WO2019167276A1 - Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine - Google Patents

Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine Download PDF

Info

Publication number
WO2019167276A1
WO2019167276A1 PCT/JP2018/008130 JP2018008130W WO2019167276A1 WO 2019167276 A1 WO2019167276 A1 WO 2019167276A1 JP 2018008130 W JP2018008130 W JP 2018008130W WO 2019167276 A1 WO2019167276 A1 WO 2019167276A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
temperature
gas turbine
gas
storage tank
Prior art date
Application number
PCT/JP2018/008130
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 藤田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to PCT/JP2018/008130 priority Critical patent/WO2019167276A1/en
Publication of WO2019167276A1 publication Critical patent/WO2019167276A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems

Definitions

  • the present invention relates to a fuel gas storage system of a gas turbine that supplies fuel gas to the gas turbine in an emergency in a power plant equipped with the gas turbine, and a fuel gas supply method to the gas turbine.
  • GTCC gas turbine combined cycle power plant
  • the gas turbine combined cycle power plant may include a fuel gas storage system that stores a predetermined amount of fuel gas for continuing operation of the gas turbine and supplies the fuel gas when necessary.
  • fuel gas storage system for a gas turbine, for example, there is one described in Patent Document 1 below.
  • the present invention can be switched to the fuel oil-fired operation without causing the gas turbine to stop emergencyly.
  • the fuel gas stored in the storage system is discharged, the pressure drop in the fuel gas supply line is suppressed within an allowable range, and the storage system for continuing the gas turbine operation is focused.
  • Such a fuel gas storage system for a gas turbine needs to supply a fuel gas at a predetermined pressure to the gas turbine. Sometimes the fuel gas in the storage tank is depressurized and supplied to the gas turbine.
  • the fuel gas storage system of the gas turbine needs to supply fuel gas at a predetermined temperature or more to the gas turbine, but in the conventional system, after the storage tank is pressurized to a predetermined pressure, it is stored closed. During that time, the temperature of the fuel gas in the storage tank is approximately the same as the ambient (atmosphere) temperature. Therefore, when releasing the fuel gas from the storage tank, the temperature of the fuel gas that has decreased in temperature is increased by reducing the pressure. Supply to gas turbine. In that case, a temperature raising equipment for raising the temperature of the fuel gas to a predetermined temperature is required. Conventionally, such temperature raising equipment is installed (stored) on a system for releasing the gas in the storage tank to the fuel gas supply line.
  • the equipment cost is increased.
  • the fuel gas is released, it is necessary to quickly raise the temperature of the fuel gas with the temperature raising equipment and supply it to the gas turbine.
  • the present invention solves the above-described problems, and suppresses an increase in equipment cost and operation cost, and at the same time, can quickly supply a fuel gas having a pressure and temperature necessary for the gas turbine, and a fuel gas storage system for a gas turbine.
  • An object of the present invention is to provide a method for supplying fuel gas to a gas turbine.
  • a fuel gas storage system for a gas turbine stores fuel gas in the fuel gas storage system for a gas turbine that supplies stored fuel gas from an auxiliary fuel gas supply line to the gas turbine.
  • a storage tank a circulation line for circulating the fuel gas stored in the storage tank to the outside, a circulation flow rate adjusting valve provided in the circulation line, a compressor provided in the circulation line for boosting the fuel gas,
  • a temperature controller for adjusting a temperature of the fuel gas which is provided in the circulation line and is heated by being pressurized by the compressor; and a target storage temperature in which a temperature of the fuel gas stored in the storage tank is set in advance.
  • a controller for controlling the temperature regulator so as to be maintained in the region.
  • a pressure reducing valve is provided in the auxiliary fuel gas supply line, and a lower limit temperature in the target storage temperature region is a fuel supply lower limit temperature supplied to the gas turbine. It is characterized in that the temperature is equal to or higher than a temperature obtained by adding a temperature drop that falls when the gas passes through the pressure reducing valve.
  • the fuel gas stored in the storage tank is depressurized by the pressure reducing valve and supplied from the auxiliary fuel gas supply line to the gas turbine, so the temperature of the fuel gas decreases.
