WO2019170694A1 - Procédé de préparation d'un électrolyte polymère solide utile dans des batteries - Google Patents

Procédé de préparation d'un électrolyte polymère solide utile dans des batteries Download PDF

Info

Publication number
WO2019170694A1
WO2019170694A1 PCT/EP2019/055477 EP2019055477W WO2019170694A1 WO 2019170694 A1 WO2019170694 A1 WO 2019170694A1 EP 2019055477 W EP2019055477 W EP 2019055477W WO 2019170694 A1 WO2019170694 A1 WO 2019170694A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polymer
process according
alkyl group
Prior art date
Application number
PCT/EP2019/055477
Other languages
English (en)
Inventor
Christine HAMON
Riccardo Rino PIERI
Brice SCHLEGEL
Massimo Morbidelli
Hua Wu
Stefano CAIMI
Original Assignee
Solvay Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Sa filed Critical Solvay Sa
Publication of WO2019170694A1 publication Critical patent/WO2019170694A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention pertains to a process for preparing a solid polymer electrolyte and to the thus obtainable electrolyte, as well as to
  • commercial batteries comprise at least an ionically conducting salt and a non-aqueous solvent.
  • Liquid electrolytes are characterised by a high ionic conductivity and good wetting of the electrodes surface.
  • Liquid electrolytes may have though the drawback that leakage can occur, and even combustion at least for some organic liquid electrolytes.
  • Fluoropolymers are known in the art to be suitable for the manufacture of different components for use in electrochemical devices such as lithium- ion batteries, such as separators, binders and as polymer electrolytes too.
  • PVdF Polyvinylidenefluoride
  • PVdF-HFP polyvinylidenefluoride-co- hexafluoropropylene
  • this invention provides a process for the preparation of a solid polymer electrolyte comprising the steps of:
  • polymer (FP) in the form of nanoparticles, said polymer (FP) comprising recurring units derived from vinylidene fluoride (VDF) in an amount of at least 50% by mole with respect to the total moles of recurring units of polymer (FP), and recurring units derived from at least one fluorinated monomer (FM) different from vinylidene fluoride in an amount of at least 2.5% by mole with respect to the total moles of recurring units of polymer (FP);
  • VDF vinylidene fluoride
  • FM fluorinated monomer
  • step iv) forming a dry powder from the gel coming from step iii); v) mixing said dry powder with an ionic liquid wherein at least a lithium salt is dissolved, and submitting the resulting mixture to hot pressing.
  • the present invention provides a solid polymer
  • electrolyte comprising at least a fluoropolymer (FP) and inorganic nanoparticles, at least a lithium salt and an ionic liquid, obtainable by the above said process.
  • FP fluoropolymer
  • ionic liquid obtainable by the above said process.
  • the present invention provides electrochemical devices comprising the above said solid polymer electrolyte.
  • Figure 1 is a schematic illustration of the microchannel
  • Figure 2 shows the distribution curves before and after one passage
  • Figure 3 shows SEM pictures of two gels used in the examples ( Figure 3a and Figure 3b, respectively), obtained by dispersion of inorganic nanoparticles into the dispersion of polymer after a single passage in the microchannel.
  • Figure 4 shows SEM images at 20k magnitude and at 350k magnitude of the surface of films ( Figure 4a and Figure 4b, respectively) obtained by compression moulding at 120°C and 10 kN for 5 minutes for a mixture of 30% FP/S1O2 and 70% ionic liquid/Li salt.
  • VDF vinylidene fluoride 1 ,1-difluoroethylene
  • fluorinated monomer FM
  • FM fluorinated monomer
  • fluorinated monomer comprise at least one hydrogen atom, it is designated as hydrogen-containing fluorinated monomer.
  • the fluorinated monomer may further comprise one or more other halogen atoms (Cl, Br, I).
  • Non-limiting examples of suitable fluorinated monomers include, notably, the followings:
  • - (per)fluoroalkylvinylethers of formula CF2 CF0CF20R f 2 wherein R f 2 is a C1-C6 fluoro- or perfluoroalkyl group, e.g. CF3, C2F5, C3F7 or a C1-C6 (per)fluorooxyalkyl group having one or more ether groups such as -C2F 5 - O-CFs;
  • the fluorinated monomer (FM) is preferably hexafluoropropylene (HFP).
  • At least another fluorinated monomer (FM2) different from (FM) and from VDF may be included in polymer (FP).
  • vinylidene fluoride such as, but not limited to, vinyl fluoride, trifluoroethylene, trifluorochloroethylene (CTFE), tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and fluoroalkyl vinyl ether and their mixtures.
  • vinyl fluoride trifluoroethylene, trifluorochloroethylene (CTFE), tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and fluoroalkyl vinyl ether and their mixtures.
  • CTFE trifluoroethylene
