WO2019169960A1 - 一种内部立体直接光固化成型3d打印设备及其控制方法 - Google Patents

一种内部立体直接光固化成型3d打印设备及其控制方法 Download PDF

Info

Publication number
WO2019169960A1
WO2019169960A1 PCT/CN2019/072701 CN2019072701W WO2019169960A1 WO 2019169960 A1 WO2019169960 A1 WO 2019169960A1 CN 2019072701 W CN2019072701 W CN 2019072701W WO 2019169960 A1 WO2019169960 A1 WO 2019169960A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
resin
molding
galvanometer
base
Prior art date
Application number
PCT/CN2019/072701
Other languages
English (en)
French (fr)
Inventor
匡津永
Original Assignee
匡津永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 匡津永 filed Critical 匡津永
Publication of WO2019169960A1 publication Critical patent/WO2019169960A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to the field of 3D printing technology, and in particular, to an internal stereo direct light curing molding 3D printing device and a control method thereof.
  • the traditional resin light-curing 3D printing technology has basically the same principle. It can be divided into laser scanning SLA, digital light projection DLP, and liquid crystal imaging LCD according to the light source; it is divided into bottom molding and top molding according to the molding position.
  • the working workflow of the device is: after printing, the printing platform is lowered from the top to a position close to the bottom surface of the resin tank, the distance is equal to the layer thickness of the first layer of the model, and the bottom surface of the resin tank is a transparent material.
  • the first layer is cured by scanning the cross-section pattern of the first layer on the bottom surface by the laser.
  • the solid resin after curing is adhered to the bottom surface of the molding platform and the resin tank, and the bottom material of the resin tank is made of a special release film. Can be easily separated.
  • the molding platform and the solidified model move upward by a certain distance, so that the bottom surface of the mold is separated from the bottom surface of the resin tank, and then the molding platform and the model are again lowered to a certain position from the bottom surface of the resin tank, and the laser continues to sweep the surface to form the next surface. This reciprocation ultimately forms the actual 3D object model.
  • the present invention provides an internal stereo direct light curing molding 3D printing device and a control method thereof, which are different from the conventional surface curing of a conventional light curing model, and adopt multiple laser beams passing through a specific wavelength and power.
  • an internal stereo direct light curing molding 3D printing device which mainly comprises a laser scanning module, a molding platform and a base, wherein the base is a base of the entire device, and other parts are installed in
  • the base mainly comprises a bottom plate, a resin groove, a screw rod and an optical axis, wherein the resin groove is located in a groove in the middle of the top of the bottom plate, and is a transparent acrylic material; the lower left and upper right corners of the bottom plate are fixed with a screw rod through a bearing, and the lower right And an optical axis fixed to the upper left corner;
  • the molding platform is mounted on the base by a screw rod and an optical axis;
  • the laser scanning module is mounted on the molding platform for the main module of the device.
  • the forming platform comprises a bottom forming platform, a connecting member, a top structural member, a screw nut and a linear bearing
  • the bottom forming platform is made of an aluminum plate, and the surface is arranged with a dense circular through hole to ensure that the liquid photosensitive resin can Forming the platform through the bottom
  • the top structural member is connected to the bottom forming platform by a connecting member, wherein the connecting member is a fixed-length upper and lower tapped aluminum thin cylinder fixed by a nut
  • the top structural member is both inside and outside
  • the square frame shape, the two screw nuts are diagonally fixed to the lower left and upper right corners of the top structural member, and the two linear bearings are diagonally fixed to the lower right and upper left corners of the top structural member.
  • the screw rod fixed by the bearing on the base can be freely rotated in position, corresponding to the screw nut on the forming platform, and the two cooperate with each other to realize the up and down movement of the forming platform.
  • optical axis fixed on the base corresponds to the linear bearing on the forming platform, and the two cooperate with each other to realize the up and down movement of the forming platform.
  • the laser scanning module comprises four laser generators, four sets of laser galvanometers, a mirror and a mounting seat, and the mounting seat is a shell-shaped rectangular parallelepiped whose upper and lower sides are square, and the four laser generators are respectively fixed at The four sides of the mount; the mirror is divided into four, respectively fixed on the lower surface of the inside of the mount; each set of laser galvanometer includes an X-axis laser galvanometer and a Y-axis laser galvanometer, four of the Y
  • the shaft laser galvanometers are respectively fixedly mounted on the central positions on the four sides of the mount, the laser generator is located on one side thereof, and the four X-axis laser galvanometers are fixedly mounted on the upper surface of the mount, the X-axis laser galvanometer
  • the center point of the mirror and the center point of the mirror of the Y-axis laser galvanometer are on the same level.
  • the center point of the laser generator is located at the same horizontal plane as the mirror center point of the Y-axis laser galvanometer and the X-axis laser galvanometer; the laser beam emitted by each laser generator is reflected to the right when it is irradiated to the mirror.
  • the X-axis laser galvanometer on the side is then reflected to the Y-axis laser galvanometer. Finally, it is reflected by the Y-axis laser galvanometer into the photosensitive resin inside the resin bath.
  • the X and Y-axis laser galvanometers work simultaneously to change the incident beam. Direction and coordinates.
  • a control method for an internal stereo direct light curing molding 3D printing device comprising the following steps:
  • the stepping motor drives the two screw rods to rotate, and the molding platform and the laser scanning module are lowered by the screw nut until the bottom surface of the molding platform contacts the bottom surface of the resin tank and stops;
  • the laser beams are point sources. Each laser beam is reflected by a mirror and then irradiated onto a group of laser galvanometers. Each group of laser galvanometers has two.
  • the rotating shaft can arbitrarily change the angle of the reflected beam by the mirror fixed on the rotating shaft.
  • the light intensity of the single beam is less than that of the inside of the liquid resin.
  • the resin is cured, but the light intensity of each of the intersections is higher than a quarter of the critical value of the light intensity required for curing of the liquid photosensitive resin, and the light intensity of the four beams is superimposed on the curable light intensity of the liquid photosensitive resin. Therefore, the resin at this point will be cured;
  • the G-code file obtained by slicing the 3D model is input into the single-chip microcomputer, and the laser galvanometer is controlled by the single-chip microcomputer, and the four laser beams can be solidified by layer-by-layer scanning in the liquid photosensitive resin.
  • the stepping motor drives the screw to rotate in the opposite direction, so that the molding platform and the laser scanning module rise up to the top of the base. At this time, the printed model is outside the resin tank, and the model is taken out. After the addition of enough photosensitive resin, the next print can be started.
