WO2018193949A1 - ドパミン神経細胞の調製方法 - Google Patents

ドパミン神経細胞の調製方法 Download PDF

Info

Publication number
WO2018193949A1
WO2018193949A1 PCT/JP2018/015304 JP2018015304W WO2018193949A1 WO 2018193949 A1 WO2018193949 A1 WO 2018193949A1 JP 2018015304 W JP2018015304 W JP 2018015304W WO 2018193949 A1 WO2018193949 A1 WO 2018193949A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
preparation
inhibitor
culture
cell
Prior art date
Application number
PCT/JP2018/015304
Other languages
English (en)
French (fr)
Inventor
紀夫 尾崎
祐子 有岡
森 大輔
周 久島
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2019513586A priority Critical patent/JPWO2018193949A1/ja
Priority to EP18787555.4A priority patent/EP3613848A4/en
Priority to US16/605,940 priority patent/US20210123017A1/en
Publication of WO2018193949A1 publication Critical patent/WO2018193949A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for preparing dopamine neurons (dopaminergic neurons) and uses thereof.
  • This application claims priority based on Japanese Patent Application No. 2017-082600 filed on Apr. 19, 2017, the entire contents of which are incorporated by reference.
  • Pluripotent stem cells represented by induced pluripotent stem cells are expected to be applied in various fields such as drug development, regenerative medicine, and basic research.
  • pluripotent stem cells When pluripotent stem cells are cultured under appropriate conditions, they differentiate along specific cell lineages. With respect to cells that make up the nervous system, attempts have been made to make various types of nerve cells by taking advantage of this characteristic. For example, a method of culturing pluripotent stem cells under low oxygen partial pressure and inducing differentiation into various nerve cells and glial cells has been proposed (Patent Document 1, Non-Patent Documents 1 and 2). There is also a report that high-quality dopamine neurons can be induced by using a medium containing cAMP and MEK inhibitor (Patent Document 2). In addition to these, there are many reports on methods for inducing differentiation of dopamine neurons or their precursor cells (eg, Non-Patent Documents 3 to 6).
  • the present inventors have advanced research aiming to create a novel method for preparing dopamine neurons.
  • a dedicated device is required, and studies were made while considering that it would be a major obstacle to the practical application.
  • dopamine neurons prepared by this method are useful for various assays. That is, the preparation method of the dopamine nerve cell excellent in versatility and practicality has been established.
  • a method for preparing dopamine neurons comprising the following steps (1) to (3): (1) culturing pluripotent stem cells in the presence of a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor and a BMP inhibitor; (2) A step of subjecting the cells obtained in step (1) to suspension culture in the presence of a TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, FGF8 and hedgehog signal agonist and normal oxygen partial pressure to form neurospheres , (3) A step of collecting cells constituting neurospheres and inducing differentiation into dopamine neurons.
  • the TGF- ⁇ family inhibitor is 4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H-imidazol-2-yl] -benzamide or its The preparation method according to any one of [1] to [3], which is a hydrate.
  • GSK3 ⁇ inhibitor is 6-[[2-[[4- (2,4-dichlorophenyl) -5- (4-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] amino
  • the BMP inhibitor is 6- [4- (2-piperidin-1-ylethoxy) phenyl] -3-pyridin-4-ylpyrazolo [1,5-a] pyrimidine, [1] to [5] The preparation method according to any one of the above.
  • the hedgehog signal agonist is 9-cyclohexyl-N- [4- (4-morpholinyl) phenyl] -2- (1-naphthalenyloxy) -9H-purin-6-amine, [6]
  • the preparation method according to any one of items. [8] The differentiation induction to unnecessary cells such as glial cells is suppressed by suspension culture under normal oxygen partial pressure in step (2), according to any one of [1] to [7] Preparation method. [9] The preparation method according to any one of [1] to [8], wherein the number of passages in step (2) is 0 or 1. [10] The preparation method according to [9], wherein unintended promotion of differentiation induction is avoided by a small number of passages.
  • step (3) comprises adhesion culture in the presence of a ⁇ -secretase inhibitor, neurotrophic factor, ascorbic acid, TGF- ⁇ 3, and cAMP or cAMP analog
  • the ⁇ -secretase inhibitor is N- [N- (3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester
  • the neurotrophic factor is brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF), and the preparation method according to [16], wherein the cAMP analog is diptyryl cAMP.
  • (G) Confirmation of three germ layer differentiation ability of RELN-deficient isogenic lines. # 4-1 from 201B7 (+/- hetero deletion). Reelin expression is reduced in neurons with RELN deletion.
  • A Expression analysis of RELN mRNA using healthy control iPS cell-derived neurospheres (day 21) and dopamine neurons (day 28).
  • B Comparison of RELN mRNA expression in neurospheres (day 21).
  • C Comparison of RELN mRNA expression in dopamine neurons (day 28).
  • D TH and Reelin immunostaining results in dopamine neurons (day 21) of 201B7, hetero-deleted Ig201B7 (+/-), and homo-deleted Ig201B7 (-/-).
  • the present invention relates to a method for preparing dopamine neurons from pluripotent stem cells (hereinafter also referred to as “the preparation method of the present invention”). According to the present invention, a cell having characteristics similar to those of a dopamine neuron constituting the central nerve of a living body can be obtained.
  • Dopamine neurons are useful as therapeutic agents or transplant materials (cells or tissues for transplantation medical treatment) for neurological diseases (for example, mental diseases and neurodegenerative diseases). It is also useful as a tool for developing drugs (therapeutic and preventive drugs) for neurological diseases and for studying the onset and progression mechanisms of neurological diseases.
  • the preparation method of the present invention having excellent versatility makes it possible to easily and inexpensively prepare dopamine neurons having such high utility. Moreover, according to the preparation method of the present invention, dopamine neurons can be efficiently obtained in a short period of time.
  • step (1) A step of culturing pluripotent stem cells in the presence of a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor, and a BMP inhibitor (2)
  • the cells obtained in step (1) are cultured as a TGF- ⁇ family inhibitor, GSK3 ⁇ Steps of suspension culture in the presence of an inhibitor, FGF8 and hedgehog signal agonist and under normal oxygen partial pressure to form neurospheres (3) Step of collecting cells constituting neurospheres and inducing differentiation into dopamine neurons
  • pluripotent stem cells are used.
  • pluripotent stem cells refers to the ability to differentiate into all the cells that make up a living body (differentiation pluripotency) and the ability to generate daughter cells that have the same differentiation potential as self through cell division (self-replication ability) ).
  • Pluripotency can be evaluated by transplanting cells to be evaluated into nude mice and testing for the presence or absence of teratoma containing each of the three germ layers (ectodermal, mesoderm, and endoderm). it can.
  • pluripotent stem cells examples include embryonic stem cells (ES cells), embryonic germ cells (EG cells), and induced pluripotent stem cells (iPS cells), which have both differentiation pluripotency and self-renewal ability. As long as it is a cell, it is not limited to this. Preferably, ES cells or iPS cells are used. More preferably iPS cells are used.
  • the pluripotent stem cells are preferably mammalian cells (for example, primates such as humans and chimpanzees, rodents such as mice and rats), particularly preferably human cells. Therefore, in the most preferred embodiment of the present invention, human iPS cells are used as pluripotent stem cells.
  • ES cells can be established, for example, by culturing an early embryo before implantation, an inner cell mass constituting the early embryo, a single blastomere, etc. (Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994); Thomson, J. A. et al., Science, 282, 1145-1147 (1998)).
  • an early embryo an early embryo produced by nuclear transfer of a nucleus of a somatic cell may be used (Wilmut et al. (Nature, 385, 810 (1997)), Cibelli et al. (Science, 280, 1256). (1998)), Akira Iriya et al.
  • ES cells are available from preserving institutions or are commercially available.
  • human ES cells can be obtained from the Institute of Regenerative Medicine, Kyoto University (for example, KhES-1, KhES-2 and KhES-3), WiCell Research Institute, ESI BIO, and the like.
  • EG cells can be established by culturing primordial germ cells in the presence of LIF, bFGF, SCF, etc. (Matsui et al., Cell, 70, 841-847 (1992), Shamblott et al., Proc. Natl. Acad. Sci. USA, 95 (23), 13726-13731 (1998), Turnpenny et al., Stem Cells, 21 (5), 598-609, (2003)).
  • iPS cells are differentiated pluripotent cells created by reprogramming somatic cells (eg, fibroblasts, skin cells, lymphocytes, etc.) by introducing reprogramming factors. And self-replicating cells. iPS cells are similar to ES cells. Somatic cells used for the production of iPS cells are not particularly limited, and may be differentiated somatic cells or undifferentiated stem cells. iPS cells can be prepared by various methods reported so far. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.
  • somatic cells eg, fibroblasts, skin cells, lymphocytes, etc.
  • Somatic cells used for the production of iPS cells are not particularly limited, and may be differentiated somatic cells or undifferentiated stem cells. iPS cells can be prepared by various methods reported so far. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.
  • cells that can be used for the production of iPS cells that is, cells derived from iPS cells include lymphocytes (T cells, B cells), fibroblasts, epithelial cells, endothelial cells, mucosal epithelial cells, mesenchymal cells Examples include stem cells, hematopoietic stem cells, adipose stem cells, dental pulp stem cells, and neural stem cells.
  • iPS cell production The most basic method of iPS cell production is to introduce four factors, transcription factors Oct3 / 4, Sox2, Klf4 and c-Myc, into cells using viruses (Takahashi K, Yamanaka S : Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007).
  • Human iPS cells have been reported to be established by introducing four factors, Oct4, Sox2, Lin28 and Nonog (Yu J, et al: Science 318 (5858), 1917-1920, 2007).
  • Three factors excluding c-Myc (Nakagawa M, et al: Nat. Biotechnol.
  • lentiviruses (Yu J, et al: Science 318 (5858), 1917-1920, 2007), adenoviruses (Stadtfeld M, et al: Science 322 (5903 ), 945-949, 2008), plasmid (Okita K, et al: Science 322 (5903), 949-953, 2008), transposon vectors (Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766- 770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009), or Techniques using episomal vectors (Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009) have been developed.
  • pluripotent stem cell markers such as Fbxo15, Nanog, Oct / 4, Fgf-4, Esg-1, and Cript Etc. can be selected as an index.
  • IPS cells can also be provided from, for example, Kyoto University or RIKEN BioResource Center.
  • Pluripotent stem cells can be maintained in vitro by known methods. Maintaining pluripotent stem cells by serum-free culture using serum substitutes or feeder-free cell culture when it is desired to provide highly safe cells, such as when clinical application is considered It is preferable. If serum is used (or combined), autologous serum (ie recipient serum) may be used. Serum replacements can contain, for example, albumin, transferrin, fatty acids, collagen precursors, trace elements, 2-mercaptoethanol or 3 ′ thiol glycerol, or equivalents thereof. Serum substitutes can be prepared by known methods (see, eg, W0 98/30679). A commercially available serum replacement can also be used. Examples of commercially available serum substitutes include KSR (manufactured by Invitrogen), Chemically-defined Lipid concentrated (Gibco), and Glutamax (Gibco).
  • step (1) the pluripotent stem cells prepared as described above are cultured in the presence of a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor, and a BMP inhibitor. That is, pluripotent stem cells are cultured using a medium to which a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor and a BMP inhibitor are added. Step (1) aims to enhance the neuronal differentiation ability of pluripotent stem cells.
  • the medium can be prepared using a medium used for culturing mammalian cells as a basal medium.
  • a basal medium for example, BME medium, BGJb medium, CMRL1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, Ham's F-12 medium , RPMI1640 medium, Fischer's medium, Neurobasal medium, and mixed media thereof are not particularly limited as long as they can be used for culturing mammalian cells.
  • a mixed medium of IMDM medium and Ham's F-12 medium is used.
  • TGF- ⁇ family inhibitor is a substance that inhibits TGF- ⁇ signaling through binding between TGF- ⁇ and a TGF- ⁇ receptor.
  • TGF- ⁇ inhibitors include proteinaceous inhibitors and small molecule inhibitors. Examples of proteinaceous inhibitors are anti-TGF- ⁇ neutralizing antibodies and anti-TGF- ⁇ receptor neutralizing antibodies.
  • small molecule inhibitors examples include SB431542 (4- [4- (1,3-benzodioxol-5-yl) -5- (2-pyridinyl) -1H-imidazol-2-yl] -benzamide or its Hydrate), SB202190 (4- (4-fluorophenyl) -2- (4-hydroxyphenyl) -5- (4-pyridyl) -1H-imidazole), SB505124 (GlaxoSmithKline), NPC30345, SD093, SD908, SD208 (Scios), LY2109761, LY364947, LY580276 (Lilly Research Laboratories).
  • SB431542 is used.
  • the concentration of the TGF- ⁇ family inhibitor is not particularly limited as long as the purpose of enhancing the neuronal differentiation ability of pluripotent stem cells is achieved. 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M. The optimum concentration can be set through preliminary experiments. Rather than keeping the TGF- ⁇ family inhibitor concentration constant throughout the entire culture period, changes in the TGF- ⁇ family inhibitor concentration may be provided, for example, by increasing the TGF- ⁇ family inhibitor concentration stepwise.
  • CHIR99021 As a GSK3 ⁇ inhibitor, CHIR99021 (6-[[2-[[4- (2,4-dichlorophenyl) -5- (4-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] Amino] nicotinonitrile), SB-415286 (3-[(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H-pyrrole-2,5-dione), SB-2167 , Indirubin-3′-Monoxime, Kenpaullone, BIO (6-bromoindirubin-3′-oxime) and the like can be used.
  • CHIR99021 is used.
  • the concentration of GSK3 ⁇ inhibitor is not particularly limited as long as the purpose of enhancing the neuronal differentiation ability of pluripotent stem cells is achieved, but when the concentration is shown by taking CHIR99021 as an example, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • the optimum concentration can be set through preliminary experiments. Instead of making the GSK3 ⁇ inhibitor concentration constant throughout the entire culture period, the GSK3 ⁇ inhibitor concentration may be changed, for example, by increasing the GSK3 ⁇ inhibitor concentration stepwise.
  • a BMP inhibitor is a substance that inhibits BMP signaling (BMP signaling) through binding between BMP (bone morphogenetic protein) and a BMP receptor (type I or type II).
  • BMP inhibitors include proteinaceous inhibitors and small molecule inhibitors. Examples of proteinaceous inhibitors are the natural inhibitors Noggin, chordin, follistatin and the like.
  • Examples of small molecule inhibitors include Dorsomorphin (6- [4- (2-piperidin-1-ylethoxy) phenyl] -3-pyridin-4-ylpyrazolo [1,5-a] pyrimidine) and its derivatives, LDN-193189 (4- (6- (4-piperazin-1-yl) phenyl) pyrazolo [1,5-a] pyrimidin-3-yl) quinoline) and its derivatives. These compounds are commercially available (for example, available from Sigma-Aldrich and Stemgent) and are readily available. Preferably, Dorsomorphin is used.
  • the concentration of BMP inhibitor is not particularly limited as long as the purpose of enhancing the neuronal differentiation ability of pluripotent stem cells is achieved, but when the concentration is shown by taking Dorsomorphin as an example, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • the optimum concentration can be set through preliminary experiments. Instead of making the BMP inhibitor concentration constant throughout the entire culture period, changes in the BMP inhibitor concentration may be provided, for example, by increasing the BMP inhibitor concentration stepwise.
  • components may be added to the medium.
  • components that can be added include insulin, iron sources (such as transferrin), minerals (such as sodium selenate), sugars (such as glucose), organic acids (such as pyruvic acid, lactic acid, etc.), serum proteins (such as albumin) Etc.), amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents (For example, HEPES).
  • iron sources such as transferrin
  • minerals such as sodium selenate
  • sugars such as glucose
  • organic acids such as pyruvic acid, lactic acid, etc.
  • serum proteins such as albumin
  • amino acids eg L-glutamine etc.
  • reducing agents eg 2-mercaptoethanol etc.
  • vitamins eg ascorbic acid, d-biotin etc.
  • Adhesive culture is a culture that is in contrast to suspension culture, and is typically two-dimensional culture (planar culture) under adhesive conditions.
  • Matrigel TM (BD) or the like may be used for three-dimensional culture.
  • adhesion culture for example, a dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate, chamber slide, petri dish or the like can be used.
  • Matrigel TM (BD), poly-D-lysine, poly-L-lysine, collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, or two of these to enhance cell adhesion to the culture surface
  • An incubator coated by the above combination may be used.
  • Pluripotent stem cells can be cultured in the presence or absence of feeder cells, but when it is desired to provide highly safe cells, such as when clinical application is in view Is preferably cultured in the absence of feeder cells (feeder cell culture).
  • feeder cells are MEF (mouse fetal fibroblasts), STO cells (mouse fetal fibroblast cell line), and SNL cells (STO cell subclone).
  • Culture temperature, C0 2 concentration, other culture conditions such as 0 2 concentration can be set as appropriate.
  • the culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is for example about 1-10%, preferably about 5%.
  • what is necessary is just to culture
  • the period (culture period) of step (1) is 4 days or longer, specifically, for example, 4 days to 20 days, preferably 6 days to 14 days. If the culture period is too short, neurosphere formation ability is reduced. On the other hand, if the culture period is excessively long, one of the effects of the present invention, that is, efficient preparation of dopamine neurons can be impaired.
  • a cell dissociation solution or the like may be used for cell recovery.
  • proteolytic enzymes such as EDTA-trypsin, collagenase IV, metalloprotease and the like can be used alone or in appropriate combination. Those having low cytotoxicity are preferred.
  • commercially available products such as dispase (Adia), TrypLE® (Invitrogen), or Accutase (MILLIPORE) are available.
  • the recovered cells may be subjected to subculture after being treated with a cell strainer or the like so as to be in a dispersed (discrete) state.
  • step (1) the neuronal differentiation ability of pluripotent stem cells is enhanced. Increased nerve differentiation ability can be confirmed with an increase in the expression of nervous system markers (Sox2, nestin, Sox1, etc.) as compared to before the start of step (1). Moreover, you may utilize the expression of an undifferentiation marker for evaluation that nerve differentiation ability was enhanced.
  • nervous system markers Sox2, nestin, Sox1, etc.
  • the cells after step (1) are once collected and then proceed to the next culture (step (2)).
  • the collection operation can be performed in the same manner as the collection operation during subculture.
  • Step (2) the cells obtained in step (1) are suspended in the presence of TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, FGF8 and hedgehog signal agonist and under normal oxygen partial pressure to form neurospheres. . That is, the cells after step (1) are cultured using a medium to which a TGF- ⁇ family inhibitor, a GSK3 ⁇ inhibitor, FGF8 and a hedgehog signal agonist are added and under a normal oxygen partial pressure.
  • Step (2) aims to induce differentiation along the neural cell lineage. Items that are not specifically mentioned (usable basic medium, usable TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, other components that can be added to the medium, etc.) are the same as in step (1). Omitted.
  • suspension culture for example, flask, tissue culture flask, dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, micropore, multiplate, multiwell plate, chamber slide, petri dish, tube , Trays, culture bags, roller bottles and the like can be used.
  • an incubator having a non-cell-adhesive culture surface.
  • Applicable incubators include those whose surface (culture surface) is treated so as to be non-cell-adhesive, and treatment for improving cell adhesion (for example, coating treatment with an extracellular matrix, etc.) Those not applied to the culture surface) can be mentioned.
  • static culture may be employed, or swirl culture or shaking culture may be employed.
  • the TGF- ⁇ family inhibitor and the GSK3 ⁇ inhibitor are as described above. Also in this step, it is preferable to use SB431542 as a TGF- ⁇ family inhibitor and CHIR99021 as a GSK3 ⁇ inhibitor.
  • the concentration in the medium when SB431542 is used is, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • the concentration in the medium when CHIR99021 is used is, for example, 0.5 ⁇ M to 20 ⁇ M, preferably 1 ⁇ M to 10 ⁇ M.