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • fluoroalkyl vinyl ether such as, but not limited to, vinyl fluoride, trifluoroethylene, trifluorochloroethylene (CTFE), tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and fluoroalkyl vinyl ether
  • the fluorinated monomer is comprised in an amount of at least 4.0% by mole with respect to the total moles of the recurring units of polymer (FP).
  • the fluoropolymer in the aqueous dispersion is a core-shell polymer having a core of polymer (FP) as defined above and a shell comprising at least an acrylate, for instance selected from the group consisting of methyl methacrylate
  • Aqueous dispersions comprising a core-shell polymer (FP) as above
  • step i) the polymer (FP) is dispersed in water typically at a
  • concentration comprised between 15% wt and 40% wt, preferably between 20% wt and 30% wt.
  • the polymer (FP) possesses a primary particle average size of less than 1 pm.
  • the term "primary particles” is intended to denote primary particles of polymer (FP) deriving directly from aqueous emulsion polymerization, without isolation of the polymer from the emulsion (i.e. the latex). Primary particles of polymer (FP) are thus to be intended distinguishable from agglomerates (i.e.
  • the aqueous dispersion in step i) of the invention is thus distinguishable from an aqueous slurry that can be prepared by dispersing powders of a polymer in an aqueous medium.
  • the average particle size of powders of a polymer or copolymer dispersed in an aqueous slurry is typically higher than 1 pm, as measured according to ISO 13321.
  • the primary particles average size of the particles of polymer (FP) in the aqueous dispersion in step i) is above 20 nm, more preferably above 30 nm, even more preferably above 50 nm, and/or is below to 600 nm, more preferably below 400 and even more preferably below 350 nm as measured according to ISO 13321.
  • dispersion of inorganic nanoparticles having a negative zeta potential is meant a dispersion of any inorganic nanoparticle having a pH higher than its isoelectric point (IEP).
  • Non-limiting examples of inorganic nanoparticles of possible use according to this invention are silicon dioxide (also referred to herein as“silica”), aluminium oxide, zirconium dioxide, cerium dioxide, vanadium oxide, titanium oxide, magnesium oxide and niobium oxide.
  • inventions are silicon dioxide nanoparticles, and more preferably they are precipitated silica.
  • precipitated silica it is meant herein a silica that is typically prepared by precipitation from a solution containing silicate salts (such as sodium silicate), with an acidifying agent (such as sulphuric acid).
  • silicate salts such as sodium silicate
  • acidifying agent such as sulphuric acid
  • Precipitated silica used in this invention may be prepared by implementing the methods already described in EP396450A, EP520862A, EP670813A, EP670814A, EP762992A, EP762993A, EP917519A, EP1355856A, W003/016215, W02009/112458, WO2011/117400, WO2013/110659, WO2013/139934, W02008/000761.
  • Non-limiting examples of precipitated silica which could be used in the present invention are for instance Tixosil® 365 and Zeosil® 1085 GR, all commercially available from Solvay.
  • the inorganic nanoparticles can be suitably dispersed in water by means of mechanical stirring or sonication, typically at concentration of at least 10% wt and at most 40% wt.
  • step iii) the mixture resulting from the addition of the aqueous
  • step i) and the aqueous dispersion of step ii) suitably contains inorganic nanoparticles having a negative zeta potential and polymer (FP) nanoparticles in a weight ratio as dry components that is comprised between 1 :99 and 50:50, preferably between 5:95 and 40:60, more preferably between 10:90 and 20:80.
  • inorganic nanoparticles having a negative zeta potential and polymer (FP) nanoparticles in a weight ratio as dry components that is comprised between 1 :99 and 50:50, preferably between 5:95 and 40:60, more preferably between 10:90 and 20:80.
  • FP polymer
  • step iii) the mixture resulting from the addition of the aqueous dispersion of step i) and the aqueous dispersion of step ii) is subjected to intense shear in order to provide a gel.
  • the apparatus for making a gel from the aqueous dispersion of polymer (FP) and the aqueous dispersion of inorganic nanoparticles to provide a gel is not particularly limited,
  • intense shearing is performed in a microchannel according to a microfluidic procedure; the operating pressure in the microchannel typically ranges from 80 to 160 bar; preferably the operating pressure is of approximately 120 bar.
  • the term’’ionic liquid is intended to denote a compound formed by the combination of a positively charged cation and a negatively charged anion in the liquid state at temperatures below 100°C under atmospheric pressure.