  • step (4) the mathematical model and algorithm of the laser galvanometer controlled by the single chip:
  • each group of laser galvanometers has x and y lenses that can be rotated separately.
  • the x-laser galvanometer is placed longitudinally, the y-laser galvanometer is placed laterally, and two laser galvanometers are placed.
  • the distance between them is e
  • the distance between the resin liquid surface distance y and the laser galvanometer laser exit point is h (the amount of liquid resin added to the resin tank is the same every time, so h is a constant)
  • the point B (X1, Y1, Z1) is The irradiation point of the laser inside the liquid resin (that is, the position of the four laser intersections);
  • the amount of control required is: the rotation angles ⁇ x and ⁇ y of the two laser galvanometers x and y.
  • the rotation angles of the two laser galvanometers are 0, the laser beam is vertically irradiated downward; the laser generator emits
  • the light source is a point light source.
  • the conventional 3D printing technology has a printing speed of about 10 to 35 mm per hour, and after omitting a large amount of time loss and slice control optimization between each layer, the theoretical speed of the 3D printing technology of the present invention is the speed of the prior art. More than 100 times;
  • the complex structure such as some suspended objects of the constructed model can be used with minimum support or even no support, which increases the speed and reduces the consumables.
  • the continuous reciprocating motion of the traditional light curing type printing platform and the model is controlled by the stepping motor.
  • the continuous rotation of the motor is the main energy source of the device.
  • the molding platform and the model only need to be printed before And after a round-trip motion at the end, the energy consumption is much lower than the continuous reciprocating motion of the motor in the conventional technology, and the energy consumption of the laser generator and the laser galvanometer is much lower than that required to drive the motor, and on the other hand, the model is shortened.
  • the printing time is also reduced by the energy consumption of the same model when the technical device and the traditional device print the same model;
  • the invention has the advantages of short molding time, more stable molding, saving consumables, energy consumption and higher efficiency.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic view showing the position structure of each component in the working of the present invention.
  • FIG. 3 is a schematic structural view of a laser scanning module of the present invention.
  • Figure 4 is a bottom view of the laser scanning module of the present invention.
  • Figure 5 is a schematic structural view of a molding platform of the present invention.
  • Figure 6 is a schematic view showing the overall structure of the base of the present invention.
  • Figure 7 is a schematic view showing the laser beam refraction of the present invention.
  • an internal stereo direct light curing molding 3D printing device mainly comprising a laser scanning module 1, a molding platform 2 and a base 3, the base 3 is a base of the entire device, and other parts are mounted on the base 3,
  • the utility model mainly comprises a bottom plate 31, a resin groove 32, a screw rod 33 and an optical shaft 34.
  • the resin groove 32 is located in a groove in the middle of the top of the bottom plate 31, and is a transparent acrylic material; the lower left and upper right corners of the bottom plate 31 are fixed by wires.
  • the rod 33 is fixed with an optical axis 34 at the lower right and upper left corners; the forming platform 2 is mounted on the base 3 via a screw 33 and an optical axis 34; the laser scanning module 1 is mounted on the forming platform 2 for the main module of the apparatus.
  • the forming platform 2 comprises a bottom forming platform 21, a connecting member 22, a top structural member 23, a screw nut 24 and a linear bearing 25.
  • the bottom forming platform 21 is made of an aluminum plate, and the surface is arranged with a dense circular through hole to ensure The liquid photosensitive resin can pass through the bottom forming platform 21;
  • the top structural member 23 is connected by the connecting member 22 to the bottom forming platform 21, and the connecting member 22 is a fixed length of upper and lower strap tapped aluminum thin cylinders, which are fixed by nuts;
  • the top structural member 23 has a frame shape with inner and outer squares.
  • the two screw nuts 24 are diagonally fixed to the lower left and upper right corners of the top structural member, and the two linear bearings 25 are diagonally fixed to the lower right of the top structural member 23. With the upper left corner.
  • the screw rod 33 fixed on the base 3 by the bearing can be freely rotated in position, and the screw nut 24 corresponding to the molding platform 2 cooperates with each other to realize the up and down movement of the molding platform 2.
  • the optical axis 34 fixed on the base 3 corresponds to the linear bearing 25 on the forming platform 2, and the two cooperate with each other to realize the up and down movement of the forming platform 2.
  • the laser scanning module 1 includes four laser generators 11, four sets of laser galvanometers 12, a mirror 13 and a mounting seat 14.
  • the mounting base 14 is a shell-shaped rectangular parallelepiped having squares on both upper and lower sides, and the four laser generators 11 are respectively fixed on four sides of the mount 14; the mirror 13 is divided into four, respectively fixed on the lower surface of the inside of the mount 14; each set of laser galvanometer 12 includes an X-axis laser galvanometer 15 and a Y-axis
  • the laser galvanometer 16, four of the Y-axis laser galvanometers 16 are fixedly mounted at the center positions on the four sides of the mount 14, respectively, the laser generator 11 is located on one side thereof, and the four X-axis laser galvanometers 15
  • the upper surface of the mount 14 is fixedly mounted, and the mirror center points of the X-axis laser galvanometer 15 and the Y-axis laser galvanometer 16 are on the same level as the center point of the mirror 13.
  • the center point of the laser generator 11 is located at the same horizontal plane as the mirror center point of the Y-axis laser galvanometer 16 and the X-axis laser galvanometer 15; when the laser beam emitted from each laser generator 11 is irradiated to the mirror 13, it is reflected to The X-axis laser galvanometer 15 on the right side thereof is then reflected to the Y-axis laser galvanometer 16 and finally reflected by the Y-axis laser galvanometer 16 into the photosensitive resin inside the resin groove 32, and the X and Y-axis laser galvanometers are simultaneously Work can change the direction and coordinates of the beam incident.
  • a control method for an internal stereo direct light curing molding 3D printing device comprising the following steps:
  • the stepping motor drives the two screw rods 33 to rotate, and the molding platform 2 and the laser scanning module 1 are lowered by the screw nut 24 until the bottom surface of the molding platform 2 contacts the bottom surface of the resin tank 32 and stops;
  • each set of laser galvanometers 12 has two rotating shafts, and the angle of the reflected beam can be arbitrarily changed by the mirror 13 fixed on the rotating shaft.
