WO2019167398A1 - 薬剤評価方法 - Google Patents

薬剤評価方法 Download PDF

Info

Publication number
WO2019167398A1
WO2019167398A1 PCT/JP2018/047146 JP2018047146W WO2019167398A1 WO 2019167398 A1 WO2019167398 A1 WO 2019167398A1 JP 2018047146 W JP2018047146 W JP 2018047146W WO 2019167398 A1 WO2019167398 A1 WO 2019167398A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
movement
drug
culture
Prior art date
Application number
PCT/JP2018/047146
Other languages
English (en)
French (fr)
Inventor
紀夫 尾崎
祐子 有岡
恵美子 東島
森 大輔
周 久島
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to EP18907612.8A priority Critical patent/EP3760728B1/en
Priority to US16/976,586 priority patent/US20200408743A1/en
Priority to JP2020502824A priority patent/JP7357366B2/ja
Publication of WO2019167398A1 publication Critical patent/WO2019167398A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5032Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on intercellular interactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5029Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell motility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells

Definitions

  • the present invention relates to a cell-based assay system. Specifically, the present invention relates to a drug evaluation method using cell migration characteristics and its application. This application claims priority based on Japanese Patent Application No. 2018-035758 filed on Feb. 28, 2018, the entire contents of which are incorporated by reference.
  • Non-Patent Document 3 Some genome analysis studies of SCZ and ASD have identified multiple mutations in genes involved in neurodevelopment in both diseases, one of which is a mutation in RELN (see Non-Patent Document 3, for example).
  • Reelin a protein encoded by RELN, is a huge secreted protein and is essential for the formation of the layer structure of the developing brain.
  • RELN homozygous mutations present with spondylosis with developmental delay, and a decrease in Reelin has been reported to be associated with the development of neurodevelopmental disorders (Non-Patent Document 4).
  • reeler mice which are Reln mutant mice (see, for example, Non-Patent Document 5).
  • Reelin There are several types of neurons that express Reelin. Among them, dopamine neurons positive for tyrosine hydroxylase ( ⁇ TH) expressed Reelin only during limited periods before and after birth. It has been reported in research. Although Reelin is expressed only in a limited period, abnormalities in dopamine neurons have been confirmed in Reler-mutated reeler mice. On the other hand, since there are many reports that the dopamine system is involved in the pathogenesis of SCZ and ASD, investigating the relationship between dopamine neurons and Reelin may provide clues to elucidate the onset mechanism of SCZ and ASD. It is suggested.
  • the present inventors have been studying Reelin with the aim of elucidating the onset mechanism of SCZ and ASD and establishing a treatment method. As one of the research results, we have succeeded in establishing a method for specifically and efficiently preparing dopamine neurons from iPS cells (Japanese Patent Application No. 2017-82600).
  • an object of the present invention is to provide a novel evaluation system that is particularly useful in the study of the onset mechanism and pathology of central nervous system diseases (for example, mental illness) or the development of therapeutic methods.
  • neurospheres (nerve cell aggregates) are formed in the process of differentiation induction, but when neurospheres are cultured under conditions that induce differentiation into neurons, cells (dopamine neurons) move to the surroundings.
  • the movement pattern of cells derived from healthy subjects is characteristic (showing a specific movement pattern) and RELN-deficient mental illness It has been found that patient-derived cells exhibit a different migration pattern than normal-derived cells.
  • the movement pattern defined by the movement characteristics (particularly the movement direction) of individual cells constituting the cell population reflects the disease state, and an evaluation system using the movement pattern as an index It is useful not only for basic research (elucidation of disease mechanisms, etc.) but also for understanding disease states and developing therapeutic drugs.
  • normalization of the movement pattern supports the drug effect
  • abnormal movement pattern supports the toxicity.
  • the migration pattern is normalized, it may be effective to rescue endogenous Reelin.
  • the central nervous system not only the central nervous system but also the ability to move cells is important for the normal formation and regeneration processes of various tissues and organs / organs, etc.
  • the application range (cells to be used, applications / applications, etc.) is wide, that is, it can be widely used as an evaluation system for drug efficacy or poison, and its practical value and significance are extremely high. Further investigations by the present inventors have also yielded various knowledge that is useful and important for putting the evaluation system into practical use.
  • [1] A drug evaluation method using as an index a movement pattern defined by movement fluctuation of individual cells constituting a cell population.
  • the drug evaluation method according to [1], comprising the following steps (i) to (iii): (I) preparing a population of cells exhibiting migration ability, starting culture in the presence of a test substance, and then measuring the position of each migrated cell over time; (Ii) analyzing the movement variation of each cell from the information of the measured position and totaling it, and determining the movement pattern of the cell population; (Iii) A step of determining the efficacy or toxicity of the test substance based on the determined movement pattern.
  • [3] The distance ratio calculated in the following (A), the angle ⁇ determined in the following (B), or the speed calculated in the following (C) is used in the analysis of the step (ii).
  • the cell in step (i) is a non-normal cell, and in step (iii), the toxicity of the test substance is determined using further abnormalization of the migration pattern as an index.
  • the drug evaluation method according to [8] The drug evaluation method according to [5] or [7], wherein the non-normal cell is a disease cell having a genetic characteristic of the target disease.
  • the drug evaluation method according to [8], wherein the diseased cell is a patient-derived cell or a cell created by genetic manipulation.
  • the drug evaluation method according to [9] wherein the patient-derived cell is a cell obtained by inducing differentiation of an induced pluripotent stem cell prepared from the patient's cell.
  • the nerve cell is a dopamine neuron, glutaminergic neuron, serotonin neuron or GABAergic neuron.
  • dopamine neurons are prepared by a method comprising the following steps (1) to (3): (1) culturing pluripotent stem cells in the presence of a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor and a BMP inhibitor; (2) A step of subjecting the cells obtained in step (1) to suspension culture in the presence of a TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, FGF8 and hedgehog signal agonist and normal oxygen partial pressure to form neurospheres , (3) A step of collecting cells constituting neurospheres and inducing differentiation into dopamine neurons, or directly inducing neurospheres into dopamine neurons. [15] A method for evaluating the quality of a cell population based on a movement pattern defined by movement fluctuations of individual cells constituting the cell population.
  • An example (right) of an evaluation method (left) of a moving direction using a distance ratio and an evaluation result (measurement over time) by the evaluation method When a cell moves during time t, the actual total distance is defined as D (t), and the straight line distance between the start point and the end point is defined as d (t), and d (t) / D ( t) The moving direction was evaluated by the value. In the case of complete linear movement, the d (t) / D (t) value is 1, and the value decreases as the meanders.
  • the present invention provides a drug evaluation method (hereinafter also referred to as “the evaluation method of the present invention”) used for evaluating the efficacy or toxicity of a test substance.
  • drug evaluation is used as a collective term for evaluation of drug efficacy and evaluation of toxicity. Therefore, in the present invention, the efficacy or toxicity of the test substance is evaluated.
  • toxicity should be interpreted broadly, and in addition to general toxicity (acute toxicity, subacute toxicity, chronic toxicity), side effects, carcinogenicity, mutagenicity, teratogenicity, etc. are also toxicities. .
  • the evaluation method of the present invention is an evaluation system using cells.
  • a specific cell population is prepared, and a movement pattern (degree of fluctuation in the cell movement direction ( Evaluate the efficacy or toxicity of the test substance using as an index the size) and movement speed (speed).
  • a movement pattern representing the movement characteristics of the cell population can be defined. It was found to be useful for the evaluation of drug efficacy or toxicity in relation to the normality of the population (otherwise abnormal) (see Examples below).
  • the following steps (i) to (iii) are performed.
  • step (i) a population of cells exhibiting the ability to migrate is prepared, and culture is started in the presence of the test substance.
  • a cell population composed of cells showing migration ability (more specifically, cells showing migration ability having directionality) is used. It is done. However, it is not essential that all cells constituting the cell population exhibit migration ability. That is, it does not prevent the mixture of cells that do not exhibit migration ability.
  • “mixed” means that the cell is present in the cell population but is not a main constituent cell. Therefore, the abundance (mixing rate) is, for example, 40% or less of the entire cell population, preferably 30% or less of the entire cell population, more preferably 20% or less of the entire cell population, and even more preferably 10% of the entire cell population. It is as follows.
  • the cell constituting the cell component corresponds to “a cell exhibiting directional mobility” and is suitable as a cell constituting the cell population in the method of the present invention.
  • Examples of cells that have directional migration ability include neurons (dopamine neurons, glutamine agonist cells, serotonin neurons, GABA agonist neurons), cardiomyocytes, blood cells (leukocytes) Can do.
  • the cell population may be composed of two or more types of cells having different cell types. Moreover, you may be comprised with two or more types of cells from which a differentiation degree differs.
  • Normal cells or non-normal cells can be used as the cells constituting the cell population.
  • a “normal cell” is a cell in which no abnormality is observed in relation to drug efficacy (improvement of cell migration disorder, therapeutic effect based thereon) or toxicity evaluated by the method of the present invention.
  • a typical example of a normal cell is a cell derived from a healthy person.
  • a disease in which the medicinal effect of an evaluation target can exert a therapeutic effect in other words, a disease in which cell migration disorder is at least one of the causes of its onset and progression Cells derived from persons who are not affected (hereinafter referred to as “target diseases”) can also be used as normal cells.
  • Non-normal cells are cells that are in contrast to normal cells, and are cells that are no longer in their original state due to genetic mutations or chromosomal abnormalities.
  • An example of a non-normal cell is a cell having a genetic abnormality characteristic of the target disease, and a cell derived from a patient suffering from the target disease corresponds to a non-normal cell.
  • patient-derived cells induce differentiation of cells collected from patients or their passage cells, and patient-derived artificial pluripotent stem (iPS) cells (iPS cells created using cells collected from patients). It is a differentiated cell obtained in this way.
  • iPS patient-derived artificial pluripotent stem
  • cells introduced with genetic abnormalities characteristic of the target disease for example, by introducing gene mutations into undifferentiated cells such as iPS cells by genetic manipulation such as genome editing, etc. Obtained differentiated cells
  • cells obtained by introducing gene mutations into differentiated cells can also be adopted as non-normal cells.
  • target diseases are neurodevelopmental disorder diseases such as autism spectrum disorder (ASD) and schizophrenia, blood diseases showing leukocyte migration disorder, etc.
  • genetic abnormalities are deletion of Reelin gene, chromosome These include deletion of the 3q29 region and deletion of the chromosome 22q11 region.
  • the method of the present invention has a unique feature that it can be used for both a drug efficacy evaluation system and a toxicity evaluation system by selecting cells to be used. Details of each evaluation system will be described later.
  • dopamine neurons prepared by a method comprising the following steps (1) to (3) are used as the cells in step (i).
  • a step of culturing pluripotent stem cells in the presence of a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor, and a BMP inhibitor (2) The cells obtained in step (1) are cultured as a TGF- ⁇ family inhibitor, GSK3 ⁇ Steps of suspension culture in the presence of an inhibitor, FGF8 and a hedgehog signal agonist and under normal oxygen partial pressure to form neurospheres (3) Collecting the cells constituting the neurospheres and inducing differentiation into dopamine neurons, Alternatively, the step of directly inducing neurospheres into dopamine neurons
  • pluripotent stem cells are used.
  • pluripotent stem cells refers to the ability to differentiate into all the cells that make up a living body (differentiation pluripotency) and the ability to generate daughter cells that have the same differentiation potential as self through cell division (self-replication ability) ).
  • Pluripotency can be evaluated by transplanting cells to be evaluated into nude mice and testing for the presence or absence of teratoma containing each of the three germ layers (ectodermal, mesoderm, and endoderm). it can.
  • pluripotent stem cells examples include embryonic stem cells (ES cells), embryonic germ cells (EG cells), and induced pluripotent stem cells (iPS cells), which have both differentiation pluripotency and self-renewal ability. As long as it is a cell, it is not limited to this. Preferably, ES cells or iPS cells are used. More preferably iPS cells are used.
  • the pluripotent stem cells are preferably mammalian cells (for example, primates such as humans and chimpanzees, rodents such as mice and rats), particularly preferably human cells. Therefore, in the most preferred embodiment of the present invention, human iPS cells are used as pluripotent stem cells.
  • ES cells can be established, for example, by culturing an early embryo before implantation, an inner cell mass constituting the early embryo, a single blastomere, etc. (Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994); Thomson, J. A. et al., Science, 282, 1145-1147 (1998)).
  • an early embryo an early embryo produced by nuclear transfer of a nucleus of a somatic cell may be used (Wilmut et al. (Nature, 385, 810 (1997)), Cibelli et al. (Science, 280, 1256). (1998)), Akira Iriya et al.
  • ES cells are available from preserving institutions or are commercially available.
  • human ES cells can be obtained from the Institute of Regenerative Medicine, Kyoto University (for example, KhES-1, KhES-2 and KhES-3), WiCell Research Institute, ESI BIO, and the like.
  • EG cells can be established by culturing primordial germ cells in the presence of LIF, bFGF, SCF, etc. (Matsui et al., Cell, 70, 841-847 (1992), Shamblott et al., Proc. Natl. Acad. Sci. USA, 95 (23), 13726-13731 (1998), Turnpenny et al., Stem Cells, 21 (5), 598-609, (2003)).
  • iPS cells are differentiated pluripotent cells created by reprogramming somatic cells (eg, fibroblasts, skin cells, lymphocytes, etc.) by introducing reprogramming factors. And self-replicating cells. iPS cells are similar to ES cells. Somatic cells used for the production of iPS cells are not particularly limited, and may be differentiated somatic cells or undifferentiated stem cells. iPS cells can be prepared by various methods reported so far. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • Somatic cells used for the production of iPS cells are not particularly limited, and may be differentiated somatic cells or undifferentiated stem cells. iPS cells can be prepared by various methods reported so far. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.
  • cells that can be used for the production of iPS cells that is, cells derived from iPS cells include lymphocytes (T cells, B cells), fibroblasts, epithelial cells, endothelial cells, mucosal epithelial cells, mesenchymal cells Examples include stem cells, hematopoietic stem cells, adipose stem cells, dental pulp stem cells, and neural stem cells.
  • iPS cell production The most basic method of iPS cell production is to introduce four factors, transcription factors Oct3 / 4, Sox2, Klf4 and c-Myc, into cells using viruses (Takahashi K, Yamanaka S : Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007).
  • Human iPS cells have been reported to be established by introducing four factors, Oct4, Sox2, Lin28 and Nonog (Yu J, et al: Science 318 (5858), 1917-1920, 2007).
  • Three factors excluding c-Myc (Nakagawa M, et al: Nat. Biotechnol.
  • lentiviruses (Yu J, et al: Science 318 (5858), 1917-1920, 2007), adenoviruses (Stadtfeld M, et al: Science 322 (5903 ), 945-949, 2008), plasmid (Okita K, et al: Science 322 (5903), 949-953, 2008), transposon vectors (Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766- 770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009), or Techniques using episomal vectors (Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009) have been developed.
  • pluripotent stem cell markers such as Fbxo15, Nanog, Oct / 4, Fgf-4, Esg-1, and Cript Etc. can be selected as an index.
  • IPS cells can also be provided from, for example, Kyoto University or RIKEN BioResource Center.
  • Pluripotent stem cells can be maintained in vitro by known methods. Maintaining pluripotent stem cells by serum-free culture using serum substitutes or feeder-free cell culture when it is desired to provide highly safe cells, such as when clinical application is considered It is preferable. If serum is used (or combined), autologous serum (ie recipient serum) may be used. Serum replacements can contain, for example, albumin, transferrin, fatty acids, collagen precursors, trace elements, 2-mercaptoethanol or 3 ′ thiol glycerol, or equivalents thereof. Serum substitutes can be prepared by known methods (see, eg, W0 98/30679). A commercially available serum replacement can also be used. Examples of commercially available serum substitutes include KSR (manufactured by Invitrogen), Chemically-defined Lipid concentrated (Gibco), and Glutamax (Gibco).
  • step (1) the pluripotent stem cells prepared as described above are cultured in the presence of a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor, and a BMP inhibitor. That is, pluripotent stem cells are cultured using a medium to which a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor and a BMP inhibitor are added. Step (1) aims to enhance the neuronal differentiation ability of pluripotent stem cells.
  • the medium can be prepared using a medium used for culturing mammalian cells as a basal medium.
  • a basal medium for example, BME medium, BGJb medium, CMRL1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, Ham's F-12 medium , RPMI1640 medium, Fischer's medium, Neurobasal medium, and mixed media thereof are not particularly limited as long as they can be used for culturing mammalian cells.
