WO2019169561A1 - 电芯及其制造方法、电池以及电子装置 - Google Patents

电芯及其制造方法、电池以及电子装置 Download PDF

Info

Publication number
WO2019169561A1
WO2019169561A1 PCT/CN2018/078177 CN2018078177W WO2019169561A1 WO 2019169561 A1 WO2019169561 A1 WO 2019169561A1 CN 2018078177 W CN2018078177 W CN 2018078177W WO 2019169561 A1 WO2019169561 A1 WO 2019169561A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode sheet
positive electrode
negative electrode
material layer
Prior art date
Application number
PCT/CN2018/078177
Other languages
English (en)
French (fr)
Inventor
余玉英
Original Assignee
深圳前海优容科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海优容科技有限公司 filed Critical 深圳前海优容科技有限公司
Priority to PCT/CN2018/078177 priority Critical patent/WO2019169561A1/zh
Publication of WO2019169561A1 publication Critical patent/WO2019169561A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery manufacturing, and in particular to a battery core, a method of manufacturing the same, a battery, and an electronic device.
  • the battery generally has a battery core, and the battery core usually includes a positive electrode sheet, a negative electrode sheet and a diaphragm sheet.
  • the battery core usually includes a positive electrode sheet, a negative electrode sheet and a diaphragm sheet.
  • the edges of the positive electrode sheet and the negative electrode sheet may have edge alignment problems.
  • a redox reaction occurs to cause a lithium deposition problem at the edge of the negative electrode sheet.
  • the present invention provides a battery core, a manufacturing method thereof, a battery, and an electronic device, so as to solve the problem of short circuit between the positive electrode tab and the negative electrode tab caused by the active material layer on the edge of the positive electrode tab and the negative electrode tab of the prior art in the prior art. .
  • a technical solution adopted by the present application is to provide a method for manufacturing a battery cell, the battery core includes a positive electrode sheet and a negative electrode sheet, and the positive electrode sheet includes a positive electrode sheet.
  • the negative electrode sheet includes a negative electrode substrate, wherein the battery core
  • the manufacturing method includes: providing a positive electrode substrate and a negative electrode substrate; providing a first positive active material layer on a surface of the positive electrode substrate; and providing a first negative active material layer on a surface of the negative electrode substrate; and at least a positive electrode substrate and a negative electrode substrate The edge region of one is provided with a corresponding second active material layer, wherein the second active material layer is more viscous than the corresponding first active material layer.
  • the battery core includes a positive electrode sheet and a negative electrode sheet
  • the positive electrode sheet includes a positive electrode sheet.
  • the negative electrode sheet includes a negative electrode substrate
  • the core manufacturing method includes: providing a positive electrode substrate and a negative electrode substrate; and providing a corresponding second active material layer in an edge region of at least one of the positive electrode substrate and the negative electrode substrate, in the middle of the substrate on which the second active material layer is not disposed A corresponding first active material layer is disposed, wherein the second active material layer is more viscous than the first active material layer.
  • the battery core includes a positive electrode sheet and a negative electrode sheet
  • the positive electrode sheet includes a positive electrode sheet substrate
  • the negative electrode sheet includes a negative electrode sheet.
  • the substrate, the positive electrode substrate, and the negative electrode substrate are respectively provided with corresponding first active material layers; wherein at least one of the positive electrode substrate and the negative electrode substrate is provided with a corresponding second active material layer, wherein The active material layer is more viscous than the first active material layer.
  • another technical solution adopted by the present application is to provide an electronic device, wherein the electronic device includes a battery, and the battery is provided with a battery core, wherein the battery core includes the battery core according to any of the preceding claims.
  • the beneficial effects of the present application are: different from the prior art, the present application provides a battery core, a manufacturing method thereof, a battery, and an electronic device.
  • the present application provides a battery core, a manufacturing method thereof, a battery, and an electronic device.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for manufacturing a battery cell according to the present application
  • FIG. 2 is a schematic flow chart of another embodiment of a method for manufacturing a battery cell according to the present application.
  • FIG. 3 is a schematic structural view of an embodiment of a battery cell provided by the present application.
  • Figure 4 is a cross-sectional view of the cross section of Figure 3 taken along line A-A';
  • Figure 5 is a schematic structural view of a battery unit of Figure 4.
  • FIG. 6 is a schematic structural view of an embodiment of a positive electrode sheet in the battery unit provided in FIG. 5;
  • FIG. 7 is a schematic structural view of another embodiment of a positive electrode sheet in the battery unit provided in FIG. 5;
  • FIG. 8 is a schematic structural view of still another embodiment of a positive electrode sheet in the battery unit provided in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an embodiment of an electronic battery provided by the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of an electronic device provided by the present application.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for manufacturing a battery cell according to the present application.
  • the electric core includes a positive electrode sheet and a negative electrode sheet
  • the positive electrode sheet includes a positive electrode sheet substrate
  • the negative electrode sheet includes a negative electrode sheet substrate.
  • the manufacturing method of the battery cell is as follows:
  • S101 Providing a positive electrode substrate and a negative electrode substrate.
  • the positive electrode substrate is generally an aluminum foil
  • the negative electrode substrate is generally a copper foil.
  • the positive electrode substrate and the negative electrode substrate are mainly provided with a positive electrode substrate and a negative electrode substrate in a predetermined size.
  • the positive electrode substrate is the same as the negative electrode substrate.
  • the positive electrode substrate is taken as an example.
  • the specific steps of providing the positive electrode substrate are: forming an aluminum block into an aluminum foil, and cutting the aluminum foil into a predetermined size to form a positive electrode substrate. .
  • the aluminum block is changed into aluminum foil mainly by rolling force rolling, that is, the roll gap is adjusted so that the roll gap is kept at a certain value so that the aluminum block is rolled into aluminum foil of uniform thickness.
  • a first positive electrode active material layer is provided on the surface of the positive electrode sheet substrate, and a first negative electrode active material layer is provided on the surface of the negative electrode sheet.
  • a first positive electrode active material and a first negative electrode active material are provided on the surfaces of the positive electrode sheet substrate and the negative electrode sheet substrate, respectively.
  • the first positive active material may include a lithium-containing metal compound or a lithium-intercalable metal compound such as lithium cobalt oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel manganese cobalt oxide, lithium iron phosphate, At least one of lithium manganese phosphate, carbon black or polyvinylidene fluoride (PVDF).
  • the first negative active material may include: graphite, sodium carboxymethyl cellulose (CMC), and styrene-butadiene rubber (Styrene-butadiene) Rubber, SBR) at least one of metallic lithium, lithium-storable metal powder, lithium-storable metal oxide or various carbon materials.
  • a first positive electrode active material layer is disposed on the surface of the positive electrode sheet substrate, and a first negative electrode active material layer is disposed on the surface of the negative electrode sheet.
  • the first positive electrode active material layer and the first negative electrode active material layer are used to realize the positive electrode sheet. And charge exchange between the negative electrode sheets, thereby achieving charge and discharge of the cells.
  • a corresponding second active material layer is disposed on an edge region of at least one of the positive electrode substrate and the negative electrode substrate, wherein the second active material is more viscous than the first active material layer.
  • step S103 is continued. That is, a second active material layer having a viscosity greater than that of the first active material layer is provided in an edge region of the positive electrode sheet substrate and/or the negative electrode sheet substrate on which the first active material layer is provided. Specifically, for the positive electrode sheet substrate, a second positive electrode active material layer is disposed in an edge region of the positive electrode sheet substrate, wherein the second positive electrode active material layer has a viscosity greater than the first positive electrode active material layer; and for the negative electrode substrate, The second negative electrode active material layer is provided in an edge region of the negative electrode substrate, wherein the second negative electrode active material layer has a viscosity greater than that of the first negative electrode active material layer.
  • the adhesion of the active material layer on the edge portion of the positive electrode sheet and/or the negative electrode sheet on the corresponding substrate can be improved, thereby reducing the adhesion. Or the problem that the active material falls off in the edge regions of the positive electrode sheet and/or the negative electrode sheet is prevented.