  • the light intensity is insufficient to cure the resin, but the light intensity of each of the intersections is higher than a quarter of the critical value of the light intensity required for curing of the liquid photosensitive resin, and the light intensity of the four beams is superimposed on the liquid photosensitive resin to be cured. Above the light intensity, so the resin at this point will be cured;
  • the stepping motor drives the screw 33 to rotate in the reverse direction to raise the molding platform 2 and the laser scanning module 1 until the top of the base 3, and the printed model is in the resin tank 32.
  • the model is taken out and the next print can be started after adding enough photosensitive resin.
  • the inside of the resin groove 32 is the coordinate axis
  • the upper left corner of the bottom of the resin groove 32 is the coordinate origin
  • the exit points of the four groups of lasers are selected as: A (Xa, Ya, Za)
  • the exit point corresponds to a set of laser galvanometers 12
  • each set of laser galvanometer 12 has x
  • y two lenses can be rotated separately
  • the set of laser galvanometer 12 is placed longitudinally as x laser galvanometer 15 and laterally placed as y laser galvanometer 16
  • the distance between the two laser galvanometers is e
  • the resin liquid surface distance y laser galvanometer 16 laser exit point distance is h (the amount of liquid resin added to the resin tank 32 is the same each time, so h is a constant)
  • B (X1, Y1, Z1) points are the irradiation points required for the laser inside the liquid resin (ie, the position of the four laser intersections);
  • the amount of control required is: the rotation angles ⁇ x and ⁇ y of the two laser galvanometers x and y.
  • the rotation angles of the two laser galvanometers are 0, the laser beam is vertically irradiated downward; the laser generator 11 emits
  • the light source is a point source.
  • the control function needs to be compensated in advance:
  • the cured resin is composed of a resin monomer and a prepolymer, and a photoinitiator is internally added.
  • the prepolymer and the resin monomer are polymerized by a photoinitiator under the irradiation of light of a specific wavelength, thereby changing their chemical and physical properties, and changing from a liquid form to a solid form.
  • the photosensitive resin used in general photocuring 3D printing has a curing wavelength of 405 nm.
  • the normal photosensitive resin has a curing wavelength of 405 nm.
  • the wavelength of the irradiation into the interior is changed to: Therefore, if a laser beam having a wavelength of 405 nm is required inside the photosensitive resin, the laser beam emitted by the laser emitter needs to have a wavelength of 405*n (nm).
  • the 3D model file is first sliced by the computer-side slicing software, and the 3D model is cross-cut several times from bottom to top. After each cross-cut, a cross-section is formed, and a 2D image of one surface is scanned using laser scanning SLA technology or DLP projection technology. Upon irradiation onto the liquid photosensitive resin, the cross section having a certain thickness can be formed, and a plurality of sections formed after the slicing are sequentially formed and superposed to form an actual 3D object.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种内部立体直接光固化成型3D打印设备及其控制方法,主要包括激光扫描模块、成型平台和底座,所述底座是整个装置的基体,其他部分都安装在底座上,主要包括底板、树脂槽、丝杆和光轴,所述树脂槽位于底板顶部中间的凹槽内,为透明亚克力材质;所述底板的左下和右上角通过轴承固定有丝杆,右下和左上角固定有光轴;所述成型平台通过丝杆和光轴安装在底座上;所述激光扫描模块为设备的主要模块安装在成型平台上,采用通过特定波长和功率的多束激光束在透明的光敏树脂内部直接扫描固化成型,将3D打印的速度大大提高,并且效率与稳定性更优于其他3D打印技术。

