより良好になる。また、未硬化フィルム状接着剤の切削性が改善し、ダイシングの品質が良好になる場合がある。 (B) The weight average molecular weight of the high molecular weight component may be 300,000 or more, and may be 500,000 or more. In addition, the weight average molecular weight of the (b) high molecular weight component may be 1,000,000 or less, and may be 800,000 or less. (B) When the weight average molecular weight of the high molecular weight component is 300,000 or more, the film formability tends to be improved. (B) When the weight average molecular weight of the high molecular weight component is 1,000,000 or less, the shear viscosity of the uncured film adhesive can be reduced, so that the embedding property becomes better. In addition, the machinability of the uncured film adhesive may be improved, and the quality of dicing may be improved.
 (b)高分子量成分のガラス転移温度(Tg)は、-50~50℃であることができる。(b)高分子量成分のガラス転移温度(Tg)が50℃以下であると、フィルム状接着剤10の柔軟性が良好になる。一方、ガラス転移温度(Tg)が-50℃以上であると、フィルム状接着剤の柔軟性が高くなり過ぎないため、半導体ウェハをダイシングする際にフィルム状接着剤10を切断しやすい。このため、バリの発生によりダイシング性が悪化することを抑えられる。 (B) The glass transition temperature (Tg) of the high molecular weight component can be −50 to 50 ° C. (B) The softness | flexibility of the film adhesive 10 becomes favorable in the glass transition temperature (Tg) of a high molecular weight component being 50 degrees C or less. On the other hand, when the glass transition temperature (Tg) is −50 ° C. or higher, the flexibility of the film adhesive does not become too high, so that the film adhesive 10 is easily cut when dicing the semiconductor wafer. For this reason, it is possible to suppress the dicing performance from being deteriorated due to the generation of burrs.
 (b)高分子量成分のガラス転移温度(Tg)は-20℃~40℃であってもよく、-10℃~30℃であってもよい。この場合、ダイシング時にフィルム状接着剤を切断しやすく樹脂くずが発生し難い点、接着力と耐熱性が高い点、また未硬化フィルム状接着剤の高い流動性を発現させることができる。 (B) The glass transition temperature (Tg) of the high molecular weight component may be -20 ° C to 40 ° C, or -10 ° C to 30 ° C. In this case, the film adhesive can be easily cut at the time of dicing, resin waste is hardly generated, the adhesive strength and heat resistance are high, and the high fluidity of the uncured film adhesive can be expressed.
 (b)高分子量成分は、高い接着力を発現させるため、全構造単位数を基準として、架橋性官能基を有する構造単位を1~15%有することができる。架橋性官能基を有する構造単位は、(b)高分子量成分の合成時に用いた全材料モノマー数(モル数)中の官能性モノマーの数であるともいえる。官能性モノマーとしてはグリシジルアクリレート又はグリシジルメタクリレート等が挙げられ、(b)高分子量成分が有する架橋性官能基は官能性モノマーの官能基に由来する。官能性モノマーがグリシジルアクリレート又はグリシジルメタクリレートである場合、架橋性官能基はエポキシ基である。 (B) The high molecular weight component can have 1 to 15% of structural units having a crosslinkable functional group, based on the total number of structural units, in order to develop a high adhesive force. It can be said that the structural unit having a crosslinkable functional group is the number of functional monomers in the total number of monomer monomers (number of moles) used in the synthesis of (b) the high molecular weight component. Examples of the functional monomer include glycidyl acrylate or glycidyl methacrylate, and (b) the crosslinkable functional group of the high molecular weight component is derived from the functional group of the functional monomer. When the functional monomer is glycidyl acrylate or glycidyl methacrylate, the crosslinkable functional group is an epoxy group.
 なお、(b)高分子量成分の架橋性官能基としては、エポキシ基だけでなく、アルコール性若しくはフェノール性水酸基、又は、カルボキシル基等の架橋性官能基が挙げられる。 Note that (b) the crosslinkable functional group of the high molecular weight component includes not only an epoxy group but also a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group or a carboxyl group.
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。ガラス転移温度(Tg)は、DSC(示差走査熱量計)(例えば、(株)リガク製「Thermo Plus 2」)を用いて測定したものをいう。 The weight average molecular weight is a polystyrene conversion value using a standard polystyrene calibration curve by gel permeation chromatography (GPC). The glass transition temperature (Tg) is a value measured using a DSC (differential scanning calorimeter) (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
 本発明で使用する(b)高分子量成分は、市販品として入手することも可能である。例えば、ナガセケムテックス(株)製の商品名「アクリルゴムHTR-860P-3CSP」等が挙げられる。 (B) The high molecular weight component used in the present invention can also be obtained as a commercial product. For example, trade name “acrylic rubber HTR-860P-3CSP” manufactured by Nagase ChemteX Corporation may be used.
 フィルム状接着剤10は、未硬化のフィルム状接着剤の流動性と破断性、硬化後のフィルム状接着剤の引張り弾性率と接着力を制御する観点から、フィルム状接着剤10の全量を基準として、(c)フィラーを、20~50質量%含有することができる。(c)フィラーの含有量が20質量%以上であると、未硬化フィルム状接着剤のダイシング性が改善し、硬化後の接着力が向上する傾向がある。一方、(c)フィラーの含有量が50質量%以下であると、未硬化フィルム状接着剤の流動性が向上し、ダイアタッチ時の埋込性が改善する傾向がある。 The film adhesive 10 is based on the total amount of the film adhesive 10 from the viewpoint of controlling the fluidity and breakability of the uncured film adhesive and the tensile modulus and adhesive force of the cured film adhesive. (C) The filler can be contained in an amount of 20 to 50% by mass. (C) When content of a filler is 20 mass% or more, there exists a tendency for the dicing property of an uncured film adhesive to improve, and the adhesive force after hardening improves. On the other hand, when the content of the filler (c) is 50% by mass or less, the fluidity of the uncured film adhesive is improved and the embedding property at the time of die attachment tends to be improved.
 (c)フィラーの平均粒径は、フィルム状接着剤10の流動性の観点から、0.1μm以上であることができ、0.1~5.0μmであってもよい。ここで、「平均粒径」とはレーザー回折式粒度分布測定装置でアセトンを溶媒として分析した場合に得られる値とする。 (C) The average particle diameter of the filler may be 0.1 μm or more from the viewpoint of the fluidity of the film adhesive 10, and may be 0.1 to 5.0 μm. Here, the “average particle diameter” is a value obtained when analysis is performed using acetone as a solvent by a laser diffraction particle size distribution analyzer.
 (c)フィラーは、Bステージ状態におけるフィルム状接着剤のダイシング性の向上、フィルム状接着剤の取扱い性の向上、熱伝導性の向上、溶融粘度の調整、チクソトロピック性の付与、及び接着力の向上等の観点から、無機フィラーであることができ、シリカフィラーであってもよい。 (C) The filler is an improvement in the dicing property of the film adhesive in the B-stage state, an improvement in the handling property of the film adhesive, an improvement in thermal conductivity, an adjustment of the melt viscosity, a thixotropic property, and an adhesive force. From the standpoint of improving the quality, it can be an inorganic filler, and may be a silica filler.