  • the second positive electrode active material layer may be provided only in the edge region of the positive electrode sheet substrate to improve the adhesion of the edge region of the positive electrode sheet, or the second negative electrode active material layer may be provided only in the edge region of the negative electrode substrate to improve The adhesion of the edge region of the negative electrode sheet; the second positive electrode active material layer may be disposed at the edge region of the positive electrode substrate at the same time, and the second negative electrode active material layer may be disposed at the edge region of the negative electrode substrate, thereby simultaneously increasing the edge of the positive electrode and the negative electrode The adhesion of the area.
  • the method of providing the corresponding second active material layer in the edge regions of the positive electrode tab and the negative electrode tab may be the same.
  • the second positive electrode active material layer is disposed on the positive electrode sheet substrate, and the second active material layer in this step may be disposed in the following manner:
  • the edge region of the first positive electrode active material layer is subjected to a osmosis treatment to form a second positive electrode active material layer having a higher viscosity.
  • the adhesive is applied to the edge region of the first positive electrode active material layer, so that the gel penetrates into the positive electrode active material of the edge region of the first positive electrode active material layer, thereby forming a viscosity greater than that of the first positive electrode active material layer.
  • a second positive active material layer is applied to the edge region of the first positive electrode active material layer, so that the gel penetrates into the positive electrode active material of the edge region of the first positive electrode active material layer, thereby forming a viscosity greater than that of the first positive electrode active material layer.
  • the glue is applied to the edge region of the first positive electrode active material layer such that the adhesive covers the surface of the positive electrode active material in the edge region of the first positive electrode active material layer, thereby forming The second positive electrode active material layer having a viscosity greater than that of the first positive electrode active material layer.
  • the first positive electrode active material layer is disposed on the surface of the positive electrode sheet substrate, the first positive electrode active material in the edge region of the first positive electrode active material layer is removed, and then the second positive electrode active material is disposed in the region where the first positive electrode active material is removed.
  • a second positive active material layer is formed.
  • the second positive active material and the first positive active material may be the same material, the difference being that the proportion of the adhesive in the second positive active material is relatively high, and the ratio of the adhesive in the first positive active material may be adjusted.
  • the second positive active material is obtained such that the viscosity of the second positive active material is higher than that of the first positive active material.
  • the method of manufacturing the battery cell further includes providing a diaphragm piece.
  • a positive electrode tab is disposed on the positive electrode sheet
  • a negative electrode tab is disposed on the negative electrode sheet.
  • the method of providing the positive electrode tab on the positive electrode sheet and the method of providing the negative electrode tab on the negative electrode sheet may be the same as the method of providing the positive electrode tab on the positive electrode sheet.
  • the method for disposing a positive electrode tab on a positive electrode sheet comprises: cutting a positive electrode substrate into a sheet having a convex portion when the positive electrode substrate is cut, wherein the convex portion can be used as a positive electrode tab, that is, the positive electrode can be connected to the positive electrode
  • the sheet substrate is integrally disposed; or the prepared positive electrode tab is welded to a predetermined position on the positive electrode sheet such that the positive electrode tab is electrically connected to the first positive electrode active material layer on the positive electrode sheet.
  • the method for producing the above battery cells is a method for producing a positive electrode sheet, a negative electrode sheet, and a separator sheet. After the positive electrode sheet and the negative electrode sheet are manufactured and the separator sheet is provided, it is also required to dispose the separator sheet between the positive electrode sheet and the negative electrode sheet, and the positive electrode sheet, the separator sheet, and the negative electrode sheet are sequentially stacked, and then the positive electrode sheets are stacked.
  • the separator sheet and the negative electrode sheet are wound and formed to form a core of the battery core; or the positive electrode sheet, the separator sheet and the negative electrode sheet are stacked in the order of the positive electrode sheet, the separator sheet, the negative electrode sheet, the separator sheet, and the positive electrode sheet.
  • the structure required for the cell is a method for producing a positive electrode sheet, a negative electrode sheet, and a separator sheet.
  • the positive electrode sheet, the negative electrode sheet, and the separator sheet are further encapsulated, that is, after the separator sheet is placed between the positive electrode sheet and the negative electrode sheet, the obtained positive electrode sheet and separator are obtained.
  • the assembly of the sheet and the negative electrode sheet is packaged.
  • the specific method of the package is to provide an outer casing having a vacant space, and then the positive electrode sheet, the diaphragm sheet and the negative electrode sheet are placed in the accommodating space, and then the accommodating space of the outer casing is sealed, thereby the positive electrode sheet, the diaphragm sheet and the negative electrode sheet. Sealed in the internal housing space of the housing.
  • the electrolyte Before the sealing of the accommodating space, the electrolyte needs to be injected into the accommodating space, so that the electrolyte immerses the positive electrode sheet, the diaphragm sheet and the negative electrode sheet.
  • the positive electrode sheet and the negative electrode sheet are subjected to charge transfer through the electrolytic solution, so that the entire battery core can be charged and discharged.
  • FIG. 2 is a schematic flow chart of another embodiment of a method for manufacturing a battery cell according to the present application.
  • the battery core also includes a positive electrode sheet and a negative electrode sheet, the positive electrode sheet includes a positive electrode sheet substrate, and the negative electrode sheet includes a negative electrode sheet substrate.
  • the specific steps of the battery manufacturing method are as follows:
  • the method of providing the positive electrode substrate and the negative electrode substrate in this step is the same as that in the previous step S101, and will not be described herein.
  • S202 providing a corresponding second active material layer in an edge region of at least one of the positive electrode substrate and the negative electrode substrate, and providing a corresponding first active material layer in an intermediate region on the substrate on which the second active material layer is not disposed, wherein The two active material layers are more viscous than the first active material layer.
  • the first active material layer in this step is the same as the previous embodiment, except that the first active material layer and the second active material layer of the two embodiments are disposed differently on the substrate.
  • the method of disposing the first active material layer and the second active material layer on the substrate may be the same on the positive electrode substrate and the negative electrode substrate to set the first positive electrode on the positive electrode substrate.
  • the active material layer and the second positive electrode active material layer are exemplified, and the method for disposing the positive electrode active material layer in this step includes: providing a first positive electrode active material and a second positive electrode active material, wherein the second positive electrode active material and the first positive electrode active material The material is the same, the difference is that the proportion of the adhesive in the second positive electrode active material is relatively high, and the second positive electrode active material can be obtained by adjusting the ratio of the adhesive in the first positive electrode active material, so that the second positive electrode active material The viscosity is higher than that of the first positive electrode active material; then the second positive electrode active material is disposed to the edge region of the positive electrode sheet substrate to form the second positive electrode active material layer; in the middle of the positive electrode substrate on which the second active material layer is not disposed
  • the first positive electrode active material layer is
  • the method of manufacturing the battery cell also includes manufacturing a diaphragm sheet, and the diaphragm sheet is manufactured in the same manner as the manufacturing method described above.
  • the same arrangement of the positive electrode sheet, the negative electrode sheet and the separator sheet includes setting the corresponding tabs on the positive electrode sheet and the negative electrode sheet, and the arrangement structure of the positive electrode sheet, the negative electrode sheet and the separator sheet, and the positive electrode sheet, the negative electrode sheet and the separator sheet are
  • the encapsulation method and the like encapsulated in the outer casing of the battery core can be the same as the method described above, and will not be described herein.
  • FIG. 3 is a schematic structural view of an embodiment of a battery cell provided by the present application
  • FIG. 4 is a cross-sectional view of the battery core of FIG. 3 taken along line A-A′