Description

一种内部立体直接光固化成型3D打印设备及其控制方法 技术领域
本发明涉及3D打印技术领域,尤其涉及一种内部立体直接光固化成型3D打印设备及其控制方法。
背景技术
近几年来,3D打印机技术的研究与应用越来越受到学术界和商业界的重视,它被称为第三次工业革命的重要标志之一。现在传统3D打印技术根据材料和成型方式的不同大体分为:塑料的熔融堆积成型(FDM)、金属粉末与塑料粉末的激光烧结或粘结成型、光敏树脂的光固化成型几类,熔融堆积技术的成本低,但是速度很慢并且精度不高;粉末的激光烧结或粘结精度高但是速度很慢且成本高昂;树脂的光固化精度较高,成本与速度介于前两者之间。另一方面尽管3D打印技术以可以成型高精度的物体,但成型速度远低于传统制造生产成型技术,致使3D打印技术的大量推广使用受限。
传统树脂光固化3D打印技术成性原理基本相同,可根据光源主要分为激光扫描SLA、数字光投影DLP、液晶成像LCD几种;根据成型位置分为底部成型与顶部成型两种。以底部成型SLA技术为例,设备工作流程为:在打印后打印平台由上下降到离树脂槽底面很近的位置,此距离等于模型第一层的层厚,树脂槽底面为透明材质,此时由激光在底面扫描首层的截面图形完成首层的固化,固化完成后的固态树脂将会粘黏在成型平台和树脂槽的底面,树脂槽的底面材料由特殊的离型膜制成,可较容易脱离。此时成型平台和固化后的模型向上运动一定距离, 使模型底面脱离树脂槽底面离型膜,然后成型平台与模型重新下降到离树脂槽底面一定位置,激光继续扫面成型下一个面。以此往复来最终形成实际3D物体模型。
目前市面上所有光固化3D打印设备均为在树脂槽的上表面或者下表面进行分层成型,在打印过程中模型需要跟随成型平台做持续的运动,这个步骤即会浪费很多的时间,又会使打印的不稳定性增加。
发明内容
针对现有技术的不足,本发明提供了一种内部立体直接光固化成型3D打印设备及其控制方法,区别于传统光固化机型表面分层成型,采用通过特定波长和功率的多束激光束在透明的光敏树脂内部直接扫描固化成型,降低单束激光束的功率使其光强度低于光敏树脂可固化强度,但使用四束激光束在光敏树脂内部相交于一点,四束光强度叠加,使此点的光强度达到光敏树脂可固化强度,此时此交点处的树脂可固化,但其周围光敏树脂不会固化,由此将3D打印的速度大大提高,并且效率与稳定性更优于其他3D打印技术。
为实现上述目的,本发明提供了如下技术方案:一种内部立体直接光固化成型3D打印设备,主要包括激光扫描模块、成型平台和底座,所述底座是整个装置的基体,其他部分都安装在底座上,主要包括底板、树脂槽、丝杆和光轴,所述树脂槽位于底板顶部中间的凹槽内,为透明亚克力材质;所述底板的左下和右上角通过轴承固定有丝杆,右下和左上角固定有光轴;所述成型平台通过丝杆和光轴安装在底座上;所述激光扫描模块为设备的主要模块安装在成型平台上。
进一步说,所述成型平台包括底部成型平台、连接件、顶部结构件、 丝杆螺母和直线轴承,所述底部成型平台由铝板制成,表面排列密集的圆形通孔,保证液态光敏树脂能够通过底部成型平台;所述顶部结构件由连接件与底部成型平台连接,所述连接件为定长的上下带攻丝的铝制细圆柱,由螺母固定;所述顶部结构件为内外均为正方形的框状,两个丝杆螺母对角固定于顶部结构件的左下与右上角,两个直线轴承对角固定于顶部结构件的右下与左上角。
进一步说,所述底座上通过轴承固定的丝杆能够在位置上自由转动,对应成型平台上的丝杆螺母,两者相互配合,实现成型平台的上下移动。
进一步说,所述底座上固定的光轴,对应成型平台上的直线轴承,两者相互配合,实现成型平台的上下移动。
进一步说,所述激光扫描模块包括四个激光发生器、四组激光振镜、反光镜和安装座,安装座为上下两面均为正方形的壳状长方体,四个所述激光发生器分别固定在安装座的四个侧面上;所述反光镜分为四个,分别固定在安装座内部的下表面;每组激光振镜包括X轴激光振镜和Y轴激光振镜,四个所述Y轴激光振镜分别固定安装在安装座的四个侧面上的中心位置,激光发生器位于其一侧,四个所述X轴激光振镜固定安装在安装座的上表面,X轴激光振镜和Y轴激光振镜的镜面中心点与反光镜的中心点均在同一水平面上。
进一步说,所述激光发生器中心点与Y轴激光振镜和X轴激光振镜的镜面中心点位于同一水平面;每个激光发生器发出的激光束照射到反光镜时会被反射到其右侧边的X轴激光振镜,后又反射到Y轴激光振镜,最后由Y轴激光振镜反射进入树脂槽内的光敏树脂内部,X与Y轴激光振 镜同时工作能够改变光束入射的方向和坐标。
一种用于内部立体直接光固化成型3D打印设备的控制方法,包括以下步骤:
(1)将成型平台与激光扫描模块处于底座的顶端,将树脂槽从底座中取出,倒入定量的液态光敏树脂,之后将树脂槽放回设备底座固定;
(2)通电后,步进电机带动两根丝杆旋转,成型平台和激光扫描模块会在丝杆螺母的带动下下降,直到成型平台底面与树脂槽底面接触后停止;
(3)四个激光发生器发射出相同波长的激光束,此激光束为点光源,每束激光束经过反光镜的反射后照射到一组激光振镜上,每组激光振镜有两个旋转轴,可通过与旋转轴上固定的反光镜随意改变反射光束出射的角度,通过对四束激光束的控制可使其在液态树脂内部相较于一点,单束光的光强度不足以使树脂固化,但此交点的每束的光强度高于此液态光敏树脂固化时所需光强度临界值的四分之一,四束的光强度叠加在此液态光敏树脂可固化光强度之上,所以此点处的树脂会被固化;
(4)在切片软件将3D模型进行切片后所得的G-code文件输入单片机中,由单片机控制激光振镜,四束激光束便可在液态光敏树脂内部由下到上逐层扫描固化成型一个实际物体;
(5)在完成扫描固化成型之后,步进电机再次带动丝杆反向旋转,使成型平台与激光扫描模块上升,直至底座最顶处,此时所打印模型便处于树脂槽外,将模型取出,在补充足够光敏树脂后便可开始下一 次打印。
进一步说,步骤(4)中单片机控制激光振镜的数学模型及其算法:
由于液态光敏树脂内部四束激光束的交点坐标(X,Y,Z)为联动控制,所以单一坐标的改变需要所有激光振镜的角度同时改变;
(1)设:以树脂槽内部为坐标轴,树脂槽底部左上角为坐标原点,四组激光的出射点,选择其中一组出射点坐标分别为:A(Xa,Ya,Za),出射点对应一组激光振镜,每组激光振镜有x、y两个镜片可单独旋转,此组激光振镜中纵向放置为x激光振镜,横向放置为y激光振镜,两个激光振镜间的距离为e,树脂液面距离y激光振镜激光出射点距离为h(每次加入树脂槽中的液态树脂的量相同,所以h为常数),B(X1,Y1,Z1)点为液态树脂内部激光所需照射点(即为四束激光交点位置);
(2)所需控制的量为:两个激光振镜x与y的转动角度θx和θy,当两个激光振镜转动角度为0时,激光束垂直向下照射;激光发生器所发射的光源为点光源,当激光束从空气中照射到透明液态树脂内部时,会发生光的折射,此时的光线路径会发生改变,所以需要提前对控制函数进行补偿:
在折射率为n的液态光敏树脂中,若想让光束穿过内部的点B,则需要先求得补偿过后光束在树脂液面所需照射的点D(Xd,Yd,Zd):
此点中:
①Zd=Za-h;
②点D的坐标Xd和Yd与B点坐标的变化转换函数为:
Xd:
使:a1=(Z1-Zd) 2+(Zd-Za) 2-2*n,