 また、フィルム状接着剤10は、良好な硬化性を得る目的で、(d)硬化促進剤を含有していてもよい。フィルム状接着剤10が、(d)硬化促進剤を含有する場合の(d)硬化促進剤の含有量は、フィルム状接着剤10の全量を基準として、0.01~0.2質量%であることができる。 Further, the film adhesive 10 may contain (d) a curing accelerator for the purpose of obtaining good curability. When the film adhesive 10 contains (d) a curing accelerator, the content of the (d) curing accelerator is 0.01 to 0.2% by mass based on the total amount of the film adhesive 10. Can be.
 なお、反応性の観点から、(d)硬化促進剤はイミダゾール系の化合物が好ましい。反応性が高すぎる硬化促進剤は、フィルム状接着剤の製造工程中の加熱によりずり粘度を上昇させるだけではなく、経時による劣化を顕著に引き起こす傾向がある。一方、反応性が低すぎる硬化促進剤は、半導体装置の製造工程内の熱履歴ではフィルム状接着剤が完全には硬化することが困難となり、未硬化のまま製品内に搭載されることとなり、十分な接着性が得られず、半導体装置の接続信頼性を悪化させる可能性がある。 From the viewpoint of reactivity, (d) the curing accelerator is preferably an imidazole compound. A curing accelerator that is too reactive has a tendency not only to increase the shear viscosity by heating during the production process of the film-like adhesive, but also to cause significant deterioration over time. On the other hand, a curing accelerator having a reactivity that is too low makes it difficult for the film-like adhesive to be completely cured by the thermal history in the manufacturing process of the semiconductor device, and it is mounted in the product uncured, There is a possibility that sufficient adhesiveness cannot be obtained and the connection reliability of the semiconductor device is deteriorated.
 本実施形態の接着剤組成物は、上記(a)~(d)成分の以外に、接着性向上の観点から、(e)カップリング剤を含有することができる。カップリング剤としては、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、及び3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。 The adhesive composition of the present embodiment can contain (e) a coupling agent from the viewpoint of improving adhesiveness, in addition to the components (a) to (d). Examples of the coupling agent include γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and 3- (2-aminoethyl) aminopropyltrimethoxysilane.
(フィルム状接着剤及び接着シート)
 フィルム状接着剤10は、基材フィルム上に上述した接着剤組成物のワニスを塗布して乾燥した接着剤組成物を接着シートとして用いることができる。具体的には、まず、(a)~(c)成分と必要に応じて上記(d)硬化促進剤又は(e)カップリング剤等の他の添加成分を、有機溶媒中で混合、混練してワニスを調製する。
(Film adhesive and adhesive sheet)
As the film-like adhesive 10, an adhesive composition obtained by applying the above-described adhesive composition varnish on a base film and drying it can be used as an adhesive sheet. Specifically, first, the components (a) to (c) and, if necessary, other additive components such as the above (d) curing accelerator or (e) coupling agent are mixed and kneaded in an organic solvent. Prepare the varnish.
 上記の混合、混練は、通常の攪拌機、らいかい機、三本ロール、及びボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。上記の乾燥は、使用した溶媒が充分に揮散する条件であれば特に制限はないが、通常60℃~200℃で、0.1~90分間加熱して行うことができる。 The above mixing and kneading can be performed by using a normal stirrer, a raking machine, a three-roller, and a dispersing machine such as a ball mill, and appropriately combining these. The above drying is not particularly limited as long as the solvent used is sufficiently volatilized, but can be usually heated at 60 ° C. to 200 ° C. for 0.1 to 90 minutes.
 上記ワニスを作製するための有機溶媒は、上記各成分を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、並びにキシレンなどが挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノン等を使用することが好ましい。 The organic solvent for producing the varnish is not particularly limited as long as it can uniformly dissolve, knead or disperse the above components, and a conventionally known one can be used. Examples of such solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, and xylene. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.
 上記基材フィルムとしては、特に制限はなく、例えば、ポリエステルフィルム、ポリプロピレンフィルム(OPPフィルム等)、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、及びメチルペンテンフィルムなどが挙げられる。 There is no restriction | limiting in particular as said base film, For example, a polyester film, a polypropylene film (OPP film etc.), a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a polyether naphthalate film, a methylpentene film etc. are mentioned. It is done.
 次に、得られたワニスを基材フィルム上に塗布することによりワニスの層を形成する。次に、加熱乾燥によりワニス層から溶媒を除去して接着シートを得る。その後、接着シートから基材フィルムを除去することにより、フィルム状接着剤10が得られる。 Next, a varnish layer is formed by applying the obtained varnish on a base film. Next, the solvent is removed from the varnish layer by heat drying to obtain an adhesive sheet. Then, the film adhesive 10 is obtained by removing a base film from an adhesive sheet.
 厚膜のフィルム状接着剤10を製造する方法の一つとして、予め得られたフィルム状接着剤10と基材フィルム上に形成されたフィルム状接着剤10(接着シート)とを貼り合わせて製造する方法が挙げられる。 As one of the methods for producing the thick film adhesive 10, the film adhesive 10 obtained in advance and the film adhesive 10 (adhesive sheet) formed on the base film are bonded together. The method of doing is mentioned.
 フィルム状接着剤10の膜厚は、第1の半導体素子及び半導体素子接続用のワイヤ、並びに基板の配線回路等の凹凸を十分に充填可能とするため、20~200μmであることが好ましい。膜厚が20μm以上であると、接着力の低下が抑制される傾向があり、200μm以下であると、経済的である上に、半導体装置の小型化の要求に応えることができる。本実施形態では、フィルム状接着剤10で半導体素子が埋め込まれることから、フィルム状接着剤10の膜厚は50~200μmであることがより好ましく、80~200μmであることが更に好ましく、100~200μmであることが特に好ましい。 The film adhesive 10 preferably has a film thickness of 20 to 200 μm so that the first semiconductor element, the wire for connecting the semiconductor element, and irregularities such as the wiring circuit of the substrate can be sufficiently filled. When the film thickness is 20 μm or more, there is a tendency that a decrease in adhesive force is suppressed, and when the film thickness is 200 μm or less, it is economical and can meet the demand for downsizing of the semiconductor device. In the present embodiment, since the semiconductor element is embedded with the film adhesive 10, the film thickness of the film adhesive 10 is more preferably 50 to 200 μm, further preferably 80 to 200 μm, and more preferably 100 to It is especially preferable that it is 200 micrometers.
 フィルム状接着剤10は、図8に示すように、ワニスを塗布した基材フィルムを除去しないまま、基材フィルム20上にフィルム状接着剤10を積層した接着シート100として用いることができる。 As shown in FIG. 8, the film adhesive 10 can be used as an adhesive sheet 100 in which the film adhesive 10 is laminated on the base film 20 without removing the base film coated with the varnish.