  • the battery cell 400 includes a positive electrode tab 410 and a negative electrode tab 420.
  • the positive electrode sheet 410 includes a positive electrode sheet substrate
  • the negative electrode sheet 420 includes a negative electrode sheet substrate
  • the surface of the positive electrode sheet substrate and the negative electrode sheet substrate are respectively provided with corresponding first active material layers
  • at least one of the positive electrode sheet substrate and the negative electrode sheet substrate The edge region is provided with a corresponding second active material layer, wherein the second active material layer is more viscous than the first active material layer.
  • the second positive active material layer 411 is formed by performing a gypsum treatment on an edge region of the first active material layer on the corresponding substrate; or by covering the edge of the first active material layer on the corresponding substrate by a glue The surface of the region is formed; or the ratio of the binder of the second active material layer is higher than the ratio of the binder to the first positive electrode active material layer.
  • the edge of the positive electrode sheet 410 is provided with a second positive electrode active material layer 411, and the intermediate portion where the second positive electrode active material layer 411 is not disposed is provided with a first positive electrode active material layer 412, wherein the second positive electrode active layer
  • the viscosity of the substance layer 411 is greater than the viscosity of the first positive electrode active material layer 412.
  • the manner in which the second positive electrode active material layer 411 is disposed on the positive electrode substrate 416 includes the following.
  • FIG. 6 is a schematic structural diagram of an embodiment of a positive electrode sheet in the battery unit provided in FIG.
  • the surface of the positive electrode sheet substrate 416 of the positive electrode sheet 410 is provided with a first positive electrode active material layer 412 and a second positive electrode active material layer 411, wherein the second positive electrode active material layer 411 is disposed at an edge region of the positive electrode sheet substrate 416, and The second positive electrode active material layer 411 forms a sealed annular region to surround the first positive electrode active material layer 412.
  • FIG. 7 is a schematic structural diagram of another embodiment of the positive electrode sheet in the battery unit provided in FIG.
  • the positive electrode sheet 410 also includes a positive electrode sheet substrate 416, and the surface of the positive electrode sheet substrate 416 is also provided with a first positive electrode active material layer 412 and a second positive electrode active material layer 411.
  • the difference from the positive electrode sheet described in FIG. 6 is that the second positive electrode active material layer 412 is disposed in a partial region of the edge of the positive electrode sheet substrate 416, and the second positive electrode active material layer 412 partially surrounds the first positive electrode active material layer 411. That is, the second positive electrode active material layer 412 is not a closed annular structure.
  • the second positive electrode active material layer 412 may be disposed on an edge region corresponding to the three sides of the positive electrode sheet 410.
  • FIG. 8 is a schematic structural diagram of still another embodiment of the positive electrode sheet in the battery unit provided in FIG.
  • the positive electrode sheet 410 also includes a positive electrode sheet substrate 416, and the surface of the positive electrode sheet substrate 416 is also provided with a first positive electrode active material layer 412 and a second positive electrode active material layer 411.
  • the difference from the positive electrode sheet described in FIG. 6 is that the second positive electrode active material layer 412 is disposed on the edge regions of both sides of the positive electrode sheet substrate 416.
  • the edges of the positive electrode sheet 410 and/or the negative electrode sheet 420 can be cured, and the positive electrode sheet and the positive electrode sheet can be prevented. / or the negative electrode sheet has the problem of falling active material.
  • the second positive active material layer may be disposed only on a portion of the edge region of the positive electrode substrate 416, such as at four corners, or at intervals on the edge region.
  • the second positive electrode active material layer 411 and the first positive electrode active material layer 412 may be disposed on the positive electrode sheet 410, and the viscosity of the second positive electrode active material layer 411 is greater than that of the first positive electrode active material layer 412. That is, the positive electrode sheet 410 is subjected to a curing treatment. Similarly, the negative electrode sheet 420 may be cured or the positive electrode sheet 410 and the negative electrode sheet 420 may be cured. The method of curing the edge of the negative electrode sheet is the same as the method for curing the positive electrode sheet, and will not be described herein. .
  • the chip 400 may further include a diaphragm 430 disposed between the positive electrode tab 410 and the negative electrode tab 420 for separating the positive electrode tab 410 and the negative electrode tab 420.
  • the positive electrode tab 410 may also be provided with a positive electrode tab 414.
  • the negative electrode tab 420 may also be provided with a negative electrode tab 424.
  • the positive electrode tab 414 is connected to the positive electrode substrate 416, and the negative electrode tab 424 is electrically connected to the negative electrode substrate 426. .
  • the positive electrode tab 414 and the negative electrode tab 424 respectively correspond to the positive and negative poles of the battery core 400, that is, the battery core 400 completes the charging and discharging process through the positive electrode tab 414 and the negative electrode tab 424.
  • the battery core 400 may further include a housing 440 provided with an accommodating space 441 for arranging the positive electrode tab 410, the negative electrode tab 420, and the diaphragm 430.
  • a housing 440 provided with an accommodating space 441 for arranging the positive electrode tab 410, the negative electrode tab 420, and the diaphragm 430.
  • the electrolyte is to cause the positive electrode sheet 410 and the negative electrode sheet 420 to perform charge transfer through the electrolyte, so that the entire battery core 400 can be charged and discharged.
  • the electrolyte is generally prepared from a high-purity organic solvent, an electrolyte lithium salt (lithium hexafluorophosphate), and the like under certain conditions.
  • the battery cell 400 includes a positive electrode sheet 410, a negative electrode sheet 420, and a diaphragm sheet 430.
  • the positive electrode sheet 410, the negative electrode sheet 420, and the diaphragm sheet 430 may be disposed in a roll-up manner or in a stacked manner.
  • the positive electrode sheet 410, the negative electrode sheet 420, and the separator sheet 430 are woundly disposed, the positive electrode sheet 410, the separator sheet 430, and the negative electrode sheet 420 are sequentially stacked, and then wound to form a core of the battery core 400; when the positive electrode sheet 410 is used When the negative electrode sheet 420 and the separator sheet 430 are stacked, the positive electrode sheet 410, the negative electrode sheet 420, and the separator sheet 430 may be in accordance with the positive electrode sheet 410, the separator sheet 430, the negative electrode sheet 420, the separator sheet 430, and the positive electrode sheet 410.
  • the stacking is sequential, that is, the adjacent positive electrode tab 410 and negative electrode tab 420 are separated by a diaphragm sheet 430, and the positive electrode sheet 410, the negative electrode sheet 420, and the diaphragm sheet 430 are stacked to a desired size to form an electrode required for the battery core.
  • Slice component is sequential, that is, the adjacent positive electrode tab 410 and negative electrode tab 420 are separated by a diaphragm sheet 430, and the positive electrode sheet 410, the negative electrode sheet 420, and the diaphragm sheet 430 are stacked to a desired size to form an electrode required for the battery core.
  • the battery cells 400 described in the above embodiments can be produced by the method for manufacturing the battery core described above.
  • FIG. 9 is a schematic structural diagram of an embodiment of a battery provided by the present application.
  • the battery 500 includes a battery core 510, and the battery core 510 is a battery core according to any of the preceding claims, and details are not described herein.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 600 includes a battery 610.
  • the battery 610 is a battery core according to any of the foregoing, and is not described herein.
  • the present embodiment proposes an electric core, a method of manufacturing the same, a battery, and an electronic device.
  • a second active material layer having a viscosity greater than that of the first active material layer is disposed on an edge region of the surface of the positive electrode substrate and/or the negative electrode substrate of the battery cell, and then the second active material is not disposed on the positive electrode substrate and/or the negative electrode substrate.
  • the first active material layer is disposed in the region of the material layer, so that the active material in the edge region of the positive electrode sheet and/or the negative electrode sheet can be more firmly fixed, thereby preventing the active material from falling off in the positive electrode sheet and/or the negative electrode edge region. Therefore, it is possible to improve the problem that the positive electrode tab and the negative electrode tab are short-circuited due to the falling off of the active material at the edge of the positive electrode tab and/or the negative electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了电芯及其制造方法、电池以及电子装置。电芯包括正极片及负极片,正极片包括正极片基板负极片包括负极片基板,其中电芯制造方法包括:提供正极片基板以及负极片基板;在正极片基板的表面设置第一正极活性物质层,在负极片基板的表面设置第一负极活性物质层;在正极片基板及负极片基板至少一者的边缘区域设置相应的第二活性物质层,其中第二活性物质层的黏性大于相应的第一活性物质层。通过增大正极片和/或负极片边缘区域活性物质的黏性,从而能改善正极片和/或负极片边缘出现活性物质脱落而造成正极片及负极片发生短路的问题。

