WO2019167467A1 - 水分量検出装置 - Google Patents
水分量検出装置 Download PDFInfo
- Publication number
- WO2019167467A1 WO2019167467A1 PCT/JP2019/001591 JP2019001591W WO2019167467A1 WO 2019167467 A1 WO2019167467 A1 WO 2019167467A1 JP 2019001591 W JP2019001591 W JP 2019001591W WO 2019167467 A1 WO2019167467 A1 WO 2019167467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- unit
- light
- gain
- impedance
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 144
- 230000005856 abnormality Effects 0.000 claims abstract description 32
- 238000000605 extraction Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 105
- 230000003321 amplification Effects 0.000 claims description 77
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 77
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- 230000002159 abnormal effect Effects 0.000 claims description 54
- 230000008859 change Effects 0.000 claims description 29
- 239000000284 extract Substances 0.000 claims description 8
- 230000004397 blinking Effects 0.000 claims description 2
- 230000004048 modification Effects 0.000 description 50
- 238000012986 modification Methods 0.000 description 50
- 238000000034 method Methods 0.000 description 37
- 238000001035 drying Methods 0.000 description 36
- 238000010586 diagram Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 32
- 239000004065 semiconductor Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000007664 blowing Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 101100381996 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BRO1 gene Proteins 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3554—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/38—DC amplifiers with modulator at input and demodulator at output; Modulators or demodulators specially adapted for use in such amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/04—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
- H03F3/08—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
Definitions
- the present invention relates to a moisture content detection apparatus.
- a clothing drying device that dries clothing (target object) that has been dried in an indoor space is known to be equipped with a moisture content detection device that detects the moisture content of the object.
- a moisture amount detection device for example, a device that calculates the moisture amount from the temperature and humidity of the atmosphere of an object and the absorption of infrared rays by water is known. Then, the clothing drying device detects the moisture content of the object with the moisture content detection device, and adjusts the dehumidification strength based on the detection result of the moisture content detection device.
- a moisture content detection device for example, an infrared moisture meter that measures moisture content by utilizing infrared absorption by moisture is known (see, for example, Patent Document 1).
- the moisture amount detection device described in Patent Document 1 does not take into account disturbance light such as sunlight or fluorescent light. For this reason, when disturbance light enters the moisture amount detection device, an incorrect moisture amount may be detected.
- an object of the present invention is to provide a water content detection device in which detection of an erroneous water content due to ambient light is suppressed.
- a water content detection device includes a light source unit that emits light that blinks at a predetermined frequency toward an object, and the light is reflected by the object.
- a light receiving device that receives reflected light and outputs an intensity signal corresponding to the intensity of the reflected light, and a lock-in that outputs the extracted signal obtained by extracting the signal of the predetermined frequency from the intensity signal.
- An amplifier a first signal input from the light receiving device according to the intensity of the reflected light, and a determination unit configured to determine abnormality of the first signal from a first threshold
- One threshold is a maximum output voltage that is a maximum value of a difference between a reference voltage that is a predetermined signal in the light receiving device and an output voltage that is a signal output when the light receiving device receives the reflected light. Width and the light receiving device is the first It is determined the signal from the difference between the output possible output available voltage range.
- the water content detection apparatus it is possible to suppress an erroneous water content from being detected due to ambient light.
- FIG. 1 is a perspective view showing a schematic configuration of a clothes drying apparatus according to Embodiment 1.
- FIG. 2 is a control block diagram of the clothes drying apparatus according to the first embodiment.
- FIG. 3A is a schematic diagram illustrating a schematic configuration and an object of the water content detection device according to the first embodiment.
- FIG. 3B is a schematic diagram illustrating a detailed configuration and an object of the water content detection device according to Embodiment 1.
- FIG. 3C is a schematic diagram illustrating a circuit configuration of the moisture content detection apparatus according to the first embodiment.
- FIG. 4A is a diagram for explaining a light reception signal output from the light receiving unit according to Embodiment 1.
- FIG. 4B is a diagram for explaining a threshold voltage value according to the first embodiment.
- FIG. 5 is a flowchart showing the operation of water content detection in the water content detection device according to the first embodiment.
- FIG. 6 is a diagram illustrating an example in which the control unit according to Embodiment 1 controls the passband.
- FIG. 7 is a flowchart illustrating a gain control operation in the control unit according to the first embodiment.
- FIG. 8A is a schematic diagram illustrating a detailed configuration and an object of a water content detection device according to a modification of the first embodiment.
- FIG. 8B is a schematic diagram showing a circuit configuration of a moisture amount detection apparatus according to a modification of the first embodiment.
- FIG. 9A is a diagram illustrating an example of switching the impedance of the conversion impedance unit according to the modification of the first embodiment.
- FIG. 9B is a diagram illustrating an example in which the impedance of the conversion impedance unit according to the modification of the first embodiment is not switched.
- FIG. 10 is a flowchart showing an operation of water content detection in the water content detection device according to the modification of the first embodiment.
- FIG. 11A is a schematic diagram illustrating a detailed configuration and an object of the moisture amount detection device according to the second embodiment.
- FIG. 11B is a schematic diagram illustrating a circuit configuration of the water content detection apparatus according to the second embodiment.
- FIG. 12 is a diagram showing an example of signals acquired at outputs 1 to 3 shown in FIG. 11B according to the second embodiment.
- FIG. 13 is a flowchart showing an operation of detecting the moisture content in the moisture content detecting apparatus according to the second embodiment.
- FIG. 14 is a schematic diagram illustrating a circuit configuration of a water content detection apparatus according to a modification of the second embodiment.
- FIG. 15 is a flowchart showing the operation of detecting the moisture content in the moisture content
- substantially and “about” mean that a manufacturing error and a dimensional tolerance are included. That is, for example, it includes a difference of about several percent.
- FIG. 1 is a perspective view showing a schematic configuration of a clothes drying apparatus 100 according to the present embodiment.
- the clothing drying apparatus 100 sucks indoor air to dehumidify it, and blows air again indoors, thereby drying the object 2 dried in the room.
- the object 2 is, for example, clothing or the like when not particularly limited.
- Examples of the object 2 other than clothing include bedding such as sheets and pillow covers.
- the clothing drying apparatus 100 includes a substantially rectangular parallelepiped main body 101 and a lid 102 that opens and closes at the top of the main body 101.
- An air blower 103 (see FIG. 2) that is exposed when the lid 102 is in an open state is provided on the upper portion of the main body 101.
- the air blowing unit 103 dries the object 2 existing in the space 3 by sending the wind W to the indoor space 3.
- the space 3 is a space (free space) between the clothes drying apparatus 100 and the object 2.
- a suction port 104 for taking in outside air is provided at a position away from the lid 102 at the top of the main body 101.
- a flow path for guiding air from the suction port 104 to the blower 103 is formed inside the main body 101, and a dehumidifying section 105 (see FIG. 2) for dehumidifying the air is provided for the flow path.
- the lid 102 is provided with a moisture amount detection device 1 that detects the moisture content of the object 2.
- FIG. 2 is a control block diagram of the clothes drying apparatus 100 according to the present embodiment.
- the clothes drying apparatus 100 includes a dehumidifying unit 105, a blower unit 103, a moisture amount detection device 1, and a drying control unit 106.
- the dehumidifying unit 105 is, for example, a vapor compression heat pump, and dehumidifies the air flowing through the flow path of the main body 101.
- the air blowing unit 103 blows air dehumidified by the dehumidifying unit 105 toward the space 3.
- At least one drying condition such as a blowing range, a wind direction, a blowing intensity (wind force), a blowing temperature, or the like in the blowing unit 103 can be changed. Details of the moisture amount detection apparatus 1 will be described later.
- the drying control unit 106 is composed of a microcomputer.
- the drying control unit 106 includes a nonvolatile memory in which a general operation program of the clothes drying apparatus 100 is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, and a processor that executes the program. Etc.
- the drying control unit 106 controls the drying conditions of the air blowing unit 103 based on the moisture content of the object 2 detected by the moisture content detection device 1. Thereby, appropriate drying conditions are selected according to the moisture content of the object 2. Moreover, when there are a plurality of objects 2 as shown in FIG. 1, the wind direction and the like can be adjusted according to the water contents of the plurality of objects 2 detected by the water content detection device 1. That is, it is possible to intensively dry the object 2 having a large amount of water from the plurality of objects 2. Therefore, the clothes drying apparatus 100 can more efficiently dry clothes. Below, the moisture content detection apparatus 1 with which the clothing drying apparatus 100 is provided is demonstrated.
- each component of the moisture content detection device 1 will be described with reference to FIGS. 3A to 3C.
- a description will be given of a moisture content detection device that suppresses erroneous detection of moisture content when the intensity of disturbance light is substantially constant regardless of time.
- the disturbance light whose light intensity is substantially constant regardless of time is, for example, sunlight, and is also referred to as DC light hereinafter.
- FIG. 3A is a schematic diagram showing a schematic configuration of the water content detection device 1 according to the present embodiment and the object 2.
- FIG. 3B is a schematic diagram showing a detailed configuration of the water content detection device 1 according to the present embodiment and the object 2. 3B shows only the first output unit 110 of the first output unit 110 and the second output unit 120 illustrated in FIG. 3A for convenience.
- the water content detection device 1 emits light (irradiation light L) to the object 2 and detects the water content of the object 2 based on the light (reflected light R) reflected by the object 2. It is a detection device. In the present embodiment, as shown in FIGS. 1 and 2, the water content detection device 1 detects the water content contained in the object 2 arranged with a space 3 therebetween.
- the moisture amount detection device 1 includes a light source unit 10, a light source control unit 20, a determination unit 70, a signal processing unit 80, a first output unit 110, and a second output unit 120.
- the first output unit 110 includes a light receiving device 130, a lock-in amplifier 50, and an A / D converter 60, and outputs a signal corresponding to the light received by the light receiving device 130. The signal is output to the signal processing unit 80.
- the determination unit 70 determines whether the signal is normal using the signal acquired from the light receiving device 130, and outputs the determination result to the signal processing unit 80.
- the configuration of the second output unit 120 is the same as the configuration of the first output unit 110, and thus the description thereof is omitted. However, the second output unit 120 has a wavelength different from that of the first output unit 110. Light is received, and a signal corresponding to the received light is output to the signal processing unit 80.
- the light source unit 10 includes a semiconductor light emitting element that emits light, and is a light source unit that emits light that blinks at a predetermined frequency toward the object 2.
- An example of the light that the light source unit 10 irradiates the object 2 is shown as the irradiation light L in FIGS. 3A and 3B.
- the semiconductor light emitting element is a semiconductor chip that emits near infrared light by stacking a semiconductor layer on a growth substrate.
- the semiconductor light emitting element is also referred to as a light emitting element.
- the light source unit 10 emits, for example, detection light including a first wavelength band in which absorption by water is greater than a predetermined value and reference light including a second wavelength band in which absorption by water is equal to or less than a predetermined value.
- Water has a large absorption at a wavelength of about 1450 nm and a small absorption at a wavelength of about 1300 nm. For this reason, as the first wavelength band forming the detection light, a wavelength band having a large water absorbance is selected, and as the second wavelength band forming the reference light, the water absorbance is smaller than the first wavelength band. Select the wavelength band. For example, the center wavelength of the first wavelength band is 1450 nm, and the center wavelength of the second wavelength band is 1300 nm.
- the light emitting element emits light that continuously includes the first wavelength band and the second wavelength band
- the object 2 is detected including the first wavelength band that is largely absorbed by water.
- the light and the reference light including the second wavelength band whose absorption by water is smaller than the first wavelength band are irradiated.
- the light source unit 10 includes an LED (Light Emitting Diode) element that emits detection light including the first wavelength band and reference light including the second wavelength band as an example of the semiconductor light emitting element. .
- LED Light Emitting Diode
- the light source unit 10 may include a lens (not shown) that collects the light emitted from the light emitting element onto the object 2.
- the lens is a convex lens made of resin, but is not limited thereto.
- the light source unit 10 may include a scanning unit (not shown) for irradiating light emitted from the light emitting element to a desired position.
- the light source unit 10 may have a structure that scans (scans) light by adjusting the posture of the semiconductor light emitting element as the scanning unit, or may have another structure.
- the scanning unit is controlled by the light source control unit 20. That is, the light source unit 10 may irradiate the object 2 while scanning the light.
- the light irradiated to the target object 2 from the light source unit 10 may be, for example, light emitted from a light emitting element and reflected by a reflector or the like.
- the light source control unit 20 is a control device that controls the light source unit 10 and emits light from the light source unit 10 toward the object 2.
- the light source control unit 20 controls the light emitting elements so that the light emitting elements are repeatedly turned on and off at a predetermined light emission cycle. That is, the light source control unit 20 performs control to cause the light source unit 10 to blink at a predetermined frequency (for example, 1 kHz).
- the light source control unit 20 outputs a pulse signal having a predetermined frequency to the light emitting element, thereby turning on and off the light emitting element at a predetermined light emission period.
- the light source control unit 20 also outputs the pulse signal to the lock-in amplifier 50 as a reference signal.
- the pulse signal is an example of a control signal for the light source control unit 20 to control the light emission of the light source unit 10.
- the predetermined frequency that causes the light source unit 10 to blink is also referred to as a light emission frequency.
- the light source control unit 20 may irradiate light while scanning the object 2, for example.
- the light source control unit 20 scans light from the light emitting element by controlling the scanning unit and changing the posture of the light emitting element.
- the light source control unit 20 has a drive circuit and a microcomputer.
- the light source control unit 20 includes a non-volatile memory in which control programs for the light emitting elements and the scanning unit are stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. Have.
- the light receiving device 130 receives the reflected light R, which is the irradiation light L reflected by the object 2, and outputs an intensity signal corresponding to the intensity of the reflected light R to the lock-in amplifier 50.
- the light receiving device 130 includes a light receiving unit 30 and a signal amplifying unit 40.
- the light receiving unit 30 has a light receiving element (the light receiving element 31 shown in FIG. 3C) that receives the reflected light R and converts it into an electrical signal.
- the light receiving unit 30 photoelectrically converts the received light in the wavelength band to generate an electrical signal corresponding to the amount of light received (that is, intensity).
- the generated electric signal is output to the signal amplifier 40.
- the circuit configuration of the light receiving unit 30 will be described with reference to FIG. 3C.
- FIG. 3C is a schematic diagram showing a circuit configuration of the water content detection device 1 according to the present embodiment. Specifically, FIG. 3C shows circuit configurations of the light receiving device 130 and the determination unit 70.
- the light receiving unit 30 includes a light receiving element 31 and an IV conversion unit 32 (current-voltage conversion circuit).
- the light receiving element 31 outputs an electrical signal (an example of a photocurrent) corresponding to the intensity of the incident light to the IV conversion unit 32.
- the light receiving element 31 is, for example, a photodiode, but is not limited thereto.
- the light receiving element 31 may be a phototransistor or an image sensor.
- the cathode of the light receiving element 31 is connected to a power source.
- the voltage of the power supply is + 3.3V, for example. That is, a reverse bias voltage is applied to the light receiving element 31.
- the IV conversion unit 32 performs IV conversion on the photocurrent input from the light receiving element 31 and outputs a light reception signal. That is, the IV conversion unit 32 converts the photocurrent into a voltage and outputs it.
- the light reception signal is an example of a first signal input to the determination unit 70.
- the IV conversion unit 32 includes an operational amplifier 33 and an impedance 34.
- the operational amplifier 33 is a circuit that converts photocurrent into voltage.
- the input terminal on the + side of the operational amplifier 33 is connected to a power supply and receives a predetermined voltage.
- the predetermined voltage is a predetermined voltage and is also referred to as a reference voltage Vref hereinafter.
- the negative input terminal of the operational amplifier 33 is connected to the cathode side of the light receiving element 31 and receives a photocurrent.
- the IV conversion unit 32 according to the present embodiment is an inverting type IV conversion circuit (inverting amplifier circuit).
- the IV conversion unit 32 may be a normal type IV conversion unit (non-inverting amplifier circuit).
- the impedance 34 is used to adjust the voltage of the light reception signal (voltage signal) output from the IV conversion unit 32.
- the impedance value of the impedance 34 is appropriately determined according to a desired voltage value of the light reception signal.
- the impedance 34 is, for example, a feedback resistor.
- the light reception signal output from the light receiving device 130 will be described with reference to FIG. 4A.
- FIG. 4A is a diagram for explaining a light reception signal output from the light receiving unit 30 according to the present embodiment.
- FIG. 4A shows a received light signal when the received light amount of the reflected light R received by the light receiving element 31 is different, and shows an example in which the received light amount increases as the received light signals S1 to S3.
- the light reception signal S1 is a signal when the amount of reflected light R received by the light receiving element 31 is small.
- the period T1 indicates a signal (voltage signal) output at a timing at which the reflected light R is not received among the reflected light R that blinks, and the reference voltage Vref is output in the present embodiment.
- the period T2 indicates a signal (voltage signal) output at the timing of receiving the reflected light R among the flickering reflected light R, and an output voltage Vout1 lower than the reference voltage Vref is output.
- the IV conversion unit 32 includes an inverting amplifier circuit. When the IV conversion unit 32 is configured by a non-inverting amplifier circuit, a signal that is output at a timing when the reflected light R is received is a voltage that is higher than the reference voltage Vref.
- the light reception signal S2 indicates a signal when the amount of reflected light R received is larger than that of the light reception signal S1.
- the period T3 indicates a signal that is output at the timing of receiving the reflected light R among the reflected light R that blinks, and an output voltage Vout2 that is lower than the output voltage Vout1 is output.
- the period T4 indicates a signal that is output at a timing when the reflected light R is not received among the flickering reflected light R, and the reference voltage Vref is output as in the case of the received light signal S1.
- the light reception signal S3 is a signal when the amount of the reflected light R received is larger than that of the light reception signal S2, and indicates a signal when the light receiving element 31 receives the reflected light R having the maximum light reception amount.
- the period T5 indicates a signal that is output at the timing of receiving the reflected light R out of the reflected light R that blinks, and an output voltage Vout3 that is lower than the output voltage Vout2 is output.
- the period T6 indicates a signal output at a timing when the reflected light R is not received among the flickering reflected light R, and the reference voltage Vref is output as in the case of the received light signals S1 and S2.
- the difference (voltage difference) between the signal output at the timing when the reflected light R is received and the signal output at the timing when the reflected light R is not received is maximized. That is, the difference between the reference voltage Vref and the output voltage Vout3 is maximized.
- the maximum value of the difference is defined as the maximum output voltage width ⁇ Vmax (dynamic range).
- the output voltage Vout3 is a value set in advance according to the irradiation amount of the irradiation light L, the minimum value of the distance between the moisture amount detection device 1 and the object 2, and the like. That is, the maximum output voltage width ⁇ Vmax is a preset value.
- the outputtable voltage width Vmax shown in FIG. 4A is the voltage width of the light receiving signal that can be output by the light receiving unit 30, and is set in advance according to the specification of the IV conversion unit 32 or the like.
- the output possible voltage width Vmax is a voltage width with respect to the reference voltage Vref.
- the light reception signal output from the light receiving unit 30 is input to the signal amplification unit 40 and the determination unit 70.
- the light receiving element 31 included in the light receiving unit 30 receives light in the first wavelength band irradiated from the light source unit 10 and reflected by the object 2.
- the light receiving unit 30 may be provided on the incident side of the reflected light R with respect to the light receiving element 31, and may include a filter provided on the optical path of the reflected light R incident on the light receiving element 31.
- the filter transmits light in the first wavelength band and absorbs or reflects light in other wavelength bands.
- the light receiving element 31 included in the light receiving unit 30 can receive light in the first wavelength band that has passed through the filter.
- the light receiving unit of the second output unit 120 includes, for example, a filter that transmits light in the second wavelength band and absorbs or reflects light in other wavelength bands.
- the light receiving element receives light in the second wavelength band that has passed through the filter.
- the light receiving unit 30 In addition to the reflected light R, the light receiving unit 30 also receives light that becomes noise generated due to the indoor environment.
- the noise is noise due to disturbance light such as sunlight. Therefore, the light reception signal also includes a component corresponding to the amount of light received as noise.
- the intensity of light that becomes noise received by the light receiving unit 30 does not depend on the distance between the light source unit 10 and the object 2, but the intensity of the reflected light R received by the light receiving unit 30 is the distance between the light source unit 10 and the object 2. Varies depending on As the distance between the light source unit 10 and the object 2 increases, the intensity of the received reflected light R decreases.
- the light receiving unit 30 receives DC light having a substantially constant intensity as noise.
- the light receiving unit 30 receives the light reflected by the object 2 in synchronization with the scanning. That is, the light receiving unit 30 receives the light reflected by the object 2 for each position of the object 2 irradiated with the light from the light source unit 10.
- the moisture content detection apparatus 1 can detect the moisture content in a wider area. For example, the water content can be detected in a plurality of ranges or a plurality of objects 2 in the object 2.
- the light source control unit 20 can specify the position of the target object 2 that is currently detecting the amount of moisture (for example, the direction in which the target object 2 is viewed from the clothing drying apparatus 100) from the posture of the light emitting element, for example. is there. Thereby, the drying control part 106 can change drying conditions, such as the ventilation range in a ventilation part 103, or a wind direction. The detection of the moisture content will be described later.
- the signal amplification unit 40 receives the light reception signal output from the light reception unit 30 and outputs an amplification signal obtained by amplifying the light reception signal with a predetermined gain to the lock-in amplifier 50.
- the signal amplifying unit 40 includes an operational amplifier 41 that amplifies the received light signal.
- the amplified signal is an example of an intensity signal output from the light receiving device 130.
- the determination unit 70 determines an abnormality of the light reception signal from the light reception signal input from the light reception unit 30 and a predetermined first threshold value.
- the abnormality of the light reception signal means that an accurate moisture amount cannot be detected from the light reception signal due to the influence of disturbance light. Specifically, it means that the light reception signal is saturated due to the influence of disturbance light.
- the determination unit 70 is connected to a connection line that connects between the light receiving unit 30 and the signal amplification unit 40.
- the determination unit 70 includes a comparator 71 (comparator circuit).
- the light receiving signal and the threshold voltage Vro are input to the input terminal of the comparator 71.
- the threshold voltage Vro is a voltage generated by dividing a power supply voltage supplied from a power supply (for example, +3.3 V) by two resistors. Further, the determination unit 70 outputs the determination result to the signal processing unit 80.
- the determination unit 70 when a voltage lower than the threshold voltage Vro is input, the determination unit 70 outputs a predetermined signal (for example, a high-level signal, hereinafter also referred to as an abnormal signal) to the signal processing unit 80. For example, when a voltage equal to or higher than the threshold voltage Vro is input, the determination unit 70 outputs a predetermined signal (for example, a low level signal whose voltage value is lower than that of the abnormal signal) to the signal processing unit 80.
- a predetermined signal for example, a high-level signal, hereinafter also referred to as an abnormal signal
- the value of the threshold voltage Vro will be described with reference to FIG. 4B.
- FIG. 4B is a diagram for explaining the value of the threshold voltage Vro according to the present embodiment.
- FIG. 4B illustrates a signal in the light reception signal S3 illustrated in FIG. 4A.
- the scale of the vertical axis is changed from that in FIG. 4A.
- FIG. 4B (a) shows a light reception signal when the disturbance light (DC light) is not received and the reflected light R is received.
- FIG. 4B (b) shows a light reception signal when the DC light and the reflected light R are received.
- the period T7 indicates the timing at which the reflected light R is not received in the received light signal. That is, the period T7 is a period in which only DC light is received, and the output voltage Vout4 is a voltage that is output according to the amount of received DC light.
- a period T8 indicates the timing at which the reflected light R is received in the received light signal.
- the period T8 is a period in which the DC light and the reflected light R are received
- the output voltage Vout5 is a voltage that is output according to the received light amounts of the DC light and the reflected light R.
- 4B shows an example in which the output voltage Vout5 is equal to the lower limit voltage (for example, 0 V) of the outputtable voltage width Vmax.
- the light reception signal shown in FIG. 4B (b) since the light reception signal is within the outputtable voltage width Vmax, the light reception signal shown in FIG.
- FIG. 4B (c) shows a light reception signal when the intensity of the DC light is further increased from the state of FIG. 4B (b).
- the period T9 is a period in which only DC light is received, and the output voltage Vout6 is a voltage that is output according to the amount of received DC light.
- the output voltage Vout6 is smaller than the threshold voltage Vro.
- the period T10 is a period in which the DC light and the reflected light R are received, and the output voltage Vout7 is a voltage that is output according to the received light amounts of the DC light and the reflected light R.
- the output voltage Vout7 is smaller than the lower limit voltage of the outputtable voltage width Vmax.
- the alternate long and short dash line portion indicates a portion of the received light signal that is lower than the lower limit voltage of the outputtable voltage width Vmax of the light receiving unit 30.
- the alternate long and short dash line portion is outside the outputtable voltage width Vmax of the light receiving unit 30 and thus is not included in the light reception signal output from the light receiving unit 30 to the signal amplification unit 40. That is, the light reception signal is in a state where the output is saturated. In the state of FIG. 4B (c), an accurate moisture amount cannot be detected from the light reception signal output from the light receiving unit 30. Therefore, the determination unit 70 determines the state of (c) in FIG. 4B as abnormal.
- the threshold voltage Vro for the determination unit 70 to determine as abnormal is determined from the difference between the maximum output voltage width ⁇ Vmax and the outputtable voltage width Vmax.
- the voltage value of the output voltage Vout4 in the state shown in FIG. 4B (b) is set as the threshold voltage Vro.
- the IV conversion unit 32 is a non-inverting amplifier circuit
- the output voltage Vout4 is higher than the reference voltage Vref, and thus the threshold voltage Vro is also set as a voltage higher than the reference voltage Vref.