 また、図9に示すように、フィルム状接着剤10は、基材フィルム20が設けられた面とは反対側面にカバーフィルム30を設けた、接着シート110としても用いることもできる。カバーフィルム30としては、例えば、PETフィルム、PEフィルム、及びOPPフィルム等が挙げられる。 Further, as shown in FIG. 9, the film adhesive 10 can also be used as an adhesive sheet 110 in which a cover film 30 is provided on the side opposite to the surface on which the base film 20 is provided. Examples of the cover film 30 include a PET film, a PE film, and an OPP film.
 また、フィルム状接着剤は、フィルム状接着剤10をダイシングテープ上に積層したダイシング・ダイボンディング一体型接着シートとして用いることもできる。この場合、半導体ウェハへのラミネート工程が一回で済む点で、作業の効率化が可能である。 The film adhesive can also be used as a dicing / die bonding integrated adhesive sheet in which the film adhesive 10 is laminated on a dicing tape. In this case, it is possible to increase the efficiency of the operation in that the laminating process on the semiconductor wafer is performed only once.
 ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、及びポリイミドフィルム等のプラスチックフィルムなどが挙げられる。また、ダイシングテープには、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、及びエッチング処理等の表面処理が行われていてもよい。 Examples of the dicing tape include plastic films such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film. The dicing tape may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment as necessary.
 更に、ダイシングテープは粘着性を有するものであることができ、上述のプラスチックフィルムに粘着性を付与したものであってもよい。また、上述のプラスチックフィルムの片面に粘着剤層が設けられていてもよい。 Furthermore, the dicing tape can have adhesiveness, and the above-mentioned plastic film may be provided with adhesiveness. Moreover, the adhesive layer may be provided in the single side | surface of the above-mentioned plastic film.
 このようなダイシング・ダイボンディング一体型接着シートとしては、図10に示される接着シート120及び図11に示される接着シート130等が挙げられる。接着シート120は、図10に示すように、引張テンションを加えたときの伸びを確保できる基材フィルム40上に粘着剤層50が設けられたダイシングテープ60を支持基材とし、ダイシングテープ60の粘着剤層50上に、フィルム状接着剤10が設けられた構造を有している。接着シート130は、図11に示すように、接着シート120においてフィルム状接着剤10の表面に基材フィルム20が設けられている。 Examples of such a dicing / die bonding integrated adhesive sheet include an adhesive sheet 120 shown in FIG. 10 and an adhesive sheet 130 shown in FIG. As shown in FIG. 10, the adhesive sheet 120 uses a dicing tape 60 in which an adhesive layer 50 is provided on a base film 40 that can ensure elongation when a tensile tension is applied, as a supporting base material. The adhesive layer 50 has a structure in which the film adhesive 10 is provided. As shown in FIG. 11, the adhesive sheet 130 is provided with the base film 20 on the surface of the film adhesive 10 in the adhesive sheet 120.
 基材フィルム40としては、ダイシングテープについて記載した上述のプラスチックフィルムが挙げられる。また、粘着剤層50としては、例えば、液状成分及び高分子量成分を含み適度なタック強度を有する樹脂組成物が挙げられる。粘着剤層50を基材フィルム40上に塗布し乾燥する、又は、PETフィルム等の基材フィルムに塗布・乾燥させた粘着剤層を基材フィルム40と貼り合せることでダイシングテープは形成可能である。タック強度は、例えば、液状成分の比率、高分子量成分のTgを調整することにより、所望の値に設定される。 Examples of the base film 40 include the above-described plastic films described for the dicing tape. Moreover, as the adhesive layer 50, the resin composition which contains a liquid component and a high molecular weight component and has moderate tack strength is mentioned, for example. The dicing tape can be formed by applying the adhesive layer 50 on the base film 40 and drying, or by bonding the adhesive layer applied to the base film such as a PET film and drying to the base film 40. is there. The tack strength is set to a desired value, for example, by adjusting the ratio of the liquid component and the Tg of the high molecular weight component.
 接着シート120及び接着シート130等のダイシング・ダイボンディング一体型接着シートを半導体装置の製造に用いる場合、ダイシング時に半導体素子が飛散しない粘着力を有し、その後のピックアップ時にはダイシングテープから容易に剥離できることが必要である。 When a dicing / die bonding integrated adhesive sheet such as the adhesive sheet 120 and the adhesive sheet 130 is used for manufacturing a semiconductor device, the semiconductor element has an adhesive force that does not scatter during dicing, and can be easily peeled off from the dicing tape during subsequent pickup. is necessary.
 かかる特性は、上述したように粘着剤層のタック強度の調整、又は、光反応等によるタック強度を変化させることによって得ることができるが、フィルム状接着剤の粘着性が高すぎるとピックアップが困難になることがある。そのため、フィルム状接着剤10のタック強度を適宜調節することが好ましい。その方法としては、例えば、フィルム状接着剤10の室温(25℃)におけるフローを上昇させると粘着強度及びタック強度も上昇する傾向があり、フローを低下させると粘着強度及びタック強度も低下する傾向があることを、利用することが挙げられる。 Such characteristics can be obtained by adjusting the tack strength of the pressure-sensitive adhesive layer as described above, or changing the tack strength due to photoreaction, etc., but picking up is difficult if the tackiness of the film adhesive is too high. May be. Therefore, it is preferable to appropriately adjust the tack strength of the film adhesive 10. As the method, for example, when the flow of the film-like adhesive 10 at room temperature (25 ° C.) is increased, the adhesive strength and tack strength tend to increase, and when the flow is decreased, the adhesive strength and tack strength tend to decrease. It is mentioned that there is.
 フローを上昇させる方法としては、例えば、可塑剤として機能する化合物の含有量を増加させる方法等が挙げられる。フローを低下させる方法としては、例えば、可塑剤として機能する化合物の含有量を減らす方法等が挙げられる。上記可塑剤としては、例えば、単官能のアクリルモノマー、単官能エポキシ樹脂、液状エポキシ樹脂、及びアクリル系樹脂等が挙げられる。 Examples of the method for increasing the flow include a method for increasing the content of a compound that functions as a plasticizer. Examples of the method for reducing the flow include a method for reducing the content of a compound that functions as a plasticizer. Examples of the plasticizer include monofunctional acrylic monomers, monofunctional epoxy resins, liquid epoxy resins, and acrylic resins.
 ダイシングテープ60上にフィルム状接着剤10を積層する方法としては、上述した接着剤組成物のワニスを全面に塗布し乾燥する、又は印刷により部分的に塗工する方法のほか、予め作製したフィルム状接着剤10をダイシングテープ60上に、プレス又はホットロールラミネートにより積層する方法が挙げられる。本実施形態においては、連続的に製造でき、効率がよい点で、ホットロールラミネートによる方法が好ましい。 As a method of laminating the film-like adhesive 10 on the dicing tape 60, in addition to a method in which the varnish of the above-described adhesive composition is applied to the entire surface and dried or partially coated by printing, a film prepared in advance is used. A method of laminating the adhesive 10 on the dicing tape 60 by press or hot roll laminating is exemplified. In the present embodiment, a hot roll laminating method is preferable because it can be continuously manufactured and is efficient.