  • the lower limit temperature in the target storage temperature region is set to a temperature obtained by adding the drop temperature to the target supply temperature, the fuel gas at an appropriate temperature can be supplied to the gas turbine.
  • the storage tank is a hollow long tube having a predetermined length
  • the circulation line has one end at an inlet portion on one side in the longitudinal direction of the storage tank. It is connected, The other end part is connected with the exit part of the other side of the longitudinal direction in the said storage tank, It is characterized by the above-mentioned.
  • the storage tank is a hollow long tube, one end of the circulation line is connected to the inlet of the storage tank, and the other end is connected to the outlet of the storage tank. It circulates through the circulation line comprised by this, stabilization of the gas property in a storage tank and uniform heating can be aimed at, and generation
  • the storage tank is disposed so as to be inclined such that the position of the outlet portion is lower than the position of the inlet portion, and a drain line is connected to the outlet portion side. It is characterized by that.
  • the storage tank is inclined and the drain line is connected to the outlet side, even if drain is generated in the storage tank, the drain flows to the outlet side and is discharged to the outside from the drain line. Therefore, the retention of the drain in the storage tank can be suppressed.
  • the storage tank is disposed so as to be inclined such that the position of the outlet portion is higher than the position of the inlet portion, and a drain line is connected to the inlet portion side. It is characterized by that.
  • the storage tank is inclined and the drain line is connected to the inlet side, so even if drain is generated in the storage tank, the drain flows into the inlet and is discharged from the drain line to the outside. In addition, the retention of drain in the storage tank can be suppressed.
  • a fuel gas source is connected to the gas turbine via a main fuel gas supply line, and the auxiliary fuel gas supply line is connected from the storage tank to the circulation control valve and the The compressor and the temperature controller are bypassed and connected to the main fuel gas supply line.
  • the fuel gas stored in the storage tank is supplied from the auxiliary fuel gas supply line to the gas turbine regardless of the operation of the flow rate control valve, compressor and temperature controller. can do.
  • the auxiliary fuel gas supply line also serves as at least a part of the circulation line.
  • a fuel gas source is connected to the gas turbine via a main fuel gas supply line, and the auxiliary fuel gas supply line is connected from the storage tank to the main fuel gas supply line. It is characterized by being.
  • the auxiliary fuel gas supply line is directly connected from the storage tank to the main fuel gas supply line, the reliability can be improved.
  • the fuel gas supply method to the gas turbine of the present invention is a method of circulating the fuel gas stored in the storage tank to the outside in the fuel gas supply method to the gas turbine for supplying the stored fuel gas to the gas turbine. Boosting the fuel gas when the fuel gas circulates and adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range; and the main fuel to the gas turbine And a step of stopping the circulation of the fuel gas when the gas supply system is abnormal and depressurizing the fuel gas stored in the storage tank and supplying it to the gas turbine through an auxiliary supply line. .
  • the fuel gas stored in the storage tank is depressurized and supplied from the auxiliary fuel gas supply line to the gas turbine. Since the temperature of the fuel gas is maintained in the target storage temperature region by the gas circulation, the fuel gas having an appropriate temperature can be supplied to the gas turbine. As a result, when the main fuel gas supply system to the gas turbine is abnormal, it is not necessary to install equipment for heating the fuel gas stored in the storage tank in the auxiliary supply line, which increases equipment costs and operating costs. In addition to being able to suppress, the fuel gas having the pressure and temperature required for the gas turbine can be rapidly supplied.
  • the fuel gas storage system for a gas turbine and the fuel gas supply method to the gas turbine of the present invention it is possible to suppress an increase in equipment cost and operation cost, and to reduce the fuel gas having the pressure and temperature required for the gas turbine. It can be supplied quickly.
  • FIG. 1 is a schematic configuration diagram illustrating a fuel gas storage system of a gas turbine according to a first embodiment.
  • FIG. 2 is a schematic diagram showing the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is normal.
  • FIG. 3 is a schematic diagram showing the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is abnormal.
