WO2019167924A1 - 負熱膨張材料、複合材料、及び負熱膨張材料の製造方法 - Google Patents

負熱膨張材料、複合材料、及び負熱膨張材料の製造方法 Download PDF

Info

Publication number
WO2019167924A1
WO2019167924A1 PCT/JP2019/007225 JP2019007225W WO2019167924A1 WO 2019167924 A1 WO2019167924 A1 WO 2019167924A1 JP 2019007225 W JP2019007225 W JP 2019007225W WO 2019167924 A1 WO2019167924 A1 WO 2019167924A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal expansion
negative thermal
expansion material
temperature
sample
Prior art date
Application number
PCT/JP2019/007225
Other languages
English (en)
French (fr)
Inventor
敏宏 磯部
裕子 早川
ゆり 足立
綾介 上原
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to US16/976,041 priority Critical patent/US11970396B2/en
Priority to CN201980026176.5A priority patent/CN111989296A/zh
Priority to KR1020207026723A priority patent/KR102655109B1/ko
Priority to JP2020503513A priority patent/JP7017743B2/ja
Publication of WO2019167924A1 publication Critical patent/WO2019167924A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties

Definitions

  • the present invention relates to a negative thermal expansion material, a composite material, and a method for manufacturing the negative thermal expansion material.
  • Patent Document 1 discloses Bi 1-x Sb x NiO 3 (where x is 0.02 ⁇ x ⁇ 0.20) as a material having a negative coefficient of thermal expansion.
  • an object of the present invention is to provide a negative thermal expansion material, a composite material, and a method for manufacturing the negative thermal expansion material that can realize cost reduction and density reduction.
  • the negative thermal expansion material having a negative coefficient of thermal expansion is characterized by being represented by Zr 2-a M a S x P 2 O 12 + ⁇ .
  • M is at least one selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, and Cr
  • a is 0 ⁇ a ⁇ 2
  • x is 0.4 ⁇ x ⁇ . 1 and ⁇ is a value determined to satisfy the charge neutrality condition.
  • a composite material according to the present invention includes the negative thermal expansion material and a material having a positive thermal expansion coefficient.
  • the method for producing a negative thermal expansion material according to the present invention includes a step of hydrothermally treating a mixture containing zirconium oxychloride octahydrate, ammonium phosphate, and sulfuric acid at a temperature of 130 ° C. or higher, and the hydrothermal treatment. After that, the mixture is fired at a temperature of 450 ° C. or higher, and Zr 2 S x P 2 O 12 + ⁇ (where 0.4 ⁇ x ⁇ 1 and ⁇ is a value determined to satisfy the charge neutrality condition. And forming a material having a negative coefficient of thermal expansion represented by:
  • the method for producing a negative thermal expansion material according to the present invention includes hydrothermal treatment of a mixture containing zirconium oxychloride octahydrate, ammonium phosphate, sulfuric acid, and an additive containing element M at a temperature of 130 ° C. or higher. And a material having a negative coefficient of thermal expansion represented by Zr 2-a M a S x P 2 O 12 + ⁇ by calcining the mixture after the hydrothermal treatment at a temperature of 450 ° C. or higher (
  • M is at least one selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, and Cr, a is 0 ⁇ a ⁇ 2, and x is 0.4 ⁇ x ⁇ . 1 and ⁇ is a value determined so as to satisfy the charge neutrality condition).
  • the present invention it is possible to provide a negative thermal expansion material, a composite material, and a method for manufacturing the negative thermal expansion material that can realize cost reduction and density reduction.
  • FIG. 4 is a view showing an FE-SEM image of Sample 4.
  • FIG. 4 is a view showing an FE-SEM image of Sample 4. It is a figure which shows the XRD measurement result of each sample (hydrothermal treatment temperature: 110 degreeC). It is a figure which shows the XRD measurement result of each sample (hydrothermal treatment temperature: 130 degreeC). It is a figure which shows the XRD measurement result of each sample (hydrothermal treatment temperature: 180 degreeC). It is a figure which shows the XRD measurement result of each sample (hydrothermal treatment temperature: 230 degreeC). It is a graph which shows the relationship between the calcination temperature of the sample processed at each hydrothermal treatment temperature, and content of S atom.
  • the negative thermal expansion material according to the present embodiment is characterized by being represented by Zr 2-a M a S x P 2 O 12 + ⁇ .
  • M is at least one selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, and Cr
  • a is 0 ⁇ a ⁇ 2
  • x is 0.4 ⁇ x ⁇ . 1 and ⁇ is a value determined to satisfy the charge neutrality condition.
  • the negative thermal expansion material is a material represented by Zr 2 S x P 2 O 12 + ⁇ .
  • a material in which part of the Zr site is replaced with M is obtained.
  • the negative thermal expansion material is a material represented by Zr 2-a Ti a S x P 2 O 12 + ⁇ , and the range of a in this case is preferably 0 ⁇ a ⁇ 0. .7.
  • the negative thermal expansion material is a material represented by Zr 2-a Ce a S x P 2 O 12 + ⁇ , and the range of a in this case is preferably 0 ⁇ a ⁇ 0. .4.
  • the negative thermal expansion material is a material represented by Zr 2-a Sn a S x P 2 O 12 + ⁇ , and the range of a in this case is preferably 0 ⁇ a ⁇ 1 .
  • the negative thermal expansion material is a material represented by Zr 2-a Mn a S x P 2 O 12 + ⁇ , and the range of a in this case is preferably 0 ⁇ a ⁇ 0.2. It is.
  • the element M that substitutes a part of the Zr site may be Hf, Ir, Pb, Pd, or Cr.
  • a part of the S site of the negative thermal expansion material represented by Zr 2-a M a S x P 2 O 12 + ⁇ may be replaced with Mo or W.
  • a part of the P site may be substituted with an element such as V, Mn, Cr, As, or Nb.
  • the negative thermal expansion material according to this embodiment is composed mainly of cheap and relatively light atoms. Therefore, cost reduction and density reduction of the negative thermal expansion material can be realized.
  • 1A to 1C are graphs showing temperature characteristics of a negative thermal expansion material represented by Zr 2 S x P 2 O 12 + ⁇ .
  • 1A shows the temperature characteristic of the lattice constant of the a (b) axis
  • FIG. 1B shows the temperature characteristic of the lattice constant of the c axis
  • FIG. 1C shows the temperature characteristic of the lattice volume.
  • the negative thermal expansion material concerning this Embodiment is a rhombohedral system, the length of a axis
  • the thermal expansion coefficient of the negative thermal expansion material varies depending on the value of x, that is, the content of sulfur atoms S.
  • x that is, the content of sulfur atoms S.
  • the absolute value of the volume expansion coefficient of the negative thermal expansion material at a temperature of 100 to 180 ° C. is the value under the condition where the temperature is higher than 180 ° C. It becomes larger than the absolute value of the volume expansion coefficient of the negative thermal expansion material. That is, when the value of x is 0.48 ⁇ x ⁇ 0.9, the lattice volume changes rapidly from 100 ° C. to 180 ° C. In this temperature range, the a-axis expands, but the c-axis contracts rapidly, so that a rapid volume contraction occurs in the entire lattice.
  • the volume expansion coefficient at 30 to 100 ° C. is ⁇ 26 ppm / ° C.
  • the volume expansion coefficient at 100 to 180 ° C. is ⁇ 108 ppm / ° C.
  • the volume expansion coefficient at 180 to 350 ° C. is The volume expansion coefficient at ⁇ 8.1 ppm / ° C. and 350 to 500 ° C. is ⁇ 13 ppm / ° C.
  • the negative thermal expansion material according to the present embodiment has a negative thermal expansion coefficient in the range of room temperature to 500 ° C.
  • a large negative thermal expansion is exhibited in the range of 100 to 180 ° C., and the magnitude is smaller as the content of sulfur atom S is smaller. Get smaller.
  • the volume expansion coefficient of the negative thermal expansion material is substantially constant at 80 ° C. or higher.
  • the crystal phase of the negative thermal expansion material according to the present embodiment is ⁇ -Zr 2 SP 2 O 12 (ICDD card number: 04-017-0937), but some other crystal phases are included. Also good.
  • a ⁇ phase ⁇ -Zr 2 SP 2 O 12 (ICDD card: 04-007-8019) may be included in part.
  • the atoms constituting the negative thermal expansion material (Zr 2 S x P 2 O 12 + ⁇ ) according to the present embodiment are Zr, S, and P, and these materials are inexpensive.
  • the negative thermal expansion material can be formed at a lower cost than when the negative thermal expansion material is used. Therefore, cost reduction of the negative thermal expansion material can be realized.
  • the atoms constituting the negative thermal expansion material (Zr 2 S x P 2 O 12 + ⁇ ) according to the present embodiment are Zr, S, and P, and these atoms (particularly, S and P) are relatively Since it is a light atom, the density of a negative thermal expansion material can be made lower than the conventional negative thermal expansion material. Therefore, the density of the negative thermal expansion material can be reduced.
  • the density of Mn—Sn—Zn—N (Smartec®), which is a negative thermal expansion material, is about 7 g / cm 3 .
  • the density of Zr 2 WP 2 O 12 is negative thermal expansion material is 3.86 g / cm 3
  • the density of Zr 2 MoP 2 O 12 is 3.36 g / cm 3.
  • the density of Zr 2 SP 2 O 12 is negative thermal expansion material according to this embodiment is 3.02 g / cm 3, the density is lower than conventional negative thermal expansion material.
  • the negative thermal expansion material is mixed with a material having a positive thermal expansion coefficient (positive thermal expansion material), in other words, the thermal expansion coefficient is controlled by dispersing the negative thermal expansion material in the positive thermal expansion material.
  • Composite materials can be formed. For example, by reducing the density of the negative thermal expansion material to be mixed at this time, the negative thermal expansion material can be uniformly dispersed in the positive thermal expansion material.
  • the thermal expansion coefficient of the negative thermal expansion material according to the present embodiment varies depending on the value of x, that is, the content of sulfur atoms S. That is, when the value of x is 0.48 ⁇ x ⁇ 0.9, a large negative thermal expansion is exhibited in the range of 100 to 180 ° C., and the magnitude is smaller as the content of sulfur atom S is smaller. Get smaller.
  • the volume expansion coefficient of the negative thermal expansion material is substantially constant at 80 ° C. or higher.
  • the value of x of the negative thermal expansion material is set according to the characteristics of the positive thermal expansion material used when forming the composite material, the characteristics of the target composite material, the temperature range in which the composite material is used, and the like. It is preferable to decide.
  • the value x of the negative thermal expansion material is set to 0.48 ⁇ x ⁇ 0.9 in consideration of the use temperature (heat resistance temperature) of the resin material. preferable. That is, considering the heat-resistant temperature of the resin material, the range of use temperature of the resin material is considered to be about room temperature to 200 ° C. Further, when the value of x is 0.48 ⁇ x ⁇ 0.9, huge negative thermal expansion is exhibited in the range of 100 to 180 ° C. Therefore, by setting the value of x of the negative thermal expansion material to 0.48 ⁇ x ⁇ 0.9, the operating temperature range of the resin material and the region where the negative thermal expansion material exhibits a huge negative thermal expansion overlap each other. And the coefficient of thermal expansion of the composite material can be controlled efficiently.
  • the value of x of the negative thermal expansion material is set to 0.4 ⁇ x ⁇ 0.48 in consideration of the use temperature (heat resistance temperature) of the metal material. Is preferred. That is, in the case of a composite material containing a metal material, the range of operating temperatures is often wide.
  • the value of x is 0.4 ⁇ x ⁇ 0.48, the volume expansion coefficient of the negative thermal expansion material is substantially constant at 80 ° C. or higher. Therefore, by setting the value of x of the negative thermal expansion material to 0.4 ⁇ x ⁇ 0.48, a region where the use temperature range of the composite material including the metal material and the volume expansion coefficient of the negative thermal expansion material are substantially constant. In a wide temperature range, and the coefficient of thermal expansion of the composite material can be controlled efficiently.
  • the positive thermal expansion material when the positive thermal expansion material is a metal material, a composite material is formed by setting the value x of the negative thermal expansion material to 0.48 ⁇ x ⁇ 0.9. May be.
  • the composite material may be formed by setting the value of x of the negative thermal expansion material to 0.4 ⁇ x ⁇ 0.48. That is, in this embodiment, the value of x of the negative thermal expansion material can be determined in consideration of the temperature range in which the composite material is used, the characteristics of the positive thermal expansion material to be mixed, and the like.
  • zirconium oxychloride octahydrate ZrCl 2 O.8H 2 O
  • ammonium phosphate at least one selected from ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) can be used.
  • NH 4 H 2 PO 4 ammonium dihydrogen phosphate
  • diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 )
  • the aqueous solution (mixture) after stirring is hydrothermally treated at a temperature of 130 ° C. or higher, preferably 180 ° C. or higher (step S2).
  • the hydrothermal treatment time is 0.5 to 4 days.