b1=2*n*X1+2*n*Xa-2*(Z-Zd) 2*Xa-2*(Zd-Za) 2*X1,
c1=(Z-Zd) 2*Xa 2+(Zd-Za) 2*X1 2+(Z-Zd) 2*(Zd-Za) 2-n 2-2*n*Xa*X1,
则:
Figure PCTCN2019072701-appb-000001
(式中的a1、b1、c1为方便计算假设的字符,不代表任何含义)
注:
Figure PCTCN2019072701-appb-000002
此公式总是取其正跟与Xa相加;
Yd:
使:a2=(Z1-Zd) 2+(Zd-Za) 2-2*n,
b2=2*n*Y1+2*n*Ya-2*(Z-Zd) 2*Ya-2*(Zd-Za) 2*Y1,
c2=(Z-Zd) 2*Ya 2+(Zd-Za) 2*Y1 2+(Z-Zd) 2*(Zd-Za) 2-n 2-2*n*Ya*Y1,
则:
Figure PCTCN2019072701-appb-000003
(式中的a2、b2、c2为方便计算假设的字符,不代表任何含义)
注:
Figure PCTCN2019072701-appb-000004
此公式总是取其正跟与Ya相加;
由此:激光振镜x与y镜片的转动角度θx和θy的动态数学模型为
Figure PCTCN2019072701-appb-000005
Figure PCTCN2019072701-appb-000006
与现有技术相比,本发明的有益效果是:
1、克服传统的表面分层成型,打印过程中成型平台与模型完全静止无需做反复的运动,大大的节省了整个打印成型过程的时间,并且对正在打印中的模型的稳定性有很高的提升;
2、现有传统3D打印技术打印速度约为10到35毫米每小时,在省略每层之间大量的时间损耗和切片控制优化后,而本发明的3D打印技术的理论速度是现有 技术速度的100倍以上;
3、因为打印过程中成型后的模型仍会浸泡在液体树脂中,所以对被构建模型的一些悬空等复杂结构可做到使用最少支撑甚至无需支撑,这即提高了速度同时也减小了耗材的浪费;
4、传统光固化机型打印平台与模型的持续往返运动是由步进电机控制,电机的持续旋转是设备的主要能耗来源,在本实用新型专利中,成型平台和模型只需要在打印前和结束后做一次往返运动,能耗远低于传统技术中电机的持续往复运动,并且激光发生器与激光振镜的能耗远低于驱动电机所需的能耗,另一方面缩短了模型的打印成型时间也更加减小了本技术设备与传统设备打印相同模型时的能耗;
5、本发明较之现有的3D打印技术,成型时间短,成型更稳定,节省耗材、能耗,效率更高等。
附图说明
为了更清楚地说明本发明实施例或者现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对本领域技术人员来讲,在不独处创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明工作时各部件位置结构示意图;
图3为本发明的激光扫描模块结构示意图;
图4为本发明的激光扫描模块仰视图;
图5为本发明的成型平台结构示意图;
图6为本发明的底座整体结构示意图;
图7为本发明的激光束折射示意图;
图8为本发明的单片机控制算法流程图;
其中,激光扫描模块1、成型平台2、底座3、底板31、树脂槽32、丝杆33、光轴34、底部成型平台21、连接件22、顶部结构件23、丝杆螺母24、直线轴承25、激光发生器11、激光振镜12、反光镜13、安装座14、X轴激光振镜15、Y轴激光振镜16。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图所示:一种内部立体直接光固化成型3D打印设备,主要包括激光扫描模块1、成型平台2和底座3,所述底座3是整个装置的基体,其他部分都安装在底座3上,主要包括底板31、树脂槽32、丝杆33和光轴34,所述树脂槽32位于底板31顶部中间的凹槽内,为透明亚克力材质;所述底板31的左下和右上角通过轴承固定有丝杆33,右下和左上角固定有光轴34;所述成型平台2通过丝杆33和光轴34安装在底座3上;所述激光扫描模块1为设备的主要模块安装在成型平台2上。
所述成型平台2包括底部成型平台21、连接件22、顶部结构件23、丝 杆螺母24和直线轴承25,所述底部成型平台21由铝板制成,表面排列密集的圆形通孔,保证液态光敏树脂能够通过底部成型平台21;所述顶部结构件23由连接件22与底部成型平台21连接,所述连接件22为定长的上下带攻丝的铝制细圆柱,由螺母固定;所述顶部结构件23为内外均为正方形的框状,两个丝杆螺母24对角固定于顶部结构件的左下与右上角,两个直线轴承25对角固定于顶部结构件23的右下与左上角。
所述底座3上通过轴承固定的丝杆33能够在位置上自由转动,对应成型平台2上的丝杆螺母24,两者相互配合,实现成型平台2的上下移动。
所述底座3上固定的光轴34,对应成型平台2上的直线轴承25,两者相互配合,实现成型平台2的上下移动。
所述激光扫描模块1包括四个激光发生器11、四组激光振镜12、反光镜13和安装座14,安装座14为上下两面均为正方形的壳状长方体,四个所述激光发生器11分别固定在安装座14的四个侧面上;所述反光镜13分为四个,分别固定在安装座14内部的下表面;每组激光振镜12包括X轴激光振镜15和Y轴激光振镜16,四个所述Y轴激光振镜16分别固定安装在安装座14的四个侧面上的中心位置,激光发生器11位于其一侧,四个所述X轴激光振镜15固定安装在安装座14的上表面,X轴激光振镜15和Y轴激光振镜16的镜面中心点与反光镜13的中心点均在同一水平面上。
所述激光发生器11中心点与Y轴激光振镜16和X轴激光振镜15的镜面中心点位于同一水平面;每个激光发生器11发出的激光束照射到反光镜13时会被反射到其右侧边的X轴激光振镜15,后又反射到Y轴激光 振镜16,最后由Y轴激光振镜16反射进入树脂槽32内的光敏树脂内部,X与Y轴激光振镜同时工作能够改变光束入射的方向和坐标。
一种用于内部立体直接光固化成型3D打印设备的控制方法,包括以下步骤:
(1)将成型平台2与激光扫描模块1处于底座3的顶端,将树脂槽32从底座3中取出,倒入定量的液态光敏树脂,之后将树脂槽32放回设备底座3固定;
(2)通电后,步进电机带动两根丝杆33旋转,成型平台2和激光扫描模块1会在丝杆螺母24的带动下下降,直到成型平台2底面与树脂槽32底面接触后停止;
(3)四个激光发生器11发射出相同波长的激光束,此激光束为点光源,每束激光束经过反光镜13的反射后照射到一组激光振镜12上,每组激光振镜12有两个旋转轴,可通过与旋转轴上固定的反光镜13随意改变反射光束出射的角度,通过对四束激光束的控制可使其在液态树脂内部相较于一点,单束光的光强度不足以使树脂固化,但此交点的每束的光强度高于此液态光敏树脂固化时所需光强度临界值的四分之一,四束的光强度叠加在此液态光敏树脂可固化光强度之上,所以此点处的树脂会被固化;
(4)在切片软件将3D模型进行切片后所得的G-code文件输入单片机中,由单片机控制激光振镜12,四束激光束便可在液态光敏树脂内部由下到上逐层扫描固化成型一个实际物体;
(5)在完成扫描固化成型之后,步进电机再次带动丝杆33反向旋转,使成型平台2与激光扫描模块1上升,直至底座3最顶处,此时所打 印模型便处于树脂槽32外,将模型取出,在补充足够光敏树脂后便可开始下一次打印。
其中,步骤(4)中单片机控制激光振镜12的数学模型及其算法:
由于液态光敏树脂内部四束激光束的交点坐标(X,Y,Z)为联动控制,所以单一坐标的改变需要所有激光振镜12的角度同时改变;