  • FIG. 4 is a schematic configuration diagram illustrating a gas turbine combined cycle power plant.
  • FIG. 5 is a schematic configuration diagram illustrating a fuel gas storage system of a gas turbine according to the second embodiment.
  • FIG. 4 is a schematic configuration diagram illustrating a gas turbine combined cycle power plant.
  • the gas turbine combined cycle power plant 10 includes a gas turbine 11, an exhaust heat recovery boiler (HRSG) 12, a steam turbine 13, and a generator 14. .
  • HRSG exhaust heat recovery boiler
  • the gas turbine 11 includes a compressor 21, a combustor 22, and a turbine 23, and the compressor 21 and the turbine 23 are coupled to each other by a rotating shaft (rotor) 24 so as to be integrally rotatable.
  • the compressor 21 compresses the air taken in from the air intake line L1.
  • the combustor 22 mixes and combusts the compressed air supplied from the compressor 21 through the compressed air supply line L2 and the fuel gas supplied from the fuel gas supply line L3.
  • the turbine 23 is rotationally driven by the combustion gas supplied from the combustor 22 through the combustion gas supply line L4.
  • the exhaust heat recovery boiler 12 generates steam by exhaust heat of exhaust gas discharged from the gas turbine 11 (turbine 23) through the exhaust gas discharge line L5.
  • the exhaust heat recovery boiler 12 includes a superheater, an evaporator, and a economizer as a heat exchanger.
  • the exhaust heat recovery boiler 12 generates steam by performing heat recovery in the order of the superheater, the evaporator, and the economizer when the exhaust gas from the gas turbine 11 passes through the inside.
  • the exhaust heat recovery boiler 12 is connected to a chimney (not shown) via an exhaust gas exhaust line L6 that exhausts used exhaust gas that has generated steam.
  • the steam turbine 13 is driven by superheated steam generated by the exhaust heat recovery boiler 12.
  • the steam turbine 13 has a turbine 25, and the rotation shaft 26 is connected to the rotation shaft 24 of the gas turbine 11 in a straight line.
  • a steam supply line L7 for supplying superheated steam from the superheater of the exhaust heat recovery boiler 12 to the turbine 25 is provided, and used steam that has driven the turbine 25 is cooled by a condenser 27 (for example, It is cooled by seawater) to become condensate, and is supplied to the exhaust heat recovery boiler 12 via the condensate / water supply line L8.
  • the generator 14 is provided at the end of the rotating shaft 26.
  • the rotating shaft 24 of the gas turbine 11 and the rotating shaft 26 of the steam turbine 13 may be provided integrally.
  • the generator 14 generates power by the transmitted rotational force when the gas turbine 11 and the steam turbine 13 are driven and the rotating shafts 24 and 26 are rotated.
  • the rotary shaft 24 of the gas turbine 11 and the rotary shaft 26 of the steam turbine 13 may be separate, and may be a so-called multi-shaft type in which a generator is connected to each.
  • the compressor 21 compresses air in the gas turbine 11, and the combustor 22 mixes and supplies the supplied compressed air and fuel gas for combustion.
  • the turbine 23 is rotationally driven by the combustion gas supplied from the combustor 22. Further, the exhaust gas discharged from the gas turbine 11 (turbine 23) is sent to the exhaust heat recovery boiler 12, the exhaust heat recovery boiler 12 generates steam, and the superheated steam is sent to the steam turbine 13.
  • the turbine 25 is rotationally driven by this superheated steam.
  • the generator 14 generates power when the rotary shafts 24 and 26 are driven and rotated by the gas turbine 11 and the steam turbine 13.
  • the fuel gas is supplied from the main fuel gas supply system to the combustor 22 of the gas turbine 11.
  • the main fuel gas supply system fails, the pressure of the fuel gas supplied to the combustor 22 of the gas turbine 11 decreases, and it becomes difficult to continuously operate the gas turbine continuously. Therefore, the gas turbine combined cycle power plant 10 may include a fuel gas storage system.