- the determination unit 70 outputs an abnormal signal when the output voltage (for example, the output voltage Vout4) is not between the reference voltage Vref and the threshold voltage Vro. In the present embodiment, the determination unit 70 outputs an abnormal signal when the voltage value of the output voltage becomes lower than the threshold voltage Vro. For example, in the period T7, the determination unit 70 outputs a signal that is not an abnormal signal (a signal indicating that there is no abnormality, for example, a low level signal) to the signal processing unit 80, and in the period T8, the abnormal signal (This is a signal indicating an abnormality, for example, a high level signal) is output to the signal processing unit 80. That is, in the state shown in FIG.
- the determination unit 70 repeatedly outputs an abnormal signal and a signal that is not an abnormal signal.
- the determination unit 70 outputs an abnormal signal to the signal processing unit 80 in the periods T9 and T10.
- the determination unit 70 continuously outputting only the abnormal signal is an example in which the determination unit 70 determines the received light signal as abnormal. Thereby, it is possible to suppress the moisture amount from being detected using the light-saturated light reception signal as shown in (c) of FIG. 4B.
- the threshold voltage Vro is an example of a first threshold value.
- the output voltages (for example, output voltages Vout4, Vout6, etc.) output at the timing when the reflected light R shown in (a) to (c) of FIG. 4B is not received are examples of the first output voltage. .
- the determination unit 70 performs the above determination on a first signal (in this embodiment, a light reception signal) output from at least one of the first output unit 110 and the second output unit 120. Also good. For example, the determination unit 70 may perform the above determination on only the output unit having a large amount of disturbance light or reflected light R received from the first output unit 110 and the second output unit 120.
- the determination unit 70 is, for example, a light reception signal with a low output voltage that is output at a timing when the reflected light R is not received among the two light reception signals output from the first output unit 110 and the second output unit 120.
- the above determination may be performed only for an output unit that receives a large amount of disturbance light.
- the determination unit 70 can preferentially determine the output unit where the output saturation of the received light signal is likely to occur.
- the value of the threshold voltage Vro with respect to the reference voltage Vref (that is, the potential difference between the reference voltage Vref and the threshold voltage Vro) is determined from the difference between the outputtable voltage width Vmax and the maximum output voltage width ⁇ Vmax.
- the example determined is shown, it is not limited to this.
- the threshold voltage Vro may be determined as the lower limit voltage of the outputtable voltage width Vmax (for example, in the example of FIG.
- the outputable voltage width Vmax is lower than the reference voltage Vref, for example, 0 V).
- the determination unit 70 may determine abnormality of the light reception signal from the threshold voltage Vro and the light reception signal. The determination unit 70 may determine whether the light source unit 10 is blinking or not by determining abnormality of the light reception signal based on the threshold voltage Vro determined without using the maximum output voltage width ⁇ Vmax.
- the lock-in amplifier 50 receives an amplified signal output from the signal amplifying unit 40 and extracts an extracted signal obtained by extracting a signal having a predetermined frequency (for example, a light emission frequency) from the amplified signal. This is a circuit that outputs to the / D converter 60. As illustrated in FIG. 3B, the lock-in amplifier 50 includes a band-pass filter 51, a mixer 52, and a first low-pass filter 53.
- the band pass filter 51 is a filter for suppressing noise components included in the amplified signal. By arranging the bandpass filter 51 between the signal amplifying unit 40 and the mixer 52, an amplified signal in which noise components outside the passband of the bandpass filter 51 are suppressed can be input to the mixer 52.
- the bandpass filter 51 is realized by, for example, an RLC circuit or a circuit using an operational amplifier.
- the mixer 52 is a circuit that extracts a signal component in which two signals are synchronized from the amplified signal that has passed through the bandpass filter 51 and the pulse signal that is output from the light source control unit 20 to the mixer 52.
- the mixer 52 can extract a signal component synchronized with the pulse signal from the amplified signal including noise, in other words, a signal component having the same phase. That is, the noise included in the amplified signal can be further suppressed by the mixer 52.
- the first low-pass filter 53 is a filter for removing the AC component from the signal component taken out by the mixer 52.
- the first low-pass filter 53 is realized by, for example, an RC circuit or a circuit using an operational amplifier.
- the processing by the lock-in amplifier 50 as described above is so-called lock-in amplifier processing.
- noise components such as disturbance light contained in an amplified signal
- the lock-in amplifier 50 it is possible to extract a signal with a high S / N ratio (Signal-to-noise ratio) from the received light signal including noise.
- the noise component can be suppressed before the signal is input to the A / D converter 60, the signal input to the A / D converter 60 exceeds the dynamic range of the A / D converter 60. Can be suppressed.
- the lock-in amplifier 50 has a function similar to that of a narrow-band band-pass filter that extracts a specific frequency from the received signal (for example, extracts only the frequency components for turning on and off the light emitted from the light source unit 10).
- the pass band of the first low-pass filter 53 is a fixed band.
- the cut-off frequency of the first low-pass filter 53 allows the center frequency and the signal to pass through in a signal having a center frequency of the light on / off frequency (for example, 1 kHz) emitted from the light source unit 10. It is determined appropriately according to the bandwidth.
- the A / D converter 60 is a circuit that receives an extracted signal that has been subjected to lock-in amplifier processing by the lock-in amplifier 50, performs A / D conversion on the extracted signal, and outputs a digital signal to the signal processing unit 80. .
- the digital signal output to the signal processing unit 80 includes noise caused by various circuits included in the moisture amount detection device 1.
- the various circuits are, for example, the signal amplification unit 40, the lock-in amplifier 50, the A / D converter 60, and the like.
- the noise is, for example, 1 / f noise.
- the signal processing unit 80 is a processing device that receives the digital signal converted by the A / D converter 60 and the abnormal signal from the determination unit 70 and performs predetermined processing on the digital signal and the abnormal signal. .
- the signal processing unit 80 includes a control unit 81, a second low-pass filter 82 (LPF2 in the drawing), and a processing unit 83.
- the moisture amount detection device 1 is configured such that the passband is further limited by the low-pass filter in the digital signal A / D converted by the A / D converter 60.
- the second low-pass filter 82 can change the pass band, and the pass band is controlled by the control unit 81.
- the second low-pass filter 82 is an example of a low-pass filter.
- the control unit 81 When the abnormality signal is input from the determination unit 70, the control unit 81 outputs a signal indicating that the light reception signal is abnormal.
- the control part 81 outputs the signal which shows that it is abnormal to the alerting
- the control unit 81 may output a signal indicating that the received light signal is abnormal to a device external to the moisture amount detection device 1.
- the control unit 81 may transmit a signal indicating that the received light signal is abnormal to a mobile terminal such as a smartphone via a wireless communication module (not shown).
- control unit 81 performs control to appropriately change the pass band of the second low-pass filter 82 in accordance with the signal strength indicated by the digital signal. For example, the control unit 81 performs control to widen the pass band of the second low-pass filter 82 as the signal strength indicated by the digital signal increases. In addition, the control unit 81 performs control to narrow the pass band of the second low-pass filter 82 as the signal strength indicated by the digital signal is smaller.
- the control of the pass band of the second low-pass filter 82 performed by the control unit 81 is an example of the first control. Details of the first control performed by the control unit 81 will be described later.
- control unit 81 performs control to change the gain of the signal amplification unit 40 in accordance with the signal strength indicated by the digital signal. For example, the control unit 81 performs control to decrease the gain of the signal amplifying unit 40 as the signal strength indicated by the digital signal increases, and to increase the gain of the signal amplifying unit 40 as the signal strength indicated by the digital signal decreases. Do.
- the control of the gain of the signal amplifying unit 40 performed by the control unit 81 is an example of the second control. Details of the second control performed by the control unit 81 will be described later.
- the signal intensity indicated by the digital signal may be, for example, a peak intensity indicated by the digital signal, an average intensity indicated by the digital signal, or an energy amount indicated by the digital signal. .
- the second low-pass filter 82 is a digital filter that can change a cutoff frequency that allows a signal having a frequency in a predetermined band (pass band) to pass from an input digital signal. Thereby, for example, noise caused by the A / D converter 60 included in the digital signal can be suppressed.
- the pass band of the second low-pass filter 82 is a frequency band equal to or lower than the cutoff frequency controlled by the control unit 81.
- the processing unit 83 is a processing device that detects a component included in the object 2 from the digital signal that has passed through the second low-pass filter 82. Specifically, the processing unit 83 detects the amount of water contained in the target object 2 based on the signal intensity indicated by the digital signal. For example, the processing unit 83 receives the first digital signal generated by passing the digital signal input from the first output unit 110 through the second low-pass filter 82 and the second output unit 120. The digital signal is converted into a moisture content by calculating a predetermined constant to a value based on division with the second digital signal generated by the digital signal passing through the second low-pass filter 82.
- the predetermined constant is the signal intensity indicated by the light of the first wavelength band that forms the detection light and the light of the second wavelength band that forms the reference light, which is emitted from the light source unit 10, the filter that the light receiving unit 30 has, At least one of the transmittance characteristics of the filter included in the light receiving unit of the second output unit 120, and the light receiving characteristics of the light receiving element included in the light receiving unit 30 and the light receiving unit included in the light receiving unit of the second output unit 120. It is a constant determined in advance. In the calculation, at least one of addition, subtraction, multiplication and division is performed.
- the signal processing unit 80 includes a nonvolatile memory in which a processing program for a digital signal is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like.
- the processing program for the digital signal stored in the nonvolatile memory includes the predetermined constant described above. A plurality of predetermined constants may be stored.
- the notification unit 90 is a notification device that performs predetermined notification in response to a signal from the signal processing unit 80.
- the notification unit 90 may be, for example, a light emitting device that emits predetermined light, or may be a display device such as a liquid crystal display that performs predetermined display.
- a light emitting device when a signal indicating that the received light signal is abnormal is acquired from the signal processing unit 80, light of a predetermined color is emitted.
- the moisture content detection device 1 includes a semiconductor light emitting element that emits light, and irradiates light that blinks at an emission frequency toward the object 2 and the object.
- the light receiving unit 30 that receives the light including the reflected light R reflected by 2 and generates a signal corresponding to the received light, and the light receiving signal output from the light receiving unit 30 does not receive the reflected light R
- a determination unit 70 that determines that an abnormality occurs when the output voltage output at the timing (for example, the output voltage Vout4 shown in FIG. 4B (b)) is lower than the threshold voltage Vro is provided.
- FIG. 5 is a flow chart showing the operation of water content detection in the water content detection device 1 according to the present embodiment.
- the light source control unit 20 controls the light source unit 10 to irradiate the object 2 with light. That is, the light source control unit 20 starts light emission of the light source unit 10 (S11). Specifically, the light source control unit 20 outputs a pulse signal having a predetermined frequency to the light emitting element to emit light.
- the light receiving unit 30 receives the reflected light R irradiated from the light source unit 10 and reflected by the object 2 in step S11 (S12).
- the light receiving unit 30 receives, for example, light in the first wavelength band among the light irradiated from the light source unit 10 and reflected by the object 2.
- the light receiving unit 30 also receives DC light that becomes noise such as sunlight.
- the light receiving unit 30 generates a light reception signal corresponding to the amount of received reflected light R and DC light.
- the generated light reception signal is output to the signal amplification unit 40 and the determination unit 70.
- the determination unit 70 determines whether or not the light reception signal is between the reference voltage Vref and the threshold voltage Vro. Specifically, the output voltage (for example, the output voltage Vout4 shown in FIG. 4B (b)) output at a timing when the reflected light R is not received among the received light signals is between the reference voltage Vref and the threshold voltage Vro. It is determined whether or not. In the present embodiment, the determination unit 70 determines whether or not the acquired light reception signal is equal to or higher than the threshold voltage Vro (S13). The determination unit 70 may perform the determination based on whether or not the abnormal signal is continuously output.
- the output voltage for example, the output voltage Vout4 shown in FIG. 4B (b)
- the signal processing unit 80 When the determination unit 70 determines that the output voltage is lower than the threshold voltage Vro (No in S13), the signal processing unit 80 outputs a signal indicating abnormality (S14). In the present embodiment, the signal processing unit 80 outputs a signal indicating abnormality to the notification unit 90 and causes the notification unit 90 to perform notification indicating abnormality. Then, the process returns to step S12. Note that if the determination unit 70 determines that the output voltage is lower than the threshold voltage Vro, the amount of water may not be detected for the light reception signal for which the determination has been made.
- the light reception signal (analog signal) is processed by the signal amplification unit 40 and the lock-in amplifier 50 (S15). Specifically, an amplified signal obtained by amplifying the received light signal with a predetermined gain is generated by the signal amplifier 40, and an extracted signal obtained by extracting a signal of the light emission frequency from the amplified signal is generated by the lock-in amplifier 50. The generated extraction signal is output to the A / D converter 60.
- the A / D converter 60 performs A / D conversion processing for converting the input extraction signal (analog signal) into a digital signal (S16). Then, the A / D converter 60 outputs a digital signal to the signal processing unit 80.
- steps S12 to S16 are performed in each of the first output unit 110 and the second output unit 120.
- steps S12 to S16 may be performed in parallel.
- the signal processing unit 80 performs predetermined signal processing on the input digital signal.
- the control unit 81 controls the pass band of the second low-pass filter 82 according to the signal intensity indicated by the digital signal and a predetermined first reference value (first reference intensity). For example, when the signal strength indicated by the digital signal is greater than the first reference value (Yes in S17), the control unit 81 has a wider pass band for the second low-pass filter 82 than the first pass band.
- the second pass band is controlled (S18). For example, when the signal strength indicated by the digital signal is equal to or lower than the first reference value (No in S17), the control unit 81 controls the pass band of the second low-pass filter 82 to the first pass band. (S19).
- the processing in steps S17 to S19 is an example of first control.
- the first reference value is stored in advance in a nonvolatile memory (not shown) included in the signal processing unit 80, for example.
- steps S17 to S19 is performed on each of the digital signal input from the first output unit 110 and the digital signal input from the second output unit 120.
- control unit 81 the first control performed by the control unit 81 will be described with reference to FIG.
- FIG. 6 is a diagram illustrating an example in which the control unit 81 according to the present embodiment controls the passband. Specifically, FIG. 6A shows the process performed by the control unit 81 in step S18, and FIG. 6B shows the process performed by the control unit 81 in step S19. In addition, the solid line shown to (a) and (b) of FIG. 6 shows a digital signal.
- the pass band of the 2nd low-pass filter 82 is shown. Is controlled to be a second pass band wider than the first pass band. Since the signal strength indicated by the digital signal is large, the influence on the S / N ratio is small even if the pass band is widened.
- the second low-pass filter 82 passes the digital signal up to a higher frequency as the pass band is wider, in other words, as the cutoff frequency is higher.
- the second low-pass filter 82 has a configuration that uses the moving average method, the higher the cut-off frequency, the smaller the number of samples for moving average.
- the moisture content detection device 1 increases the pass band of the second low-pass filter 82 when the signal intensity indicated by the digital signal is greater than the first reference value, thereby increasing the high S / N ratio by the lock-in amplifier 50.
- the signal processing time in the signal processing unit 80 can be shortened while maintaining the signal.
- the second low-pass filter 82 may have a configuration employing a method other than the moving average method.
- the control unit 81 when the control unit 81 is No in step S ⁇ b> 17, the signal strength indicated by the digital signal is equal to or lower than the first reference value, and thus the second low-pass filter 82.
- the first pass band is narrower than the second pass band. Since the signal intensity indicated by the digital signal is small, the noise component contained in the signal passing through the second low-pass filter 82 can be suppressed by narrowing the pass band. That is, the second low-pass filter 82 can extract a signal with a high S / N ratio even when the signal strength indicated by the digital signal is small.
- the processing unit 83 calculates a predetermined constant on the signal intensity indicated by the digital signal that has passed through the second low-pass filter 82 whose pass band has been controlled in step S18 or S19.
- the amount of water contained in the object 2 is detected (S20).
- the processing unit 83 calculates a predetermined constant in the ratio between the signal strength indicated by the digital signal input from the first output unit 110 and the signal strength indicated by the digital signal input from the second output unit 120. Then, the amount of water is detected. Then, the signal processing unit 80 outputs the detected moisture amount to the drying control unit 106.
- step S20 ends, the process returns to step S12 and the moisture amount detection process is continued.
- FIG. 7 is a flowchart showing a gain control operation in the control unit 81 according to the present embodiment.
- FIG. 7 shows processing in the control unit 81 after the A / D conversion processing is performed in step S16.
- the signal processing unit 80 performs predetermined signal processing on the input digital signal.
- the control unit 81 controls the gain of the signal amplifying unit 40 according to the signal intensity indicated by the digital signal and a predetermined second reference value (second reference intensity). For example, when the signal strength indicated by the digital signal is greater than the second reference value (Yes in S31), the control unit 81 sets the gain of the signal amplification unit 40 to a high amplification factor (gain) and a low amplification factor (gain). The gain is controlled to be lower (S32). That is, the control unit 81 performs control to lower the gain of the signal amplification unit 40 when the signal intensity indicated by the digital signal is greater than the second reference value.
- the moisture amount detection device 1 is configured so that the dynamics of the A / D converter 60 can be obtained even when the distance from the light source unit 10 to the object 2 is short, that is, even when the amount of light received by the light receiving unit 30 is large. The amount of moisture can be detected without exceeding the range.
- the control unit 81 may control the gain of the signal amplification unit 40 so that the signal input to the A / D converter 60 does not exceed the dynamic range of the A / D converter 60.
- the control unit 81 controls the gain of the signal amplification unit 40 to a high gain among the high gain and the low gain. (S33). That is, when the signal strength indicated by the digital signal is equal to or lower than the second reference value, the control unit 81 performs control to increase the gain of the signal amplification unit 40 as compared with Yes in step S31.
- steps S31 to S33 is an example of second control performed by the control unit 81. Further, the second reference value is stored in advance in a nonvolatile memory included in the signal processing unit 80, for example.
- the moisture amount detection device 1 receives a light source unit 10 that irradiates light that flickers at a predetermined frequency toward the object 2, and reflected light R that is reflected by the object 2.
- a light receiving device 130 that outputs an intensity signal corresponding to the intensity of the reflected light R
- a lock-in amplifier 50 that receives the intensity signal and outputs an extraction signal obtained by extracting a signal of a predetermined frequency from the intensity signal, and the light receiving device 130.
- the threshold voltage Vro is a maximum output voltage width ⁇ Vmax that is a maximum value of a difference between a reference voltage Vref that is predetermined in the light receiving device 130 and an output voltage that is a signal output when the light receiving device 130 receives the reflected light R. And the difference between the outputtable voltage width Vmax at which the light receiving device 130 can output a light reception signal.
- the threshold voltage Vro is determined as a voltage that does not saturate even when the light receiving device 130 receives disturbance light. That is, it is possible to determine whether the intensity signal is saturated by determining the first signal input from the light receiving device 130 using the threshold voltage Vro as a threshold. Further, in the intensity signal, when the determination is made using the output voltage and the threshold voltage Vro output at the timing when the light receiving device 130 does not receive the reflected light R, that is, the timing when only the disturbance light is received, The influence of light can be accurately determined. Therefore, the moisture content detection apparatus 1 according to the present embodiment can suppress detection of an erroneous moisture content due to ambient light.
- the light receiving device 130 includes a light receiving unit 30 that receives the reflected light R and outputs a light reception signal, and the first signal is a light reception signal.
- the maximum output voltage width ⁇ Vmax is the maximum value of the difference between the reference voltage Vref determined in advance in the light receiving unit 30 and the output voltage output when the light receiving unit 30 receives the reflected light R.
- the output possible voltage width Vmax is a voltage width from the reference voltage Vref in the light receiving unit 30.
- the threshold voltage Vro is determined from the difference between the maximum output voltage width ⁇ Vmax and the outputtable voltage width Vmax and the reference voltage Vref. Then, the determination unit 70 determines that the light reception signal is abnormal when the light reception signal is not between the reference voltage Vref and the threshold voltage Vro.
- the moisture content detection apparatus 1 can further suppress detection of an erroneous moisture content due to disturbance light (DC light).
- control unit 81 outputs a signal indicating that it is abnormal.
- the notification unit 90 when the notification unit 90 acquires a signal indicating that it is abnormal, the notification unit 90 can notify that the determination unit 70 has determined that the received light signal is abnormal.
- an A / D converter 60 that inputs an extraction signal, A / D-converts the extraction signal and outputs a digital signal, a variable pass band, and a digital signal is input from the digital signal.
- a second low-pass filter 82 that passes a signal having a frequency in the pass band.
- the control part 81 changes a pass band according to the signal strength which a digital signal shows.
- the pass band of the second low-pass filter 82 can be changed according to the signal strength indicated by the digital signal. For example, when the control unit 81 performs control to widen the pass band, the processing speed when performing the process of detecting the moisture content can be increased. Therefore, the water content detection device 1 can speed up the process of detecting the water content, compared to a water content detection device that does not include the second low-pass filter 82.
- the light source unit 10 irradiates while scanning light.
- the water content can be detected in a plurality of ranges in the object 2 or in the plurality of objects 2. Therefore, when the drying control unit 106 controls the drying conditions, it is possible to efficiently dry, for example, by intensively drying a position where the amount of moisture is large from the detection result. Further, when the moisture content in the object 2 is detected while scanning light, that is, when the moisture content is continuously detected, speeding up the processing in the signal processing unit 80 as described above is more effective. Play.
- the light source unit 10 has an LED element that emits the irradiation light L.
- the water content detection device 1 can be realized using an LED element that can be turned on and off corresponding to the light emission cycle of turning on and off controlled by the light source control unit 20.
- FIG. 8A is a schematic diagram showing a detailed configuration of the water content detection device 1a according to the present modification and the object 2.
- FIG. 8B is a schematic diagram illustrating a circuit configuration of a moisture amount detection device 1a according to the present modification. Specifically, FIG. 8B shows a circuit configuration of the light receiving device 130a and the determination unit 70a.
- the moisture amount detection device 1a includes a light receiving device 130a and a determination unit 70a instead of the light receiving device 130 and the determination unit 70 according to the first embodiment.
- the light receiving device 130a includes a light receiving unit 30a and a signal amplification unit 40a.
- the light receiving unit 30a includes a light receiving element 31 and an IV conversion unit 32a (current-voltage conversion circuit).
- This modification is characterized in that the IV conversion unit 32a has a conversion impedance unit 34a, and the impedance value of the IV conversion unit 32a is variable.
- the conversion impedance unit 34a has a plurality of impedances and is configured such that the impedance value can be changed.
- the conversion impedance unit 34a includes a plurality of impedances (for example, impedances Z1 to Z3) and a plurality of switches (for example, SW1 to SW3).
- the number of impedances of the conversion impedance unit 34a is not particularly limited as long as it is 2 or more.
- the number of impedances that the conversion impedance unit 34a has may be two or five, for example.
- Impedances Z1 to Z3 have predetermined impedance values and are connected in parallel.
- the impedance value of the impedance Z1 is 16 M ⁇
- the impedance value of the impedance Z2 is 4 M ⁇
- the impedance value of the impedance Z3 is 1 M ⁇ .
- the impedance values of the impedances Z1 to Z3 are not limited to the above. Further, the impedance values of the impedances Z3, Z2, and Z1 are four times larger in this order, but are not limited to this. Further, for example, at least two of the impedances Z1 to Z3 may have the same impedance value.
- the switch SW1 is a switch that is connected in series with the impedance Z1 and switches between conduction and non-conduction of the impedance Z1.
- the switch SW2 is a switch that is connected in series with the impedance Z2 and switches between conduction and non-conduction of the impedance Z2.
- the switch SW3 is connected in series with the impedance Z3 and switches between conduction and non-conduction of the impedance Z3.
- Each of the switches SW1 to SW3 is a semiconductor switch element such as an FET (Field Effect Transistor), but may be a relay element or the like.
- the switches SW1 to SW3 are controlled to be turned on and off by the signal processing unit 80.
- the signal processing unit 80 turns on at least one of the switches SW1 to SW3 according to the output voltage output at the timing of receiving the reflected light R in the received light signal.
- FIGS. 9A and 9B an impedance value and a light reception signal output at the impedance value will be described with reference to FIGS. 9A and 9B.
- FIGS. 9A and 9B the description will be made assuming that the disturbance light is not incident on the light receiving unit 30a.
- FIG. 9A is a diagram illustrating an example of switching the impedance value of the conversion impedance unit 34a according to the present modification.
- a switching voltage Vrc that is a threshold voltage for switching the impedance of the conversion impedance unit 34a is set.
- the switching voltage Vrc is set between the reference voltage Vref and the threshold voltage Vro.
- the switching voltage Vrc may be determined by the impedance value set in the conversion impedance unit 34a. For example, the ratio of (reference voltage Vref ⁇ switching voltage Vrc) :( reference voltage Vref ⁇ threshold voltage Vro) may be set to a predetermined value.
- the reference voltage Vref is 1.65V
- the switching voltage Vrc is 1.275V
- the threshold voltage Vro is 0.15V.
- the switching voltage Vrc is not used for determining whether or not the light reception signal performed by the determination unit 70a is abnormal.
- the switching voltage Vrc is an example of a second threshold value.
- FIG. 9A shows an example in which the received light signal is between the reference voltage Vref and the switching voltage Vrc. Specifically, an example is shown in which the output voltage Vout8 output at the timing when the reflected light R is received in the received light signal is between the reference voltage Vref and the switching voltage Vrc. The output voltage Vout8 is an example of a second output voltage. 9A shows an example in which the switch SW2 is turned on. That is, the impedance value of the conversion impedance unit 34a is 4 M ⁇ of the impedance Z2.
- FIG. 9B shows a light reception signal after the impedance of the conversion impedance unit 34a is switched from the impedance Z2 (4 M ⁇ ) to the impedance Z1 (16 M ⁇ ) in the state of FIG. 9A (a).