  • a mixed medium of IMDM medium and Ham's F-12 medium is used.
  • TGF- ⁇ family inhibitor is a substance that inhibits TGF- ⁇ signaling through binding between TGF- ⁇ and a TGF- ⁇ receptor.
  • TGF- ⁇ inhibitors include proteinaceous inhibitors and small molecule inhibitors. Examples of proteinaceous inhibitors are anti-TGF- ⁇ neutralizing antibodies and anti-TGF- ⁇ receptor neutralizing antibodies.
  • small molecule inhibitors examples include SB431542 (4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H-imidazol-2-yl] -benzamide or its Hydrate), SB202190 (4- (4-fluorophenyl) -2- (4-hydroxyphenyl) -5- (4-pyridyl) -1H-imidazole), SB505124 (GlaxoSmithKline), NPC30345, SD093, SD908, SD208 (Scios), LY2109761, LY364947, LY580276 (Lilly Research Laboratories).
  • SB431542 is used.
  • the concentration of the TGF- ⁇ family inhibitor is not particularly limited as long as the purpose of enhancing the neuronal differentiation ability of pluripotent stem cells is achieved. 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M. The optimum concentration can be set through preliminary experiments. Rather than keeping the TGF- ⁇ family inhibitor concentration constant throughout the entire culture period, changes in the TGF- ⁇ family inhibitor concentration may be provided, for example, by increasing the TGF- ⁇ family inhibitor concentration stepwise.
  • CHIR99021 As a GSK3 ⁇ inhibitor, CHIR99021 (6-[[2-[[4- (2,4-dichlorophenyl) -5- (4-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] Amino] nicotinonitrile), SB-415286 (3-[(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H-pyrrole-2,5-dione), SB-2167 , Indirubin-3′-Monoxime, Kenpaullone, BIO (6-bromoindirubin-3′-oxime) and the like can be used.
  • CHIR99021 is used.
  • the concentration of GSK3 ⁇ inhibitor is not particularly limited as long as the purpose of enhancing the neuronal differentiation ability of pluripotent stem cells is achieved, but when the concentration is shown by taking CHIR99021 as an example, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • the optimum concentration can be set through preliminary experiments. Instead of making the GSK3 ⁇ inhibitor concentration constant throughout the entire culture period, the GSK3 ⁇ inhibitor concentration may be changed, for example, by increasing the GSK3 ⁇ inhibitor concentration stepwise.
  • a BMP inhibitor is a substance that inhibits BMP signaling (BMP signaling) through binding between BMP (bone morphogenetic protein) and a BMP receptor (type I or type II).
  • BMP inhibitors include proteinaceous inhibitors and small molecule inhibitors. Examples of proteinaceous inhibitors are the natural inhibitors Noggin, chordin, follistatin and the like.
  • Examples of small molecule inhibitors include Dorsomorphin (6- [4- (2-piperidin-1-ylethoxy) phenyl] -3-pyridin-4-ylpyrazolo [1,5-a] pyrimidine) and its derivatives, LDN-193189 (4- (6- (4-piperazin-1-yl) phenyl) pyrazolo [1,5-a] pyrimidin-3-yl) quinoline) and its derivatives. These compounds are commercially available (for example, available from Sigma-Aldrich and Stemgent) and are readily available. Preferably, Dorsomorphin is used.
  • the concentration of BMP inhibitor is not particularly limited as long as the purpose of enhancing the neuronal differentiation ability of pluripotent stem cells is achieved, but when the concentration is shown by taking Dorsomorphin as an example, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • the optimum concentration can be set through preliminary experiments. Instead of making the BMP inhibitor concentration constant throughout the entire culture period, changes in the BMP inhibitor concentration may be provided, for example, by increasing the BMP inhibitor concentration stepwise.
  • components may be added to the medium.
  • components that can be added include insulin, iron sources (such as transferrin), minerals (such as sodium selenate), sugars (such as glucose), organic acids (such as pyruvic acid, lactic acid, etc.), serum proteins (such as albumin) Etc.), amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents (For example, HEPES).
  • iron sources such as transferrin
  • minerals such as sodium selenate
  • sugars such as glucose
  • organic acids such as pyruvic acid, lactic acid, etc.
  • serum proteins such as albumin
  • amino acids eg L-glutamine etc.
  • reducing agents eg 2-mercaptoethanol etc.
  • vitamins eg ascorbic acid, d-biotin etc.
  • Adhesive culture is a culture that is in contrast to suspension culture, and is typically two-dimensional culture (planar culture) under adhesive conditions.
  • Matrigel TM (BD) or the like may be used for three-dimensional culture.
  • adhesion culture for example, a dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate, chamber slide, petri dish or the like can be used.
  • Matrigel TM (BD), poly-D-lysine, poly-L-lysine, collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, or two of these to enhance cell adhesion to the culture surface
  • An incubator coated by the above combination may be used.
  • Pluripotent stem cells can be cultured in the presence or absence of feeder cells, but when it is desired to provide highly safe cells, such as when clinical application is in view Is preferably cultured in the absence of feeder cells (feeder cell culture).
  • feeder cells are MEF (mouse fetal fibroblasts), STO cells (mouse fetal fibroblast cell line), and SNL cells (STO cell subclone).
  • Culture temperature, C0 2 concentration, other culture conditions such as 0 2 concentration can be set as appropriate.
  • the culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is for example about 1-10%, preferably about 5%.
  • what is necessary is just to culture
  • the period (culture period) of step (1) is 4 days or longer, specifically, for example, 4 days to 20 days, preferably 6 days to 14 days. If the culture period is too short, neurosphere formation ability is reduced.
  • a cell dissociation solution or the like may be used for cell recovery.
  • proteolytic enzymes such as EDTA-trypsin, collagenase IV, metalloprotease and the like can be used alone or in appropriate combination. Those having low cytotoxicity are preferred.
  • commercially available products such as dispase (Adia), TrypLE® (Invitrogen), or Accutase (MILLIPORE) are available.
  • the recovered cells may be subjected to subculture after being treated with a cell strainer or the like so as to be in a dispersed (discrete) state.
  • step (1) the neuronal differentiation ability of pluripotent stem cells is enhanced. Increased nerve differentiation ability can be confirmed with an increase in the expression of nervous system markers (Sox2, nestin, Sox1, etc.) as compared to before the start of step (1). Moreover, you may utilize the expression of an undifferentiation marker for evaluation that nerve differentiation ability was enhanced.
  • nervous system markers Sox2, nestin, Sox1, etc.
  • the cells after step (1) are once collected and then proceed to the next culture (step (2)).
  • the collection operation can be performed in the same manner as the collection operation during subculture.
  • Step (2) the cells obtained in step (1) are suspended in the presence of TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, FGF8 and hedgehog signal agonist and under normal oxygen partial pressure to form neurospheres. . That is, the cells after step (1) are cultured using a medium to which a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor, FGF8 and a hedgehog signal agonist are added and under a normal oxygen partial pressure.
  • Step (2) aims to induce differentiation along the neural cell lineage. Items that are not specifically mentioned (usable basic medium, usable TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, other components that can be added to the medium, etc.) are the same as in step (1). Omitted.
  • suspension culture for example, flask, tissue culture flask, dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, micropore, multiplate, multiwell plate, chamber slide, petri dish, tube , Trays, culture bags, roller bottles and the like can be used.
  • an incubator having a non-cell-adhesive culture surface.
  • Applicable incubators include those whose surface (culture surface) is treated so as to be non-cell-adhesive, and treatment for improving cell adhesion (for example, coating treatment with an extracellular matrix, etc.) Those not applied to the culture surface) can be mentioned.
  • static culture may be employed, or swirl culture or shaking culture may be employed.
  • the TGF- ⁇ family inhibitor and the GSK3 ⁇ inhibitor are as described above. Also in this step, it is preferable to use SB431542 as a TGF- ⁇ family inhibitor and CHIR99021 as a GSK3 ⁇ inhibitor.
  • the concentration in the medium when SB431542 is used is, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • the concentration in the medium when CHIR99021 is used is, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • FGF8 is a member of the fibroblast growth factor family. FGF8 is involved in the control of vertebrate brain formation and is required for localization to the midbrain. As long as the object of the present invention can be achieved, FGF8 derived from various mammals can be used. However, it is preferable to match the origin (animal species) with the pluripotent stem cells to be used. Therefore, human FGF8 is preferably used when human pluripotent stem cells are used. Human FGF8 means that the human has the amino acid sequence of FGF8 that is naturally expressed in vivo, and may be a recombinant.
  • NP_006110.1 fibroblast growth factor 8 isoform B precursor [Homo sapiens].
  • concentration of FGF8 is not particularly limited as long as the purpose of inducing differentiation along the neural cell lineage is achieved, but for example, 1 ng / ml to 5 ⁇ g / ml, preferably 10 to 500 ng / ml More preferably, it is 50 to 400 ng / ml.
  • the optimum concentration can be set through preliminary experiments.
  • the hedgehog signal agonist is not particularly limited as long as it promotes a sonic hedgehog (SHH) signal.
  • SHH sonic hedgehog
  • purmorphamine (9-cyclohexyl-N- [4- (4-morpholinyl) phenyl] -2- (1-naphthalenyloxy) -9H-purin-6-amine) useful for inducing ventralization Should be used.
  • concentration of purmorphamine (amount added to the medium) is not particularly limited as long as the purpose of inducing differentiation along the neuronal cell lineage is achieved. For example, 1 ⁇ ng / ml to 5 ⁇ g / ml, preferably 10 to 500 ⁇ ng. / ml, more preferably 50 to 400 ng / ml.
  • the optimum concentration can be set through preliminary experiments.
  • SAG N-methyl-N '-(3-pyridinylbenzyl) -N'-(3-chlorobenzo [b] thiophene-2-carbonyl) -1,4-diaminocyclohexane
  • concentration when SAG is used is not particularly limited as long as the purpose of inducing differentiation along the neural cell lineage is achieved.
  • the concentration is 10 to nM to 100 ⁇ M, preferably 100 to nM to 10 ⁇ M, and more preferably Is from 100 nM to 2 ⁇ M.
  • the optimum concentration can be set through preliminary experiments.
  • each component TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, FGF8 and hedgehog signal agonist
  • concentration of all components may change during the culture.
  • the addition of FGF8 and hedgehog signal agonist is started on the second to sixth days of step (2).
  • stimulation to a cell can be relieved.
  • the addition of FGF8 and hedgehog signal agonist is started on the third to fifth days of step (2).
  • LIF leukemia inhibitory factor
  • a medium supplemented with leukemia inhibitory factor is preferably used.
  • LIFs derived from various mammals can be used.
  • human LIF is preferably employed when human pluripotent stem cells are used.
  • the concentration of LIF is not particularly limited, but is, for example, 0.25 ng / ml to 1 ⁇ g / ml, preferably 1 ng / ml to 50 ng / ml, more preferably 5 ng / ml to 20 ng / ml. The optimum concentration can be set through preliminary experiments.
  • a medium supplemented with bFGF (basic fibroblast growth factor) is preferably used.
  • bFGF is also called FGF2.
  • FGF2 basic fibroblast growth factor
  • human bFGF is preferably employed when human pluripotent stem cells are used.
  • Human FGF2 means that the human has the amino acid sequence of FGF2 that is naturally expressed in vivo.
  • NP_001997.5 fibroblast growth factor 2 [Homo sapiens]
  • concentration of bFGF is not particularly limited, but is, for example, 0.25 ng / ml to 1 ⁇ g / ml, preferably 1 ng / ml to 50 ng / ml, more preferably 3 ng / ml to 30 ng / ml.
  • the optimum concentration can be set through preliminary experiments.
  • a medium supplemented with a ROCK inhibitor Rho-associated-coiled-coil-forming kinase / Rho-binding kinase
  • a ROCK inhibitor Rho-associated-coiled-coil-forming kinase / Rho-binding kinase
  • the concentration when using Y-27632 as a ROCK inhibitor is, for example, about 1 ⁇ M to about 50 ⁇ M. The optimum concentration can be set through preliminary experiments.
  • ROCK inhibitor strongly inhibits cell death when cells are in a dispersed state. Therefore, instead of using a ROCK inhibitor over the entire culture period of step (2), when seeding cells (ie, at the start of culture) or when collecting and dispersing cells for subculture, for example.
  • the cells may be treated with a medium containing a ROCK inhibitor.
  • ciliary neurotrophic factor CNTF
  • brain-derived neurotrophic factor BDNF
  • neurotrophin 3 NT-3
  • fetal bovine serum so as to be advantageous for inducing differentiation along the neural cell lineage
  • N2 supplements can be obtained from Gibco (product name: N2 supplement (x100)
  • B27 supplements can be obtained from Gibco (product name: B27 supplement (x100)).
  • components may be added to the medium as necessary.
  • components that can be added include insulin, iron sources (such as transferrin), minerals (such as sodium selenate), sugars (such as glucose), organic acids (such as pyruvic acid, lactic acid, etc.), serum proteins (such as albumin) Etc.), amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents (For example, HEPES).
  • iron sources such as transferrin
  • minerals such as sodium selenate
  • sugars such as glucose
  • organic acids such as pyruvic acid, lactic acid, etc.
  • serum proteins such as albumin
  • amino acids eg L-glutamine etc.
  • reducing agents eg 2-mercaptoethanol etc.
  • vitamins eg ascorbic acid, d-biotin etc.
  • suspension culture is performed to form neurospheres.
  • serum-free agglutination suspension culture method SFEB method / SFEBq method. Watanabe et al., Nature Neuroscience 8, 288-296 (2005), WO 2005/123902
  • neurosphere method Reynolds BA and Weiss. S., Science, USA, 1992 Mar 27; 255 (5052): 1707-10) can be used.
  • step (2) is carried out under normal oxygen partial pressure.
  • conditions under which the oxygen concentration is lowered low oxygen partial pressure / low oxygen concentration
  • “normal oxygen partial pressure” in the present invention is like this. Contrast with special conditions. That is, “under normal oxygen partial pressure” is a condition in which the oxygen concentration is not intentionally adjusted. Although it may vary depending on other conditions (humidity, coexisting CO 2 concentration, etc.), the oxygen concentration in the case of “under normal oxygen partial pressure” is typically about 18% to about 22%.
  • step (2) under normal oxygen partial pressure eliminates the need for setting special oxygen conditions (typically a hypoxic environment) throughout the entire culture period (steps (1) to (3)). Since differentiation induction into unnecessary cells such as glial cells can be suppressed, the preparation method is extremely practical.
  • special oxygen conditions typically a hypoxic environment
  • culture conditions incubation temperature, C0 2 concentration, etc.
  • the culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is for example about 1-10%, preferably about 5%.
  • the period of step (2) (culture period) is, for example, 7 to 21 days, preferably 10 to 16 days. If the culture period is too short or too long, the differentiation efficiency may be reduced.
  • the formed neurospheres After the formed neurospheres are collected and the cells are dissociated, they may be subjected to further suspension culture. That is, subculture may be performed. However, the number of subcultures should be small, and the number of subcultures is preferably 1 or 0 (that is, no subculture is performed). The small number of subcultures is advantageous for the preparation of dopamine neurons in a short period of time, and is also effective in avoiding unintended differentiation induction (for example, induction of differentiation into glial cells). it is conceivable that. On the other hand, since subculture is effective in improving cell purity, it can be said that one subculture is optimal. When subculture is performed once, the subculture may be performed on the 6th to 10th days from the start of step (2). In addition, when recovering neurospheres during subculture, it is preferable to prevent contamination of cells adhered to the surface of the incubator. Such an operation can contribute to the improvement of the preparation efficiency and purity of dopamine neurons.
  • Step (3) The neurosphere formed by step (2) contains undifferentiated cells of the nervous system and undifferentiated cells of the midbrain system.
  • the cells constituting the neurosphere are collected and induced to differentiate into dopamine neurons.
  • neurospheres are induced to differentiate directly into dopamine neurons (ie, in the form of cell clusters).
  • Medium and culture conditions suitable for inducing differentiation into dopamine neurons are known, and for basic culture methods and operations, for example, a protocol provided by ThermoFisher (published on the ThermoFisher website) Etc. can be referred to.
  • differentiation into dopamine neurons is induced by adhesion culture in a medium containing a ⁇ -secretase inhibitor, neurotrophic factor, ascorbic acid, TGF- ⁇ 3, and cAMP or cAMP analog.
  • a ⁇ -secretase inhibitor e.g., N- [N- (3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester is used as the ⁇ -secretase inhibitor
  • BDNF brain-derived neurotrophic factor
  • GDNF glial cell-derived neurotrophic factor
  • diptyryl cAMP a cAMP analog.
  • the neurospheres formed in step (2) are collected, the cells are dissociated (single-celled), seeded in an incubator, and cultured.
  • the collected neurospheres are subjected to adhesion culture in the form of cell mass instead of such dispersion culture. In this case, normally, when the culture is continued, cells move from the neurosphere to the surroundings, and dopamine neurons can be recognized in the transferred cells.
  • a dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate, chamber slide, petri dish or the like can be used.
  • Matrigel TM (BD), poly-D-lysine, poly-L-lysine, collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, or two of these to enhance cell adhesion to the culture surface
  • An incubator coated by the above combination may be used.
  • Culture temperature, C0 2 concentration, other culture conditions such as 0 2 concentration can be set as appropriate.
  • the culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is for example about 1-10%, preferably about 5%.
  • what is necessary is just to culture
  • the period (culture period) of step (3) is not particularly limited, but for example, the culture is performed for 5 days or more, preferably 7 days or more. Although culture for an excessively long period can cause exhaustion of cells, decrease in activity, cell death, etc., in general, differentiation / maturation progresses as the culture period is longer. Therefore, the upper limit of the culture period in this step is not particularly limited. For example, the culture period is 5 to 21 days. It may be subcultured as necessary. For example, cells are collected at the stage of subconfluence or confluence, a part of the cells are seeded in another incubator, and the culture is continued.