  • FIG. 1 is a schematic configuration diagram showing a fuel gas storage system of a gas turbine according to a first embodiment.
  • a gas pipeline L10 as a fuel gas source is connected to a gas turbine 11 (combustor 22) via a fuel gas supply line L3 as a main fuel gas supply line.
  • the fuel gas supply line L3 is provided with a compressor 31, an on-off valve 32, a pressure sensor 33, and a temperature sensor 34 as necessary.
  • the fuel gas storage system 40 of the gas turbine 11 can supply the stored fuel gas from the auxiliary fuel gas supply line L11 to the gas turbine 11, and includes a storage tank 41, a circulation line L12, and a circulation flow rate adjustment valve 42. And a compressor 43, a temperature controller 44, and a control device 45.
  • the storage tank 41 stores the fuel gas of the gas turbine 11 and includes a plurality of tank main bodies 51.
  • the plurality of tank bodies 51 are hollow long tubes having a predetermined length, and are arranged in parallel at predetermined intervals.
  • the circulation line L12 is used to continuously exchange the gas in the storage tank 41 by circulating the fuel gas stored in the storage tank 41 outside.
  • the circulation line L12 is connected at one end to an inlet 51a on one side in the longitudinal direction of the plurality of tank main bodies 51 constituting the storage tank 41, and at the other end thereof is an outlet on the other side in the longitudinal direction of the plurality of tank main bodies 51. It is connected to the part 51b.
  • the circulation line L12 serves as a part of the fuel gas supply line L3 and a part of the auxiliary fuel gas supply line L11.
  • the plurality of tank main bodies 51 are arranged so as to be inclined such that the position of the outlet 51b is lower than the position of the inlet 51a.
  • the drain line L13 is connected to the outlet 51b, and the drain valve 52 is provided in the drain line L13.
  • the compressor 43, the temperature controller 44, and the circulation flow rate adjustment valve 42 are arranged in order along the circulation direction of the fuel gas.
  • the recirculation flow rate adjustment valve 42 can adjust the recirculation flow rate of the fuel gas flowing through the recirculation line L12 by adjusting the opening degree.
  • the compressor 43 can increase the pressure of the fuel gas flowing through the circulation line L12.
  • the temperature adjuster 44 can adjust the temperature of the fuel gas flowing through the circulation line L12.
  • the temperature controller 44 can include a heater 53 and / or a cooler 54, and the fuel gas flowing through the circulation line L ⁇ b> 12 is heated by the heater 53 or cooled by the cooler 54. The temperature of the gas can be adjusted.
  • bypass line L12 may be provided with a bypass line L14 that bypasses the temperature controller 44.
  • the bypass line L14 is provided with an opening / closing valve 55.
  • the temperature of the fuel gas can be adjusted by closing the on-off valve 55 and flowing the entire fuel gas to the temperature controller 44.
  • the on-off valve 55 is opened and all of the fuel gas flows through the bypass line L14, the temperature of the fuel gas is not adjusted and the temperature remains unchanged. It should be noted that by adjusting the opening degree of the on-off valve 55, a part of the fuel gas is allowed to flow to the bypass line L14, and the remaining fuel gas is heated or cooled by the temperature controller 44 to adjust the temperature of the fuel gas. Good.
  • an on-off valve 56 is provided on the downstream side of the temperature controller 44 and the bypass line L14.
  • the auxiliary fuel gas supply line L11 has a proximal end portion connected between the on-off valve 56 in the circulation line L12 and the inlet portion 51a of each tank body 51, and a distal end portion of the pressure sensor 33 and temperature sensor in the fuel gas supply line L3. 34 is connected to the upstream side.
  • the auxiliary fuel gas supply line L11 also serves as at least a part of the circulation line L12, and is connected to the fuel gas supply line L3, bypassing the circulation flow rate adjustment valve 42, the compressor 43, and the temperature regulator 44. ing.
  • the auxiliary fuel gas supply line L11 is provided with a pressure reducing valve 57 in parallel with the recirculation flow rate control valve 42, the compressor 43, and the temperature controller 44.
  • the control device 45 controls the temperature regulator 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained within a preset target storage temperature region.