 ダイシングテープ60の膜厚は、特に制限はなく、フィルム状接着剤10の膜厚又はダイシング・ダイボンディング一体型接着シートの用途によって適宜、当業者の知識に基づいて定めることができる。ダイシングテープ60の厚みが60μm以上であると、取扱い性がよくなり、またダイシングにより個片化された半導体素子をダイシングテープ60から剥離する工程でのエキスパンドによりダイシングテープ60が破れることを抑制できる。一方、経済性と取扱い性の良さという観点から、ダイシングテープ60の厚みは、180μm以下であることが好ましい。以上より、ダイシングテープ60の膜厚は60~180μmであることが好ましい。 The film thickness of the dicing tape 60 is not particularly limited, and can be appropriately determined based on the knowledge of those skilled in the art depending on the film thickness of the film adhesive 10 or the application of the dicing / die bonding integrated adhesive sheet. When the thickness of the dicing tape 60 is 60 μm or more, the handleability is improved, and the dicing tape 60 can be prevented from being broken by the expansion in the process of separating the semiconductor elements separated by the dicing from the dicing tape 60. On the other hand, the thickness of the dicing tape 60 is preferably 180 μm or less from the viewpoint of economy and good handleability. Accordingly, the film thickness of the dicing tape 60 is preferably 60 to 180 μm.
 以上、本発明に係る半導体装置の製造方法及びこれに用いる接着剤の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。 As mentioned above, although the suitable embodiment of the manufacturing method of the semiconductor device which concerns on this invention, and the adhesive agent used for this was described, this invention is not necessarily limited to embodiment mentioned above, In the range which does not deviate from the meaning Changes may be made as appropriate.
 上記実施形態ではフィルム状接着剤について説明し、フィルム状接着剤を用いた半導体装置の製造方法について説明をしたが、フィルム状接着剤は必ずしもフィルム状である必要はなく、接着剤であればよい。すなわち、フィルム状接着剤は液状又はペースト状等の接着剤であってもよい。 In the above embodiment, the film-like adhesive is described, and the method for manufacturing a semiconductor device using the film-like adhesive has been described. However, the film-like adhesive is not necessarily in the form of a film, and may be an adhesive. . That is, the film adhesive may be a liquid or paste adhesive.
 図6の半導体装置200は、第1のワイヤ88及び第1の半導体素子Waがともにフィルム状接着剤10に埋め込まれている、ワイヤ及び半導体埋込型の半導体装置であったが、必ずしも第1の半導体素子Waが埋め込まれていなくてもよい。すなわち、半導体装置200は、第1のワイヤ88がフィルム状接着剤10に埋め込まれている、ワイヤ埋込型の半導体装置であってもよい。また、第1のワイヤはそのすべてが埋め込まれていなくてもよく、その少なくとも一部が埋め込まれていればよい。 The semiconductor device 200 of FIG. 6 is a wire and semiconductor embedded semiconductor device in which the first wire 88 and the first semiconductor element Wa are both embedded in the film adhesive 10, but the first semiconductor device 200 is not necessarily the first. The semiconductor element Wa may not be embedded. That is, the semiconductor device 200 may be a wire-embedded semiconductor device in which the first wire 88 is embedded in the film adhesive 10. Further, the first wire does not have to be entirely embedded, and it is sufficient that at least a part of the first wire is embedded.
 第1の半導体素子Waがフィルム状接着剤10に埋め込まれていない場合には、接着性が高く、また、半導体装置200を薄型化できる点で、フィルム状接着剤10の膜厚は30~200μmであることができ、40~150μmであってもよく、40~100μmであってもよく、40~80μmであってもよい。 When the first semiconductor element Wa is not embedded in the film adhesive 10, the film adhesive 10 has a film thickness of 30 to 200 μm because the adhesiveness is high and the semiconductor device 200 can be thinned. It may be 40 to 150 μm, 40 to 100 μm, or 40 to 80 μm.
 半導体装置200において、基板14は、表面に回路パターン84,94がそれぞれ二箇所ずつ形成された有機基板90であったが、基板14としてはこれに限られず、リードフレームなどの金属基板を用いてもよい。 In the semiconductor device 200, the substrate 14 is the organic substrate 90 having the circuit patterns 84 and 94 formed on the surface thereof at two locations. However, the substrate 14 is not limited to this, and a metal substrate such as a lead frame is used. Also good.
 半導体装置200は、第1の半導体素子Wa上に第2の半導体素子Waaが積層されており、二段に半導体素子が積層された構成を有していたが、半導体装置の構成はこれに限られない。第2の半導体素子Waaの上に第3の半導体素子を更に積層されていても構わないし、第2の半導体素子Waaの上に複数の半導体素子が更に積層されていても構わない。積層される半導体素子の数が増加するにつれて、得られる半導体装置の容量を増やすことができる。 Although the semiconductor device 200 has a configuration in which the second semiconductor element Waa is stacked on the first semiconductor element Wa and the semiconductor elements are stacked in two stages, the configuration of the semiconductor device is not limited thereto. I can't. A third semiconductor element may be further stacked on the second semiconductor element Waa, or a plurality of semiconductor elements may be further stacked on the second semiconductor element Waa. As the number of stacked semiconductor elements increases, the capacity of the obtained semiconductor device can be increased.
 上記実施形態に係る半導体装置の製造方法では、圧着工程前に、第2の半導体素子Waa上にフィルム状接着剤10が貼付されたフィルム状接着剤付き半導体素子102を準備していたが、第2の半導体素子Waaがフィルム状接着剤10を介して基板14に圧着されれば、上記のようなフィルム状接着剤付き半導体素子を準備しなくてもよい。 In the method for manufacturing a semiconductor device according to the above embodiment, the semiconductor element 102 with a film adhesive in which the film adhesive 10 is pasted on the second semiconductor element Waa is prepared before the crimping process. If the two semiconductor elements Waa are pressure-bonded to the substrate 14 via the film adhesive 10, the semiconductor element with a film adhesive as described above may not be prepared.
 また、上記実施形態に係る半導体装置の製造方法では、ラミネート工程において、半導体ウェハの片面に、図8に示す接着シート100をラミネートし、基材フィルム20を剥がすことで、フィルム状接着剤10を貼り付けていたが、ラミネート時に用いる接着シートはこれに限られない。接着シート100の代わりに、図10及び11に示すダイシング・ダイボンディング一体型接着シート120,130を用いることができる。この場合、半導体ウェハをダイシングする際にダイシングテープ60を別途貼り付ける必要がない。 Moreover, in the manufacturing method of the semiconductor device which concerns on the said embodiment, in the lamination process, the adhesive sheet 100 shown in FIG. 8 is laminated | stacked on the single side | surface of a semiconductor wafer, and the film-like adhesive 10 is peeled off by peeling the base film 20. However, the adhesive sheet used at the time of lamination is not limited to this. Instead of the adhesive sheet 100, dicing and die bonding integrated adhesive sheets 120 and 130 shown in FIGS. 10 and 11 can be used. In this case, it is not necessary to attach the dicing tape 60 separately when dicing the semiconductor wafer.