Description

电芯及其制造方法、电池以及电子装置
【技术领域】
本申请涉及电池制造领域,特别是涉及电芯及其制造方法、电池以及电子装置。
【背景技术】
随着手机等移动电子产品的不断普及,移动电子产品通常都会采用内置电池设计。其中电池一般都具有电芯,电芯中通常包含有正极片、负极片以及隔膜片,其中正极片、负极片以及隔膜片组装时,正极片、负极片边缘可能会出现边缘对齐的问题,此时正极片、负极片边缘会发生氧化还原反应而导致负极片的边缘出现锂沉积问题。
【发明内容】
本申请提供电芯及其制造方法、电池以及电子装置,以解决现有技术中电芯的正极片与负极片边缘的活性物质层容易出现脱落而造成的正极片与负极片之间发生短路问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种电池电芯的制造方法,电芯包括正极片及负极片,正极片包括正极片基板负极片包括负极片基板,其中电芯制造方法包括:提供正极片基板以及负极片基板;在正极片基板的表面设置第一正极活性物质层,在负极片基板的表面设置第一负极活性物质层;在正极片基板及负极片基板至少一者的边缘区域设置相应的第二活性物质层,其中第二活性物质层的黏性大于相应的第一活性物质层。
为解决上述技术问题,本申请采用的一个技术方案是:提供另一种电池电芯的制造方法,电芯包括正极片及负极片,正极片包括正极片基板负极片包括负极片基板,其中电芯制造方法包括:提供正极片基板及负极片基板;在正极片基板及负极片基板至少一者的边缘区域设置相应的第二活性物质层,在未设置第二活性物质层的基板上的中间区域设置相应的第一活性物质层,其中第二活性物质层的黏性大于第一活性物质层。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种电芯,电芯用于电池中,电芯包括正极片及负极片,正极片包括正极片基板,负极片包括负极片基板,正极片基板及负极片基板表面分别设置有相应的第一活性物质层;其中,正极片基板及负极片基板至少一者的边缘区域设置有相应的第二活性物质层,其中,第二活性物质层的黏性大于第一活性物质层。。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种电池,其中电池包括前文任一项所述的电芯。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种电子装置,其中电子装置包括电池,电池内设置有电芯,其中电芯包括前文任一项所述的电芯。
本申请的有益效果是:区别于现有技术的情况,本申请提供电芯及其制造方法、电池以及电子装置。通过增大正极片和/或负极片边缘区域活性物质的黏性,从而能改善正极片和/或负极片边缘出现活性物质脱落而造成的正极片及负极片发生短路的问题。
【附图说明】
图1是本申请一种电池电芯制造方法一实施例的流程示意图;
图2是本申请一种电池电芯制造方法另一实施例的流程示意图;
图3是本申请提供的一种电芯一实施例的结构示意图;
图4是图3所示电芯在A-A’为的截面的剖视图;
图5是图4中一个电池单元的结构示意图;
图6是图5提供的电池单元中正极片一实施例的结构示意图;
图7是图5提供的电池单元中正极片另一实施例的结构示意图;
图8是图5提供的电池单元中正极片又一实施例的结构示意图;
图9是本申请提供的一种电子电池一实施例的结构示意图;
图10是本申请提供的一种电子装置一实施例的结构示意图。
【具体实施方式】
请参阅图1,图1是本申请提供的一种电池电芯制造方法一实施例的流程示意图。其中电芯包括正极片以及负极片,正极片包括正极片基板,负极片包括负极片基板。电池电芯的制造方法具体如下步骤:
S101:提供正极片基板以及负极片基板。
在本步骤中,正极片基板一般为铝箔,负极片基板一般为铜箔。提供正极片基板以及负极片基板主要是将正极片基板以及负极片基板制成预设的尺寸。正极片基板与负极片基板的制造方法相同,以制造正极片基板为例,提供正极片基板的具体步骤为:将铝块制成铝箔,并将铝箔切割成预设的尺寸以形成正极片基板。其中使铝块变为铝箔主要依靠轧制力轧制成型,即调整辊缝使辊缝保持一定值以使得铝块被轧制成厚度一致的铝箔。
S102:在正极片基板的表面设置第一正极活性物质层,在负极片的表面设置第一负极活性物质层。
在完成步骤S101提供正极片基板以及负极片基板后,继续进行步骤S102。具体为,在正极片基板以及负极片基板的表面分别设置第一正极活性物质和第一负极活性物质。其中第一正极活性物质可以包括含锂的金属化合物或可嵌锂的金属化合物,如锂钴氧化物、锂锰氧化物、锂镍锰氧化物、锂镍锰钴氧化物、锂铁磷酸盐、锂锰磷酸盐、碳黑或者聚偏氟乙烯(PVDF)其中的至少一种。第一负极活性物质可以包括:石墨、羧甲基纤维素钠(CMC)以及丁苯橡胶(Styrene-butadiene rubber,SBR)金属锂、可储锂金属粉体、可储锂金属氧化物或各类碳材料等其中的至少一种。在本步骤中,在正极片基板的表面设置第一正极活性物质层,在负极片的表面设置第一负极活性物质层,第一正极活性物质层及第一负极活性物质层用于实现正极片及负极片之间的电荷交换,从而实现电芯的充放电。
S103:在正极片基板以及负极片基板至少一者的边缘区域设置相应的第二活性物质层,其中第二活性物质的黏性大于第一活性物质层。
在完成步骤S102后,继续进行步骤S103。即,在设置了第一活性物质层的正极片基板和/或负极片基板的边缘区域设置黏性大于第一活性物质层的第二活性物质层。具体来讲,对于正极片基板,则是在正极片基板的边缘区域设置第二正极活性物质层,其中第二正极活性物质层的黏性大于第一正极活性物质层;对于负极片基板,则是在负极片基板的边缘区域设置第二负极活性物质层,其中第二负极活性物质层的黏性大于第一负极活性物质层。通过在正极片和/或负极片的边缘区域设置黏性更大的第二活性物质层,可以提高正极片和/或负极片边缘区域的活性物质层在相应基板上的粘着力,从而可以减轻或者防止正极片和/或负极片边缘区域出现活性物质脱落的问题。
在本步骤中,可以只在正极片基板的边缘区域设置第二正极活性物质层以提高正极片边缘区域的粘着力,也可以只在负极片基板的边缘区域设置第二负极活性物质层以提高负极片边缘区域的粘着力;也可以同时在正极片基板的边缘区域设置第二正极活性物质层,在负极片基板的边缘区域设置第二负极活性物质层,从而同时提高正极片及负极片边缘区域的粘着力。在正极片及负极片的边缘区域设置相应第二活性物质层的方法可以相同。
以在正极片基板表面设置中第二活性物质层为例,在正极片基板上设置的为第二正极活性物质层,本步骤中的第二活性物质层的设置方式可以为如下各方案:
1. 在正极片基板表面设置第一正极活性物质层后,对第一正极活性物质层的边缘区域进行渗胶处理,形成黏性更大的第二正极活性物质层。具体来讲,是通过将胶设置到第一正极活性物质层的边缘区域,使得胶渗入第一正极活性物质层的边缘区域的正极活性物质中,从而形成黏性大于第一正极活性物质层的第二正极活性物质层。
2. 在正极片基板表面设置第一正极活性物质层后,将胶涂布到第一正极活性物质层的边缘区域,使得胶覆盖第一正极活性物质层的边缘区域的正极活性物质的表面,从而形成黏性大于第一正极活性物质层的第二正极活性物质层。
3. 在正极片基板表面设置第一正极活性物质层后,将第一正极活性物质层边缘区域的第一正极活性物质去除,然后再在去除第一正极活性物质的区域设置第二正极活性物质,以形成第二正极活性物质层。其中第二正极活性物质与第一正极活性物质的材料可以相同,其区别在于第二正极活性物质中的粘着剂所占的比例较高,通过调整第一正极活性物质中的粘着剂的比例可以得到第二正极活性物质,使得第二正极活性物质的黏性高于第一正极活性物质。
由于电芯还包括隔膜片,因此在本实施例所述的电芯制造方法中,电芯的制造方法还包括提供隔膜片。
在本实施例中所述的电芯电芯制造方法中,还需在正极片及负极片上分别设置正极极耳及负极极耳。即在正极片上设置正极极耳,在负极片上设置负极极耳。其中在正极片上设置正极极耳的方法与在负极片上设置负极极耳的方法可以相同,以在正极片上设置正极极耳的方法为例。在正极片上设置正极极耳的方法包括:在对正极片基板切割时,将正极片基板切割成具有凸起部分的片材,其中凸起部分可以作为正极极耳,即正极极耳可以与正极片基板一体设置;或者将制成的正极极耳焊接到在正极片的预设位置上,使得正极极耳与正极片上的第一正极活性物质层实现电连接。
以上电芯的制造方法为正极片、负极片以及隔膜片的制造方法。在完成正极片以及负极片制造并提供隔膜片后,还需要将隔膜片设置到正极片及负极片之间,通过依次堆叠设置正极片、隔膜片以及负极片,然后将堆叠设置完成的正极片、隔膜片以及负极片卷绕成型,形成电芯的卷芯;或者将正极片、隔膜片以及负极片按照正极片、隔膜片、负极片、隔膜片、正极片.…..的顺序堆叠形成电芯所需要的结构。