  • Dopamine neurons are obtained by step (3).
  • a dopamine neuron can be identified or confirmed by expression of a dopamine marker (tyrosine hydroxylase, dopamine transporter), FOXA2 as a midbrain marker or the like, or by evaluation of dopamine production ability.
  • a dopamine marker tyrosine hydroxylase, dopamine transporter
  • FOXA2 as a midbrain marker or the like
  • dopamine neurons can be obtained from pluripotent stem cells in about 21 to 30 days. Is possible.
  • step (i) the prepared cell population is cultured in the presence of the test substance, and general conditions suitable for the survival and proliferation of the cells to be used may be adopted.
  • special culture conditions such as the presence of a substance that inhibits cell migration ability (for example, a Rho signal stimulator) may be employed.
  • three-dimensional culture using a scaffold material such as a hydrogel (animal extracellular matrix extraction hydrogel, protein hydrogel, peptide hydrogel, polymer hydrogel) can also be employed.
  • a scaffold material such as a hydrogel (animal extracellular matrix extraction hydrogel, protein hydrogel, peptide hydrogel, polymer hydrogel) can also be employed.
  • a person skilled in the art can refer to the teachings in this specification (especially the description of examples) and known information (for example, research reports and reviews using cells to be used or equivalent / similar cells). Appropriate culture conditions can be set. Moreover, optimal culture conditions can be determined through preliminary experiments.
  • the test substance in step (i) is not particularly limited.
  • Various substances that require evaluation of their efficacy or toxicity can be test substances.
  • organic compounds or inorganic compounds having various molecular sizes can be used.
  • organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, vitamins (B1, B2, B3, B5, B6, B7, B9, B12, C, A, D, E, etc.)
  • Existing or candidate ingredients such as pharmaceuticals, nutritional foods, food additives, agricultural chemicals, cosmetics (cosmetics)
  • One of the preferable test substances is a plant extract, cell extract, culture supernatant, etc.
  • the test substance may be used as a test substance by adding two or more kinds of test substances at the same time. It may be decided to examine the action, synergism, etc.
  • the test substance may be derived from a natural product or synthesized, for example, in the latter case It is possible to build an efficient assay systems using techniques of combinatorial synthesis.
  • the position of each moved cell is measured.
  • a cell that has moved among the cells constituting the cell population that is, a cell that has moved from the position at the start of culture to the surroundings, is a measurement target.
  • the point which measures the position for every cell is also the characteristics of this invention. It is not essential that all the migrated cells be measured, but preferably 50% or more of the migrated cells, more preferably the migrated cells, in order to determine a high quality migration pattern that yields more useful evaluation results. 60% or more, more preferably 70% or more of the migrated cells, and still more preferably 80% or more of the migrated cells.
  • an optical microscope, a fluorescence microscope, a still camera, a video camera, or the like may be appropriately combined to enable measurement over time.
  • the position of the cells can be measured using the label as an index.
  • the label include fluorescent labels such as GFP and RFP.
  • the interval for continuous measurement is, for example, several seconds to several hours, preferably several minutes to several tens of minutes (for example, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 15 minutes, 20 Minutes, 25 minutes).
  • the measurement interval defines the amount and quality of the obtained position information, and thus affects the quality of the movement pattern determined based on the position information.
  • step (iii) the number of cells to be measured, the measurement equipment to be used, and the software for data analysis, on the condition that a migration pattern of sufficient quality that enables the evaluation of drug efficacy or toxicity (step (iii)) can be obtained based on that It is advisable to set an appropriate measurement interval in consideration of the processing capability of the wear etc.
  • software such as Particle Tracker in Fiji can be used.
  • the timing of starting measurement in the case of performing continuous measurement is not particularly limited, and measurement may be performed before the cell starts moving or measurement may be started after the cell starts moving. Preferably, the measurement is started before the cell starts moving or immediately after the moving starts so that the moving process can be recorded from the beginning.
  • the measurement start timing may be set based on the elapsed time after the start of the culture. For example, the measurement is started when several hours have elapsed after the start of the culture.
  • the time from the first measurement to the final measurement (referred to as “tracking time”) when performing continuous measurement is not particularly limited.
  • the tracking time can be set within a range of 4 hours to 12 hours.
  • step (ii) the movement variation of each cell is analyzed and aggregated from the measured position information, and the movement pattern of the cell population is determined.
  • the distance ratio calculated in the following (A) is used for the analysis of movement fluctuation (see FIG. 1).
  • the total cell movement distance at the measurement time t is D (t)
  • the linear distance between the movement start point and the movement end point is d (t)
  • the distance ratio calculated in (A) reflects the movement direction.
  • the movement pattern is determined by counting the analysis results (in this case, distance ratio) for individual cells. At the time of tabulation, statistical processing (for example, an average value and standard deviation or standard error is used) is usually performed. As a result of aggregation, if the distance ratio value tends to be small, the movement pattern has a large movement direction fluctuation (fluctuation). If the distance ratio value tends to be large, the movement direction fluctuation (fluctuation) has a small movement pattern. .
  • step (i) the position of the cell is measured over time, and the distance ratio of (A) is calculated for each measurement time, so that the change in the distance ratio with time (that is, movement direction fluctuation) can be captured. it can.
  • the angle ⁇ obtained in the following (B) is used for the analysis of the movement variation (see FIG. 2).
  • a measurement time interval t / n (where n is an integer equal to or greater than 2) is set with respect to the measurement time t, and the position of the cell is measured. Is obtained.
  • the cell position at the start of measurement is set as a reference point (at the start).
  • a measurement time interval t / n (where n is an integer of 2 or more) is set with respect to the measurement time t, and at each measurement time ((t / n) ⁇ 1, (t / n) ⁇ 2, (t / n ) ⁇ 3,... (T / n) ⁇ n), the cell position vector is measured.
  • an angle ⁇ between the position vector of the cell at each measurement and a reference axis (typically, a straight line passing through the reference point is used as a reference axis) is obtained.
  • the values of the angle ⁇ for the individual cells obtained in this way (n values are obtained for each cell) are totaled for the entire measurement target cell, and a frequency distribution of the angle ⁇ is created.
  • the reference axis can be arbitrarily set.
  • the position vector of each cell obtained in the above measurement that is, (t / n) ⁇ 1, (t / n) ⁇ 2, (t / n) ⁇ 3,... (T / n) ⁇ n cell position vector) are summed and divided by n to calculate an average position vector, which is used as a reference axis.
  • the reference point and the reference axis are set for each cell.
  • Measured time interval is 10 seconds to 120 minutes, for example.
  • the integer n that defines the measurement time interval may be determined in relation to the total measurement time (ie, the predetermined time t). For example, t is 1 to 240 hours, and 2 ⁇ n ⁇ 1000000.
  • the frequency distribution of the angle ⁇ defines the movement pattern.
  • the change in the angle ⁇ and the movement direction of the cells shows a positive correlation. Therefore, when the frequency is large in a small angle ( ⁇ ) range, the movement pattern has a small fluctuation (fluctuation), and when the frequency is large in a large angle ( ⁇ ), the movement pattern has a large fluctuation (fluctuation).
  • a movement pattern may be determined based on the shape of a histogram. Further, the variation from the average of the angle ⁇ may be examined, and the median value or average value of the variation may be used for determination of the degree or tendency of fluctuation (fluctuation).
  • the speed calculated in the following (C) is used for the movement fluctuation analysis.
  • the total moving distance of the cell at the measurement time t is D (t), and the speed D (t) / t is calculated.
  • the speed also reflects cell movement fluctuations. A certain speed or a change in speed with time deviates from the normal pattern indicates an abnormality in movement fluctuation.
  • the movement pattern can be expressed in the form of a table, graph or plot diagram. For example, if a plurality of divisions are provided for the range of distance ratio values, and the degree of variation is associated with each division using numbers, symbols, etc., the level of variation in the moving direction can be expressed with numbers, symbols, etc. it can.
  • step (iii) following step (ii), the efficacy or toxicity of the test substance is determined based on the determined movement pattern.
  • the method of the present invention can be used as a drug efficacy evaluation system or a toxicity evaluation system. In the former case, the efficacy of the test substance is determined in this step, and in the latter case, the test substance is determined in this step. Toxicity is determined.
  • the characteristics of each evaluation system will be described.
  • the evaluation method of the present invention is configured as a means for evaluating the efficacy of a test substance, that is, a drug evaluation system. According to this aspect, it is possible to screen for a drug component effective for various diseases (target diseases) in which cell migration disorder is at least one of the causes of its onset and progression or a candidate thereof.
  • a non-normal cell is used as the cell in step (i).
  • the efficacy of the test substance is determined using the normalization of the movement pattern determined in step (ii) as an index. Normalization of the migration pattern means that the abnormal migration pattern exhibited by the non-normal cell population is improved. When the movement pattern is normalized, the movement pattern of the corresponding normal cell (usually a movement pattern with little fluctuation (fluctuation)) is approached. Therefore, the migration pattern determined in step (ii) (referred to as “test group migration pattern”) was determined according to the same procedure except that the culture was performed in the absence of the test substance (“control group migration”).
  • the movement pattern of the corresponding normal cell (usually a movement pattern with less fluctuation (fluctuation)), that is, the movement of the corresponding normal cell due to the presence (effect) of the test substance.
  • the approximation to the pattern indicates that the test substance is effective.
  • the presence or absence of the normalization of the movement pattern can be grasped, and the effectiveness of the test substance can be determined based on this. it can.
  • the degree of normalization of the movement pattern reflects the degree of effectiveness (drug efficacy)
  • the degree or strength of effectiveness can be determined based on the degree of normalization.
  • a test substance that has been confirmed to be effective can be said to be promising as a drug component or a candidate for a disease caused by a cell migration disorder.
  • the corresponding normal cells are typically the same type of cells derived from healthy subjects.
  • the non-normal cell is a dopamine neuron derived from a schizophrenia patient
  • the corresponding normal cell is a dopamine neuron derived from a healthy subject (typically induced to differentiate iPS cells prepared from peripheral blood collected from a healthy subject) Dopamine neurons).
  • the non-normal cell is a glutamatergic neuron derived from a patient with Rett syndrome
  • the corresponding normal cell is a glutamatergic neuron derived from a healthy woman.
  • the evaluation method of the present invention is configured as a means for evaluating the toxicity of a test substance, that is, a toxicity evaluation system.
  • a test substance such as a pharmaceutical ingredient or a candidate thereof, a dietary supplement (supplement) or a candidate thereof, a food additive or a candidate thereof exhibits toxicity by affecting the cell migration ability
  • the degree of toxicity can be evaluated.
  • step (iii) when using normal cells, the toxicity of the test substance is determined using as an index the abnormal movement pattern determined in step (ii).
  • the abnormal movement pattern means that the movement pattern changes, that is, the movement pattern becomes different from the normal movement pattern. Therefore, typically, the migration pattern determined in step (ii) (the migration pattern of the test group) and the migration pattern determined according to the same procedure except that the culture is performed in the absence of the test substance (the migration of the control group). Differences in pattern) indicate that the test substance is toxic. Further, since the degree of change in the movement pattern reflects the degree of toxicity, the degree or intensity of toxicity can be determined based on the degree of difference.
  • appropriate cells should be selected as normal cells.
  • a neuron dopamine neuron, glutaminergic neuron.
  • Serotonin neurons, GABAergic neurons, etc. are selected.
  • step (iii) in the case of using non-normal cells, the toxicity of the test substance is determined using the further abnormality of the migration pattern determined in step (ii) as an index.
  • the further abnormality is that the difference from the normal movement pattern becomes more prominent.
  • the movement pattern has a larger movement direction fluctuation (fluctuation).
  • Migration pattern (test group migration pattern) determined in step (ii) migration pattern (control group migration pattern) determined according to the same procedure except that culture is performed in the absence of the test substance, and corresponding normal cells
  • patient-derived cells may be used as the non-normal cells.
  • a disease cell derived from a patient with a specific disease is employed as a non-normal cell, it becomes an evaluation system that can evaluate the toxicity of a therapeutic drug targeting the disease or its candidate.
  • Such an evaluation system is useful, for example, as a means for evaluating a side effect of a therapeutic agent or a candidate thereof.
  • the “movement pattern defined by the movement direction of individual cells constituting the cell population” used as an index in the drug evaluation method of the present invention reflects the state of the cells. If attention is paid to this point, the cell migration pattern is also useful for evaluating the quality (normality, abnormality, uniformity, etc.) of the cell population. Therefore, the present invention provides, as another aspect, a method for evaluating the quality of a cell population based on a movement pattern defined by fluctuations in the movement direction of individual cells constituting the cell population.
  • iPS cell medium (20% KSR, 2 mM L-glutamine, 0.1 mM non-essential amino acids, 2-mercaptoethanol, penicillin / streptomycin And DMEM / F12) containing bFGF.
  • iPS cells were cultured on a culture dish coated with Matrigel TM (BD).
  • Matrigel TM Matrigel TM
  • iPS cell medium (MEF condition medium) exposed to feeder cells overnight was used.
  • RELN-deficient isogenic iPS cell lines Using the CRISPR / Cas9 system, RELN-deficient isogenic iPS cells (Isogenic (-/-) and Isogenic (+/-)) were artificially generated from healthy controls (CON1). ) was produced.
  • Cas9 expression vector and sgRNA expression vector were obtained from Addgene.
  • the Cas9 expression vector and sgRNA expression vector were cotransfected using Lipofectamine 3000, and selection with puromycin was performed 48 hours later. After pretreatment with 10 ⁇ M Y-27632, the mixture was dispersed using TrypLE TM select (Thermo Fisher Scientific Inc.).
  • iPS cells were cultured in an iPS cell medium supplemented with SB431542 (3 ⁇ M), CHIR99021 (3 ⁇ M), and dorsomorphin (3 ⁇ M) for 7 days (from day 0 to day 7). After that, disperse by TrypLE TM select (Thermo Fisher Scientific Inc.) and pass through cell strainer.
  • Neurosphere medium (DMEM / F12 supplemented with 1 ⁇ N2 supplement, 0.6% glucose, penicillin / streptomycin, 5 mM HEPES) (MHM medium) supplemented with 1 ⁇ B27 supplement, 20 ng / ml bFGF, 10 ng / ml human LIF, 10 ⁇ M Y27632, 3 ⁇ M CHIR99021, 2 ⁇ M SB431542, 100 ng / ml FGF8 and 1 ⁇ M purmorphamine Neurospheres were formed by suspension culture for 2 weeks (Day 7 to Day 21). FGF8 and purmorphamine were added from the 10th day. On the 14th day, the neurospheres were collected and dispersed to form single cells, and then cultured again in suspension to re-form neurospheres (secondary neurospheres).
  • Nerve cell migration test Secondary neurospheres (day 21) were seeded on Matrigel M (BD) -coated culture dishes one by one, and medium for dopamine neurons (B27 supplement, 10 ⁇ M DAPT, MHM medium) 20 ng / ml BDNF, 20 ng / ml GDNF, 0.2 mM ascorbic acid, 1 ng / ml TGF- ⁇ 3 and 0.5 mM dbcAMP).
  • the video was shot with IncuCyte (registered trademark) (ESSEN BIOSCIENCE).
  • IncuCyte registered trademark
  • images were taken continuously every 15 minutes for a total of 4 hours from 48 hours to 52 hours after seeding and analyzed using ImageJ (time lapse analysis).
  • the moving distance was calculated from the XY coordinates at each shooting point.
  • the differentiation into dopamine neurons was performed by improving the previously reported report (Fujimori, K. et al. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular brain 9, 88 (2016)).
  • Movement method evaluation 1 (distance ratio) (see FIG. 1) The direction of movement was evaluated by the total distance of cell movement and the ratio of the linear distance between the start point and the end point.
  • the migration pattern of dopamine neurons derived from RELN-deficient isogenic iPS cells was also analyzed, and migration patterns of healthy subjects and RELN-deficient migration patterns (RELN-deficient patients, RELN-deficient isogenic (Isogenic (-/- ) And Isogenic (+/-)) (Fig. 5) Healthy subjects are distributed in a narrow range of angle ⁇ (approximately 80% of angle ⁇ is within a range of -20 ° to + 20 °). In contrast, the movement pattern of the RELN deletion is highly variable, with only about 45% to 65% of the angle ⁇ within the range of -20 ° to + 20 °. .
  • the drug evaluation system of the present invention uses the cell migration pattern as an index. For example, pathological research on central nervous system diseases, basic research on neurogenesis and circuit formation, development of central nervous system drugs, spinal cord injury, peripheral neuropathy, development of treatments / therapeutics for organogenesis (eg congenital heart disease)
  • the present invention will be used for predicting the effects on the fetus / child brain and organ formation by taking a mother during pregnancy or breastfeeding.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