- the value of the output voltage Vout9 output at the timing when the reflected light R is received among the received light signals can be decreased.
- the potential difference between the output voltage (reference voltage Vref shown in FIG. 9A) output at a timing when the reflected light R is not received in the received light signal and the output voltage Vout9 is the reference voltage Vref and the output voltage Vout8. About 4 times the potential difference.
- the Johnson noise of the conversion impedance is doubled, but the signal is quadrupled. Therefore, the S / N ratio of this part is ideally doubled, and the detection resolution is improved.
- FIG. 9B is a diagram illustrating an example in which the impedance of the conversion impedance unit 34a according to this modification is not switched.
- FIG. 9B shows an example in which a part of the light reception signal protrudes between the reference voltage Vref and the switching voltage Vrc. Specifically, an example is shown in which the output voltage Vout10 output at the timing when the reflected light R is received in the received light signal is not between the reference voltage Vref and the switching voltage Vrc.
- FIG. 9B (a) shows an example in which the switch SW2 is turned on. That is, the impedance value of the conversion impedance unit 34a is 4 M ⁇ of the impedance Z2.
- FIG. 9B (b) shows a light reception signal after the impedance of the conversion impedance unit 34a is switched from the impedance Z2 (4 M ⁇ ) to the impedance Z1 (16 M ⁇ ) in the state of FIG. 9B (a).
- the value of the output voltage Vout11 output at the timing when the reflected light R is received among the received light signals can be decreased.
- the potential difference between the output voltage (reference voltage Vref shown in FIG. 9B) output at the timing when the reflected light R is not received in the received light signal and the output voltage Vout11 is the reference voltage Vref and the output voltage Vout10. About 4 times the potential difference.
- the threshold voltage Vro determined as the lower limit voltage of the outputtable voltage width Vmax may be used. Also in this case, the output saturation of the received light signal can be suppressed by performing the same determination as described above.
- the signal amplification unit 40a includes a high-pass filter 41a and an operational amplifier 42a.
- the high-pass filter 41a is a filter that is connected to the light receiving unit 30a and removes the DC component of the light receiving signal output from the light receiving unit 30a.
- the high pass filter 41a is realized by, for example, an RC circuit.
- the operational amplifier 42a receives the light reception signal output from the high-pass filter 41a, and outputs an amplified signal obtained by amplifying the light reception signal with a predetermined gain to the lock-in amplifier 50.
- the operational amplifier 42a is configured to be able to change the gain.
- the operational amplifier 42a may have a configuration including, for example, a switch connected in series to each of the impedances constituting the conversion impedance unit 34a and the conversion impedance unit 34a of the light receiving unit 30a.
- the gain of the operational amplifier 42a is controlled by the control unit 81, for example.
- the operational amplifier 42a may have a fixed gain.
- the determination unit 70a determines the abnormality of the received light signal from the received light signal input from the light receiving unit 30a and a predetermined first threshold value. The determination unit 70a further determines whether or not to change the impedance of the conversion impedance unit 34a of the light receiving unit 30a from the light reception signal input from the light receiving unit 30a and a predetermined second threshold value.
- the determination unit 70a includes a comparator 71a in addition to the comparator 71 according to the first embodiment.
- the comparator 71a is used to determine whether or not to change the impedance value of the conversion impedance unit 34a of the light receiving unit 30a.
- the light receiving signal and the switching voltage Vrc are input to the input terminal of the comparator 71a.
- the switching voltage Vrc is a voltage generated by dividing a power supply voltage supplied from a power supply (for example, +3.3 V) by two resistors.
- the determination unit 70a outputs the determination result of the change of the impedance value of the conversion impedance unit 34a to the signal processing unit 80 in addition to the determination result of the abnormality of the received light signal.
- the comparator 71 a when a voltage lower than the switching voltage Vrc is input, the comparator 71 a outputs a predetermined signal (for example, a high level signal) to the signal processing unit 80. Further, for example, when a voltage higher than the switching voltage Vrc is input, the comparator 71a is a low level signal having a voltage value lower than that of a predetermined signal (for example, a high level signal) to the signal processing unit 80. (Also described as a switching signal).
- the control unit 81 performs a predetermined process according to the signals input from the comparators 71 and 71a.
- the process performed by the control unit 81 according to the signal input from the comparator 71 is the same as that in the first embodiment, and the description thereof is omitted.
- the control unit 81 uses the output voltage output at the timing of receiving the reflected light R as the reference. Since it is between the voltage Vref and the switching voltage Vrc, the conduction and non-conduction of the switches SW1 to SW3 of the IV conversion unit 32a are controlled, and the impedance value of the conversion impedance unit 34a is increased. In addition, when the abnormal signal is not input from the comparator 71 and the switching signal is not input from the comparator 71a, the control unit 81 is output at the timing of receiving the reflected light R among the received light signals.
- the control unit 81 outputs the output voltage output at the timing of receiving the reflected light R among the received light signals. Is lower than the threshold voltage Vro, the conduction and non-conduction of the switches SW1 to SW3 of the IV conversion unit 32a are controlled, and the impedance of the conversion impedance unit 34a is lowered.
- FIG. 10 is a flowchart showing an operation of water content detection in the water content detection device 1a according to the present modification.
- steps S21 to S24 are further added to the moisture detection operation (see FIG. 5) in the moisture amount detection device 1 in the first embodiment.
- the operations from step S11 to S20 are the same as those in the first embodiment, and a description thereof will be omitted.
- the determination unit 70a further determines whether or not the light reception signal is equal to or higher than the switching voltage Vrc (S21).
- the determination unit 70a determines whether or not the light reception signal is between the reference voltage Vref and the switching voltage Vrc.
- the determination unit 70a determines whether or not the output voltage (for example, the output voltage Vout8 shown in FIG. 9A) output at the timing when the reflected light R is not received among the received light signals is between the reference voltage Vref and the switching voltage Vrc. Determine whether.
- the determination unit 70a may perform the determination by outputting the switching signal to the control unit 81 and not outputting the abnormal signal. Note that the determination unit 70 determining Yes in steps S13 and S21 is an example of a first determination.
- control unit 81 performs control to increase the impedance value of the conversion impedance unit 34a and decrease the gain of the signal amplification unit 40a (S22). In step S22, at least the impedance value may be changed.
- the control unit 81 sets the impedance Z2 to be non-conductive if determined Yes in step S21.
- the switches SW1 to SW3 are controlled so that the impedance Z1 having an impedance value larger than the impedance Z2 is conducted.
- the impedance Z2 is an example of a first impedance
- the impedance Z1 is an example of a second impedance.
- the gain of the signal amplification unit 40a is changed from the first gain when the impedance value of the impedance Z2 is greater than the first gain. Control to change to the second gain with a small amplification factor is performed.
- the control unit 81 may determine the second gain so that the product of the impedance value of the conversion impedance unit 34a and the gain of the signal amplification unit 40a is constant before and after changing the impedance value of the conversion impedance unit 34a. That is, the gain of the signal amplifying unit 40 may be set in advance according to the impedance value of the conversion impedance unit 34a. In the present embodiment, since the impedance value of the impedance Z1: Z2: Z3 is 16: 4: 1, the preset gain ratio may be 1: 4: 16.
- step S22 When the impedance and gain are changed in step S22, the process returns to step S12, and the process proceeds from the reception of the reflected light R.
- the determination unit 70a determines whether a part of the light reception signal is smaller than the threshold voltage Vro (S23).
- the determination unit 70a determines whether or not the output voltage (for example, the output voltage Vout11 shown in FIG. 9B (b)) that is output at the timing when the reflected light R is received in the received light signal is smaller than the threshold voltage Vro. To do.
- the determination unit 70a does not output the switching signal to the control unit 81 and is abnormal. The determination may be performed by outputting a signal.
- the control unit 81 sets the impedance Z2 to be non-conductive if determined Yes in step S23.
- the switches SW1 to SW3 are controlled so that the impedance Z3 having an impedance value smaller than the impedance Z2 is conducted.
- the impedance Z3 is an example of a third impedance value.
- control unit 81 When the impedance of the conversion impedance unit 34a is further decreased, the control unit 81 further increases the gain from the first gain when the gain of the signal amplification unit 40a is the impedance Z2. Control to change to a large third gain is performed.
- the control unit 81 may determine the third gain so that the product of the impedance value of the conversion impedance unit 34a and the gain of the signal amplification unit 40a is constant before and after changing the impedance of the conversion impedance unit 34a.
- the process returns to step S12, and the process proceeds from reception of the reflected light R.
- step S23 If the output voltage output at the timing of receiving the reflected light R among the received light signals is equal to or higher than the threshold voltage Vro (No in step S23), the impedance and gain are not changed, and the process proceeds to step S15. Steps are performed. Note that the processes of steps S13, S21, and S23 may be performed in parallel.
- control part 81 demonstrated above the example which performs both control (S22) which increases the impedance value of the conversion impedance part 34a, and control (S24) which decreases the impedance value of the conversion impedance part 34a, it demonstrated.
- the control unit 81 may control at least one of steps S22 and S24.
- the control unit 81 may control at least one of steps S22 and S24.
- the impedance value of the conversion impedance unit 34a is not changed in step S24
- the determination unit 70a determines Yes in step S23
- the process may return to step S12. Further, the process in step S23 may not be performed.
- the control unit 81 does not change the impedance value of the conversion impedance unit 34a, the gain of the signal amplification unit 40a is not changed.
- the water content detection device 1a further includes a control unit 81.
- the light receiving unit 30a includes a light receiving element 31 that receives the reflected light R and outputs a photocurrent, and an IV conversion unit 32a that performs IV conversion of the photocurrent and outputs a light reception signal.
- the IV conversion unit 32a It has an operational amplifier 33 to which a current is input, and a conversion impedance unit 34a whose impedance value can be changed.
- the determination unit 70a further includes a switching voltage Vrc between the threshold voltage Vro and the reference voltage Vref as a second output voltage that is output at the timing when the reflected light R is received in the received light signal, and the reference voltage.
- the control unit 81 changes the impedance of the conversion impedance unit 34a from the impedance Z2 to the impedance Z1 having an impedance value larger than the impedance Z2, and the determination unit 70a
- the second determination is made, at least one of the control of changing the impedance of the conversion impedance unit 34a from the impedance Z2 to the impedance Z3 having an impedance value smaller than the impedance Z2 is performed.
- the impedance value of the conversion impedance unit 34a of the IV conversion unit 32a can be changed to an appropriate value according to the amount of disturbance light such as sunlight.
- the amount of disturbance light such as sunlight is large, the impedance value of the conversion impedance unit 34a of the IV conversion unit 32a is changed to be small, so that the light reception signal output from the light reception unit 30a is output. Saturation can be suppressed.
- the impedance value of the conversion impedance unit 34a of the IV conversion unit 32a is changed so as to increase, so that high detection resolution can be maintained. Therefore, the moisture content detection device 1a according to the present modification can further suppress detection of an erroneous moisture content due to ambient light, and can maintain high detection resolution.
- the signal amplifying unit 40a is further provided with a signal amplifying unit 40a that receives the received light signal and outputs an amplified signal obtained by amplifying the received light signal with a predetermined gain to the lock-in amplifier 50 as an intensity signal.
- the control unit 81 further changes the gain of the signal amplification unit 40a from the first gain to a second gain smaller than the first gain when the impedance of the conversion impedance unit 34a is changed from the impedance Z2 to the impedance Z1.
- the gain of the signal amplifying unit 40a is changed from the first gain to a third gain larger than the first gain.
- the impedance of the conversion impedance unit 34a of the light receiving unit 30a is changed, it is possible to suppress the change in the A / D resolution by changing the gain of the signal amplification unit 40a.
- the gain of the signal amplification unit 40a is changed by changing the gain of the signal amplification unit 40a from the first gain to the second gain.
- the A / D resolution is improved as compared with the case of not doing so.
- control unit 81 has the second gain and the third gain so that the product of the impedance of the conversion impedance unit 34a and the gain of the signal amplification unit 40a is constant before and after changing the impedance of the conversion impedance unit 34a. To decide.
- each component of the moisture content detection apparatus 201 will be described with reference to FIGS. 11A and 11B.
- a description will be given of a moisture content detection apparatus that suppresses erroneous detection of moisture content when the intensity of ambient light changes depending on time.
- the disturbance light whose light intensity changes depending on time is, for example, fluorescent light, and is also referred to as AC light hereinafter.
- FIG. 11A is a schematic diagram showing a detailed configuration of the water content detection device 201 according to the present embodiment and the object 2.
- FIG. 11B is a schematic diagram illustrating a circuit configuration of the moisture amount detection apparatus 201 according to the present embodiment. Specifically, FIG. 11B shows a circuit configuration of the light receiving device 230 and the determination unit 270.
- the moisture amount detection apparatus 201 includes a light source unit 10, a light source control unit 20, a determination unit 270, a signal processing unit 80, and a first output unit. 110 and a second output unit (not shown).
- the first output unit 110 includes a light receiving device 230, a lock-in amplifier 50, and an A / D converter 60, and outputs a signal corresponding to the light received by the light receiving device 230 to the signal processing unit 80.
- determination unit 270 determines whether or not there is an abnormality in the signal using the signal acquired from light receiving device 230 and outputs the determination result to signal processing unit 80.
- the determination unit 270 is characterized in that a predetermined determination is performed using the amplified signal output from the signal amplification unit 240 as an input.
- the configurations of the light source unit 10, the light source control unit 20, the light receiving unit 30, the lock-in amplifier 50, the A / D converter 60, the signal processing unit 80, and the notification unit 90 are the same as those in the first embodiment. Description is omitted.
- the signal amplification unit 240 receives the light reception signal output from the light reception unit 30, and outputs an amplification signal obtained by amplifying the light reception signal with a predetermined gain to the lock-in amplifier 50 as an intensity signal.
- the signal amplification unit 240 includes a high pass filter 241 and an operational amplifier 242.
- the signal amplification unit 240 has the same configuration as the signal amplification unit 40a according to the modification of the first embodiment.
- the signal amplifying unit 240 is an example of a first signal amplifying unit, and the amplified signal output from the signal amplifying unit 240 is an example of a first amplified signal.
- the amplified signal is an example of a first signal input to the determination unit 270.
- the determination unit 270 determines an abnormality of the amplified signal from the amplified signal input from the signal amplifying unit 240 and a predetermined first threshold value.
- the abnormality of the amplified signal means that an accurate moisture amount cannot be detected from the amplified signal due to the influence of disturbance light. Specifically, it means that the output of the amplified signal is saturated due to the influence of disturbance light.
- the determination unit 270 is connected to a connection line that connects between the signal amplification unit 240 and the lock-in amplifier 50.
- the determination unit 270 includes a comparator 271 (comparator circuit).
- the amplified signal and the threshold voltage Vro are input to the input terminal of the comparator 271.
- the threshold voltage Vro is a voltage generated by dividing a power supply voltage supplied from a power supply (for example, +3.3 V) by two resistors.
- the determination unit 270 determines that there is an abnormality when the difference between the reference voltage Vref and the input voltage becomes larger than the difference between the reference voltage Vref and the threshold voltage Vro.
- the determination unit 270 determines that the abnormality is abnormal when the voltage of the amplified signal is lower than the threshold voltage Vro. Further, the determination unit 270 outputs the determination result to the signal processing unit 80. When a voltage lower than the threshold voltage Vro is input, the determination unit 270 outputs a predetermined signal (for example, a high level signal, hereinafter also referred to as an abnormal signal) to the signal processing unit 80.
- a predetermined signal for example, a high level signal, hereinafter also referred to as an abnormal signal
- a predetermined signal for example, an abnormal signal
- the signal processing unit 80 when a voltage that is between the threshold voltage Vro and the reference voltage Vref (for example, higher than the threshold voltage Vro) is input to the determination unit 270, a predetermined signal (for example, an abnormal signal) is input to the signal processing unit 80. (Low level signal) having a lower voltage value.
- FIG. 12 is a diagram showing an example of signals acquired at outputs 1 to 3 shown in FIG. 11B according to the present embodiment.
- the output 1 indicates a light reception signal output from the light receiving unit 30 to the signal amplifying unit 240.
- Output 2 indicates a signal output from the high-pass filter 241 to the operational amplifier 242 in the signal amplification unit 240.
- An output 3 indicates an amplified signal input from the signal amplification unit 240 to the lock-in amplifier 50 and the determination unit 270.
- FIG. 12 illustrates a case where the intensity of AC light is small (when AC light noise is small as shown in FIG. 12) and a case where the intensity of AC light is large (when AC light noise is large as shown in FIG. 12). Yes.
- the light reception signal becomes a wave-shaped signal due to the influence of AC light.
- the received light signal has a sinusoidal shape with a frequency of about 100 to 120 Hz (period 8 to 10 ms), for example. Note that since the intensity of the AC light is small, the amplitude of the received light signal is smaller than when the intensity of the AC light is large.
- the received light signal has a DC component noise (for example, noise caused by DC light) removed by the high-pass filter 241, and is a sinusoidal signal centered on the reference voltage Vref of 1.65V. Become.
- the received light signal is an amplified signal amplified by the operational amplifier 242 with a predetermined gain.
- the component of the AC light included in the light reception signal is also amplified with a predetermined gain, and the amplitude becomes larger than the signal at the time of output 2.
- the threshold voltage Vro shown in the diagram of output 3 is determined in the same manner as in the first embodiment.
- the threshold voltage Vro is determined from the difference between the maximum output voltage width and the outputtable voltage width Vmax (dynamic range).
- the maximum output voltage width in the present embodiment refers to a reference voltage Vref (1.65 V) predetermined in the signal amplification unit 240 and an output voltage output from the operational amplifier 242 when the light receiving unit 30 receives the reflected light R. Defined as the maximum difference.
- the maximum output voltage width is determined from, for example, the reference voltage Vref of the signal amplifying unit 240 and a voltage obtained by multiplying, for example, Vout3 shown in FIG.
- the output possible voltage width is a voltage width that the signal amplifying unit 240 can output from the reference voltage Vref.
- the output possible voltage width is 0V to + 1.65V or 1.65V to 3.3V. It becomes the voltage width.
- the threshold voltage Vro is an example of a first threshold value.
- the threshold voltage Vro shows the example set to the voltage lower than the reference voltage Vref in the figure shown in the output 3, it is not limited to this.
- the threshold voltage Vro only needs to be set to at least one of a higher voltage and a lower voltage than the reference voltage Vref.
- the light reception signal becomes a wave-shaped signal due to the influence of AC light. Note that the amplitude of the received light signal is larger than when the intensity of the AC light is small.
- the received light signal is removed from the DC component noise (for example, noise caused by DC light) by the high-pass filter 241. Thereafter, as shown at output 3, the received light signal becomes an amplified signal amplified by the operational amplifier 242 with a predetermined gain. At this time, the component of the AC light included in the light reception signal is also amplified with a predetermined gain, and the amplitude becomes larger than the signal at the time of output 2.
- the DC component noise for example, noise caused by DC light
- the amplified signal in the case where the intensity of the AC light is large fluctuates beyond the output possible voltage width of the signal amplifier 240.
- the portion of the signal amplifier 240 that exceeds the output possible voltage width Vmax is not included in the amplified signal output from the signal amplifier 240 to the lock-in amplifier 50. That is, the amplified signal is in a state where the output is saturated.
- the determination unit 270 determines that the state of the output 3 is abnormal.
- the determination unit 270 determines that the amplified signal is abnormal when the output voltage (for example, the output voltage Vout12 illustrated in FIG. 12) that is the maximum value of the amplitude of the amplified signal is not between the reference voltage Vref and the threshold voltage Vro. judge. That is, the determination unit 270 determines that the received light signal is abnormal. In the present embodiment, the determination unit 270 determines that the amount of moisture is detected using the amplified output saturated signal by determining that the voltage value of the output voltage Vout12 is lower than the threshold voltage Vro as abnormal. Can be suppressed.
- the output voltage Vout12 shown in FIG. 12 is an example of the first output voltage.
- FIG. 13 is a flowchart showing the operation of water content detection in the water content detection device 201 according to the present embodiment.
- Steps S101 and S102 are the same as steps S11 and S12 shown in FIG.
- the signal amplification unit 240 performs signal amplification processing for amplifying the received light signal output from the light receiving unit 30 with a predetermined gain to generate an amplified signal (S103).
- the amplified signal is input to the determination unit 270 and the lock-in amplifier 50.
- the determination unit 270 determines that the output voltage that is the maximum value of the amplitude of the amplified signal (for example, the output voltage Vout12 shown in FIG. 12 for the output 3 when the AC optical noise is small) is the reference voltage Vref and the threshold voltage Vro. It is determined whether it is between. In the present embodiment, the determination unit 270 determines whether or not the acquired amplified signal is equal to or higher than the threshold voltage Vro (S104). When the determination unit 270 determines that the output voltage is lower than the threshold voltage Vro (No in S104), the signal processing unit 80 outputs a signal indicating abnormality (S105).
- the signal processing unit 80 outputs a signal indicating abnormality to the notification unit 90 and causes the notification unit 90 to perform notification indicating abnormality. Then, the process returns to step S102. If the determination unit 270 determines that the output voltage is lower than the threshold voltage Vro, the amount of moisture may not be detected for the amplified signal for which the determination has been made.
- the amplified signal processing (so-called lock-in amplifier processing) is performed by the lock-in amplifier 50 (S106). Specifically, the lock-in amplifier 50 generates an extraction signal obtained by extracting a signal of the light emission frequency from the amplified signal. The generated extraction signal is output to the A / D converter 60.
- the subsequent processing is the same as that after step S16 shown in FIG.
- the light receiving device 230 of the moisture amount detecting device 201 receives the reflected light R and outputs a light receiving signal, and the light receiving signal is input, and the light receiving signal is amplified with a predetermined amplification factor. And a signal amplifying unit 240 that outputs the amplified signal (an example of the first signal) as an intensity signal.
- the maximum output voltage width is the maximum value of the difference between the reference voltage Vref determined in advance in the signal amplification unit 240 and the output voltage output from the signal amplification unit 240 when the light receiving unit 30 receives the reflected light R.
- the outputtable voltage width Vmax is a voltage width from the reference voltage Vref of the signal amplifier 240 that can be output by the signal amplifier 240.
- the threshold voltage Vro is determined from the difference between the maximum output voltage width and the outputtable voltage width Vmax and the reference voltage Vref. Then, the determination unit 270 determines that the received light signal is abnormal when the maximum value of the amplitude of the amplified signal is not between the reference voltage Vref and the threshold voltage Vro.
- the moisture amount detection apparatus 201 is further suppressed from detecting an erroneous moisture amount due to disturbance light (AC light).
- control unit 81 outputs a signal indicating the abnormality.
- the notification unit 90 acquires a signal indicating that it is abnormal, it can be notified that the determination unit 270 has determined that the amplified signal is abnormal.
- FIG. 14 is a schematic diagram showing a circuit configuration of a water content detection apparatus 201a according to this modification. Specifically, FIG. 14 shows circuit configurations of the light receiving device 230a, the lock-in amplifier 250a, and the determination unit 270a.
- the moisture amount detection device 201a according to the present modification is replaced with the light receiving device 230, the lock-in amplifier 50, and the determination unit 270 according to the second embodiment, and the light receiving device 230a and the lock-in amplifier 250a. And a determination unit 270a.
- the light receiving device 230a includes a light receiving unit 30 and a signal amplifying unit 240a.
- the light receiving unit 30 is the same as that of the second embodiment, and a description thereof will be omitted.
- the signal amplification unit 240a includes a high-pass filter 241 and an operational amplifier 242a.
- the operational amplifier 242a receives the light reception signal output from the high-pass filter 241 and outputs an amplified signal obtained by amplifying the light reception signal with a predetermined gain to the lock-in amplifier 250a.
- the operational amplifier 242a is configured to be able to change the gain.
- the operational amplifier 242a may have a configuration including, for example, a switch connected in series to each of the impedances constituting the conversion impedance unit 34a and the conversion impedance unit 34a of the light receiving unit 30a illustrated in FIG. 8B.
- the gain of the operational amplifier 242a is controlled by the control unit 81, for example.
- the signal amplifier 240a is an example of a first signal amplifier.
- the lock-in amplifier 250 a includes a band-pass filter 51, a mixer 52, an operational amplifier 254 a, and a first low-pass filter 53.
- the lock-in amplifier 250a according to this modification is characterized in that it includes an operational amplifier 254a.
- the bandpass filter 51 and the mixer 52 are the same as those in the first embodiment, and a description thereof will be omitted.
- the operational amplifier 254 a is an amplification circuit that amplifies the signal component extracted by the mixer 52 and outputs the amplified signal component to the first low-pass filter 53.
- the operational amplifier 254a is configured to be able to change the gain.
- the operational amplifier 254a may have a configuration including a plurality of impedances connected in parallel to each other and switches connected in series to the respective impedances, like the operational amplifier 242a.
- the gain of the operational amplifier 254a is controlled by the control unit 81, for example.
- the first low-pass filter 53 is a filter that removes an AC component from the signal output from the operational amplifier 254a.
- the operational amplifier 254a is an example of a second signal amplification unit, and the signal amplified by the operational amplifier 254a and input to the first low-pass filter 53 is an example of a second amplified signal. Note that the operational amplifier 254a may have a fixed gain.
- the determination unit 270a determines abnormality of the amplified signal from the amplified signal input from the signal amplifying unit 240a and a predetermined first threshold value. The determining unit 270a further determines whether or not to change the gains of the operational amplifiers 242a and 254a from the amplified signal input from the signal amplifying unit 240a and a predetermined switching voltage Vrc. In the following, an example in which the determination unit 270a changes the gains of the operational amplifiers 242a and 254a will be described. However, it is only necessary to determine whether or not to change the gain of the operational amplifier 242a.
- the determination unit 270a includes a comparator 271a in addition to the comparator 271 according to the second embodiment.