  • the mixture after the hydrothermal treatment is dried (step S3). Specifically, since a white precipitate is generated in the container after the hydrothermal treatment, a solution (mixture) containing this white precipitate is poured into an evaporating dish and heated with a heater at about 100 ° C. to remove excess moisture. Is evaporated (first drying). At this time, since the mixture contains excessive sulfuric acid, it is not completely dried, so the evaporating dish is placed in an electric furnace at 300 ° C. and the second drying is performed (step S4).
  • the dried mixture is fired at a temperature of 450 ° C. or higher to form a material having a negative coefficient of thermal expansion represented by the above general formula (step S5).
  • the temperature at which the mixture is fired can be set to 450 ° C. or higher and 900 ° C. or lower.
  • the value of x in the said general formula can be adjusted by adjusting the temperature at the time of baking the mixture after drying. Specifically, the higher the firing temperature, the more easily the sulfur S in the above general formula is released, so the amount of sulfur S decreases.
  • the value of x in the general formula (that is, the amount of S) may be adjusted by adjusting the firing time.
  • the negative thermal expansion material is manufactured using the hydrothermal method, the negative thermal expansion material can be manufactured at low cost.
  • the particle size distribution of a negative thermal expansion material can be made small by using a hydrothermal method.
  • the negative thermal expansion material can be uniformly dispersed in the positive thermal expansion material.
  • the negative thermal expansion material can be shaped into a cube having a side of 200 to 300 nm (see FIG. 7).
  • the particle size of the negative thermal expansion material can be reduced, when the composite material is formed by mixing the negative thermal expansion material and the positive thermal expansion material, the surface roughness of the composite material should be reduced. Can do.
  • Zr 2-a M in which a part of the Zr site is replaced with M.
  • M cerium sulfate tetrahydrate (Ce (SO 4 ) 2 .4H 2 O) is added.
  • M tin oxide
  • M manganese dioxide
  • these additives are merely examples, and other materials may be used as long as they are additives (raw materials) that can add the element M to the negative thermal expansion material.
  • ZrCl 2 O.8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd. (currently Fuji Film Wako Pure Chemical Industries, Ltd.)), NH 4 H 2 PO 4 (reagent special grade, Wako Pure Chemical Industries, Ltd.) and H 2 SO 4 (reagent special grade, Wako Pure Chemical Industries, Ltd.) were prepared.
  • a ZrCl 2 O ⁇ 8H 2 O and NH 4 H 2 PO 4 respectively dissolved in distilled water to a 0.8 M.
  • 10 ml of each of these aqueous solutions and 3 ml of H 2 SO 4 were mixed and stirred with a stirrer for 90 minutes (step S1).
  • the agitated aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, Sanai Kagaku Co., Ltd.) and put into a pressure-resistant stainless steel outer tube (HUS-100, Sanai Kagaku Co., Ltd.). I set it.
  • the container was then placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S2).
  • the hydrothermal treatment temperature was 180 ° C., and the hydrothermal treatment time was 4 days.
  • step S3 first drying
  • step S4 second drying
  • step S5 the samples dried at 300 ° C. are baked at 400 to 900 ° C. for 4 hours or 12 hours using an electric furnace (KDF-S80, Denken Hydental Co., Ltd.) to obtain samples 1 to 9 in the form of white powder.
  • compositions (atomic ratios) of the produced samples 1 to 9 were analyzed using ICP-OES (Inductivity Coupled Plasma Optical Emission Spectrometry).
  • ICP-OES Inductivity Coupled Plasma Optical Emission Spectrometry
  • a calibration curve of the atomic concentration contained in the solution was prepared using Zr, P, and S standard solutions of Samples 1 to 9 (Wako Pure Chemical Industries, Ltd.), and mixed acid (0.5% Of HF + 5% HNO 3 ) was measured quantitatively.
  • Fig. 3 shows the relationship between the firing conditions and atomic ratios of Samples 1-9.
  • the atomic ratio of Zr was 2 and constant.
  • the atomic ratio of P was 1.8 to 2 and was substantially constant.
  • the atomic ratio of S was different depending on the firing conditions of Samples 1-9.
  • the atomic ratio of S was 1.6.
  • the atomic ratio of S was 1.2.
  • the atomic ratio of S was 1.
  • the atomic ratio of S was 0.90.
  • the atomic ratio of S was 0.76.
  • the atomic ratio of S was 0.54.
  • the atomic ratio of S was 0.48.
  • the atomic ratio of S was 0.44.
  • the atomic ratio of S was 0.43.
  • FIG. 4 is a graph showing the relationship between the firing temperature and the S atom content (atomic ratio).
  • FIG. 4 plots the firing temperature and the atomic ratio of S atoms of samples 1 to 4 and 6 to 9 in the table shown in FIG. As shown in FIG. 4, the amount of S decreased as the firing temperature of each sample increased. This is because S easily escapes from each sample as the firing temperature rises. From the results shown in FIG. 4, it was found that the amount of S in the sample, that is, the value x of Zr 2 S x P 2 O 12 + ⁇ can be adjusted by adjusting the firing temperature.
  • sample 4 (firing condition: 500 ° C., 4 hours) has an atomic ratio of S of 0.90
  • sample 5 firing condition: 500 ° C., 12 hours has S.
  • the atomic ratio was 0.76. From this result, it can be said that the amount of S decreases as the firing time increases. Therefore, it was found that the amount of S in the sample can also be adjusted by adjusting the firing time.
  • the XRD measurement results of Samples 1 to 9 are shown in FIG. As shown in FIG. 5, a phase of ⁇ -Zr 2 SP 2 O 12 (ICDD card number: 04-017-0937) was observed in all the samples 1 to 9. In Samples 7 to 9 fired at 700 ° C. or higher, a broad peak was observed at around 30.5 °. This is considered to be a ZrO 2 peak. From the XRD measurement results, it is considered that a firing temperature of 450 to 600 ° C. is appropriate for obtaining single-phase ⁇ -Zr 2 SP 2 O 12 .
  • 6A and 6B show the results of plotting the calculated lattice constant of each sample against the ratio of S (the ratio of S when Zr is normalized to 2).
  • 6A shows an a-axis lattice constant
  • FIG. 6B shows a c-axis lattice constant.
  • FIGS. 6A and 6B it was shown that the lattice constant decreased linearly as the S content was reduced by half from 1.0 to 0.48 for both the a-axis and the c-axis.
  • thermal expansion coefficient of each sample 1 to 9 was measured using the following method.
  • a bench top heating stage (BTS 500, Anton Paar) was attached to the following powder X-ray diffractometer, and an X-ray diffraction pattern was measured at an arbitrary temperature.
  • a high-speed one-dimensional detector (D / teX Ultra2, Rigaku Co., Ltd.) was used as a detector, and measurement was performed under the following conditions.
  • Si NIST SRM 640c was used as an internal standard.
  • the crystal structure was refined by the Rietveld method, and the lattice constant was calculated.
  • the calculated lattice constant was plotted against the temperature, and the linear thermal expansion coefficient ⁇ l and the volume thermal expansion coefficient ⁇ v for each crystal axis were calculated in the temperature range obtained by linear approximation using the following formula.
  • FIG. 1A to 1C show the linear thermal expansion coefficient and the volume thermal expansion coefficient for each crystal axis.
  • FIG. 1C it was revealed that the volume of ⁇ -Zr 2 SP 2 O 12 changed rapidly from 100 ° C. to 180 ° C. In this temperature range, the a-axis expanded, but the c-axis contracted rapidly, resulting in rapid volume shrinkage throughout the lattice.
  • the linear thermal expansion coefficient of the a axis 100 to 180 ° C.
  • the linear thermal expansion coefficient of the c axis (same) was ⁇ 263 ppm / ° C.
  • the volume thermal expansion coefficient (same as above) was found to be ⁇ 108 ppm / ° C.
  • the linear thermal expansion coefficient of the a axis (100 to 180 ° C.) is +8.3 ppm / ° C.
  • the linear thermal expansion coefficient of the c axis (same) is ⁇ 44 ppm / ° C.
  • the coefficient of thermal expansion (same as above) was calculated to be ⁇ 27 ppm / ° C.
  • ⁇ -Zr 2 SP 2 O 12 is a material having a negative coefficient of thermal expansion in the range of room temperature to 500 ° C. In particular, in the range of 100 to 180 ° C., it showed a huge negative thermal expansion, and the magnitude was shown to be smaller as the S content was smaller. Since ⁇ -Zr 2 SP 2 O 12 undergoes a phase transition from 100 ° C. to 180 ° C., it is considered that such a large negative thermal expansion is exhibited.
  • FIGS. 7A and 7B show the results of observing Sample 4 using an electron microscope (FE-SEM).
  • FIG. 7B shows an observation result with a higher magnification than FIG. 7A.
  • FE-SEM -Equipment used: JSM-7500F (JEOL) ⁇ Acceleration voltage: 7-10kV
  • the manufacturing method of Samples 10 to 25 is the same as the manufacturing method of Samples 1 to 9 described above, except for hydrothermal treatment conditions.
  • the apparatus used for the evaluation of the sample is the same as the apparatus for evaluating the samples 1 to 9 described above.
  • the following table shows the hydrothermal treatment conditions, firing conditions, and constituent atomic ratios of Samples 10 to 25. Note that “300 ° C. (drying)” indicates that the sample has not been subjected to the baking process (step S5) after being dried at 300 ° C. (step S4 in FIG. 2). The same applies hereinafter.
  • FIG. 8 shows the XRD measurement results of Samples 10 to 13 (hydrothermal treatment temperature: 110 ° C., hydrothermal treatment time: 2 days).
  • the hydrothermal treatment temperature was 110 ° C.
  • the XRD peak of ⁇ -Zr 2 SP 2 O 12 was observed regardless of the firing at 500 ° C., 700 ° C., or 900 ° C.
  • ⁇ -Zr 2 SP 2 O 12 (ICDD card: 04-007-8019) was present as a slight impurity.
  • the ⁇ phase and the ⁇ phase are different in crystal system and space group, the ⁇ phase is rhombohedral and R-3c, and the ⁇ phase is orthorhombic and Pbcn-60.
  • FIG. 9 shows the XRD measurement results of Samples 14 to 17 (hydrothermal treatment temperature: 130 ° C., hydrothermal treatment time: 2 days).
  • hydrothermal treatment temperature 130 ° C.
  • ⁇ -Zr 2 SP 2 O 12 having good crystallinity was obtained at a firing temperature of 500 ° C., but a ZrO 2 peak was also observed.
  • the firing temperatures of 700 ° C. and 900 ° C. the mixed phase state of ⁇ -Zr 2 SP 2 O 12 and ZrO 2 was maintained, but the value of S in the constituent atomic ratio was reduced to 0.4.
  • FIG. 10 shows the XRD measurement results of samples 18 to 21 (hydrothermal treatment temperature: 180 ° C., hydrothermal treatment time: 2 days).
  • hydrothermal treatment temperature 180 ° C.
  • a single phase of ⁇ -Zr 2 SP 2 O 12 could be produced by firing at 500 ° C.
  • Samples having a hydrothermal treatment time of 0.5 to 7 days were also prepared under the hydrothermal treatment temperature of 180 ° C.
  • the hydrothermal treatment temperature is 180 ° C.
  • all samples having a hydrothermal treatment time of 0.5 to 7 days are calcined at 500 ° C. for 4 hours after the hydrothermal treatment, whereby ⁇ -Zr 2 SP 2 O 12 It was possible to produce a single phase. Therefore, when the hydrothermal treatment temperature is 180 ° C., a single phase of ⁇ -Zr 2 SP 2 O 12 can be manufactured by performing hydrothermal treatment for at least 0.5 days and then firing.
  • FIG. 11 shows the XRD measurement results of Samples 22 to 25 (hydrothermal treatment temperature: 230 ° C., hydrothermal treatment time: 4 days).
  • hydrothermal treatment temperature 230 ° C.
  • a single phase of ⁇ -Zr 2 SP 2 O 12 could be produced by firing at 500 ° C.
  • FIG. 12 is a graph showing the relationship between the firing temperature of the sample treated at each hydrothermal treatment temperature and the S atom content. As shown in FIG. 12, when the hydrothermal treatment temperature was 110 ° C., the decrease in S with respect to the firing temperature was gradual. Based on the results of FIG. 12, it was found that when the hydrothermal treatment temperature is 130 ° C. or higher, the S content in the sample can be adjusted to around 0.4 by adjusting the firing temperature. Therefore, considering the composition control of Zr 2 SP 2 O 12 , the hydrothermal treatment temperature is preferably set to 130 ° C. or higher.
  • FIG. 13A shows the result of observation of Sample 11 (hydrothermal treatment temperature: 110 ° C.) using an electron microscope (FE-SEM).
  • FIG. 13B shows the results of observation of Sample 19 (hydrothermal treatment temperature: 180 ° C.) using an electron microscope (FE-SEM).
  • FIG. 13A in Sample 11 having a hydrothermal treatment temperature of 110 ° C., many particles considered to be impurities existed on the surface of cubic ⁇ -Zr 2 SP 2 O 12 . Considering that the ⁇ -Zr 2 SP 2 O 12 peak was observed in the XRD measurement results shown in FIG. 8, the impurities are presumed to be ⁇ -Zr 2 SP 2 O 12 particles.
  • FIG. 13B in Sample 19 having a hydrothermal treatment temperature of 180 ° C., cubic particles having a side of 200 to 300 nm were observed. Further, no impurities were observed on the surface of the cubic particles.
  • the hydrothermal treatment temperature is preferably 180 ° C. or higher.
  • the shape and size of the produced particles did not depend on the hydrothermal treatment temperature.
  • FIG. 14 is a flowchart showing a manufacturing method of the negative thermal expansion material, and shows a manufacturing method in the case where the Zr site is replaced with the element M. In the flowchart shown in FIG. 14, the same steps as those in the flowchart shown in FIG.
  • the negative thermal expansion material applied to Zr 2-a Ti a S x P 2 O 12 + ⁇ was produced according to the flowchart shown in FIG. First, as raw materials, ZrCl 2 O ⁇ 8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), 30% titanium sulfate (IV) solution (chemical use, Wako Pure Chemical Industries, Ltd.), (NH 4 ) 2 HPO 4 (special reagent grade, Kanto Chemical Co., Inc.) and H 2 SO 4 (special reagent grade, Wako Pure Chemical Industries, Ltd.) were prepared. Then, a ZrCl 2 O ⁇ 8H 2 O and (NH 4) 2 HPO 4, respectively dissolved in distilled water to a 0.8 M.