将隔膜片设置到正极片以及负极片之间之后还需对正极片、负极片以及隔膜片进行封装,即,将隔膜片设置到正极片以及负极片之间之后,对得到的正极片、隔膜片以及负极片的组合体进行封装。其封装的具体方法是提供具有空置空间的外壳,然后将正极片、隔膜片以及负极片设置到容置空间中,然后对外壳的容置空间进行密封,从而将正极片、隔膜片以及负极片密封在外壳的内部容置空间中。
其中,在对容置空间进行密封之前,还需要向容置空间中注入电解液,使得电解液浸没正极片、隔膜片以及负极片。正极片及负极片通过电解液实行电荷传输,从而可以实现整个电芯能够充放电。
请参阅图2,图2是本申请提供的一种电池电芯制造方法另一实施例的流程示意图。其中电芯同样包括正极片及负极片,正极片包括正极片基板,负极片包括负极片基板。电芯制造方法具体步骤如下:
S201:提供正极片基板及负极片基板。
本步骤中的提供正极片基板及负极片基板的方法与前文步骤S101中相同,在此不做赘述。
S202:在正极片基板及负极片基板至少一者的边缘区域设置相应的第二活性物质层,在未设置第二活性物质层的基板上的中间区域设置相应的第一活性物质层,其中第二活性物质层的黏性大于第一活性物质层。
本步骤中第一活性物质层与前文实施例相同,其区别在于两实施例的第一活性物质层及第二活性物质层在基板上的设置方法不同。
具体地,本实施例中,第一活性物质层及第二活性物质层在基板上的设置方法在正极片基板及负极片基板上的设置方法可以相同,以在正极片基板上设置第一正极活性物质层及第二正极活性物质层为例,本步骤中正极活性物质层的设置方法包括:提供第一正极活性物质及第二正极活性物质,其中第二正极活性物质与第一正极活性物质的材料相同,其区别在于第二正极活性物质中的粘着剂所占的比例较高,通过调整第一正极活性物质中的粘着剂的比例可以得到第二正极活性物质,使得第二正极活性物质的黏性高于第一正极活性物质;然后将第二正极活性物质设置到正极片基板的边缘区域从而形成第二正极活性物质层;在未设置第二活性物质层的正极片基板上的中间区域设置第一正极活性物质层,从而形成第一正极活性物质层。
本实施例中,电芯的制造方法同样包括制造隔膜片,隔膜片的制造方法与前文所述制造方法相同。同样的正极片、负极片以及隔膜片的设置方式,包括在正极片及负极片上分别设置相应的极耳,正极片、负极片以及隔膜片的设置结构,以及正极片、负极片以及隔膜片被封装在电芯的外壳中的封装方式等都可与前文所述的方法相同,在此不做赘述。
本申请还提供了一种电芯。请参阅图3到图5,图3是本申请提供的一种电芯一实施例的结构示意图,图4是图3所示电芯在A-A’的截面的剖视图,图5是图4中一个电池单元的结构示意图。电芯400包括正极片410以及负极片420。正极片410包括正极片基板,负极片420包括负极片基板,正极片基板及负极片基板表面分别设置有相应的第一活性物质层,所述正极片基板及所述负极片基板至少一者的边缘区域设置有相应的第二活性物质层,其中,第二活性物质层的黏性大于第一活性物质层。可选地,第二正极活性物质层411通过对相应基板上的第一活性物质层的边缘区域进行渗胶处理形成;或者通过将胶覆盖在相应基板上的所述第一活性物质层的边缘区域的表面形成;或者第二活性物质层的粘着剂的比例高于与所述第一正极活性物质层的粘着剂的比例。
以正极片410为例,正极片410的边缘设置有第二正极活性物质层411,在未设置第二正极活性物质层411的中间区域设置有第一正极活性物质层412,其中第二正极活性物质层411的黏性大于第一正极活性物质层412的黏性。
其中,第二正极活性物质层411在正极片基板416上的设置方式包括如下方案。
请参考图5与图6,图6是图5提供的电池单元中正极片一实施例的结构示意图。其中,正极片410的正极片基板416的表面设置有第一正极活性物质层412以及第二正极活性物质层411,其中,第二正极活性物质层411设置于正极片基板416的边缘区域,且第二正极活性物质层411形成一个密封的环形区域将第一正极活性物质层412包围。
请参考图5与图7,图7是图5提供的电池单元中正极片另一实施例的结构示意图。其中正极片410同样包括正极片基板416,正极片基板416的表面同样设置有第一正极活性物质层412以及第二正极活性物质层411。与图6所述的正极片的区别在于,第二正极活性物质层412设置在正极片基板416的边缘的部分区域,且第二正极活性物质层412将第一正极活性物质层411部分包围,即第二正极活性物质层412并非为闭合的环形结构,例如在本实施例中,第二正极活性物质层412可以设置在正极片410的3条边对应的边缘区域。
请参考图5与图8,图8是图5提供的电池单元中正极片又一实施例的结构示意图。其中正极片410同样包括正极片基板416,正极片基板416的表面同样设置有第一正极活性物质层412以及第二正极活性物质层411。与图6所述的正极片的区别在于,第二正极活性物质层412设置在正极片基板416的两边的边缘区域。
因此,本申请通过在正极片410和/或负极片420的边缘设置黏性较大的活性物质层,可以对正极片410和/或负极片420的边缘起到固化作用,可以防止正极片和/或负极片出现活性物质掉落的问题。
可以理解的是,在其它实施例中,所述第二正极活性物质层可仅设置于正极片基板416的部分边缘区域上,如设置于四角,或者间隔设置于边缘区域上。
在本实施例中,正极片410上可以设置第二正极活性物质层411以及第一正极活性物质层412,第二正极活性物质层411的黏性大于第一正极活性物质层412的黏性,即对正极片410进行固化处理。同样的,还可以对负极片420进行固化处理或者对正极片410以及负极片420都进行固化处理,对负极片的边缘进行固化处理的方法与对正极片固化处理方法相同,在此不做赘述。
在其它实施例中,芯片400还可以包括隔膜片430,其中隔膜片430设置在正极片410及负极片420之间,用于隔开正极片410及负极片420。正极片410上还可以设置有正极极耳414,负极片420上同样也可以设置有负极极耳424,其中正极极耳414与正极片基板416连接,负极极耳424与负极片基板426电连接。正极极耳414及负极极耳424分别对应电芯400的正负极,即,电芯400通过正极极耳414和负极极耳424完成充放电过程。
进一步地,电芯400还可以包括外壳440,外壳440设置有容置空间441用于设置正极片410、负极片420以及隔膜片430。当正极片410、负极片420以及隔膜片430设置到容置空间441中后,还需要向容置空间441中注入电解液,使得正极片410、负极片420以及隔膜片430浸泡在电解液中,电解液的作用是使得正极片410及负极片420通过电解液实行电荷传输,从而可以实现整个电芯400能够充放电。其中电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂)等原料,在一定条件下,按一定比例配制而成的。
本实施例中,电芯400包括正极片410、负极片420以及隔膜片430,其中正极片410、负极片420以及隔膜片430可以卷绕式设置也可以堆叠式设置。当正极片410、负极片420以及隔膜片430卷绕式设置时,正极片410、隔膜片430以及负极片420依次叠加设置,然后经过卷绕后形成电芯400的卷芯;当正极片410、负极片420以及隔膜片430堆叠式设置时,正极片410、负极片420以及隔膜片430可以按照正极片410、隔膜片430、负极片420、隔膜片430、正极片410.…..的顺序堆叠,即相邻的正极片410及负极片420通过隔膜片430隔开,通过将正极片410、负极片420以及隔膜片430堆叠设置到所需要的尺寸,以形成电芯所需要的电极片组件。
可以理解的是,上述各实施例所述的电芯400可由前文所述电芯的制作方法制得。
本实施例还提供了一种电池,请参阅图9,图9是本申请提供的一种电池一实施例的结构示意图。其中电池500包括电芯510,电芯510为如前文任一项所述的电芯,在此不做赘述。
本实施例还提供了一种电子装置,请参阅图10,图10是本申请提供的一种电子装置一实施例的结构示意图。其中电子装置600包括电池610,电池610为如前文任一项所述的电芯,在此不做赘述。
因此,本实施例提出了一种电芯及其制造方法、电池以及电子装置。通过在电芯的正极片基板和/或负极片基板表面的边缘区域设置黏性大于第一活性物质层的第二活性物质层,然后在正极片基板和/或负极片基板未设置第二活性物质层的区域设置第一活性物质层,因此可以使得正极片和/或负极片的边缘区域的活性物质固定的更加牢固,从而可以防止正极片和/或负极边缘区域的活性物质出现脱落的问题,从而可以改善因正极片和/或负极边缘的活性物质脱落而导致的正极片和负极片出现短路的问题。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (28)