- the switching voltage Vrc is set to a voltage value between the reference voltage Vref and the threshold voltage Vro.
- the switching voltage Vrc is an example of a second threshold value.
- the comparator 271a is used to determine whether or not to change the gains of the operational amplifiers 242a and 254a.
- the amplified signal and the switching voltage Vrc are input to the input terminal of the comparator 271a.
- the switching voltage Vrc is a voltage generated by dividing a power supply voltage supplied from a power supply (for example, +3.3 V) by two resistors.
- the determination unit 270a outputs the determination result regarding the gains of the operational amplifiers 242a and 254a to the signal processing unit 80 in addition to the determination result of the abnormality of the amplified signal.
- the comparator 271a when a voltage lower than the switching voltage Vrc is input, the comparator 271a outputs a predetermined signal (for example, a high level signal) to the signal processing unit 80. Further, for example, when a voltage equal to or higher than the switching voltage Vrc is input, the comparator 271a is a low level signal having a voltage value lower than that of a predetermined signal (for example, a high level signal) to the signal processing unit 80. (Also described as a switching signal).
- the control unit 81 performs a predetermined process according to the signals input from the comparators 271 and 271a.
- the processing according to the signal input from the comparator 271 performed by the control unit 81 is the same as that in the second embodiment, and the description thereof is omitted.
- the control unit 81 When the abnormal signal is not input from the comparator 271 and the switching signal is input from the comparator 271a, the control unit 81 outputs the output voltage at which the amplitude of the amplified signal becomes the maximum value between the reference voltage Vref and the switching voltage Vrc. Therefore, control is performed to increase the gain of the operational amplifier 242a and decrease the gain of the operational amplifier 254a.
- the control unit 81 performs gain control by switching between conduction and non-conduction of the switches of the operational amplifiers 242a and 254a.
- the control unit 81 sets the output voltage at which the amplitude of the amplified signal becomes the maximum value to the switching voltage Vrc and the threshold value. Since it is between the voltage Vro, the gains of the operational amplifiers 242a and 254a are not changed.
- the control unit 81 has the output voltage at which the amplitude of the amplified signal becomes the maximum value lower than the threshold voltage Vro. Control is performed to decrease the gain of the operational amplifier 242a and increase the gain of the operational amplifier 254a.
- FIG. 15 is a flowchart showing an operation of moisture content detection in the moisture content detection device 201a according to this modification.
- steps S121 to S124 are further added to the moisture detection operation (see FIG. 13) in the moisture content detection apparatus 201 in the second embodiment.
- the operations from step S101 to S111 are the same as those in the second embodiment, and a description thereof is omitted.
- the determining unit 270a further determines whether or not the amplified signal is equal to or higher than the switching voltage Vrc (S121).
- the determination unit 270a determines whether or not the amplified signal is between the reference voltage Vref and the switching voltage Vrc. Specifically, it is determined whether or not the maximum value of the amplitude of the amplified signal (for example, the output voltage Vout12 shown in FIG. 12) is between the reference voltage Vref and the switching voltage Vrc.
- the determination unit 270a may perform the determination by outputting the switching signal to the control unit 81 and not outputting the abnormal signal.
- the determination part 270a determines as Yes in step S104 and S121.
- the output voltage Vout12 is an example of a second output voltage.
- control unit 81 performs control to increase the operational amplifier 242a (signal amplification unit 240a) and decrease the gain of the operational amplifier 254a (lock-in amplifier 250a) (S122). In step S122, it is sufficient that at least the gain of the operational amplifier 242a is changed.
- the control unit 81 performs control to change, for example, the gain of the operational amplifier 242a from the current third gain to a fourth gain having an amplification factor larger than that of the third gain.
- the current gain is, for example, the gain that was set when it was determined Yes in step S121.
- control unit 81 When the gain of the operational amplifier 242a is increased, the control unit 81 further performs control to change the gain of the operational amplifier 254a from the current sixth gain to a seventh gain having a smaller amplification factor than the sixth gain.
- the controller 81 may determine the seventh gain so that the product of the gain of the operational amplifier 242a and the gain of the operational amplifier 254a is constant before and after changing the gain of the operational amplifier 242a.
- step S122 When the gain is changed in step S122, the process returns to step S102, and the process proceeds from the reception of the reflected light R.
- the determination unit 270a determines whether a part of the amplified signal is smaller than the threshold voltage Vro (S123). When the output voltage at which the amplitude of the amplified signal has the maximum value is smaller than the threshold voltage Vro (Yes in S123), the determination unit 270a does not output the switching signal to the control unit 81 and outputs an abnormal signal. May be performed. Note that the determination unit 270a determining Yes in steps S121 and S123 is an example of a second determination.
- the control unit 81 performs control to change, for example, the gain of the operational amplifier 242a from the current third gain to the fifth gain having a smaller amplification factor than the third gain. Further, when the gain of the operational amplifier 242a is reduced, the control unit 81 further performs control to change the gain of the operational amplifier 254a from the current sixth gain to an eighth gain having an amplification factor larger than that of the sixth gain. Do.
- the controller 81 may determine the eighth gain so that the product of the gain of the operational amplifier 242a and the gain of the operational amplifier 254a is constant before and after changing the gain of the operational amplifier 242a.
- the process returns to step S102, and the process proceeds from the reception of the reflected light R.
- step S123 When a part of the amplified signal is equal to or higher than the threshold voltage Vro (No in step S123), the gain is not changed and the process proceeds to step S106, and the subsequent steps are performed. Note that the processes in steps S104, S121, and S123 may be performed in parallel.
- control part 81 may control at least one of steps S122 and S124.
- the control unit 81 may control at least one of steps S122 and S124.
- the gain change control of the operational amplifier 242a is not performed in step S124
- the determination unit 270a determines Yes in step S123
- the process may return to step S102.
- the process in step S123 may not be performed.
- the control unit 81 does not change the gain of the operational amplifier 242a, the gain of the operational amplifier 254a is not changed.
- the water content detection device 201a further includes a control unit 81.
- the signal amplification unit 240a has a variable gain, and the determination unit 270a further determines that the maximum value of the amplitude is between the reference voltage Vref and the switching voltage Vrc between the reference voltage Vref and the threshold voltage Vro. The first determination is made, and if the maximum value of the amplitude is not between the reference voltage Vref and the threshold voltage Vro, the second determination is made.
- the control unit 81 changes the gain of the signal amplification unit 240a from the third gain to a fourth gain larger than the third gain, and
- the determination unit 270a makes the second determination, at least one of the control of changing the gain of the signal amplification unit 240a from the third gain to the fifth gain smaller than the third gain is performed.
- the gain of the operational amplifier 242a of the signal amplification unit 240a can be changed to an appropriate value according to the amount of disturbance light received from a fluorescent lamp or the like.
- the gain of the operational amplifier 242a is changed to be small, so that it is possible to suppress the output saturation of the amplified signal output from the signal amplifier 240a. Can do.
- the gain of the operational amplifier 242a is changed to be large, so that high detection resolution can be maintained. Therefore, the moisture content detection device 201a according to the present modification is further suppressed from detecting an erroneous moisture content due to ambient light, and can maintain high detection resolution.
- the lock-in amplifier 250a includes a mixer 52 that extracts a signal having a predetermined frequency from the amplified signal, and an operational amplifier 254a that amplifies the signal component extracted by the mixer 52 and has a variable gain. . Further, when the gain of the signal amplifying unit 240a is changed from the third gain to the fourth gain, the control unit 81 changes the gain of the operational amplifier 254a from the sixth gain to a gain smaller than that of the sixth gain. When the gain of the signal amplifier 240a is changed from the third gain to the fifth gain, the gain of the operational amplifier 254a is changed from the sixth gain to the gain that is larger than that of the sixth gain. Change to a gain of eight.
- the gain of the operational amplifier 242a of the signal amplification unit 240a is changed, it is possible to suppress the change in the A / D resolution by changing the gain of the operational amplifier 254a.
- the gain of the operational amplifier 254a is changed by changing the gain of the operational amplifier 254a from the sixth gain to the eighth gain.
- the A / D resolution is improved as compared with the case of not doing so.
- controller 81 determines the seventh gain and the eighth gain so that the product of the gain of the signal amplifier 240a and the gain of the operational amplifier 254a is constant before and after changing the gain of the signal amplifier 240a. To do.
- the moisture amount detection device is mounted on the clothes drying device.
- the moisture amount detection device is mounted on a device other than the clothing drying device (for example, an electrical device). May be.
- it may be used for an apparatus used for a purpose of blowing an object (for example, a bathroom floor) by blowing air such as a bathroom drying apparatus.
- a light source part has an LED element
- a light source part will be light sources other than an LED element. You may have.
- the light source unit may include a semiconductor laser element or an organic EL element.
- the control by a light source control part is not limited to this.
- the light source control unit may control the intensity of light emitted from the light emitting element by controlling the amount of current supplied to the light emitting element.
- a light source part has the 2nd wavelength band in which the absorption by water contains the 1st wavelength band whose absorption by water is larger than a predetermined value, and the absorption by water is below a predetermined value.
- the light source unit may be at least a light source module that emits detection light.
- the moisture amount detection device may include only the first output unit among the first output unit and the second output unit.
- the moisture amount detection device is integrally mounted on the clothing drying device.
- the moisture amount detection device is a dedicated device and can be retrofitted to the clothing drying device.
- the structure which can be attached may be sufficient.
- the moisture amount detection device receives the light reflected by the object and detects the moisture amount.
- the moisture amount detection device receives the light transmitted through the object and receives the moisture. The amount may be detected.
- a determination part uses the 1st output voltage output at the timing which does not receive reflected light among light reception signals, and is a 1st signal abnormal?
- the determination unit may determine whether or not the first signal is abnormal by using an output voltage output at a timing when the reflected light R is received among the received light signals.
- the determination unit is configured as a circuit including a comparator, but is not limited thereto.
- the determination unit performs an A / D conversion on the first signal input from the light receiving device to generate a digital signal, and detects an abnormality in the first signal from the digital signal and the first threshold value.
- You may have the control part to determine. That is, the determination unit may determine abnormality of the first signal by digital processing.
- the control unit is realized by, for example, a microcomputer.
- the non-volatile memory of the signal processing unit stores a table in which the value corresponding to the signal intensity indicated by the digital signal is associated with the amount of moisture, and the processing unit reads the table from the non-volatile memory.
- the amount of water may be detected.
- the value corresponding to the signal strength indicated by the digital signal is, for example, from the signal strength indicated by the digital signal input from the first output unit and the signal strength indicated by the digital signal input from the second output unit, This is a calculated value.
- the processing unit includes a difference or ratio between the signal strength indicated by the digital signal input from the first output unit and the signal intensity indicated by the digital signal input from the second output unit, and the difference or the ratio.