  • step S1 20 ml of each of these aqueous solutions, 30% titanium sulfate (IV) solution (amount according to the ratio of a), and [6- (amount of S added by titanium sulfate)] ml of H 2 SO 4 And stirred for 90 minutes using a stirrer (step S1).
  • the 30% titanium (IV) sulfate solution corresponds to a substance derived from the substitution element in the flowchart shown in FIG.
  • the agitated aqueous solution (mixture) is poured into a Teflon (registered trademark) container (HUT-100, Sanai Kagaku Co., Ltd.) and put into a pressure-resistant stainless steel outer tube (HUS-100, Sanai Kagaku Co., Ltd.). I set it.
  • the container was then placed in a hot air circulation oven (KLO-45M, Koyo Thermo System Co., Ltd.) and heated to perform hydrothermal treatment (step S2).
  • the hydrothermal treatment temperature was 180 ° C., and the hydrothermal treatment time was 12 hours.
  • step S3 first drying
  • step S4 second drying
  • FIG. 15 is a diagram showing an XRD measurement result of a material (Zr 2-a Ti a S x P 2 O 12 + ⁇ ) in which a part of the Zr site is substituted with Ti.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • FIG. 16 is a table showing the actual composition of the produced Zr 2-a Ti a SP 2 O 12 .
  • the apparatus and measurement conditions used for elemental analysis are the same as those described above.
  • FIG. 17 is a graph showing the temperature characteristics (temperature dependence of lattice volume) of the produced Zr 2-a Ti a SP 2 O 12 .
  • the apparatus and measurement conditions used for the high temperature XRD measurement are the same as those described above.
  • a negative thermal expansion material applied to Zr 2-a Ce a S x P 2 O 12 + ⁇ was also produced according to the flowchart shown in FIG. First, as raw materials, ZrCl 2 O ⁇ 8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), cerium sulfate tetrahydrate (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), NH 4 H 2 PO 4 (Reagent Special Grade, Wako Pure Chemical Industries, Ltd.) and H 2 SO 4 (Reagent Special Grade, Wako Pure Chemical Industries, Ltd.) were prepared. Then, a ZrCl 2 O ⁇ 8H 2 O and NH 4 H 2 PO 4, respectively dissolved in distilled water to a 0.8 M.
  • cerium sulfate tetrahydrate corresponds to a substance derived from the substitution element in the flowchart shown in FIG.
  • the subsequent manufacturing method is the same as the manufacturing method of the negative thermal expansion material according to the above-described Zr 2-a Ti a S x P 2 O 12 + ⁇ , and thus a duplicate description is omitted.
  • FIG. 20 is a diagram showing an XRD measurement result of a material (Zr 2-a Ce a S x P 2 O 12 + ⁇ ) in which a part of the Zr site is substituted with Ce.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • FIG. 21 is a graph showing the temperature characteristics (temperature dependence of lattice volume) of the produced Zr 2-a Ce a SP 2 O 12 .
  • the apparatus and measurement conditions used for the high temperature XRD measurement are the same as those described above.
  • a negative thermal expansion material applied to Zr 2-a Mn a S x P 2 O 12 + ⁇ was also produced according to the flowchart shown in FIG. First, as raw materials, ZrCl 2 O ⁇ 8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), manganese dioxide (MnO 2 ) (reagent special grade, Kokusan Chemical Co., Ltd.), (NH 4 ) 2 HPO 4 ( Reagent special grade, Kanto Chemical Co., Ltd.) and H 2 SO 4 (reagent special grade, Wako Pure Chemical Industries, Ltd.) were prepared. Then, a ZrCl 2 O ⁇ 8H 2 O and (NH 4) 2 HPO 4, respectively dissolved in distilled water to a 0.8 M.
  • manganese dioxide (MnO 2 ) corresponds to a substance derived from the substitution element in the flowchart shown in FIG.
  • the subsequent manufacturing method is the same as the manufacturing method of the negative thermal expansion material according to the above-described Zr 2-a Ti a S x P 2 O 12 + ⁇ , and thus a duplicate description is omitted.
  • FIG. 22 is a diagram showing an XRD measurement result of a material (Zr 2-a Mn a S x P 2 O 12 + ⁇ ) in which a part of the Zr site is substituted with Mn.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • FIG. 23 is a graph showing temperature characteristics (temperature dependence of lattice volume) of the manufactured Zr 2-a Mn a SP 2 O 12 .
  • the apparatus and measurement conditions used for the high temperature XRD measurement are the same as those described above.
  • a negative thermal expansion material applied to Zr 2-a Sn a S x P 2 O 12 + ⁇ was also produced according to the flowchart shown in FIG. First, as raw materials, ZrCl 2 O ⁇ 8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), tin oxide (SnO 2 ) (Deer Special Grade, Kanto Chemical Co., Ltd.), (NH 4 ) 2 HPO 4 ( Reagent special grade, Kanto Chemical Co., Ltd.) and H 2 SO 4 (reagent special grade, Wako Pure Chemical Industries, Ltd.) were prepared. Then, a ZrCl 2 O ⁇ 8H 2 O and (NH 4) 2 HPO 4, respectively dissolved in distilled water to a 0.8 M.
  • tin oxide (SnO 2 ) corresponds to a substance derived from the substitution element in the flowchart shown in FIG.
  • the subsequent manufacturing method is the same as the manufacturing method of the negative thermal expansion material according to the above-described Zr 2-a Ti a S x P 2 O 12 + ⁇ , and thus a duplicate description is omitted.
  • FIG. 24 is a diagram showing an XRD measurement result of a material (Zr 2 ⁇ a Sn a S x P 2 O 12 + ⁇ ) in which a part of the Zr site is substituted with Sn.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • FIG. 25 is a graph showing the temperature characteristics (temperature dependence of lattice volume) of the produced Zr 2-a Sn a SP 2 O 12 .
  • the apparatus and measurement conditions used for the high temperature XRD measurement are the same as those described above.
  • FIG. 26 is a graph summarizing the thermal expansion coefficients in the respective temperature ranges of the samples in which the Zr sites are replaced with Ce, Mn, and Sn. As shown in FIG. 26, it can be seen that a sample in which the Zr site is substituted with Ce, Mn, and Sn also shows a negative thermal expansion coefficient. It can also be seen that each sample exhibits various thermal expansion coefficients in each temperature range. Therefore, materials having various thermal expansion coefficients can be formed by substituting a part of Zr sites with these elements. Therefore, the element to be substituted can be appropriately selected according to the purpose of use.
  • step S1 10 ml of each of these aqueous solutions and (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O aq. (Amount corresponding to the ratio of b) and 3 ml of H 2 SO 4 were mixed and stirred with a stirrer for 90 minutes (step S1).
  • (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O aq. corresponds to a substance derived from the substitution element in the flowchart shown in FIG.
  • step S5 2 types, the sample baked at 500 degreeC for 4 hours, and the sample baked at 800 degreeC for 4 hours were produced.
  • steps S1 to S5 in the flowchart shown in FIG. 27 are basically the same as steps S1 to S5 in the flowchart shown in FIG.
  • step S1 As shown in FIG. 27, first, as raw materials, ZrCl 2 O.8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), (NH 4 ) 2 HPO 4 (Reagent Special Grade, Kanto Chemical Co., Inc.), And H 2 SO 4 (special grade reagent, Wako Pure Chemical Industries, Ltd.) were prepared. Then, a ZrCl 2 O ⁇ 8H 2 O and (NH 4) 2 HPO 4, respectively dissolved in distilled water to a 0.8 M. Subsequently, 10 ml of each of these aqueous solutions and 3 ml of H 2 SO 4 were mixed and stirred with a stirrer for 90 minutes (step S1). The subsequent steps S2 to S5 are the same as those in the manufacturing method shown in FIG. In addition, about the baking process of step S5, two types, the sample baked at 600 degreeC for 4 hours, and the sample baked at 800 degreeC for 4 hours were produced.
  • Step S5 the Zr 2 SP 2 O 12 + ⁇ powder prepared in Step S5 was added to (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O aq. (Wako Special Grade, Wako Pure Chemical Industries, Ltd.) was impregnated (step S6). Then, Zr 2 SP 2 O 12 + ⁇ powder and (NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O aq. The solution containing was filtered (step S7). Thereafter, the filtered powder was fired at 500 ° C. for 4 hours to prepare a sample (step S8).
  • FIG. 28 is a diagram showing an XRD measurement result of Zr 2 S 1-b Mo b P 2 O 12 + ⁇ produced by the manufacturing method A.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • FIG. 29 is a diagram showing an XRD measurement result of Zr 2 S 1-b Mo b P 2 O 12 + ⁇ produced by the manufacturing method B.
  • the XRD measurement result (the following figure) of this sample is shown.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • the lattice volume (coefficient of thermal expansion) of the sample in which a part of the S site was replaced with Mo was determined using a high temperature XRD apparatus.
  • 30 and 31 are graphs showing the temperature characteristics (temperature dependence of lattice volume) of the produced Zr 2 S 1-b Mo b P 2 O 12 .
  • the apparatus and measurement conditions used for the high temperature XRD measurement are the same as those described above.
  • Zr 2 SP 2 O 12 (ZSP) (ZSP_500 ° C.) having a firing temperature of 500 ° C. in step S5 of FIG. 14, ZSP (ZSP_600 ° C.) of 600 ° C., and a firing temperature of step S5 in FIG.
  • the temperature characteristics of Zr 2 S 1-b Mo b P 2 O 12 (Mo — 600 ° C.) at ° C. are shown.
  • Zr 2 S 1-b Mo b P 2 O 12 (Mo_800 ° C.) having a firing temperature of 800 ° C. shows the same temperature dependence as ZSP_900 ° C. at 300 to 800 (K). It was. Therefore, it was confirmed that Zr 2 S 1-b Mo b P 2 O 12 in which a part of the S site was substituted with Mo also showed a negative coefficient of thermal expansion.
  • a material (Zr 2 S 1-b W b P 2 O 12 + ⁇ ) in which a part of the S site is substituted with W will be described.
  • the negative thermal expansion material applied to Zr 2 S 1-b W b P 2 O 12 + ⁇ was prepared by using two manufacturing methods, manufacturing method A shown in the flowchart of FIG. 14 and manufacturing method B shown in the flowchart of FIG.
  • step S1 using with these aqueous solutions each 10 ml, (NH 4) and 10 W 12 O 41 ⁇ 5H 2 O ( an amount corresponding to the ratio of b), mixing the H 2 SO 4 in 3 ml, 90 minutes with a stirrer And stirred (step S1).
  • (NH 4) 10 W 12 O 41 ⁇ 5H 2 O corresponds to the material derived from substitution element of the flowchart shown in FIG. 14.
  • step S5 two types, the sample baked at 500 degreeC for 4 hours, and the sample baked at 800 degreeC for 4 hours were produced.
  • steps S1 to S5 in the flowchart shown in FIG. 27 are basically the same as steps S1 to S5 in the flowchart shown in FIG.
  • step S1 As shown in FIG. 27, first, as raw materials, ZrCl 2 O.8H 2 O (Wako Special Grade, Wako Pure Chemical Industries, Ltd.), (NH 4 ) 2 HPO 4 (Reagent Special Grade, Kanto Chemical Co., Inc.), And H 2 SO 4 (special grade reagent, Wako Pure Chemical Industries, Ltd.) were prepared. Then, a ZrCl 2 O ⁇ 8H 2 O and (NH 4) 2 HPO 4, respectively dissolved in distilled water to a 0.8 M. Subsequently, 10 ml of each of these aqueous solutions and 3 ml of H 2 SO 4 were mixed and stirred with a stirrer for 90 minutes (step S1). The subsequent steps S2 to S5 are the same as those in the manufacturing method shown in FIG. In addition, about the baking process of step S5, two types, the sample baked at 600 degreeC for 4 hours, and the sample baked at 800 degreeC for 4 hours were produced.
  • Step S6 the powder of Zr 2 SP 2 O 12 + ⁇ prepared in step S5, (NH 4) 10 W 12 O 41 ⁇ 5H 2 Oaq.
  • Step S7 The filtered solution containing the Zr 2 SP 2 O 12 + ⁇ powder and (NH 4) 10 W 12 O 41 ⁇ 5H 2 O ( Step S7). Thereafter, the filtered powder was fired at 500 ° C. for 4 hours to prepare a sample (step S8).
  • FIG. 32 is a diagram showing an XRD measurement result of Zr 2 S 1-b Wo b P 2 O 12 + ⁇ produced by the manufacturing method A.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • an impurity phase peak indicated by an arrow
  • FIG. 33 is a diagram showing an XRD measurement result of Zr 2 S 1-b W b P 2 O 12 + ⁇ produced by the manufacturing method B.
  • the XRD measurement result (the following figure) of this sample is shown.
  • the apparatus and measurement conditions used for XRD measurement are the same as those described above.
  • the lattice volume (coefficient of thermal expansion) of the sample in which a part of the S site was replaced with W was determined using a high temperature XRD apparatus.
  • 34 and 35 are graphs showing temperature characteristics (temperature dependence of lattice volume) of the produced Zr 2 S 1-b W b P 2 O 12 .
  • the apparatus and measurement conditions used for the high temperature XRD measurement are the same as those described above.
  • ZSP (ZSP_500 ° C.) with a firing temperature of 500 ° C. in step S5 of FIG. 14, ZSP (ZSP_600 ° C.) of 600 ° C., and Zr 2 S 1-b with a firing temperature of 600 ° C. in step S5 of FIG. W b P 2 O 12 shows the temperature characteristic of the (W_600 °C).
  • ZSP (ZSP_700 ° C.) with a firing temperature of 700 ° C. in step S5 of FIG. 14, ZSP (ZSP_900 ° C.) of 900 ° C., and Zr 2 S 1-b with a firing temperature of 800 ° C. in step S5 of FIG. W b P 2 O 12 shows the temperature characteristic of the (W_800 °C).
  • the lattice volume of the sample is smaller than that of ZSP at 300 to 400 (K). However, regarding the temperature dependence of the lattice volume, the same behavior as ZSP was exhibited. Further, as shown in FIG. 35, in Zr 2 S 1-b W b P 2 O 12 (W_800 ° C.) with a firing temperature of 800 ° C., the lattice volume of the sample is compared with ZSP_700 ° C. at 300 to 400 (K). Became smaller. In addition, as shown in FIG.
  • Zr 2 S 1-b W b P 2 O 12 (W_800 ° C.) having a firing temperature of 800 ° C. shows the same temperature dependence as ZSP_900 ° C. at 300 to 800 (K). It was. Therefore, it was confirmed that Zr 2 S 1-b W b P 2 O 12 in which a part of the S site was replaced with W also showed a negative coefficient of thermal expansion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明にかかる負の熱膨張率を有する負熱膨張材料は、Zr2-a12+δで表されることを特徴とする。ただし、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である。本発明により、低コスト化や低密度化が実現可能な負熱膨張材料、複合材料、及び負熱膨張材料の製造方法を提供することができる。