  • FGF8 is a member of the fibroblast growth factor family. FGF8 is involved in the control of vertebrate brain formation and is required for localization to the midbrain. As long as the object of the present invention can be achieved, FGF8 derived from various mammals can be used. However, it is preferable to match the origin (animal species) with the pluripotent stem cells to be used. Therefore, human FGF8 is preferably used when human pluripotent stem cells are used. Human FGF8 means that the human has the amino acid sequence of FGF8 that is naturally expressed in vivo, and may be a recombinant.
  • NP_006110.1 fibroblast growth factor 8 isoform B precursor [Homo sapiens].
  • concentration of FGF8 is not particularly limited as long as the purpose of inducing differentiation along the neural cell lineage is achieved, but for example, 1 ng / ml to 5 ⁇ g / ml, preferably 10 to 500 ng / ml More preferably, it is 50 to 400 ng / ml.
  • the optimum concentration can be set through preliminary experiments.
  • the hedgehog signal agonist is not particularly limited as long as it promotes a sonic hedgehog (SHH) signal.
  • SHH sonic hedgehog
  • purmorphamine (9-cyclohexyl-N- [4- (4-morpholinyl) phenyl] -2- (1-naphthalenyloxy) -9H-purin-6-amine) useful for inducing ventralization Should be used.
  • concentration of purmorphamine (amount added to the medium) is not particularly limited as long as the purpose of inducing differentiation along the neuronal cell lineage is achieved. For example, 1 ⁇ ng / ml to 5 ⁇ g / ml, preferably 10 to 500 ⁇ ng. / ml, more preferably 50 to 400 ng / ml.
  • the optimum concentration can be set through preliminary experiments.
  • SAG N-methyl-N '-(3-pyridinylbenzyl) -N'-(3-chlorobenzo [b] thiophene-2-carbonyl) -1,4-diaminocyclohexane
  • concentration when SAG is used is not particularly limited as long as the purpose of inducing differentiation along the neural cell lineage is achieved.
  • the concentration is 10 to nM to 100 ⁇ M, preferably 100 to nM to 10 ⁇ M, and more preferably Is from 100 nM to 2 ⁇ M.
  • the optimum concentration can be set through preliminary experiments.
  • each component TGF- ⁇ family inhibitor, GSK3 ⁇ inhibitor, FGF8 and hedgehog signal agonist
  • concentration of all components may change during the culture.
  • the addition of FGF8 and hedgehog signal agonist is started on the second to sixth days of step (2).
  • stimulation to a cell can be relieved.
  • the addition of FGF8 and hedgehog signal agonist is started on the third to fifth days of step (2).
  • LIF leukemia inhibitory factor
  • LIFs derived from various mammals can be used.
  • human LIF is preferably employed when human pluripotent stem cells are used.
  • the concentration of LIF is not particularly limited, but is, for example, 0.25 ng / ml to 1 ⁇ g / ml, preferably 1 ng / ml to 50 ng / ml, more preferably 5 ng / ml to 20 ng / ml. The optimum concentration can be set through preliminary experiments.
  • a medium supplemented with bFGF (basic fibroblast growth factor) is preferably used.
  • bFGF is also called FGF2.
  • FGF2 basic fibroblast growth factor
  • human bFGF is preferably employed when human pluripotent stem cells are used.
  • Human FGF2 means that the human has the amino acid sequence of FGF2 that is naturally expressed in vivo.
  • NP_001997.5 fibroblast growth factor 2 [Homo sapiens]
  • concentration of bFGF is not particularly limited, but is, for example, 0.25 ng / ml to 1 ⁇ g / ml, preferably 1 ng / ml to 50 ng / ml, more preferably 3 ng / ml to 30 ng / ml.
  • the optimum concentration can be set through preliminary experiments.
  • a medium supplemented with a ROCK inhibitor Rho-associated-coiled-coil-forming kinase / Rho-binding kinase
  • a ROCK inhibitor Rho-associated-coiled-coil-forming kinase / Rho-binding kinase
  • the concentration when using Y-27632 as a ROCK inhibitor is, for example, about 1 ⁇ M to about 50 ⁇ M. The optimum concentration can be set through preliminary experiments.
  • ROCK inhibitor strongly inhibits cell death when cells are in a dispersed state. Therefore, instead of using a ROCK inhibitor over the entire culture period of step (2), when seeding cells (ie, at the start of culture) or when collecting and dispersing cells for subculture, for example.
  • the cells may be treated with a medium containing a ROCK inhibitor.
  • ciliary neurotrophic factor CNTF
  • brain-derived neurotrophic factor BDNF
  • neurotrophin 3 NT-3
  • fetal bovine serum so as to be advantageous for inducing differentiation along the neural cell lineage
  • N2 supplements can be obtained from Gibco (product name: N2 supplement (x100)
  • B27 supplements can be obtained from Gibco (product name: B27 supplement (x100)).
  • components may be added to the medium as necessary.
  • components that can be added include insulin, iron sources (such as transferrin), minerals (such as sodium selenate), sugars (such as glucose), organic acids (such as pyruvic acid, lactic acid, etc.), serum proteins (such as albumin) Etc.), amino acids (eg L-glutamine etc.), reducing agents (eg 2-mercaptoethanol etc.), vitamins (eg ascorbic acid, d-biotin etc.), antibiotics (eg streptomycin, penicillin, gentamicin etc.), buffering agents (For example, HEPES).
  • iron sources such as transferrin
  • minerals such as sodium selenate
  • sugars such as glucose
  • organic acids such as pyruvic acid, lactic acid, etc.
  • serum proteins such as albumin
  • amino acids eg L-glutamine etc.
  • reducing agents eg 2-mercaptoethanol etc.
  • vitamins eg ascorbic acid, d-biotin etc.
  • suspension culture is performed to form neurospheres.
  • serum-free agglutination suspension culture method SFEB method / SFEBq method. Watanabe et al., Nature Neuroscience 8, 288-296 (2005), WO 2005/123902
  • neurosphere method Reynolds BA and Weiss S., Science, USA, 1992 Mar 27; 255 (5052): 1707-10) can be used.
  • step (2) is carried out under normal oxygen partial pressure.
  • conditions under which the oxygen concentration is lowered low oxygen partial pressure / low oxygen concentration
  • “normal oxygen partial pressure” in the present invention is like this. Contrast with special conditions. That is, “under normal oxygen partial pressure” is a condition in which the oxygen concentration is not intentionally adjusted. Although it may vary depending on other conditions (humidity, coexisting CO 2 concentration, etc.), the oxygen concentration in the case of “under normal oxygen partial pressure” is typically about 18% to about 22%.
  • Step (2) under normal oxygen partial pressure eliminates the need for setting special oxygen conditions (typically a hypoxic environment) throughout the entire culture period (steps (1) to (3)) (ie Steps (1) to (3) can all be carried out under normal oxygen partial pressure). Furthermore, since differentiation induction into unnecessary cells such as glial cells can be suppressed, preparation with extremely high practicality is possible. Become a method.
  • culture conditions incubation temperature, C0 2 concentration, etc.
  • the culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is for example about 1-10%, preferably about 5%.
  • the period of step (2) (culture period) is, for example, 7 to 21 days, preferably 10 to 16 days. If the culture period is too short or too long, the differentiation efficiency may be reduced. In addition, if the culture period is excessively long, one of the effects of the present invention, that is, efficient preparation of dopamine neurons can be impaired.
  • the formed neurospheres After the formed neurospheres are collected and the cells are dissociated, they may be subjected to further suspension culture. That is, subculture may be performed. However, the number of subcultures should be small, and the number of subcultures is preferably 1 or 0 (that is, no subculture is performed). The small number of subcultures is advantageous for the preparation of dopamine neurons in a short period of time, and is also effective in avoiding unintended differentiation induction (for example, induction of differentiation into glial cells). it is conceivable that. On the other hand, since subculture is effective in improving cell purity, it can be said that one subculture is optimal. When subculture is performed once, the subculture may be performed on the 6th to 10th days from the start of step (2). In addition, when recovering neurospheres during subculture, it is preferable to prevent contamination of cells adhered to the surface of the incubator. Such an operation can contribute to the improvement of the preparation efficiency and purity of dopamine neurons.
  • Step (3) The neurosphere formed by step (2) contains undifferentiated cells of the nervous system and undifferentiated cells of the midbrain system.
  • the cells constituting the neurosphere are collected and induced to differentiate into dopamine neurons.
  • Medium and culture conditions suitable for inducing differentiation into dopamine neurons are known, and for basic culture methods and operations, for example, a protocol provided by ThermoFisher (published on the ThermoFisher website) Etc. can be referred to.
  • differentiation into dopamine neurons is induced by adhesion culture in a medium containing a ⁇ -secretase inhibitor, neurotrophic factor, ascorbic acid, TGF- ⁇ 3, and cAMP or cAMP analog.
  • N- [N- (3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester is used as the ⁇ -secretase inhibitor
  • BDNF brain-derived neurotrophic factor
  • GDNF glial cell-derived neurotrophic factor
  • diptyryl cAMP as a cAMP analog.
  • the neurospheres formed in step (2) are collected, the cells are dissociated (single cell), seeded in an incubator and cultured.
  • the collected neurospheres may be subjected to an adhesion culture as a cell mass. In this case, normally, if the culture is continued, cells migrate from the neurosphere to the surroundings, and dopamine neurons can be observed in the migrated cells.
  • a dish, petri dish, tissue culture dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate, chamber slide, petri dish or the like can be used.
  • Matrigel TM (BD), poly-D-lysine, poly-L-lysine, collagen, gelatin, laminin, heparan sulfate proteoglycan, entactin, or two of these to enhance cell adhesion to the culture surface
  • An incubator coated by the above combination may be used.
  • Culture temperature, C0 2 concentration, other culture conditions such as 0 2 concentration can be set as appropriate.
  • the culture temperature is, for example, about 30 to 40 ° C., preferably about 37 ° C.
  • the CO 2 concentration is for example about 1-10%, preferably about 5%.
  • what is necessary is just to culture
  • the period (culture period) of step (3) is not particularly limited, but for example, the culture is performed for 5 days or more, preferably 7 days or more. Although culture for an excessively long period can cause exhaustion of cells, decrease in activity, cell death, etc., in general, differentiation / maturation progresses as the culture period is longer. Therefore, the upper limit of the culture period in this step is not particularly limited. For example, the culture period is 5 to 21 days. It may be subcultured as necessary. For example, cells are collected at the stage of subconfluence or confluence, a part of the cells are seeded in another incubator, and the culture is continued.
  • Dopamine neurons are obtained by step (3).
  • Dopamine neurons can be identified or confirmed by expression of dopamine markers (tyrosine hydroxylase, dopamine transporter), FOXA2 as a midbrain marker, etc., or by evaluation of dopamine production ability (see Examples below). it can.
  • dopamine neurons can be obtained from pluripotent stem cells in about 21 to 30 days. Is possible.
  • the second aspect of the present invention relates to use of dopamine neuron obtained by the preparation method of the present invention.
  • the dopamine neurons of the present invention can themselves be used as therapeutic agents or transplant materials for various neurological diseases.
  • Applications of the dopamine neurons of the present invention are typically envisioned for central nervous system diseases in which dopamine drugs are used to treat them, such as schizophrenia, bipolar disorder, attention deficit hyperactivity, autism Spectrum disease, Parkinson's disease.
  • the prepared cells Prior to application to transplantation medicine or the like, may be purified or purified using cell surface markers, morphology, secretory substances, etc. as indicators.
  • the dopamine neurons of the present invention are also useful as experimental tools, for example, various assays (drug screening systems, drug efficacy evaluation systems, drug response assays, etc.) in the development of drugs (therapeutic drugs, preventive drugs) for various neurological diseases ), Various assays (gene expression analysis, proteomic analysis, morphological analysis, neuroelectrophysiological analysis, etc.) in research aimed at elucidating / understanding the onset and progression mechanisms of various neurological diseases, evaluation of neurotoxicity (toxicity evaluation system) It is applicable to. It is also applicable to in vivo assays using non-human animals. The usefulness of the dopamine neurons obtained by the preparation method of the present invention for various assays is demonstrated in the examples described later.
  • SCZ schizophrenia
  • ASD autism spectrum disorder
  • tyrosine hydroxylase (tyrosin) -positive dopamine neurons use mice to express reelin only at limited times before and after birth. It has been reported in research. Although Reelin is expressed only in a limited period, abnormalities in dopamine neurons have been confirmed in Reler-mutated reeler mice. On the other hand, since there are many reports that the dopamine system is involved in the pathogenesis of SCZ and ASD, investigating the relationship between dopamine neurons and reelin may provide clues to elucidate the onset mechanism of SCZ and ASD. It is suggested.
  • RELN-deficient iPS cells were artificially created by SCPS patients with RELN deletion and their healthy families, establishment of iPS cells from a total of 2 people, and genome editing. I tried to make it. At that time, in view of future development and application, we decided to improve the method of preparing dopamine neurons from iPS cells (differentiation induction).
  • iPS cell medium (20% KSR, 2 mM L-glutamine, 0.1 mM non-essential amino acids, 2-mercaptoethanol, penicillin / streptomycin And DMEM / F12) containing bFGF.
  • iPS cells were cultured on a culture dish coated with Matrigel TM (BD).
  • Matrigel TM Matrigel TM
  • iPS cell medium (MEF condition medium) exposed to feeder cells overnight was used.
  • iPS cells were dispersed by TrypLE TM select (Thermo Fisher Scientific Inc.) and then DMEM / F12 medium (5% KSR, 2 mM L -Glutamine, 0.1 mM non-essential amino acid, 2-mercaptoethanol, Y27632, penicillin / streptomycin included) was cultured in suspension for 7 days to form EBs. Thereafter, EB was seeded on a gelatin-coated culture dish in 10% FBS DMEM medium, and differentiation was induced spontaneously over 7 days.
  • DMEM / F12 medium 5% KSR, 2 mM L -Glutamine, 0.1 mM non-essential amino acid, 2-mercaptoethanol, Y27632, penicillin / streptomycin included
  • CRISPR / Cas9 system Cas9 expression vector and sgRNA expression vector were obtained from Addgene.
  • HEK293FT was cultured in 10% DMEM medium.
  • the Cas9 expression vector and sgRNA expression vector were cotransfected using Lipofectamine 3000, and selection with puromycin was performed 48 hours later.
  • 201B7 and NC779 healthy control strains cultured under feeder-free conditions were used. After pretreatment with 10 ⁇ M Y-27632, the mixture was dispersed using TrypLE TM select (Thermo Fisher Scientific Inc.).
  • T7EI assay In order to examine the cleavage activity of sgRNA, T7EI assay was performed. The target region was amplified by PCR, heat denatured (95 ° C. for 2 minutes) and re-annealed (down from 85 ° C. to 25 ° C. at ⁇ 0.1 ° C./s). Thereafter, DNA was cleaved with T7EI, and the product was electrophoresed on a 1.5% gel.
  • Nerve differentiation Differentiation into dopamine neurons is performed by improving the previously reported report (Fujimori, K. et al. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular brain 9, 88 (2016)). It was. First, iPS cells were cultured in an iPS cell medium supplemented with SB431542 (3 ⁇ M), CHIR99021 (3 ⁇ M), and dorsomorphin (3 ⁇ M) for 7 days (from day 0 to day 7). After that, disperse by TrypLE TM select (Thermo Fisher Scientific Inc.) and pass through cell strainer.
  • Neurosphere medium (DMEM / F12 supplemented with 1 ⁇ N2 supplement, 0.6% glucose, penicillin / streptomycin, 5 mM HEPES) (MHM medium) supplemented with 1 ⁇ B27 supplement, 20 ng / ml bFGF, 10 ng / ml human LIF, 10 ⁇ M Y27632, 3 ⁇ M CHIR99021, 2 ⁇ M SB431542, 100 ng / ml FGF8 and 1 ⁇ M purmorphamine Neurospheres were formed by suspension culture for 2 weeks (Day 7 to Day 21). FGF8 and purmorphamine were added from the 10th day. On the 14th day, the neurospheres were collected and dispersed to form single cells, and then cultured again in suspension to re-form neurospheres (secondary neurospheres).
  • neurospheres were seeded in Matrigel TM (BD) -coated or poly-L-ornithine / laminin-coated culture dishes, and medium for dopamine neurons (B27 supplement in MHM medium, 10 ⁇ M DAPT, 20 ng / ml BDNF, The cells were cultured in 20 ng / ml GDNF, 0.2 mM ascorbic acid, 1 ng / ml TGF- ⁇ 3 and 0.5 mM dbcAMP) to induce differentiation into dopamine neurons (from day 21). All cultures were cultured in a normal CO 2 incubator (5% CO 2, oxygen concentration was 18.5% to 19.5% (not adjusted)).
  • Nerve migration test Secondary neurospheres (day 21) were seeded one by one on Matrigel M (BD) -coated culture dishes and cultured in a medium for dopamine neurons.
  • the video was shot with IncuCyte (registered trademark) (ESSEN BIOSCIENCE).
  • IncuCyte registered trademark
  • images were taken continuously every 15 minutes for a total of 4 hours, 48 hours to 52 hours after seeding, and analyzed using ImageJ. The travel distance was calculated from the XY coordinates at each shooting point.
  • MATLAB (Mathworks, Natick) was used to analyze the migration angle of each cell.
  • the position of the cell at each time point was obtained from the XY coordinates, and the movement angle from the reference point was measured.
  • the average value of the cell migration direction for 4 hours was defined as the coordinate axis.
  • the migration angle of each cell at each time point was an angle from the coordinate axis. When cells did not move between two consecutive images, they were excluded from analysis.
  • DNA microarray and quantitative PCR Total RNA was extracted using RNeasy Plu Mini Kit.
  • DNA microarray was performed using SurePrint G3 Hmm GE 8x60K V2 Microarray Kit (Agilent Technology) and analyzed by GeneSpring GX software program (version 13; Aglilent Technology).
  • GeneSpring GX software program version 13; Aglilent Technology.
  • High-Capacity cDNA Transcription Kit (Applied Biosystems) was used.
  • Gene expression analysis by quantitative PCR was performed at 7900HT (Applied Biosystems) using KAPA SYBR Fast qPCR Kit (KAPA BIOSYSTEMS).
  • iPS cells were established by the episomal vector method using peripheral lymphocytes of 2 healthy controls (CON779 and CON1004) and 2 RELN-deficient (SCZ339 and FAM258). For each iPS cell obtained, the expression of pluripotency markers (NANOG and TRA-1-60) and the ability to differentiate into three germ layers (endoderm: SOC17, mesoderm: ⁇ SMA, ectoderm: Tuj1) were confirmed. (FAM258 results are shown in FIGS. 1A and B).
  • isogenic strains were prepared from two healthy controls (201B7 and CON779), respectively. As shown in FIG. 1F, a plurality of isogenic strains could be produced. All remained three germ layer differentiation ability (FIG. 1G). Furthermore, we investigated the possibility of off-target using CCTop. As a result, the target cleavage region was only the target RELN (data not shown).
  • FIG. 3B shows the results after 48 hours from the start of step (3).
  • TH positive rates were measured for 201B7, CON779 and CON1004 at the seventh day from the start of step (3), Was over 85%.
  • COMT is a gene encoding an enzyme called catechol-O-methyltransferase, and this enzyme is also involved in the regulation of dopamine concentration in the brain.
  • RELN-deficient isogenic strains were also used and analyzed by quantitative PCR. As a result, high expression of COMT was observed only in the RELN-deficient parent and child (SCZ339 and FAM258), but not in the RELN-deficient isogenic strain.
  • RELN-deficient iPS cell-derived neurons exhibit abnormal migration direction It has been reported that dopamine neurons exhibit abnormal migration direction in the developing brain of reeler mice (Bodea, GO et al. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development (Cambridge, England) 141, 661-673 (2014)). A cell tracking assay using RELN-deficient neurons was performed to examine whether similar abnormalities occurred in humans. The healthy control (201B7, CON779, CON1004) -derived dopamine neurons migrate straight from the end of the neurosphere to the outside, whereas the RELN-deficient neurons showed an abnormality in the direction of migration (Fig. 4A).
  • Cell n migration angle ( ⁇ Cell n ) was defined as the angle formed by the standard axis and the position vector of Cell n . A positive angle indicates counterclockwise and a negative angle indicates clockwise. As shown in FIGS. 4F and G, the angle of each point in the healthy control group was almost ⁇ 20 ° ⁇ Cell n ⁇ 20 ° (201B7: 87%, CON779: 83%, CON1004: 80%).
  • RELN-deficient iPS cells will bring new insights into human brain development disorder elucidation tools and may be useful for therapeutic drug development.
  • dopamine neurons can be prepared from pluripotent stem cells in a specific / efficient manner and in a short period of time without using a special apparatus.
  • the dopamine neurons obtained by the preparation method of the present invention can be used as therapeutic agents or transplant materials for various neurological diseases. It is also useful as an experimental tool and can be used in various assays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Neurosurgery (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