- the amount of moisture may be detected from a table in which the amount of moisture is associated with the amount of moisture.
- the order of the plurality of processes in the operation of the moisture amount detection apparatus described in the above embodiment and the modification is an example.
- the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
- some of the plurality of processes may be omitted.
- each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
- Each component may be realized by a program execution unit such as a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
- the processor includes one or a plurality of electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration).
- the plurality of electronic circuits may be integrated on one chip or provided on a plurality of chips.
- the plurality of chips may be integrated into one device, or may be provided in a plurality of devices.
- the general or specific aspect of the present invention may be realized by a system, apparatus, method, integrated circuit, computer program or computer-readable CD-ROM, non-transitory recording medium such as an optical disk, or the like.
- the program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet.
- the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
- the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
水分量検出装置(1)は、対象物(2)に向けて所定の周波数で明滅する光を照射する光源部(10)と、光が対象物(2)で反射された反射光(R)を受光し、反射光(R)の強度に応じた強度信号を出力する受光装置(130)と、強度信号から所定の周波数の信号を抽出した抽出信号を出力するロックインアンプ(50)と、受光装置(130)から入力された、反射光(R)の強度に応じた第一の信号と、第一の閾値とから、第一の信号の異常を判定する判定部(70)とを備える。第一の閾値は、受光装置(130)において予め定められた基準電圧(Vref)、及び、受光装置(130)が反射光(R)を受光したときに出力する信号である出力電圧の差分の最大値である最大出力電圧幅(ΔVmax)と、受光装置(130)が第一の信号を出力可能な出力可能電圧幅(Vmax)との差分から決定される。
Description
本発明は、水分量検出装置に関する。
従来、室内空間で干された衣類(対象物)を乾燥させる衣類乾燥装置には、対象物の水分量を検出する水分量検出装置が搭載されたものが知られている。水分量検出装置としては、例えば、対象物の雰囲気の温度及び湿度と、水による赤外線の吸収とから、水分量を算出する装置が知られている。そして、衣類乾燥装置は、対象物の水分量を水分量検出装置で検出し、当該水分量検出装置の検出結果に基づいて除湿強度を調整する。また、水分量検出装置としては、例えば、水分による赤外線の吸収を利用して、水分量を測定する赤外線水分計が知られている(例えば、特許文献1参照)。
特許文献1に記載の水分量検出装置は、太陽光又は蛍光灯などの外乱光が入射することが考慮されていない。そのため、外乱光が水分量検出装置に入射すると、誤った水分量が検出される場合がある。
そこで、本発明は、外乱光により誤った水分量が検出されることが抑制された水分量検出装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る水分量検出装置は、対象物に向けて所定の周波数で明滅する光を照射する光源部と、前記光が前記対象物で反射された反射光を受光し、前記反射光の強度に応じた強度信号を出力する受光装置と、前記強度信号が入力され、当該強度信号から前記所定の周波数の信号を抽出した抽出信号を出力するロックインアンプと、前記受光装置から入力された、前記反射光の強度に応じた第一の信号と、第一の閾値とから、前記第一の信号の異常を判定する判定部とを備え、前記第一の閾値は、前記受光装置において予め定められた信号である基準電圧、及び、前記受光装置が前記反射光を受光したときに出力する信号である出力電圧の差分の最大値である最大出力電圧幅と、前記受光装置が前記第一の信号を出力可能な出力可能電圧幅との差分から決定される。
本発明の一態様に係る水分量検出装置によれば、外乱光により誤った水分量が検出されることが抑制される。
以下では、本発明の実施の形態に係る水分量検出装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
また、本明細書において、「略」及び「約」とは、製造誤差や寸法公差を含むという意味である。すなわち、例えば数%程度の差異を含むことを意味する。
(実施の形態1)
以下、本実施の形態に係る水分量検出装置について、図1~図7を参照しながら説明する。なお、本実施の形態では、一例として水分量検出装置が衣類乾燥装置に搭載されている例について説明する。
以下、本実施の形態に係る水分量検出装置について、図1~図7を参照しながら説明する。なお、本実施の形態では、一例として水分量検出装置が衣類乾燥装置に搭載されている例について説明する。
[1-1.衣類乾燥装置の構成]
まず、本実施の形態に係る水分量検出装置1を搭載した衣類乾燥装置100について、図1及び図2を参照しながら説明する。
まず、本実施の形態に係る水分量検出装置1を搭載した衣類乾燥装置100について、図1及び図2を参照しながら説明する。
図1は、本実施の形態に係る衣類乾燥装置100の概略構成を示す斜視図である。
図1に示すように、衣類乾燥装置100は、室内空気を吸い込んで除湿し、再度室内に向けて送風することで、室内に干された対象物2を乾燥させるものである。ここで、対象物2は、特に限定されない場合、例えば衣類などである。衣類以外の対象物2としては、シーツ、枕カバーなどの寝具が挙げられる。
衣類乾燥装置100は、略直方体形状の本体101と、本体101の上部で開閉する蓋部102とを備えている。本体101の上部には、蓋部102が開状態になった場合に露出する送風部103(図2参照)が設けられている。送風部103は、室内の空間3に対して風Wを送ることで、当該空間3内に存在する対象物2を乾燥させる。空間3は、衣類乾燥装置100と対象物2との間の空間(自由空間)である。
また、本体101の上部には、蓋部102から離れた位置に、外気を取り込む吸込口104が設けられている。本体101の内部には、吸込口104から送風部103まで空気を案内する流路が形成されており、その流路に対して、空気を除湿する除湿部105(図2参照)が設けられている。また、蓋部102には、対象物2の水分量を検出する水分量検出装置1が設けられている。
図2は、本実施の形態に係る衣類乾燥装置100の制御ブロック図である。図2に示すように、衣類乾燥装置100は、除湿部105と、送風部103と、水分量検出装置1と、乾燥制御部106とを備えている。
除湿部105は、例えば、蒸気圧縮式のヒートポンプであり、本体101の流路を流れる空気を除湿する。送風部103は、除湿部105によって除湿された空気を空間3に向けて送風する。送風部103における送風範囲、風向き、送風の強度(風力)、送風温度などの少なくとも1つの乾燥条件が変更可能となっている。水分量検出装置1の詳細については、後述する。
乾燥制御部106は、マイクロコンピュータで構成される。乾燥制御部106は、衣類乾燥装置100の統括的な動作プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
具体的には、乾燥制御部106は、水分量検出装置1によって検出された対象物2の水分量に基づいて、送風部103の乾燥条件を制御する。これにより、対象物2の水分量に応じて、適切な乾燥条件が選択されることになる。また、図1に示すように複数の対象物2が存在する場合、水分量検出装置1によって検出された複数の対象物2の水分量に応じて、風向きなどを調節することができる。つまり、複数の対象物2から水分量が多い対象物2を重点的に乾燥させることが可能となる。よって、衣類乾燥装置100は、より効率的な衣類乾燥が可能となる。以下では、衣類乾燥装置100が備える水分量検出装置1について説明する。
[1-2.水分量検出装置の構成]
次に、水分量検出装置1の各構成要素について、図3A~図3Cを参照しながら説明する。なお、本実施の形態では、外乱光の強度が時間によらず略一定な場合に、誤った水分量が検出されることが抑制される水分量検出装置について説明する。なお、光の強度が時間によらず略一定な外乱光とは、例えば、太陽光などであり、以降においてDC光とも記載する。
次に、水分量検出装置1の各構成要素について、図3A~図3Cを参照しながら説明する。なお、本実施の形態では、外乱光の強度が時間によらず略一定な場合に、誤った水分量が検出されることが抑制される水分量検出装置について説明する。なお、光の強度が時間によらず略一定な外乱光とは、例えば、太陽光などであり、以降においてDC光とも記載する。
図3Aは、本実施の形態に係る水分量検出装置1の概略構成と対象物2とを示す模式図である。図3Bは、本実施の形態に係る水分量検出装置1の詳細構成と対象物2とを示す模式図である。なお、図3Bにおいては、便宜上、図3Aに示す第一の出力部110及び第二の出力部120のうち、第一の出力部110のみを示している。
水分量検出装置1は、対象物2に対して光(照射光L)を発し、当該対象物2で反射された光(反射光R)に基づいて対象物2の水分量を検出する水分量検出装置である。本実施の形態では、図1及び図2に示すように、水分量検出装置1は、空間3を隔てて配置された対象物2に含まれる水分量を検出する。
図3Aに示すように、水分量検出装置1は、光源部10と、光源制御部20と、判定部70と、信号処理部80と、第一の出力部110と、第二の出力部120とを備える。また、図3Bに示すように、第一の出力部110は、受光装置130と、ロックインアンプ50と、A/D変換器60とを備え、受光装置130が受光した光に対応した信号を信号処理部80に出力する。また、本実施の形態では、判定部70は、受光装置130から取得した信号を用いて、当該信号に異常がないかを判定し、当該判定結果を信号処理部80に出力する。なお、第二の出力部120の構成は、第一の出力部110の構成と同様であるため説明を省略するが、第二の出力部120は、第一の出力部110とは異なる波長の光を受光し、受光した光に対応した信号を信号処理部80に出力する。
[1-2-1.光源部]
光源部10は、光を出射する半導体発光素子を含み、対象物2に向けて所定の周波数で明滅する光を照射する光源ユニットである。光源部10が対象物2に照射する光の一例は、図3A及び図3Bにおいて照射光Lに示される。なお、半導体発光素子とは、成長基板上に半導体層が積層され、近赤外光を出射する半導体チップである。また、以降において、半導体発光素子を発光素子とも記載する。
光源部10は、光を出射する半導体発光素子を含み、対象物2に向けて所定の周波数で明滅する光を照射する光源ユニットである。光源部10が対象物2に照射する光の一例は、図3A及び図3Bにおいて照射光Lに示される。なお、半導体発光素子とは、成長基板上に半導体層が積層され、近赤外光を出射する半導体チップである。また、以降において、半導体発光素子を発光素子とも記載する。
光源部10は、例えば、水による吸収が所定値よりも大きな第一の波長帯を含む検知光と、水による吸収が所定値以下である第二の波長帯を含む参照光とを出射する。
水は、約1450nmの波長の吸収が大きく、約1300nmの波長の吸収は小さい。このため、検知光をなす第一の波長帯としては、水の吸光度が大きい波長帯を選択し、参照光をなす第二の波長帯としては、第一の波長帯よりも水の吸光度が小さい波長帯を選択する。例えば、第一の波長帯の中心波長は1450nmとし、第二波長帯の中心波長は1300nmとする。
このように、発光素子が、第一の波長帯と第二の波長帯とを連続して含む光を照射するので、対象物2には、水による吸収が大きな第一の波長帯を含む検知光と、水による吸収が第一の波長帯よりも小さい第二の波長帯を含む参照光とが照射される。
本実施の形態では、光源部10は、半導体発光素子の一例として、第一の波長帯を含む検知光と第二の波長帯を含む参照光とを出射するLED(Light Emitting Diode)素子を有する。
なお、光源部10は、発光素子が発した光を対象物2に対して集光するレンズ(図示しない)などを有していてもよい。例えば、レンズは樹脂製の凸レンズであるが、これに限らない。また、光源部10は、発光素子が発した光を所望の位置に照射するための走査部(図示しない)を有していてもよい。例えば、光源部10は、走査部として、半導体発光素子の姿勢を調整することで光を走査する(スキャンする)構造を有していてもよいし、その他の構造であってもよい。例えば、走査部は、光源制御部20によって制御される。つまり、光源部10は、対象物2に光を走査しながら照射してもよい。
なお、光源部10から対象物2に照射される光は、例えば発光素子から出射されリフレクタなどで反射された光であってもよい。
[1-2-2.光源制御部]
光源制御部20は、光源部10を制御し、光源部10から対象物2に向けて光を照射させる制御装置である。光源制御部20は、発光素子の点灯及び消灯が所定の発光周期で繰り返されるように、発光素子を制御する。すなわち、光源制御部20は、光源部10を所定の周波数(例えば、1kHz)で明滅させる制御を行う。具体的には、光源制御部20は、所定の周波数のパルス信号を発光素子に出力することで、発光素子を所定の発光周期で点灯及び消灯させる。また、光源制御部20は、パルス信号を参照信号としてロックインアンプ50にも出力する。なお、パルス信号は、光源制御部20が光源部10の発光を制御する制御信号の一例である。また、以降では、光源部10を明滅させる所定の周波数を、発光周波数とも記載する。
光源制御部20は、光源部10を制御し、光源部10から対象物2に向けて光を照射させる制御装置である。光源制御部20は、発光素子の点灯及び消灯が所定の発光周期で繰り返されるように、発光素子を制御する。すなわち、光源制御部20は、光源部10を所定の周波数(例えば、1kHz)で明滅させる制御を行う。具体的には、光源制御部20は、所定の周波数のパルス信号を発光素子に出力することで、発光素子を所定の発光周期で点灯及び消灯させる。また、光源制御部20は、パルス信号を参照信号としてロックインアンプ50にも出力する。なお、パルス信号は、光源制御部20が光源部10の発光を制御する制御信号の一例である。また、以降では、光源部10を明滅させる所定の周波数を、発光周波数とも記載する。
また、光源制御部20は、例えば、対象物2に向けて光を走査しながら照射させてもよい。光源制御部20は、例えば、走査部を制御し発光素子の姿勢を変更することで、発光素子からの光を走査する。
光源制御部20は、駆動回路及びマイクロコンピュータを有する。光源制御部20は、発光素子及び走査部の制御プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
[1-2-3.受光装置]
受光装置130は、照射光Lが対象物2で反射された反射光Rを受光し、反射光Rの強度に応じた強度信号をロックインアンプ50に出力する。受光装置130は、受光部30と信号増幅部40とを有する。
受光装置130は、照射光Lが対象物2で反射された反射光Rを受光し、反射光Rの強度に応じた強度信号をロックインアンプ50に出力する。受光装置130は、受光部30と信号増幅部40とを有する。
受光部30は、反射光Rを受光し、電気信号に変換する受光素子(図3Cに示す受光素子31)を有する。受光部30は、受光した波長帯の光を光電変換することで、当該光の受光量(すなわち、強度)に応じた電気信号を生成する。生成された電気信号は、信号増幅部40に出力される。ここで、受光部30の回路構成について、図3Cを参照しながら説明する。
図3Cは、本実施の形態に係る水分量検出装置1の回路構成を示す模式図である。具体的には、図3Cは、受光装置130及び判定部70の回路構成を示す。
図3Cに示すように、受光部30は、受光素子31と、IV変換部32(電流―電圧変換回路)とを有する。
受光素子31は、入射した光の強度に応じた電気信号(光電流の一例)をIV変換部32に出力する。受光素子31は、例えば、フォトダイオードであるが、これに限定されない。例えば、受光素子31は、フォトトランジスタ、又は、イメージセンサでもよい。
受光素子31のカソードは、電源に接続されている。電源の電圧は、例えば、+3.3Vである。つまり、受光素子31には、逆バイアス電圧が印加されている。
IV変換部32は、受光素子31から入力された光電流をIV変換して、受光信号を出力する。すなわち、IV変換部32は、光電流を電圧に変換して出力する。なお、本実施の形態において、受光信号は、判定部70に入力される第一の信号の一例である。
IV変換部32は、オペアンプ33と、インピーダンス34とを有する。
オペアンプ33は、光電流を電圧に変換する回路である。オペアンプ33の+側の入力端子は、電源と接続されており、所定の電圧が入力される。所定の電圧とは、予め定められた電圧であり、以降においては基準電圧Vrefとも記載する。オペアンプ33の-側の入力端子は、受光素子31のカソード側に接続されており、光電流が入力される。つまり、本実施の形態に係るIV変換部32は、反転型のIV変換回路(反転増幅回路)である。なお、IV変換部32は、正転型のIV変換部(非反転増幅回路)であってもよい。
インピーダンス34は、IV変換部32から出力される受光信号(電圧信号)の電圧の調整に用いられる。インピーダンス34のインピーダンス値は、受光信号の所望の電圧値に応じて適宜決定される。インピーダンス34は、例えば、帰還抵抗である。
このような受光装置130から出力される受光信号について、図4Aを参照しながら説明する。
図4Aは、本実施の形態に係る受光部30から出力される受光信号を説明するための図である。図4Aでは、受光素子31が受光する反射光Rの受光量が異なる場合の受光信号を示しており、受光信号S1~S3となるにつれ、受光量が大きい例を示している。
受光信号S1は、受光素子31が受光する反射光Rの受光量が小さい場合の信号を示している。期間T1は、明滅する反射光Rのうち、反射光Rを受光していないタイミングで出力される信号(電圧信号)を示しており、本実施の形態では、基準電圧Vrefが出力される。期間T2は、明滅する反射光Rのうち、反射光Rを受光しているタイミングで出力される信号(電圧信号)を示しており、基準電圧Vrefより低い出力電圧Vout1が出力される。これは、IV変換部32が反転増幅回路により構成されているためである。IV変換部32が非反転増幅回路により構成されている場合は、反射光Rを受光しているタイミングで出力される信号は、基準電圧Vrefより高い電圧が出力される。
受光信号S2は、受光信号S1のときより、反射光Rの受光量が大きくなった場合の信号を示している。期間T3は、明滅する反射光Rのうち、反射光Rを受光しているタイミングで出力される信号を示しており、出力電圧Vout1より低い出力電圧Vout2が出力される。なお、期間T4は、明滅する反射光Rのうち、反射光Rを受光していないタイミングで出力される信号を示しており、受光信号S1と同様、基準電圧Vrefが出力される。
受光信号S3は、受光信号S2のときより、反射光Rの受光量が大きくなった場合であり、受光素子31が最大の受光量となる反射光Rを受光したときの信号を示している。期間T5は、明滅する反射光Rのうち、反射光Rを受光しているタイミングで出力される信号を示しており、出力電圧Vout2より低い出力電圧Vout3が出力される。なお、期間T6は、明滅する反射光Rのうち、反射光Rを受光していないタイミングで出力される信号を示しており、受光信号S1及びS2と同様、基準電圧Vrefが出力される。
受光信号S3の状態では、反射光Rを受光しているタイミングで出力される信号と、反射光Rを受光していないタイミングで出力される信号との差分(電圧差)が最大となる。つまり、基準電圧Vrefと出力電圧Vout3との差分が最大となる。この差分の最大値を最大出力電圧幅ΔVmax(ダイナミックレンジ)とする。
なお、出力電圧Vout3は、照射光Lの照射量、及び、水分量検出装置1と対象物2との距離の最小値などにより、予め設定される値である。つまり、最大出力電圧幅ΔVmaxは、予め設定される値である。
また、図4Aに示す出力可能電圧幅Vmaxは、受光部30が出力可能な受光信号の電圧幅であり、IV変換部32の仕様などにより予め設定される。出力可能電圧幅Vmaxは、基準電圧Vrefに対する電圧幅である。
図3B及び図3Cを再び参照して、受光部30から出力される受光信号は、信号増幅部40及び判定部70に入力される。
受光部30が有する受光素子31は、光源部10から照射され対象物2で反射された第一の波長帯の光を受光する。例えば、受光部30は、受光素子31に対して反射光Rの入射側に配置されており、受光素子31に入射する反射光Rの光路上に設けられるフィルタを有していてもよい。そして、当該フィルタは、第一の波長帯の光を透過し、かつ、それ以外の波長帯の光を吸収又は反射する。これにより、受光部30が有する受光素子31は、当該フィルタを透過した第一の波長帯の光を受光できる。なお、第二の出力部120の受光部は、例えば第二の波長帯の光を透過し、かつそれ以外の波長帯の光を吸収又は反射するフィルタを有しており、当該受光部が有する受光素子は、当該フィルタを透過した第二の波長帯の光を受光する。
なお、受光部30は、反射光Rに加えて、屋内環境に起因して発生するノイズとなる光も受光する。ノイズとは、例えば、太陽光などの外乱光によるノイズである。そのため、受光信号にも、ノイズとなる光の受光量に応じた成分が含まれる。
受光部30が受光するノイズとなる光の強度は光源部10と対象物2との距離に依存しないが、受光部30が受光する反射光Rの強度は光源部10と対象物2との距離に依存して変化する。光源部10と対象物2との距離が大きくなるに従って、受信する反射光Rの強度は小さくなる。受光部30は、略一定の強度のDC光をノイズとして受光する。
また、光源制御部20が光源部10を制御し、光を対象物2に走査しながら照射させる場合、受光部30は、走査に同期して対象物2で反射された光を受光する。つまり、受光部30は、光源部10からの光が照射された対象物2の位置ごとに、当該対象物2で反射された光を受光する。これにより、水分量検出装置1は、より広い領域での水分量を検出することができる。例えば、対象物2における複数の範囲又は複数の対象物2のそれぞれにおいて、水分量を検出することができる。なお、光源制御部20は、例えば、発光素子の姿勢から、現在水分量を検出している対象物2の位置(例えば、衣類乾燥装置100からみた対象物2が位置する方向)を特定可能である。これにより、乾燥制御部106は、送風部103における送風範囲又は風向きなどの乾燥条件を変更可能である。水分量の検出については、後述する。
信号増幅部40は、受光部30により出力された受光信号が入力され、当該受光信号を所定のゲインで増幅した増幅信号をロックインアンプ50に出力する。具体的には、信号増幅部40は、受光信号を増幅するオペアンプ41を有する。なお、増幅信号は、受光装置130から出力される強度信号の一例である。
[1-2-4.判定部]
判定部70は、受光部30から入力された受光信号と、予め定められた第一の閾値とから、受光信号の異常を判定する。ここで、受光信号の異常とは、外乱光の影響により受光信号から正確な水分量が検出できないことを意味する。具体的には、外乱光の影響により受光信号が出力飽和していることを意味する。
判定部70は、受光部30から入力された受光信号と、予め定められた第一の閾値とから、受光信号の異常を判定する。ここで、受光信号の異常とは、外乱光の影響により受光信号から正確な水分量が検出できないことを意味する。具体的には、外乱光の影響により受光信号が出力飽和していることを意味する。
図3Cに示すように、判定部70は、受光部30と信号増幅部40との間を接続する接続線と接続されている。判定部70は、コンパレータ71(コンパレータ回路)を有する。コンパレータ71の入力端子には、受光信号と、閾値電圧Vroとが入力される。閾値電圧Vroは、電源(例えば、+3.3V)から供給される電源電圧を2つの抵抗で分割して生成された電圧である。また、判定部70は、判定結果を信号処理部80に出力する。判定部70は、例えば、閾値電圧Vroより低い電圧が入力されると、信号処理部80に所定の信号(例えば、Highレベルの信号であり、以降において、異常信号とも記載する)を出力する。また、判定部70は、例えば、閾値電圧Vro以上の電圧が入力されると、信号処理部80に所定の信号(例えば、異常信号よりも電圧値が低いLowレベルの信号)を出力する。
ここで、閾値電圧Vroの値について、図4Bを参照しながら説明する。
図4Bは、本実施の形態に係る閾値電圧Vroの値を説明するための図である。図4Bでは、図4Aに示す受光信号S3における信号を図示している。なお、図4Bにおいて、便宜上、図4Aとは縦軸の縮尺を変更して示している。
図4Bの(a)は、外乱光(DC光)を受光しておらず、かつ反射光Rを受光したときの受光信号を示している。
図4Bの(b)は、DC光及び反射光Rを受光したときの受光信号を示している。図4Bの(b)に示すように、DC光を受光すると、受光信号の電圧値が全体的に下がっていることがわかる。期間T7は、受光信号のうち、反射光Rを受光していないタイミングを示している。つまり、期間T7は、DC光のみを受光している期間であり、出力電圧Vout4は、DC光の受光量に応じて出力される電圧である。期間T8は、受光信号のうち、反射光Rを受光しているタイミングを示している。つまり、期間T8は、DC光及び反射光Rを受光している期間であり、出力電圧Vout5は、DC光及び反射光Rの受光量に応じて出力される電圧である。図4Bの(b)では、出力電圧Vout5が、出力可能電圧幅Vmaxの下限電圧(例えば、0V)と等しい例を示している。図4Bの(b)の状態では、受光信号が出力可能電圧幅Vmax内にあるので、受光部30からは図4Bの(b)に示す受光信号が出力される。
図4Bの(c)は、図4Bの(b)の状態からさらにDC光の強度が強くなったときの受光信号を示している。期間T9は、DC光のみを受光している期間であり、出力電圧Vout6は、DC光の受光量に応じて出力される電圧である。出力電圧Vout6は、閾値電圧Vroより小さい。期間T10は、DC光及び反射光Rを受光している期間であり、出力電圧Vout7は、DC光及び反射光Rの受光量に応じて出力される電圧である。出力電圧Vout7は、出力可能電圧幅Vmaxの下限電圧より小さい。
一点鎖線部分は、受光信号のうち受光部30の出力可能電圧幅Vmaxの下限電圧より低い部分を示している。一点鎖線部分は、受光部30の出力可能電圧幅Vmax外なので、受光部30から信号増幅部40に出力される受光信号には含まれない。つまり、受光信号は、出力飽和している状態である。図4Bの(c)の状態では、受光部30が出力する受光信号から正確な水分量が検出できない。そこで、判定部70は、図4Bの(c)の状態を異常として判定する。
判定部70が異常と判定するための閾値電圧Vroは、最大出力電圧幅ΔVmaxと、出力可能電圧幅Vmaxとの差分から決定される。図4Bの(b)に示す状態における出力電圧Vout4の電圧値が閾値電圧Vroとして設定される。なお、IV変換部32が非反転増幅回路である場合、出力電圧Vout4は基準電圧Vrefより高い電圧となるので、閾値電圧Vroも基準電圧Vrefより高い電圧として設定される。
判定部70は、出力電圧(例えば、出力電圧Vout4)が基準電圧Vrefと閾値電圧Vroとの間にないときに、異常信号を出力する。本実施の形態では、判定部70は、出力電圧の電圧値が閾値電圧Vroより低くなったときに、異常信号を出力する。判定部70は、例えば、期間T7においては、異常信号ではない信号(異常ではないことを示す信号であり、例えばLowレベルの信号)を信号処理部80に出力し、期間T8においては、異常信号(異常であることを示す信号であり、例えばHighレベルの信号)を信号処理部80に出力する。つまり、判定部70は、図4Bの(b)に示す状態では、異常信号と異常信号ではない信号とを繰り返し出力する。また、判定部70は、例えば、期間T9及びT10においては、異常信号を信号処理部80に出力する。判定部70が異常信号のみを継続して出力することは、判定部70が受光信号を異常として判定する一例である。これにより、図4Bの(c)に示すような出力飽和した受光信号を用いて水分量が検出されることを抑制することができる。なお、閾値電圧Vroは、第一の閾値の一例である。また、図4Bの(a)~(c)に示す反射光Rを受光していないタイミングで出力された出力電圧(例えば、出力電圧Vout4、Vout6など)は、第一の出力電圧の一例である。
なお、判定部70は、第一の出力部110及び第二の出力部120の少なくとも一方が出力する第一の信号(本実施の形態では、受光信号)に対して、上記の判定を行ってもよい。判定部70は、例えば、第一の出力部110及び第ニの出力部120のうち、外乱光又は反射光Rの受光量が多い出力部のみに対して、上記の判定を行ってもよい。判定部70は、例えば、第一の出力部110及び第二の出力部120から出力された2つの受光信号のうち、反射光Rを受光していないタイミングで出力された出力電圧の低い受光信号のみを判定することで、外乱光の受光量が多い出力部のみに対して上記の判定を行ってもよい。これにより、判定部70は、受光信号の出力飽和が起こりやすい出力部の判定を優先して行うことができる。
なお、図4Bの(b)において、基準電圧Vrefに対する閾値電圧Vroの値(つまり、基準電圧Vrefと閾値電圧Vroとの電位差)は、出力可能電圧幅Vmaxと最大出力電圧幅ΔVmaxとの差分から決定される例を示したが、これに限定されない。例えば、図4Aに示す期間T2及T5を比べると、期間T2の方がDC光を受光しても出力飽和しにくい。すなわち、期間T2の方が期間T5に比べて、より強度が高いDC光を許容することができる。このため、閾値電圧Vroは、出力可能電圧幅Vmaxの下限電圧(例えば、図4Aの例では、基準電圧Vrefから出力可能電圧幅Vmax低い電圧であり、例えば、0V)として決定されてもよい。判定部70は、当該閾値電圧Vroと受光信号とから、受光信号の異常の判定を行ってもよい。判定部70は、最大出力電圧幅ΔVmaxを用いずに決定された閾値電圧Vroにより受光信号の異常の判定を行うことで、光源部10の点滅の状態を不問とした判定を行ってもよい。
[1-2-5.ロックインアンプ]
図3Bを再び参照して、ロックインアンプ50は、信号増幅部40により出力された増幅信号が入力され、当該増幅信号から所定の周波数(例えば、発光周波数)の信号を抽出した抽出信号をA/D変換器60に出力する回路である。図3Bに示すように、ロックインアンプ50は、バンドパスフィルタ51、ミキサ52、及び、第一のローパスフィルタ53を有する。