中枢神経系疾患の発症メカニズムや病態の研究、或いは治療法の開発などにおいて特に有用な新規評価系を提供することを課題とする。細胞集団を構成する個々の細胞の移動変動で規定される移動パターンを指標として、被験物質の薬効を評価する。

Description

薬剤評価方法
 本発明は細胞ベースのアッセイ系に関する。詳しくは、細胞の移動特性を利用した薬剤評価方法及びその応用に関する。本出願は、2018年2月28日に出願された日本国特許出願第2018-035758号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 統合失調症(SCZ)や自閉スペクトラム症(ASD)の病態仮説として、神経発達の障害が重要な役割を果たしていると考えられている。発達期から既に特性が顕在化するASDのみならず、SCZにおいても、明白な精神症状が現れていない発症前からいくつかの認知機能障害や神経生理学的或いは神経画像的変化があることや(非特許文献1)、SCZやASDの死後脳を用いた検討の結果、神経細胞による脳構築の障害が認められたことが報告されている(非特許文献2)。これらの報告からすると、胎児期から始まる神経発達の障害がSCZやASDの発症病因になることが推測されるが、SCZやASD患者の脳内病態の詳細は不明である。
 SCZやASDのゲノム解析研究により、両疾患ともに神経発達に関与する遺伝子上の変異が複数同定されており、そのひとつがRELNにおける変異である(例えば非特許文献3を参照)。RELNによってコードされるタンパク質Reelinは巨大な分泌タンパク質であり、発達期の脳の層構造形成に必須とされている。ヒトではRELNのホモ欠失変異を有すると、発達遅延を伴う滑脳症を呈し、Reelinの減少は神経発達障害の発症との関連性が報告されている(非特許文献4)。同様に、Reln変異マウスであるreelerマウスでは脳層構造の乱れや異常行動が報告されている(例えば非特許文献5を参照)。これらの報告から、ヒトにおいても、脳内のReelinが減少すると、不安定な神経遊走が起こる可能性が示唆され、SCZやASDに関与する神経発達の障害を来すことが予想される。
Schizophrenia bulletin, 29(4):653-669, 2003 Dialogues Clin Neurosci, 2(4):349-357, 2000 Mol Psychiatry 22(3) 430-440, 2017 Nat Genet 26(1):93-96, 2000 Nature Rev Neurosci, 4(6):496-505, 2003
 Reelinを発現する神経細胞種は複数存在するが、その中でもチロシンヒドロキシラーゼ(tyrosin hydroxylase; TH)陽性のドパミン神経細胞は、出生前後の限定された時期にのみReelinを発現することがマウスを用いた研究で報告されている。Reelinは限定的な時期にしか発現しないにもかかわらず、Relnが変異したreelerマウスではドパミン神経細胞の異常が確認されている。一方、SCZやASDの病態にドパミン系が関与するとの報告が多数存在することから、ドパミン神経細胞とReelinの関係を調べることで、SCZやASDの発症メカニズム解明への手掛かりが得られる可能性が示唆される。
 本発明者らは、SCZやASDの発症メカニズムの解明及び治療法の確立を目指し、Reelinに着目して研究を進めてきた。そして、研究成果の一つとして、iPS細胞からドパミン神経細胞を特異的且つ効率的に調製する方法の確立に成功した(特願2017-82600)。
 以上の背景の下、本発明は、中枢神経系疾患(例えば精神疾患)の発症メカニズムや病態の研究、或いは治療法の開発などにおいて特に有用な新規評価系を提供することを課題とする。
 上記の通り、本発明者らはドパミン神経細胞の新規調製方法を確立した。当該方法では分化誘導の過程でニューロスフィア(神経細胞凝集塊)が形成されるが、神経細胞へ分化誘導する条件下でニューロスフィアを培養すると、周囲へ細胞(ドパミン神経細胞)が移動する。移動した個々の細胞の移動距離や移動方向等に着目して検討を重ねた結果、健常者由来の細胞の移動パターンに特徴があること(特定の移動パターンを示すこと)と、RELN欠損精神疾患患者由来の細胞が健常者由来の細胞とは異なる移動パターンを示すことが見出された。この知見は、細胞集団を構成する個々の細胞の移動特性(特に移動方向)で規定される移動パターンが疾患状態を反映するものであることを意味し、当該移動パターンを指標とした評価系が、基礎研究(疾患メカニズムの解明など)はもとより、病態の把握、治療薬の開発などに有用であることを示す。治療薬の開発に利用した場合は移動パターンの正常化が薬効を裏付けるとともに、移動パターンの異常化が毒性を裏付けることになる。例えば、RELN欠損精神疾患患者由来細胞を用いた場合は、移動パターンが正常化すれば、内在性のReelinをレスキューさせる薬効を示すものとなりうる。ここで、中枢神経系に限らず様々な組織や器官/臓器等の正常な形成や再生のプロセスに細胞の移動能が重要であることからすれば、細胞の移動特性に注目した上記評価系の適用範囲(対象とする細胞、用途・応用など)は広く、即ち、薬効又は毒の評価系として広く利用できるものであり、その実用上の価値及び意義は極めて高い。尚、本発明者らの更なる検討によって、上記評価系を実用化する上で有用かつ重要な各種知見も得られた。
 以下に示す発明は、主として上記の知見及び考察に基づく、
 [1]細胞集団を構成する個々の細胞の移動変動で規定される移動パターンを指標とした、薬剤評価方法。
 [2]以下のステップ(i)~(iii)を含む、[1]に記載の薬剤評価方法:
 (i)移動能を示す細胞の集団を用意し、被験物質の存在下で培養を開始した後、移動した個々の細胞の位置を経時的に計測するステップ、
 (ii)計測した位置の情報から各細胞の移動変動を分析して集計し、前記細胞集団の移動パターンを決定するステップ、
 (iii)決定した移動パターンに基づき被験物質の薬効又は毒性を判定するステップ。
 [3]以下の(A)で算出される距離比、以下の(B)で求められる角度θ、又は以下の(C)で算出される速度をステップ(ii)の分析に用いる、[2]に記載の薬剤評価方法:
 (A)計測時間tでの細胞の総移動距離をD(t)、移動開始点と移動終了点の2点間の直線距離をd(t)とし、距離比d(t)/D(t)を算出する、
 (B)計測時間tに対して計測時間間隔t/n(但し、nは2以上の整数)を設定して細胞の位置を計測し、各時点における細胞の位置ベクトルと基準軸との間の角度θを求める、
 (C)計測時間tでの細胞の総移動距離をD(t)とし、速度D(t)/tを算出する。
 [4](B)の基準軸として、時間tまでの細胞の移動軌跡から計算した平均の位置ベクトルが用いられる、[3]に記載の薬剤評価方法。
 [5]ステップ(i)の細胞が非正常細胞であり、ステップ(iii)では、移動パターンの正常化を指標として被験物質の薬効が判定される、[2]~[4]のいずれか一項に記載の薬剤評価方法。
 [6]ステップ(i)の細胞が正常細胞であり、ステップ(iii)では、移動パターンの異常化を指標として被験物質の毒性が判定される、[2]~[4]のいずれか一項に記載の薬剤評価方法。
 [7]ステップ(i)の細胞が非正常細胞であり、ステップ(iii)では、移動パターンの更なる異常化を指標として被験物質の毒性が判定される、[2]~[4]のいずれか一項に記載の薬剤評価方法。
 [8]非正常細胞が、標的疾患の遺伝的特徴を有する疾患細胞である、[5]又は[7]に記載の薬剤評価方法。
 [9]疾患細胞が患者由来の細胞又は遺伝子操作によって作成された細胞である、[8]に記載の薬剤評価方法。
 [10]患者由来の細胞が、患者の細胞から作成した人工多能性幹細胞を分化誘導して得られた細胞である、[9]に記載の薬剤評価方法。
 [11]ステップ(i)の細胞が、方向性をもった移動能力を示す細胞である、[2]~[10]のいずれか一項に記載の薬剤評価方法。
 [12]方向性をもった移動能力を示す細胞が、神経細胞、心筋細胞又は血球である、[11]に記載の薬剤評価方法。
 [13]神経細胞がドパミン神経細胞、グルタミン作動性神経細胞、セロトニン神経細胞又はGABA作動性神経細胞である、[12]に記載の薬剤評価方法。
 [14]ドパミン神経細胞が、以下のステップ(1)~(3)を含む方法で調製される、[13]に記載の薬剤評価方法:
(1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ、
(2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ、
 (3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導する、或いは、ニューロスフィアを直接ドパミン神経細胞へ誘導するステップ。
 [15]細胞集団を構成する個々の細胞の移動変動で規定される移動パターンによって、該細胞集団の品質を評価する方法。
距離比を利用した移動方向の評価方法(左)と当該評価方法による評価結果(経時的計測)の一例(右)。細胞が時間tの間に移動した際、実際の総移動距離をD(t)、開始点と終了点の2点間の直線距離をd(t)と定義し、d(t)/D(t)値によって移動方向を評価した。完全に直線移動していた場合はd(t)/D(t)値が1となり、蛇行するほど値が小さくなる。健常者(+/+):健常者iPS細胞由来の神経細胞、RELN欠失患者(+/-):RELN欠失患者由来の神経細胞、健常者(-/-):ゲノム編集によってRELNホモ欠失にした健常者株由来の神経細胞。 ベクトル及び角度を利用した移動方向の評価方法(左)と当該評価方法による評価結果の一例(右)。細胞が一定時間内に移動したときに、移動開始点から終了点までの平均の移動ベクトルを計算した。移動途中にある細胞の、ある時間における位置ベクトルと平均の移動ベクトルとの間の角度(θ)を求め、θの分布を細胞種ごとにヒストグラム及び円ヒストグラム(又はレーダープロット)で表した。 健常者iPS細胞由来神経細胞の移動パターンの評価結果。CON1:健常者女性から誘導したドパミン神経細胞、CON2:健常者男性から誘導したドパミン神経細胞。 RELN欠失患者iPS細胞由来神経細胞(RELN-del1)の移動パターンと健常者iPS細胞由来神経細胞(CON1)の移動パターンの比較。 RELN欠失の移動パターンと健常者の移動パターンの比較。 移動パターンの自動検出結果。個々の細胞の移動変動を自動検出/自動数値化する計測系を構築した。 自動検出システムを利用した移動パターンの評価。健常者iPS細胞由来神経細胞(CON1)とRELN欠失群(RELN欠失患者iPS細胞由来神経細胞(RELN-del1及びRELNホモ欠失アイソジェニックiPS細胞由来神経細胞(CON1(-/-))の間で移動パターンを比較した。
 本発明は、被験物質の薬効又は毒性の評価に利用される薬剤評価方法(以下、「本発明の評価方法」とも呼ぶ)を提供する。本明細書では、薬効の評価と毒性の評価を総称する用語として「薬剤評価」を使用する。従って、本発明では被験物質の薬効又は毒性が評価されることになる。用語「毒性」は広義に解釈されるべきであり、一般毒性(急性毒性、亜急性毒性、慢性毒性)の他、副作用、発がん性、変異原性、催奇形性等も毒性の一つである。
 本発明の評価方法は細胞を利用した評価系であり、特定の細胞集団を用意し、細胞集団を構成する個々の細胞の移動変動で規定される移動パターン(細胞の移動方向の変動の程度(大きさ)や移動速度(速さ)が関連づけられたもの)を指標として被験物質の薬効又は毒性を評価する。本発明者らの検討によって、細胞集団を構成する個々の細胞の移動変動に注目すれば、細胞集団の移動特性を表す「移動パターン」を規定することができ、しかも、「移動パターン」が細胞集団の正常性(別に言えば異常性)に相関し、薬効又は毒性の評価に有用であることが明らかとなった(後述の実施例を参照)。
 典型的には、本発明の評価方法では以下のステップ(i)~(iii)を行う。
 (i)移動能を示す細胞の集団を用意し、被験物質の存在下で培養を開始した後、移動した個々の細胞の位置を経時的に計測するステップ
 (ii)計測した位置の情報から各細胞の移動変動を分析して集計し、前記細胞集団の移動パターンを決定するステップ
 (iii)決定した移動パターンに基づき被験物質の薬効又は毒性を判定するステップ
 ステップ(i)では、移動能を示す細胞の集団を用意し、被験物質の存在下で培養を開始する。本発明では移動パターンを指標として被験物質の薬効又は毒性を評価することから、移動能を示す細胞(より具体的には方向性をもった移動能力を示す細胞)で構成された細胞集団が用いられる。但し、細胞集団を構成する全ての細胞が移動能を示すことは必須ではない。即ち、移動能を示さない細胞が混在することを妨げるものではない。ここでの「混在する」とは、細胞集団内に存在するものの、主要な構成細胞ではないことを意味する。従って、その存在量(混在率)は例えば細胞集団全体の40%以下、好ましくは細胞集団全体の30%以下、更に好ましくは細胞集団全体の20%以下、更に更に好ましくは細胞集団全体の10%以下である。
 生体の組織や器官/臓器等の構造体の正常な発生ないし形成、或いは再生のプロセスにおいて所定の移動能を発揮する細胞(特に、一定の方向性で移動し、特定の組織や器官/臓器等の構成成分となる細胞)は「方向性をもった移動能力を示す細胞」に該当し、本発明の方法における細胞集団を構成する細胞として好適である。方向性をもった移動能力を示す細胞の例として、神経細胞(ドパミン神経細胞、グルタミン作動性神経細胞、セロトニン神経細胞、GABA作動性神経細胞)、心筋細胞、血球系細胞(白血球)を挙げることができる。
 細胞集団は、細胞種の異なる2種類以上の細胞で構成されていてもよい。また、分化度の異なる2種類以上の細胞で構成されていてもよい。
 細胞集団を構成する細胞として正常細胞又は非正常細胞を用いることができる。「正常細胞」とは、本発明の方法で評価される薬効(細胞移動障害の改善、それに基づく治療効果)又は毒性との関係において異常を認めない細胞である。正常細胞の典型例は健常者由来の細胞であるが、例えば、評価対象の薬効が治療効果を発揮し得る疾患、換言すれば、細胞移動障害がその発症や進展の原因の少なくとも一つとなる疾患(以下、「標的疾患」と呼ぶ)に罹患していない者由来の細胞も正常細胞として用いられ得る。「非正常細胞」は正常細胞と対照をなす細胞であり、遺伝子変異や染色体異常などよって本来の状態ではなくなっている細胞をいう。非正常細胞の例は、標的疾患に特徴的な遺伝的異常を有する細胞であり、標的疾患に罹患した患者由来の細胞が非正常細胞に該当する。患者由来の細胞の例は、患者から採取した細胞又はその継代細胞、及び患者由来人工多能性幹(iPS)細胞(患者から採取した細胞を利用して作成したiPS細胞)を分化誘導して得られた分化細胞である。患者由来の細胞の他、標的疾患に特徴的な遺伝的異常が導入された細胞(例えば、iPS細胞などの未分化細胞にゲノム編集等の遺伝子操作で遺伝子変異を導入した後、分化誘導して得られた分化細胞)や、分化細胞に対して遺伝子変異を導入して得られた細胞も非正常細胞として採用し得る。尚、標的疾患の例は自閉症スペクトラム障害(ASD)や統合失調症などの神経発達障害疾患、白血球遊走障害を示す血液疾患などであり、遺伝的異常の例はReelin遺伝子の欠失、染色体3q29領域の欠失、染色体22q11領域の欠失などである。
 非正常細胞として患者由来の細胞を用いた場合、治療薬候補のスクリーニング(探索)等を目的とした薬効の評価に加え、治療薬又は治療薬候補の毒性の評価も可能になる(詳細は後述する)。このように本発明の方法は、使用する細胞を選択することにより、薬効評価系と毒性評価系のいずれにも利用可能になるという、ユニークな特徴を有する。各評価系の詳細は後述する。
 好ましい一態様では、ステップ(i)の細胞として、以下のステップ(1)~(3)を含む方法で調製されるドパミン神経細胞が用いられる。
 (1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ
 (2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ
 (3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導する、或いは、ニューロスフィアを直接ドパミン神経細胞へ誘導するステップ
 ステップ(1)
 ステップ(1)では多能性幹細胞を使用する。「多能性幹細胞」とは、生体を構成するすべての細胞に分化しうる能力(分化多能性)と、細胞分裂を経て自己と同一の分化能を有する娘細胞を生み出す能力(自己複製能)とを併せ持つ細胞をいう。分化多能性は、評価対象の細胞を、ヌードマウスに移植し、三胚葉(外胚葉、中胚葉、内胚葉)のそれぞれの細胞を含むテラトーマ形成の有無を試験することにより、評価することができる。
 多能性幹細胞として、胚性幹細胞(ES細胞)、胚性生殖細胞(EG細胞)、人工多能性幹細胞(iPS細胞)等を挙げることができるが、分化多能性及び自己複製能を併せ持つ細胞である限り、これに限定されない。好ましくはES細胞又はiPS細胞を用いる。更に好ましくはiPS細胞を用いる。多能性幹細胞は、好ましくは哺乳動物(例えば、ヒトやチンパンジーなどの霊長類、マウスやラットなどのげっ歯類)の細胞、特に好ましくはヒトの細胞である。従って、本発明の最も好ましい態様では、多能性幹細胞として、ヒトiPS細胞が用いられる。
 ES細胞は、例えば、着床以前の初期胚、当該初期胚を構成する内部細胞塊、単一割球等を培養することによって樹立することができる(Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1994) ;Thomson,J. A. et al.,Science,282, 1145-1147(1998))。初期胚として、体細胞の核を核移植することによって作製された初期胚を用いてもよい(Wilmut et al.(Nature, 385, 810(1997))、Cibelli et al. (Science, 280, 1256(1998))、入谷明ら(蛋白質核酸酵素, 44, 892 (1999))、Baguisi et al. (Nature Biotechnology, 17, 456 (1999))、Wakayama et al. (Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999))、Rideout III et al. (Nature Genetics, 24, 109 (2000)、Tachibana et al. (Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer, Cell (2013) in press)。初期座として、単為発生胚を用いてもよい(Kim et al. (Science, 315, 482-486 (2007))、Nakajima et al. (Stem Cells, 25, 983-985 (2007))、Kim et al. (Cell Stem Cell, 1, 346-352 (2007))、Revazova et al. (Cloning Stem Cells, 9, 432-449 (2007))、Revazova et al.(Cloning Stem Cells, 10, 11-24 (2008))。上掲の論文の他、ES細胞の作製についてはStrelchenko N., et al. Reprod Biomed Online. 9: 623-629, 2004;Klimanskaya I., et al. Nature 444: 481-485, 2006;Chung Y., et al. Cell Stem Cell 2: 113-117, 2008;Zhang X., et al Stem Cells 24: 2669-2676, 2006;Wassarman, P.M. et al. Methods in Enzymology, Vol.365, 2003等が参考になる。尚、ES細胞と体細胞の細胞融合によって得られる融合ES細胞も胚性幹細胞に含まれる。
 ES細胞の中には、保存機関から入手可能なもの、或いは市販されているものもある。例えば、ヒトES細胞については京都大学再生医科学研究所(例えばKhES-1、KhES-2及びKhES-3)、WiCell Research Institute、ESI BIOなどから入手可能である。
 EG細胞は、始原生殖細胞を、LIF、bFGF、SCFの存在下で培養すること等により樹立することができる(Matsui et al., Cell, 70, 841-847 (1992)、Shamblott et al., Proc. Natl. Acad. Sci. USA, 95 (23), 13726-13731 (1998)、Turnpenny et al., Stem Cells, 21(5), 598-609, (2003))。
 「人工多能性幹細胞(iPS細胞)」とは、初期化因子の導入などにより体細胞(例えば線維芽細胞、皮膚細胞、リンパ球等)をリプログラミングすることによって作製される、分化多能性と自己複製能を有する細胞である。iPS細胞はES細胞に近い性質を示す。iPS細胞の作製に使用する体細胞は特に限定されず、分化した体細胞でもよいし、未分化の幹細胞でもよい。iPS細胞は、これまでに報告された各種方法によって作製することができる。また、今後開発されるiPS細胞作製法を適用することも当然に想定される。iPS細胞の作製に利用可能な細胞、即ち、iPS細胞の由来である細胞の例として、リンパ球(T細胞、B細胞)、線維芽細胞、上皮細胞、内皮細胞、粘膜上皮細胞、間葉系幹細胞、造血幹細胞、脂肪幹細胞、歯髄幹細胞、神経幹細胞を挙げることができる。
 iPS細胞作製法の最も基本的な手法は、転写因子であるOct3/4、Sox2、Klf4及びc-Mycの4因子を、ウイルスを利用して細胞へ導入する方法である(Takahashi K, Yamanaka S: Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007)。ヒトiPS細胞についてはOct4、Sox2、Lin28及びNonogの4因子の導入による樹立の報告がある(Yu J, et al: Science 318(5858), 1917-1920, 2007)。c-Mycを除く3因子(Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008)、Oct3/4及びKlf4の2因子(Kim J B, et al: Nature 454 (7204), 646-650, 2008)、或いはOct3/4のみ(Kim J B, et al: Cell 136 (3), 411-419, 2009)の導入によるiPS細胞の樹立も報告されている。また、遺伝子の発現産物であるタンパク質を細胞に導入する手法(Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al: Cell Stem Cell 4, 472-476, 2009)も報告されている。一方、ヒストンメチル基転移酵素G9aに対する阻害剤BIX-01294やヒストン脱アセチル化酵素阻害剤バルプロ酸(VPA)或いはBayK8644等を使用することによって作製効率の向上や導入する因子の低減などが可能であるとの報告もある(Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J, et al: PLoS. Biol. 6 (10), e 253, 2008)。遺伝子導入法についても検討が進められ、レトロウイルスの他、レンチウイルス(Yu J, et al: Science 318(5858), 1917-1920, 2007)、アデノウイルス(Stadtfeld M, et al: Science 322 (5903), 945-949, 2008)、プラスミド(Okita K, et al: Science 322 (5903), 949-953, 2008)、トランスポゾンベクター(Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766-770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009)、或いはエピソーマルベクター(Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009)を遺伝子導入に利用した技術が開発されている。