(1)设:以树脂槽32内部为坐标轴,树脂槽32底部左上角为坐标原点,四组激光的出射点,选择其中一组出射点坐标分别为:A(Xa,Ya,Za),出射点对应一组激光振镜12,每组激光振镜12有x、y两个镜片可单独旋转,此组激光振镜12中纵向放置为x激光振镜15,横向放置为y激光振镜16,两个激光振镜间的距离为e,树脂液面距离y激光振镜16激光出射点距离为h(每次加入树脂槽32中的液态树脂的量相同,所以h为常数),B(X1,Y1,Z1)点为液态树脂内部激光所需照射点(即为四束激光交点位置);
(2)所需控制的量为:两个激光振镜x与y的转动角度θx和θy,当两个激光振镜转动角度为0时,激光束垂直向下照射;激光发生器11所发射的光源为点光源,当激光束从空气中照射到透明液态树脂内部时,会发生光的折射,此时的光线路径会发生改变,所以需要提前对控制函数进行补偿:
在折射率为n的液态光敏树脂中,若想让光束穿过内部的点B,则需要先求得补偿过后光束在树脂液面所需照射的点D(Xd,Yd,Zd):
此点中:
①Zd=Za-h;
②点D的坐标Xd和Yd与B点坐标的变化转换函数为:
Xd:
使:a1=(Z1-Zd) 2+(Zd-Za) 2-2*n,
b1=2*n*X1+2*n*Xa-2*(Z-Zd) 2*Xa-2*(Zd-Za) 2*X1,
c1=(Z-Zd) 2*Xa 2+(Zd-Za) 2*X1 2+(Z-Zd) 2*(Zd-Za) 2-n 2-2*n*Xa*X1,
则:
Figure PCTCN2019072701-appb-000007
(式中的a1、b1、c1为方便计算假设的字符,不代表任何含义)
注:
Figure PCTCN2019072701-appb-000008
此公式总是取其正跟与Xa相加;
Yd:
使:a2=(Z1-Zd) 2+(Zd-Za) 2-2*n,
b2=2*n*Y1+2*n*Ya-2*(Z-Zd) 2*Ya-2*(Zd-Za) 2*Y1,
c2=(Z-Zd) 2*Ya 2+(Zd-Za) 2*Y1 2+(Z-Zd) 2*(Zd-Za) 2-n 2-2*n*Ya*Y1,
则:
Figure PCTCN2019072701-appb-000009
(式中的a2、b2、c2为方便计算假设的字符,不代表任何含义)
注:
Figure PCTCN2019072701-appb-000010
此公式总是取其正跟与Ya相加;
由此:激光振镜x与y镜片的转动角度θx和θy的动态数学模型为
Figure PCTCN2019072701-appb-000011
Figure PCTCN2019072701-appb-000012
液态光敏树脂光固化3D打印成型原理:
固化树脂是由树脂单体及预聚体组成,同时内部添加光引发剂。在特定波长的光线照射下预聚体和树脂单体由光引发剂诱发聚合反应,从而使其化学与物理性质发生改变,由液态形式转变为固态形式。一般光固化3D打印中使用的光敏树脂的固化波长为405nm。
当光在不同介质中折射时,由折射定律
Figure PCTCN2019072701-appb-000013
可知:光折射后的波长会发生变化。所以要使激光束成功的在液态树脂的内部将其固化,需要对出射激光的波长进行调整,由于四束激光非同一光源,固无需考虑光的干涉问题。
正常光敏树脂的固化波长为405nm,在折射率为n的液态树脂中,照射进入内部的波长改变为:
Figure PCTCN2019072701-appb-000014
所以如需在光敏树脂内部得到405nm波长的激光束,则激光发射器发射的激光束波长需为405*n(nm)。
3D模型文件首先由计算机端切片软件进行切片,将3D模型由下到上多次横切,每次横切后便会形成一个截面,使用激光扫描SLA技术或者DLP投影技术将一个面的2D图像照射到液态光敏树脂上,这时就可以生成具有一定厚度的此截面,将切片后形成的多个截面依次形成并且叠加在一起便能最终形成实际3D物体。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种内部立体直接光固化成型3D打印设备,其特征在于:主要包括激光扫描模块、成型平台和底座,所述底座是整个装置的基体,其他部分都安装在底座上,主要包括底板、树脂槽、丝杆和光轴,所述树脂槽位于底板顶部中间的凹槽内,为透明亚克力材质;所述底板的左下和右上角通过轴承固定有丝杆,右下和左上角固定有光轴;所述成型平台通过丝杆和光轴安装在底座上;所述激光扫描模块为设备的主要模块安装在成型平台上。
  2. 根据权利要求1所述的一种内部立体直接光固化成型3D打印设备,其特征在于:所述成型平台包括底部成型平台、连接件、顶部结构件、丝杆螺母和直线轴承,所述底部成型平台由铝板制成,表面排列密集的圆形通孔,保证液态光敏树脂能够通过底部成型平台;所述顶部结构件由连接件与底部成型平台连接,所述连接件为定长的上下带攻丝的铝制细圆柱,由螺母固定;所述顶部结构件为内外均为正方形的框状,两个丝杆螺母对角固定于顶部结构件的左下与右上角,两个直线轴承对角固定于顶部结构件的右下与左上角。
  3. 根据权利要求1所述的一种内部立体直接光固化成型3D打印设备,其特征在于:所述底座上通过轴承固定的丝杆能够在位置上自由转动,对应成型平台上的丝杆螺母,两者相互配合,实现成型平台的上下移动。
  4. 根据权利要求1所述的一种内部立体直接光固化成型3D打印设备,其特征在于:所述底座上固定的光轴,对应成型平台上的直线轴承,两者相互配合,实现成型平台的上下移动。
  5. 根据权利要求1所述的一种内部立体直接光固化成型3D打印设备,其特征在于:所述激光扫描模块包括四个激光发生器、四组激光振镜、反光镜 和安装座,安装座为上下两面均为正方形的壳状长方体,四个所述激光发生器分别固定在安装座的四个侧面上;所述反光镜分为四个,分别固定在安装座内部的下表面;每组激光振镜包括X轴激光振镜和Y轴激光振镜,四个所述Y轴激光振镜分别固定安装在安装座的四个侧面上的中心位置,激光发生器位于其一侧,四个所述X轴激光振镜固定安装在安装座的上表面,X轴激光振镜和Y轴激光振镜的镜面中心点与反光镜的中心点均在同一水平面上。
  6. 根据权利要求5所述的一种内部立体直接光固化成型3D打印设备,其特征在于:所述激光发生器中心点与Y轴激光振镜和X轴激光振镜的镜面中心点位于同一水平面;每个激光发生器发出的激光束照射到反光镜时会被反射到其右侧边的X轴激光振镜,后又反射到Y轴激光振镜,最后由Y轴激光振镜反射进入树脂槽内的光敏树脂内部,X与Y轴激光振镜同时工作能够改变光束入射的方向和坐标。
  7. 一种用于内部立体直接光固化成型3D打印设备的控制方法,其特征在于:包括以下步骤:
    (1)将成型平台与激光扫描模块处于底座的顶端,将树脂槽从底座中取出,倒入定量的液态光敏树脂,之后将树脂槽放回设备底座固定;
    (2)通电后,步进电机带动两根丝杆旋转,成型平台和激光扫描模块会在丝杆螺母的带动下下降,直到成型平台底面与树脂槽底面接触后停止;
    (3)四个激光发生器发射出相同波长的激光束,此激光束为点光源,每束激光束经过反光镜的反射后照射到一组激光振镜上,每组激 光振镜有两个旋转轴,可通过与旋转轴上固定的反光镜随意改变反射光束出射的角度,通过对四束激光束的控制可使其在液态树脂内部相较于一点,单束光的光强度不足以使树脂固化,但此交点的每束的光强度高于此液态光敏树脂固化时所需光强度临界值的四分之一,四束的光强度叠加在此液态光敏树脂可固化光强度之上,所以此点处的树脂会被固化;
    (4)在切片软件将3D模型进行切片后所得的G-code文件输入单片机中,由单片机控制激光振镜,四束激光束便可在液态光敏树脂内部由下到上逐层扫描固化成型一个实际物体;
    (5)在完成扫描固化成型之后,步进电机再次带动丝杆反向旋转,使成型平台与激光扫描模块上升,直至底座最顶处,此时所打印模型便处于树脂槽外,将模型取出,在补充足够光敏树脂后便可开始下一次打印。
  8. 根据权利要求7所述的一种用于内部立体直接光固化成型3D打印设备的控制方法,其特征在于:步骤(4)中单片机控制激光振镜的数学模型及其算法:
    由于液态光敏树脂内部四束激光束的交点坐标(X,Y,Z)为联动控制,所以单一坐标的改变需要所有激光振镜的角度同时改变;
    (1)设:以树脂槽内部为坐标轴,树脂槽底部左上角为坐标原点,四组激光的出射点,选择其中一组出射点坐标分别为:A(Xa,Ya,Za),出射点对应一组激光振镜,每组激光振镜有x、y两个镜片可单独旋转,此组激光振镜中纵向放置为x激光振镜,横向放置为y激光振镜,两个激光振镜间的距离为e,树脂液面距离y激光振镜激光出射点距离为h(每次加入树脂槽中的液态树脂的量相同, 所以h为常数),B(X1,Y1,Z1)点为液态树脂内部激光所需照射点(即为四束激光交点位置);
    (2)所需控制的量为:两个激光振镜x与y的转动角度θx和θy,当两个激光振镜转动角度为0时,激光束垂直向下照射;激光发生器所发射的光源为点光源,当激光束从空气中照射到透明液态树脂内部时,会发生光的折射,此时的光线路径会发生改变,所以需要提前对控制函数进行补偿:
    在折射率为n的液态光敏树脂中,若想让光束穿过内部的点B,则需要先求得补偿过后光束在树脂液面所需照射的点D(Xd,Yd,Zd):
    此点中:
    ①Zd=Za-h;
    ②点D的坐标Xd和Yd与B点坐标的变化转换函数为:
    Xd:
    使:a1=(Z1-Zd) 2+(Zd-Za) 2-2*n,
    b1=2*n*X1+2*n*Xa-2*(Z-Zd) 2*Xa-2*(Zd-Za) 2*X1,
    c1=(Z-Zd) 2*Xa 2+(Zd-Za) 2*X1 2+(Z-Zd) 2*(Zd-Za) 2-n 2-2*n*Xa*X1,
    则:
    Figure PCTCN2019072701-appb-100001
    注:
    Figure PCTCN2019072701-appb-100002
    此公式总是取其正跟与Xa相加;
    Yd:
    使:a2=(Z1-Zd) 2+(Zd-Za) 2-2*n,
    b2=2*n*Y1+2*n*Ya-2*(Z-Zd) 2*Ya-2*(Zd-Za) 2*Y1,
    c2=(Z-Zd) 2*Ya 2+(Zd-Za) 2*Y1 2+(Z-Zd) 2*(Zd-Za) 2-n 2-2*n*Ya*Y1,
    则:
    Figure PCTCN2019072701-appb-100003
    注:
    Figure PCTCN2019072701-appb-100004
    此公式总是取其正跟与Ya相加;
    由此:激光振镜x与y镜片的转动角度θx和θy的动态数学模型为
    Figure PCTCN2019072701-appb-100005
    Figure PCTCN2019072701-appb-100006
PCT/CN2019/072701 2018-03-05 2019-01-22 一种内部立体直接光固化成型3d打印设备及其控制方法 WO2019169960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810179684.4A CN108312518B (zh) 2018-03-05 2018-03-05 一种内部立体直接光固化成型3d打印设备及其控制方法
CN201810179684.4 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019169960A1 true WO2019169960A1 (zh) 2019-09-12

Family

ID=62901156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072701 WO2019169960A1 (zh) 2018-03-05 2019-01-22 一种内部立体直接光固化成型3d打印设备及其控制方法

Country Status (2)

Country Link
CN (1) CN108312518B (zh)
WO (1) WO2019169960A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331841A (zh) * 2020-05-07 2020-06-26 恒通西交智能机器(广东)有限公司 一种双光路光固化3d打印设备及其打印方法
CN112548352A (zh) * 2020-12-09 2021-03-26 厦门柔性电子研究院有限公司 一种激光打码设备
US11691344B2 (en) 2020-07-10 2023-07-04 International Business Machines Corporation Additive manufacturing by light-emitting micro devices in photosensitive material
CN118456860A (zh) * 2024-07-11 2024-08-09 西安热工研究院有限公司 一种多材料光固化3d打印机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108312518B (zh) * 2018-03-05 2024-03-08 匡津永 一种内部立体直接光固化成型3d打印设备及其控制方法
CN110014647A (zh) * 2019-02-28 2019-07-16 匡津永 一种内部立体光投影固化成型3d打印设备及其成型方法
CN110434333B (zh) * 2019-08-13 2021-11-23 浙江工业大学 一种面成型金属增材制造方法
CN110421843B (zh) * 2019-08-20 2021-06-15 杭州德迪智能科技有限公司 一种声发射气液界面光固化三维成形装置及方法
EP3934889B1 (en) * 2019-09-24 2023-06-07 Ecole Polytechnique Federale De Lausanne (Epfl) Method and apparatus for volumetric additive manufacturing with digital distortion compensation
CN110877455B (zh) * 2019-11-22 2024-06-21 沈阳建筑大学 一种多光源多自由度可变式平台液体3d打印机
US11472120B2 (en) 2020-05-07 2022-10-18 Kyndryl, Inc. Light-based 3D printing
CN114129290B (zh) * 2021-11-08 2024-04-26 南宁市美皓医疗器械有限公司 一种基于3d打印技术的义齿制造工艺
CN115077386B (zh) * 2022-08-19 2022-12-16 南京木木西里科技有限公司 一种水溶胶表面全自动测量装置、系统及其测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130055568A1 (en) * 2010-03-11 2013-03-07 Global Beam Technologies Ag Method and device for producing a component
US20130154160A1 (en) * 2011-12-15 2013-06-20 3D Systems, Inc. Stereolithography Systems and Methods Using Internal Laser Modulation