 また、ラミネート工程において、半導体ウェハではなく、半導体ウェハを個片化して得られた半導体素子を、接着シート100にラミネートしても構わない。この場合、ダイシング工程を省略することができる。 Further, in the laminating step, not the semiconductor wafer but a semiconductor element obtained by dividing the semiconductor wafer into pieces may be laminated on the adhesive sheet 100. In this case, the dicing process can be omitted.
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
<フィルム状接着シートの作製>
(実施例1~4及び比較例1~3)
 表1に示す品名及び組成比(単位:質量部)の(a)熱硬化性樹脂としてのエポキシ樹脂及びフェノール樹脂、(c)フィラーとしての無機フィラーからなる組成物にシクロヘキサノンを加え、撹拌混合した。これに、表1に示す、(b)高分子量成分としてのアクリルゴムを加えて撹拌し、更に表1に同様に示す(e)カップリング剤及び(d)硬化促進剤を加えて各成分が均一になるまで撹拌してワニスを得た。
<Production of film-like adhesive sheet>
(Examples 1 to 4 and Comparative Examples 1 to 3)
Cyclohexanone was added to a composition consisting of (a) an epoxy resin and a phenol resin as thermosetting resins, and (c) an inorganic filler as a filler in the product names and composition ratios (unit: parts by mass) shown in Table 1, and mixed by stirring. . To this, (b) acrylic rubber as a high molecular weight component shown in Table 1 was added and stirred, and (e) a coupling agent and (d) a curing accelerator shown in Table 1 were further added to make each component. Stir until homogeneous to obtain a varnish.
 なお、表1中の各成分の記号は下記のものを意味する。 In addition, the symbol of each component in Table 1 means the following.
(エポキシ樹脂)
YDF-8170C:(商品名、東都化成(株)製、ビスフェノールF型エポキシ樹脂、エポキシ当量159、室温で液体)。
VG-3101L:(商品名、(株)プリンテック製、多官能エポキシ樹脂、エポキシ当量210、軟化点39~46℃)。
YDCN-700-10:(商品名、東都化成(株)製、クレゾールノボラック型エポキシ樹脂、エポキシ当量210、軟化点75~85℃)。
HP-7200:(商品名、DIC(株)製、ジシクロペンタジエン含有エポキシ樹脂、エポキシ当量247、軟化点55~65℃)。
(Epoxy resin)
YDF-8170C: (trade name, manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy resin, epoxy equivalent 159, liquid at room temperature).
VG-3101L: (trade name, manufactured by Printec Co., Ltd., polyfunctional epoxy resin, epoxy equivalent 210, softening point 39-46 ° C.).
YDCN-700-10: (trade name, manufactured by Tohto Kasei Co., Ltd., cresol novolac type epoxy resin, epoxy equivalent 210, softening point 75 to 85 ° C.)
HP-7200: (trade name, manufactured by DIC Corporation, dicyclopentadiene-containing epoxy resin, epoxy equivalent 247, softening point 55 to 65 ° C.).
(フェノール樹脂)
PSM-4326:(商品名、群栄化学工業(株)製、水酸基当量105、軟化点118~122℃)。
ミレックスXLC-LL:(商品名、三井化学(株)製、フェノール樹脂、水酸基当量175、軟化点77℃、吸水率1質量%、加熱質量減少率4質量%)。
(Phenolic resin)
PSM-4326: (trade name, manufactured by Gunei Chemical Industry Co., Ltd., hydroxyl group equivalent 105, softening point 118-122 ° C.).
Millex XLC-LL: (trade name, manufactured by Mitsui Chemicals, Inc., phenol resin, hydroxyl group equivalent 175, softening point 77 ° C., water absorption 1 mass%, heating mass reduction rate 4 mass%).
(アクリルゴム)
アクリルゴムHTR-860P-3CSP:(商品名、ナガセケムテックス(株)製、重量平均分子量80万、グリシジル官能基を有する構造単位の比率3%、Tg:-7℃)。
アクリルゴムHTR-860P-30B-CHN:(商品名、ナガセケムテックス(株)製、重量平均分子量23万、グリシジル官能基を有する構造単位の比率8%、Tg:-7℃)。
(Acrylic rubber)
Acrylic rubber HTR-860P-3CSP: (trade name, manufactured by Nagase ChemteX Corp., weight average molecular weight 800,000, ratio of structural unit having glycidyl functional group 3%, Tg: -7 ° C.).
Acrylic rubber HTR-860P-30B-CHN: (trade name, manufactured by Nagase ChemteX Corporation, weight average molecular weight 230,000, ratio of structural unit having glycidyl functional group 8%, Tg: −7 ° C.).
(無機フィラー)
SC2050-HLG:(商品名、アドマテックス(株)製、シリカフィラー分散液、平均粒径0.50μm)。
アエロジルR972:(商品名、日本アエロジル(株)製、シリカ、平均粒径0.016μm)。
(Inorganic filler)
SC2050-HLG: (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 μm).
Aerosil R972: (trade name, manufactured by Nippon Aerosil Co., Ltd., silica, average particle size 0.016 μm).
(硬化促進剤)
キュアゾール2PZ-CN:(商品名、四国化成工業(株)製、1-シアノエチル-2-フェニルイミダゾール)。
(Curing accelerator)
Curesol 2PZ-CN: (trade name, 1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Chemicals Co., Ltd.).
(カップリング剤)
A-1160:(商品名、GE東芝(株)製、γ-ウレイドプロピルトリエトキシシラン)。
A-189:(商品名、GE東芝(株)製、γ-メルカプトプロピルトリメトキシシラン)。
(Coupling agent)
A-1160: (trade name, γ-ureidopropyltriethoxysilane, manufactured by GE Toshiba Corporation).
A-189: (trade name, manufactured by GE Toshiba Corporation, γ-mercaptopropyltrimethoxysilane).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、得られたワニスを100メッシュのフィルターでろ過し、真空脱泡した。真空脱泡後のワニスを、基材フィルムとしての、離型処理を施した、厚さ38μmのポリエチレンテレフタレート(PET)フィルム上に塗布した。塗布したワニスを、90℃で5分間、続いて140℃で5分間の2段階で加熱乾燥した。こうして、基材フィルムとしてのPETフィルム上に、Bステージ状態にある厚み60μmのフィルム状接着剤を備えた接着シートを得た。この接着シートを60℃にてラミネートすることで厚さ120μmのフィルム状接着剤を備えた、接着シートを得た。 Next, the obtained varnish was filtered through a 100 mesh filter and vacuum degassed. The varnish after the vacuum defoaming was applied onto a polyethylene terephthalate (PET) film having a thickness of 38 μm, which was subjected to a release treatment as a base film. The applied varnish was heat-dried in two stages of 90 ° C. for 5 minutes, followed by 140 ° C. for 5 minutes. Thus, an adhesive sheet provided with a film adhesive having a thickness of 60 μm in a B-stage state on a PET film as a base film was obtained. By laminating this adhesive sheet at 60 ° C., an adhesive sheet provided with a film adhesive having a thickness of 120 μm was obtained.