  1. 一种电池的电芯制造方法,所述电芯包括正极片、负极片,所述正极片包括正极片基板,所述负极片包括负极片基板。其特征在于,所述电芯制造方法包括:
    提供所述正极片基板以及所述负极片基板;
    在所述正极片基板的表面设置第一正极活性物质层,在所述负极片基板的表面设置第一负极活性物质层;
    在所述正极片基板及所述负极片基板至少一者的边缘区域设置相应的第二活性物质层,其中所述第二活性物质层的黏性大于相应的所述第一活性物质层。
  2. 根据权利要求1所述的电芯制造方法,其特征在于,
    在所述正极片基板的表面设置第一正极活性物质层,在所述负极片基板的表面设置第一负极活性物质层具体为:
    在所述正极片基板以及所述负极片基板的表面分别设置第一正极活性物质和第一负极活性物质,其中所述第一正极活性物质包括锂钴氧化物、锂锰氧化物、锂镍锰氧化物、锂镍锰钴氧化物、锂铁磷酸盐、锂锰磷酸盐、碳黑或者聚偏氟乙烯(PVDF)其中的至少一种,所述第一负极活性物质包括石墨、羧甲基纤维素钠(CMC)以及丁苯橡胶(Styrene-butadiene rubber,SBR)金属锂、可储锂金属粉体、可储锂金属氧化物或碳材料其中的至少一种。
  3. 根据权利要求2所述的电芯制造方法,其特征在于,
    所述在所述正极片基板及所述负极片基板至少一者的边缘区域设置相应的第二活性物质层具体步骤包括:
    对相应的所述第一活性物质层的边缘区域进行渗胶处理以形成相应的所述第二活性物质层;或者
    将胶覆盖在所述第一活性物质层的边缘区域的表面以形成相应的所述第二活性物质层。
  4. 根据权利要求2所述的电芯制造方法,其特征在于,
    所述在所述正极片基板及所述负极片基板至少一者的边缘区域设置相应的第二活性物质层具体步骤包括:
    将所述第一活性物质层边缘区域的所述第一活性物质去除,在去除所述第一活性物质的区域设置相应的第二活性物质,以形成相应的所述第二活性物质层,其中所述第二活性物质的粘着剂的比例高于所述第一活性物质的粘着剂的比例。
  5. 根据权利要求1所述的电芯制造方法,其特征在于,所述电芯还包括隔膜片,所述电芯的制造方法还包括:
    在所述正极片上设置正极极耳,在所述负极片上设置负极极耳;
    提供隔膜片,并将所述隔膜片设置到所述正极片及所述负极片之间;
    对所述隔膜片、所述正极片以及所述负极片进行封装。
  6. 根据权利要求5所述的电芯制造方法,其特征在于,
    对所述隔膜片、所述正极片以及所述负极片进行封装的具体步骤还包括:
    提供所述电芯的外壳;
    将所述隔膜片、所述正极片以及所述负极片密封在所述外壳的容置空间中。
  7. 根据权利要求6所述的电芯制造方法,其特征在于,
    密封所述隔膜片、所述正极片以及所述负极片的步骤之前还包括向所述容置空间中注入电解液。
  8. 一种电池的电芯制造方法,所述电芯包括正极片、负极片,所述正极片包括正极片基板,所述负极片包括负极片基板。其特征在于,所述电芯制造方法包括:
    提供所述正极片基板及所述负极片基板;
    在所述正极片基板及所述负极片基板至少一者的边缘区域设置相应的第二活性物质层,在未设置所述第二活性物质层的基板上的中间区域设置相应的第一活性物质层,其中所述第二活性物质层的黏性大于所述第一活性物质层。
  9. 根据权利要求8所述的电芯制造方法,其特征在于,
    在所述正极片基板的表面设置第一正极活性物质层,在所述负极片基板的表面设置第一负极活性物质层具体为:
    在所述正极片基板以及所述负极片基板的表面分别设置第一正极活性物质和第一负极活性物质,其中所述第一正极活性物质包括锂钴氧化物、锂锰氧化物、锂镍锰氧化物、锂镍锰钴氧化物、锂铁磷酸盐、锂锰磷酸盐、碳黑或者聚偏氟乙烯(PVDF)其中的至少一种,所述第一负极活性物质包括石墨、羧甲基纤维素钠(CMC)以及丁苯橡胶(Styrene-butadiene rubber,SBR)金属锂、可储锂金属粉体、可储锂金属氧化物或碳材料其中的至少一种。
  10. 根据权利要求9所述的电芯制造方法,其特征在于,
    所述第二活性物质层通过提高第一活性物质的粘着剂比例形成。
  11. 根据权利要求8所述的电芯制造方法,其特征在于,所述电芯还包括隔膜片,所述电芯的制造方法还包括:
    在所述正极片上设置正极极耳,在所述负极片上设置负极极耳;
    提供隔膜片,并将所述隔膜片设置到所述正极片及所述负极片之间;
    对所述隔膜片、所述正极片以及所述负极片进行封装。
  12. 根据权利要求11所述的电芯制造方法,其特征在于,
    对所述隔膜片、所述正极片以及所述负极片进行封装的具体步骤还包括:
    提供所述电芯的外壳;
    将所述隔膜片、所述正极片以及所述负极片密封在所述外壳的容置空间中。
  13. 根据权利要求12所述的电芯制造方法,其特征在于,
    密封所述隔膜片、所述正极片以及所述负极片的步骤之前还包括向所述容置空间中注入电解液。
  14. 一种电芯,所述电芯用于电池中,其特征在于,
    所述电芯包括正极片及负极片,所述正极片包括正极片基板,所述负极片包括负极片基板,所述正极片基板及所述负极片基板表面分别设置有相应的第一活性物质层;
    其中,所述正极片基板及所述负极片基板至少一者的边缘区域设置有相应的第二活性物质层,其中,所述第二活性物质层的黏性大于所述第一活性物质层。
  15. 根据权利要求14所述的电芯,其特征在于,
    所述第二活性物质层通过对相应基板上的所述第一活性物质层的边缘区域进行渗胶处理形成;或者