  • the term“ionic liquid” indicates a compound free from one or more solvents.
  • a positively charged cation selected from the group consisting of imidazolium, pyridinium, pyrrolidinium and piperidinium ions optionally containing one or more C1-C30 alkyl groups, and
  • a negatively charged anion selected from the group consisting of halides, perfluorinated anions and borates.
  • Non-limiting examples of C1-C30 alkyl groups include, notably, methyl, ethyl, propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, isopentyl, 2,2-dimethyl-propyl, hexyl, 2,3-dimethyl-2-butyl, heptyl, 2,2- dimethyl-3-pentyl, 2-methyl-2-hexyl, octyl, 4-methyl-3-heptyl, nonyl, decyl, undecyl and dodecyl groups.
  • Rn and R22 independently represent a Ci-Cs alkyl group and R33, R44, R55 and R66, equal to or different from each other, independently represent a hydrogen atom or a C1 -C30 alkyl group, preferably a C1 -C18 alkyl group, more preferably a Ci- Cs alkyl group, and
  • the positively charged cation of the ionic liquid is more preferably selected from the group consisting of:
  • the negatively charged anion of the ionic liquid is preferably selected from the group consisting of:
  • the ionic liquid even more preferably contains a pyrrolidinium cation of formula ( 11 -A) as defined above and a perfluorinated anion selected from the groups consisting of bis(trifluoromethylsulphonyl)imide of formula (S0 2 CF 3 ) 2 N-, hexafluorophosphate of formula PF6 and tetrafluoroborate of formula BF 4 -.
  • the ionic liquid is N-propyl-N-methylpirrolidinium bis(trifluoromethylsulfonyl)imide (also indicated in the following by the commercial product reference Pyr1308), having the following formula:
  • step v) the powder obtained by drying gel coming from step iii) is then mixed with an ionic liquid and Lithium salt, the resulting mixture submitted to a hot pressing.
  • the hot pressing in step v) of the present process is a treatment at a
  • the weight ratio of powder coming from step iii) and solution obtained dissolving Li salt in ionic liquid is advantageously comprised between 10:90 and 90: 10, preferably between 20:80 and 80:20, more preferably between 30:70 and 60:40.
  • electrochemical device it is hereby intended to denote an electrochemical cell comprising a positive electrode, a negative electrode and an electrolyte, wherein a monolayer or multilayer separator is adhered to at least one surface of one of said electrodes.
  • Non-limitative examples of suitable electrochemical devices include,
  • Non-limitative examples of secondary batteries include, notably, alkaline or alkaline-earth secondary batteries.
  • the present invention encompasses an electronic device comprising a solid polymer electrolyte obtainable by the above said process.
  • the present solid polymer electrolyte is particularly suitable for use in lithium-ion batteries, which is preferably a separator-free secondary battery.
  • the term“separator-free batteries” refers to batteries having a negative electrode comprising an active material, which releases lithium ions when discharging and absorbs lithium ions when the battery is being charged, wherein a self-standing electrolyte is placed within said negative electrode and the positive electrode, without the need for a physical separator.
  • Acetone puriss. p.a.,399.5%)
  • lithium hexafl uorophosphate solution (1 M in Ethylene carbonate and Dimethyl carbonate 50/50 (v/v)
  • ionic liquid N- Propyl-N-Methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide
  • POLYMER A VdF-HFP copolymer with about 11 wt.% or 5 mol% of HFP, obtained by emulsion polymerisation carried out using an anionic surfactant as stabiliser.
  • the average clusters size and the polydispersity index (PDI) were measured by dynamic light scattering (DLS) using Zetasizer Nano ZS from Malvern. By the same instrument the electrophoretic mobility of primary particles was measured too, and the Zeta potential was estimated through the Smoluchowski model (see Israelachvili J., Intermolecular and surface forces, Elsevier Academic Press, San Diego, 2011) at a concentration of 0.01 wt.% and 25°C with 10 mM NaCI. The solid content was measured using a HG53 Halogen Moisture Analyzer from Mettler-Toledo. The transmission electron microscopy (TEM) was used to verify the size of the dispersed clusters.
  • Table 1 The so-measured properties of the dispersions of S1O2 nanoclusters prepared as described above are summarised in the following Table 1. Table 1
  • a continuous film was obtained according to the process of the present invention, starting from a composite Si0 2 :POLYMER A at ratio 10:90, wherein such composite is mixed with electrolyte solution (LiTFSI 0,5M in Pyr1308b) in ratio 30:70 and finally by hot pressing at 120°C.
  • electrolyte solution LiTFSI 0,5M in Pyr1308b