図3Bを再び参照して、ロックインアンプ50は、信号増幅部40により出力された増幅信号が入力され、当該増幅信号から所定の周波数(例えば、発光周波数)の信号を抽出した抽出信号をA/D変換器60に出力する回路である。図3Bに示すように、ロックインアンプ50は、バンドパスフィルタ51、ミキサ52、及び、第一のローパスフィルタ53を有する。
バンドパスフィルタ51は、増幅信号に含まれるノイズ成分を抑制するためのフィルタである。バンドパスフィルタ51を信号増幅部40とミキサ52との間に配置することで、バンドパスフィルタ51の通過帯域外のノイズ成分が抑制された増幅信号をミキサ52に入力することができる。バンドパスフィルタ51は、例えば、RLC回路又はオペアンプを用いた回路などにより実現される。
ミキサ52は、バンドパスフィルタ51を通過した増幅信号と、光源制御部20からミキサ52に出力されるパルス信号とから2つの信号の同期する信号成分を取り出す回路である。ミキサ52により、ノイズを含む増幅信号からパルス信号と同期する信号成分、言い換えると同位相の信号成分を取り出すことができる。つまり、ミキサ52によりさらに増幅信号に含まれるノイズを抑制することができる。
第一のローパスフィルタ53は、ミキサ52により取り出された信号成分から交流成分を除去するためのフィルタである。第一のローパスフィルタ53は、例えば、RC回路又はオペアンプを用いた回路などにより実現される。
上記のようなロックインアンプ50による処理は、いわゆるロックインアンプ処理である。これにより、増幅信号に含まれる外乱光などのノイズ成分を抑制することができる。つまり、ロックインアンプ50を設けることで、ノイズを含む受光信号から高S/N比(Signal-to-noise ratio)の信号を抽出することができる。また、A/D変換器60に信号が入力される前に、ノイズ成分を抑制することができるので、A/D変換器60に入力される信号がA/D変換器60のダイナミックレンジを超えてしまうことを抑制することができる。ロックインアンプ50は、受光した信号から特定の周波数を取り出す(例えば、光源部10から照射される光の点灯及び消灯の周波数成分のみを取り出す)狭帯域のバンドパスフィルタと類似した機能を有する。
なお、第一のローパスフィルタ53の通過帯域は、固定された帯域である。例えば、第一のローパスフィルタ53のカットオフ周波数は、光源部10から照射される光の点灯及び消灯の周波数(例えば、1kHz)を中心周波数とする信号において、当該中心周波数と当該信号を通過させる帯域幅とに応じて適宜決定される。
[1-2-6.A/D変換器]
A/D変換器60は、ロックインアンプ50でロックインアンプ処理が施された抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を信号処理部80に出力する回路である。なお、信号処理部80に出力されるデジタル信号には、水分量検出装置1が備える各種回路に起因するノイズが含まれる。各種回路とは、例えば信号増幅部40、ロックインアンプ50及びA/D変換器60などである。また、ノイズとは、例えば1/fノイズなどである。
A/D変換器60は、ロックインアンプ50でロックインアンプ処理が施された抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を信号処理部80に出力する回路である。なお、信号処理部80に出力されるデジタル信号には、水分量検出装置1が備える各種回路に起因するノイズが含まれる。各種回路とは、例えば信号増幅部40、ロックインアンプ50及びA/D変換器60などである。また、ノイズとは、例えば1/fノイズなどである。
[1-2-7.信号処理部]
信号処理部80は、A/D変換器60で変換されたデジタル信号、及び、判定部70からの異常信号が入力され、当該デジタル信号及び異常信号に対して所定の処理を行う処理装置である。図3Bに示すように、信号処理部80は、制御部81と、第二のローパスフィルタ82(図中のLPF2)と、処理部83とを有する。つまり、水分量検出装置1は、A/D変換器60によりA/D変換されたデジタル信号において、さらにローパスフィルタによる通過帯域の制限が行われる構成となっている。第二のローパスフィルタ82は通過帯域を変更することが可能であり、当該通過帯域は制御部81によって制御される。なお、第二のローパスフィルタ82は、ローパスフィルタの一例である。
信号処理部80は、A/D変換器60で変換されたデジタル信号、及び、判定部70からの異常信号が入力され、当該デジタル信号及び異常信号に対して所定の処理を行う処理装置である。図3Bに示すように、信号処理部80は、制御部81と、第二のローパスフィルタ82(図中のLPF2)と、処理部83とを有する。つまり、水分量検出装置1は、A/D変換器60によりA/D変換されたデジタル信号において、さらにローパスフィルタによる通過帯域の制限が行われる構成となっている。第二のローパスフィルタ82は通過帯域を変更することが可能であり、当該通過帯域は制御部81によって制御される。なお、第二のローパスフィルタ82は、ローパスフィルタの一例である。
制御部81は、判定部70から異常信号が入力されると、受光信号が異常であることを示す信号を出力する。本実施の形態では、制御部81は水分量検出装置1が備える報知部90に異常であることを示す信号を出力する。なお、制御部81は、水分量検出装置1の外部の機器に受光信号が異常であることを示す信号を出力してもよい。制御部81は、例えば、無線通信モジュール(図示しない)を介して、スマートフォンなどの携帯端末に受光信号が異常であることを示す信号を送信してもよい。
また、制御部81は、デジタル信号が示す信号強度に応じて、第二のローパスフィルタ82の通過帯域を適宜変更する制御を行う。制御部81は、例えば、デジタル信号が示す信号強度が大きい程、第二のローパスフィルタ82の通過帯域を広くする制御を行う。また、制御部81は、デジタル信号が示す信号強度が小さい程、第二のローパスフィルタ82の通過帯域を狭くする制御を行う。制御部81が行う第二のローパスフィルタ82の通過帯域の制御は、第一の制御の一例である。制御部81が行う第一の制御の詳細は、後述する。
さらに、制御部81は、デジタル信号が示す信号強度に応じて信号増幅部40のゲインを変更する制御を行う。例えば、制御部81は、デジタル信号が示す信号強度が大きくなる程、信号増幅部40のゲインを小さくし、デジタル信号が示す信号強度が小さくなる程、信号増幅部40のゲインを大きくする制御を行う。制御部81が行う信号増幅部40のゲインの制御は、第二の制御の一例である。制御部81が行う第二の制御の詳細は、後述する。
なお、デジタル信号が示す信号強度とは、例えば、デジタル信号が示すピーク強度であってもよいし、デジタル信号が示す平均強度であってもよいし、デジタル信号が示すエネルギー量であってもよい。
第二のローパスフィルタ82は、入力されたデジタル信号から所定帯域(通過帯域)の周波数の信号を通過させるカットオフ周波数が変更可能なデジタルフィルタである。これにより、例えばデジタル信号に含まれるA/D変換器60に起因するノイズなどを抑制することができる。第二のローパスフィルタ82の通過帯域とは、制御部81により制御されたカットオフ周波数以下の周波数帯域のことである。
処理部83は、第二のローパスフィルタ82を通過したデジタル信号から、対象物2が含む成分を検出する処理装置である。具体的には、処理部83は、デジタル信号が示す信号強度に基づいて、対象物2が含む水分量を検出する。例えば、処理部83は、第一の出力部110から入力されたデジタル信号が第二のローパスフィルタ82を通過して生成された第一のデジタル信号と、第二の出力部120から入力されたデジタル信号が第二のローパスフィルタ82を通過して生成された第ニのデジタル信号との除算に基づく値に所定の定数を演算することで、デジタル信号を水分量に変換する。例えば、所定の定数とは、光源部10が発する、検知光をなす第一の波長帯の光及び参照光をなす第二の波長帯の光が示す信号強度と、受光部30が有するフィルタ及び第二の出力部120の受光部が有するフィルタの透過率特性と、受光部30が有する受光素子及び第二の出力部120の受光部が有する受光素子の受光特性との中の少なくとも1つを用いて予め定められる定数である。また、演算では、加算、減算、乗算及び除算の中から少なくとも1つが行われる。
信号処理部80が有する各構成要素は、マイクロコンピュータで構成される。信号処理部80は、デジタル信号に対する処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。不揮発性メモリが格納するデジタル信号に対する処理プログラムには、上記の所定の定数が含まれる。なお、所定の定数は、複数格納されていてもよい。
[1-2-8.報知部]
報知部90は、信号処理部80からの信号に応じて、所定の報知を行う報知装置である。報知部90は、例えば、所定の光を発する発光装置であってもよいし、所定の表示を行う液晶ディスプレイなどの表示装置であってもよい。報知部90が発光装置である場合、受光信号が異常であることを示す信号を信号処理部80から取得すると、所定の色の光を発する。
報知部90は、信号処理部80からの信号に応じて、所定の報知を行う報知装置である。報知部90は、例えば、所定の光を発する発光装置であってもよいし、所定の表示を行う液晶ディスプレイなどの表示装置であってもよい。報知部90が発光装置である場合、受光信号が異常であることを示す信号を信号処理部80から取得すると、所定の色の光を発する。
上記のように、本実施の形態に係る水分量検出装置1は、光を出射する半導体発光素子を含み、対象物2に向けて発光周波数で明滅する光を照射する光源部10と、対象物2で反射された反射光Rを含む光を受光し、受光した光に応じた信号を生成する受光部30と、受光部30から出力される受光信号のうち、反射光Rを受光していないタイミングで出力される出力電圧(例えば、図4Bの(b)に示す出力電圧Vout4)が閾値電圧Vroより低くなったときを異常と判定する判定部70を備える。
[1-3.水分量検出装置の動作]
続いて、水分量検出装置1の動作について、図5を参照しながら説明する。
続いて、水分量検出装置1の動作について、図5を参照しながら説明する。
図5は、本実施の形態に係る水分量検出装置1における水分量検出の動作を示すフローチャートである。
まず、光源制御部20は、光源部10を制御して対象物2に向けて光を照射させる。つまり、光源制御部20は、光源部10の発光を開始させる(S11)。具体的には、光源制御部20は、所定の周波数のパルス信号を発光素子に出力し、光を出射させる。
そして、受光部30は、ステップS11で光源部10から照射され、対象物2で反射された反射光Rを受光する(S12)。受光部30は、反射光Rとして、例えば光源部10から照射され対象物2で反射された光のうち、第一の波長帯の光を受光する。なお、受光部30は、反射光Rに加えて、太陽光などのノイズとなるDC光も受光する。受光部30は、受光した反射光R及びDC光の受光量に応じた受光信号を生成する。生成された受光信号は、信号増幅部40及び判定部70に出力される。
そして、判定部70は、受光信号が基準電圧Vrefと閾値電圧Vroとの間にあるか否かを判定する。具体的には、受光信号のうち反射光Rを受光していないタイミングで出力された出力電圧(例えば、図4Bの(b)に示す出力電圧Vout4)が基準電圧Vrefと閾値電圧Vroとの間にあるか否かを判定する。本実施の形態では、判定部70は、取得した受光信号が閾値電圧Vro以上であるか否かを判定する(S13)。判定部70は、異常信号を継続して出力するか否かで当該判定を行ってもよい。信号処理部80は、判定部70が出力電圧を閾値電圧Vroより低いと判定すると(S13でNо)、異常を示す信号を出力する(S14)。本実施の形態では、信号処理部80は報知部90に異常を示す信号を出力し、報知部90に異常であることを示す報知を行わせる。そして、ステップS12に戻る。なお、判定部70が出力電圧を閾値電圧Vroより低いと判定すると、その判定を行った受光信号に対しては、水分量は検出されなくてもよい。
また、判定部70が出力電圧を閾値電圧Vro以上であると判定すると(S13でYes)、信号増幅部40及びロックインアンプ50による受光信号(アナログ信号)の処理が行われる(S15)。具体的には、信号増幅部40により受光信号が所定のゲインで増幅された増幅信号が生成され、ロックインアンプ50により当該増幅信号から発光周波数の信号を抽出した抽出信号が生成される。生成された抽出信号は、A/D変換器60に出力される。
A/D変換器60は、入力された抽出信号(アナログ信号)をデジタル信号に変換するA/D変換処理を行う(S16)。そして、A/D変換器60は、デジタル信号を信号処理部80に出力する。
なお、ステップS12~S16までは、第一の出力部110及び第二の出力部120のそれぞれにおいて行われる。例えば、第一の出力部110及び第二の出力部120において、ステップS12~S16は並行して行われてもよい。
信号処理部80は、入力されたデジタル信号に所定の信号処理を施す。制御部81は、デジタル信号が示す信号強度と予め定められた第一の基準値(第一の基準強度)とに応じて、第二のローパスフィルタ82の通過帯域を制御する。例えば、制御部81は、デジタル信号が示す信号強度が第一の基準値より大きい場合には(S17でYes)、第二のローパスフィルタ82の通過帯域を第一の通過帯域より通過帯域が広い第二の通過帯域に制御する(S18)。また、例えば、制御部81は、デジタル信号が示す信号強度が第一の基準値以下である場合には(S17でNo)、第二のローパスフィルタ82の通過帯域を第一の通過帯域に制御する(S19)。ステップS17~S19の処理は、第一の制御の一例である。なお、第一の基準値は、例えば、予め信号処理部80が有する不揮発性メモリ(図示しない)に格納されている。
また、ステップS17~S19に示す処理は、第一の出力部110から入力されたデジタル信号及び第二の出力部120から入力されたデジタル信号のそれぞれに対して行われる。
ここで、制御部81が行う第一の制御について、図6を参照しながら説明する。
図6は、本実施の形態に係る制御部81が通過帯域を制御する一例を示す図である。具体的には、図6の(a)は、制御部81がステップS18で行う処理を示しており、図6の(b)は、制御部81がステップS19で行う処理を示している。なお、図6の(a)及び(b)に示す実線は、デジタル信号を示す。
図6の(a)に示すように、制御部81は、ステップS17でYesであった場合、デジタル信号が示す信号強度が第一の基準値より大きいので、第二のローパスフィルタ82の通過帯域を第一の通過帯域よりも広い第二の通過帯域とする制御を行う。デジタル信号が示す信号強度が大きいので通過帯域を広げてもS/N比への影響が小さい。また、第二のローパスフィルタ82は、通過帯域が広い程、言い換えるとカットオフ周波数が高いほど、高い周波数までデジタル信号を通過させる。第二のローパスフィルタ82が移動平均法を採用した構成である場合、カットオフ周波数が高い程、移動平均の対象サンプル数を減らすことができる。つまり、カットオフ周波数が高いと第二のローパスフィルタ82における処理量を減らすことができるので、第二のローパスフィルタ82における処理を高速化することができる。よって、水分量検出装置1は、デジタル信号が示す信号強度が第一の基準値より大きい場合に第二のローパスフィルタ82の通過帯域を広げることで、ロックインアンプ50による高S/N比の信号を維持しながら、かつ信号処理部80における信号処理時間を短縮することができる。なお、第二のローパスフィルタ82は、移動平均法以外の方法を採用した構成でもよい。
また、図6の(b)に示すように、制御部81は、ステップS17でNoであった場合、デジタル信号が示す信号強度が第一の基準値以下であるので、第二のローパスフィルタ82の通過帯域を第二の通過帯域より狭い第一の通過帯域とする。デジタル信号が示す信号強度が小さいので通過帯域を狭くすることで、第二のローパスフィルタ82を通過する信号に含まれるノイズ成分を抑制することができる。つまり、第二のローパスフィルタ82は、デジタル信号が示す信号強度が小さい場合であっても高S/N比の信号を抽出することができる。
図5を再び参照して、処理部83は、ステップS18又はS19で通過帯域が制御された第二のローパスフィルタ82を通過したデジタル信号が示す信号強度に所定の定数を演算することで、対象物2に含まれる水分量の検出を行う(S20)。処理部83は、例えば、第一の出力部110から入力されたデジタル信号が示す信号強度と、第二の出力部120から入力されたデジタル信号が示す信号強度との比に所定の定数を演算して、水分量を検出する。そして、信号処理部80は、検出した水分量を乾燥制御部106に出力する。ステップS20が終了すると、ステップS12に戻り水分量検出の処理が継続される。
次に、制御部81による信号増幅部40のゲインの制御について、図7を参照しながら説明する。
図7は、本実施の形態に係る制御部81におけるゲインの制御動作を示すフローチャートである。なお、図7では、ステップS16においてA/D変換処理が行われた後の制御部81における処理を示す。
信号処理部80は、入力されたデジタル信号に所定の信号処理を施す。制御部81は、デジタル信号が示す信号強度と予め定められた第二の基準値(第二の基準強度)とに応じて、信号増幅部40のゲインを制御する。例えば、制御部81は、デジタル信号が示す信号強度が第二の基準値より大きい場合には(S31でYes)、信号増幅部40のゲインを高い増幅率(ゲイン)及び低い増幅率(ゲイン)のうち低いゲインに制御する(S32)。つまり、制御部81は、デジタル信号が示す信号強度が第二の基準値より大きい場合、信号増幅部40のゲインを下げる制御を行う。これにより、例えば光源部10と対象物2との距離が近く受光部30が受光する反射光の強度が大きい場合であっても、A/D変換器60に入力される信号がA/D変換器60のダイナミックレンジを超えることを抑制することができる。よって、水分量検出装置1は、光源部10から対象物2までの距離が近い場合、つまり受光部30が受光する光の受光量が多い場合であっても、A/D変換器60のダイナミックレンジを超えることなく、水分量の検出が可能となる。なお、制御部81は、A/D変換器60に入力される信号がA/D変換器60のダイナミックレンジを超えないように信号増幅部40のゲインを制御すればよい。
また、制御部81は、デジタル信号が示す信号強度が第二の基準値以下である場合には(S31でNo)、信号増幅部40のゲインを高いゲイン及び低いゲインのうち高いゲインに制御する(S33)。つまり、制御部81は、デジタル信号が示す信号強度が第二の基準値以下である場合、ステップS31でYesのときに比べ信号増幅部40のゲインを高くする制御を行う。
上記のステップS31~S33の処理は、制御部81が行う第二の制御の一例である。また、第二の基準値は、例えば、予め信号処理部80が有する不揮発性メモリに格納されている。
[1-4.効果など]
本実施の形態に係る水分量検出装置1は、対象物2に向けて所定の周波数で明滅する光を照射する光源部10と、光が対象物2で反射された反射光Rを受光し、反射光Rの強度に応じた強度信号を出力する受光装置130と、強度信号が入力され、当該強度信号から所定の周波数の信号を抽出した抽出信号を出力するロックインアンプ50と、受光装置130から入力された、反射光Rの強度に応じた受光信号と、閾値電圧Vroとから、受光信号の異常を判定する判定部70とを備える。閾値電圧Vroは、受光装置130において予め定められた基準電圧Vref、及び、受光装置130が反射光Rを受光したときに出力する信号である出力電圧の差分の最大値である最大出力電圧幅ΔVmaxと、受光装置130が受光信号を出力可能な出力可能電圧幅Vmaxとの差分から決定される。
本実施の形態に係る水分量検出装置1は、対象物2に向けて所定の周波数で明滅する光を照射する光源部10と、光が対象物2で反射された反射光Rを受光し、反射光Rの強度に応じた強度信号を出力する受光装置130と、強度信号が入力され、当該強度信号から所定の周波数の信号を抽出した抽出信号を出力するロックインアンプ50と、受光装置130から入力された、反射光Rの強度に応じた受光信号と、閾値電圧Vroとから、受光信号の異常を判定する判定部70とを備える。閾値電圧Vroは、受光装置130において予め定められた基準電圧Vref、及び、受光装置130が反射光Rを受光したときに出力する信号である出力電圧の差分の最大値である最大出力電圧幅ΔVmaxと、受光装置130が受光信号を出力可能な出力可能電圧幅Vmaxとの差分から決定される。
これにより、閾値電圧Vroは、受光装置130が外乱光を受光しても出力飽和しない電圧として決定される。つまり、閾値電圧Vroを閾値として受光装置130から入力された第一の信号を判定することにより、強度信号が出力飽和しているか否かを判定することができる。また、強度信号のうち、受光装置130が反射光Rを受光していないタイミング、つまり外乱光のみを受光しているタイミングで出力された出力電圧と閾値電圧Vroとを用いて判定する場合、外乱光の影響を正確に判定することができる。よって、本実施の形態に係る水分量検出装置1は、外乱光により誤った水分量が検出されることを抑制することができる。
また、受光装置130は、反射光Rを受光し、受光信号を出力する受光部30を有し、第一の信号は、受光信号である。最大出力電圧幅ΔVmaxは、受光部30において予め定められた基準電圧Vrefと、受光部30が反射光Rを受光したときに出力する出力電圧との差分の最大値である。出力可能電圧幅Vmaxは、受光部30における基準電圧Vrefからの電圧幅である。閾値電圧Vroは、最大出力電圧幅ΔVmaxと出力可能電圧幅Vmaxとの差分と、基準電圧Vrefとから決定される。そして、判定部70は、受光信号が基準電圧Vrefと閾値電圧Vroとの間にないときに、受光信号が異常であると判定する。
これにより、DC光などの外乱光による受光信号の出力飽和を検出することができる。よって、本実施の形態に係る水分量検出装置1は、外乱光(DC光)により誤った水分量が検出されることをさらに抑制することができる。
また、制御部81は、さらに、判定部70が受光信号を異常であると判定すると、異常であることを示す信号を出力する。
これにより、異常であることを示す信号を報知部90が取得した場合、報知部90は、判定部70が受光信号を異常であると判定したことを報知することができる。
また、さらに、抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を出力するA/D変換器60と、通過帯域が可変であり、デジタル信号が入力され、当該デジタル信号から通過帯域の周波数の信号を通過させる第二のローパスフィルタ82とを備える。そして、制御部81は、デジタル信号が示す信号強度に応じて、通過帯域を変更する。
これにより、第二のローパスフィルタ82の通過帯域をデジタル信号が示す信号強度に応じて変更することができる。例えば、制御部81が通過帯域を広げる制御を行うことで、水分量を検出する処理を行うときの処理速度を高速化することができる。よって、水分量検出装置1は、第二のローパスフィルタ82を備えていない水分量検出装置に比べ、水分量を検出する処理を高速化することができる。
また、光源部10は、光を走査しながら照射する。
これにより、対象物2における複数の範囲、又は、複数の対象物2において水分量を検出することができる。よって、乾燥制御部106が乾燥条件を制御する場合、当該検出結果から水分量が多い位置を重点的に乾燥するなど、効率的に乾燥が行える。また、光を走査しながら対象物2における水分量の検出を行う場合、つまり連続して水分量の検出を行う場合に、上記のような信号処理部80における処理の高速化は、より効果を奏する。
また、光源部10は、照射光Lを出射するLED素子を有する。
これにより、光源制御部20が制御する点灯及び消灯の発光周期に対応した点灯及び消灯が可能なLED素子を用いて水分量検出装置1を実現できる。
(実施の形態1の変形例)
以下、本変形例に係る水分量検出装置1aについて、図8A~図10を参照しながら説明する。なお、本変形例では、実施の形態1と異なる点について説明し、実施の形態1と同様の構成については説明を省略又は簡略化する場合がある。
以下、本変形例に係る水分量検出装置1aについて、図8A~図10を参照しながら説明する。なお、本変形例では、実施の形態1と異なる点について説明し、実施の形態1と同様の構成については説明を省略又は簡略化する場合がある。
まずは、本変形例に係る水分量検出装置1aの構成について、図8A及び図8Bを参照しながら、説明する。
図8Aは、本変形例に係る水分量検出装置1aの詳細構成と対象物2とを示す模式図である。図8Bは、本変形例に係る水分量検出装置1aの回路構成を示す模式図である。具体的には、図8Bは、受光装置130a及び判定部70aの回路構成を示す。
図8Aに示すように、本変形例に係る水分量検出装置1aは、実施の形態1に係る受光装置130及び判定部70に替えて受光装置130a及び判定部70aを備える。
受光装置130aは、受光部30aと信号増幅部40aとを有する。
図8Bに示すように、受光部30aは、受光素子31と、IV変換部32a(電流―電圧変換回路)とを有する。本変形例では、IV変換部32aが変換インピーダンス部34aを有しており、IV変換部32aのインピーダンス値が可変である点に特徴を有する。
変換インピーダンス部34aは、複数のインピーダンスを有し、インピーダンス値が変化可能に構成される。具体的には、変換インピーダンス部34aは複数のインピーダンス(例えば、インピーダンスZ1~Z3)と、複数のスイッチ(例えば、SW1~SW3)とを有する。なお、変換インピーダンス部34aが有するインピーダンスの数は2以上であれば特に限定されない。変換インピーダンス部34aが有するインピーダンスの数は、例えば、2つでもよいし、5つでもよい。
インピーダンスZ1~Z3は、所定のインピーダンス値を有し、それぞれ並列に接続されている。一例として、インピーダンスZ1のインピーダンス値は16MΩ、インピーダンスZ2のインピーダンス値は4MΩ、インピーダンスZ3のインピーダンス値は1MΩである。なお、インピーダンスZ1~Z3のインピーダンス値は、上記に限定されない。また、インピーダンスZ3、Z2、及び、Z1は、この順に4倍ずつインピーダンス値が大きくなっているが、これに限定されない。また、例えば、インピーダンスZ1~Z3の少なくとも2つは同じインピーダンス値であってもよい。
スイッチSW1は、インピーダンスZ1と直列に接続され、インピーダンスZ1の導通及び非導通を切り替えるスイッチである。スイッチSW2は、インピーダンスZ2と直列に接続され、インピーダンスZ2の導通及び非導通を切り替えるスイッチである。スイッチSW3は、インピーダンスZ3と直列に接続され、インピーダンスZ3の導通及び非導通を切り替えるスイッチである。
スイッチSW1~SW3のそれぞれは、FET(Field Effect Transistor)などの半導体スイッチ素子であるが、リレー素子などであってもよい。また、スイッチSW1~SW3は、信号処理部80により導通及び非導通が制御される。信号処理部80は、例えば、受光信号における、反射光Rを受光しているタイミングで出力された出力電圧に応じて、スイッチSW1~SW3の少なくとも1つをオンにする。
このような受光部30aにおいて、インピーダンス値と当該インピーダンス値において出力される受光信号とについて、図9A及び図9Bを参照しながら説明する。なお、図9A及び図9Bでは、外乱光は受光部30aに入射していないものとして説明する。
まずは、受光部30aの変換インピーダンス部34aのインピーダンス値が切り替えられる例について、図9Aを参照しながら説明する。
図9Aは、本変形例に係る変換インピーダンス部34aのインピーダンス値を切り替える例を示す図である。なお、図9Aに示すように、変換インピーダンス部34aのインピーダンスを切り替えるための閾値電圧である切替電圧Vrcが設定される。切替電圧Vrcは、基準電圧Vrefと閾値電圧Vroとの間に設定される。また、切替電圧Vrcは、変換インピーダンス部34aに設定されているインピーダンス値により決定されてもよい。例えば、(基準電圧Vref-切替電圧Vrc):(基準電圧Vref-閾値電圧Vro)の比が所定の値となるように設定されてもよい。例えば、切替電圧Vrcは、(基準電圧Vref-切替電圧Vrc):(基準電圧Vref-閾値電圧Vro)=1:4となるように設定される。本実施の形態では、基準電圧Vrefは1.65V、切替電圧Vrcは1.275V、閾値電圧Vroは0.15Vである。なお、切替電圧Vrcは、判定部70aが行う受光信号が異常であるか否かの判定には用いられない。また、切替電圧Vrcは、第二の閾値の一例である。
図9Aの(a)は、受光信号が基準電圧Vrefと切替電圧Vrcとの間にある例を示している。具体的には、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧Vout8が、基準電圧Vrefと切替電圧Vrcとの間にある例を示している。なお、出力電圧Vout8は、第二の出力電圧の一例である。また、図9Aの(a)では、スイッチSW2が導通されている例を示している。つまり、変換インピーダンス部34aのインピーダンス値は、インピーダンスZ2の4MΩである。
図9Aの(b)は、図9Aの(a)の状態で、変換インピーダンス部34aのインピーダンスをインピーダンスZ2(4MΩ)からインピーダンスZ1(16MΩ)に切り替えた後の受光信号を示している。変換インピーダンス部34aのインピーダンス値を高くすることで、受光信号のうち反射光Rを受光しているタイミングで出力される出力電圧Vout9の値を低くすることができる。本実施の形態では、受光信号のうち反射光Rを受光していないタイミングで出力された出力電圧(図9Aに示す基準電圧Vref)と出力電圧Vout9との電位差は、基準電圧Vrefと出力電圧Vout8との電位差の約4倍となる。
図9Aの(b)に示すように、出力電圧Vout8が基準電圧Vrefと切替電圧Vrcとの間にあるときに変換インピーダンス部34aのインピーダンス値を高くする(4MΩ→16MΩ)変更を行っても、出力電圧Vout9は、基準電圧Vrefと閾値電圧Vroとの間にある。言い換えると、出力電圧Vout9の電圧値は、閾値電圧Vroの電圧値以上である。これにより、A/D変換するときのビット分解能が向上するので、より精度よく水分量を検出することができる。
また、変換インピーダンスのジョンソンノイズは2倍になるが信号は4倍になるため、この部分のS/N比は理想的には2倍になり検出分解能も向上する。
次に、受光部30aの変換インピーダンス部34aのインピーダンスを切り替えない例について、図9Bを参照しながら説明する。
図9Bは、本変形例に係る変換インピーダンス部34aのインピーダンスを切り替えない例を示す図である。
図9Bの(a)は、受光信号の一部が基準電圧Vrefと切替電圧Vrcとの間からはみ出している例を示している。具体的には、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧Vout10が、基準電圧Vrefと切替電圧Vrcとの間にない例を示している。また、図9Bの(a)では、スイッチSW2が導通されている例を示している。つまり、変換インピーダンス部34aのインピーダンス値は、インピーダンスZ2の4MΩである。
図9Bの(b)は、図9Bの(a)の状態で、変換インピーダンス部34aのインピーダンスをインピーダンスZ2(4MΩ)からインピーダンスZ1(16MΩ)に切り替えた後の受光信号を示している。変換インピーダンス部34aのインピーダンス値を高くすることで、受光信号のうち反射光Rを受光しているタイミングで出力される出力電圧Vout11の値を低くすることができる。本実施の形態では、受光信号のうち反射光Rを受光していないタイミングで出力された出力電圧(図9Bに示す基準電圧Vref)と出力電圧Vout11との電位差は、基準電圧Vrefと出力電圧Vout10との電位差の約4倍となる。
図9Bの(b)に示すように、出力電圧Vout10が基準電圧Vrefと切替電圧Vrcとの間にないときに変換インピーダンス部34aのインピーダンス値を高くする(4MΩ→16MΩ)変更を行うと、出力電圧Vout11は、基準電圧Vrefと閾値電圧Vroとの間にない。本実施の形態では、出力電圧Vout11の電圧値は、閾値電圧Vroの電圧値より低くなる。この場合、外乱光の影響などにより出力飽和しやすいので、インピーダンスの変更を行わない。これにより、受光信号の出力飽和を抑制しつつ、かつ大まかな水分量を検出することができる。