    所述第二活性物质层通过将胶覆盖在相应基板上的所述第一活性物质层的边缘区域的表面形成。
  16. 根据权利要求14所述的电芯,其特征在于,
    所述第二活性物质层通过将所述第一活性物质层边缘区域的所述第一活性物质去除,在去除所述第一活性物质的区域设置相应的第二活性物质而形成,其中所述第二活性物质的粘着剂的比例高于所述第一活性物质的粘着剂的比例。
  17. 根据权利要求14所述的电芯,其特征在于,
    所述正极片和/或负极片通过在相应的基板边缘区域设置相应的所述第二活性物质层,然后在未设置所述第二活性物质层的位置设置相应的所述第一活性物质层而形成。
  18. 根据权利要求14所述的电芯,其特征在于,
    所述电芯还包括隔膜片,所述隔膜片设置于所述正极片及所述负极片之间用于隔开所述正极片及所述负极片;
    所述正极片还包括正极极耳,所述负极片还包括负极极耳,所述电芯通过所述正极极耳以及所述负极极耳与外部电路电连接实现充放电;
    所述电芯还包括外壳,所述外壳设置有容置空间用于容置所述正极片、负极片以及隔膜片,所述容置空间内部还用于设置电解液,所述电解液浸没所述正极片及所述负极片以实现所述正极片及所述负极片之间的电荷传输。
  19. 一种电池,所述电池包括电芯,其特征在于,
    所述电芯包括正极片及负极片,所述正极片包括正极片基板,所述负极片包括负极片基板,所述正极片基板及所述负极片基板表面分别设置有相应的第一活性物质层;
    其中,所述正极片基板及所述负极片基板至少一者的边缘区域设置有第二活性物质层,其中,所述第二活性物质层的黏性大于所述第一活性物质层。
  20. 根据权利要求19所述的电池,其特征在于,
    所述第二活性物质层通过对相应基板上的所述第一活性物质层的边缘区域进行渗胶处理形成;或者
    所述第二活性物质层通过将胶覆盖在相应基板上的所述第一活性物质层的边缘区域的表面形成。
  21. 根据权利要求19所述的电池,其特征在于,
    所述第二活性物质层通过将所述第一活性物质层边缘区域的所述第一活性物质去除,在去除所述第一活性物质的区域设置相应的第二活性物质而形成,其中所述第二活性物质的粘着剂的比例高于所述第一活性物质的粘着剂的比例。
  22. 根据权利要求19所述的电池,其特征在于,
    所述正极片和/或负极片通过在相应的基板边缘区域设置相应的所述第二活性物质层,然后在未设置所述第二活性物质层的位置设置相应的所述第一活性物质层而形成。
  23. 根据权利要求19所述的电池,其特征在于,
    所述电芯还包括隔膜片,所述隔膜片设置于所述正极片及所述负极片之间用于隔开所述正极片及所述负极片;
    所述正极片还包括正极极耳,所述负极片还包括负极极耳,所述电芯通过所述正极极耳以及所述负极极耳与外部电路电连接实现充放电;
    所述电芯还包括外壳,所述外壳设置有容置空间用于容置所述正极片、负极片以及隔膜片,所述容置空间内部还用于设置电解液,所述电解液浸没所述正极片及所述负极片以实现所述正极片及所述负极片之间的电荷传输。
  24. 一种电子装置,所述电子装置包括电池,所述电池内设有电芯,其特征在于,
    所述电芯包括正极片及负极片,所述正极片包括正极片基板,所述负极片包括负极片基板,所述正极片基板及所述负极片基板表面分别设置有相应的第一活性物质层;
    其中,所述正极片基板及所述负极片基板至少一者的边缘区域设置有第二活性物质层,其中,所述第二活性物质层的黏性大于所述第一活性物质层。
  25. 根据权利要求24所述的电子装置,其特征在于,
    所述第二活性物质层通过对相应基板上的所述第一活性物质层的边缘区域进行渗胶处理形成;或者
    所述第二活性物质层通过将胶覆盖在相应基板上的所述第一活性物质层的边缘区域的表面形成。
  26. 根据权利要求24所述的电池,其特征在于,
    所述第二活性物质层通过将所述第一活性物质层边缘区域的所述第一活性物质去除,在去除所述第一活性物质的区域设置相应的第二活性物质而形成,其中所述第二活性物质的粘着剂的比例高于所述第一活性物质的粘着剂的比例。
  27. 根据权利要求24所述的电芯,其特征在于,
    所述正极片和/或负极片通过在相应的基板边缘区域设置相应的所述第二活性物质层,然后在未设置所述第二活性物质层的位置设置相应的所述第一活性物质层而形成。
  28. 根据权利要求24所述的电子装置,其特征在于,
    所述电芯还包括隔膜片,所述隔膜片设置于所述正极片及所述负极片之间用于隔开所述正极片及所述负极片;
    所述正极片还包括正极极耳,所述负极片还包括负极极耳,所述电芯通过所述正极极耳以及所述负极极耳与外部电路电连接实现充放电;
    所述电芯还包括外壳,所述外壳设置有容置空间用于容置所述正极片、负极片以及隔膜片,所述容置空间内部还用于设置电解液,所述电解液浸没所述正极片及所述负极片以实现所述正极片及所述负极片之间的电荷传输。
PCT/CN2018/078177 2018-03-06 2018-03-06 电芯及其制造方法、电池以及电子装置 WO2019169561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078177 WO2019169561A1 (zh) 2018-03-06 2018-03-06 电芯及其制造方法、电池以及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078177 WO2019169561A1 (zh) 2018-03-06 2018-03-06 电芯及其制造方法、电池以及电子装置