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un électrolyte polymère solide comprenant au moins des nanoparticules de fluoropolymère, des nanoparticules inorganiques ayant un potentiel zêta négatif, au moins un sel de lithium et un liquide ionique; l'électrolyte polymère solide pouvant être obtenu à partir de celui-ci; et son utilisation dans des dispositifs électrochimiques.
PCT/EP2019/055477 2018-03-08 2019-03-06 Procédé de préparation d'un électrolyte polymère solide utile dans des batteries WO2019170694A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18305247.1 2018-03-08
EP18305247 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019170694A1 true WO2019170694A1 (fr) 2019-09-12

Family

ID=61691896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/055477 WO2019170694A1 (fr) 2018-03-08 2019-03-06 Procédé de préparation d'un électrolyte polymère solide utile dans des batteries

Country Status (1)

Country Link
WO (1) WO2019170694A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022021231A1 (fr) * 2020-07-30 2022-02-03 宁德时代新能源科技股份有限公司 Liquides ioniques supramoléculaires, membrane électrolytique à l'état solide, batterie métal-lithium à l'état solide et dispositif
WO2023182083A1 (fr) * 2022-03-23 2023-09-28 ダイキン工業株式会社 Composition pour batterie secondaire

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396450A1 (fr) 1989-05-02 1990-11-07 Rhone-Poulenc Chimie Silice sous forme de bille, procédé de préparation et son utilisation au renforcement des élastomères
EP0520862A1 (fr) 1991-06-26 1992-12-30 Rhone-Poulenc Chimie Procédé de préparation de silice précipitée, silices précipitées obtenues et leur utilisation au renforcement des élastomères
EP0670813A1 (fr) 1993-09-29 1995-09-13 Rhone-Poulenc Chimie Silice precipitee
EP0670814A1 (fr) 1993-09-29 1995-09-13 Rhone-Poulenc Chimie Silices precipitees
EP0762992A1 (fr) 1995-03-29 1997-03-19 Rhone-Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l'aluminium et leur utilisation au renforcement des elastomeres
EP0762993A1 (fr) 1995-03-29 1997-03-19 Rhone-Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l'aluminium et leur utilisation au renforcement des elastomeres
EP0917519A1 (fr) 1997-05-26 1999-05-26 Rhodia Chimie Silice precipitee utilisable comme charge renfor ante pour elastomeres
WO2003016215A1 (fr) 2001-08-13 2003-02-27 Rhodia Chimie Procede de preparation de silices, silices a distribution granulometrique et/ou repartition poreuse particulieres et leurs utilisations, notamment pour le renforcement de polymeres
JP2003171520A (ja) 2001-12-04 2003-06-20 Daikin Ind Ltd 架橋性含フッ素樹脂水性組成物
EP1355856A1 (fr) 2000-12-28 2003-10-29 Rhodia Chimie Procede de preparation de silice precipitee contenant de l'aluminium
WO2008000761A1 (fr) 2006-06-27 2008-01-03 Rhodia Operations Silice precipitee pour application papier
WO2009112458A1 (fr) 2008-03-10 2009-09-17 Rhodia Operations Nouveau procede de preparation de silices precipitees, silices precipitees a morphologie, granulometrie et porosite particulieres et leurs utilisations, notamment pour le renforcement de polymeres
WO2011117400A1 (fr) 2010-03-25 2011-09-29 Rhodia Operations Nouveau procede de preparation de silices precipitees contenant de l'aluminium
WO2012043580A1 (fr) 2010-09-27 2012-04-05 ダイキン工業株式会社 Particules de polymères composites d'acryle fluoré
WO2013110659A1 (fr) 2012-01-25 2013-08-01 Rhodia Operations Procede de preparation de silices precipitees
WO2013139934A1 (fr) 2012-03-22 2013-09-26 Rhodia Operations Procédé de préparation de silice précipitée comprenant une etape de concentration membranaire