短期間で効率よくドパミン神経細胞を調製する方法を提供することを課題とする。(1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ、(2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ、及び(3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導するステップ、によってドパミン神経細胞を調製する。

Description

ドパミン神経細胞の調製方法
 本発明はドパミン神経細胞(ドパミン作動性ニューロン)の調製方法及びその用途に関する。本出願は、2017年4月19日に出願された日本国特許出願第2017-082600号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 誘導多能性幹細胞(iPS細胞)に代表される多能性幹細胞には医薬品の開発、再生医療、基礎研究など、様々な分野での応用が期待されている。多能性幹細胞を適切な条件で培養すると特定の細胞系譜に沿って分化する。神経系を構築する細胞に関しても、この特性を活かして各種神経細胞の作製が試みられている。例えば、多能性幹細胞を低酸素分圧下で培養し、種々の神経細胞やグリア細胞へと分化誘導する方法が提案されている(特許文献1、非特許文献1、2)。また、cAMP及びMEK阻害剤を含有する培地を使用することにより高品質なドパミン神経細胞を誘導できるという報告もある(特許文献2)。これら以外にも、ドパミン神経細胞又はその前駆細胞の分化誘導法については数多くの報告がある(例えば非特許文献3~6)。
国際公開第2013/187416 A1号パンフレット 国際公開第2015/020234 A1号パンフレット
Stem Cell Reports 2016 Mar8;6(3):422-35 Molecular Brain (2016)9:88 PLoS One. 2014 Feb 21;9(2):e87388 Biochim Biophys Acta. 2015 Sep;1850(9):1669-75. Biochim Biophys Acta. 2015 Sep;1850(1):22-32. Nat Commun. 2016 Oct 14;7:13097
 多能性幹細胞からの神経細胞(特にドパミン神経細胞)の調製を目指した様々な試みがあるものの、依然として克服すべき課題は多い。例えば、上掲の特許文献1に開示された方法では、低酸素分圧下という特殊な酸素条件を使用することが大きな障害となる。また、ドパミン神経細胞への誘導効率(分化特異性)には改善の余地がある。更には、ドパミン神経細胞が得られるまでの期間が長い。臨床応用を前進させるためには、短期間で効率よくドパミン神経細胞が得られる方法ないし条件の創出が望まれる。
 上記課題を解決すべく本発明者らは、ドパミン神経細胞の新規調製方法の創出を目指して研究を進めた。特に、低酸素分圧下で培養するためには専用の装置が必要になり、実用化を進める上で大きな障害になる点に配慮しつつ検討を重ねた。その結果、低酸素分圧下という特殊な酸素条件を用いなくとも、効率的に且つ短期間で多能性幹細胞をドパミン神経細胞へと分化誘導できる新たな方法(プロトコル)の確立に成功した。また、当該方法で調製したドパミン神経細胞が各種アッセイに有用であることが実証された。即ち、汎用性且つ実用性に優れたドパミン神経細胞の調製方法を確立できた。低酸素分圧下という特殊な酸素条件を採用しなくとも特異的/効率的に、しかも短期間で多能性幹細胞をドパミン神経細胞へと分化誘導できることは、多能性幹細胞を利用した移植医療や医薬品開発を大きく前進させるものであり、その意義は極めて大きい。
 以下の発明は、主として上記の成果及び考察に基づく。
 [1]以下のステップ(1)~(3)を含む、ドパミン神経細胞の調製方法:
(1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ、
(2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ、
(3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導するステップ。
 [2]多能性幹細胞が人工多能性幹細胞である、[1]に記載の調製方法。
 [3]多能性幹細胞がヒト細胞である、[1]又は[2]に記載の調製方法。
 [4]TGF-βファミリー阻害剤が4-[4-(1,3-ベンゾジオキソール-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]-ベンズアミド又はその水和物である、[1]~[3]のいずれか一項に記載の調製方法。
 [5]GSK3β阻害剤が6-[[2-[[4-(2,4-ジクロロフェニル)-5-(4-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリルである、[1]~[4]のいずれか一項に記載の調製方法。
 [6]BMP阻害剤が6-[4-(2-ピペリジン-1-イルエトキシ)フェニル]-3-ピリジン-4-イルピラゾロ[1,5-a]ピリミジンである、[1]~[5]のいずれか一項に記載の調製方法。
 [7]ヘッジホッグシグナルアゴニストが9-シクロヘキシル-N-[4-(4-モルホリニル)フェニル]-2-(1-ナフタレニルオキシ)-9H-プリン-6-アミンである、[1]~[6]のいずれか一項に記載の調製方法。
 [8]ステップ(2)における、通常の酸素分圧下で浮遊培養によって、グリア細胞などの不要な細胞への分化誘導が抑制される、[1]~[7]のいずれか一項に記載の調製方法。
 [9]ステップ(2)における継代の回数が0回又は1回である、[1]~[8]のいずれか一項に記載の調製方法。
 [10]継代の回数が少ないことにより、意図しない分化誘導の促進が回避される、[9]に記載の調製方法。
 [11]ステップ(1)の培養期間が4日以上である、[1]~[10]のいずれか一項に記載の調製方法。
 [12]ステップ(1)~(3)の全てが通常の酸素分圧下で実施される、請求項1~11のいずれか一項に記載の調製方法。
 [13]通常の酸素分圧下が、酸素濃度が18%~22%の条件である、[1]~[12]のいずれか一項に記載の調製方法。
 [14]ステップ(2)の培養が、LIF、bFGF及びROCK阻害剤が更に存在する条件下で行われる、[1]~[13]のいずれか一項に記載の調製方法。
 [15]ステップ(2)の培養期間が7日間~21日間である、[1]~[14]のいずれか一項に記載の調製方法。
 [16]ステップ(3)が、γ-セクレターゼ阻害剤、神経栄養因子、アスコルビン酸、TGF-β3、及びcAMP又はcAMPアナログの存在下での接着培養を含む、[1]~[15]のいずれか一項に記載の調製方法。
 [17]γ-セクレターゼ阻害剤がN-[N-(3,5‐ジフルオロフェナセチル-L-アラニル)]-S-フェニルグリシンt-ブチルエステルであり、神経栄養因子が脳由来神経栄養因子(BDNF)とグリア細胞由来神経栄養因子(GDNF)であり、cAMPアナログがジプチリルcAMPである、[16]に記載の調製方法。
 [18]ステップ(3)の培養期間が5日以上である、[16]又は[17]に記載の調製方法。
 [19][1]~[18]のいずれか一項の調製方法で得られたドパミン神経細胞。
 [20][19]に記載のドパミン神経細胞を用いた、in vitroアッセイ。
RELN欠失iPS細胞の樹立。(A)RELN欠失iPS細胞を用いたNANOGとTRA-1-60免疫染色像。(B)in vitroにおける三胚葉分化能の確認。(C)RELN欠失iPS細胞ゲノムにおけるRELN欠失の確認(血液ゲノムとiPS細胞ゲノムの比較)。 図1の続き。(D)使用したCRISPR-sgRNAの標的サイト。 図1の続き。(E)T7EIアッセイによるCRISPR/sgRNA活性の評価。 図1の続き。(F)CRISPR-sgRNA#4を用いて得られたRELN欠失アイソジェニック株一覧。 図1の続き。(G)RELN欠失アイソジェニック株の三胚葉分化能の確認。201B7由来#4-1(+/-ヘテロ欠失)。 RELN欠失を有する神経細胞ではreelin発現が低下する。(A)健常対照iPS細胞由来ニューロスフィア(21日目)及びドパミン神経細胞(28日目)を用いたRELN mRNAの発現解析。(B)ニューロスフィア(21日目)におけるRELN mRNAの発現比較。(C)ドパミン神経細胞(28日目)におけるRELN mRNAの発現比較。(D)201B7、ヘテロ欠失Ig201B7(+/-)、ホモ欠失Ig201B7(-/-)のドパミン神経細胞(21日目)におけるTHとReelinの免疫染色結果。 先天性RELN欠失親子iPS細胞由来ドパミン神経細胞におけるドパミン産生の異常。(A)早期ドパミン神経細胞(23日目)におけるTHとTuj1の免疫染色像。(B)各群のTuj1陽性細胞におけるTH陽性率。(C)健常対照とRELN欠失親子でのニューロスフィアを用いた網羅的遺伝子発現比較解析。 図3の続き。(D)定量PCRを用いたCOMTの発現解析。(E)28日目の培養上清を用いたドパミン濃度の測定。 RELN欠失による神経細胞の遊走方向異常。(A)神経遊走のリアルタイムイメージング解析。左:位相差顕微鏡像、右:細胞トラッキング(cell tracking)の結果。 図4の続き。(B)4時間の総移動距離(a)。(C)撮影開始点と終了点の2点間の距離(b)。(D)比率(b/a)×100。 図4の続き。(E)細胞移動角度解析の模式図。(F)左:ひとつの代表細胞について、細胞角度解析をした結果。右:10個の細胞の角度解析結果のまとめ。(G)移動角度による分布比較。 新規プロトコルで調製したドパミン神経細胞のドパミン産生能。健常者iPS細胞をドパミン神経細胞へ誘導し、培養28日目と42日目の培養上清中のドパミン濃度を測定した。28日目:ニューロスフィアからの分化誘導を開始してから7日後、42日目:ニューロスフィアからの分化誘導を開始してから21日後、NTC:培地そのもの(細胞なし)の値。経時的なドパミン量増加が確認できる。 新規プロトコルで調製したドパミン神経細胞の確認。健常者iPS細胞をドパミン神経細胞へ誘導し、28日目に固定・染色した。左:中脳マーカー(FOXA2)、中央:ドパミン神経細胞マーカー(TH)、右:合成。共陽性を示す細胞が見られることから、中脳ドパミン神経細胞へ誘導されていることがわかる。
1.ドパミン神経細胞を調製する方法
 本発明は多能性幹細胞からドパミン神経細胞を調製する方法(以下、「本発明の調製方法」とも呼ぶ。)に関する。本発明によれば、生体の中枢神経を構成するドパミン神経細胞と類似の特性を示す細胞が得られる。ドパミン神経細胞は神経疾患(例えば精神疾患、神経変性疾患)に対する治療薬ないし移植材料(移植医療用の細胞又は組織)として有用である。また、神経疾患に対する薬剤(治療薬、予防薬)の開発や神経疾患の発症・進展メカニズムの研究などのツールとして有用である。汎用性に優れた本発明の調製方法は、このように有用性の高いドパミン神経細胞を簡便且つ安価に調製することを可能にする。また、本発明の調製方法によれば、短期間で効率よくドパミン神経細胞を得ることができる。
 本発明の調製方法では、以下のステップ(1)~(3)を行う。
 (1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ
 (2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ
 (3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導するステップ
 ステップ(1)
 ステップ(1)では多能性幹細胞を使用する。「多能性幹細胞」とは、生体を構成するすべての細胞に分化しうる能力(分化多能性)と、細胞分裂を経て自己と同一の分化能を有する娘細胞を生み出す能力(自己複製能)とを併せ持つ細胞をいう。分化多能性は、評価対象の細胞を、ヌードマウスに移植し、三胚葉(外胚葉、中胚葉、内胚葉)のそれぞれの細胞を含むテラトーマ形成の有無を試験することにより、評価することができる。
 多能性幹細胞として、胚性幹細胞(ES細胞)、胚性生殖細胞(EG細胞)、人工多能性幹細胞(iPS細胞)等を挙げることができるが、分化多能性及び自己複製能を併せ持つ細胞である限り、これに限定されない。好ましくはES細胞又はiPS細胞を用いる。更に好ましくはiPS細胞を用いる。多能性幹細胞は、好ましくは哺乳動物(例えば、ヒトやチンパンジーなどの霊長類、マウスやラットなどのげっ歯類)の細胞、特に好ましくはヒトの細胞である。従って、本発明の最も好ましい態様では、多能性幹細胞として、ヒトiPS細胞が用いられる。
 ES細胞は、例えば、着床以前の初期胚、当該初期胚を構成する内部細胞塊、単一割球等を培養することによって樹立することができる(Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1994) ;Thomson,J. A. et al.,Science,282, 1145-1147(1998))。初期胚として、体細胞の核を核移植することによって作製された初期胚を用いてもよい(Wilmut et al.(Nature, 385, 810(1997))、Cibelli et al. (Science, 280, 1256(1998))、入谷明ら(蛋白質核酸酵素, 44, 892 (1999))、Baguisi et al. (Nature Biotechnology, 17, 456 (1999))、Wakayama et al. (Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999))、Rideout III et al. (Nature Genetics, 24, 109 (2000)、Tachibana et al. (Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer, Cell (2013) in press)。初期座として、単為発生胚を用いてもよい((Kim et al. (Science, 315, 482-486 (2007))、Nakajima et al. (Stem Cells, 25, 983-985 (2007))、Kim et al. (Cell Stem Cell, 1, 346-352 (2007))、Revazova et al. (Cloning Stem Cells, 9, 432-449 (2007))、Revazova et al.(Cloning Stem Cells, 10, 11-24 (2008))。上掲の論文の他、ES細胞の作製についてはStrelchenko N., et al. Reprod Biomed Online. 9: 623-629, 2004;Klimanskaya I., et al. Nature 444: 481-485, 2006;Chung Y., et al. Cell Stem Cell 2: 113-117, 2008;Zhang X., et al Stem Cells 24: 2669-2676, 2006;Wassarman, P.M. et al. Methods in Enzymology, Vol.365, 2003等が参考になる。尚、ES細胞と体細胞の細胞融合によって得られる融合ES細胞も、本発明の方法に用いられる胚性幹細胞に含まれる。
 ES細胞の中には、保存機関から入手可能なもの、或いは市販されているものもある。例えば、ヒトES細胞については京都大学再生医科学研究所(例えばKhES-1、KhES-2及びKhES-3)、WiCell Research Institute、ESI BIOなどから入手可能である。
 EG細胞は、始原生殖細胞を、LIF、bFGF、SCFの存在下で培養すること等により樹立することができる(Matsui et al., Cell, 70, 841-847 (1992)、Shamblott et al., Proc. Natl. Acad. Sci. USA, 95 (23), 13726-13731 (1998)、Turnpenny et al., Stem Cells, 21(5), 598-609, (2003))。
 「人工多能性幹細胞(iPS細胞)」とは、初期化因子の導入などにより体細胞(例えば線維芽細胞、皮膚細胞、リンパ球等)をリプログラミングすることによって作製される、分化多能性と自己複製能を有する細胞である。iPS細胞はES細胞に近い性質を示す。iPS細胞の作製に使用する体細胞は特に限定されず、分化した体細胞でもよいし、未分化の幹細胞でもよい。iPS細胞は、これまでに報告された各種方法によって作製することができる。また、今後開発されるiPS細胞作製法を適用することも当然に想定される。iPS細胞の作製に利用可能な細胞、即ち、iPS細胞の由来である細胞の例として、リンパ球(T細胞、B細胞)、線維芽細胞、上皮細胞、内皮細胞、粘膜上皮細胞、間葉系幹細胞、造血幹細胞、脂肪幹細胞、歯髄幹細胞、神経幹細胞を挙げることができる。