 iPS細胞への形質転換、即ち初期化(リプログラミング)が生じた細胞はFbxo15、Nanog、Oct/4、Fgf-4、Esg-1及びCript等の多能性幹細胞マーカー(未分化マーカー)の発現などを指標として選択することができる。
 iPS細胞は、例えば、国立大学法人京都大学又は独立行政法人理化学研究所バイオリソースセンターから提供を受けることもできる。
 多能性幹細胞は公知の方法により、生体外(in vitro)で維持することができる。臨床応用を視野に入れた場合等、安全性の高い細胞を提供することが望まれる場合には、多能性幹細胞を、血清代替物を用いた無血清培養や、無フィーダー細胞培養により維持することが好ましい。血清を使用(又は併用)するのであれば、自己血清(即ちレシピエントの血清)を使用するとよい。血清代替物は、例えば、アルブミン、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素、2-メルカプトエタノール又は3'チオールグリセロール、あるいはこれらの均等物などを含有し得る。公知の方法(例えば、W0 98/30679を参照)により血清代替物を調製することができる。市販の血清代替物を用いることもできる。市販の血清代替物の例として、KSR(Invitrogen社製)、Chemically-defined Lipid concentrated (Gibco社製)、Glutamax (Gibco社製)が挙げられる。
 ステップ(1)では、以上のようにして用意した多能性幹細胞を、TGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養する。即ち、TGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤が添加された培地を用いて多能性幹細胞を培養する。尚、ステップ(1)は多能性幹細胞の神経分化能の亢進を目的とする。
 培地は、哺乳動物細胞の培養に用いる培地を基礎培地として調製することができる。基礎培地としては、例えば、BME培地、BGJb培地、CMRL1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハム培地、Ham's F-12培地、RPMI1640培地、Fischer's培地、Neurobasal培地、及びこれらの混合培地など、哺乳動物細胞の培養に用いることのできる培地であれば特に限定されない。一態様において、IMDM培地及びHam's F-12培地の混合培地が用いられる。混合比は、容量比で、例えば、IMDM:Ham's F-12=O.8~1.2:1.2~0.8である。
 培地にはTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤が添加される。TGF-βファミリー阻害剤とは、TGF-βとTGF-β受容体との結合を介するTGF-βシグナル伝達を阻害する物質である。TGF-β阻害剤にはタンパク質性阻害剤及び低分子阻害剤がある。タンパク質性阻害剤の例は、抗TGF-β中和抗体、抗TGF-β受容体中和抗体である。低分子阻害剤の例は、SB431542(4-[4-(1,3-ベンゾジオキソール-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]-ベンズアミド又はその水和物)、SB202190(4-(4-フルオロフェニル)-2-(4-ヒドロキシフェニル)-5-(4-ピリジル)-1H-イミダゾール)、SB505124(GlaxoSmithKline)、NPC30345、SD093、SD908、SD208(Scios)、LY2109761、LY364947、LY580276(Lilly Research Laboratories)である。好ましくは、SB431542を用いる。TGF-βファミリー阻害剤の濃度(培地への添加量)は、多能性幹細胞の神経分化能の亢進という目的が達成される限り特に限定されないが、SB431542を例としてその濃度を示すと、例えば0.5μM~20μM、好ましくは1μM~10μMである。尚、最適な濃度は予備実験を通して設定することができる。全培養期間を通してTGF-βファミリー阻害剤濃度を一定にするのではなく、例えば段階的にTGF-βファミリー阻害剤濃度を増加させるなど、TGF-βファミリー阻害剤濃度に変化を設けても良い。
 GSK3β阻害剤としては、CHIR99021(6-[[2-[[4-(2,4-ジクロロフェニル)-5-(4-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリル)、SB-415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)、SB-2167、indirubin-3’-Monoxime、Kenpaullone、BIO(6-ブロモインジルビン-3'-オキシム)等を用いることができる。好ましくは、CHIR99021を用いる。GSK3β阻害剤の濃度(培地への添加量)は、多能性幹細胞の神経分化能の亢進という目的が達成される限り特に限定されないが、CHIR99021を例としてその濃度を示すと、例えば0.5μM~20μM、好ましくは1μM~10μMである。尚、最適な濃度は予備実験を通して設定することができる。全培養期間を通してGSK3β阻害剤濃度を一定にするのではなく、例えば段階的にGSK3β阻害剤濃度を増加させるなど、GSK3β阻害剤濃度に変化を設けても良い。
 BMP阻害剤とは、BMP(bone morphogenetic protein)とBMP受容体(I型又はII型)との結合を介するBMPシグナル伝達(BMP signaling)を阻害する物質である。BMP阻害剤にはタンパク質性阻害剤と低分子阻害剤がある。タンパク質性阻害剤の例は、天然の阻害剤であるNoggin、chordin、follistatin等である。低分子阻害剤の例は、Dorsomorphin(6-[4-(2-ピペリジン-1-イルエトキシ)フェニル]-3-ピリジン-4-イルピラゾロ[1,5-a]ピリミジン)及びその誘導体、LDN-193189(4-(6-(4-piperazin-1-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)及びその誘導体である。これらの化合物は市販されており(例えばSigma-AldrichやStemgent社から入手できる)、容易に入手可能である。好ましくは、Dorsomorphinを用いる。BMP阻害剤の濃度(培地への添加量)は、多能性幹細胞の神経分化能の亢進という目的が達成される限り特に限定されないが、Dorsomorphinを例としてその濃度を示すと、例えば0.5μM~20μM、好ましくは1μM~10μMである。尚、最適な濃度は予備実験を通して設定することができる。全培養期間を通してBMP阻害剤濃度を一定にするのではなく、例えば段階的にBMP阻害剤濃度を増加させるなど、BMP阻害剤濃度に変化を設けても良い。
 必要に応じて、培地にその他の成分を添加してもよい。添加され得る成分の例として、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等を挙げることができる。
 多能性幹細胞は、通常、接着培養に供される。接着培養は浮遊培養と対照をなす培養であり、典型的には接着条件下で二次元培養(平面培養)する。但し、マトリゲルTM(BD)などを使用し、三次元的に培養することにしてもよい。接着培養には、例えば、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ等を用いることができる。培養面への細胞の接着性を高めるために、マトリゲルTM(BD)、ポリ-D-リジン、ポリ-L-リジン、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチン、或いはこれらの中の二つ以上の組み合わせによってコーティング処理された培養器を用いるとよい。
 フィーダー細胞の存在下/非存在下いずれの条件で多能性幹細胞の培養を行ってもよいが、臨床応用を視野に入れた場合等、安全性の高い細胞を提供することが望まれる場合には、フィーダー細胞の非存在下で培養(無フィーダー細胞培養)するとよい。尚、フィーダー細胞の例は、MEF(マウス胎仔線維芽細胞)、STO細胞(マウス胎仔線維芽細胞株)、SNL細胞(STO細胞のサブクローン)である。
 培養温度、C02濃度、02濃度等の他の培養条件は適宜設定できる。培養温度は例えば約30~40℃、好ましくは約37℃である。CO2濃度は例えば約1~10%、好ましくは約5%である。また、通常の酸素分圧下で培養すればよい。尚、他の条件(湿度、CO2の濃度等)によって変動し得るが、「通常の酸素分圧下」の場合の酸素濃度は典型的には約18%~約22%となる。尚、「通常の酸素分圧下」の詳細は後述する。
 ステップ(1)の期間(培養期間)は4日以上とし、具体的には例えば4日間~20日間、好ましくは6日間~14日間である。培養期間が短すぎることはニューロスフェア形成能低下を引き起こす。
 必要に応じて継代することにしてもよい。例えばサブコンフルエント又はコンフルエントの状態になった段階で細胞を回収し、一部の細胞を別の培養器に播種し、培養を継続する。細胞の回収には細胞解離液などを利用すればよい。細胞解離液としては、例えば、EDTA-トリプシン、コラゲナーゼIV、メタロプロテアーゼ等のタンパク分解酵素等を単独で又は適宜組み合わせて用いることができる。細胞障害性が少ないものが好ましい。このような細胞解離液として、例えば、ディスパーゼ(エーディア)、TrypLE (Invitrogen)又はアキュターゼ(MILLIPORE)等の市販品が入手可能である。分散(離散)状態となるように、回収後の細胞をセルストレイナーなどで処理した後に継代培養に供するとよい。
 ステップ(1)の結果、多能性幹細胞の神経分化能が亢進する。神経分化能が亢進したことは、ステップ(1)の開始前と比較して神経系マーカー(Sox2、nestin、Sox1等)の発現が上昇することを指標に確認できる。また、神経分化能が亢進したことの評価に未分化マーカーの発現を利用してもよい。
 通常、ステップ(1)後の細胞を一旦回収し、次の培養(ステップ(2))へ進む。回収操作は、継代培養の際の回収操作と同様に行うことができる。
 ステップ(2)
 このステップでは、ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させる。即ち、TGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストが添加された培地を用い、且つ通常の酸素分圧下という条件を採用し、ステップ(1)後の細胞を培養する。ステップ(2)は、神経細胞系譜に沿った分化を誘導することを目的とする。尚、特に言及しない事項(使用可能な基礎培地、使用可能なTGF-βファミリー阻害剤やGSK3β阻害剤、培地に添加可能な他の成分等)はステップ(1)と同様であり、その説明を省略する。
 浮遊培養には、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトル等を用いることができる。非接着性の条件下での培養を可能にするため、細胞非接着性の培養面を有する培養器を用いることが好ましい。該当する培養器としては、細胞非接着性になるようにその表面(培養面)を処理したもの、細胞の接着性向上のための処理(例えば、細胞外マトリクス等によるコーティング処理)がその表面(培養面)に施されていないもの、を挙げることができる。浮遊培養では、細胞の培養器に対する非接着状態を維持できればよく、静置培養を採用しても、あるは、旋回培養や振とう培養を採用してもよい。
 培地に添加する成分の内、TGF-βファミリー阻害剤とGSK3β阻害剤は上記の通りである。このステップにおいても、TGF-βファミリー阻害剤としてはSB431542を、GSK3β阻害剤としてはCHIR99021を用いることが好ましい。SB431542を用いた場合の培地中の濃度は、例えば0.5μM~20μM、好ましくは1μM~10μMである。同様に、CHIR99021を用いた場合の培地中の濃度は、例えば0.5μM~20μM、好ましくは1μM~10μMである。
 FGF8は線維芽細胞増殖因子ファミリーの一つである。FGF8は脊椎動物の脳形成の制御に関与し、中脳への領域化に必要である。本発明の目的を達成し得る限り、各種哺乳動物由来のFGF8を使用することが可能である。但し、使用する多能性幹細胞との間で由来(動物種)を合わせることが好ましい。従って、ヒト多能性幹細胞を用いる場合には、好ましくはヒトFGF8を採用する。ヒトFGF8とは、ヒトが生体内で天然に発現するFGF8のアミノ酸配列を有することを意味し、組換え体であってもよい。ヒトFGF8の代表的なアミノ酸配列としては、NCBIのアクセッション番号でNP_006110.1(fibroblast growth factor 8 isoform B precursor [Homo sapiens].)を例示することができる。FGF8の濃度(培地への添加量)は、神経細胞系譜に沿った分化誘導という目的が達成される限り特に限定されないが、例えば1 ng/ml~5μg/ml、好ましくは10~500 ng/ml、更に好ましくは50~400 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。
 ヘッジホッグシグナルアゴニストは、ソニックヘッジホッグ(SHH)シグナルを促進するものであれば特に限定されない。例えば、腹側化の誘導に有用なプルモルファミン(9-シクロヘキシル-N-[4-(4-モルホリニル)フェニル]-2-(1-ナフタレニルオキシ)-9H-プリン-6-アミン)を用いるとよい。プルモルファミンの濃度(培地への添加量)は、神経細胞系譜に沿った分化誘導という目的が達成される限り特に限定されないが、例えば1 ng/ml~5μg/ml、好ましくは10~500 ng/ml、更に好ましくは50~400 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。ヘッジホッグシグナルアゴニストとして、SAG(N-メチル-N′-(3-ピリジニルベンジル)-N′-(3-クロロベンゾ[b]チオフェン-2-カルボニル)-1,4-ジアミノシクロヘキサン)を用いることもできる。SAGを用いる場合の濃度(培地への添加量)は、神経細胞系譜に沿った分化誘導という目的が達成される限り特に限定されないが、例えば10 nM~100μM、好ましくは100 nM~10μM、更に好ましくは100 nM~2μMである。尚、最適な濃度は予備実験を通して設定することができる。
 全培養期間を通して各成分(TGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニスト)の濃度が一定であることは必須ではなく、特定の成分(二以上の成分であってもよい)又は全ての成分の濃度が培養途中で変化するようにしてもよい。例えば、FGF8及びヘッジホッグシグナルアゴニストの添加をステップ(2)の2日目~6日目に開始する。当該条件によれば、細胞への急激な刺激を緩和することができる。好ましくは、FGF8及びヘッジホッグシグナルアゴニストの添加をステップ(2)の3日目~5日目に開始する。
 神経細胞系譜に沿った分化誘導を促進するため、好ましくは、白血病抑制因子(leukemia inhibitory factor (LIF))も添加された培地を使用する。その目的を達成し得る限り、各種哺乳動物由来のLIFを使用することが可能である。但し、使用する多能性幹細胞との間で由来(動物種)を合わせることが好ましい。従って、ヒト多能性幹細胞を用いる場合には、好ましくはヒトLIFを採用する。LIFの濃度は特に限定されないが、例えば0.25 ng/ml~1μg/ml、好ましくは1 ng/ml~50 ng/ml、更に好ましくは5 ng/ml~20 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。
 神経細胞系譜に沿った分化誘導を促進するため、好ましくは、bFGF(塩基性線維芽細胞増殖因子)も添加された培地を使用する。bFGFはFGF2とも呼ばれる。本発明の目的を達成し得る限り、各種哺乳動物由来のbFGFを使用することが可能である。但し、使用する多能性幹細胞との間で由来(動物種)を合わせることが好ましい。従って、ヒト多能性幹細胞を用いる場合には、好ましくはヒトbFGFを採用する。ヒトFGF2とは、ヒトが生体内で天然に発現するFGF2のアミノ酸配列を有することを意味する。ヒトFGF2の代表的なアミノ酸配列としては、NCBIのアクセッション番号でNP_001997.5(fibroblast growth factor 2 [Homo sapiens])を例示することができる。bFGFの濃度は特に限定されないが、例えば0.25 ng/ml~1μg/ml、好ましくは1 ng/ml~50 ng/ml、更に好ましくは3 ng/ml~30 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。
 細胞死抑制のために、好ましくは、ROCK阻害剤(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)(例えばY-27632やFasudil(HA-1077))も添加された培地を使用する。ROCK阻害剤としてY-27632を使用する場合の濃度は、例えば約1μM~約50μMである。尚、最適な濃度は予備実験を通して設定することができる。
 ROCK阻害剤は細胞が分散状態にあるときの細胞死を強力に抑止する。従って、ステップ(2)の全培養期間にわたってROCK阻害剤を使用するのではなく、細胞を播種する際(即ち、培養開始時)や、例えば継代培養のために細胞を回収して分散させる際にのみ、ROCK阻害剤を含有する培地で細胞を処理することにしてもよい。
 好ましくは、神経細胞系譜に沿った分化誘導に有利となるように、毛様体神経栄養因子(CNTF)、脳由来神経栄養因子(BDNF)、ニューロトロフィン3(NT-3)、ウシ胎児血清、N2サプリメント、B27サプリメント等を添加した培地を使用する。尚、N2サプリメントはGibco(製品名 N2 supplement(x100))等から入手することができ、B27サプリメントはGibco(製品名 B27 supplement(x100))等から入手することができる。
 更に、必要に応じて、培地にその他の成分を添加してもよい。添加され得る成分の例として、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等を挙げることができる。
 このステップ(2)ではニューロスフィアを形成させるため浮遊培養を行う。例えば、無血清凝集浮遊培養法(SFEB法/SFEBq法。Watanabeら, Nature Neuroscience 8,288-296 (2005)、WO 2005/123902)やニューロスフィア法(Reynolds BA and Weiss S.,Science,USA,1992 Mar 27;255(5052):1707-10)などを採用することができる。
 本発明では、ステップ(2)を通常の酸素分圧下で実施する。細胞培養の際、生体内の環境を考慮して酸素濃度を低くした条件(低酸素分圧/低酸素濃度)が用いられることがあるが、本発明における「通常の酸素分圧下」はこのような特殊な条件と対照をなす。即ち、「通常の酸素分圧下」とは、酸素濃度を意図的に調整していない条件である。尚、他の条件(湿度、共存するCO2の濃度等)によって変動し得るが、「通常の酸素分圧下」の場合の酸素濃度は典型的には約18%~約22%となる。
 ステップ(2)を通常の酸素分圧下で実施することは全培養期間(ステップ(1)~ステップ(3))を通して特殊な酸素条件(典型的には低酸素環境)の設定を不要とし、さらにグリア細胞などの不要な細胞への分化誘導を抑制できることから、極めて実用性の高い調製方法となる。
 その他の培養条件(培養温度、C02濃度等)は適宜設定できる。培養温度は例えば約30~40℃、好ましくは約37℃である。CO2濃度は例えば約1~10%、好ましくは約5%である。
 ステップ(2)の期間(培養期間)は例えば7日間~21日間、好ましくは10日間~16日間である。培養期間が短すぎたり或いは長すぎたりすると、分化効率の低下のおそれがある。
 形成されたニューロスフィアを回収して細胞を解離させた後、更なる浮遊培養に供することにしてもよい。即ち、継代培養を行ってもよい。但し、継代培養の回数は少ない方がよく、好ましくは継代培養の回数を1回又は0回(即ち、継代培養をしない)とする。継代培養の回数が少ないことは、短期間でのドパミン神経細胞の調製に有利であり、また、意図しない分化誘導(例えばグリア細胞への分化誘導)が促されることを回避するためにも有効と考えられる。その一方で、継代培養は細胞の純度向上に有効であるため、継代培養の回数は1回が最適といえる。継代培養を1回にする場合には、ステップ(2)の開始から6日目~10日目に継代するとよい。尚、継代培養に際してニューロスフィアを回収するときには、培養器表面に接着した細胞の混入を防ぐと良い。このような操作は、ドパミン神経細胞の調製効率や純度の向上に寄与し得る。
 ステップ(3)
 ステップ(2)によって形成されるニューロスフィアは神経系未分化細胞及び中脳系神経未分化細胞を含有する。ステップ(3)では、ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へと分化誘導する。或いは、ニューロスフィアを直接(即ち、細胞塊のまま)ドパミン神経細胞へと分化誘導する。ドパミン神経細胞への分化誘導に適した培地や培養条件は公知であり、また、基本的な培養方法や操作については、例えばThermoFisher社が提供するプロトコル(ThermoFisher社のウェブページで公開されている)等を参考にすることができる。具体的には、例えば、γ-セクレターゼ阻害剤、神経栄養因子、アスコルビン酸、TGF-β3、及びcAMP又はcAMPアナログを含有する培地で接着培養することにより、ドパミン神経細胞への分化を誘導する。好ましくは、γ-セクレターゼ阻害剤としてN-[N-(3,5‐ジフルオロフェナセチル-L-アラニル)]-S-フェニルグリシンt-ブチルエステルを、神経栄養因子として脳由来神経栄養因子(BDNF)とグリア細胞由来神経栄養因子(GDNF)を、cAMPアナログとしてジプチリルcAMPを用いる。
 一態様では、ステップ(2)で形成されたニューロスフィアを回収し、細胞を解離(単一細胞化)させ、培養器に播種して培養する。別の態様では、このような分散培養ではなく、回収したニューロスフィアを細胞塊のまま接着培養に供する。この場合、通常は培養を継続するとニューロスフィアから周囲へと細胞が移動し、移動した細胞の中にドパミン神経細胞を認めることができる。
 ここでの接着培養には、例えば、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ等を用いることができる。培養面への細胞の接着性を高めるために、マトリゲルTM(BD)、ポリ-D-リジン、ポリ-L-リジン、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチン、或いはこれらの中の二つ以上の組み合わせによってコーティング処理された培養器を用いるとよい。
 培養温度、C02濃度、02濃度等の他の培養条件は適宜設定できる。培養温度は例えば約30~40℃、好ましくは約37℃である。CO2濃度は例えば約1~10%、好ましくは約5%である。また、通常の酸素分圧下で培養すればよい。