US20150020947A1 (en) * 2012-02-16 2015-01-22 Solvay Specialty Polymers Italy S.P.A. Method for the manufacture of composite separators
WO2017067948A1 (fr) * 2015-10-19 2017-04-27 Solvay Specialty Polymers Italy S.P.A. Séparateur de batterie revêtu
US20170125868A1 (en) * 2015-11-04 2017-05-04 Samsung Electronics Co., Ltd. Polymer electrolyte and battery including the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396450A1 (fr) 1989-05-02 1990-11-07 Rhone-Poulenc Chimie Silice sous forme de bille, procédé de préparation et son utilisation au renforcement des élastomères
EP0520862A1 (fr) 1991-06-26 1992-12-30 Rhone-Poulenc Chimie Procédé de préparation de silice précipitée, silices précipitées obtenues et leur utilisation au renforcement des élastomères
EP0670813A1 (fr) 1993-09-29 1995-09-13 Rhone-Poulenc Chimie Silice precipitee
EP0670814A1 (fr) 1993-09-29 1995-09-13 Rhone-Poulenc Chimie Silices precipitees
EP0762992A1 (fr) 1995-03-29 1997-03-19 Rhone-Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l'aluminium et leur utilisation au renforcement des elastomeres
EP0762993A1 (fr) 1995-03-29 1997-03-19 Rhone-Poulenc Chimie Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l'aluminium et leur utilisation au renforcement des elastomeres
EP0917519A1 (fr) 1997-05-26 1999-05-26 Rhodia Chimie Silice precipitee utilisable comme charge renfor ante pour elastomeres
EP1355856A1 (fr) 2000-12-28 2003-10-29 Rhodia Chimie Procede de preparation de silice precipitee contenant de l'aluminium
WO2003016215A1 (fr) 2001-08-13 2003-02-27 Rhodia Chimie Procede de preparation de silices, silices a distribution granulometrique et/ou repartition poreuse particulieres et leurs utilisations, notamment pour le renforcement de polymeres
JP2003171520A (ja) 2001-12-04 2003-06-20 Daikin Ind Ltd 架橋性含フッ素樹脂水性組成物
WO2008000761A1 (fr) 2006-06-27 2008-01-03 Rhodia Operations Silice precipitee pour application papier
WO2009112458A1 (fr) 2008-03-10 2009-09-17 Rhodia Operations Nouveau procede de preparation de silices precipitees, silices precipitees a morphologie, granulometrie et porosite particulieres et leurs utilisations, notamment pour le renforcement de polymeres
WO2011117400A1 (fr) 2010-03-25 2011-09-29 Rhodia Operations Nouveau procede de preparation de silices precipitees contenant de l'aluminium
WO2012043580A1 (fr) 2010-09-27 2012-04-05 ダイキン工業株式会社 Particules de polymères composites d'acryle fluoré
WO2013110659A1 (fr) 2012-01-25 2013-08-01 Rhodia Operations Procede de preparation de silices precipitees
US20150020947A1 (en) * 2012-02-16 2015-01-22 Solvay Specialty Polymers Italy S.P.A. Method for the manufacture of composite separators
WO2013139934A1 (fr) 2012-03-22 2013-09-26 Rhodia Operations Procédé de préparation de silice précipitée comprenant une etape de concentration membranaire
WO2017067948A1 (fr) * 2015-10-19 2017-04-27 Solvay Specialty Polymers Italy S.P.A. Séparateur de batterie revêtu
US20170125868A1 (en) * 2015-11-04 2017-05-04 Samsung Electronics Co., Ltd. Polymer electrolyte and battery including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISRAELACHVILI J.: "Intermolecular and surface forces", 2011, ELSEVIER ACADEMIC PRESS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022021231A1 (fr) * 2020-07-30 2022-02-03 宁德时代新能源科技股份有限公司 Liquides ioniques supramoléculaires, membrane électrolytique à l'état solide, batterie métal-lithium à l'état solide et dispositif
WO2023182083A1 (fr) * 2022-03-23 2023-09-28 ダイキン工業株式会社 Composition pour batterie secondaire