Description

負熱膨張材料、複合材料、及び負熱膨張材料の製造方法
 本発明は、負熱膨張材料、複合材料、及び負熱膨張材料の製造方法に関する。
 電子機器や光学機器、燃料電池やセンサ等、複数の素材を組み合せるデバイスでは、熱膨張による位置ずれが問題になるほか、各素材の熱膨張係数の違いが界面剥離や断線といった深刻な障害に繋がる。このため、様々なニアゼロ熱膨張材料や熱膨張制御技術が研究されている。インバー合金、ガラス、コージェライト等は、単相でニアゼロ熱膨張であることが広く知られ、工業製品や民生製品に応用されている。近年、低熱膨張率のフィラー材との複合化によって、単味で熱膨張率の制御が困難な物質の低熱膨張化が検討されている。特に、低配合比で効果的に熱膨張を相殺できることから、負の熱膨張率を有する材料(以下、負熱膨張材料とも記載する)との複合化が注目されている。
 特許文献1には、負の熱膨張率を有する材料として、Bi1-xSbNiO(ただし、xは0.02≦x≦0.20である)が開示されている。
特開2017-48071号公報
 負の熱膨張率を有する材料として、これまで様々な材料が報告されているが、いずれの材料も貴金属や重金属を主成分とする材料が多いため、低コスト化や低密度化が実現されていないという問題がある。
 上記課題に鑑み本発明の目的は、低コスト化や低密度化が実現可能な負熱膨張材料、複合材料、及び負熱膨張材料の製造方法を提供することである。
 本発明にかかる負の熱膨張率を有する負熱膨張材料は、Zr2-a12+δで表されることを特徴とする。ただし、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である。
 本発明にかかる複合材料は、上記の負熱膨張材料と、正の熱膨張率を有する材料と、を含むことを特徴とする。
 本発明にかかる負熱膨張材料の製造方法は、オキシ塩化ジルコニウム八水和物と、リン酸アンモニウムと、硫酸と、を含む混合物を130℃以上の温度で水熱処理する工程と、前記水熱処理された後の混合物を450℃以上の温度で焼成して、Zr12+δ(ただし、0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である)で表される負の熱膨張率を有する材料を形成する工程と、を備える。
 本発明にかかる負熱膨張材料の製造方法は、オキシ塩化ジルコニウム八水和物と、リン酸アンモニウムと、硫酸と、元素Mを含む添加物と、を含む混合物を130℃以上の温度で水熱処理する工程と、前記水熱処理された後の混合物を450℃以上の温度で焼成して、Zr2-a12+δで表される負の熱膨張率を有する材料(ただし、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である)を形成する工程と、を備える。
 本発明により、低コスト化や低密度化が実現可能な負熱膨張材料、複合材料、及び負熱膨張材料の製造方法を提供することができる。
本発明にかかる負熱膨張材料の温度特性を示すグラフである。 本発明にかかる負熱膨張材料の温度特性を示すグラフである。 本発明にかかる負熱膨張材料の温度特性を示すグラフである。 本発明にかかる負熱膨張材料の製造方法を示すフローチャートである。 各サンプルの焼成条件および原子比を示す表である。 焼成温度とS原子の含有量との関係を示すグラフである。 各サンプルのXRD測定結果を示す図である。 2S/Zrと格子定数との関係を示すグラフである。 2S/Zrと格子定数との関係を示すグラフである。 サンプル4のFE-SEM像を示す図である。 サンプル4のFE-SEM像を示す図である。 各サンプルのXRD測定結果を示す図である(水熱処理温度:110℃)。 各サンプルのXRD測定結果を示す図である(水熱処理温度:130℃)。 各サンプルのXRD測定結果を示す図である(水熱処理温度:180℃)。 各サンプルのXRD測定結果を示す図である(水熱処理温度:230℃)。 各水熱処理温度で処理したサンプルの焼成温度とS原子の含有量との関係を示すグラフである。 サンプル11(水熱処理温度:110℃)のFE-SEM像を示す図である。 サンプル19(水熱処理温度:180℃)のFE-SEM像を示す図である。 負熱膨張材料の製造方法を示すフローチャートである。 ZrサイトをTiで置換したサンプルのXRD測定結果を示す図である。 Zr2-aTiSP12の実際の組成を示す表である。 Zr2-aTiSP12の温度特性を示すグラフである。 Ti量と格子体積の関係を示すグラフである。 Zr2-aTiSP12の各々の温度域における熱膨張係数をまとめたグラフである。 ZrサイトをCeで置換したサンプルのXRD測定結果を示す図である。 Zr2-aCeSP12の温度特性を示すグラフである。 ZrサイトをMnで置換したサンプルのXRD測定結果を示す図である。 Zr2-aMnSP12の温度特性を示すグラフである。 ZrサイトをSnで置換したサンプルのXRD測定結果を示す図である。 Zr2-aSnSP12の温度特性を示すグラフである。 ZrサイトをCe、Mn、Snで置換したサンプルの各々の温度域における熱膨張係数をまとめたグラフである。 負熱膨張材料の製造方法を示すフローチャートである。 SサイトをMoで置換したサンプルのXRD測定結果を示す図である。 SサイトをMoで置換したサンプルのXRD測定結果を示す図である。 Zr1-bMo12の温度特性を示すグラフである。 Zr1-bMo12の温度特性を示すグラフである。 SサイトをWで置換したサンプルのXRD測定結果を示す図である。 SサイトをWで置換したサンプルのXRD測定結果を示す図である。 Zr1-b12の温度特性を示すグラフである。 Zr1-b12の温度特性を示すグラフである。
 以下、本発明の実施の形態について説明する。
 本実施の形態にかかる負熱膨張材料は、Zr2-a12+δで表されることを特徴とする。ただし、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である。
 例えば、aがa=0の場合は、負熱膨張材料はZr12+δで表される材料となる。また、aがa=0以外の場合は、Zrサイトの一部がMで置換された材料となる。
 例えば、MがTiの場合は、負熱膨張材料はZr2-aTi12+δで表される材料となり、この場合のaの範囲は、好ましくは0<a≦0.7である。
 また、MがCeの場合は、負熱膨張材料はZr2-aCe12+δで表される材料となり、この場合のaの範囲は、好ましくは0<a≦0.4である。
 MがSnの場合は、負熱膨張材料はZr2-aSn12+δで表される材料となり、この場合のaの範囲は、好ましくは0<a≦1である。
 MがMnの場合は、負熱膨張材料はZr2-aMn12+δで表される材料となり、この場合のaの範囲は、好ましくは0<a≦0.2である。
 その他、Zrサイトの一部を置換する元素Mは、Hf、Ir、Pb、Pd、Crであってもよい。
 また、本実施の形態では、Zr2-a12+δで表される負熱膨張材料のSサイトの一部を、MoまたはWで置換してもよい。
 また、本実施の形態では更に、Pサイトの一部をV、Mn、Cr、As、Nb等の元素で置換してもよい。
 上述のように、本実施の形態にかかる負熱膨張材料は、安価でかつ比較的軽い原子を主成分として構成されている。したがって、負熱膨張材料の低コスト化や低密度化を実現することができる。
 以下、本実施の形態にかかる負熱膨張材料について詳細に説明する。以下の実施の形態では、一例として、Zr12+δ(ただし、0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である)について説明するが、本実施の形態では、Zr2-a12+δで表される他の負熱膨張材料についても同様の特性を示す。
 図1A~図1Cは、Zr12+δで表される負熱膨張材料の温度特性を示すグラフである。図1Aは、a(b)軸の格子定数の温度特性を示し、図1Bは、c軸の格子定数の温度特性を示し、図1Cは、格子体積の温度特性を示している。なお、本実施の形態にかかる負熱膨張材料は、稜面体晶系であるためa軸とb軸の長さが等しい。
 図1A~図1Cに示すように、本実施の形態にかかる負熱膨張材料は、xの値、すなわち硫黄原子Sの含有量に応じて熱膨張率が変化する。例えば、xの値が0.48≦x≦0.9である場合は、温度が100~180℃における負熱膨張材料の体積膨張率の絶対値は、温度が180℃よりも高い条件下における負熱膨張材料の体積膨張率の絶対値よりも大きくなる。つまり、xの値が、0.48≦x≦0.9である場合は、100℃から180℃にかけて急激に格子体積が変化する。この温度域では、a軸が膨張しながらもc軸が急激に収縮することで、格子全体で急激な体積収縮を発現する。
 一例を挙げると、本実施の形態にかかる負熱膨張材料の体積膨張率(100~180℃)は、x=0.48の場合は-94ppm/℃であり、x=0.54の場合は-101ppm/℃であり、x=0.76の場合は-101ppm/℃であり、x=0.90の場合は-108ppm/℃であり、xの値が大きいほど体積膨張率(100~180℃)が小さくなる傾向がある。
 また、x=0.90の場合に着目すると、30~100℃における体積膨張率は-26ppm/℃、100~180℃における体積膨張率は-108ppm/℃、180~350℃における体積膨張率は-8.1ppm/℃、350~500℃における体積膨張率は-13ppm/℃となる。
 また、xの値が0.4≦x<0.48である場合は、負熱膨張材料の体積膨張率が80℃以上において略一定となる(図1Cのx=0.43参照)。つまり、xの値が0.4≦x<0.48である場合は、他のサンプルと比べて80℃から180℃にかけての体積収縮の大きさが小さいため、体積膨張率が80℃以上において略一定となる。x=0.43の場合に着目すると、80℃以上で体積膨張率が-16ppm/℃で略一定となった。
 以上で説明したように、本実施の形態にかかる負熱膨張材料は、室温から500℃の範囲で負の熱膨張率を有する。特に、xの値が0.48≦x≦0.9である場合は、100~180℃の範囲において巨大な負の熱膨張を示し、その大きさは、硫黄原子Sの含有量が少ないほど小さくなる。また、xの値が0.4≦x<0.48である場合は、負熱膨張材料の体積膨張率が80℃以上において略一定となる。
 本実施の形態にかかる負熱膨張材料の結晶相は、α-ZrSP12(ICDDカード番号:04-017-0937)であるが、一部に他の結晶相が含まれていてもよい。例えば、α相(α-ZrSP12)以外に、β相(β-ZrSP12(ICDDカード:04-007-8019))が一部に含まれていてもよい。
 本実施の形態にかかる負熱膨張材料(Zr12+δ)を構成する原子はZr、S、Pであり、これらの材料は安価であるので、従来のように貴金属を用いて負熱膨張材料を形成した場合よりも安価に負熱膨張材料を形成することができる。よって、負熱膨張材料の低コスト化を実現することができる。
 また、本実施の形態にかかる負熱膨張材料(Zr12+δ)を構成する原子はZr、S、Pであり、これらの原子(特に、S、P)は比較的軽い原子であるので、従来の負熱膨張材料よりも負熱膨張材料の密度を低くすることができる。よって、負熱膨張材料の低密度化を実現することができる。
 例えば、負熱膨張材料であるMn-Sn-Zn-N(Smartec:登録商標)の密度は、約7g/cmである。また、負熱膨張材料であるZrWP12の密度は3.86g/cmであり、ZrMoP12の密度は3.36g/cmである。これに対して、本実施の形態にかかる負熱膨張材料であるZrSP12の密度は3.02g/cmであり、従来の負熱膨張材料よりも密度が低い。
 負熱膨張材料は正の熱膨張率を有する材料(正熱膨張材料)と混合することで、換言すると、正熱膨張材料中に負熱膨張材料を分散させることで、熱膨張率が制御された複合材料を形成することができる。例えば、このとき混合する負熱膨張材料の密度を小さくすることで、負熱膨張材料を正熱膨張材料中に均一に分散させることができる。
 また、上述のように、本実施の形態にかかる負熱膨張材料は、xの値、すなわち硫黄原子Sの含有量に応じて熱膨張率が変化する。すなわち、xの値が0.48≦x≦0.9である場合は、100~180℃の範囲において巨大な負の熱膨張を示し、その大きさは、硫黄原子Sの含有量が少ないほど小さくなる。また、xの値が0.4≦x<0.48である場合は、負熱膨張材料の体積膨張率が80℃以上において略一定となる。
 本実施の形態では、複合材料を形成する際に用いる正熱膨張材料の特性、目的とする複合材料の特性、複合材料を使用する温度領域等に応じて、負熱膨張材料のxの値を決定するようにするのが好ましい。
 例えば、正熱膨張材料が樹脂材料である場合は、樹脂材料の使用温度(耐熱温度)を考慮して、負熱膨張材料のxの値を0.48≦x≦0.9とするのが好ましい。つまり、樹脂材料の耐熱温度を考慮すると、樹脂材料の使用温度の範囲は室温から200℃程度と考えられる。また、xの値が0.48≦x≦0.9の場合は、100~180℃の範囲において巨大な負の熱膨張を示す。よって、負熱膨張材料のxの値を0.48≦x≦0.9とすることで、樹脂材料の使用温度範囲と負熱膨張材料が巨大な負の熱膨張を示す領域とを重ねることができ、複合材料の熱膨張率を効率的に制御することができる。
 また、例えば、正熱膨張材料が金属材料である場合は、金属材料の使用温度(耐熱温度)を考慮して、負熱膨張材料のxの値を0.4≦x<0.48とするのが好ましい。つまり、金属材料を含む複合材料の場合は、使用温度の範囲が広い場合が多い。ここで、xの値が0.4≦x<0.48である場合は、負熱膨張材料の体積膨張率が80℃以上において略一定となる。よって、負熱膨張材料のxの値を0.4≦x<0.48とすることで、金属材料を含む複合材料の使用温度範囲と負熱膨張材料の体積膨張率が略一定となる領域とを広い温度範囲において重ねることができ、複合材料の熱膨張率を効率的に制御することができる。
 なお、上記構成は一例であり、本実施の形態では、正熱膨張材料が金属材料である場合に、負熱膨張材料のxの値を0.48≦x≦0.9として複合材料を形成してもよい。また、正熱膨張材料が樹脂材料である場合に、負熱膨張材料のxの値を0.4≦x<0.48として複合材料を形成してもよい。すなわち、本実施の形態では、複合材料を使用する温度範囲や混合する正熱膨張材料の特性等を考慮して、負熱膨張材料のxの値を決定することができる。
 次に、本実施の形態にかかる負熱膨張材料(Zr12+δ)の製造方法について、図2に示すフローチャートを用いて説明する。まず、原料として、オキシ塩化ジルコニウム八水和物(ZrClO・8HO)、リン酸アンモニウム、及び硫酸(HSO)を準備する。ここで、リン酸アンモニウムは、リン酸二水素アンモニウム(NHPO)およびリン酸水素二アンモニウム((NHHPO)から選択される少なくとも1種を用いることができる。そして、ZrClO・8HOとNHPOとを蒸留水に溶解させた後、これらの水溶液に硫酸を混合して所定の時間、攪拌する(ステップS1)。
 その後、攪拌した後の水溶液(混合物)を130℃以上の温度、好ましくは180℃以上の温度で水熱処理する(ステップS2)。水熱処理の時間は、0.5~4日間とする。そして、所定の時間、水熱処理を行った後、水熱処理された後の混合物を乾燥する(ステップS3)。具体的には、水熱処理後の容器には白い沈殿物が生成されているので、この白い沈殿物を含む溶液(混合物)を蒸発皿に流し込み、約100℃のヒータで加熱して余分な水分を蒸発させる(1回目の乾燥)。このとき、混合物には過剰な硫酸が含まれているので完全には乾燥しないので、蒸発皿を300℃の電気炉に入れて2回目の乾燥を実施する(ステップS4)。