 iPS細胞作製法の最も基本的な手法は、転写因子であるOct3/4、Sox2、Klf4及びc-Mycの4因子を、ウイルスを利用して細胞へ導入する方法である(Takahashi K, Yamanaka S: Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007)。ヒトiPS細胞についてはOct4、Sox2、Lin28及びNonogの4因子の導入による樹立の報告がある(Yu J, et al: Science 318(5858), 1917-1920, 2007)。c-Mycを除く3因子(Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008)、Oct3/4及びKlf4の2因子(Kim J B, et al: Nature 454 (7204), 646-650, 2008)、或いはOct3/4のみ(Kim J B, et al: Cell 136 (3), 411-419, 2009)の導入によるiPS細胞の樹立も報告されている。また、遺伝子の発現産物であるタンパク質を細胞に導入する手法(Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al: Cell Stem Cell 4, 472-476, 2009)も報告されている。一方、ヒストンメチル基転移酵素G9aに対する阻害剤BIX-01294やヒストン脱アセチル化酵素阻害剤バルプロ酸(VPA)或いはBayK8644等を使用することによって作製効率の向上や導入する因子の低減などが可能であるとの報告もある(Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J, et al: PLoS. Biol. 6 (10), e 253, 2008)。遺伝子導入法についても検討が進められ、レトロウイルスの他、レンチウイルス(Yu J, et al: Science 318(5858), 1917-1920, 2007)、アデノウイルス(Stadtfeld M, et al: Science 322 (5903), 945-949, 2008)、プラスミド(Okita K, et al: Science 322 (5903), 949-953, 2008)、トランスポゾンベクター(Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766-770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009)、或いはエピソーマルベクター(Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009)を遺伝子導入に利用した技術が開発されている。
 iPS細胞への形質転換、即ち初期化(リプログラミング)が生じた細胞はFbxo15、Nanog、Oct/4、Fgf-4、Esg-1及びCript等の多能性幹細胞マーカー(未分化マーカー)の発現などを指標として選択することができる。
 iPS細胞は、例えば、国立大学法人京都大学又は独立行政法人理化学研究所バイオリソースセンターから提供を受けることもできる。
 多能性幹細胞は公知の方法により、生体外(in vitro)で維持することができる。臨床応用を視野に入れた場合等、安全性の高い細胞を提供することが望まれる場合には、多能性幹細胞を、血清代替物を用いた無血清培養や、無フィーダー細胞培養により維持することが好ましい。血清を使用(又は併用)するのであれば、自己血清(即ちレシピエントの血清)を使用するとよい。血清代替物は、例えば、アルブミン、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素、2-メルカプトエタノール又は3'チオールグリセロール、あるいはこれらの均等物などを含有し得る。公知の方法(例えば、W0 98/30679を参照)により血清代替物を調製することができる。市販の血清代替物を用いることもできる。市販の血清代替物の例として、KSR(Invitrogen社製)、Chemically-defined Lipid concentrated (Gibco社製)、Glutamax (Gibco社製)が挙げられる。
 ステップ(1)では、以上のようにして用意した多能性幹細胞を、TGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養する。即ち、TGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤が添加された培地を用いて多能性幹細胞を培養する。尚、ステップ(1)は多能性幹細胞の神経分化能の亢進を目的とする。
 培地は、哺乳動物細胞の培養に用いる培地を基礎培地として調製することができる。基礎培地としては、例えば、BME培地、BGJb培地、CMRL1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium199培地、Eagle MEM培地、αMEM培地、DMEM培地、ハム培地、Ham's F-12培地、RPMI1640培地、Fischer's培地、Neurobasal培地、及びこれらの混合培地など、哺乳動物細胞の培養に用いることのできる培地であれば特に限定されない。一態様において、IMDM培地及びHam's F-12培地の混合培地が用いられる。混合比は、容量比で、例えば、IMDM:Ham's F-12=O.8~1.2:1.2~0.8である。
 培地にはTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤が添加される。TGF-βファミリー阻害剤とは、TGF-βとTGF-β受容体との結合を介するTGF-βシグナル伝達を阻害する物質である。TGF-β阻害剤にはタンパク質性阻害剤及び低分子阻害剤がある。タンパク質性阻害剤の例は、抗TGF-β中和抗体、抗TGF-β受容体中和抗体である。低分子阻害剤の例は、SB431542(4-[4-(1,3-ベンゾジオキソール-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]-ベンズアミド又はその水和物)、SB202190(4-(4-フルオロフェニル)-2-(4-ヒドロキシフェニル)-5-(4-ピリジル)-1H-イミダゾール)、SB505124(GlaxoSmithKline)、NPC30345、SD093、SD908、SD208(Scios)、LY2109761、LY364947、LY580276(Lilly Research Laboratories)である。好ましくは、SB431542を用いる。TGF-βファミリー阻害剤の濃度(培地への添加量)は、多能性幹細胞の神経分化能の亢進という目的が達成される限り特に限定されないが、SB431542を例としてその濃度を示すと、例えば0.5μM~20μM、好ましくは1μM~10μMである。尚、最適な濃度は予備実験を通して設定することができる。全培養期間を通してTGF-βファミリー阻害剤濃度を一定にするのではなく、例えば段階的にTGF-βファミリー阻害剤濃度を増加させるなど、TGF-βファミリー阻害剤濃度に変化を設けても良い。
 GSK3β阻害剤としては、CHIR99021(6-[[2-[[4-(2,4-ジクロロフェニル)-5-(4-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリル)、SB-415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)、SB-2167、indirubin-3’-Monoxime、Kenpaullone、BIO(6-ブロモインジルビン-3'-オキシム)等を用いることができる。好ましくは、CHIR99021を用いる。GSK3β阻害剤の濃度(培地への添加量)は、多能性幹細胞の神経分化能の亢進という目的が達成される限り特に限定されないが、CHIR99021を例としてその濃度を示すと、例えば0.5μM~20μM、好ましくは1μM~10μMである。尚、最適な濃度は予備実験を通して設定することができる。全培養期間を通してGSK3β阻害剤濃度を一定にするのではなく、例えば段階的にGSK3β阻害剤濃度を増加させるなど、GSK3β阻害剤濃度に変化を設けても良い。
 BMP阻害剤とは、BMP(bone morphogenetic protein)とBMP受容体(I型又はII型)との結合を介するBMPシグナル伝達(BMP signaling)を阻害する物質である。BMP阻害剤にはタンパク質性阻害剤と低分子阻害剤がある。タンパク質性阻害剤の例は、天然の阻害剤であるNoggin、chordin、follistatin等である。低分子阻害剤の例は、Dorsomorphin(6-[4-(2-ピペリジン-1-イルエトキシ)フェニル]-3-ピリジン-4-イルピラゾロ[1,5-a]ピリミジン)及びその誘導体、LDN-193189(4-(6-(4-piperazin-1-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)及びその誘導体である。これらの化合物は市販されており(例えばSigma-AldrichやStemgent社から入手できる)、容易に入手可能である。好ましくは、Dorsomorphinを用いる。BMP阻害剤の濃度(培地への添加量)は、多能性幹細胞の神経分化能の亢進という目的が達成される限り特に限定されないが、Dorsomorphinを例としてその濃度を示すと、例えば0.5μM~20μM、好ましくは1μM~10μMである。尚、最適な濃度は予備実験を通して設定することができる。全培養期間を通してBMP阻害剤濃度を一定にするのではなく、例えば段階的にBMP阻害剤濃度を増加させるなど、BMP阻害剤濃度に変化を設けても良い。
 必要に応じて、培地にその他の成分を添加してもよい。添加され得る成分の例として、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等を挙げることができる。
 多能性幹細胞は、通常、接着培養に供される。接着培養は浮遊培養と対照をなす培養であり、典型的には接着条件下で二次元培養(平面培養)する。但し、マトリゲルTM(BD)などを使用し、三次元的に培養することにしてもよい。接着培養には、例えば、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ等を用いることができる。培養面への細胞の接着性を高めるために、マトリゲルTM(BD)、ポリ-D-リジン、ポリ-L-リジン、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチン、或いはこれらの中の二つ以上の組み合わせによってコーティング処理された培養器を用いるとよい。
 フィーダー細胞の存在下/非存在下いずれの条件で多能性幹細胞の培養を行ってもよいが、臨床応用を視野に入れた場合等、安全性の高い細胞を提供することが望まれる場合には、フィーダー細胞の非存在下で培養(無フィーダー細胞培養)するとよい。尚、フィーダー細胞の例は、MEF(マウス胎仔線維芽細胞)、STO細胞(マウス胎仔線維芽細胞株)、SNL細胞(STO細胞のサブクローン)である。
 培養温度、C02濃度、02濃度等の他の培養条件は適宜設定できる。培養温度は例えば約30~40℃、好ましくは約37℃である。CO2濃度は例えば約1~10%、好ましくは約5%である。また、通常の酸素分圧下で培養すればよい。尚、他の条件(湿度、CO2の濃度等)によって変動し得るが、「通常の酸素分圧下」の場合の酸素濃度は典型的には約18%~約22%となる。尚、「通常の酸素分圧下」の詳細は後述する。
 ステップ(1)の期間(培養期間)は4日以上とし、具体的には例えば4日間~20日間、好ましくは6日間~14日間である。培養期間が短すぎることはニューロスフェア形成能低下を引き起こす。他方、培養期間が過度に長くなれば、ドパミン神経細胞の効率的な調製という、本発明の効果の一つが損なわれ得る。
 必要に応じて継代することにしてもよい。例えばサブコンフルエント又はコンフルエントの状態になった段階で細胞を回収し、一部の細胞を別の培養器に播種し、培養を継続する。細胞の回収には細胞解離液などを利用すればよい。細胞解離液としては、例えば、EDTA-トリプシン、コラゲナーゼIV、メタロプロテアーゼ等のタンパク分解酵素等を単独で又は適宜組み合わせて用いることができる。細胞障害性が少ないものが好ましい。このような細胞解離液として、例えば、ディスパーゼ(エーディア)、TrypLE (Invitrogen)又はアキュターゼ(MILLIPORE)等の市販品が入手可能である。分散(離散)状態となるように、回収後の細胞をセルストレイナーなどで処理した後に継代培養に供するとよい。
 ステップ(1)の結果、多能性幹細胞の神経分化能が亢進する。神経分化能が亢進したことは、ステップ(1)の開始前と比較して神経系マーカー(Sox2、nestin、Sox1等)の発現が上昇することを指標に確認できる。また、神経分化能が亢進したことの評価に未分化マーカーの発現を利用してもよい。
 通常、ステップ(1)後の細胞を一旦回収し、次の培養(ステップ(2))へ進む。回収操作は、継代培養の際の回収操作と同様に行うことができる。
 ステップ(2)
 このステップでは、ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させる。即ち、TGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストが添加された培地を用い、且つ通常の酸素分圧下という条件を採用し、ステップ(1)後の細胞を培養する。ステップ(2)は、神経細胞系譜に沿った分化を誘導することを目的とする。尚、特に言及しない事項(使用可能な基礎培地、使用可能なTGF-βファミリー阻害剤やGSK3β阻害剤、培地に添加可能な他の成分等)はステップ(1)と同様であり、その説明を省略する。
 浮遊培養には、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトル等を用いることができる。非接着性の条件下での培養を可能にするため、細胞非接着性の培養面を有する培養器を用いることが好ましい。該当する培養器としては、細胞非接着性になるようにその表面(培養面)を処理したもの、細胞の接着性向上のための処理(例えば、細胞外マトリクス等によるコーティング処理)がその表面(培養面)に施されていないもの、を挙げることができる。浮遊培養では、細胞の培養器に対する非接着状態を維持できればよく、静置培養を採用しても、あるは、旋回培養や振とう培養を採用してもよい。
 培地に添加する成分の内、TGF-βファミリー阻害剤とGSK3β阻害剤は上記の通りである。このステップにおいても、TGF-βファミリー阻害剤としてはSB431542を、GSK3β阻害剤としてはCHIR99021を用いることが好ましい。SB431542を用いた場合の培地中の濃度は、例えば0.5μM~20μM、好ましくは1μM~10μMである。同様に、CHIR99021を用いた場合の培地中の濃度は、例えば0.5μM~20μM、好ましくは1μM~10μMである。
 FGF8は線維芽細胞増殖因子ファミリーの一つである。FGF8は脊椎動物の脳形成の制御に関与し、中脳への領域化に必要である。本発明の目的を達成し得る限り、各種哺乳動物由来のFGF8を使用することが可能である。但し、使用する多能性幹細胞との間で由来(動物種)を合わせることが好ましい。従って、ヒト多能性幹細胞を用いる場合には、好ましくはヒトFGF8を採用する。ヒトFGF8とは、ヒトが生体内で天然に発現するFGF8のアミノ酸配列を有することを意味し、組換え体であってもよい。ヒトFGF8の代表的なアミノ酸配列としては、NCBIのアクセッション番号でNP_006110.1(fibroblast growth factor 8 isoform B precursor [Homo sapiens].)を例示することができる。FGF8の濃度(培地への添加量)は、神経細胞系譜に沿った分化誘導という目的が達成される限り特に限定されないが、例えば1 ng/ml~5μg/ml、好ましくは10~500 ng/ml、更に好ましくは50~400 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。
 ヘッジホッグシグナルアゴニストは、ソニックヘッジホッグ(SHH)シグナルを促進するものであれば特に限定されない。例えば、腹側化の誘導に有用なプルモルファミン(9-シクロヘキシル-N-[4-(4-モルホリニル)フェニル]-2-(1-ナフタレニルオキシ)-9H-プリン-6-アミン)を用いるとよい。プルモルファミンの濃度(培地への添加量)は、神経細胞系譜に沿った分化誘導という目的が達成される限り特に限定されないが、例えば1 ng/ml~5μg/ml、好ましくは10~500 ng/ml、更に好ましくは50~400 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。ヘッジホッグシグナルアゴニストとして、SAG(N-メチル-N′-(3-ピリジニルベンジル)-N′-(3-クロロベンゾ[b]チオフェン-2-カルボニル)-1,4-ジアミノシクロヘキサン)を用いることもできる。SAGを用いる場合の濃度(培地への添加量)は、神経細胞系譜に沿った分化誘導という目的が達成される限り特に限定されないが、例えば10 nM~100μM、好ましくは100 nM~10μM、更に好ましくは100 nM~2μMである。尚、最適な濃度は予備実験を通して設定することができる。