Similar Documents

Publication Publication Date Title
Li et al. A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries
JP5085335B2 (ja) 微孔質材料およびその製造方法
JP6357469B2 (ja) 非水電解質二次電池用構造体、非水電解質二次電池および該構造体の製造方法
JPWO2011096564A1 (ja) 二次電池用ゲル電解質複合フィルム、及び、二次電池
CN106654125A (zh) 通过多巴胺复合粘结剂制备改性陶瓷隔膜的方法及其应用
JP2015162384A (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
CN109950618B (zh) 一种溶剂化复合固态电解质及其制备方法和应用
WO2018179697A1 (fr) Particules de type à noyau-enveloppe, utilisation de celles-ci et leur procédé de production
WO2015064099A1 (fr) Composition de bouillie pour électrode positive pour batterie rechargeable lithium-ion, électrode positive pour batterie rechargeable lithium-ion et batterie rechargeable lithium-ion
EP3806190B1 (fr) Composition de résine pour batterie secondaire à électrolyte non aqueux, séparateur pour batterie secondaire à électrolyte non aqueux l'utilisant, composition de résine pour couche de mélange d'électrodes, électrode pour batterie secondaire à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
EP4253431A1 (fr) Composition de copolymère de fluorure de vinylidène et son procédé de production, solution de dispersion de polymère, électrode pour batterie secondaire à électrolyte non aqueux, couche d'électrolyte pour batterie secondaire à électrolyte non aqueux, et batterie secondaire à électrolyte non aqueux
CN108539091B (zh) 非水电解液二次电池用隔板
WO2018168615A1 (fr) Liquide de dispersion de matériau conducteur pour électrodes d'élément électrochimique, composition de bouillie pour électrodes d'élément électrochimique, son procédé de production, électrode pour éléments électrochimiques, et élément électrochimique
JP6498300B2 (ja) 電気化学素子用電極
WO2019170694A1 (fr) Procédé de préparation d'un électrolyte polymère solide utile dans des batteries
Wang et al. Gel-based composite polymer electrolytes with novel hierarchical mesoporous silica network for lithium batteries
JP6237306B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
TWI511352B (zh) Ion polymer film material and its preparation method and lithium secondary battery
JP4017744B2 (ja) 固体型ポリマー電解質膜及びその製造方法
US20240010826A1 (en) Vinylidene fluoride polymer composition and method of producing same, resin composition, electrode mixture, and electrode containing these, and method of producing same
Wang et al. Preparation of monodispersed ZrO2 nanoparticles and their applications in poly [(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolytes
JP5924501B2 (ja) 蓄電デバイス電極用スラリー、蓄電デバイス電極および蓄電デバイスの製造方法
WO2020003805A1 (fr) Film poreux, séparateur pour batterie secondaire, et batterie secondaire
Ratri et al. Study on the Surface Morphology of PVdF-LiBOB Solid Polymer Electrolyte with TiO2 Filler for Lithium-Ion Battery Application
Caimi et al. Effect of PVdF-HFP/Ionic of SiO2 Nanoparticles Liquid Separator on the Performance for Lithium-Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19711826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19711826

Country of ref document: EP

Kind code of ref document: A1