なお、図9Bの(b)に示す状態となった場合、変換インピーダンス部34aのインピーダンスをインピーダンスZ2(4MΩ)からインピーダンスZ3(1MΩ)に下げるとよい。
なお、本変形例において、出力可能電圧幅Vmaxの下限電圧に決定された閾値電圧Vroを用いてもよい。この場合においても、上記と同様の判定を行うことで、受光信号の出力飽和を抑制することができる。
図8Bを再び参照して、信号増幅部40aは、ハイパスフィルタ41aとオペアンプ42aとを有する。
ハイパスフィルタ41aは、受光部30aと接続され受光部30aから出力された受光信号のDC成分を除去するフィルタである。ハイパスフィルタ41aは、例えば、RC回路などにより実現される。
オペアンプ42aは、ハイパスフィルタ41aから出力された受光信号が入力され、当該受光信号を所定のゲインで増幅した増幅信号をロックインアンプ50に出力する。本変形例では、オペアンプ42aは、ゲインを変更可能に構成される。オペアンプ42aは、例えば、受光部30aの変換インピーダンス部34a及び変換インピーダンス部34aを構成するインピーダンスのそれぞれに直列に接続されたスイッチを有する構成であってもよい。オペアンプ42aのゲインは、例えば、制御部81により制御される。なお、オペアンプ42aは、ゲインが固定であってもよい。
判定部70aは、受光部30aから入力された受光信号と、予め定められた第一の閾値とから、受光信号の異常を判定する。判定部70aは、さらに、受光部30aから入力された受光信号と、予め定められた第二の閾値とから、受光部30aの変換インピーダンス部34aのインピーダンスを変更するか否かを判定する。
判定部70aは、実施の形態1に係るコンパレータ71に加え、さらにコンパレータ71aを有する。
コンパレータ71aは、受光部30aの変換インピーダンス部34aのインピーダンス値を変更するか否かを判定するために用いられる。コンパレータ71aの入力端子には、受光信号と、切替電圧Vrcとが入力される。切替電圧Vrcは、電源(例えば、+3.3V)から供給される電源電圧を2つの抵抗で分割して生成された電圧である。また、判定部70aは、受光信号の異常の判定結果に加え、変換インピーダンス部34aのインピーダンス値の変更の判定結果を信号処理部80に出力する。コンパレータ71aは、例えば、切替電圧Vrcより低い電圧が入力されると、信号処理部80に所定の信号(例えば、Highレベルの信号)を出力する。また、コンパレータ71aは、例えば、切替電圧Vrcより高い電圧が入力されると、信号処理部80に所定の信号(例えば、Highレベルの信号よりも電圧値が低いLowレベルの信号であり、以降では切替信号とも記載する)を出力する。
制御部81は、コンパレータ71及び71aから入力される信号に応じて、所定の処理を行う。制御部81が行うコンパレータ71から入力される信号に応じた処理は、実施の形態1と同様であり、説明を省略する。
制御部81は、コンパレータ71から異常信号が入力されておらず、かつコンパレータ71aから切替信号が入力されると、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧が基準電圧Vrefと切替電圧Vrcとの間にあるので、IV変換部32aのスイッチSW1~SW3の導通及び非導通を制御し、変換インピーダンス部34aのインピーダンス値を上げる制御を行う。また、制御部81は、コンパレータ71からから異常信号が入力されておらず、かつコンパレータ71aから切替信号が入力されていないと、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧が切替電圧Vrcと閾値電圧Vroとの間にあるので、変換インピーダンス部34aのインピーダンスを変更しない。また、制御部81は、コンパレータ71から異常信号が入力されており、かつコンパレータ71aから切替信号が入力されていないと、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧が閾値電圧Vroより低いので、IV変換部32aのスイッチSW1~SW3の導通及び非導通を制御し、変換インピーダンス部34aのインピーダンスを下げる制御を行う。
続いて、水分量検出装置1aの動作について、図10を参照しながら説明する。
図10は、本変形例に係る水分量検出装置1aにおける水分量検出の動作を示すフローチャートである。なお、本変形例では、実施の形態1に水分量検出装置1における水分検出の動作(図5参照)に、さらに、ステップS21~S24が追加されている。ステップS11~S20までの動作は、実施の形態1と同様であり、説明を省略する。
判定部70aは、受光信号が閾値電圧Vro以上であった場合(S13でYes)、さらに、受光信号が切替電圧Vrc以上であるか否かの判定を行う(S21)。判定部70aは、受光信号が基準電圧Vrefと切替電圧Vrcとの間にあるか否かを判定する。判定部70aは、受光信号のうち反射光Rを受光していないタイミングで出力された出力電圧(例えば、図9Aに示す出力電圧Vout8)が基準電圧Vrefと切替電圧Vrcとの間にあるか否かを判定する。判定部70aは、受光信号が切替電圧Vrc以上である場合(S21でYes)、切替信号を制御部81に出力し、かつ異常信号を出力しないことで当該判定を行ってもよい。なお、判定部70がステップS13及びS21でYesと判定することは、第一の判定の一例である。
制御部81は、判定部70aが第一の判定を行うと、変換インピーダンス部34aのインピーダンス値を増加させ、かつ、信号増幅部40aのゲインを減少させる制御を行う(S22)。なお、ステップS22では、少なくともインピーダンス値の変更が行われればよい。
制御部81は、例えば、変換インピーダンス部34aがインピーダンスZ2のインピーダンス値である場合(つまり、スイッチSW2が導通している場合)に、ステップS21でYesと判定されると、インピーダンスZ2を非導通とし、かつインピーダンスZ2よりインピーダンス値が大きいインピーダンスZ1が導通するようにスイッチSW1~SW3を制御する。なお、インピーダンスZ2は第一のインピーダンスの一例であり、インピーダンスZ1は第二のインピーダンスの一例である。
制御部81は、さらに、変換インピーダンス部34aのインピーダンス値を増加させた場合に、信号増幅部40aのゲインをインピーダンスZ2のインピーダンス値であったときの第一のゲインから、当該第一のゲインより増幅率が小さい第二のゲインに変更する制御を行う。
制御部81は、変換インピーダンス部34aのインピーダンス値を変更する前後において、変換インピーダンス部34aのインピーダンス値と信号増幅部40aのゲインとの積が一定となるように第二のゲインを決定するとよい。つまり、信号増幅部40のゲインは、変換インピーダンス部34aのインピーダンス値に応じて予め設定されるとよい。本実施の形態では、インピーダンスZ1:Z2:Z3のインピーダンス値は16:4:1であるので、予め設定されるゲインの比は、1:4:16であるとよい。
ステップS22でインピーダンス及びゲインが変更されると、ステップS12に戻り、反射光Rの受光から、処理が進められる。
また、受光信号が切替電圧Vrcより小さい場合(ステップS21でNo)、判定部70aは、受光信号の一部が閾値電圧Vroより小さいか否かの判定を行う(S23)。判定部70aは、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧(例えば、図9Bの(b)に示す出力電圧Vout11)が閾値電圧Vroより小さいか否かを判定する。判定部70aは、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧が閾値電圧Vroより小さい場合(S23でYes)、切替信号を制御部81に出力せず、かつ異常信号を出力することで当該判定を行ってもよい。なお、判定部70aがステップS13、S21及びS23でYesと判定することは第二の判定の一例である。
制御部81は、例えば、変換インピーダンス部34aがインピーダンスZ2のインピーダンス値である場合(つまり、スイッチSW2が導通している場合)に、ステップS23でYesと判定されると、インピーダンスZ2を非導通とし、かつインピーダンスZ2よりインピーダンス値が小さいインピーダンスZ3が導通するようにスイッチSW1~SW3を制御する。なお、インピーダンスZ3は第三のインピーダンス値の一例である。
制御部81は、さらに、変換インピーダンス部34aのインピーダンス値を減少させた場合に、信号増幅部40aのゲインをインピーダンスZ2であったときの第一のゲインから、当該第一のゲインより増幅率が大きい第三のゲインに変更する制御を行う。
制御部81は、変換インピーダンス部34aのインピーダンスを変更する前後において、変換インピーダンス部34aのインピーダンス値と信号増幅部40aのゲインとの積が一定となるように第三のゲインを決定するとよい。ステップS24でインピーダンス及びゲインが変更されると、ステップS12に戻り、反射光Rの受光から、処理が進められる。
なお、受光信号のうち反射光Rを受光しているタイミングで出力された出力電圧が閾値電圧Vro以上である場合(ステップS23でNo)、インピーダンス及びゲインは変更されずステップS15に進み、以降のステップが行われる。なお、ステップS13、S21及びS23の処理は、並行して行われてもよい。
なお、上記では、制御部81は、変換インピーダンス部34aのインピーダンス値を増加させる制御(S22)、及び、変換インピーダンス部34aのインピーダンス値を減少させる制御(S24)の両方を行う例について説明したが、これに限定されない。制御部81は、例えば、ステップS22及びS24のうちの少なくとも一方の制御を行えばよい。例えば、ステップS24において変換インピーダンス部34aのインピーダンス値の変更が行われない場合に、判定部70aがステップS23でYesと判定したとき、ステップS12に戻ってもよい。また、ステップS23における処理は、行われなくてもよい。なお、制御部81が変換インピーダンス部34aのインピーダンス値を変更しない場合、信号増幅部40aのゲインも変更されない。
本変形例に係る水分量検出装置1aは、制御部81をさらに備える。受光部30aは、反射光Rを受光し、光電流を出力する受光素子31と、光電流をIV変換して受光信号を出力するIV変換部32aとを有し、IV変換部32aは、光電流が入力されるオペアンプ33と、インピーダンス値が変化可能な変換インピーダンス部34aとを有する。そして、判定部70aは、さらに、受光信号のうち反射光Rを受光しているタイミングで出力された第二の出力電圧が、閾値電圧Vro及び基準電圧Vrefの間の切替電圧Vrcと、基準電圧Vrefとの間にある場合は第一の判定をし、第二の出力電圧が基準電圧Vref及び閾値電圧Vroの間にない場合は第二の判定をする。制御部81は、判定部70aが第一の判定をした場合に、変換インピーダンス部34aのインピーダンスをインピーダンスZ2から当該インピーダンスZ2よりインピーダンス値が大きいインピーダンスZ1に変更する制御、及び、判定部70aが第二の判定をした場合に、変換インピーダンス部34aのインピーダンスをインピーダンスZ2から当該インピーダンスZ2よりインピーダンス値が小さいインピーダンスZ3に変更する制御の少なくとも一方を行う。
これにより、IV変換部32aの変換インピーダンス部34aのインピーダンス値を太陽光などの外乱光の受光量に応じた適切な値に変更することができる。例えば、太陽光などの外乱光の受光量が多い場合には、IV変換部32aの変換インピーダンス部34aのインピーダンス値が小さくなるように変更されるので、受光部30aから出力される受光信号が出力飽和することを抑制することができる。また、太陽光などの外乱光の受光量が少ない場合にはIV変換部32aの変換インピーダンス部34aのインピーダンス値が大きくなるように変更されるので、高い検出分解能を維持することができる。よって、本変形例に係る水分量検出装置1aは、さらに外乱光により誤った水分量が検出されることが抑制され、かつ高い検出分解能を維持することができる。
また、受光信号が入力され、当該受光信号を所定のゲインで増幅した増幅信号を強度信号としてロックインアンプ50に出力する信号増幅部40aであって、ゲインが可変である信号増幅部40aをさらに備える。そして、制御部81は、さらに、変換インピーダンス部34aのインピーダンスをインピーダンスZ2からインピーダンスZ1に変更した場合に、信号増幅部40aのゲインを第一のゲインから第一のゲインより小さい第二のゲインに変更し、変換インピーダンス部34aのインピーダンスをインピーダンスZ2からインピーダンスZ3に変更した場合に、信号増幅部40aのゲインを第一のゲインから第一のゲインより大きい第三のゲインに変更する。
これにより、受光部30aの変換インピーダンス部34aのインピーダンスが変更されても、信号増幅部40aのゲインを変更することによって、A/D分解能が変化することを抑制することができる。例えば、変換インピーダンス部34aのインピーダンスをインピーダンスZ2からインピーダンスZ1に変更した場合に、信号増幅部40aのゲインを第一のゲインから第二のゲインに変更することで、信号増幅部40aのゲインを変更しない場合に比べ、A/D分解能が向上する。
また、制御部81は、変換インピーダンス部34aのインピーダンスを変更する前後において、変換インピーダンス部34aのインピーダンスと信号増幅部40aのゲインとの積が一定となるように第二のゲイン及び第三のゲインを決定する。
これにより、受光部30aの変換インピーダンス部34aのインピーダンスが変更されても、信号増幅部40aのゲインを変更することによって、一定の出力が得られるので、同じA/D分解能で水分量を検出することができる。
(実施の形態2)
以下、本実施の形態に係る水分量検出装置について、図11A~図13を参照しながら説明する。なお、本実施の形態では、実施の形態1と異なる点について説明し、実施の形態1と同様の構成については説明を省略又は簡略化する場合がある。
以下、本実施の形態に係る水分量検出装置について、図11A~図13を参照しながら説明する。なお、本実施の形態では、実施の形態1と異なる点について説明し、実施の形態1と同様の構成については説明を省略又は簡略化する場合がある。
[2-1.水分量検出装置の構成]
まず、水分量検出装置201の各構成要素について、図11A及び図11Bを参照しながら説明する。なお、本実施の形態では、外乱光が光の強度が時間に依存して変化する場合に、誤った水分量が検出されることが抑制される水分量検出装置について説明する。光の強度が時間に依存して変化する外乱光とは、例えば、蛍光灯の光などであり、以降においてAC光とも記載する。
まず、水分量検出装置201の各構成要素について、図11A及び図11Bを参照しながら説明する。なお、本実施の形態では、外乱光が光の強度が時間に依存して変化する場合に、誤った水分量が検出されることが抑制される水分量検出装置について説明する。光の強度が時間に依存して変化する外乱光とは、例えば、蛍光灯の光などであり、以降においてAC光とも記載する。
図11Aは、本実施の形態に係る水分量検出装置201の詳細構成と対象物2とを示す模式図である。図11Bは、本実施の形態に係る水分量検出装置201の回路構成を示す模式図である。具体的には、図11Bは、受光装置230及び判定部270の回路構成を示す。
図11A及び図11Bに示すように、本実施の形態に係る水分量検出装置201は、光源部10と、光源制御部20と、判定部270と、信号処理部80と、第一の出力部110と、第二の出力部(図示しない)とを備える。また、第一の出力部110は、受光装置230と、ロックインアンプ50と、A/D変換器60とを備え、受光装置230が受光した光に対応した信号を信号処理部80に出力する。さらに、本実施の形態では、判定部270は、受光装置230から取得した信号を用いて、当該信号に異常がないかを判定し、当該判定結果を信号処理部80に出力する。本実施の形態に係る判定部270は、信号増幅部240が出力する増幅信号を入力として、所定の判定を行う点に特徴を有する。なお、光源部10、光源制御部20、受光部30、ロックインアンプ50、A/D変換器60、信号処理部80、及び、報知部90の構成は、実施の形態1と同様であり、説明を省略する。
信号増幅部240は、受光部30により出力された受光信号が入力され、当該受光信号を所定のゲインで増幅した増幅信号を強度信号としてロックインアンプ50に出力する。具体的には、信号増幅部240は、ハイパスフィルタ241とオペアンプ242とを有する。信号増幅部240は、例えば、実施の形態1の変形例に係る信号増幅部40aと同様の構成を有する。なお、信号増幅部240は第一の信号増幅部の一例であり、信号増幅部240が出力する増幅信号は、第一の増幅信号の一例である。また、増幅信号は、判定部270に入力される第一の信号の一例である。
判定部270は、信号増幅部240から入力された増幅信号と、予め定められた第一の閾値とから、増幅信号の異常を判定する。ここで、増幅信号の異常とは、外乱光の影響により増幅信号から正確な水分量が検出できないことを意味する。具体的には、外乱光の影響により増幅信号が出力飽和していることを意味する。
図11Bに示すように、判定部270は、信号増幅部240とロックインアンプ50との間を接続する接続線と接続されている。判定部270は、コンパレータ271(コンパレータ回路)を有する。コンパレータ271の入力端子には、増幅信号と、閾値電圧Vroとが入力される。閾値電圧Vroは、電源(例えば、+3.3V)から供給される電源電圧を2つの抵抗で分割して生成された電圧である。判定部270は、例えば、基準電圧Vrefと閾値電圧Vroとの差分より、基準電圧Vrefと入力される電圧との差分が大きくなると異常であると判定する。判定部270は、例えば、閾値電圧Vroが基準電圧Vrefより低い電圧であった場合、増幅信号の電圧が閾値電圧Vroより低いときに異常であると判定する。また、判定部270は、判定結果を信号処理部80に出力する。判定部270は、閾値電圧Vroより低い電圧が入力されると、信号処理部80に所定の信号(例えば、Highレベルの信号であり、以降において、異常信号とも記載する)を出力する。また、判定部270は、例えば、閾値電圧Vroと基準電圧Vrefとの間にある(例えば、閾値電圧Vroより高い)電圧が入力されると、信号処理部80に所定の信号(例えば、異常信号よりも電圧値が低いLowレベルの信号)を出力する。
ここで、図11Bに示す出力1、2及び3のぞれぞれで取得される信号の波形について、図12を参照しながら説明する。
図12は、本実施の形態に係る図11Bに示す出力1~3で取得される信号の一例を示す図である。なお、出力1は、受光部30から信号増幅部240へ出力される受光信号を示す。出力2は、信号増幅部240において、ハイパスフィルタ241からオペアンプ242に出力される信号を示す。出力3は、信号増幅部240からロックインアンプ50及び判定部270に入力される増幅信号を示す。
図12では、AC光の強度が小さい場合(図12に示す、AC光ノイズが小さい場合)と、AC光の強度が大きい場合(図12に示すAC光ノイズが大きい場合)とを図示している。
まず、AC光の強度が小さい場合について、説明する。
出力1に示すように、受光信号は、AC光の影響により、波打った形状の信号となる。受光信号は、AC光が蛍光灯である場合、例えば、100~120Hz程度の周波数(周期8~10ms)の正弦波形状となる。なお、AC光の強度が小さいので、AC光の強度が大きい場合に比べ、受光信号の振幅は小さい。
出力2に示すように、受光信号は、ハイパスフィルタ241により、直流成分のノイズ(例えば、DC光によるノイズ)が除去され、基準電圧Vrefである1.65Vを略中心に正弦波形状の信号となる。
出力3に示すように、受光信号は、オペアンプ242により所定のゲインで増幅された増幅信号となる。このとき、受光信号に含まれるAC光の成分も所定のゲインで増幅され、出力2のときの信号に比べ、振幅が大きくなる。
なお、出力3の図に示す閾値電圧Vroは、実施の形態1と同様に決定される。閾値電圧Vroは、最大出力電圧幅と、出力可能電圧幅Vmax(ダイナミックレンジ)との差分から決定される。
本実施の形態における最大出力電圧幅とは、信号増幅部240において予め定められた基準電圧Vref(1.65V)と、受光部30が反射光Rを受光したときにオペアンプ242が出力する出力電圧との差分の最大値で定義される。最大出力電圧幅は、例えば、信号増幅部240の基準電圧Vrefと、例えば図4Bの(a)に示すVout3をゲイン倍した電圧とから決定される。
出力可能電圧幅は、信号増幅部240が基準電圧Vrefからの出力可能な電圧幅であり、出力3を示す図において、一例として0V~+1.65V、又は、1.65V~3.3Vまでの電圧幅となる。なお、閾値電圧Vroは、第一の閾値の一例である。
なお、出力3に示す図において、閾値電圧Vroは、基準電圧Vrefより低い電圧に設定されている例を示しているが、これに限定されない。閾値電圧Vroは、基準電圧Vrefより高い電圧及び低い電圧の少なくとも一方に設定されていればよい。
次に、AC光の強度が大きい場合について、説明する。
出力1に示すように、受光信号は、AC光の影響により、波打った形状の信号となる。なお、AC光の強度が小さい場合に比べ、受光信号の振幅は大きくなる。
出力2に示すように、受光信号は、ハイパスフィルタ241により、直流成分のノイズ(例えば、DC光によるノイズ)が除去される。その後、出力3に示すように、受光信号は、オペアンプ242により所定のゲインで増幅された増幅信号となる。このとき、受光信号に含まれるAC光の成分も所定のゲインで増幅され、出力2のときの信号に比べ、振幅が大きくなる。
出力3に示すように、AC光の強度が大きい場合の増幅信号は、信号増幅部240の出力可能電圧幅を越えてゆらいでいる。信号増幅部240の出力可能電圧幅Vmaxを越えた部分は、信号増幅部240からロックインアンプ50に出力される増幅信号には含まれない。つまり、増幅信号は、出力飽和している状態である。図12のAC光ノイズが大きい場合の出力3の状態では、信号増幅部240が出力する増幅信号から正確な水分量が検出できない。そこで、判定部270は、出力3の状態を異常として判定する。
判定部270は、増幅信号の振幅の最大値である出力電圧(例えば、図12に示す出力電圧Vout12)が基準電圧Vrefと閾値電圧Vroとの間にないときに、増幅信号が異常であると判定する。つまり、判定部270は、受光信号が異常であると判定する。本実施の形態では、判定部270は、出力電圧Vout12の電圧値が閾値電圧Vroより低くなった場合を異常と判定することで、出力飽和した増幅信号を用いて水分量が検出されることを抑制することができる。図12に示す出力電圧Vout12は第一の出力電圧の一例である。
[2-2.水分量検出装置の動作]
続いて、水分量検出装置201の動作について、図13を参照しながら説明する。
続いて、水分量検出装置201の動作について、図13を参照しながら説明する。
図13は、本実施の形態に係る水分量検出装置201における水分量検出の動作を示すフローチャートである。
ステップS101及びS102は、図5に示すステップS11及びS12と同様であり、説明を省略する。
ステップS102の次に、信号増幅部240において、受光部30から出力された受光信号を所定のゲインで増幅させて増幅信号を生成する信号増幅処理が行われる(S103)。増幅信号は、判定部270及びロックインアンプ50に入力される。
そして、判定部270は、増幅信号の振幅の最大値である出力電圧(例えば、図12のAC光ノイズが小さい場合の出力3の図に示す出力電圧Vout12)が基準電圧Vrefと閾値電圧Vroとの間にあるか否かを判定する。本実施の形態では、判定部270は、取得した増幅信号が閾値電圧Vro以上か否かを判定する(S104)。判定部270が出力電圧を閾値電圧Vroより低いと判定すると(S104でNо)、信号処理部80は、異常を示す信号を出力する(S105)。本実施の形態では、信号処理部80は報知部90に異常を示す信号を出力し、報知部90に異常であることを示す報知を行わせる。そして、ステップS102に戻る。なお、判定部270が出力電圧を閾値電圧Vroより低いと判定すると、その判定を行った増幅信号に対しては、水分量は検出されなくてもよい。
また、判定部270が出力電圧を閾値電圧Vro以上であると判定すると(S104でYes)、ロックインアンプ50による増幅信号の処理(いわゆるロックインアンプ処理)が行われる(S106)。具体的には、ロックインアンプ50により当該増幅信号から発光周波数の信号を抽出した抽出信号が生成される。生成された抽出信号は、A/D変換器60に出力される。なお、以降の処理は、図5に示すステップS16以降と同様であり、説明を省略する。
[2-3.効果など]
本実施の形態に係る水分量検出装置201の受光装置230は、反射光Rを受光し、受光信号を出力する受光部30と、受光信号が入力され、当該受光信号を所定の増幅率で増幅した増幅信号(第一の信号の一例)を強度信号として出力する信号増幅部240とを有する。最大出力電圧幅は、信号増幅部240において予め定められた基準電圧Vrefと、受光部30が反射光Rを受光したときに信号増幅部240が出力する出力電圧との差分の最大値であり、出力可能電圧幅Vmaxは、信号増幅部240が出力可能な信号増幅部240の基準電圧Vrefからの電圧幅である。閾値電圧Vroは、最大出力電圧幅と出力可能電圧幅Vmaxとの差分と、基準電圧Vrefとから決定される。そして、判定部270は、増幅信号の振幅の最大値が基準電圧Vrefと閾値電圧Vroとの間にないときに、受光信号が異常であると判定する。
本実施の形態に係る水分量検出装置201の受光装置230は、反射光Rを受光し、受光信号を出力する受光部30と、受光信号が入力され、当該受光信号を所定の増幅率で増幅した増幅信号(第一の信号の一例)を強度信号として出力する信号増幅部240とを有する。最大出力電圧幅は、信号増幅部240において予め定められた基準電圧Vrefと、受光部30が反射光Rを受光したときに信号増幅部240が出力する出力電圧との差分の最大値であり、出力可能電圧幅Vmaxは、信号増幅部240が出力可能な信号増幅部240の基準電圧Vrefからの電圧幅である。閾値電圧Vroは、最大出力電圧幅と出力可能電圧幅Vmaxとの差分と、基準電圧Vrefとから決定される。そして、判定部270は、増幅信号の振幅の最大値が基準電圧Vrefと閾値電圧Vroとの間にないときに、受光信号が異常であると判定する。
これにより、AC光などの外乱光による増幅信号の出力飽和を検出することができる。よって、本実施の形態に係る水分量検出装置201は、外乱光(AC光)により誤った水分量が検出されることがさらに抑制される。
また、制御部81は、さらに、判定部270が増幅信号を異常であると判定すると、異常であることを示す信号を出力する。
これにより、異常であることを示す信号を報知部90が取得した場合、判定部270が増幅信号を異常であると判定したことを報知することができる。
(実施の形態2の変形例)
以下、本変形例に係る水分量検出装置201aについて、図14及び図15を参照しながら説明する。なお、本変形例では、実施の形態2と異なる点について説明し、実施の形態2と同様の構成については説明を省略又は簡略化する場合がある。
以下、本変形例に係る水分量検出装置201aについて、図14及び図15を参照しながら説明する。なお、本変形例では、実施の形態2と異なる点について説明し、実施の形態2と同様の構成については説明を省略又は簡略化する場合がある。
まずは、本変形例に係る水分量検出装置201aの構成について、図14を参照しながら、説明する。
図14、本変形例に係る水分量検出装置201aの回路構成を示す模式図である。具体的には、図14は、受光装置230a、ロックインアンプ250a、及び、判定部270aの回路構成を示す。
図14に示すように、本変形例に係る水分量検出装置201aは、実施の形態2に係る受光装置230、ロックインアンプ50、及び、判定部270に替えて受光装置230a、ロックインアンプ250a、及び、判定部270aを備える。
受光装置230aは、受光部30と信号増幅部240aとを有する。受光部30は、実施の形態2と同様であり説明を省略する。
信号増幅部240aは、ハイパスフィルタ241とオペアンプ242aとを有する。
オペアンプ242aは、ハイパスフィルタ241から出力された受光信号が入力され、当該受光信号を所定のゲインで増幅した増幅信号をロックインアンプ250aに出力する。本変形例では、オペアンプ242aは、ゲインを変更可能に構成される。オペアンプ242aは、例えば、図8Bに示す受光部30aの変換インピーダンス部34a及び変換インピーダンス部34aを構成するインピーダンスのそれぞれに直列に接続されたスイッチを有する構成であってもよい。オペアンプ242aのゲインは、例えば、制御部81により制御される。また、信号増幅部240aは、第一の信号増幅部の一例である。
ロックインアンプ250aは、バンドパスフィルタ51、ミキサ52、オペアンプ254a、及び、第一のローパスフィルタ53を有する。本変形例に係るロックインアンプ250aは、オペアンプ254aを有する点に特徴を有する。なお、バンドパスフィルタ51、及び、ミキサ52は、実施の形態1と同様であり、説明を省略する。
オペアンプ254aは、ミキサ52により取り出された信号成分を増幅して第一のローパスフィルタ53に出力する増幅回路である。オペアンプ254aは、ゲインを変更可能に構成される。オペアンプ254aは、例えば、オペアンプ242aと同様、互いに並列に接続された複数のインピーダンスと当該インピーダンスのそれぞれに直列に接続されたスイッチとを有する構成であってもよい。オペアンプ254aのゲインは、例えば、制御部81により制御される。第一のローパスフィルタ53は、オペアンプ254aから出力された信号から交流成分を除去するフィルタである。なお、オペアンプ254aは、第二の信号増幅部の一例であり、オペアンプ254aが増幅して第一のローパスフィルタ53に入力される信号は、第二の増幅信号の一例である。なお、オペアンプ254aは、ゲインが固定であってもよい。
判定部270aは、信号増幅部240aから入力された増幅信号と、予め定められた第一の閾値とから、増幅信号の異常を判定する。判定部270aは、さらに、信号増幅部240aから入力された増幅信号と、予め定められた切替電圧Vrcとから、オペアンプ242a及び254aのゲインを変更するか否かを判定する。なお、以降において、判定部270aは、オペアンプ242a及び254aのゲインを変更する例について説明するが、少なくともオペアンプ242aのゲインを変更するか否かについて判定すればよい。
判定部270aは、実施の形態2に係るコンパレータ271に加え、さらにコンパレータ271aを有する。なお、切替電圧Vrcは、基準電圧Vrefと閾値電圧Vroとの間の電圧値に設定される。また、切替電圧Vrcは、第二の閾値の一例である。
コンパレータ271aは、オペアンプ242a及び254aのゲインを変更するか否かを判定するために用いられる。コンパレータ271aの入力端子には、増幅信号と、切替電圧Vrcとが入力される。切替電圧Vrcは、電源(例えば、+3.3V)から供給される電源電圧を2つの抵抗で分割して生成された電圧である。また、判定部270aは、増幅信号の異常の判定結果に加え、オペアンプ242a及び254aのゲインにおける判定結果を信号処理部80に出力する。コンパレータ271aは、例えば、切替電圧Vrcより低い電圧が入力されると、信号処理部80に所定の信号(例えば、Highレベルの信号)を出力する。また、コンパレータ271aは、例えば、切替電圧Vrc以上の電圧が入力されると、信号処理部80に所定の信号(例えば、Highレベルの信号よりも電圧値が低いLowレベルの信号であり、以降では切替信号とも記載する)を出力する。
制御部81は、コンパレータ271及び271aから入力される信号に応じて、所定の処理を行う。制御部81が行うコンパレータ271から入力される信号に応じた処理は、実施の形態2と同様であり、説明を省略する。
制御部81は、コンパレータ271から異常信号が入力されておらず、かつコンパレータ271aから切替信号が入力されると、増幅信号の振幅が最大値となる出力電圧が基準電圧Vrefと切替電圧Vrcとの間にあるので、オペアンプ242aのゲインを増加させ、かつオペアンプ254aのゲインを減少させる制御を行う。制御部81は、例えば、オペアンプ242a及び254aが有するスイッチの導通及び非導通を切り替えることで、ゲインの制御を行う。また、制御部81は、コンパレータ271からから異常信号が入力されておらず、かつコンパレータ271aから切替信号が入力されていないと、増幅信号の振幅が最大値となる出力電圧が切替電圧Vrcと閾値電圧Vroとの間にあるので、オペアンプ242a及び254aのゲインを変更しない。また、制御部81は、コンパレータ271から異常信号が入力されており、かつコンパレータ271aから切替信号が入力されていないと、増幅信号の振幅が最大値となる出力電圧が閾値電圧Vroより低いので、オペアンプ242aのゲインを減少させ、かつオペアンプ254aのゲインを増加させる制御を行う。