Publications (1)

Publication Number Publication Date
WO2019169561A1 true WO2019169561A1 (zh) 2019-09-12

Family

ID=67845459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078177 WO2019169561A1 (zh) 2018-03-06 2018-03-06 电芯及其制造方法、电池以及电子装置

Country Status (1)

Country Link
WO (1) WO2019169561A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4411859A1 (en) * 2023-02-06 2024-08-07 Samsung SDI Co., Ltd. Electrode for rechargeable battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179016A (zh) * 1996-09-20 1998-04-15 三星电管株式会社 电池的电极板及其制造方法
CN1503994A (zh) * 2002-01-30 2004-06-09 松下电器产业株式会社 铅蓄电池
US20050266310A1 (en) * 2004-05-25 2005-12-01 Yee-Ho Chia Lithium ion battery oxidized polymer binder
CN101719562A (zh) * 2009-12-25 2010-06-02 中国科学院电工研究所 一种高电压电池的电芯
CN105655540A (zh) * 2014-11-12 2016-06-08 宁德时代新能源科技股份有限公司 电极极片及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179016A (zh) * 1996-09-20 1998-04-15 三星电管株式会社 电池的电极板及其制造方法
CN1503994A (zh) * 2002-01-30 2004-06-09 松下电器产业株式会社 铅蓄电池
US20050266310A1 (en) * 2004-05-25 2005-12-01 Yee-Ho Chia Lithium ion battery oxidized polymer binder
CN101719562A (zh) * 2009-12-25 2010-06-02 中国科学院电工研究所 一种高电压电池的电芯
CN105655540A (zh) * 2014-11-12 2016-06-08 宁德时代新能源科技股份有限公司 电极极片及锂离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4411859A1 (en) * 2023-02-06 2024-08-07 Samsung SDI Co., Ltd. Electrode for rechargeable battery

Similar Documents

Publication Publication Date Title
KR101750145B1 (ko) 전고체 전지의 제조 방법 및 전고체 전지
WO2018070847A1 (ko) 리튬이온 이차 전지용 음극 및 이를 제조하는 방법
WO2013151249A1 (ko) 계단 구조의 전지셀
US8883347B2 (en) All solid state secondary battery
WO2018066806A1 (ko) 프리-슬리팅 공정을 포함하는 이차전지용 전극의 제조 방법
WO2018186555A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 사용하여 제조된 리튬이차전지
EP4071875A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
WO2012060350A1 (ja) 全固体電池およびその製造方法
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
CN112467224A (zh) 一种锂离子电池的电化学均匀预锂方法
CN108306052B (zh) 一种电芯及其制造方法、电池以及电子装置
US20210249696A1 (en) Solid-state battery
CN108417886A (zh) 电芯及其制造方法、电池
EP3920305A1 (en) Electrode assembly, and battery having electrode assembly
WO2019169561A1 (zh) 电芯及其制造方法、电池以及电子装置
CN109193016B (zh) 一种电池装配工艺及电池
CN112993208B (zh) 一种锂离子储能器件及其预锂化、和制备方法
WO2021103518A1 (zh) 一种分隔膜、电池组合及用电设备
WO2020238226A1 (zh) 一种电池及电池组
WO2019169560A1 (zh) 一种电芯及其制造方法、电池以及电子装置
WO2019169557A1 (zh) 一种电芯及其制造方法、电池以及电子装置
WO2022098049A1 (ko) 음극보다 면적이 넓은 양극을 포함하는 전고체전지 및 이의 제조방법
CN103247818A (zh) 高比能量软包装叠片式磷酸铁锂电池及其制造方法
CN208045631U (zh) 电芯、电池以及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18908315

Country of ref document: EP

Kind code of ref document: A1