 2回目の乾燥が終了した後、乾燥後の混合物を450℃以上の温度で焼成して、上記一般式で表される負の熱膨張率を有する材料を形成する(ステップS5)。例えば、混合物を焼成する際の温度は450℃以上900℃以下とすることができる。このとき、乾燥後の混合物を焼成する際の温度を調整することで、上記一般式中のxの値を調整することができる。具体的には、焼成温度を高くするほど、上記一般式中の硫黄Sが抜けやすくなるため硫黄Sの量が減少する。また、このとき、焼成時間を調整することで、上記一般式中のxの値(つまり、Sの量)を調整してもよい。
 本実施の形態では、水熱法を用いて負熱膨張材料を製造しているので、安価に負熱膨張材料を製造することができる。また、詳細は後述するが、水熱法を用いることで、負熱膨張材料の粒度分布を小さくすることができる。このように負熱膨張材料の粒度分布を小さくすることで、負熱膨張材料を正熱膨張材料の中に均一に分散させることができる。
 また、本実施の形態にかかる負熱膨張材料の製造方法を用いた場合は、負熱膨張材料の形状を一辺が200~300nmの立方体状とすることができる(図7参照)。つまり、負熱膨張材料の粒子径を小さくすることができるので、負熱膨張材料と正熱膨張材料とを混合して複合材料を形成した際に、この複合材料の表面粗さを小さくすることができる。
 なお、上述した製造方法では、Zr12+δ(つまり、a=0の場合)の製造方法について説明したが、Zrサイトの一部をMで置換したZr2-a12+δ(0<a<2)を作製する際は、次のようにして作製することができる。すなわち、ステップS1において原料を混合する際に、オキシ塩化ジルコニウム八水和物、リン酸アンモニウム、及び硫酸の他に、元素Mを含む添加物を更に加える。例えば、MがTiである場合は、硫酸チタン(IV)溶液(Ti(SO)を加える。MがCeである場合は、硫酸セリウム4水和物(Ce(SO・4HO)を加える。MがSnである場合は、酸化スズ(SnO)を加える。MがMnである場合は、二酸化マンガン(MnO)を加える。なお、これらの添加物は一例であり、負熱膨張材料に元素Mを添加することができる添加物(原料)であれば、これら以外の材料を用いてもよい。
 また、上述のように本実施の形態では、Zr2-a12+δで表される負熱膨張材料のSサイトの一部を、MoまたはWで置換してもよい。この場合も、Mo元素を含む添加物またはW元素を含む添加物を製造時に添加することで、Sサイトの一部をMoまたはWで置換することができる。
 次に、本発明の実施例について説明する。
 以下では、下記に示す負熱膨張材料の具体的な実施例について説明する。
(1)Zr12+δ
(2)Zr2-aTi12+δ(Zrサイトの一部をTiで置換)
(3)Zr2-aCe12+δ(Zrサイトの一部をCeで置換)
(4)Zr2-aSn12+δ(Zrサイトの一部をSnで置換)
(5)Zr2-aMn12+δ(Zrサイトの一部をMnで置換)
(6)Zr1-bMo12+δ(Sサイトの一部をMoで置換)
(7)Zr1-b12+δ(Sサイトの一部をWで置換)
<(1)Zr12+δ
(負熱膨張材料の作製と評価)
 まず、本発明にかかる負熱膨張材料であるZr12+δ(0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である)の組成と熱膨張率との関係を調べるために、サンプル1~9を作製した。サンプル1~9は、図2に示すフローチャートの流れに従って作製した。
 具体的には、まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株)(現富士フイルム和光純薬(株)。以下同様)。)、NHPO(試薬特級、和光純薬工業(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOとNHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に注ぎ、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS2)。水熱処理の温度は180℃、水熱処理の時間は4日間とした。
 水熱処理後、取り出したテフロン容器内には白い沈殿物が生成されていた。この沈殿物を含んだ溶液を蒸発皿に流し込み、約100℃のヒータ上で加熱して余分な水分を蒸発させた(ステップS3:1回目の乾燥)。このとき、サンプルは過剰なHSOを含んでいるため完全には乾燥されずに水分が残っている状態となっていた。このため、蒸発皿ごと300℃の電気炉(KDF-S80、デンケン・ハイデンタル(株))で12時間更に乾燥させた(ステップS4:2回目の乾燥)。その後、300℃で乾燥したサンプルを電気炉(KDF-S80、デンケン・ハイデンタル(株))を用いて400~900℃で4時間または12時間焼成して白色粉末状のサンプル1~9を得た(ステップS5)。
 また、作製したサンプル1~9の組成(原子比)をICP-OES(Inductivity Coupled Plasma Optical Emission Spectrometry)を用いて分析した。
[ICP-OES]
・使用したICP-OES装置:5100 VDV ICP-OES(アジレント・テクノロジー)
・ICPイオン化部:Arプラズマ
 作製したサンプル1~9のZr、P、Sについての標準溶液(いずれも和光純薬工業(株))を用いて溶液中に含まれる原子濃度の検量線を作製し、混酸(0.5%のHF+5%のHNO)に完全に溶解させたサンプルの原子濃度を定量的に測定した。
 図3に、サンプル1~9の焼成条件と原子比との関係を示す。サンプル1~9では、Zrの原子比が2となり一定であった。また、Pの原子比は1.8~2となり略一定であった。一方、Sの原子比は、サンプル1~9の焼成条件によって異なっていた。
 具体的には、サンプル1(300℃の乾燥のみ)では、Sの原子比が1.6であった。サンプル2(焼成条件:400℃、4時間)では、Sの原子比が1.2であった。サンプル3(焼成条件:450℃、4時間)では、Sの原子比が1であった。サンプル4(焼成条件:500℃、4時間)では、Sの原子比が0.90であった。サンプル5(焼成条件:500℃、12時間)では、Sの原子比が0.76であった。サンプル6(焼成条件:600℃、4時間)では、Sの原子比が0.54であった。サンプル7(焼成条件:700℃、4時間)では、Sの原子比が0.48であった。サンプル8(焼成条件:800℃、4時間)では、Sの原子比が0.44であった。サンプル9(焼成条件:900℃、4時間)では、Sの原子比が0.43であった。
 図4は、焼成温度とS原子の含有量(原子比)との関係を示すグラフである。図4では、図3に示す表のサンプル1~4、6~9の焼成温度とS原子の原子比をプロットしている。図4に示すように、各サンプルの焼成温度が上昇するにつれて、Sの量が減少した。これは、焼成温度が上昇するにつれて、各サンプルからSが抜けやすくなるためである。図4に示す結果から、焼成温度を調整することで、サンプル中のSの量、つまり、Zr12+δのxの値を調整することができることが分かった。
 また、サンプル4とサンプル5とを比較すると、サンプル4(焼成条件:500℃、4時間)ではSの原子比が0.90でり、サンプル5(焼成条件:500℃、12時間)ではSの原子比が0.76であった。この結果から、焼成時間を長くするほどSの量が減少するといえる。したがって、焼成時間を調整することでもサンプル中のSの量を調整することができることが分かった。
 また、各サンプル1~9の結晶構造を確認するために、X線回折法(XRD:X‐ray diffraction)を用いて測定を行った。
[XRD]
・使用装置:XRD-6100(島津製作所(株))
・雰囲気:Air
・管電流/管電圧:30mA/40kV
・ターゲット:Cu
・ステップ幅:0.02°
・測定範囲(走査速度):10~70°(1°/min)
 サンプル1~9のXRD測定結果を図5に示す。図5に示すように、全てのサンプル1~9において、α-ZrSP12(ICDDカード番号:04-017-0937)の相が観察された。また、700℃以上で焼成したサンプル7~9では、30.5°付近にブロードなピークがみられるようになった。これは、ZrOのピークと考えられる。XRD測定結果から、単相のα-ZrSP12を得るためには、焼成温度は450~600℃が適切であると考えられる。
 また、XRD測定結果を用いてSの含有量と格子定数との相関性を調べた。図6A、図6Bに、算出した各サンプルの格子定数をSの割合(Zrを2に規格化した際のSの割合)に対してプロットした結果を示す。図6Aは、a軸の格子定数を示し、図6Bは、c軸の格子定数を示している。図6A、図6Bに示すように、a軸、c軸ともにSの含有量が1.0から0.48に半減するに伴って格子定数が線形的に小さくなることが示された。この傾向はベガード則と一致しており、Sの含有量が0.48まで半減してもα-ZrSP12が固溶体として存在することが示唆された。しかし、Sの含有量が0.44や0.43まで減少すると、ベガード則から外れた。a軸の格子定数は膨張したが、c軸が急激に収縮し、格子体積は急速に収縮することが分かった。以上の結果より、Sの含有量が0.4近傍まで減少した場合は、Sの固溶量の下限を下回り、α-Zr12の相が分解したと推察される。サンプル8、9のXRD測定結果においてZrOのピークが観察されたことを考慮すると、Sの含有量が0.44や0.43のサンプルは、α-ZrSP12とZrOの混相状態であると推察される。
 また、各サンプル1~9の熱膨張率を以下の方法を用いて測定した。
 下記の粉末X線回折装置にベンチトップ加熱ステージ(BTS 500、AntonPaar)を取り付け、任意の温度でX線回折パターンを測定した。なお、検出器には高速1次元検出器(D/teX Ultra2、(株)リガク)使用し、下記の条件で測定を行った。また、内部標準にSi(NIST SRM 640c)を用いた。
[高温XRD]
・使用装置:Mini Flex 600((株)リガク)
・雰囲気:Air
・管電流/管電圧:15mA/40kV
・ターゲット:Cu
・ステップ幅:0.02°
・測定範囲(走査速度):10~80°(4°/min)
・測定温度:30~500℃(80~220℃の間は20℃ごと、250℃以上では50℃ごとに測定)
 得られたX線回折パターンと解析ソフトウェア(HighScore Plus、PANalytical)を用いて、リートベルト法で結晶構造を精密化し、格子定数を算出した。算出した格子定数を温度に対してプロットし、直線近似した温度範囲で、下記の式を用いて、結晶軸ごとの線熱膨張率αと体積熱膨張率αを算出した。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 図1A~図1Cに、結晶軸ごとの線熱膨張率と体積熱膨張率とを示す。図1Cに示すように、α-ZrSP12は、100℃から180℃にかけて急激に体積が変化することが明らかになった。この温度域では、a軸が膨張しながらもc軸が急激に収縮することで、格子全体で急激な体積収縮を発現した。サンプル4(x=0.90)について熱膨張率を算出すると、a軸の線熱膨張率(100~180℃)は+79ppm/℃、c軸の線熱膨張率(同)は-263ppm/℃であり、体積熱膨張率(同)は-108ppm/℃と求まった。
 サンプル6(x=0.54)とサンプル7(x=0.48)をサンプル4(x=0.90)と比較すると、焼成温度が高く、Sの含有量が少ないほど体積変化が小さくなる傾向がみられた。体積熱膨張率(100~180℃)は、サンプル6(x=0.54)で-101ppm/℃、サンプル7(x=0.48)で-94ppm/℃であった。また、焼成時間が長いサンプル5(x=0.76)も、体積熱膨張率(同)が-101ppm/℃であり、サンプル4(x=0.90)と比較するとその体積変化が小さいことが示された。
 さらに、本測定においてサンプル9(x=0.43)は他の試料と比べて、100℃から180℃にかけての体積収縮の大きさが小さかった。サンプル9(x=0.43)では、a軸の線熱膨張率(100~180℃)は+8.3ppm/℃、c軸の線熱膨張率(同)は-44ppm/℃であり、体積熱膨張率(同)は-27ppm/℃と算出された。サンプル9(x=0.43)は最もSの含有量が少なく、室温での格子体積が他の試料と比べて小さかった。
 また、室温から100℃、180~500℃の温度域においても連続的な体積収縮がみられた。サンプル4(x=0.90)について熱膨張率を算出すると、体積熱膨張率(30~100℃)は-26ppm/℃、体積熱膨張率(180~350℃)は-8.1ppm/℃、体積熱膨張率(350~500℃)は-13ppm/℃であった。
 以上の結果より、α-ZrSP12は室温から500℃の範囲で負の熱膨張率を有する材料であることが示された。特に100~180℃の範囲では巨大な負の熱膨張を示し、その大きさは、Sの含有量が少ないほど小さくなることが示された。α-ZrSP12は100℃から180℃にかけて相転移を起こすために、このような巨大な負の熱膨張を示すと考えられる。
 また、電子顕微鏡(FE-SEM)を用いてサンプル4を観察した結果を図7A、図7Bに示す。図7Bは、図7Aよりも倍率の高い観察結果を示している。図7A、図7Bに示すように、サンプル4の粒子は一辺が200~300nmの立方体状で、粒度分布が小さいことが分かった。
[FE-SEM]
・使用装置:JSM-7500F(JEOL)
・加速電圧:7~10kV
(水熱処理条件の検討)
 水熱処理の最適な条件についても検討した。具体的には以下に示すサンプル10~25を作製し、これらのサンプルをICP-OES、XRD、FE-SEMを用いて評価して、水熱処理の最適な条件を調べた。
 サンプル10~25の作製方法は、水熱処理の条件以外は上述のサンプル1~9の作製方法と同様である。また、サンプルの評価に用いた装置も、上述のサンプル1~9を評価した装置と同様である。下記の表にサンプル10~25の水熱処理条件、焼成条件、及び構成原子比を示す。なお、「300℃(乾燥)」とは300℃で乾燥(図2のステップS4)した後、焼成処理(ステップS5)を行っていないサンプルであることを示している。以下、同様である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 図8にサンプル10~13(水熱処理温度:110℃、水熱処理時間:2日)のXRD測定結果を示す。水熱処理温度が110℃の場合は、500℃、700℃、900℃のいずれの温度で焼成してもα-ZrSP12のXRDピークが観測された。また、僅かな不純物としてβ-ZrSP12(ICDDカード:04-007-8019)が存在した。α相とβ相とでは結晶晶系と空間群が異なり、α相が稜面体晶系でR-3c、β相が斜方晶系でPbcn-60である。また、構成原子比におけるSの値はそれぞれで1.1、0.8、0.7と算出された。これらの値は、後述の180℃、130℃で水熱処理を行ったサンプルに比べて大きく、他の条件の場合よりもSが残留していることが示唆された。この原因は、α相よりも安定なβ相が生成しているために加熱してもSの脱離が起こりにくくなったからと考えられる。
 図9にサンプル14~17(水熱処理温度:130℃、水熱処理時間:2日)のXRD測定結果を示す。水熱処理温度が130℃の場合は、500℃の焼成温度で結晶性の良いα-ZrSP12が得られたが、ZrOのピークもみられた。また、その構成原子比はZr:S=2:0.8と理論組成よりも僅かにSが少なかった。700℃、900℃の焼成温度では、α-ZrSP12とZrOの混相状態を維持していたが、構成原子比のSの値は0.4に減少していた。
 図10にサンプル18~21(水熱処理温度:180℃、水熱処理時間:2日)のXRD測定結果を示す。水熱処理温度が180℃の場合は、500℃で焼成することでα-ZrSP12の単相を作製することができた。また、500℃で焼成した際の構成原子比はZr:S=2:0.9であった。さらに、700℃で焼成すると構成原子比はZr:S=2:0.5に減少し、900℃で焼成すると構成原子比はZr:S=2:0.4に減少した。