<各種物性の評価>
 得られた接着シートのフィルム状接着剤について、下記方法に従って、溶融粘度、加圧オーブンによる加熱及び加圧後の埋込性及び半導体素子の位置ずれ、接着強度、並びに、耐リフロー性の評価を行った。
<Evaluation of various physical properties>
About the film adhesive of the obtained adhesive sheet, according to the following method, evaluation of melt viscosity, embedding after heating and pressurizing oven and misalignment of semiconductor elements, adhesive strength, and reflow resistance is performed. went.
[溶融粘度]
 フィルム状接着剤の溶融粘度は、下記の方法によりずり粘度を測定することにより評価した。上記接着シートを複数枚数準備し、これらを60℃にてラミネートして、基材フィルム上に厚さが約300μmとなるようにフィルム状接着剤を積層させた。積層されたフィルム状接着剤から基材フィルムを剥離除去し、これを厚み方向に10mm角に打ち抜くことで、10mm角、厚さ300μmの四角形の積層体を得た。動的粘弾性測定装置ARES(TA Instruments社製)に直径8mmの円形アルミプレート治具をセットし、更にここに打ち抜いたフィルム状接着剤の積層体をセットした。その後、35℃で5%の歪みを与えながら5℃/分の昇温速度で150℃まで昇温させながら測定し、120℃の溶融粘度の値を記録した。測定結果を表2に示す。
[Melt viscosity]
The melt viscosity of the film adhesive was evaluated by measuring the shear viscosity by the following method. A plurality of the adhesive sheets were prepared, laminated at 60 ° C., and a film adhesive was laminated on the base film so as to have a thickness of about 300 μm. The base film was peeled and removed from the laminated film adhesive and punched into a 10 mm square in the thickness direction to obtain a square laminate having a 10 mm square and a thickness of 300 μm. A circular aluminum plate jig having a diameter of 8 mm was set in a dynamic viscoelasticity measuring apparatus ARES (manufactured by TA Instruments), and a laminated body of a film-like adhesive punched out was set here. Then, it measured while heating up to 150 degreeC with the temperature increase rate of 5 degree-C / min, giving 5% distortion at 35 degreeC, and recorded the value of 120 degreeC melt viscosity. The measurement results are shown in Table 2.
[加圧オーブンによる加熱及び加圧後の埋込性]
 フィルム状接着剤の加圧オーブンによる加熱及び加圧後の埋込性を下記の方法により評価した。上記で得られた接着シートのフィルム状接着剤(厚み120μm)を、厚み50μmの半導体ウェハ(8インチ)に70℃で貼り付けた。次に、それらを7.5mm角にダイシングしてフィルム状接着剤付き半導体素子(第2の半導体素子)を得た。また、ダイシング・ダイボンディング一体型フィルム(商品名:HR-9004-10、日立化成(株)製、厚み10μm)を厚み50μmの半導体ウェハ(8インチ)に70℃で貼り付けた。次に、それらを3.0mm角にダイシングしてチップを得た。個片化したHR-9004-10付きのチップ(第1の半導体素子)を、表面凹凸が最大6μmである評価用基板に130℃、0.20MPa、2秒間の条件で圧着し、120℃、2時間加熱し、半硬化させた。
[Embedment after heating with pressurized oven and after pressing]
The film adhesive was heated in a pressure oven and the embedding after pressing was evaluated by the following method. The film-like adhesive (thickness 120 μm) of the adhesive sheet obtained above was attached to a semiconductor wafer (8 inches) having a thickness of 50 μm at 70 ° C. Next, they were diced to 7.5 mm square to obtain a semiconductor element with a film adhesive (second semiconductor element). A dicing / die bonding integrated film (trade name: HR-9004-10, manufactured by Hitachi Chemical Co., Ltd., thickness 10 μm) was attached to a semiconductor wafer (8 inches) having a thickness of 50 μm at 70 ° C. Next, they were diced into 3.0 mm squares to obtain chips. A chip (first semiconductor element) with HR-9904-10 separated into pieces is pressure-bonded to an evaluation substrate having a maximum surface roughness of 6 μm under conditions of 130 ° C., 0.20 MPa, 2 seconds, 120 ° C., Heated for 2 hours and semi-cured.
 次に、このようにして得られた第1の半導体素子上に、上記フィルム状接着剤付き半導体素子を配置し、これを120℃、0.20MPa、2秒間の条件で圧着した。この際、上記フィルム状接着剤付き半導体素子の中央に、先に圧着しているHR-9004-10付きチップが配置されるように位置合わせをした。得られたサンプルを加圧オーブンに投入し、加圧オーブン中の圧力を0.7MPaに設定し、35℃から3℃/分の昇温速度で140℃まで昇温させ、140℃で30分加熱した。このようにして得られた評価サンプルを超音波映像装置SAT(日立建機製、品番FS200II、プローブ:25MHz)にて分析し、埋込性を確認した。埋込性の評価基準は以下の通りである。評価結果を表2に示す。
A:ボイドの割合が5%未満である。
B:ボイドの割合が5%以上である。
Next, the semiconductor element with a film adhesive was placed on the first semiconductor element thus obtained, and this was pressure-bonded under the conditions of 120 ° C., 0.20 MPa, and 2 seconds. At this time, the alignment was performed so that the chip with HR-9904-10 that was previously crimped was disposed at the center of the semiconductor element with the film adhesive. The obtained sample was put into a pressure oven, the pressure in the pressure oven was set to 0.7 MPa, the temperature was increased from 35 ° C. to 140 ° C. at a temperature increase rate of 3 ° C./min, and then at 140 ° C. for 30 minutes. Heated. The evaluation sample thus obtained was analyzed with an ultrasonic imaging apparatus SAT (manufactured by Hitachi Construction Machinery, product number FS200II, probe: 25 MHz) to confirm the embeddability. The evaluation criteria for embeddability are as follows. The evaluation results are shown in Table 2.
A: The proportion of voids is less than 5%.
B: Void ratio is 5% or more.
[加圧オーブンによる加熱及び加圧後の半導体素子の位置ずれ]
 上記加圧オーブンによる加熱及び加圧後の埋込性評価と同じ評価サンプルを作製するに際し、加圧オーブンによる加熱及び加圧前後のチップ全体の画像を取得し、顕微鏡解析により加圧オーブンによる加熱及び加圧前後の位置ずれを測長した。評価基準は以下の通りである。評価結果を表2に示す。
A:加圧オーブンによる加熱及び加圧後の位置ずれが10μm未満である。
B:加圧オーブンによる加熱及び加圧後の位置ずれが10μm以上である。
[Position deviation of semiconductor element after heating and pressurization by pressure oven]
When preparing the same evaluation sample as the above-described heating evaluation with the pressure oven and embedding after pressing, obtain images of the entire chip before and after pressing with the pressing oven and heating with the pressing oven by microscopic analysis. And the positional deviation before and after pressurization was measured. The evaluation criteria are as follows. The evaluation results are shown in Table 2.