 全培養期間を通して各成分(TGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニスト)の濃度が一定であることは必須ではなく、特定の成分(二以上の成分であってもよい)又は全ての成分の濃度が培養途中で変化するようにしてもよい。例えば、FGF8及びヘッジホッグシグナルアゴニストの添加をステップ(2)の2日目~6日目に開始する。当該条件によれば、細胞への急激な刺激を緩和することができる。好ましくは、FGF8及びヘッジホッグシグナルアゴニストの添加をステップ(2)の3日目~5日目に開始する。
 神経細胞系譜に沿った分化誘導を促進するため、好ましくは、白血病抑制因子(leukemia inhibitory factor (LIF))も添加された培地を使用する。本発明の目的を達成し得る限り、各種哺乳動物由来のLIFを使用することが可能である。但し、使用する多能性幹細胞との間で由来(動物種)を合わせることが好ましい。従って、ヒト多能性幹細胞を用いる場合には、好ましくはヒトLIFを採用する。LIFの濃度は特に限定されないが、例えば0.25 ng/ml~1μg/ml、好ましくは1 ng/ml~50 ng/ml、更に好ましくは5 ng/ml~20 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。
 神経細胞系譜に沿った分化誘導を促進するため、好ましくは、bFGF(塩基性線維芽細胞増殖因子)も添加された培地を使用する。bFGFはFGF2とも呼ばれる。本発明の目的を達成し得る限り、各種哺乳動物由来のbFGFを使用することが可能である。但し、使用する多能性幹細胞との間で由来(動物種)を合わせることが好ましい。従って、ヒト多能性幹細胞を用いる場合には、好ましくはヒトbFGFを採用する。ヒトFGF2とは、ヒトが生体内で天然に発現するFGF2のアミノ酸配列を有することを意味する。ヒトFGF2の代表的なアミノ酸配列としては、NCBIのアクセッション番号でNP_001997.5(fibroblast growth factor 2 [Homo sapiens])を例示することができる。bFGFの濃度は特に限定されないが、例えば0.25 ng/ml~1μg/ml、好ましくは1 ng/ml~50 ng/ml、更に好ましくは3 ng/ml~30 ng/mlである。尚、最適な濃度は予備実験を通して設定することができる。
 細胞死抑制のために、好ましくは、ROCK阻害剤(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)(例えばY-27632やFasudil(HA-1077))も添加された培地を使用する。ROCK阻害剤としてY-27632を使用する場合の濃度は、例えば約1μM~約50μMである。尚、最適な濃度は予備実験を通して設定することができる。
 ROCK阻害剤は細胞が分散状態にあるときの細胞死を強力に抑止する。従って、ステップ(2)の全培養期間にわたってROCK阻害剤を使用するのではなく、細胞を播種する際(即ち、培養開始時)や、例えば継代培養のために細胞を回収して分散させる際にのみ、ROCK阻害剤を含有する培地で細胞を処理することにしてもよい。
 好ましくは、神経細胞系譜に沿った分化誘導に有利となるように、毛様体神経栄養因子(CNTF)、脳由来神経栄養因子(BDNF)、ニューロトロフィン3(NT-3)、ウシ胎児血清、N2サプリメント、B27サプリメント等を添加した培地を使用する。尚、N2サプリメントはGibco(製品名 N2 supplement(x100))等から入手することができ、B27サプリメントはGibco(製品名 B27 supplement(x100))等から入手することができる。
 更に、必要に応じて、培地にその他の成分を添加してもよい。添加され得る成分の例として、インスリン、鉄源(例えばトランスフェリン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清蛋白質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等を挙げることができる。
 このステップ(2)ではニューロスフィアを形成させるため浮遊培養を行う。例えば、無血清凝集浮遊培養法(SFEB法/SFEBq法。Watanabeら, Nature Neuroscience 8,288-296 (2005)、WO 2005/123902)やニューロスフィア法(Reynolds BA and Weiss S.,Science,USA,1992 Mar 27;255(5052):1707-10)などを採用することができる。
 本発明では、ステップ(2)を通常の酸素分圧下で実施する。細胞培養の際、生体内の環境を考慮して酸素濃度を低くした条件(低酸素分圧/低酸素濃度)が用いられることがあるが、本発明における「通常の酸素分圧下」はこのような特殊な条件と対照をなす。即ち、「通常の酸素分圧下」とは、酸素濃度を意図的に調整していない条件である。尚、他の条件(湿度、共存するCO2の濃度等)によって変動し得るが、「通常の酸素分圧下」の場合の酸素濃度は典型的には約18%~約22%となる。
 ステップ(2)を通常の酸素分圧下で実施することは全培養期間(ステップ(1)~ステップ(3))を通して特殊な酸素条件(典型的には低酸素環境)の設定を不要とし(即ち、ステップ(1)~(3)の全てを通常の酸素分圧下で実施することが可能になる)、さらにグリア細胞などの不要な細胞への分化誘導を抑制できることから、極めて実用性の高い調製方法となる。
 その他の培養条件(培養温度、C02濃度等)は適宜設定できる。培養温度は例えば約30~40℃、好ましくは約37℃である。CO2濃度は例えば約1~10%、好ましくは約5%である。
 ステップ(2)の期間(培養期間)は例えば7日間~21日間、好ましくは10日間~16日間である。培養期間が短すぎたり或いは長すぎたりすると、分化効率の低下のおそれがある。また、培養期間が過度に長くなれば、ドパミン神経細胞の効率的な調製という、本発明の効果の一つが損なわれ得る。
 形成されたニューロスフィアを回収して細胞を解離させた後、更なる浮遊培養に供することにしてもよい。即ち、継代培養を行ってもよい。但し、継代培養の回数は少ない方がよく、好ましくは継代培養の回数を1回又は0回(即ち、継代培養をしない)とする。継代培養の回数が少ないことは、短期間でのドパミン神経細胞の調製に有利であり、また、意図しない分化誘導(例えばグリア細胞への分化誘導)が促されることを回避するためにも有効と考えられる。その一方で、継代培養は細胞の純度向上に有効であるため、継代培養の回数は1回が最適といえる。継代培養を1回にする場合には、ステップ(2)の開始から6日目~10日目に継代するとよい。尚、継代培養に際してニューロスフィアを回収するときには、培養器表面に接着した細胞の混入を防ぐと良い。このような操作は、ドパミン神経細胞の調製効率や純度の向上に寄与し得る。
 ステップ(3)
 ステップ(2)によって形成されるニューロスフィアは神経系未分化細胞及び中脳系神経未分化細胞を含有する。ステップ(3)では、ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へと分化誘導する。ドパミン神経細胞への分化誘導に適した培地や培養条件は公知であり、また、基本的な培養方法や操作については、例えばThermoFisher社が提供するプロトコル(ThermoFisher社のウェブページで公開されている)等を参考にすることができる。具体的には、例えば、γ-セクレターゼ阻害剤、神経栄養因子、アスコルビン酸、TGF-β3、及びcAMP又はcAMPアナログを含有する培地で接着培養することにより、ドパミン神経細胞への分化を誘導する。好ましくは、γ-セクレターゼ阻害剤としてN-[N-(3,5‐ジフルオロフェナセチル-L-アラニル)]-S-フェニルグリシンt-ブチルエステルを、神経栄養因子として脳由来神経栄養因子(BDNF)とグリア細胞由来神経栄養因子(GDNF)を、cAMPアナログとしてジプチリルcAMPを用いる。
 典型的には、ステップ(2)で形成されたニューロスフィアを回収し、細胞を解離(単一細胞化)させ、培養器に播種して培養する。このような分散培養ではなく、回収したニューロスフィアを細胞塊のまま接着培養に供してもよい。この場合、通常は培養を継続するとニューロスフィアから周囲へと細胞が遊走し、遊走した細胞の中にドパミン神経細胞を認めることができる。
 ここでの接着培養には、例えば、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ等を用いることができる。培養面への細胞の接着性を高めるために、マトリゲルTM(BD)、ポリ-D-リジン、ポリ-L-リジン、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、エンタクチン、或いはこれらの中の二つ以上の組み合わせによってコーティング処理された培養器を用いるとよい。
 培養温度、C02濃度、02濃度等の他の培養条件は適宜設定できる。培養温度は例えば約30~40℃、好ましくは約37℃である。CO2濃度は例えば約1~10%、好ましくは約5%である。また、通常の酸素分圧下で培養すればよい。
 ステップ(3)の期間(培養期間)は特に限定されないが、例えば5日以上、好ましくは7日以上の培養を行う。過度に長い期間の培養は、細胞の疲弊ないし活性の低下、細胞死等を引き起こし得るが、一般に、培養期間が長いほど分化・成熟化が進む。従って、このステップの培養期間の上限は特に限定されないが、例えば培養期間を5日間~21日間とする。必要に応じて継代することにしてもよい。例えばサブコンフルエント又はコンフルエントの状態になった段階で細胞を回収し、一部の細胞を別の培養器に播種し、培養を継続する。
 ステップ(3)によって、ドパミン神経細胞が得られる。ドパミン神経細胞はドパミンマーカー(チロシンヒドロキシラーゼ、ドパミントランスポーター)の発現、中脳マーカーとしてのFOXA2等を指標として、或いはドパミン産生能の評価(後述の実施例を参照)によって同定ないし確認することができる。
 使用する細胞の種類や細胞の状態、及び各ステップの培養条件によって変動し得るが、本発明の調製方法によれば、21日間~30日間程度で多能性幹細胞からドパミン神経細胞を得ることが可能である。
2.ドパミン神経細胞の用途
 本発明の第2の局面は本発明の調製方法で得られたドパミン神経細胞の用途に関する。本発明のドパミン神経細胞はそれ自体、各種神経疾患に対する治療薬ないし移植材料として利用され得る。本発明のドパミン神経細胞の適用が想定されるのは、典型的には、ドパミン系薬剤がその治療に使用される中枢神経系疾患、例えば統合失調症、双極性障害、注意欠如多動症、自閉スペクトラム症、パーキンソン病である。移植医療などへの適用に先立って、調製した細胞を細胞表面マーカー、形態、分泌物質などを指標として精製ないし純化してもよい。
 一方、本発明のドパミン神経細胞は実験ツールとしても有用であり、例えば、各種神経疾患に対する医薬(治療薬、予防薬)の開発における各種アッセイ(薬剤スクリーンニング系、薬効評価系、薬剤応答アッセイなど)、各種神経疾患の発症・進展メカニズムの解明/理解を目指した研究での各種アッセイ(遺伝子発現解析、プロテオミクス解析、形態解析、神経電気生理的解析など)、神経毒性の評価(毒性評価系)に適用可能である。また、非ヒト動物を用いたin vivoアッセイにも適用可能である。尚、本発明の調製方法で得られるドパミン神経細胞が各種アッセイに有用であることは、後述の実施例で実証されている。
<ドパミン神経細胞の新規調製方法の確立とそれを利用した研究>
 統合失調症(SCZ)や自閉スペクトラム症(ASD)の病態仮説として、神経発達の障害が重要な役割を果たしていると考えられている。発達期から既に特性が顕在化するASDのみならず、SCZにおいても、明白な精神症状が現れていない発症前からいくつかの認知機能障害や神経生理学的或いは神経画像的変化があることや、SCZやASDの死後脳を用いた検討の結果、神経細胞による脳構築の障害が認められたことが報告されている。これらの報告からすると、胎児期から始まる神経発達の障害がSCZやASDの発症病因になることが推測されるが、SCZやASD患者の脳内病態の詳細は不明である。
 SCZやASDのゲノム解析研究により、両疾患ともに神経発達に関与する遺伝子上の変異が複数同定されており、そのひとつがRELNにおける変異である。RELNによってコードされるタンパク質reelinは巨大な分泌タンパク質であり、発達期の脳の層構造形成に必須とされている。ヒトではRELNのホモ欠失変異を有すると、発達遅延を伴う滑脳症を呈し、reelinの減少は神経発達障害の発症との関連性が報告されている。同様に、Reln変異マウスであるreelerマウスでは脳層構造の乱れや異常行動が見られ、また、ひとつひとつの神経細胞の遊走方向異常も報告されている。これらの報告から、ヒトにおいても、脳内のreelinが減少すると、不安定な神経遊走が起こる可能性が示唆され、SCZやASDに関与する神経発達の障害を来すことが予想される。
 Reelinを発現する神経細胞種は複数存在するが、その中でもチロシンヒドロキシラーゼ(tyrosin hydroxylase; TH)陽性のドパミン神経細胞は、出生前後の限定された時期にのみreelinを発現することがマウスを用いた研究で報告されている。Reelinは限定的な時期にしか発現しないにもかかわらず、Relnが変異したreelerマウスではドパミン神経細胞の異常が確認されている。一方、SCZやASDの病態にドパミン系が関与するとの報告が多数存在することから、ドパミン神経細胞とreelinの関係を調べることで、SCZやASDの発症メカニズム解明への手掛かりが得られる可能性が示唆される。
 そこで、本研究では、RELN欠失を伴うSCZ患者及びその健常な家族、計2名からのiPS細胞の樹立、およびゲノム編集によって人工的にRELN欠失iPS細胞(RELN欠失アイソジェニック株)を作製することを試みた。その際、今後の発展、応用を見据え、iPS細胞からドパミン神経細胞を調製(分化誘導)する方法に改良を加えることにした。
 以下に示すように、確立に成功した新規調製方法によって、全てのiPS細胞はTH陽性ドパミン神経細胞への分化が可能であった。ライブイメージング解析により、RELN欠失iPS細胞由来のドパミン神経細胞は遊走距離の異常ではなく、遊走方向の異常を呈することが明らかとなった。これらの知見は、発達期のヒト脳におけるreelin機能不全の影響の解明に寄与し、RELN変異がSCZに至る分子病態を反映していると考えられる。
1.材料と方法
(1)iPS細胞樹立対象者
 RELN欠失者2名(親子であり、子は統合失調症患者、母親は健常者)
 健常対照(コントロール)2名(健常者男性2名、RELN欠失なし)
(2)iPS細胞の樹立
 健常者女性対照(201B7)は理化学研究所バイオリソースセンター(BRC)から入手した。RELN欠失を含め、ゲノム異常がないことを事前に確認した。その他のiPS細胞については、既報(Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nature methods 8, 409-412 (2011))に準じて末梢リンパ球からエピソーマルベクターを用いて樹立した。樹立したiPS細胞はフィーダー細胞(mitomycin-C処理したマウス胎児線維芽細胞:MEF)上でiPS細胞培地(20% KSR, 2mM L-グルタミン, 0.1 mM 非必須アミノ酸, 2-メルカプトエタノール, ペニシリン/ストレプトマイシン及びbFGFを含有するDMEM/F12)を用いて培養した。フィーダーフリー培養の際は、MatrigelTM(BD)コートをした培養皿上でiPS細胞を培養した。培地は一晩フィーダー細胞に暴露したiPS細胞培地(MEFコンディション培地)を使用した。
(3)アレイCGH
 ゲノムDNAは末梢血又はフィーダーフリー条件で培養したiPS細胞から分離した。アレイCGHについては既報(Kushima, I. et al. High-resolution copy number variation analysis of schizophrenia in Japan. Molecular psychiatry (2016))に準じて実施した。
(4)胚様体(EB)形成及びin vitroでの三胚葉分化能確認
 iPS細胞をTrypLETM select(Thermo Fisher Scientific Inc.)によって分散させた後、DMEM/F12培地(5% KSR, 2mM L-グルタミン, 0.1 mM 非必須アミノ酸, 2-メルカプトエタノール, Y27632, ペニシリン/ストレプトマイシンを含む)にて7日間浮遊培養し、EBを形成させた。その後、EBを10%FBS DMEM培地下でゼラチンコート培養皿上に播種し、7日間かけて自発的に分化誘導させた。
(5)CRISPR/Cas9システム
 Cas9発現ベクターとsgRNA発現ベクターはAddgeneより入手した。
(6)HEK293FTとヒトiPS細胞へのCRISPRの導入