 水熱処理温度180℃の条件について、水熱処理時間が0.5日から7日のサンプルも作製した。この結果、水熱処理温度が180℃の場合は、水熱処理時間が0.5日から7日の全てのサンプルにおいて、水熱処理後に500℃で4時間焼成することでα-ZrSP12の単相を作製することができた。よって、水熱処理温度が180℃の場合は、少なくとも0.5日、水熱処理を実施し、その後、焼成することで、α-ZrSP12の単相を作製することができる。
 図11にサンプル22~25(水熱処理温度:230℃、水熱処理時間:4日)のXRD測定結果を示す。水熱処理温度が230℃の場合は、500℃で焼成することでα-ZrSP12の単相を作製することができた。500℃で焼成した際の構成原子比はZr:S=2:0.8であり、水熱処理温度が180℃の場合よりも僅かにSの割合が少なかったが不純物のピークは見られなかった。また、700℃で焼成すると構成原子比はZr:S=2:0.5に減少し、900℃で焼成すると構成原子比はZr:S=2:0.4に減少した。
 図12は、各水熱処理温度で処理したサンプルの焼成温度とS原子の含有量との関係を示すグラフである。図12に示すように、水熱処理温度が110℃の場合は、焼成温度に対するSの減少が緩やかであった。図12の結果を踏まえると、水熱処理温度が130℃以上である場合、焼成温度を調整することで、サンプル中のSの含有量を0.4近傍まで調整できることが分かった。よって、ZrSP12の組成制御を考慮すると、水熱処理温度を130℃以上とすることが好ましい。
 図13Aに、電子顕微鏡(FE-SEM)を用いてサンプル11(水熱処理温度:110℃)を観察した結果を示す。また、図13Bに、電子顕微鏡(FE-SEM)を用いてサンプル19(水熱処理温度:180℃)を観察した結果を示す。図13Aに示すように、水熱処理温度が110℃のサンプル11では、立方体状のα-ZrSP12の表面に不純物と考えられる粒子が多数存在した。図8に示したXRD測定結果においてβ-ZrSP12のピークが観察されたことを考慮すると、不純物はβ-ZrSP12の粒子と推測される。一方、図13Bに示すように、水熱処理温度が180℃のサンプル19では、一辺が200~300nmの立方体状の粒子が観察された。また、立方体状の粒子の表面に不純物は観察されなかった。
 以上で検討した結果を考慮すると、ZrSP12の組成制御を考慮すると、水熱処理温度を130℃以上とすることが好ましい。また、図10のXRD測定結果に示したように、水熱処理温度が180℃である場合は、500℃で焼成することでα-ZrSP12の単相を作製することができた。よって、単相のα-ZrSP12を作製する場合は、水熱処理温度を180℃以上にすることが好ましい。また、180℃以上で水熱処理を行った場合は、作製される粒子の形状や大きさは水熱処理温度によらないことが示唆された。
<(2)Zr2-aTi12+δ
 次に、Zrサイトの一部をTiで置換した材料(Zr2-aTi12+δ)について説明する。図14は、負熱膨張材料の製造方法を示すフローチャートであり、Zrサイトを元素Mで置換する場合の製造方法を示している。なお、図14に示すフローチャートにおいて、図2に示したフローチャートと同一の工程には同一の符号を付している。
 Zr2-aTi12+δにかかる負熱膨張材料は、図14に示すフローチャートにしたがって作製した。まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、30%硫酸チタン(IV)溶液(化学用、和光純薬工業(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各20mlと、30%硫酸チタン(IV)溶液(aの割合に応じた量)と、[6―(硫酸チタンで添加されるSの量)]mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。ここで、30%硫酸チタン(IV)溶液は、図14に示すフローチャートの置換元素に由来する物質に対応している。
 その後、攪拌した後の水溶液(混合物)をテフロン(登録商標)製の容器(HUT-100、三愛科学(株))に注ぎ、耐圧ステンレス製外筒(HUS-100、三愛科学(株))にセットした。そして、この容器を熱風循環オーブン(KLO-45M、光洋サーモシステム(株))に入れて加熱して水熱処理を行った(ステップS2)。水熱処理の温度は180℃、水熱処理の時間は12時間とした。
 水熱処理後、取り出したテフロン容器内には白い沈殿物が生成されていた。この沈殿物を含んだ溶液を蒸発皿に流し込み、約100℃のヒータ上で5時間加熱して余分な水分を蒸発させた(ステップS3:1回目の乾燥)。このとき、サンプルは過剰なHSOを含んでいるため完全には乾燥されずに水分が残っている状態となっていた。このため、蒸発皿ごと300℃の電気炉(KDF-S80、デンケン・ハイデンタル(株))で12時間更に乾燥させた(ステップS4:2回目の乾燥)。その後、300℃で乾燥したサンプルを電気炉(KDF-S80、デンケン・ハイデンタル(株))を用いて500℃で4時間焼成して白色粉末状のサンプルを得た(ステップS5)。
 このようにして作製したサンプルの結晶構造を確認するために、X線回折法を用いて測定を行った。図15は、Zrサイトの一部をTiで置換した材料(Zr2-aTi12+δ)のXRD測定結果を示す図である。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図15に示すXRD測定結果では、a=0のサンプルのXRDパターンがα-ZrSP12の結晶相(ICDDカード番号:04-017-0937)とほぼ一致した。また、a=0.8~1.8のサンプルでは、α-ZrSP12以外の不純物相が確認され、ピークはブロードであった。一方で、a=0.1~0.7のサンプルでは、不純物相が確認されず、α-ZrSP12の結晶相のみが確認された。したがって、aの値が0<a≦0.7のサンプルでは、Zrサイトの一部がTiで置換できたと考えられる。
 また、Zrサイトの一部をTiで置換したサンプル(a=0.1~0.7)の原子比を、ICP-OES装置を用いて測定した。図16は、作製したZr2-aTiSP12の実際の組成を示す表である。なお、元素分析に用いた装置および測定条件は上述の場合と同様である。
 図16に示すように、ZrとTiの比はSの濃度で規格化して算出した。その際、Sの濃度は上述の結果よりx=0.9として規格化した。図16に示すように、Tiはおおよそ化学量論比で存在していることが確認された。Zrは若干少なめであるが、a=0.1以外のサンプルではおおよそ化学量論比で存在することが示唆された。a=0.1のサンプルでZrが少なくなってしまった原因としては、混酸に試料を溶解させた際Zrのみが十分に溶解できていなかったことが考えられる。
 また、Zrサイトの一部をTiで置換したサンプルの格子体積(熱膨張係数)を、高温XRD装置を用いて求めた。図17は、作製したZr2-aTiSP12の温度特性(格子体積の温度依存性)を示すグラフである。なお、高温XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図17に示すように、Zr2-aTiSP12(a=0.1~0.7)では、全サンプルの格子体積が、ZrSP12(a=0)と比べて小さくなった。また、格子体積は、Ti量が増加するにつれて減少する傾向であった。4価6配位のZrイオンのイオン半径は0.72Å、4価6配位のTiイオンのイオン半径は0.605Åである。したがって、Ti量が増加するごとに格子体積が減少した原因は、ZrサイトにZrよりもイオン半径の小さなTiを置換したためであると考えられる。
 また、a=0.1~0.4のサンプルでは、ZrSP12(a=0)と同様、三段階の熱膨張挙動を示すことが明らかとなった。したがって、格子体積の傾きが変わるごとにフレームワーク-相転移-フレームワークに起因する負の熱膨張率を示していると考えられる。また、図17に示すように、相転移による体積収縮を示す温度範囲は、ZrSP12(a=0)よりもa=0.1~0.4のサンプルの方が増大傾向にあるといえる。
 一方、a=0.5~0.7のサンプルでは、相転移部分の体積収縮が大幅に減少していた。さらに、a=0.1~0.4のサンプルと比較して、測定初期(低温側)の格子体積が大幅に減少していた。また、a=0.7のサンプルでは、格子体積の変化を見る限り、相転移によるとみられる体積収縮がほとんど確認できなかった。このため、a=0.1~0.4のサンプルとa=0.5~0.7のサンプルとでは、サンプルの状態が大幅に異なる可能性があると思われる。
 また、室温での格子定数はTi量によりばらつきがあるものの、773Kではすべてのサンプルで、Tiの量が増えるにつれ等間隔で格子体積が減少することが確認された。Tiの量と格子体積の関係を図18に示す。図18に示すように、Tiの量と格子体積の減少は線形関係にあることが示唆され、ベガード則に従うことが確認できた。
 また、Zr2-aTiSP12+δ(a=0.1~0.7)のサンプルにおいても、a軸、c軸の格子定数の温度依存性について確認した。その結果、全サンプルにおいて、a軸の格子定数の変化量よりもc軸の格子定数の変化量の方が大きくなった。この結果は、上述したα-ZrSP12の結果(図1参照)と同様であった。
 図19は、Zrサイトの一部をTiで置換したサンプル(Zr2-aTiSP12:a=0.1~0.7)の各々の温度域における熱膨張係数をまとめたグラフである。図19において、ZSPはa=0のサンプルを示している。図19に示すように、Zr2-aTiSP12+δ(a=0.1~0.7)では、各々の温度域において様々な熱膨張係数をとることがわかる。本発明にかかる負熱膨張材料は、Tiの組成に応じて様々な熱膨張係数を有するので、使用する目的等に応じて材料の組成を適宜選択することができる。
<(3)Zr2-aCe12+δ
 次に、Zrサイトの一部をCeで置換した材料(Zr2-aCe12+δ)について説明する。
 Zr2-aCe12+δにかかる負熱膨張材料についても、図14に示すフローチャートにしたがって作製した。まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、硫酸セリウム4水和物(和光特級、和光純薬工業(株))、NHPO(試薬特級、和光純薬工業(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOとNHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと、硫酸セリウム4水和物(aの割合に応じた量)と、3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。ここで、硫酸セリウム4水和物は、図14に示すフローチャートの置換元素に由来する物質に対応している。なお、以降の製造方法については、上述のZr2-aTi12+δにかかる負熱膨張材料の製造方法と同様であるので、重複した説明は省略する。
 このようにして作製したサンプルの結晶構造を確認するために、X線回折法を用いて測定を行った。図20は、Zrサイトの一部をCeで置換した材料(Zr2-aCe12+δ)のXRD測定結果を示す図である。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図20に示すXRD測定結果では、a=0.2~0.6(Ce0.2~0.6)のサンプルにおいて、α-ZrSP12(α-ZSP)の結晶相が確認された。一方、Ce量がa=0.6以上のサンプルでは、ZrPの結晶相が確認された。したがって、aの値が0<a≦0.4のサンプルでは、Zrサイトの一部がCeで置換できたと考えられる。
 また、Zrサイトの一部をCeで置換したサンプルの格子体積(熱膨張係数)を、高温XRD装置を用いて求めた。図21は、作製したZr2-aCeSP12の温度特性(格子体積の温度依存性)を示すグラフである。なお、高温XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図21に示すように、Zr2-aCeSP12(a=0.4)では、サンプルの格子体積が、ZrSP12(ZSP)と比べて大きくなったが、格子体積の温度依存性に関しては、ZrSP12(ZSP)と同様の挙動を示した。つまり、Zr2-aCeSP12(a=0.4)では、ZrSP12(ZSP)と同様、三段階の熱膨張挙動を示すことが明らかとなった。したがって、格子体積の傾きが変わるごとにフレームワーク-相転移-フレームワークに起因する負の熱膨張率を示していると考えられる。
<(4)Zr2-aMn12+δ
 次に、Zrサイトの一部をMnで置換した材料(Zr2-aMn12+δ)について説明する。
 Zr2-aMn12+δにかかる負熱膨張材料についても、図14に示すフローチャートにしたがって作製した。まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、二酸化マンガン(MnO)(試薬特級、国産化学(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと、二酸化マンガン(MnO)(aの割合に応じた量)と、3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。ここで、二酸化マンガン(MnO)は、図14に示すフローチャートの置換元素に由来する物質に対応している。なお、以降の製造方法については、上述のZr2-aTi12+δにかかる負熱膨張材料の製造方法と同様であるので、重複した説明は省略する。
 このようにして作製したサンプルの結晶構造を確認するために、X線回折法を用いて測定を行った。図22は、Zrサイトの一部をMnで置換した材料(Zr2-aMn12+δ)のXRD測定結果を示す図である。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図22に示すXRD測定結果では、a=0.1~0.4(Mn0.1~0.4)のサンプルにおいて、α-ZrSP12(α-ZSP)の結晶相が確認された。一方、Mn量がa=0.3以上のサンプルでは、不純物相(矢印で示している)が確認された。したがって、aの値が0<a≦0.2のサンプルでは、Zrサイトの一部がMnで置換できたと考えられる。
 また、Zrサイトの一部をMnで置換したサンプルの格子体積(熱膨張係数)を、高温XRD装置を用いて求めた。図23は、作製したZr2-aMnSP12の温度特性(格子体積の温度依存性)を示すグラフである。なお、高温XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図23に示すように、Zr2-aMnSP12(a=0.1、a=0.2)では、サンプルの格子体積が、ZrSP12(ZSP)とほぼ同程度となった。また、格子体積の温度依存性に関しても、ZrSP12(ZSP)と同様の挙動を示した。つまり、Zr2-aMnSP12(a=0.1、a=0.2)では、ZrSP12(ZSP)と同様、三段階の熱膨張挙動を示すことが明らかとなった。したがって、格子体積の傾きが変わるごとにフレームワーク-相転移-フレームワークに起因する負の熱膨張率を示していると考えられる。
<(5)Zr2-aSn12+δ
 次に、Zrサイトの一部をSnで置換した材料(Zr2-aSn12+δ)について説明する。