  • the lower limit temperature in the target storage temperature range is a temperature obtained by adding a temperature drop at which the fuel gas drops when passing through the pressure reducing valve 57 to the target supply temperature of the fuel gas supplied to the gas turbine 11.
  • the target supply pressure P0 and the supply lower limit temperature T0 are set for the fuel gas supplied to the gas turbine 11.
  • the pressure sensor 33 and the temperature sensor 34 measure the pressure and temperature of the fuel gas flowing through the fuel gas supply line L ⁇ b> 3, and output the measurement result to the control device 45.
  • the control device 45 monitors that the pressure and temperature of the fuel gas flowing through the fuel gas supply line L3 are equal to or higher than the target supply pressure P0 and the supply lower limit temperature T0.
  • the fuel gas storage system 40 suppresses the temperature drop by circulating the fuel gas stored in the storage tank 41 to the outside through the circulation line L12 when the gas pipeline L10 is normal. That is, the recirculation flow rate adjustment valve 42 is opened, the compressor 43 is driven, and the temperature adjuster 44 is operated as necessary.
  • the fuel gas storage system 40 supplies the fuel gas stored in the storage tank 41 to the gas turbine 11 from the auxiliary fuel gas supply line L11 when the gas pipeline L10 is abnormal. At this time, the fuel gas is depressurized by the pressure reducing valve 57 and supplied to the gas turbine 11, so that the temperature decreases.
  • the controller 45 causes the pressure and temperature of the fuel gas flowing from the auxiliary fuel gas supply line L11 to the fuel gas supply line L3 to be equal to or higher than the target supply pressure P0 and the supply lower limit temperature T0. It is necessary to adjust the temperature of the fuel gas. Therefore, the control device 45 adjusts the temperature of the fuel gas stored in the storage tank 41 in consideration of the temperature drop at which the fuel gas drops when passing through the pressure reducing valve 57.
  • the storage tank 41 is provided with a pressure sensor 61 and a temperature sensor 62 for detecting the pressure and temperature of the stored fuel gas. Further, in the circulation line L12, a temperature sensor 63 is provided between the on-off valve 56 and the connecting portion of the auxiliary fuel gas supply line L11.
  • the target storage pressure region and the target storage temperature region of the fuel gas stored in the storage tank 41 are set, the lower limit temperature of the target storage temperature region is T1, and the fuel gas falls when passing through the pressure reducing valve 57. Assuming that the temperature drop is ⁇ T, the lower limit temperature T1 of the target storage temperature region is set as follows.
  • T1 T0 + ⁇ T
  • T2 the upper limit temperature of the target storage temperature region
  • T3 the endurance temperature of the pipe constituting the circulation line L12
  • the control device 45 maintains the temperature of the fuel gas stored in the storage tank 41 and the temperature of the fuel gas circulating in the circulation line L12 based on the measurement results of the temperature sensors 62 and 63 within the target storage temperature region T1 to T2. Thus, the temperature controller 44 and the on-off valve 55 are controlled. The control device 45 controls the compressor 43 based on the measurement result of the pressure sensor 61 so that the pressure of the fuel gas stored in the storage tank 41 is maintained in the target storage pressure region.
  • FIG. 2 is a schematic diagram illustrating the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is normal
  • FIG. 3 is a schematic diagram illustrating the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is abnormal.
  • the fuel gas supply method to the gas turbine 11 includes a step of circulating the fuel gas stored in the storage tank 41 outside and returning the fuel gas to the storage tank 41, and boosting the fuel gas during the circulation of the fuel gas. Adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range, and stopping the circulation of the fuel gas when the gas pipeline L10 is abnormal, and storing the fuel gas stored in the storage tank 41 And a step of supplying the gas turbine 11 with a reduced pressure.
  • the fuel gas in the gas pipeline L10 is supplied to the gas turbine 11 (combustor 22) via the fuel gas supply line L3. . Further, the fuel gas in the gas pipeline L10 is supplied to the circulation line L12. And while driving the compressor 43 and opening the on-off valves 55 and 56, the fuel gas supplied to the circulation line L12 is pressurized and stored in each tank body 51 of the storage tank 41.