 HEK293FTは10% DMEM培地にて培養した。Lipofectamine3000を用いてCas9発現ベクターとsgRNA発現ベクターをコトランスフェクションし、48時間後、ピューロマイシンによる選択を行った。ヒトiPS細胞の場合は、フィーダーフリー条件下で培養した201B7とNC779の健常対照株を用いた。10μMのY-27632にて前処理した後、TrypLETM select(Thermo Fisher Scientific Inc.)を用いて分散させた。その後、FuGENE(登録商標) HD(プロメガ社)を用いてCas9発現ベクターとsgRNA発現ベクターをコトランスフェクションし、1 × 106個/ウェルにてMatrigelTM(BD)コーティングした6ウェルプレート上に播種した。24時間後、ピューロマイシンによる選択を行った。
(7)T7EIアッセイ
 sgRNAの切断活性を調べるため、T7EIアッセイを行った。標的領域をPCRによって増幅し、熱変性(95℃で2分)、再アニーリング化(-0.1℃/秒で85℃から25℃に降温)させた。その後、T7EIによってDNA切断を行い、1.5%ゲルにて産物を電気泳動した。
(8)神経分化
 ドパミン神経細胞への分化は既報(Fujimori, K. et al. Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines. Molecular brain 9, 88 (2016))に改良を加えて行った。まず、iPS細胞をSB431542(3μM)、CHIR99021(3μM)、dorsomorphin(3μM)を添加したiPS細胞培地にて7日間培養した(0日目~7日目)。その後、TrypLETM select(Thermo Fisher Scientific Inc.)によって分散させ、セルストレイナーに通したものをニューロスフィア培地(DMEM/F12に1×N2サプリメント, 0.6% グルコース, ペニシリン/ストレプトマイシン, 5mM HEPESを添加した培地(MHM培地)に、1×B27サプリメント, 20 ng/ml bFGF, 10 ng/ml human LIF, 10μM Y27632, 3μM CHIR99021, 2μM SB431542, 100 ng/ml FGF8及び1μM プルモルファミンを添加したもの)にて2週間浮遊培養することでニューロスフィアを形成させた(7日目~21日目)。FGF8とプルモルファミンは10日目から添加した。また、14日目にニューロスフィアを回収し、分散させて単一細胞化した後、再度浮遊培養し、ニューロスフィア(二次ニューロスフィア)を再形成させた。
 21日目にニューロスフィアをMatrigel TM(BD)コート又はポリ-L-オルニチン/ラミニンコートした培養皿に播種し、ドパミン神経細胞用培地(MHM培地にB27サプリメント, 10μM DAPT, 20 ng/ml BDNF, 20 ng/ml GDNF, 0.2 mM アスコルビン酸, 1 ng/ml TGF-β3及び0.5 mM dbcAMPを添加したもの)にて培養することでドパミン神経細胞へと分化誘導させた(21日目以降)。尚、全ての培養は、通常のCO2インキュベータ(5%CO2。酸素濃度は18.5%~19.5%(調整していない))内で培養した。
 以上のプロトコルで健常者iPS細胞をドパミン神経細胞へ誘導し、28日目と42日目の培養上清中のドパミン濃度を測定した(図5)。また、28日目の細胞を固定し、中脳マーカー(FOXA2)とドパミン神経細胞マーカー(TH)で染色した(図6)に示す。経時的なドパミン量増加が認められ(図5)、ドパミン神経細胞への分化誘導が達成できていること、及び培養期間の長期化に伴って成熟化が進むことが確認された。また、共陽性を示す細胞が見られることから(図6)、中脳ドパミン神経細胞へ誘導されていることがわかる。
(9)神経遊走試験
 二次ニューロスフィア(21日目)を一つずつMatrigel M(BD)コート培養皿上へ播種し、ドパミン神経細胞用培地で培養した。動画はIncuCyte(登録商標)(ESSEN BIOSCIENCE)にて撮影した。細胞トラッキングのために、播種後48時間~52時間の計4時間の間、15分おきに連続撮影し、ImageJを用いて解析した。遊走距離は各撮影点におけるXY座標によって計算した。
 細胞ひとつひとつの遊走角度の解析にはMATLAB(Mathworks, Natick)を用いた。各時点での細胞の位置をXY座標により獲得し、基準点からの移動角度を計測した。画像n枚目における細胞の位置をCellnと定義し、スタート地点(=播種してから48時間後の細胞の位置)をCell0とした。4時間の細胞遊走方向の平均値を座標軸として定義した。細胞の各時点での遊走角度は座標軸からの角度とした。連続する2枚の画像間で細胞が移動していない場合は、解析対象外とした。
(10)免疫細胞染色
 細胞を4%パラフォルムアルデヒドにて固定(15分間、室温)した。膜透過とブロッキングの処理のため、1 %BSAと0.3%TritonX-100を含むPBSに1時間、細胞を浸漬した。その後、一次抗体反応(4℃、一晩)を実施した。PBSで洗浄後、蛍光標識した二次抗体と反応させた(室温、1時間)。一次抗体にはTRA-1-60 (abcam)、NANOG (abcam)、SOX17 (R&D systems)、αSMA (R&D systems)、TUJ1 (SIGMA)、TH (Chemicon)及び Reelin (MBL)を使用した。写真観察にはBZ-9000(KEYENCE)又はLS780(Zeiss)を用いた。
(11)培地中のドパミン濃度測定
 分化誘導して得られたドパミン神経細胞のドパミン産生能を調べるため、ELISAキット(DLD EA608-96)を用いて培養上清中のドパミン濃度を測定した。サンプルには28日目の培養上清を用いた。少なくとも3回の独立した実験(培養)で得られた培養上清を使用した。
(12)DNAマイクロアレイと定量的PCR
 全RNAはRNeasy Plu Mini Kitを用いて抽出した。DNAマイクロアレイはSurePrint G3 Hmm GE 8x60K V2 Microarray Kit (Agilent Technology)を用いて実施し、GeneSpring GX software program (version 13; Aglilent Technology)によって解析した。逆転写反応にはHigh-Capacity cDNA Transcription Kit (Applied Biosystems)を用いた。定量的PCRによる遺伝子発現解析は7900HT (Applied Biosystems)にてKAPA SYBR Fast qPCR Kit (KAPA BIOSYSTEMS)を用いて実施した。
(13)統計解析
 平均値の比較は、二群間の場合はStudentのt検定(両側検定)、三群間の場合はANOVA検定後Dunnett法を用いた。分布の比較は、ピアソンのカイの二乗検定を用いた。いずれもp<0.05を有意とした。
2.結果
(1)RELN欠失iPS細胞の作製
 健常対照2名(CON779とCON1004)及びRELN欠失2名(SCZ339とFAM258)の末梢リンパ球を用いてエピソーマルベクター法によってiPS細胞を樹立した。得られた各iPS細胞について、多能性マーカー(NANOGとTRA-1-60)の発現と、三胚葉への分化能(内胚葉:SOC17、中胚葉:αSMA、外胚葉:Tuj1)を確認した(FAM258の結果を図1AとBに示す)。
 樹立したiPS細胞のゲノム整合性を評価するため、アレイCGHおよびTaqMan Copy Number assayによるゲノム解析を行った。RELN欠失iPS細胞ではRELN欠失が確認された(図1C)。iPS細胞における染色体の異数性(=CNV)は樹立過程において起こりうる現象である。今後の解析への影響を懸念し、RELN欠失以外のCNVが見つかったiPS細胞ラインは解析から除外した。ただし、CON779については、20q11.21の重複が新たに見つかったが解析に使用した(このCNVはヒトES細胞においても頻繁に同定されるCNVだからである)。
 今回の研究では、RELN欠失を保有する人はNS339とNF258以外に同定できなかった。この2人は親子のため、この2人由来のiPS細胞で観察された表現型が、RELN欠失のためなのか、この親子に特異的なのかは判定が困難と考えられる。そこで、CRISPR/Cas9システムを用い、人工的にRELN欠失アイソジェニックiPS細胞株を作製した。4種類の一本鎖ガイドRNA(sgRNA)をRELN欠失領域に設計した(図1D)。T7EIアッセイの結果、sgRNA#4が最も切断効率が良いことがわかった(図1E)ため、sgRNA#4を用いてアイソジェニック株を作製することにした。結果の再現性とオフターゲットの可能性を除くため、2つの健常対照(201B7とCON779)からそれぞれアイソジェニック株を作製した。図1Fに示したとおり、複数のアイソジェニック株が作製できた。いずれも三胚葉分化能を保持したままであった(図1G)。さらに、CCTopを用いてオフターゲットの可能性を調べた。その結果、エクソン領域で予想される切断領域は目的とするRELNのみであった(データを示さず)。
(2)ヒトiPS細胞由来ドパミン神経細胞はreelinを発現する
 iPS細胞由来神経系細胞がreelinを発現するかどうかを調べるため、まずニューロスフィア(21日目)とドパミン神経細胞(28日目)におけるRELN mRNAの発現レベルを定量的RT-PCRによって解析した。健常対照群において、ドパミン神経細胞におけるRELN発現はニューロスフィアでの発現よりも上昇していた(図2A)。このことは、ドパミン神経細胞がreelinを発現している可能性を示唆する。一方で、RELN欠失iPS細胞由来の神経系、特にドパミン神経細胞では健常対照群に比べてRELN mRNA発現の低下が認められた。
 次に、免疫細胞染色を用いて、ドパミン神経細胞におけるreelinの発現を調べた。親株である201B7とアイソジェニック株(ヘテロ欠失、ホモ欠失)を使用した。201B7ではTH陽性神経細胞においてreelinの発現が確認され、ヘテロ欠失株201B7(+/-)では、ややシグナルが弱いもののreelinの発現が確認できた。しかし、ホモ欠失株201B7(-/-)ではreelinシグナルが検出されなかった(図2D)。以上の結果から、過去にマウスで報告されているように、ヒトにおいてもTH陽性ドパミン神経細胞でreelinが発現していることが明らかとなり、また、RELN欠失株ではreelinの発現異常が認められることが示された。
(3)RELN欠失iPS細胞も健常対照iPS細胞と同様にTH陽性神経細胞へと分化する
 既報(Hook, V. et al. Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem cell reports 3, 531-538 (2014)、Robicsek, O. et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Molecular psychiatry 18, 1067-1076 (2013))によると、統合失調症患者由来iPS細胞はドパミン神経細胞への分化異常を示す。そこで、健常コントールiPS細胞とRELN欠失iPS細胞の間でTH陽性細胞への分化能を比較した。図3AとBに示したとおり、新たに確立したプロトコルでは、RELN欠失に関係なく全てのiPS細胞が高効率にTH陽性細胞へと分化した。図3Bはステップ(3)開始から48時間後の結果を示すが、培養を継続しステップ(3)開始から7日目の時点での201B7、CON779及びCON1004についてTH陽性率を測定したところ、いずれも85%以上であった。
 次に、ニューロスフィアを用いて、健常対照iPS細胞(CONT:201B7とCON779)と先天性RELN欠失親子(RELN-del:SCZ339とFAM258)の網羅的遺伝子発現比較解析をDNAマイクロアレイによって実施した。ドパミン代謝に関係する遺伝子のうち、COMTの発現がRELN-del群において顕著に高かった(20倍以上)(図3C)。COMTはcatechol-O-methyltransferaseという酵素をコードする遺伝子であり、この酵素は脳内におけるドパミン濃度の調整にも関与している。RELN欠失親子で認められたCOMTの高発現がRELN欠失によるものであるか否かを明らかにするため、RELN欠失アイソジェニック株も用い、定量PCRで解析した。その結果、COMTの高発現はRELN欠失親子(SCZ339とFAM258)のみで認められ、RELN欠失アイソジェニック株では認められなかった。
 ドパミン産生能を調べるため、ELISAキットを用いて培養上清中のドパミン濃度を測定した。その結果、先天性RELN欠失親子では健常対照群に比べて有意なドパミン量低下が認められた。一方、アイソジェニック株については、いずれも親株と同等のドパミン量を示した(図3E)。
(4)RELN欠失iPS細胞由来神経細胞は遊走方向異常を示す
 reelerマウスの発達期の脳において、ドパミン神経細胞は遊走方向の異常を呈すことが報告されている(Bodea, G.O. et al. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development (Cambridge, England) 141, 661-673 (2014))。ヒトでも同様の異常が起きているか否かを調べるため、RELN欠失神経細胞を用いた細胞トラッキングアッセイを実施した。健常対照(201B7, CON779, CON1004)由来ドパミン神経細胞は、ニューロスフィアの端から外側に向かって真っ直ぐに遊走するのに対し、RELN欠失神経細胞では遊走の方向性に異常が認められた(図4A)。客観的評価のため、各群について定量解析を行った。4時間の総移動距離で比較したところ、RELN欠失親子は健常対照群に比べて有意な低値を示した(図4B)。一方で、ホモ欠失Ig201B7(-/-)を除くアイソジェニック株では差は認められなかった。4時間の開始点(48h)と終了点(52h)の2点間の距離を定量化したところ、RELN欠失親子群は最も距離が短く、アイソジェニック株においても親株と比べると短い距離を示した(図4C)。このことから、RELN欠失株は真っ直ぐ遊走していないことが予想される。実際、総移動距離と2点間の距離の比(2点間の距離/総移動距離)をとってみると、RELN欠失の全ての群で有意な低値が認められ、RELN欠失神経細胞は遊走の方向性を失っていることが明らかとなった。
 神経遊走方向についてさらに詳細に解析するため、細胞ひとつひとつの各点における遊走角度を計測した。測定メトリクスは図4Eに示した。Cellnの遊走角度(αCelln)は標準軸とCellnの位置ベクトルがなす角度と定義した。正の角度は反時計回りを示し、負の角度は時計回りを示す。図4FとGに示したように、健常対照群では各点の角度はほとんどが-20°<αCell <20°(201B7:87%、CON779:83%、CON1004: 80%)であった。一方で、RELN欠失群では、SCZ339:50%、FAM258:47%、Ig201B7((+/-): 71%, Ig201B7(-/-): 65%, IgCON779(+/-): 73%、IgCON779(-/-): 70%となり、RELN欠失によって、通常の神経遊走方向の指向性を失っていた。角度による分布の比較でも、RELN欠失による有意な角度変化が認められた(図4G)。以上から、reelinの減少はヒト神経細胞のランダムな遊走を引き起こすことが明らかになった。
3.まとめ
 神経発達に関わるreelinの遺伝子(RELN)に生じる変異は、統合失調症や自閉スペクトラム症の発症に関わると考えられているが、発症に至る分子メカニズムの詳細は明らかになっていない。この課題に取り組むため、先天性にRELN欠失を保有する人からiPS細胞を樹立するとともに、ゲノム編集を利用してRELN欠失アイソジェニック株を作製した。新たに確立したプロトコルでTH陽性神経細胞に分化誘導させ、その特性を検討した。まず、樹立したiPS細胞をTH陽性神経細胞へと分化誘導させたところ、対照株に比べ、RELN欠失株ではreelinの発現低下が認められた。しかし、TH陽性神経細胞への分化効率についてはRELN欠失の有無は影響なく、全ての群で高効率に誘導が可能であった。つまり、確立したプロトコルを用いると、RELN欠失の有無にかかわらず、等質性の高いTH陽性細胞での解析が可能であった。RELN欠失TH陽性神経細胞の遊走性を解析したところ、対照神経細胞と比べた最大の特徴は神経遊走方向の統制がとれなくなることであった。リアルタイムライブイメージング観察の結果、対照神経細胞は方向性が一定の遊走が見られるのに対し、RELN欠失神経細胞は方向性が一定しない遊走が確認された。これは、遊走方向の角度を定量化する、極座標ヒストグラム解析によっても再確認された。本結果は、ヒト脳におけるreelinの機能の一端を解明したと考えられ、精神疾患発症の脆弱性現象を模倣していると予想される。RELN欠失iPS細胞はヒトにおける脳発達障害の解明ツールに新たな知見をもたらし、治療薬開発に役立つだろう。
 本発明の調製方法によれば、特殊な装置を用いなくとも、特異的/効率的に、しかも短期間で多能性幹細胞からドパミン神経細胞を調製することが可能となる。本発明の調製方法で得られるドパミン神経細胞は、各種神経疾患に対する治療薬ないし移植材料として利用され得る。また、実験ツールとしても有用であり、各種アッセイに利用され得る。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (20)