CN205167579U (zh) * 2015-11-18 2016-04-20 青岛尤尼科技有限公司 基于立体光固化技术的3d打印机
CN106111985A (zh) * 2015-05-07 2016-11-16 吴小平 群扫描激光选择性烧结或固化方法及其3d成型机
WO2016201309A1 (en) * 2015-06-10 2016-12-15 Ipg Photonics Corporation Multiple beam additive manufacturing
CN106926451A (zh) * 2017-05-21 2017-07-07 浙江盛泰防务科技有限公司 一种光固化3d打印机
CN108312518A (zh) * 2018-03-05 2018-07-24 匡津永 一种内部立体直接光固化成型3d打印设备及其控制方法
CN207916057U (zh) * 2018-03-05 2018-09-28 匡津永 一种内部立体直接光固化成型3d打印设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043150A (ja) * 1998-07-31 2000-02-15 Kimiyuki Mitsui 光造形方法及び光造形装置並びに複合機械部品
JP2002036372A (ja) * 2000-07-19 2002-02-05 Sanyo Electric Co Ltd 光造形装置
CN105216319B (zh) * 2015-10-14 2017-10-13 北京工业大学 3d立体投影式光固化3d打印机
CN105856573A (zh) * 2016-05-18 2016-08-17 博纳云智(天津)科技有限公司 一种高精度高速度连续3d打印机及其打印方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130055568A1 (en) * 2010-03-11 2013-03-07 Global Beam Technologies Ag Method and device for producing a component
US20130154160A1 (en) * 2011-12-15 2013-06-20 3D Systems, Inc. Stereolithography Systems and Methods Using Internal Laser Modulation
CN106111985A (zh) * 2015-05-07 2016-11-16 吴小平 群扫描激光选择性烧结或固化方法及其3d成型机
WO2016201309A1 (en) * 2015-06-10 2016-12-15 Ipg Photonics Corporation Multiple beam additive manufacturing
CN205167579U (zh) * 2015-11-18 2016-04-20 青岛尤尼科技有限公司 基于立体光固化技术的3d打印机
CN106926451A (zh) * 2017-05-21 2017-07-07 浙江盛泰防务科技有限公司 一种光固化3d打印机
CN108312518A (zh) * 2018-03-05 2018-07-24 匡津永 一种内部立体直接光固化成型3d打印设备及其控制方法
CN207916057U (zh) * 2018-03-05 2018-09-28 匡津永 一种内部立体直接光固化成型3d打印设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331841A (zh) * 2020-05-07 2020-06-26 恒通西交智能机器(广东)有限公司 一种双光路光固化3d打印设备及其打印方法
US11691344B2 (en) 2020-07-10 2023-07-04 International Business Machines Corporation Additive manufacturing by light-emitting micro devices in photosensitive material
US11969950B2 (en) 2020-07-10 2024-04-30 International Business Machines Corporation Additive manufacturing by light-emitting micro devices in photosensitive material
CN112548352A (zh) * 2020-12-09 2021-03-26 厦门柔性电子研究院有限公司 一种激光打码设备
CN118456860A (zh) * 2024-07-11 2024-08-09 西安热工研究院有限公司 一种多材料光固化3d打印机

Also Published As

Publication number Publication date
CN108312518A (zh) 2018-07-24
CN108312518B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2019169960A1 (zh) 一种内部立体直接光固化成型3d打印设备及其控制方法
CN104816479B (zh) 一种大幅面光固化3d打印机
JP6058819B2 (ja) 3次元物体の作製
JP2006285262A (ja) 低解像度投影画像を用いたソリッド・イメージングにおける不均一エッジの改善
JP2008155480A (ja) 光造形装置及び光造形方法
AU2017208985A1 (en) Creating homogeneous optical elements by additive manufacturing
CN105856573A (zh) 一种高精度高速度连续3d打印机及其打印方法
CN111421815B (zh) 一种dlp 3d生物打印机
CN111923411A (zh) 一种动态成像3d打印系统及其打印方法
KR101798533B1 (ko) 3차원 프린터에 의한 조형 장치 및 방법
JP2004249508A (ja) 光造形装置
JP2009113294A (ja) 光造形装置及び光造形方法
CN105014960A (zh) 光固化快速成型装置
CN107379520A (zh) 一种基于fdm打印技术的光固化3d打印机
CN207916057U (zh) 一种内部立体直接光固化成型3d打印设备
CN210257279U (zh) 一种内部立体光投影固化成型3d打印设备
WO2020172899A1 (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
CN111619108A (zh) 一种新型光固化3d打印设备
CN101332649B (zh) 基于反射型液晶光阀的光固化快速成型装置及成型方法
WO2018145298A1 (zh) 一种基于点阵式显示屏的光固化3d打印机
CN204451224U (zh) 一种基于dlp技术的上置式sla成型面板
CN209775556U (zh) 3d打印设备
CN109982830B (zh) 信息处理设备、成形装置、信息处理方法和程序
CN207579103U (zh) 一种基于Micro LED技术的DLP打印设备
JPS6299753A (ja) 立体形状の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764374

Country of ref document: EP

Kind code of ref document: A1