 ステップ(3)の期間(培養期間)は特に限定されないが、例えば5日以上、好ましくは7日以上の培養を行う。過度に長い期間の培養は、細胞の疲弊ないし活性の低下、細胞死等を引き起こし得るが、一般に、培養期間が長いほど分化・成熟化が進む。従って、このステップの培養期間の上限は特に限定されないが、例えば培養期間を5日間~21日間とする。必要に応じて継代することにしてもよい。例えばサブコンフルエント又はコンフルエントの状態になった段階で細胞を回収し、一部の細胞を別の培養器に播種し、培養を継続する。
 ステップ(3)によって、ドパミン神経細胞が得られる。ドパミン神経細胞はドパミンマーカー(チロシンヒドロキシラーゼ、ドパミントランスポーター)の発現、中脳マーカーとしてのFOXA2等を指標として、或いはドパミン産生能の評価によって同定ないし確認することができる。
 使用する細胞の種類や細胞の状態、及び各ステップの培養条件によって変動し得るが、本発明の調製方法によれば、21日間~30日間程度で多能性幹細胞からドパミン神経細胞を得ることが可能である。
 ステップ(i)では、用意した細胞集団を被験物質の存在下で培養することになるが、培養条件は使用する細胞の生存、増殖に適した一般的なものを採用すればよい。但し、例えば、細胞移動能を阻害する物質(例えばRhoシグナル刺激剤)の存在下など、特殊な培養条件を採用することにしてもよい。2次元培養の他、ハイドロゲル(動物細胞外マトリックス抽出ハイドロゲル、タンパク質ハイドロゲル、ペプチドハイドロゲル、ポリマーハイドロゲル)等の足場材料を用いた3次元培養を採用することもできる。当業者であれば、本明細書中の教示(特に実施例の記載)や公知の情報(例えば、使用する細胞又はそれと同等/類似の細胞を用いた研究報告や総説など)を参照することにより、適切な培養条件を設定することが可能である。また、最適な培養条件は予備実験を通して決定することができる。
 ステップ(i)における被験物質は特に限定されない。その薬効又は毒性の評価が必要とされる様々な物質が被験物質となり得る。被験物質には様々な分子サイズの有機化合物又は無機化合物を用いることができる。有機化合物の例として核酸、ペプチド、タンパク質、脂質(単純脂質、複合脂質(ホスホグリセリド、スフィンゴ脂質、グリコシルグリセリド、セレブロシド等)、プロスタグランジン、イソプレノイド、テルペン、ステロイド、ポリフェノール、カテキン、ビタミン(B1、B2、B3、B5、B6、B7、B9、B12、C、A、D、E等)を例示できる。医薬品、栄養食品、食品添加物、農薬、香粧品(化粧品)等の既存成分或いは候補成分も好ましい被験物質の一つである。植物抽出液、細胞抽出液、培養上清などを被検物質として用いてもよい。2種類以上の被験物質を同時に添加することにより、被験物質間の相互作用、相乗作用などを調べることにしてもよい。被験物質は天然物由来であっても、或いは合成によるものであってもよい。後者の場合には例えばコンビナトリアル合成の手法を利用して効率的なアッセイ系を構築することができる。
 培養開始後、移動した個々の細胞の位置が計測される。本発明の評価方法では、細胞集団を構成する細胞の中で移動した細胞、即ち、培養開始時の位置から周囲へと移動した細胞が計測対象となる。また、細胞毎にその位置を計測する点も本発明の特徴である。移動した細胞の全てを計測対象にすることは必須ではないが、より有益な評価結果をもたらす高品質の移動パターンを決定するため、好ましくは移動した細胞の50%以上、更に好ましくは移動した細胞の60%以上、更に更に好ましくは移動した細胞の70%以上、より一層好ましくは移動した細胞の80%以上を計測対象にする。細胞の位置の計測においては、光学顕微鏡、蛍光顕微鏡、スチルカメラ、ビデオカメラ等を適宜組み合わせ、経時的な計測を可能にすればよい。
 計測対象の細胞(即ち、移動能を有し、細胞集団を構成する細胞)を予め標識しておけば、標識を指標として細胞の位置を計測することが可能でさる。ここでの標識としては、GFPやRFP等の蛍光標識を例示することができる。
 薬効又は毒性の評価により適した移動パターンの決定が可能となるように、各細胞の位置を経時的に複数回(通常は、時間軸に沿って連続的に)計測する。即ち、細胞を追跡(トラッキング)し、その位置を連続的に計測、記録する。このようにすれば細胞の移動方向の経時的な変化を捉えることが可能になる。連続的な計測を行う場合の間隔は、例えば数秒~数時間、好ましくは数分~数十分(例えば、1分、2分、3分、4分、5分、10分、15分、20分、25分)である。計測間隔は、得られる位置情報の量及び品質を規定し、ひいては位置情報を基に決定される移動パターンの品質に影響する。より高品質な移動パターンを作成するためには、可能な限り計測間隔を短くすることが望まれるが、過度に短い計測間隔を採用すればデータ量及びデータ処理時間が膨大となり、実用上の問題を生じうる。従って、それに基づき薬効又は毒性の評価(ステップ(iii))を可能にする十分な品質の移動パターンが得られることを条件としつつ、計測対象の細胞の数、使用する計測機器やデータ解析用ソフトウエア等の処理能力等を考慮して適切な計測間隔を設定するとよい。尚、経時的計測ないしトラッキングには、例えばFijiにあるParticle Tracker等のソフトウエアを利用することができる。
 連続的な計測を行う場合の計測開始のタイミングは特に限定されず、細胞が移動を開始する前から計測することにしても、細胞が移動を開始した後に計測を開始することにしてもよい。好ましくは、細胞が移動を開始する前又は移動を開始した直後に計測を開始し、移動過程を最初から記録できるようにする。尚、培養開始後の経過時間で計測開始のタイミングを設定してもよく、例えば、培養開始後数時間経過した時点で計測を開始する。
 連続的な計測を行う場合の最初の計測から最終の計測までの時間(「トラッキング時間」と呼ぶ)も特に限定されない。例えば、トラッキング時間を4時間~12時間の範囲内で設定することができる。
 ステップ(ii)では、計測した位置の情報から各細胞の移動変動を分析して集計し、細胞集団の移動パターンを決定する。移動変動の分析には、例えば、以下の(A)で算出される距離比が用いられる(図1を参照)。
 (A)計測時間tでの細胞の総移動距離をD(t)、移動開始点と移動終了点の2点間の直線距離をd(t)とし、距離比d(t)/D(t)を算出する。
 (A)で算出される距離比は移動方向の変動を反映する。距離比の値が小さいほど移動方向の変動(揺らぎ)が大きいことになる。移動パターンは、個々の細胞についての分析結果(この場合は距離比)の集計によって決定される。集計の際には、通常、統計処理(例えば、平均値と標準偏差又は標準誤差が用いられる)を行う。集計の結果、距離比の値が小さい傾向であれば移動方向の変動(揺らぎ)が大きい移動パターンとなり、距離比の値が大きい傾向であれば移動方向の変動(揺らぎ)が小さい移動パターンとなる。
 ステップ(i)において細胞の位置を経時的に計測し、計測時毎に(A)の距離比を算出することにより、距離比の経時的な変化(即ち、移動方向の変動)を捉えることができる。
 別の態様では、移動変動の分析に、以下の(B)で求められる角度θが用いられる(図2を参照)。
 (B)計測時間tに対して計測時間間隔t/n(但し、nは2以上の整数)を設定して細胞の位置の計測を行い、各時点における細胞の位置ベクトルと基準軸との間の角度θを求める。
 (B)では、計測開始時((t/n)×0)における基準となる細胞の位置を基準点として、ある時点における細胞の位置関係を反映する位置ベクトルを求め、基準軸との角度θを計算して利用する。まず、計測開始時の細胞の位置を基準点として設定する(開始時)。計測時間tに対して計測時間間隔t/n(但し、nは2以上の整数)を設定し、各計測時((t/n)×1、(t/n)×2、(t/n)×3、・・・(t/n)×n)について、細胞の位置ベクトルを計測する。次に、各計測時の細胞の位置ベクトルと基準軸(典型的には、基準点を通る直線を基準軸とする)との間の角度θを求める。このようにして得られた個々の細胞についての角度θの値(1個の細胞につきn個の値が得られる)を計測対象細胞全体で集計し、角度θの度数分布を作成する。基準軸は任意に設定可能であるが、例えば、上記で求めた各計測時の細胞の位置ベクトル(即ち、(t/n)×1、(t/n)×2、(t/n)×3、・・・(t/n)×nでの細胞の位置ベクトル)を合計してnで割り、平均の位置ベクトルを計算し、これを基準軸にする。尚、基準点と基準軸は細胞毎に設定される。
 計測時間間隔は例えば10秒~120分とする。また、計測時間間隔を規定する整数nは、総計測時間(即ち、所定時間t)との関係で決定すればよく、例えば、tは1時間~240時間とし、2≦n≦1000000とする。
 (B)の場合、角度θの度数分布が移動パターンを規定することになる。角度θと細胞の移動方向の変動は正の相関を示す。従って、角度(θ)の小さい範囲に度数が多い場合、変動(揺らぎ)が小さい移動パターンとなり、角度(θ)の大きい範囲に度数が多い場合、変動(揺らぎ)が大きい移動パターンとなる。ヒストグラムを作成し、その形状で移動パターンを決定してもよい。また、角度θの平均からのばらつきを調べ、ばらつきの中央値や平均値を変動(揺らぎ)の程度や傾向の判定に利用してもよい。
 更に別の態様では、移動変動の分析に、以下の(C)で算出される速度が用いられる。
 (C)計測時間tでの細胞の総移動距離をD(t)とし、速度D(t)/tを算出する。
 速度も細胞の移動変動を反映する。ある定時の速度、あるいは経時的な速度変化が正常パターンから逸脱していることは、移動変動の異常を表す。
 移動パターンは表やグラフ、或いはプロット図等の形式で表現することができる。例えば、距離比の値の範囲に関して複数の区分を設け、各区分に変動の程度を数字や記号等を用いて関連づけておけば、移動方向の変動のレベルを数字や記号等で表現することもできる。
 ステップ(ii)に続くステップ(iii)では、決定した移動パターンに基づき被験物質の薬効又は毒性を判定する。上記の通り、本発明の方法は薬効評価系又は毒性評価系として利用可能なものであり、前者の場合にはこのステップで被験物質の薬効が判定され、後者の場合にはこのステップで被験物質の毒性が判定される。以下、評価系毎にその特徴を説明する。
<薬効評価系>
 本発明の一態様では被験物質の薬効を評価する手段、即ち薬剤評価系として本発明の評価方法が構成される。この態様によれば、細胞遊走障害がその発症や進展の原因の少なくとも一つとなる各種疾患(標的疾患)に有効な医薬の成分又はその候補をスクリーニングすることが可能となる。
 この態様では、典型的には、ステップ(i)の細胞として非正常細胞が用いられる。そして、ステップ(iii)では、ステップ(ii)で決定した移動パターンの正常化を指標として被験物質の薬効が判定される。移動パターンの正常化とは、非正常細胞の集団が示す異常な移動パターンが改善されることを意味する。移動パターンが正常化すると、対応する正常細胞の移動パターン(通常は変動(揺らぎ)の少ない移動パターン)に近づくことになる。従って、ステップ(ii)で決定した移動パターン(「試験群の移動パターン」と呼ぶ)が、被験物質の非存在下で培養すること以外は同様の手順に従って決定した移動パターン(「コントロール群の移動パターン」と呼ぶ)に比較して、対応する正常細胞の移動パターン(通常は変動(揺らぎ)の少ない移動パターン)により近いこと、即ち、被験物質の存在(影響)によって、対応する正常細胞の移動パターンに近似したことが、被験物質が有効であることを表すことになる。試験群の移動パターン、コントロール群の移動パターン及び正常群の移動パターンの三者を比較ないし対比することによって移動パターンの正常化の有無を把握し、それに基づき被験物質の有効性を判定することができる。また、移動パターンの正常化の程度は有効性(薬効)の程度を反映することから、正常化の程度に基づき有効性の程度ないし強さを判定することもできる。有効性が認められた被験物質は、細胞移動障害が原因となる疾患に対する医薬の成分又はその候補として有望であるといえる。
 「対応する正常細胞」とは、典型的には健常者由来の同種の細胞である。例えば、非正常細胞が統合失調症患者由来のドパミン神経細胞の場合、対応する正常細胞は健常者由来のドパミン神経細胞(典型的には健常者から採取した末梢血から作成したiPS細胞を分化誘導させて得られるドパミン神経細胞)である。別の例を挙げれば、非正常細胞がレット症候群患者由来のグルタミン酸作動性神経細胞の場合、対応する正常細胞は健常女性由来のグルタミン酸作動性神経細胞である。
<毒性評価系>
 本発明の別の態様では被験物質の毒性を評価する手段、即ち毒性評価系として本発明の評価方法が構成される。この態様によれば、医薬品の成分又はその候補、栄養補助食品(サプリメント)又はその候補、食品添加物又はその候補等の被験物質について、細胞移動能に影響を及ぼすことで毒性を示すか否か、或いはその毒性の程度を評価することができる。
 この態様ではステップ(i)の細胞として正常細胞又は非正常細胞が用いられる。正常細胞を用いる場合のステップ(iii)では、ステップ(ii)で決定した移動パターンの異常化を指標として被験物質の毒性が判定される。移動パターンの異常化とは、移動パターンが変化すること、即ち、正常な移動パターンと異なる移動パターンになることである。従って、典型的には、ステップ(ii)で決定した移動パターン(試験群の移動パターン)と、被験物質の非存在下で培養すること以外は同様の手順に従って決定した移動パターン(コントロール群の移動パターン)を比較して相違が認められることが、被験物質に毒性があることを表す。また、移動パターンの変化の程度は毒性の程度を反映することから、相違の程度に基づき毒性の程度ないし強さを判定することもできる。
 毒性評価の目的を考慮して適切な細胞を正常細胞として選択するとよい。例えば、被験物質の神経毒性(但し、細胞移動能への影響に起因する神経毒性が評価されることになる)を評価するのであれば、通常、神経細胞(ドパミン神経細胞、グルタミン作動性神経細胞、セロトニン神経細胞、GABA作動性神経細胞等)が選択される。
 一方、非正常細胞を用いる場合のステップ(iii)では、ステップ(ii)で決定した移動パターンの更なる異常化を指標として被験物質の毒性が判定される。更なる異常化とは、正常な移動パターンとの相違がより顕著になることであり、更なる異常化が生じると、典型的には、移動方向の変動(揺らぎ)がより大きい移動パターンになる。ステップ(ii)で決定した移動パターン(試験群の移動パターン)、被験物質の非存在下で培養すること以外は同様の手順に従って決定した移動パターン(コントロール群の移動パターン)、及び対応する正常細胞の移動パターン(正常群の移動パターン)の三者を比較ないし対比することによって移動パターンの更なる異常化が生じたか否か、或いは異常化の程度を判定することができる。
 非正常細胞には、例えば、患者由来の細胞を用いればよい。特定の疾患の患者由来の疾患細胞を非正常細胞として採用すれば、当該疾患を標的とした治療薬又はその候補の毒性を評価可能な評価系となる。このような評価系は、例えば、治療薬又はその候補の副作用を評価する手段として有用である。
 以上の説明から明らかなように、本発明の薬剤評価方法で指標として用いる「細胞集団を構成する個々の細胞の移動方向の変動で規定される移動パターン」は細胞の状態を反映する。この点に注目すれば、細胞の移動パターンは細胞集団の品質(正常性、異常性、均一性など)の評価にも有用である。そこで本発明は、別の局面として、細胞集団を構成する個々の細胞の移動方向の変動で規定される移動パターンによって当該細胞集団の品質を評価する方法も提供する。
 中枢神経系疾患の発症メカニズムや病態の研究、治療法の開発などに有用な新規評価系の開発を目指し、以下の検討を行った。
1.材料と方法
(1)iPS細胞樹立対象者
 RELN欠失1名(RELN-del1)
 健常男性1名(CON2)
(2)iPS細胞の樹立
 健常者女性対照(CON1)は理化学研究所バイオリソースセンター(BRC)から入手した。RELN欠失を含め、ゲノム異常がないことを事前に確認した。RELN欠失者からのiPS細胞については、既報(Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nature methods 8, 409-412 (2011))に準じて末梢リンパ球からエピソーマルベクターを用いて樹立した。樹立したiPS細胞はフィーダー細胞(mitomycin-C処理したマウス胎児線維芽細胞:MEF)上でiPS細胞培地(20% KSR, 2mM L-グルタミン, 0.1 mM 非必須アミノ酸, 2-メルカプトエタノール, ペニシリン/ストレプトマイシン及びbFGFを含有するDMEM/F12)を用いて培養した。フィーダーフリー培養の際は、MatrigelTM(BD)コートをした培養皿上でiPS細胞を培養した。培地は一晩フィーダー細胞に暴露したiPS細胞培地(MEFコンディション培地)を使用した。
(3)RELN欠失アイソジェニックiPS細胞株の作製
 CRISPR/Cas9システムを用い、健常対照(CON1)から人工的にRELN欠失アイソジェニックiPS細胞(Isogenic(-/-)及びIsogenic(+/-))を作製した。Cas9発現ベクターとsgRNA発現ベクターはAddgeneより入手した。Lipofectamine3000を用いてCas9発現ベクターとsgRNA発現ベクターをコトランスフェクションし、48時間後、ピューロマイシンによる選択を行った。10μMのY-27632にて前処理した後、TrypLETM select(Thermo Fisher Scientific Inc.)を用いて分散させた。その後、FuGENE(登録商標) HD(プロメガ社)を用いてCas9発現ベクターとsgRNA発現ベクターをコトランスフェクションし、1 × 106個/ウェルにてMatrigelTM(BD)コーティングした6ウェルプレート上に播種した。24時間後、ピューロマイシンによる選択を行った。
(4)ニューロスフィアの形成
 以下のプロトコルで健常者iPS細胞、RELN欠失患者iPS細胞、及びRELN欠失アイソジェニックiPS細胞から各々ニューロスフィアを形成させた。まず、iPS細胞をSB431542(3μM)、CHIR99021(3μM)、dorsomorphin(3μM)を添加したiPS細胞培地にて7日間培養した(0日目~7日目)。その後、TrypLETM select(Thermo Fisher Scientific Inc.)によって分散させ、セルストレイナーに通したものをニューロスフィア培地(DMEM/F12に1×N2サプリメント, 0.6% グルコース, ペニシリン/ストレプトマイシン, 5mM HEPESを添加した培地(MHM培地)に、1×B27サプリメント, 20 ng/ml bFGF, 10 ng/ml human LIF, 10μM Y27632, 3μM CHIR99021, 2μM SB431542, 100 ng/ml FGF8及び1μM プルモルファミンを添加したもの)にて2週間浮遊培養することでニューロスフィアを形成させた(7日目~21日目)。FGF8とプルモルファミンは10日目から添加した。また、14日目にニューロスフィアを回収し、分散させて単一細胞化した後、再度浮遊培養し、ニューロスフィア(二次ニューロスフィア)を再形成させた。
(5)神経細胞の移動能試験
 二次ニューロスフィア(21日目)を一つずつMatrigel M(BD)コート培養皿上へ播種し、ドパミン神経細胞用培地(MHM培地にB27サプリメント, 10μM DAPT, 20 ng/ml BDNF, 20 ng/ml GDNF, 0.2 mM アスコルビン酸, 1 ng/ml TGF-β3及び0.5 mM dbcAMPを添加したもの)で培養した。動画はIncuCyte(登録商標)(ESSEN BIOSCIENCE)にて撮影した。細胞トラッキングのために、播種後48時間~52時間の計4時間の間、15分おきに連続撮影し、ImageJを用いて解析した(タイムラプス解析)。移動距離は各撮影点におけるXY座標によって計算した。尚、ドパミン神経細胞への分化は既報(Fujimori, K. et al. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular brain 9, 88 (2016))に改良を加えて行った。
(6)移動方法の評価1(距離比)(図1を参照)
 細胞の総移動距離と、開始点と終了点の2点間の直線距離の比によって移動方向を評価した。
(7)移動方法の評価2(ベクトル及び角度)(図2を参照)
 細胞の位置ベクトルと基準軸(平均の位置ベクトル)との間の角度によって移動方向を評価した。位置ベクトルの測定間隔は15分とした。
(8)自動検出法(図6を参照)
 ニューロスフィアを構成する細胞の一部をGFP標識した。具体的には、CellLight Reagent(Thermo Fisher社)を用いた。標識後のニューロスフィアを移動能試験に供し、タイムラプス観察し(IncuCyteを使用)、自動粒子ソフトウエア(Particle Tracker, Fiji)で解析した。この方法によれば、自動検出のため人為的操作によるバイアスがない。また、XY座標軸値を用いることで神経細胞動態の数値化が可能となる。
(9)統計解析
 平均値の比較は、二群間の場合はStudentのt検定(両側検定)、三群間の場合はANOVA検定後Dunnett法を用いた。分布の比較は、ピアソンのカイの二乗検定を用いた。いずれもp<0.05を有意とした。
2.結果
(1)健常者の移動パターン
 健常者iPS細胞から誘導したドパミン神経細胞の位置をトラッキングし、上記「移動方法の評価2(ベクトル及び角度)」に従い、特に方向性に着目した移動パターンを評価した(図3)。健常者由来神経細胞はin vitroにおいても一定の移動パターン(直進性を特徴とする)を示した。個々の細胞でその方向性のルールに差がほとんどなかった。
(2)RELN欠失の移動パターンと健常者の移動パターンの比較
 RELN欠失患者iPS細胞から誘導したドパミン神経細胞の位置をトラッキングし、上記「移動方法の評価2(ベクトル及び角度)」に従い、移動パターンを評価した(図4)。RELN欠失患者由来神経細胞は、健常者由来神経細胞とは対照的に、個々の細胞で移動方向が異なるパターンを示した。即ち、移動パターンの異常の検出が可能であった。
 RELN欠失アイソジェニックiPS細胞から誘導したドパミン神経細胞についても移動パターンを解析し、健常者の移動パターンとRELN欠失の移動パターン(RELN欠失患者、RELN欠失アイソジェニック(Isogenic(-/-)及びIsogenic(+/-))を比較した(図5)。健常者は、角度θが狭い範囲に分布する(角度θの約80%が-20°~+20°の範囲内)、変動(揺らぎ)の少ない移動パターンを示す。対照的に、RELN欠失の移動パターンは変動が大きく、-20°~+20°の範囲内に角度θの約45%~65%が含まれるに留まる。
(3)自動検出システムによる評価
 薬剤評価系への応用などを考慮し、移動パターンを自動検出/自動数値化する計測系(自動検出システム)を構築し(図6)、その有効性を検証した。健常者由来神経細胞、RELN欠失患者由来神経細胞、及びRELN欠失アイソジェニック由来神経細胞について、自動検出による軌道プロット(12時間)を実施し、上記「移動方法の評価1(距離比)」に従い、移動パターンの比較評価を行った(図7)。健常者(201B7(+/+))に比べ、RELN欠失群(RELN-del1(+/-)と201B7(-/-))で距離比の明らかな低下が認められた。
 以上の通り、自動検出システムによっても、RELN欠失群に特徴的な移動パターンの異常を検出可能であった(再現性が得られた)。また、個々の細胞の長期間における移動現象の測定が可能となった。
 様々な組織や器官/臓器等の正常な形成や再生のプロセスに細胞の移動能が重要であることから、細胞の移動パターンを指標とした本発明の薬剤評価系の利用・応用分野は広い。例えば、中枢神経系疾患の病態研究、神経発生や回路形成の基礎研究、中枢神経系薬の開発、脊髄損傷、末梢神経障害、器官形成(例えば先天性心疾患)の治療法/治療薬の開発、妊娠時や授乳中の母親の服用による胎児・子供脳や器官形成への影響の予測に本発明が利用されることを期待できる。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (15)