 Zr2-aSn12+δにかかる負熱膨張材料についても、図14に示すフローチャートにしたがって作製した。まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、酸化スズ(SnO)(鹿特級、関東化学(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと、酸化スズ(SnO)(aの割合に応じた量)と、3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。ここで、酸化スズ(SnO)は、図14に示すフローチャートの置換元素に由来する物質に対応している。なお、以降の製造方法については、上述のZr2-aTi12+δにかかる負熱膨張材料の製造方法と同様であるので、重複した説明は省略する。
 このようにして作製したサンプルの結晶構造を確認するために、X線回折法を用いて測定を行った。図24は、Zrサイトの一部をSnで置換した材料(Zr2-aSn12+δ)のXRD測定結果を示す図である。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図24に示すXRD測定結果では、a=0.2~0.8(Sn0.2~0.8)のサンプルにおいて、α-ZrSP12(α-ZSP)の結晶相が確認された。一方、Sn量がa=1.0以上のサンプルでは、不純物相が確認された。したがって、aの値が0<a≦0.8のサンプルでは、Zrサイトの一部がSnで置換できたと考えられる。
 また、Zrサイトの一部をSnで置換したサンプルの格子体積(熱膨張係数)を、高温XRD装置を用いて求めた。図25は、作製したZr2-aSnSP12の温度特性(格子体積の温度依存性)を示すグラフである。なお、高温XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図25に示すように、Zr2-aSnSP12(a=0.4、a=0.6)では、300~400(K)において、サンプルの格子体積がZrSP12(ZSP)と比べて大きくなったが、格子体積の温度依存性に関しては、ZrSP12(ZSP)と同様の挙動を示した。また、Zr2-aSnSP12(a=0.2)では、サンプルの格子体積がZrSP12(ZSP)とほぼ同程度となった。つまり、Zr2-aSnSP12(a=0.2~0.6)では、ZrSP12(ZSP)と同様、三段階の熱膨張挙動を示すことが明らかとなった。したがって、格子体積の傾きが変わるごとにフレームワーク-相転移-フレームワークに起因する負の熱膨張率を示していると考えられる。
 図26は、ZrサイトをCe、Mn、Snで置換したサンプルの各々の温度域における熱膨張係数をまとめたグラフである。図26に示すように、ZrサイトをCe、Mn、Snで置換したサンプルにおいても、負の熱膨張係数を示すことがわかる。また、各々のサンプルでは、各々の温度域において様々な熱膨張係数を示すことがわかる。したがって、Zrのサイトの一部をこれらの元素で置換することで、様々な熱膨張係数を有する材料を形成することができる。したがって、使用する目的等に応じて、置換する元素を適宜選択することができる。
<(6)Zr1-bMo12+δ
 次に、Sサイトの一部をMoで置換した材料(Zr1-bMo12+δ)について説明する。Zr1-bMo12+δにかかる負熱膨張材料については、図14のフローチャートに示す製法Aと図27のフローチャートに示す製法Bの2つの製法を用いて作製した。
(製法A)
 まず、製法Aについて説明する。図14に示すように、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、(NHMo24・4HO aq.(和光特級、和光純薬工業(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと、(NHMo24・4HO aq.(bの割合に応じた量)と、3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。ここで、(NHMo24・4HO aq.は、図14に示すフローチャートの置換元素に由来する物質に対応している。以降の製造方法については、上述の他の負熱膨張材料の製造方法と同様である。なお、図14に示すステップS5の焼成工程については、500℃で4時間焼成したサンプルと、800℃で4時間焼成したサンプルの2種類を作製した。
(製法B)
 次に、製法Bについて説明する。なお、図27に示すフローチャートにおいてステップS1~S5については、図14に示したフローチャートのステップS1~S5と基本的に同様である。
 図27に示すように、まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。以降のステップS2~S5については、図14に示した製造方法と同様である。なお、ステップS5の焼成工程については、600℃で4時間焼成したサンプルと、800℃で4時間焼成したサンプルの2種類を作製した。
 その後、ステップS5で作製したZrSP12+δの粉末を、(NHMo24・4HO aq.(和光特級、和光純薬工業(株))に含浸させた(ステップS6)。そして、ZrSP12+δ粉末と(NHMo24・4HO aq.とを含む溶液をろ過した(ステップS7)。その後、ろ過した後の粉末を500℃で4時間焼成してサンプルを作製した(ステップS8)。
 このようにして作製したサンプルの結晶構造を確認するために、X線回折法を用いて測定を行った。図28は、製法Aで作製したZr1-bMo12+δのXRD測定結果を示す図である。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図28に示すXRD測定結果は、Mo量がb=0.2でステップS5の焼成温度が500℃のサンプル(b=0.2-500)、Mo量がb=0.2でステップS5の焼成温度が800℃のサンプル(b=0.2-800)、Mo量がb=0.6でステップS5の焼成温度が500℃のサンプル(b=0.6-500)、Mo量がb=0.6でステップS5の焼成温度が800℃のサンプル(b=0.6-800)のXRD測定結果を示している。
 図28に示すXRD測定結果では、Mo量b=0.2、焼成温度500℃のサンプル(b=0.2-500)、及びMo量b=0.6、焼成温度500℃のサンプル(b=0.6-500)において、α-ZrSP12(α-ZSP)の結晶相が確認された。よって、この条件では、Sサイトの一部がMoで置換できたと考えられる。
 一方、Mo量b=0.2、焼成温度800℃のサンプル(b=0.2-800)、及びMo量b=0.6、焼成温度800℃のサンプル(b=0.6-800)では、α-ZSPの結晶相の他にZrOのピークが確認された。よって、ステップS5の焼成温度が高い場合(800℃)は、ZrOが出現することが確認された。
 図29は、製法Bで作製したZr1-bMo12+δのXRD測定結果を示す図である。図29は、ステップS5における焼成温度が600℃、Mo量がb=0.02のサンプルのXRD測定結果(上図)と、ステップS5における焼成温度が800℃、Mo量がb=0.02のサンプルのXRD測定結果(下図)を示している。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図29の上図(Mo_600)に示すXRD測定結果では、α-ZSPの結晶相の他にβ-ZSPの結晶相のピークが若干確認された。また、図29の下図(Mo_800)に示すXRD測定結果では、α-ZSPの結晶相の他にZrOのピークが若干確認された。β-ZSP、ZrOのピークが現れたものの、これらのピークは弱く、α-ZSPの結晶相のピークがメインであるため、この条件では、Sサイトの一部がMoで置換できたと考えられる。
 また、Sサイトの一部をMoで置換したサンプルの格子体積(熱膨張係数)を、高温XRD装置を用いて求めた。図30、図31は、作製したZr1-bMo12の温度特性(格子体積の温度依存性)を示すグラフである。なお、高温XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図30では、図14のステップS5の焼成温度が500℃のZrSP12(ZSP)(ZSP_500℃)、600℃のZSP(ZSP_600℃)、及び図27のステップS5の焼成温度が600℃のZr1-bMo12(Mo_600℃)の温度特性を示している。図31では、図14のステップS5の焼成温度が700℃のZSP(ZSP_700℃)、900℃のZSP(ZSP_900℃)、及び図27のステップS5の焼成温度が800℃のZr1-bMo12(Mo_800℃)の温度特性を示している。
 図30に示すように、焼成温度が600℃のZr1-bMo12(Mo_600℃)では、300~400(K)において、サンプルの格子体積がZSPと比べて小さくなったが、格子体積の温度依存性に関しては、ZSPと同様の挙動を示した。また、図31に示すように、焼成温度が800℃のZr1-bMo12(Mo_800℃)では、300~400(K)において、サンプルの格子体積がZSP_700℃と比べて小さくなった。また、図31に示すように、焼成温度が800℃のZr1-bMo12(Mo_800℃)は、300~800(K)においてZSP_900℃と同様の温度依存性を示した。したがって、Sサイトの一部をMoで置換したZr1-bMo12においても負の熱膨張率を示していることが確認できた。
<(7)Zr1-b12+δ
 次に、Sサイトの一部をWで置換した材料(Zr1-b12+δ)について説明する。Zr1-b12+δにかかる負熱膨張材料については、図14のフローチャートに示す製法Aと図27のフローチャートに示す製法Bの2つの製法を用いて作製した。
(製法A)
 まず、製法Aについて説明する。図14に示すように、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、(NH101241・5HO(和光純薬工業(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと、(NH101241・5HO(bの割合に応じた量)と、3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。ここで、(NH101241・5HOは、図14に示すフローチャートの置換元素に由来する物質に対応している。以降の製造方法については、上述の他の負熱膨張材料の製造方法と同様である。なお、ステップS5の焼成工程については、500℃で4時間焼成したサンプルと、800℃で4時間焼成したサンプルの2種類を作製した。
(製法B)
 次に、製法Bについて説明する。なお、図27に示すフローチャートにおいてステップS1~S5については、図14に示したフローチャートのステップS1~S5と基本的に同様である。
 図27に示すように、まず、原料として、ZrClO・8HO(和光特級、和光純薬工業(株))、(NHHPO(試薬特級、関東化学(株))、及びHSO(試薬特級、和光純薬工業(株))を準備した。そして、ZrClO・8HOと(NHHPOとを、それぞれ0.8Mになるように蒸留水に溶解させた。続いて、これらの水溶液各10mlと3mlのHSOとを混合し、90分間スターラーを用いて攪拌した(ステップS1)。以降のステップS2~S5については、図14に示した製造方法と同様である。なお、ステップS5の焼成工程については、600℃で4時間焼成したサンプルと、800℃で4時間焼成したサンプルの2種類を作製した。
 その後、ステップS5で作製したZrSP12+δの粉末を、(NH101241・5HOaq.に含浸させた(ステップS6)。そして、ZrSP12+δ粉末と(NH101241・5HOとを含む溶液をろ過した(ステップS7)。その後、ろ過した後の粉末を500℃で4時間焼成してサンプルを作製した(ステップS8)。
 このようにして作製したサンプルの結晶構造を確認するために、X線回折法を用いて測定を行った。図32は、製法Aで作製したZr1-bWo12+δのXRD測定結果を示す図である。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図32に示すXRD測定結果は、W量がb=0.2でステップS5の焼成温度が500℃のサンプル(b=0.2-500)、W量がb=0.2でステップS5の焼成温度が800℃のサンプル(b=0.2-800)、W量がb=0.6でステップS5の焼成温度が500℃のサンプル(b=0.6-500)、W量がb=0.6でステップS5の焼成温度が800℃のサンプル(b=0.6-800)のXRD測定結果を示している。
 図32に示すXRD測定結果では、W量b=0.2、焼成温度500℃のサンプル(b=0.2-500)において、α-ZSPの結晶相が確認された。よって、この条件では、Sサイトの一部がWで置換できたと考えられる。
 一方、W量b=0.2、焼成温度800℃のサンプル(b=0.2-800)、W量b=0.6、焼成温度500℃のサンプル(b=0.6-500)、及びW量b=0.6、焼成温度800℃のサンプル(b=0.6-800)では、α-ZSPの結晶相の他に不純物相のピーク(矢印で示す)が確認された。
 図33は、製法Bで作製したZr1-b12+δのXRD測定結果を示す図である。図33は、ステップS5における焼成温度が600℃、W量がb=0.06のサンプルのXRD測定結果(上図)と、ステップS5における焼成温度が800℃、W量がb=0.06のサンプルのXRD測定結果(下図)を示している。なお、XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図33の上図(W_600)に示すXRD測定結果では、α-ZSPの結晶相の他にβ-ZSPの結晶相のピークが若干確認された。また、図33の下図(W_800)に示すXRD測定結果では、α-ZSPの結晶相の他にZrOのピークが若干確認された。β-ZSP、ZrOのピークが現れたものの、これらのピークは弱く、α-ZSPの結晶相のピークがメインであるため、この条件では、Sサイトの一部がWで置換できたと考えられる。
 また、Sサイトの一部をWで置換したサンプルの格子体積(熱膨張係数)を、高温XRD装置を用いて求めた。図34、図35は、作製したZr1-b12の温度特性(格子体積の温度依存性)を示すグラフである。なお、高温XRD測定に用いた装置および測定条件は上述の場合と同様である。
 図34では、図14のステップS5の焼成温度が500℃のZSP(ZSP_500℃)、600℃のZSP(ZSP_600℃)、及び図27のステップS5の焼成温度が600℃のZr1-b12(W_600℃)の温度特性を示している。図35では、図14のステップS5の焼成温度が700℃のZSP(ZSP_700℃)、900℃のZSP(ZSP_900℃)、及び図27のステップS5の焼成温度が800℃のZr1-b12(W_800℃)の温度特性を示している。
 図34に示すように、焼成温度が600℃のZr1-b12(W_600℃)では、300~400(K)において、サンプルの格子体積がZSPと比べて小さくなったが、格子体積の温度依存性に関しては、ZSPと同様の挙動を示した。また、図35に示すように、焼成温度が800℃のZr1-b12(W_800℃)では、300~400(K)において、サンプルの格子体積がZSP_700℃と比べて小さくなった。また、図31に示すように、焼成温度が800℃のZr1-b12(W_800℃)は、300~800(K)においてZSP_900℃と同様の温度依存性を示した。したがって、Sサイトの一部をWで置換したZr1-b12においても負の熱膨張率を示していることが確認できた。
 以上で説明した実施例では、Zr2-a12+δのうち、Zrサイトの一部を置換した実施例とSサイトの一部を置換した実施例を別々に説明した。しかし本発明では、ZrサイトとSサイトの両方を置換してもよい。
 以上、本発明を上記実施の形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。