続いて、水分量検出装置201aの動作について、図15を参照しながら説明する。
図15は、本変形例に係る水分量検出装置201aにおける水分量検出の動作を示すフローチャートである。なお、本変形例では、実施の形態2に水分量検出装置201における水分検出の動作(図13参照)に、さらに、ステップS121~S124が追加されている。ステップS101~S111までの動作は、実施の形態2と同様であり、説明を省略する。
判定部270aは、増幅信号が閾値電圧Vro以上であった場合(S104でYes)、さらに、増幅信号が切替電圧Vrc以上であるか否かの判定を行う(S121)。判定部270aは、増幅信号が基準電圧Vrefと切替電圧Vrcとの間にあるか否かを判定する。具体的には、増幅信号の振幅の最大値(例えば、図12に示す出力電圧Vout12)が基準電圧Vrefと切替電圧Vrcとの間にあるか否かを判定する。判定部270aは、増幅信号が切替電圧Vrc以上である場合(S121でYes)、切替信号を制御部81に出力し、かつ異常信号を出力しないことで当該判定を行ってもよい。なお、判定部270aがステップS104及びS121でYesと判定することは、第一の判定の一例である。また、出力電圧Vout12は、第二の出力電圧の一例である。
制御部81は、判定部270aが第一の判定を行うと、オペアンプ242a(信号増幅部240a)を増加させ、かつオペアンプ254a(ロックインアンプ250a)のゲインを減少させる制御を行う(S122)。なお、ステップS122では、少なくともオペアンプ242aのゲインの変更が行われればよい。
制御部81は、例えば、オペアンプ242aのゲインを現在の第三のゲインから、当該第三のゲインより増幅率が大きい第四のゲインに変更する制御を行う。現在のゲインとは、例えば、ステップS121において、Yesと判定されたときに設定されていたゲインである。
制御部81は、オペアンプ242aのゲインを大きくした場合、さらに、オペアンプ254aのゲインを現在の第六のゲインから、当該第六のゲインより増幅率が小さい第七のゲインに変更する制御を行う。
制御部81は、オペアンプ242aのゲインを変更する前後において、オペアンプ242aのゲインとオペアンプ254aのゲインとの積が一定となるように第七のゲインを決定するとよい。
ステップS122でゲインが変更されると、ステップS102に戻り、反射光Rの受光から、処理が進められる。
また、増幅信号が切替電圧Vrcより小さい場合(ステップS121でNo)、判定部270aは、増幅信号の一部が閾値電圧Vroより小さいか否かの判定を行う(S123)。判定部270aは、増幅信号の振幅が最大値となる出力電圧が閾値電圧Vroより小さい場合(S123でYes)、切替信号を制御部81に出力せず、かつ異常信号を出力することで当該判定を行ってもよい。なお、判定部270aがステップS121及びS123でYesと判定することは第二の判定の一例である。
制御部81は、例えば、オペアンプ242aのゲインを現在の第三のゲインから、当該第三のゲインより増幅率が小さい第五のゲインに変更する制御を行う。また、制御部81は、オペアンプ242aのゲインを小さくした場合、さらに、オペアンプ254aのゲインを現在の第六のゲインから、当該第六のゲインより増幅率が大きい第八のゲインに変更する制御を行う。
制御部81は、オペアンプ242aのゲインを変更する前後において、オペアンプ242aのゲインとオペアンプ254aのゲインとの積が一定となるように第八のゲインを決定するとよい。ステップS124でゲインが変更されると、ステップS102に戻り、反射光Rの受光から、処理が進められる。
なお、増幅信号の一部が閾値電圧Vro以上である場合(ステップS123でNo)、ゲインは変更されずステップS106に進み、以降のステップが行われる。なお、ステップS104、S121及びS123の処理は、並行して行われてもよい。
なお、上記では、制御部81は、オペアンプ242aのゲインを増加させる制御(S122)、及び、オペアンプ242aのゲインを減少させる制御(S124)の両方を行う例について説明したが、これに限定されない。制御部81は、例えば、ステップS122及びS124のうちの少なくとも一方の制御を行えばよい。例えば、ステップS124においてオペアンプ242aのゲイン変更の制御が行われない場合に、判定部270aがステップS123でYesと判定したとき、ステップS102に戻ってもよい。また、ステップS123における処理は、行われなくてもよい。なお、制御部81がオペアンプ242aのゲインを変更しない場合、オペアンプ254aのゲインも変更されない。
本変形例に係る水分量検出装置201aは、制御部81をさらに備える。信号増幅部240aは、ゲインが可変であり、判定部270aは、さらに、振幅の最大値が、基準電圧Vref及び閾値電圧Vroの間の切替電圧Vrcと、基準電圧Vrefとの間にある場合は第一の判定をし、振幅の最大値が基準電圧Vref及び閾値電圧Vroの間にない場合は第二の判定をする。そして、制御部81は、判定部270aが第一の判定をした場合に、信号増幅部240aのゲインを第三のゲインから当該第三のゲインより大きい第四のゲインに変更する制御、及び、判定部270aが第二の判定をした場合に、信号増幅部240aのゲインを第三のゲインから当該第三のゲインより小さい第五のゲインに変更する制御の少なくとも一方を行う。
これにより、信号増幅部240aのオペアンプ242aのゲインを蛍光灯などの外乱光の受光量に応じて適切な値に変更することができる。例えば、蛍光灯などの外乱光の受光量が多い場合には、オペアンプ242aのゲインが小さくなるように変更されるので、信号増幅部240aから出力される増幅信号が出力飽和することを抑制することができる。また、蛍光灯などの外乱光の受光量が少ない場合には、オペアンプ242aのゲインが大きくなるように変更されるので、高い検出分解能を維持することができる。よって、本変形例に係る水分量検出装置201aは、さらに外乱光により誤った水分量が検出されることが抑制され、かつ高い検出分解能を維持することができる。
また、ロックインアンプ250aは、増幅信号から所定の周波数の信号を抽出するミキサ52と、当該ミキサ52により取り出された信号成分を増幅するオペアンプ254aであって、ゲインが可変なオペアンプ254aとを備える。制御部81は、さらに、信号増幅部240aのゲインを第三のゲインから第四のゲインに変更した場合に、オペアンプ254aのゲインを第六のゲインから当該第六のゲインより増幅率が小さい第七のゲインに変更し、信号増幅部240aのゲインを第三のゲインから第五のゲインに変更した場合に、オペアンプ254aのゲインを第六のゲインから当該第六のゲインより増幅率が大きい第八のゲインに変更する。
これにより、信号増幅部240aのオペアンプ242aのゲインが変更されても、オペアンプ254aのゲインを変更することによって、A/D分解能が変化することを抑制することができる。例えば、信号増幅部240aのゲインを第三のゲインから第五のゲインに変更した場合に、オペアンプ254aのゲインを第六のゲインから第八のゲインに変更することで、オペアンプ254aのゲインを変更しない場合に比べ、A/D分解能が向上する。
また、制御部81は、信号増幅部240aのゲインを変更する前後において、信号増幅部240aのゲインとオペアンプ254aのゲインとの積が一定となるように第七のゲイン及び第八のゲインを決定する。
これにより、信号増幅部240aのオペアンプ242aのゲインが変更されても、オペアンプ254aのゲインをオペアンプ242aのゲインの変更に応じて変えることによって、一定の出力が得られるので、同じA/D分解能で水分量を検出することができる。
(その他の実施の形態)
以上、本発明に係る水分量検出装置について、上記の実施の形態及び変形例に基づいて説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。
以上、本発明に係る水分量検出装置について、上記の実施の形態及び変形例に基づいて説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。
例えば、上記実施の形態及び変形例では、一例として水分量検出装置が衣類乾燥装置に搭載されている例について説明したが、水分量検出装置は衣類乾燥装置以外の装置(例えば電気機器)に搭載されていてもよい。例えば、屋内環境で使用される電気機器に使用されてもよい。例えば、浴室乾燥装置など送風して対象物(例えば、浴室の床など)を乾かす用途に用いられる装置に使用されてもよい。
また、上記実施の形態及び変形例では、光源部がLED素子を有する例について説明したが、光源制御部が制御する発光周期で点灯及び消灯が可能であれば、光源部はLED素子以外の光源を有していてもよい。例えば、光源部は、半導体レーザ素子又は有機EL素子などを有していてもよい。
また、上記実施の形態及び変形例では、光源制御部は発光素子を点灯及び消灯させる発光周期、及び、発光素子の姿勢を制御する例について制御したが、光源制御部による制御はこれに限定されない。例えば、光源制御部は、発光素子に供給される電流量を制御することで、発光素子が発する光の強度を制御してもよい。
また、上記実施の形態及び変形例では、光源部は、水による吸収が所定値よりも大きな第一の波長帯を含む検知光と、水による吸収が所定値以下である第二の波長帯を含む参照光とを出射する例について説明したが、これに限定されない。光源部は、少なくとも検知光を出射する光源モジュールであればよい。なお、この場合、水分量検出装置は、第一の出力部及び第二の出力部のうち、第一の出力部のみを備える構成であってもよい。
また、上記実施の形態及び変形例では、水分量検出装置が衣類乾燥装置に一体的に搭載されている例を説明したが、水分量検出装置は専用の機器であり、衣類乾燥装置に後付けで取付可能な構成であってもよい。
また、上記実施の形態及び変形例では、水分量検出装置は対象物で反射した光を受光し、水分量を検出している例について説明したが、対象物を透過した光を受光し、水分量を検出してもよい。
また、上記実施の形態及び変形例では、判定部は、受光信号のうち、反射光を受光していないタイミングで出力された第一の出力電圧を用いて、第一の信号が異常であるか否かを判定する例について説明したが、これに限定されない。判定部は、受光信号のうち、反射光Rを受光したタイミングで出力された出力電圧を用いて、第一の信号が異常であるか否かの判定を行ってもよい。
また、上記実施の形態及び変形例では、判定部は、コンパレータを含む回路として構成される例を示したが、これに限定されない。判定部は、受光装置から入力された第一の信号をA/D変換してデジタル信号を生成するA/D変換器と、当該デジタル信号と第一の閾値とから第一の信号の異常を判定する制御部とを有していてもよい。つまり、判定部はデジタル処理により第一の信号の異常などを判定してもよい。制御部は、例えば、マイクロコンピュータなどにより実現される。
また、上記実施の形態及び変形例では、処理部は、デジタル信号が示す信号強度に所定の定数を演算することで水分量を検出する例について説明したが、水分量の検出はこれに限定されない。例えば、信号処理部の不揮発性メモリには、デジタル信号が示す信号強度に対応する値と水分量とが対応付けられたテーブルが格納されており、処理部は、当該テーブルを不揮発性メモリから読み出して水分量を検出してもよい。デジタル信号が示す信号強度に対応する値とは、例えば、第一の出力部から入力されたデジタル信号が示す信号強度と、第二の出力部から入力されたデジタル信号が示す信号強度とから、算出される値である。例えば、処理部は、第一の出力部から入力されたデジタル信号が示す信号強度と、第二の出力部から入力されたデジタル信号が示す信号強度との差分又は比と、当該差分又は当該比と水分量とが対応付けられたテーブルとから、水分量を検出してもよい。
また、上記実施の形態及び変形例において説明された水分量検出装置の動作における複数の処理の順序は一例である。複数の処理の順序は、変更されてもよいし、複数の処理は、並行して実行されてもよい。また、複数の処理のうち一部の処理は、省略されてもよい。
また、上記実施の形態及び変形例において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、プロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。プロセッサは、半導体集積回路(IC)、又はLSI(Large scale integration)を含む一つ又は複数の電子回路で構成される。複数の電子回路は、一つのチップに集積されていてもよいし、複数のチップに設けられてもよい。複数のチップは一つの装置に集約されていてもよし、複数の装置に備えられていてもよい。
また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータが読み取り可能なCD-ROM、光ディスクなどの非一時的記録媒体などで実現されてもよい。プログラムは、記録媒体に予め記憶されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1、1a、201、201a 水分量検出装置
2 対象物
10 光源部
30、30a 受光部
31 受光素子
32、32a IV変換部
33、41、42a、242、242a、254a オペアンプ
34、Z1~Z3 インピーダンス
34a 変換インピーダンス部
40、40a、240、240a 信号増幅部
41a、241 ハイパスフィルタ
50、250a ロックインアンプ
52 ミキサ
60 A/D変換器
70、70a、270、270a 判定部
81 制御部
82 第二のローパスフィルタ(ローパスフィルタ)
130、130a、230、230a 受光装置
R 反射光
Vref 基準電圧
Vro 閾値電圧(第一の閾値)
Vrc 切替電圧(第二の閾値)
ΔVmax 最大出力電圧幅
Vmax 出力可能電圧幅
2 対象物
10 光源部
30、30a 受光部
31 受光素子
32、32a IV変換部
33、41、42a、242、242a、254a オペアンプ
34、Z1~Z3 インピーダンス
34a 変換インピーダンス部
40、40a、240、240a 信号増幅部
41a、241 ハイパスフィルタ
50、250a ロックインアンプ
52 ミキサ
60 A/D変換器
70、70a、270、270a 判定部
81 制御部
82 第二のローパスフィルタ(ローパスフィルタ)
130、130a、230、230a 受光装置
R 反射光
Vref 基準電圧
Vro 閾値電圧(第一の閾値)
Vrc 切替電圧(第二の閾値)
ΔVmax 最大出力電圧幅
Vmax 出力可能電圧幅
Claims (14)
- 対象物に向けて所定の周波数で明滅する光を照射する光源部と、
前記光が前記対象物で反射された反射光を受光し、前記反射光の強度に応じた強度信号を出力する受光装置と、
前記強度信号が入力され、当該強度信号から前記所定の周波数の信号を抽出した抽出信号を出力するロックインアンプと、
前記受光装置から入力された、前記反射光の強度に応じた第一の信号と、第一の閾値とから、前記第一の信号の異常を判定する判定部とを備え、
前記第一の閾値は、前記受光装置において予め定められた基準電圧、及び、前記受光装置が前記反射光を受光したときに出力する信号である出力電圧の差分の最大値である最大出力電圧幅と、前記受光装置が前記第一の信号を出力可能な出力可能電圧幅との差分から決定される
水分量検出装置。 - 前記受光装置は、前記反射光を受光し、受光信号を出力する受光部を有し、
前記第一の信号は、前記受光信号であり、
前記最大出力電圧幅は、前記受光部において予め定められた前記基準電圧と、前記受光部が前記反射光を受光したときに出力する前記出力電圧との差分の最大値であり、
前記出力可能電圧幅は、前記受光部における前記基準電圧からの電圧幅であり、
前記第一の閾値は、前記最大出力電圧幅と前記出力可能電圧幅との差分と、前記基準電圧とから決定され、
前記判定部は、前記受光信号が前記基準電圧と前記第一の閾値との間にないときに、前記受光信号が異常であると判定する
請求項1に記載の水分量検出装置。 - 制御部をさらに備え、
前記受光部は、前記反射光を受光し、光電流を出力する受光素子と、前記光電流をIV変換して前記受光信号を出力するIV変換部とを有し、
前記IV変換部は、前記光電流が入力されるオペアンプと、インピーダンスが変化可能な変換インピーダンス部とを有し、
前記判定部は、さらに、前記受光信号のうち前記反射光を受光しているタイミングで出力された第二の出力電圧が、前記第一の閾値及び前記基準電圧の間の第二の閾値と、前記基準電圧との間にある場合は第一の判定をし、前記第二の出力電圧が前記基準電圧及び前記第一の閾値の間にない場合は第二の判定をし、
前記制御部は、前記判定部が前記第一の判定をした場合に、前記変換インピーダンス部のインピーダンスを第一のインピーダンスから当該第一のインピーダンスより大きい第二のインピーダンスに変更する制御、及び、前記判定部が前記第二の判定をした場合に、前記変換インピーダンス部のインピーダンスを前記第一のインピーダンスから当該第一のインピーダンスより小さい第三のインピーダンスに変更する制御の少なくとも一方を行う
請求項2に記載の水分量検出装置。 - 前記受光信号が入力され、当該受光信号を所定のゲインで増幅した増幅信号を前記強度信号として出力する第一の信号増幅部であって、ゲインが可変である第一の信号増幅部をさらに備え、
前記制御部は、さらに、前記変換インピーダンス部のインピーダンスを前記第一のインピーダンスから前記第二のインピーダンスに変更した場合に、前記第一の信号増幅部のゲインを第一のゲインから当該第一のゲインより小さい第二のゲインに変更し、前記変換インピーダンス部のインピーダンスを前記第一のインピーダンスから前記第三のインピーダンスに変更した場合に、前記第一の信号増幅部のゲインを第一のゲインから当該第一のゲインより大きい第三のゲインに変更する
請求項3に記載の水分量検出装置。 - 前記制御部は、前記変換インピーダンス部のインピーダンスを変更する前後において、前記変換インピーダンス部のインピーダンスと前記第一の信号増幅部のゲインとの積が一定となるように前記第二のゲイン及び前記第三のゲインを決定する
請求項4に記載の水分量検出装置。 - 前記制御部は、さらに、前記判定部が前記受光信号を異常であると判定すると、異常であることを示す信号を出力する
請求項3~5のいずれか1項に記載の水分量検出装置。 - 前記受光装置は、前記反射光を受光し、受光信号を出力する受光部と、前記受光信号が入力され、当該受光信号を所定のゲインで増幅した第一の増幅信号を前記強度信号として出力する第一の信号増幅部とを有し、
前記第一の信号は、前記第一の増幅信号であり、
前記最大出力電圧幅は、前記第一の信号増幅部において予め定められた前記基準電圧と、前記受光部が前記反射光を受光したときに前記第一の信号増幅部が出力する前記出力電圧との差分の最大値であり、
前記出力可能電圧幅は、前記第一の信号増幅部が出力可能な前記第一の信号増幅部の基準電圧からの電圧幅であり、
前記第一の閾値は、前記最大出力電圧幅と前記出力可能電圧幅との差分と、前記基準電圧とから決定され、
前記判定部は、前記増幅信号の振幅の最大値が前記基準電圧と前記第一の閾値との間にないときに、前記受光信号が異常であると判定する
請求項1に記載の水分量検出装置。 - 制御部をさらに備え、
前記第一の信号増幅部は、ゲインが可変であり、
前記判定部は、さらに、前記振幅の最大値が、前記基準電圧及び前記第一の閾値の間の第二の閾値と、前記基準電圧との間にある場合は第一の判定をし、前記振幅の最大値が前記基準電圧及び前記第一の閾値の間にない場合は第二の判定をし、
前記制御部は、前記判定部が第一の判定をした場合に、前記第一の信号増幅部のゲインを第三のゲインから当該第三のゲインより大きい第四のゲインに変更する制御、及び、前記判定部が第二の判定をした場合に、前記第一の信号増幅部のゲインを前記第三のゲインから当該第三のゲインより小さい第五のゲインに変更する制御の少なくとも一方を行う
請求項7に記載の水分量検出装置。 - 前記ロックインアンプは、前記第一の増幅信号から前記所定の周波数の信号を抽出するミキサと、前記ミキサにより取り出された信号成分を増幅する第二の信号増幅部であって、ゲインが可変な第二の信号増幅部とを備え、
前記制御部は、さらに、前記第一の信号増幅部のゲインを前記第三のゲインから前記第四のゲインに変更した場合に、前記第二の信号増幅部のゲインを第六のゲインから当該第六のゲインより小さい第七のゲインに変更し、前記第一の信号増幅部のゲインを前記第三のゲインから前記第五のゲインに変更した場合に、前記第二の信号増幅部のゲインを前記第六のゲインから当該第六のゲインより大きい第八のゲインに変更する
請求項8に記載の水分量検出装置。 - 前記制御部は、前記第一の信号増幅部のゲインを変更する前後において、前記第一の信号増幅部のゲインと前記第二の信号増幅部のゲインとの積が一定となるように前記第七のゲイン及び前記第八のゲインを決定する
請求項9に記載の水分量検出装置。 - 前記制御部は、さらに、前記判定部が前記第一の増幅信号を異常であると判定すると、異常であることを示す信号を出力する
請求項8~10のいずれか1項に記載の水分量検出装置。 - さらに、
前記抽出信号が入力され、当該抽出信号をA/D変換してデジタル信号を出力するA/D変換器と、
通過帯域が可変であり、前記デジタル信号が入力され、当該デジタル信号から前記通過帯域の周波数の信号を通過させるローパスフィルタとを備え、
前記制御部は、前記デジタル信号が示す信号強度に応じて、前記通過帯域を変更する
請求項3~5及び請求項8~11のいずれか1項に記載の水分量検出装置。 - 前記光源部は、前記光を走査しながら照射する
請求項1~12のいずれか1項に記載の水分量検出装置。 - 前記光源部は、前記光を出射するLED素子を有する
請求項1~13のいずれか1項に記載の水分量検出装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980014947.9A CN111758021B (zh) | 2018-02-27 | 2019-01-21 | 含水量检测装置 |
JP2020502854A JP6832601B2 (ja) | 2018-02-27 | 2019-01-21 | 水分量検出装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-033254 | 2018-02-27 | ||
JP2018033254 | 2018-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167467A1 true WO2019167467A1 (ja) | 2019-09-06 |
Family
ID=67808826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001591 WO2019167467A1 (ja) | 2018-02-27 | 2019-01-21 | 水分量検出装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6832601B2 (ja) |
CN (1) | CN111758021B (ja) |
WO (1) | WO2019167467A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021060175A1 (ja) * | 2019-09-27 | 2021-04-01 | パナソニックIpマネジメント株式会社 | 送風装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002102597A (ja) * | 2000-10-03 | 2002-04-09 | Toto Ltd | 浴室衣類乾燥機 |
JP2015148600A (ja) * | 2014-01-07 | 2015-08-20 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | 成分計測装置および移動体 |
WO2017208765A1 (ja) * | 2016-05-31 | 2017-12-07 | パナソニックIpマネジメント株式会社 | 水分量観察装置、水分量観察方法及び栽培装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU918826A1 (ru) * | 1980-08-28 | 1982-04-07 | Центральный научно-исследовательский институт хлопчатобумажной промышленности | Влагомер |
JP3423518B2 (ja) * | 1995-04-18 | 2003-07-07 | 株式会社リコー | 含水分検知装置・含水分測定方法および含水分測定装置 |
JP2006023255A (ja) * | 2004-07-09 | 2006-01-26 | Sanyo Electric Co Ltd | 水分量測定用装置 |
CN101949825B (zh) * | 2010-08-17 | 2012-07-18 | 中国农业大学 | 光开放环境下的叶片水分近红外无损检测装置及方法 |
JP5787276B2 (ja) * | 2011-09-07 | 2015-09-30 | 株式会社リコー | 水分センサ、水分検出装置及び画像形成装置 |
CN105136740A (zh) * | 2015-10-26 | 2015-12-09 | 中国人民解放军军事医学科学院卫生装备研究所 | 一种基于tdlas的温湿度监测系统 |
CN206460016U (zh) * | 2017-01-05 | 2017-09-01 | 宁波市新海建设工程材料测试有限公司 | 水分测试仪 |
-
2019
- 2019-01-21 JP JP2020502854A patent/JP6832601B2/ja active Active
- 2019-01-21 WO PCT/JP2019/001591 patent/WO2019167467A1/ja active Application Filing
- 2019-01-21 CN CN201980014947.9A patent/CN111758021B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002102597A (ja) * | 2000-10-03 | 2002-04-09 | Toto Ltd | 浴室衣類乾燥機 |
JP2015148600A (ja) * | 2014-01-07 | 2015-08-20 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | 成分計測装置および移動体 |
WO2017208765A1 (ja) * | 2016-05-31 | 2017-12-07 | パナソニックIpマネジメント株式会社 | 水分量観察装置、水分量観察方法及び栽培装置 |
Non-Patent Citations (2)
Title |
---|
"A Prototype Infrared Reflectance Moisture Meter", JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, vol. 31, no. 1, January 1985 (1985-01-01), pages 67 - 79, XP055634575 * |
ANDREA DE MARCELLIS, ET AL.: "A Fully-Analog Lock-In Amplifier With Automatic Phase Alignment for Accurate Measurements of ppb Gas Concentrations", IEEE SENSORS JOURNAL, vol. 12, no. 5, May 2012 (2012-05-01), pages 1377 - 1383, XP055634583 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021060175A1 (ja) * | 2019-09-27 | 2021-04-01 | パナソニックIpマネジメント株式会社 | 送風装置 |
JP7554964B2 (ja) | 2019-09-27 | 2024-09-24 | パナソニックIpマネジメント株式会社 | 送風装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111758021B (zh) | 2023-04-11 |
CN111758021A (zh) | 2020-10-09 |
JP6832601B2 (ja) | 2021-02-24 |
JPWO2019167467A1 (ja) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6735478B2 (ja) | 水分量センサ及び衣類乾燥装置 | |
US8530819B2 (en) | Direct current (DC) correction circuit for a time of flight (TOF) photodiode front end | |
KR101913973B1 (ko) | 입자 검출 센서 | |
CN106137164B (zh) | 脉搏计以及脉搏计的调节方法 | |
TWI546641B (zh) | 雪崩光電二極體的偏壓產生電路及相關的控制電路 | |
JP2007121145A (ja) | 光電式ほこりセンサ装置および空気清浄機および空気調和機 | |
WO2019167467A1 (ja) | 水分量検出装置 | |
WO2015119127A1 (ja) | ガス濃度検出装置 | |
JP2006038721A (ja) | ガス濃度検出装置 | |
JP2004357276A (ja) | 低ノイズ光受信機 | |
US10948406B2 (en) | Moisture amount detection device | |
US7339154B2 (en) | Level detector | |
JP2019045186A (ja) | 水分量検出装置 | |
JP6292759B2 (ja) | マークセンサ及び光検出素子によるマーク判定方法 | |
JP6428779B2 (ja) | ガス濃度検出装置 | |
JP6372780B2 (ja) | 赤外線検出装置 | |
KR20150113575A (ko) | Mcu 타입 먼지센서 | |
JP6884050B2 (ja) | 光電スイッチ | |
US10520358B2 (en) | Spectrophotometer and method for carrying out a spectrophotometric measurement | |
JP5985909B2 (ja) | ガスセンサ | |
JP2018141632A (ja) | 水分量センサ | |
CN214793487U (zh) | 一种高信噪比光电探测电路 | |
KR101775937B1 (ko) | 개선된 ir 리시버 구조 | |
JP2018017516A (ja) | 光検出回路及びそのバイアス設定方法 | |
WO2007107695A1 (en) | Liquid sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19760418 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020502854 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19760418 Country of ref document: EP Kind code of ref document: A1 |