  1.  細胞集団を構成する個々の細胞の移動変動で規定される移動パターンを指標とした、薬剤評価方法。
  2.  以下のステップ(i)~(iii)を含む、請求項1に記載の薬剤評価方法:
     (i)移動能を示す細胞の集団を用意し、被験物質の存在下で培養を開始した後、移動した個々の細胞の位置を経時的に計測するステップ、
     (ii)計測した位置の情報から各細胞の移動変動を分析して集計し、前記細胞集団の移動パターンを決定するステップ、
     (iii)決定した移動パターンに基づき被験物質の薬効又は毒性を判定するステップ。
  3.  以下の(A)で算出される距離比、以下の(B)で求められる角度θ、又は以下の(C)で算出される速度をステップ(ii)の分析に用いる、請求項2に記載の薬剤評価方法:
     (A)計測時間tでの細胞の総移動距離をD(t)、移動開始点と移動終了点の2点間の直線距離をd(t)とし、距離比d(t)/D(t)を算出する、
     (B)計測時間tに対して計測時間間隔t/n(但し、nは2以上の整数)を設定して細胞の位置を計測し、各時点における細胞の位置ベクトルと基準軸との間の角度θを求める、
     (C)計測時間tでの細胞の総移動距離をD(t)とし、速度D(t)/tを算出する。
  4.  (B)の基準軸として、時間tまでの細胞の移動軌跡から計算した平均の位置ベクトルが用いられる、請求項3に記載の薬剤評価方法。
  5.  ステップ(i)の細胞が非正常細胞であり、ステップ(iii)では、移動パターンの正常化を指標として被験物質の薬効が判定される、請求項2~4のいずれか一項に記載の薬剤評価方法。
  6.  ステップ(i)の細胞が正常細胞であり、ステップ(iii)では、移動パターンの異常化を指標として被験物質の毒性が判定される、請求項2~4のいずれか一項に記載の薬剤評価方法。
  7.  ステップ(i)の細胞が非正常細胞であり、ステップ(iii)では、移動パターンの更なる異常化を指標として被験物質の毒性が判定される、請求項2~4のいずれか一項に記載の薬剤評価方法。
  8.  非正常細胞が、標的疾患の遺伝的特徴を有する疾患細胞である、請求項5又は7に記載の薬剤評価方法。
  9.  疾患細胞が患者由来の細胞又は遺伝子操作によって作成された細胞である、請求項8に記載の薬剤評価方法。
  10.  患者由来の細胞が、患者の細胞から作成した人工多能性幹細胞を分化誘導して得られた細胞である、請求項9に記載の薬剤評価方法。
  11.  ステップ(i)の細胞が、方向性をもった移動能力を示す細胞である、請求項2~10のいずれか一項に記載の薬剤評価方法。
  12.  方向性をもった移動能力を示す細胞が、神経細胞、心筋細胞又は血球である、請求項11に記載の薬剤評価方法。
  13.  神経細胞がドパミン神経細胞、グルタミン作動性神経細胞、セロトニン神経細胞又はGABA作動性神経細胞である、請求項12に記載の薬剤評価方法。
  14.  ドパミン神経細胞が、以下のステップ(1)~(3)を含む方法で調製される、請求項13に記載の薬剤評価方法:
    (1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ、
    (2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ、
     (3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導する、或いは、ニューロスフィアを直接ドパミン神経細胞へ誘導するステップ。
  15.  細胞集団を構成する個々の細胞の移動変動で規定される移動パターンによって、該細胞集団の品質を評価する方法。
PCT/JP2018/047146 2018-02-28 2018-12-21 薬剤評価方法 WO2019167398A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18907612.8A EP3760728B1 (en) 2018-02-28 2018-12-21 Evaluation of cells using directional movement ability.
US16/976,586 US20200408743A1 (en) 2018-02-28 2018-12-21 Drug evaluation method
JP2020502824A JP7357366B2 (ja) 2018-02-28 2018-12-21 薬剤評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035758 2018-02-28
JP2018035758 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167398A1 true WO2019167398A1 (ja) 2019-09-06