A: The positional deviation after heating and pressurization by a pressure oven is less than 10 μm.
B: The positional deviation after heating and pressurization by a pressure oven is 10 μm or more.
[接着強度]
 フィルム状接着剤のダイシェア強度(接着強度)を下記の方法により測定した。まず、上記で得られた接着シートのフィルム状接着剤(厚み120μm)を厚み400μmの半導体ウェハに70℃で貼り付けた。次に、それらを5.0mm角にダイシングしてフィルム状接着剤付き半導体素子を得た。個片化したフィルム状接着剤付き半導体素子のフィルム状接着剤側を、ソルダーレジストインキ(商品名:AUS308、太陽インキ製造(株)製)を塗布した基板上に120℃、0.1MPa、5秒間の条件で熱圧着してサンプルを得た。その後、得られたサンプルの接着剤を120℃で2時間、170℃で3時間加熱し、硬化させた。更に、接着剤硬化後のサンプルを85℃、60%RH条件の下、168時間放置した。その後、サンプルを25℃、50%RH条件下で30分間放置し、250℃でダイシェア強度を測定し、これを接着強度とした。測定結果を表2に示す。
[Adhesive strength]
The die shear strength (adhesion strength) of the film adhesive was measured by the following method. First, the film-like adhesive (thickness 120 μm) of the adhesive sheet obtained above was attached to a semiconductor wafer having a thickness of 400 μm at 70 ° C. Next, they were diced to 5.0 mm square to obtain a semiconductor element with a film adhesive. The film adhesive side of the separated semiconductor element with a film adhesive is 120 ° C., 0.1 MPa, 5 on a substrate coated with solder resist ink (trade name: AUS308, manufactured by Taiyo Ink Manufacturing Co., Ltd.). A sample was obtained by thermocompression bonding under the conditions for 2 seconds. Thereafter, the adhesive of the obtained sample was cured by heating at 120 ° C. for 2 hours and at 170 ° C. for 3 hours. Further, the cured sample was left for 168 hours under the conditions of 85 ° C. and 60% RH. Thereafter, the sample was allowed to stand for 30 minutes under conditions of 25 ° C. and 50% RH, and the die shear strength was measured at 250 ° C., and this was taken as the adhesive strength. The measurement results are shown in Table 2.
[耐リフロー性]
 フィルム状接着剤の耐リフロー性を下記の方法により評価した。上記加圧オーブンによる加熱及び加圧後の埋込性の評価で得た評価サンプルと同様にして評価サンプルを作製した。得られた評価サンプルはモールド用封止材(日立化成(株)製、商品名:CEL-9750ZHF10)を用いて、175℃、6.7MPa、90秒の条件で樹脂封止し、175℃、5時間の条件で封止材を硬化させてパッケージを得た。
[Reflow resistance]
The reflow resistance of the film adhesive was evaluated by the following method. An evaluation sample was produced in the same manner as the evaluation sample obtained by the evaluation of the embedding after heating with the pressure oven and after pressing. The obtained evaluation sample was resin-sealed under the conditions of 175 ° C., 6.7 MPa, 90 seconds using a mold sealing material (trade name: CEL-9750ZHF10, manufactured by Hitachi Chemical Co., Ltd.), 175 ° C., The sealing material was cured under conditions of 5 hours to obtain a package.
 上記のパッケージを24個準備し、これらをJEDECで定められた環境下(レベル3、30℃、60%RH、192時間)に曝して吸湿させた。続いて、IRリフロー炉(260℃、最高温度265℃)に吸湿後のパッケージを3回通過させた。評価基準は以下の通りである。評価結果を表2に示す。
A:パッケージの破損若しくは厚みの変化、又はフィルム状接着剤と半導体素子との界面での剥離等が1個も観察されない。
B:パッケージの破損若しくは厚みの変化、又はフィルム状接着剤と半導体素子との界面での剥離等が1個以上観察される。
Twenty-four packages described above were prepared, and these were exposed to the environment defined by JEDEC (level 3, 30 ° C., 60% RH, 192 hours) to absorb moisture. Subsequently, the package after moisture absorption was passed through an IR reflow furnace (260 ° C., maximum temperature 265 ° C.) three times. The evaluation criteria are as follows. The evaluation results are shown in Table 2.
A: No damage or change in the thickness of the package or peeling at the interface between the film adhesive and the semiconductor element is observed.
B: One or more breakage or thickness change of the package or peeling at the interface between the film adhesive and the semiconductor element is observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示した結果から明らかなように、実施例1~4の接着シートは、比較例1~3の接着シートと比較して、埋込性に優れる且つ半導体素子の位置ずれが無く、耐リフロー性にも優れることが確認された。 As is apparent from the results shown in Table 2, the adhesive sheets of Examples 1 to 4 are superior in embedding property to the adhesive sheets of Comparative Examples 1 to 3, and there is no misalignment of the semiconductor elements. It was confirmed that reflowability was also excellent.
 10…フィルム状接着剤、14…基板、42…樹脂(封止材)、88…第1のワイヤ、98…第2のワイヤ、200…半導体装置、Wa…第1の半導体素子、Waa…第2の半導体素子。 DESCRIPTION OF SYMBOLS 10 ... Film adhesive, 14 ... Board | substrate, 42 ... Resin (sealing material), 88 ... 1st wire, 98 ... 2nd wire, 200 ... Semiconductor device, Wa ... 1st semiconductor element, Waa ... 1st 2. Semiconductor element.

Claims (6)

  1.  基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のワイヤボンディング工程と、
     第2の半導体素子を熱硬化性を有する接着剤を介して前記基板に圧着する圧着工程と、
     前記圧着工程後の接着剤を加圧雰囲気下で加熱することによって前記接着剤を硬化処理する加熱加圧工程と、
    を備え、
     前記硬化処理前の接着剤の120℃における溶融粘度が1000~3000Pa・sであるとともに、前記加熱加圧工程を経ることにより、前記第1のワイヤの少なくとも一部及び前記第1の半導体素子の少なくとも一方が硬化処理後の接着剤に埋め込まれる、半導体装置の製造方法。
    A first wire bonding step of electrically connecting a first semiconductor element on a substrate via a first wire;
    A crimping step of crimping the second semiconductor element to the substrate via a thermosetting adhesive;
    A heating and pressurizing step of curing the adhesive by heating the adhesive after the crimping step in a pressurized atmosphere;
    With
    The melt viscosity at 120 ° C. of the adhesive before the curing treatment is 1000 to 3000 Pa · s, and through the heating and pressing step, at least a part of the first wire and the first semiconductor element A method for manufacturing a semiconductor device, wherein at least one is embedded in an adhesive after curing.