  1.  以下のステップ(1)~(3)を含む、ドパミン神経細胞の調製方法:
    (1)多能性幹細胞をTGF-βファミリー阻害剤、GSK3β阻害剤及びBMP阻害剤の存在下で培養するステップ、
    (2)ステップ(1)で得られた細胞をTGF-βファミリー阻害剤、GSK3β阻害剤、FGF8及びヘッジホッグシグナルアゴニストの存在下且つ通常の酸素分圧下で浮遊培養し、ニューロスフィアを形成させるステップ、
    (3)ニューロスフィアを構成する細胞を回収し、ドパミン神経細胞へ分化誘導するステップ。
  2.  多能性幹細胞が人工多能性幹細胞である、請求項1に記載の調製方法。
  3.  多能性幹細胞がヒト細胞である、請求項1又は2に記載の調製方法。
  4.  TGF-βファミリー阻害剤が4-[4-(1,3-ベンゾジオキソール-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]-ベンズアミド又はその水和物である、請求項1~3のいずれか一項に記載の調製方法。
  5.  GSK3β阻害剤が6-[[2-[[4-(2,4-ジクロロフェニル)-5-(4-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリルである、請求項1~4のいずれか一項に記載の調製方法。
  6.  BMP阻害剤が6-[4-(2-ピペリジン-1-イルエトキシ)フェニル]-3-ピリジン-4-イルピラゾロ[1,5-a]ピリミジンである、請求項1~5のいずれか一項に記載の調製方法。
  7.  ヘッジホッグシグナルアゴニストが9-シクロヘキシル-N-[4-(4-モルホリニル)フェニル]-2-(1-ナフタレニルオキシ)-9H-プリン-6-アミンである、請求項1~6のいずれか一項に記載の調製方法。
  8.  ステップ(2)における、通常の酸素分圧下で浮遊培養によって、グリア細胞などの不要な細胞への分化誘導が抑制される、請求項1~7のいずれか一項に記載の調製方法。
  9.  ステップ(2)における継代の回数が0回又は1回である、請求項1~8のいずれか一項に記載の調製方法。
  10.  継代の回数が少ないことにより、意図しない分化誘導の促進が回避される、請求項9に記載の調製方法。
  11.  ステップ(1)の培養期間が4日以上である、請求項1~10のいずれか一項に記載の調製方法。
  12.  ステップ(1)~(3)の全てが通常の酸素分圧下で実施される、請求項1~11のいずれか一項に記載の調製方法。
  13.  通常の酸素分圧下が、酸素濃度が18%~22%の条件である、請求項1~12のいずれか一項に記載の調製方法。
  14.  ステップ(2)の培養が、LIF、bFGF及びROCK阻害剤が更に存在する条件下で行われる、請求項1~13のいずれか一項に記載の調製方法。
  15.  ステップ(2)の培養期間が7日間~21日間である、請求項1~14のいずれか一項に記載の調製方法。
  16.  ステップ(3)が、γ-セクレターゼ阻害剤、神経栄養因子、アスコルビン酸、TGF-β3、及びcAMP又はcAMPアナログの存在下での接着培養を含む、請求項1~15のいずれか一項に記載の調製方法。
  17.  γ-セクレターゼ阻害剤がN-[N-(3,5‐ジフルオロフェナセチル-L-アラニル)]-S-フェニルグリシンt-ブチルエステルであり、神経栄養因子が脳由来神経栄養因子(BDNF)とグリア細胞由来神経栄養因子(GDNF)であり、cAMPアナログがジプチリルcAMPである、請求項16に記載の調製方法。
  18.  ステップ(3)の培養期間が5日間~21日間である、請求項16又は17に記載の調製方法。
  19.  請求項1~18のいずれか一項の調製方法で得られたドパミン神経細胞。
  20.  請求項19に記載のドパミン神経細胞を用いた、in vitroアッセイ。
PCT/JP2018/015304 2017-04-19 2018-04-11 ドパミン神経細胞の調製方法 WO2018193949A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019513586A JPWO2018193949A1 (ja) 2017-04-19 2018-04-11 ドパミン神経細胞の調製方法
EP18787555.4A EP3613848A4 (en) 2017-04-19 2018-04-11 METHOD FOR PRODUCING DOPAMINERGEN NEURONS
US16/605,940 US20210123017A1 (en) 2017-04-19 2018-04-11 Method for producing dopaminergic neurons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-082600 2017-04-19
JP2017082600 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018193949A1 true WO2018193949A1 (ja) 2018-10-25