Family

ID=67804913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047146 WO2019167398A1 (ja) 2018-02-28 2018-12-21 薬剤評価方法

Country Status (4)

Country Link
US (1) US20200408743A1 (ja)
EP (1) EP3760728B1 (ja)
JP (1) JP7357366B2 (ja)
WO (1) WO2019167398A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009663A1 (ja) * 2020-07-06 2022-01-13 株式会社ニコン 遊走性算出装置、遊走性評価方法およびコンピュータに遊走性評価方法を実行させるコンピュータプログラム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
WO2005123902A1 (ja) 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法
JP2010119314A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd 細胞画像解析装置
JP2011004608A (ja) * 2009-06-23 2011-01-13 Shimadzu Corp 細胞運動評価用マイクロ反応装置
JP2013039113A (ja) * 2011-08-19 2013-02-28 Nagoya Univ 細胞品質管理方法及び細胞の生産方法
JP2014179061A (ja) * 2013-02-14 2014-09-25 Sony Corp 分析システム、分析プログラム及び分析方法
WO2016208755A1 (ja) * 2015-06-25 2016-12-29 株式会社カネカ 液体注入方法
WO2017009766A1 (en) * 2015-07-10 2017-01-19 Université Du Luxembourg Long-term self-renewing neural stem cells
JP2017082600A (ja) 2015-10-23 2017-05-18 本田技研工業株式会社 内燃機関の制御装置
JP2018035758A (ja) 2016-08-31 2018-03-08 大洋プラント株式会社 ブレード傾倒機構および該ブレード傾倒機構を備えた風力エネルギー利用装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940978B2 (en) * 2007-06-05 2011-05-10 General Electric Company Automatic characterization of cellular motion
TW201500549A (zh) * 2013-06-19 2015-01-01 Univ Taipei Medical 促進幹細胞方向性移動之方法及裝置
WO2015042436A1 (en) * 2013-09-20 2015-03-26 The General Hospital Corporation Cell chemotaxis assays
EP3119881B1 (en) * 2014-03-21 2023-03-01 FUJIFILM Cellular Dynamics, Inc. Production of midbrain dopaminergic neurons and methods for the use thereof
WO2017035315A1 (en) * 2015-08-27 2017-03-02 The Johns Hopkins University Methods and device for phenotypic classification of cells based on migratory behavior

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
WO2005123902A1 (ja) 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法
JP2010119314A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd 細胞画像解析装置
JP2011004608A (ja) * 2009-06-23 2011-01-13 Shimadzu Corp 細胞運動評価用マイクロ反応装置
JP2013039113A (ja) * 2011-08-19 2013-02-28 Nagoya Univ 細胞品質管理方法及び細胞の生産方法
JP2014179061A (ja) * 2013-02-14 2014-09-25 Sony Corp 分析システム、分析プログラム及び分析方法
WO2016208755A1 (ja) * 2015-06-25 2016-12-29 株式会社カネカ 液体注入方法
WO2017009766A1 (en) * 2015-07-10 2017-01-19 Université Du Luxembourg Long-term self-renewing neural stem cells
JP2017082600A (ja) 2015-10-23 2017-05-18 本田技研工業株式会社 内燃機関の制御装置
JP2018035758A (ja) 2016-08-31 2018-03-08 大洋プラント株式会社 ブレード傾倒機構および該ブレード傾倒機構を備えた風力エネルギー利用装置

Non-Patent Citations (46)

* Cited by examiner, † Cited by third party
Title
"Manipulating the Mouse Embryo A Laboratory Manual", 1994, COLD SPRING HARBOR LABORATORY PRESS
"NCBI", Database accession no. NP_001997.5
AKIRA IRITANI ET AL., TANPAKUSHITSU KAKUSAN KOSO, vol. 44, 1999, pages 892
BAGUISI ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 456
CHUNG Y. ET AL., CELL STEM CELL, vol. 2, 2008, pages 113 - 117
CIBELLI ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920
CIBELLI, NATURE GENETICS, vol. 22, 1999, pages 127
CIBELLI, PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 14984
DIALOGUES CLIN NEUROSCI, vol. 2, no. 4, 2000, pages 349 - 357
FUJIMORI, K. ET AL.: "Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines", MOLECULAR BRAIN, vol. 9, 2016, pages 88, XP055560521, DOI: 10.1186/s13041-016-0267-6
KIM DKIM CHMOON JI ET AL., CELL STEM CELL, vol. 4, 2009, pages 472 - 476
KIM ET AL., CELL STEM CELL, vol. 1, 2007, pages 346 - 352
KIM JB ET AL., CELL, vol. 136, no. 3, 2009, pages 411 - 419
KIM JB ET AL., NATURE, vol. 454, no. 7204, 2008, pages 646 - 650
KLIMANSKAYA I. ET AL., NATURE, vol. 444, 2006, pages 481 - 485
MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847
MOL PSYCHIATRY, vol. 22, no. 3, 2017, pages 430 - 440
NAKAGAWA M ET AL., NAT. BIOTECHNOL., vol. 26, no. 11, 2008, pages 1269 - 1275
NAKAJIMA ET AL., STEM CELLS, vol. 25, 2007, pages 983 - 985
NAT GENET, vol. 26, no. 1, 2000, pages 93 - 96
NATURE REV NEUROSCI, vol. 4, no. 6, 2003, pages 496 - 505
OKITA, K. ET AL.: "A more efficient method to generate integration-free human iPS cells", NATURE METHODS, vol. 8, 2011, pages 409 - 412, XP055176852, DOI: 10.1038/nmeth.1591
REVAZOVA ET AL., CLONING STEM CELLS, vol. 10, 2008, pages 11 - 24
REVAZOVA ET AL., CLONING STEM CELLS, vol. 9, 2007, pages 432 - 449
REYNOLDS BAWEISS S., SCIENCE, USA, vol. 255, no. 5052, 27 March 1992 (1992-03-27), pages 1707 - 10
RIDEOUT III ET AL., NATURE GENETICS, vol. 24, 2000, pages 109
SCHIZOPHRENIA BULLETIN, vol. 29, no. 4, 2003, pages 653 - 669
See also references of EP3760728A4
SHAMBLOTT ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, no. 23, 1998, pages 13726 - 13731
SILVA J ET AL., PLOS. BIOL., vol. 6, no. 10, 2008, pages e 253
STADTFELD M ET AL., SCIENCE, vol. 322, no. 5903, 2008, pages 949 - 953
STREGKCHENKO N. ET AL., REPROD BIOMED ONLINE, vol. 9, 2004, pages 623 - 629
TACHIBANA ET AL.: "Cell", 2013, article "Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer"
TAKAHASHI KYAMANAKA S, CELL, vol. 126, no. 4, 2006, pages 663 - 676
TAKAHASHI, K ET AL., CELL, vol. 131, no. 5, 2007, pages 861 - 72
THOMSON, JA ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
TIENG V. ET AL.: "Engineering of Midbrain Organoids Containing Long-Lived Dopaminergic Neurons", STEM CELLS AND DEVELOPMENT, vol. 23, no. 13, 2014, pages 1535 - 1547, XP055423743, doi:10.1089/scd.2013.0442 *
TURNPENNY ET AL., STEM CELLS, vol. 21, no. 5, 2003, pages 598 - 609
WAKAYAMA ET AL., NATURE, vol. 394, 1998, pages 369
WASSARMAN, P.M. ET AL., METHODS IN ENZYMOLOGY, vol. 365, 2003
WATANABE ET AL., NATURE NEUROSCIENCE, vol. 8, 2005, pages 288 - 296
WILMUT ET AL., NATURE, vol. 385, 1997, pages 810
WOLTJEN KMICHAEL IPMOHSENI P ET AL., NATURE, vol. 458, 2009, pages 771 - 775
YU JHU KSMUGA-OTTO KTIAN S ET AL., SCIENCE, vol. 324, 2009, pages 797 - 801
YUSA KRAD RTAKEDA J ET AL., NAT METHODS, vol. 6, 2009, pages 363 - 369
ZHANG X. ET AL., STEM CELLS, vol. 24, 2006, pages 2669 - 2676

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009663A1 (ja) * 2020-07-06 2022-01-13 株式会社ニコン 遊走性算出装置、遊走性評価方法およびコンピュータに遊走性評価方法を実行させるコンピュータプログラム
JP7464123B2 (ja) 2020-07-06 2024-04-09 株式会社ニコン 遊走性算出装置、遊走性評価方法およびコンピュータに遊走性評価方法を実行させるコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2019167398A1 (ja) 2021-03-11
JP7357366B2 (ja) 2023-10-06
EP3760728A4 (en) 2021-10-27
EP3760728B1 (en) 2023-11-29
EP3760728A1 (en) 2021-01-06
US20200408743A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
JP7023820B2 (ja) 多分化能細胞および多能性細胞の分化を方向付けることによって発生させる皮質介在ニューロンおよびその他のニューロン細胞
US20240043811A1 (en) Method of producing a mesodermal-lineage primitive streak cell
JP5761816B2 (ja) 多能性幹細胞から神経前駆細胞への分化誘導法
JP6419073B2 (ja) ドパミン神経細胞の製造方法
JP2022078245A (ja) 多能性細胞を分化させるための方法
WO2018193949A1 (ja) ドパミン神経細胞の調製方法
JP7465569B2 (ja) ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
JP2019517257A (ja) 幹細胞をニューロンに分化するインビトロ法、及びこの方法を用いて生成されたニューロン
JP2023169391A (ja) 細胞凝集体、細胞凝集体の混合物及びそれらの製造方法
JP7357366B2 (ja) 薬剤評価方法
JP7090881B2 (ja) 細胞内カルシウム動態評価系
EP4357449A1 (en) Method for producing cerebral cortical cell preparation derived from human pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907612

Country of ref document: EP

Effective date: 20200928