  2.  前記加熱加圧工程において、前記接着剤を0.1~1.0MPaの加圧雰囲気下で、60~175℃で、5分間以上加熱する、請求項1に記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein, in the heating and pressing step, the adhesive is heated at 60 to 175 ° C. for 5 minutes or more in a pressurized atmosphere of 0.1 to 1.0 MPa.
  3.  前記加熱加圧工程後に、前記第2の半導体素子の上に第3の半導体素子を更に積層する工程を備える、請求項1又は2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of further stacking a third semiconductor element on the second semiconductor element after the heating and pressing step.
  4.  前記基板と前記第2の半導体素子とを第2のワイヤを介して電気的に接続する第2のワイヤボンディング工程と、
     前記第2の半導体素子を樹脂で封止する工程と、
    を更に備える、請求項1~3のいずれか一項に記載の半導体装置の製造方法。
    A second wire bonding step of electrically connecting the substrate and the second semiconductor element via a second wire;
    Sealing the second semiconductor element with a resin;
    The method for manufacturing a semiconductor device according to any one of claims 1 to 3, further comprising:
  5.  半導体装置の製造プロセスにおいて使用される接着剤であって、
     前記製造プロセスが、前記接着剤を加圧雰囲気下で加熱する硬化処理を経て、基板上のワイヤの少なくとも一部及び半導体素子の少なくとも一方が硬化処理後の前記接着剤に埋め込まれた状態とする工程を含み、
     120℃における溶融粘度が1000~3000Pa・sである、フィルム状接着剤。
    An adhesive used in a manufacturing process of a semiconductor device,
    The manufacturing process undergoes a curing process in which the adhesive is heated in a pressurized atmosphere, so that at least one of the wires on the substrate and at least one of the semiconductor elements are embedded in the adhesive after the curing process. Including steps,
    A film adhesive having a melt viscosity at 120 ° C. of 1000 to 3000 Pa · s.
  6.  ソルダーレジストインキを塗布した前記基板との硬化後の接着力が1.0MPa以上である、請求項5に記載の接着剤。 The adhesive according to claim 5, wherein the adhesive force after curing with the substrate coated with solder resist ink is 1.0 MPa or more.
PCT/JP2018/009043 2018-03-08 2018-03-08 Method for producing semiconductor device and film-like adhesive WO2019171544A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020504597A JP7115537B2 (en) 2018-03-08 2018-03-08 Semiconductor device manufacturing method and film adhesive
KR1020207026916A KR20200128051A (en) 2018-03-08 2018-03-08 Semiconductor device manufacturing method and film adhesive
CN201880090862.4A CN111819672A (en) 2018-03-08 2018-03-08 Method for manufacturing semiconductor device and film-like adhesive
PCT/JP2018/009043 WO2019171544A1 (en) 2018-03-08 2018-03-08 Method for producing semiconductor device and film-like adhesive
SG11202008637UA SG11202008637UA (en) 2018-03-08 2018-03-08 Method for producing semiconductor device and film-like adhesive
TW108106384A TWI852922B (en) 2018-03-08 2019-02-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009043 WO2019171544A1 (en) 2018-03-08 2018-03-08 Method for producing semiconductor device and film-like adhesive

Publications (1)

Publication Number Publication Date
WO2019171544A1 true WO2019171544A1 (en) 2019-09-12

Family

ID=67845945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009043 WO2019171544A1 (en) 2018-03-08 2018-03-08 Method for producing semiconductor device and film-like adhesive

Country Status (5)

Country Link
JP (1) JP7115537B2 (en)
KR (1) KR20200128051A (en)
CN (1) CN111819672A (en)
SG (1) SG11202008637UA (en)
WO (1) WO2019171544A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011257A (en) * 2012-06-28 2014-01-20 Nitto Denko Corp Adhesive film, manufacturing method of semiconductor device, and semiconductor device
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2015198117A (en) * 2014-03-31 2015-11-09 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet, method of manufacturing semiconductor device, and semiconductor device
JP2016139757A (en) * 2015-01-29 2016-08-04 日立化成株式会社 Adhesive composition, adhesive sheet for connecting circuit member, and manufacturing method of semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236134B2 (en) 2001-01-26 2013-07-17 日立化成株式会社 Adhesive composition, adhesive member, semiconductor mounting support member, semiconductor device, etc.
JP2005103180A (en) 2003-10-02 2005-04-21 Matsushita Electric Ind Co Ltd Washing machine
JP5524465B2 (en) 2007-10-24 2014-06-18 日立化成株式会社 Adhesive sheet, semiconductor device using the same, and manufacturing method thereof
SG11202004755QA (en) * 2018-01-30 2020-06-29 Hitachi Chemical Co Ltd Semiconductor device production method and film-shaped adhesive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011257A (en) * 2012-06-28 2014-01-20 Nitto Denko Corp Adhesive film, manufacturing method of semiconductor device, and semiconductor device
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2015198117A (en) * 2014-03-31 2015-11-09 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet, method of manufacturing semiconductor device, and semiconductor device
JP2016139757A (en) * 2015-01-29 2016-08-04 日立化成株式会社 Adhesive composition, adhesive sheet for connecting circuit member, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
SG11202008637UA (en) 2020-10-29
CN111819672A (en) 2020-10-23
JP7115537B2 (en) 2022-08-09
KR20200128051A (en) 2020-11-11
JPWO2019171544A1 (en) 2021-02-18
TW201938720A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6135202B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5736899B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP6133542B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP5428423B2 (en) Semiconductor device and film adhesive
JP5834662B2 (en) Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
JP5924145B2 (en) Film adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP6222395B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP6191799B1 (en) Semiconductor device, semiconductor device manufacturing method, and film adhesive
JP7513015B2 (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
TWI774916B (en) Manufacturing method of semiconductor device, film-like adhesive, and adhesive sheet
JP6443521B2 (en) Film adhesive and dicing die bonding integrated adhesive sheet
WO2019151260A1 (en) Manufacturing method for semiconductor device, and adhesive film
JP2012153851A (en) Semiconductor device and film-shaped adhesive
WO2019220540A1 (en) Semiconductor device, thermosetting resin composition used for production thereof, and dicing die bonding integrated tape
WO2019150444A1 (en) Semiconductor device production method and film-shaped adhesive
JP6768188B2 (en) Adhesive composition for adhesive film and its manufacturing method
JP6191800B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
WO2019171544A1 (en) Method for producing semiconductor device and film-like adhesive
JP7028264B2 (en) Film-shaped adhesive and its manufacturing method, and semiconductor device and its manufacturing method
TWI852922B (en) Method for manufacturing semiconductor device
JP7140143B2 (en) Semiconductor device manufacturing method and film adhesive
JP2013006899A (en) Adhesive film and semiconductor device using the same
JP6213618B2 (en) Film adhesive, adhesive sheet and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026916

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18909150

Country of ref document: EP

Kind code of ref document: A1