Claims (19)

  1.  Zr2-a12+δで表されることを特徴とする、負の熱膨張率を有する負熱膨張材料。ただし、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である。
  2.  前記aがa=0であり、Zr12+δで表される、請求項1に記載の負熱膨張材料。
  3.  前記MがTiであり、前記aが0<a≦0.7である、請求項1に記載の負熱膨張材料。
  4.  前記MがCeであり、前記aが0<a≦0.4である、請求項1に記載の負熱膨張材料。
  5.  前記MがSnであり、前記aが0<a≦1である、請求項1に記載の負熱膨張材料。
  6.  前記MがMnであり、前記aが0<a≦0.2である、請求項1に記載の負熱膨張材料。
  7.  前記Sの一部がMoまたはWで置換されている、請求項1~6のいずれか一項に記載の負熱膨張材料。
  8.  前記xが、0.48≦x≦0.9である、請求項1~7のいずれか一項に記載の負熱膨張材料。
  9.  温度が100~180℃における前記負熱膨張材料の体積膨張率の絶対値が、温度が180℃よりも高い条件下における前記負熱膨張材料の体積膨張率の絶対値よりも大きいことを特徴とする、請求項8に記載の負熱膨張材料。
  10.  前記xが、0.4≦x<0.48である、請求項1~7のいずれか一項に記載の負熱膨張材料。
  11.  前記負熱膨張材料の体積膨張率が80℃以上において略一定である、請求項10に記載の負熱膨張材料。
  12.  請求項1~11のいずれか一項に記載の負熱膨張材料と、
     正の熱膨張率を有する材料と、を含むことを特徴とする複合材料。
  13.  請求項8または9に記載の負熱膨張材料と、
     正の熱膨張率を有する樹脂材料と、を含むことを特徴とする複合材料。
  14.  請求項10または11に記載の負熱膨張材料と、
     正の熱膨張率を有する金属材料と、を含むことを特徴とする複合材料。
  15.  オキシ塩化ジルコニウム八水和物と、リン酸アンモニウムと、硫酸と、を含む混合物を130℃以上の温度で水熱処理する工程と、
     前記水熱処理された後の混合物を450℃以上の温度で焼成して、Zr12+δ(ただし、0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である)で表される負の熱膨張率を有する材料を形成する工程と、を備える、負熱膨張材料の製造方法。
  16.  オキシ塩化ジルコニウム八水和物と、リン酸アンモニウムと、硫酸と、元素Mを含む添加物と、を含む混合物を130℃以上の温度で水熱処理する工程と、
     前記水熱処理された後の混合物を450℃以上の温度で焼成して、Zr2-a12+δで表される負の熱膨張率を有する材料(ただし、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である)を形成する工程と、を備える、
     負熱膨張材料の製造方法。
  17.  前記水熱処理された後の混合物を焼成する際の温度を調整することで、前記xの値を調整する、請求項15または16に記載の負熱膨張材料の製造方法。
  18.  前記水熱処理の温度が180℃以上である、請求項15~17のいずれか一項に記載の負熱膨張材料の製造方法。
  19.  前記水熱処理された後の混合物を焼成する際の温度が900℃以下である、請求項15~18のいずれか一項に記載の負熱膨張材料の製造方法。
PCT/JP2019/007225 2018-02-27 2019-02-26 負熱膨張材料、複合材料、及び負熱膨張材料の製造方法 WO2019167924A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/976,041 US11970396B2 (en) 2018-02-27 2019-02-26 Negative thermal expansion material, composite material, and method for producing negative thermal expansion material
CN201980026176.5A CN111989296A (zh) 2018-02-27 2019-02-26 负热膨胀材料、复合材料以及负热膨胀材料的制造方法
KR1020207026723A KR102655109B1 (ko) 2018-02-27 2019-02-26 부열팽창 재료, 복합 재료 및, 부열팽창 재료의 제조 방법
JP2020503513A JP7017743B2 (ja) 2018-02-27 2019-02-26 負熱膨張材料、複合材料、及び負熱膨張材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032930 2018-02-27
JP2018032930 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167924A1 true WO2019167924A1 (ja) 2019-09-06

Family

ID=67805771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007225 WO2019167924A1 (ja) 2018-02-27 2019-02-26 負熱膨張材料、複合材料、及び負熱膨張材料の製造方法

Country Status (5)

Country Link
US (1) US11970396B2 (ja)
JP (1) JP7017743B2 (ja)
KR (1) KR102655109B1 (ja)
CN (1) CN111989296A (ja)
WO (1) WO2019167924A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326703A (zh) * 2020-09-27 2021-02-05 中国空间技术研究院 一种不规则状或微尺度晶体材料体膨胀系数的测试方法
JP2021138832A (ja) * 2020-03-04 2021-09-16 株式会社球体研究所 負熱膨張微粒子及びその製造方法
WO2021261049A1 (ja) * 2020-06-22 2021-12-30 三井金属鉱業株式会社 化合物及びその製造方法、並びに、複合材料
CN114134568A (zh) * 2021-12-07 2022-03-04 贵州民族大学 一种高温高压合成一维热膨胀材料碳酸钙锰晶体
TWI836228B (zh) 2020-06-22 2024-03-21 日商三井金屬鑛業股份有限公司 化合物及其製造方法,及複合材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390642B (zh) * 2020-12-01 2023-01-31 郑州大学 一种负热膨胀材料Cu2V2-xPxO7及其制备方法
WO2023286885A1 (ko) * 2021-07-14 2023-01-19 동화일렉트로라이트 주식회사 신규한 화합물, 이를 포함하는 이차 전지용 전해액 및 이를 포함하는 이차 전지
CN115198362B (zh) * 2022-08-26 2023-07-18 郑州大学 一种负热膨胀材料CaSnF6及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138314A (ja) * 1985-12-10 1987-06-22 Mitsui Toatsu Chem Inc 固体酸化合物及びその製造方法
CN102432292A (zh) * 2011-09-22 2012-05-02 郑州大学 一种纳米负膨胀陶瓷Zr2(WO4)(PO4)2的烧结合成方法
CN104843663A (zh) * 2015-04-16 2015-08-19 东华大学 一种负膨胀材料ZrScMo2PO12及其固相烧结合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138214A (ja) 1985-12-12 1987-06-22 Nippon Petrochem Co Ltd 超高分子量ポリエチレンパイプの成形方法
JP6555473B2 (ja) 2015-08-31 2019-08-07 国立大学法人東京工業大学 負熱膨張性材料、及び複合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138314A (ja) * 1985-12-10 1987-06-22 Mitsui Toatsu Chem Inc 固体酸化合物及びその製造方法
CN102432292A (zh) * 2011-09-22 2012-05-02 郑州大学 一种纳米负膨胀陶瓷Zr2(WO4)(PO4)2的烧结合成方法
CN104843663A (zh) * 2015-04-16 2015-08-19 东华大学 一种负膨胀材料ZrScMo2PO12及其固相烧结合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALAMO, JAIME ET AL.: "Zirconium Phospho-sulfates with NaZr2(PO4)3-type Structure", JOURNAL OF SOLID STATE CHEMISTRY, vol. 51, 1984, pages 270 - 273, XP055635471 *
ISOBE, TOSHIHIRO ET AL.: "Preparation and properties of negative thermal expansion Zr2WP2O12 ceramics", MATERIALS RESEARCH BULLETIN, vol. 44, 2009, pages 2045 - 2049, XP026626326 *
ISOBE, TOSHIHIRO ET AL.: "Preparation and properties of Zr2MoP2O12 ceramics with negative thermal expansion", MATERIALS AND DESIGN, vol. 112, 2016, pages 11 - 16, XP055635470 *
THOMA, S. G. ET AL.: "Mixed Metal Phospho-Sulfates for Acid Catalysis", 1997 MRS FALL MEETINGS PROCEEDINGS: SYMPOSIUM Z - RECENT ADVANCES IN CATALYTIC MATERIALS , 1997 , MRS ONLINE PROCEEDINGS LIBRARY ARCHIVE, vol. 497, 1997, pages 191 - 200, XP055635472 *
ZHANG, NIU ET AL.: "Negative thermal expansion, optical and electrical properties of HfMnMo2PO12-delta", CERAMICS INTERNATIONAL, vol. 41, 2015, pages 15170 - 15175, XP029272807, doi:10.1016/j.ceramint.2015.08.090 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138832A (ja) * 2020-03-04 2021-09-16 株式会社球体研究所 負熱膨張微粒子及びその製造方法
WO2021261049A1 (ja) * 2020-06-22 2021-12-30 三井金属鉱業株式会社 化合物及びその製造方法、並びに、複合材料
JP7029576B1 (ja) * 2020-06-22 2022-03-03 三井金属鉱業株式会社 化合物及びその製造方法、並びに、複合材料
KR20230027217A (ko) 2020-06-22 2023-02-27 미쓰이금속광업주식회사 화합물 및 그 제조 방법, 그리고, 복합 재료
TWI836228B (zh) 2020-06-22 2024-03-21 日商三井金屬鑛業股份有限公司 化合物及其製造方法,及複合材料
CN112326703A (zh) * 2020-09-27 2021-02-05 中国空间技术研究院 一种不规则状或微尺度晶体材料体膨胀系数的测试方法
CN112326703B (zh) * 2020-09-27 2024-02-09 中国空间技术研究院 一种不规则状或微尺度晶体材料体膨胀系数的测试方法
CN114134568A (zh) * 2021-12-07 2022-03-04 贵州民族大学 一种高温高压合成一维热膨胀材料碳酸钙锰晶体
CN114134568B (zh) * 2021-12-07 2024-03-08 贵州民族大学 一种高温高压合成一维热膨胀材料碳酸钙锰晶体

Also Published As

Publication number Publication date
KR20200125634A (ko) 2020-11-04
CN111989296A (zh) 2020-11-24
US11970396B2 (en) 2024-04-30
KR102655109B1 (ko) 2024-04-04
JP7017743B2 (ja) 2022-02-09
JPWO2019167924A1 (ja) 2021-03-18
US20210363012A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2019167924A1 (ja) 負熱膨張材料、複合材料、及び負熱膨張材料の製造方法
KR101970397B1 (ko) 산화물 전해질 소결체 및 당해 산화물 전해질 소결체의 제조 방법
WO2010067866A1 (ja) 半導体セラミック及び正特性サーミスタ
JP5485275B2 (ja) セラミックス材料、このセラミックス材料の製造方法、およびこのセラミックス材料からなる電子セラミックス素子
Yu et al. Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and doping
Gupta et al. Phase composition and dielectric properties of spark plasma sintered PbZr0. 52Ti0. 48O3
Yu et al. The effects of dual-doping and fabrication route on the thermoelectric response of calcium cobaltite ceramics
Sutjarittangtham et al. Influence of seed nano-crystals on electrical properties and phase transition behaviors of Ba 0.85 Sr 0.15 Ti 0.90 Zr 0.10 O 3 ceramics prepared by seed-induced method
Torres et al. Effect of substrate on the microstructure and thermoelectric performances of Sr-doped Ca3Co4O9 thick films
Ksepko et al. XPS examination of newly obtained (Na0. 5Pb0. 5)(Mn0. 5Nb0. 5) O3 ceramics
Buyanova et al. BIFEVOX composites: manufacture and characterization
JP7029576B1 (ja) 化合物及びその製造方法、並びに、複合材料
JP2016150872A (ja) チタン酸バリウム及びその製造方法
Tateishi et al. Fabrication of lead-free semiconducting ceramics using a BaTiO3–(Bi1/2Na1/2) TiO3 system by adding CaO
Emel’yanova et al. Synthesis, structure, and properties of substituted bismuth niobates Bi 3 Nb 1–x Er x O 7–δ
Kaimieva et al. Bismuth-and iron-substituted lanthanum manganite: synthesis and structure
WO2023136116A1 (ja) 化合物及びその製造方法、並びに、複合材料
Ed-Dnoub et al. Study of structural and dielectric properties of Nickel-doped BaTiO3 material
JP6579318B2 (ja) イオン伝導性セラミックス及びその製造方法
CN114365318A (zh) Li离子导体及其制造方法
Kaimieva et al. The solid solutions based on lanthanum manganite as the cathod materials for bismuth-containing solid electrolytes
Turkoglu et al. SYNTHESIS AND CRYSTALLOGRAPHIC PROPERTIES OF THE TETRAGONAL (β) TYPE Bi (III) 2-2xHo (II) 2xO3-xx SOLID SOLUTION
Faruq et al. Effect of sintering temperature on structure and morphology of Ca0. 95La0. 02Bi0. 03MnO3 perovskite manganite prepared by sol-gel method
WO2023100599A1 (ja) フッ化物イオン電池用の固体電解質材料及びその製造方法
Piva et al. Facile preparation of BIMEVOX powders via melting process: From synthesis to sintering optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020503513

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026723

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19761295

Country of ref document: EP

Kind code of ref document: A1