Family

ID=63856723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015304 WO2018193949A1 (ja) 2017-04-19 2018-04-11 ドパミン神経細胞の調製方法

Country Status (4)

Country Link
US (1) US20210123017A1 (ja)
EP (1) EP3613848A4 (ja)
JP (1) JPWO2018193949A1 (ja)
WO (1) WO2018193949A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154272A (ja) * 2018-03-08 2019-09-19 国立大学法人名古屋大学 細胞内カルシウム動態評価系
CN110872576A (zh) * 2019-06-06 2020-03-10 中国科学院广州生物医药与健康研究院 一种将小鼠成纤维细胞转分化为多巴胺能神经元的方法
CN112011510A (zh) * 2019-05-30 2020-12-01 中国科学院上海有机化学研究所 一种由人多能干细胞制备多巴胺神经元的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521903B (zh) * 2022-09-30 2024-05-17 中国科学院生态环境研究中心 体外诱导人多能干细胞分化为多巴胺能神经元的方法
CN115896024B (zh) * 2022-11-30 2023-06-13 苏州大学附属第二医院 一种多巴胺能神经元的诱导分化方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
WO2005123902A1 (ja) 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法
WO2013187416A1 (ja) 2012-06-12 2013-12-19 学校法人 慶應義塾 神経系分化に適したiPS細胞の増幅方法、及び神経幹細胞の誘導方法
US20150010515A1 (en) * 2012-01-11 2015-01-08 Max- Planck-Gesellschaft zur Förderung der Wissenschaften E.V. Mammalian neural plate border stem cells capable of forming neural tube and neural crest cell lineages including central and peripheral neurons
WO2015020234A1 (ja) 2013-08-06 2015-02-12 武田薬品工業株式会社 ドパミン神経細胞の製造方法
WO2016115407A1 (en) * 2015-01-14 2016-07-21 Memorial Sloan-Kettering Cancer Center Age-modified cells and methods for making age-modified cells
WO2017009766A1 (en) * 2015-07-10 2017-01-19 Université Du Luxembourg Long-term self-renewing neural stem cells
JP2017082600A (ja) 2015-10-23 2017-05-18 本田技研工業株式会社 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015034012A1 (ja) * 2013-09-05 2015-03-12 国立大学法人京都大学 新規ドーパミン産生神経前駆細胞の誘導方法
AU2017254268B2 (en) * 2016-04-22 2023-03-16 Kyoto University Method for producing dopamine-producing neural precursor cells

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
WO2005123902A1 (ja) 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法
US20150010515A1 (en) * 2012-01-11 2015-01-08 Max- Planck-Gesellschaft zur Förderung der Wissenschaften E.V. Mammalian neural plate border stem cells capable of forming neural tube and neural crest cell lineages including central and peripheral neurons
WO2013187416A1 (ja) 2012-06-12 2013-12-19 学校法人 慶應義塾 神経系分化に適したiPS細胞の増幅方法、及び神経幹細胞の誘導方法
WO2015020234A1 (ja) 2013-08-06 2015-02-12 武田薬品工業株式会社 ドパミン神経細胞の製造方法
WO2016115407A1 (en) * 2015-01-14 2016-07-21 Memorial Sloan-Kettering Cancer Center Age-modified cells and methods for making age-modified cells
WO2017009766A1 (en) * 2015-07-10 2017-01-19 Université Du Luxembourg Long-term self-renewing neural stem cells
JP2017082600A (ja) 2015-10-23 2017-05-18 本田技研工業株式会社 内燃機関の制御装置

Non-Patent Citations (50)

* Cited by examiner, † Cited by third party
Title
"Manipulating the Mouse Embryo A Laboratory Manual", 1994, COLD SPRING HARBOR LABORATORY PRESS
AKIRA IRITANI ET AL., TANPAKUSHITSU KAKUSAN KOSO, vol. 44, 1999, pages 892
BAGUISI ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 456
BIOCHIM BIOPHYS ACTA, vol. 1850, no. 1, September 2015 (2015-09-01), pages 1669 - 32
BODEA, G.O. ET AL., REELIN AND CXCL12 REGULATE DISTINCT MIGRATORY BEHAVIORS DURING THE DEVELOPMENT OF THE DOPAMINERGIC SYSTEM., ENGLAND, vol. 141, 2014, pages 661 - 673
CHEN HM ET AL.: "Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients", TRANSLATIONAL PSYCHIATRY, vol. 4, 25 March 2014 (2014-03-25), pages e375, XP055560524, Retrieved from the Internet <URL:doi:10.1038/tp.2014.12> *
CHUNG Y. ET AL., CELL STEM CELL, vol. 2, 2008, pages 113 - 117
CIBELLI ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920
FUJIMORI KOKI ET AL.: "Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines", MOLECULAR BRAIN, vol. 9, no. 1, 3 October 2016 (2016-10-03), pages 88, XP055560521, Retrieved from the Internet <URL:doi:10.1186/s13041-016-0267-6> *
FUJIMORI, K. ET AL.: "Modeling neurological diseases with induced pluripotent cells reprogrammed from immortalized lymphoblastoid cell lines", MOLECULAR BRAIN, vol. 9, 2016, pages 88, XP055560521, DOI: 10.1186/s13041-016-0267-6
HOOK, V. ET AL.: "Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons", STEM CELL REPORTS, vol. 3, 2014, pages 531 - 538
KIM DKIM CHMOON JI ET AL., CELL STEM CELL, vol. 4, 2009, pages 472 - 476
KIM ET AL., CELL STEM CELL, vol. 1, 2007, pages 346 - 352
KIM JB ET AL., CELL, vol. 136, no. 3, 2009, pages 411 - 419
KIM JB ET AL., NATURE, vol. 454, no. 7204, 2008, pages 646 - 650
KLIMANSKAYA I. ET AL., NATURE, vol. 444, 2006, pages 481 - 485
MATSUI ET AL., CELL, vol. 70, 1992, pages 841 - 847
MOLECULAR BRAIN, vol. 9, 2016, pages 88
NAKAGAWA M ET AL., NAT. BIOTECHNOL., vol. 26, no. 11, 2008, pages 1269 - 1275
NAKAJIMA ET AL., STEM CELLS, vol. 25, 2007, pages 983 - 985
NAT COMMUN., vol. 7, 14 October 2016 (2016-10-14), pages 13097
NATURE GENETICS, vol. 22, 1999, pages 127
OKITA, K. ET AL.: "A more efficient method to generate integration-free human iPS cells", NATURE METHODS, vol. 8, 2011, pages 409 - 412, XP055176852, DOI: 10.1038/nmeth.1591
PLOS ONE, vol. 9, no. 2, 21 February 2014 (2014-02-21), pages e87388
PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 14984
REVAZOVA ET AL., CLONING STEM CELLS, vol. 10, 2008, pages 11 - 24
REVAZOVA ET AL., CLONING STEM CELLS, vol. 9, 2007, pages 432 - 449
REYNOLDS BAWEISS S., SCIENCE, USA, vol. 255, no. 5052, 27 March 1992 (1992-03-27), pages 1707 - 10
RIDEOUT III ET AL., NATURE GENETICS, vol. 24, 2000, pages 109
ROBICSEK, O. ET AL.: "Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients", MOLECULAR PSYCHIATRY, vol. 18, 2013, pages 1067 - 1076
See also references of EP3613848A4 *
SHAMBLOTT ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, no. 23, 1998, pages 13726 - 13731
SILVA J ET AL., PLOS. BIOL., vol. 6, no. 10, 2008, pages e 253
STADTFELD M ET AL., SCIENCE, vol. 322, no. 5903, 2008, pages 949 - 953
STEM CELL REPORTS, vol. 6, no. 3, 8 March 2016 (2016-03-08), pages 422 - 35
STREGKCHENKO N. ET AL., REPROD BIOMED ONLINE, vol. 9, 2004, pages 623 - 629
TACHIBANA ET AL.: "Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer", CELL, 2013
TAKAHASHI KYAMANAKA S, CELL, vol. 126, no. 4, 2006, pages 663 - 676
TAKAHASHI, K ET AL., CELL, vol. 131, no. 5, 2007, pages 861 - 72
THOMSON, JA ET AL., SCIENCE, vol. 282, 1998, pages 1145 - 1147
TIENG VANNARY ET AL.: "Engineering of Midbrain Organoids Containing Long-Lived Dopaminergic Neurons", STEM CELLS AND DEVELOPMENT, vol. 23, no. 13, 1 July 2014 (2014-07-01), pages 1535 - 1547, XP055423743, Retrieved from the Internet <URL:doi:10.1089/scd.2013.0442> *
TURNPENNY ET AL., STEM CELLS, vol. 21, no. 5, 2003, pages 598 - 609
WAKAYAMA ET AL., NATURE, vol. 394, 1998, pages 369
WASSARMAN, P.M. ET AL., METHODS IN ENZYMOLOGY, vol. 365, 2003
WATANABE ET AL., NATURE NEUROSCIENCE, vol. 8, 2005, pages 288 - 296
WILMUT ET AL., NATURE, vol. 385, 1997, pages 810
WOLTJEN KMICHAEL IPMOHSENI P ET AL., NATURE, vol. 458, 2009, pages 771 - 775
YU JHU KSMUGA-OTTO KTIAN S ET AL., SCIENCE, vol. 324, 2009, pages 797 - 801
YUSA KRAD RTAKEDA J ET AL., NAT METHODS, vol. 6, 2009, pages 363 - 369
ZHANG X. ET AL., STEM CELLS, vol. 24, 2006, pages 2669 - 2676

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154272A (ja) * 2018-03-08 2019-09-19 国立大学法人名古屋大学 細胞内カルシウム動態評価系
JP7090881B2 (ja) 2018-03-08 2022-06-27 国立大学法人東海国立大学機構 細胞内カルシウム動態評価系
CN112011510A (zh) * 2019-05-30 2020-12-01 中国科学院上海有机化学研究所 一种由人多能干细胞制备多巴胺神经元的方法
CN110872576A (zh) * 2019-06-06 2020-03-10 中国科学院广州生物医药与健康研究院 一种将小鼠成纤维细胞转分化为多巴胺能神经元的方法

Also Published As

Publication number Publication date
EP3613848A4 (en) 2021-01-20
JPWO2018193949A1 (ja) 2020-02-27
EP3613848A1 (en) 2020-02-26
US20210123017A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
US10828335B2 (en) Production of midbrain dopaminergic neurons and methods for the use thereof
JP7356658B2 (ja) ドーパミン産生神経前駆細胞の製造方法
WO2018193949A1 (ja) ドパミン神経細胞の調製方法
ES2590036T3 (es) Método para inducir la diferenciación de células madre pluripotentes en células precursoras neurales
WO2018216743A1 (ja) 中間中胚葉細胞から腎前駆細胞への分化誘導方法、および多能性幹細胞から腎前駆細胞への分化誘導方法
JP2022078245A (ja) 多能性細胞を分化させるための方法
Wattanapanitch et al. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages
US10781420B2 (en) Method for producing cerebellar progenitor tissue
JP2008099662A (ja) 幹細胞の培養方法
JP7023496B2 (ja) ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
WO2023127824A1 (ja) 神経堤細胞の培養方法及び製造方法
JP7094567B2 (ja) 神経堤細胞および交感神経細胞の製造方法
US11261425B2 (en) Method for inducing differentiation of pluripotent stem cells into neural precursor cells
JPWO2020100481A1 (ja) 脳オルガノイドの製造方法
JP7357366B2 (ja) 薬剤評価方法
Patni et al. Progress in human embryonic stem cell research and aging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018787555

Country of ref document: EP

Effective date: 20191119