  • each tank body 51 of the storage tank 41 When fuel gas is stored in each tank body 51 of the storage tank 41, a predetermined amount of fuel gas is circulated through the circulation line L12 and each tank body 51 by opening the circulation flow rate adjustment valve 42. At this time, the controller 45 controls the temperature regulator 44 and the temperature controller 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained in the target storage temperature region T1 to T2 based on the measurement results of the temperature sensors 62 and 63. The on-off valve 55 is controlled.
  • the control device 45 detects a decrease in the pressure of the fuel gas in the fuel gas supply line L3 from the measurement result of the pressure sensor 33, and starts supplying the fuel gas from the auxiliary fuel gas supply line L11 to the gas turbine 11. That is, the on-off valves 55 and 56 and the flow rate adjusting valve 42 are closed, the driving of the compressor 43 and the temperature controller 44 is stopped, and the pressure reducing valve 57 is opened. Then, the circulation of the fuel gas through the circulation line L12 is stopped, and the fuel gas stored in the storage tank 41 is supplied from the fuel gas supply line L3 to the gas turbine 11 through the auxiliary fuel gas supply line L11. At this time, since the fuel gas stored in the storage tank 41 is maintained in the target storage temperature region T1 to T2, even if the temperature is reduced during the pressure reduction by the pressure reducing valve 57, it is below the supply lower limit temperature T0. There is nothing.
  • the pressure reducing valve 57 is closed to supply fuel gas to the gas turbine 11 from the auxiliary fuel gas supply line L11. Stop.
  • the storage tank 41 that stores the fuel gas
  • the circulation line L12 that circulates the fuel gas stored in the storage tank 41 to the outside
  • a recirculation flow rate adjustment valve 42 provided in the line L12
  • a compressor 43 provided in the recirculation line L12 to boost the fuel gas
  • a temperature regulator 44 provided in the recirculation line L12 to adjust the temperature of the fuel gas
  • a storage tank There is provided a control device 45 that controls the temperature regulator 44 so that the temperature of the fuel gas stored in 41 is maintained within a preset target storage temperature region.
  • the fuel gas stored in the storage tank 41 is circulated outside by the circulation line L12 by opening the circulation flow rate adjusting valve 42 and driving the compressor 43 during normal operation of the gas pipeline L10 to the gas turbine 11.
  • the controller 45 controls the temperature regulator 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained within the target storage temperature region. Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 and maintained in the target storage temperature region can be supplied from the auxiliary fuel gas supply line L11 to the gas turbine 11.
  • the pressure reducing valve 57 is provided in the auxiliary fuel gas supply line L11, and the lower limit temperature in the target storage temperature region is set to the supply lower limit temperature of the fuel gas supplied to the gas turbine 11.
  • the temperature is equal to or higher than the sum of the temperature drop when the fuel gas passes through the pressure reducing valve 57. Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 is decompressed by the pressure reducing valve 57 and supplied to the gas turbine 11 from the auxiliary fuel gas supply line L11.
  • the lower limit temperature in the target storage temperature region is set to be equal to or higher than the temperature obtained by adding the drop temperature to the supply lower limit temperature, the fuel gas at an appropriate temperature can be supplied to the gas turbine 11.
  • the storage tank 41 is a tank body 51 of a hollow long tube having a predetermined length, and one end of the circulation line L12 is one side in the longitudinal direction of the tank body 51.
  • the other end of the tank main body 51 is connected to the other outlet 51b in the longitudinal direction.
  • the fuel gas circulates through a circulation line constituted by the storage tank 41 and the circulation line L12, and the gas property in the storage tank 41 is stabilized and uniform heating can be achieved, thereby suppressing the generation of drain. .
  • the outlet 51b is disposed so as to be inclined so that the position of the outlet 51b is lower than the position of the inlet 51a of the tank body 51 constituting the storage tank 41.
  • a drain line L13 is connected to the side. Accordingly, even if drain is generated in the storage tank 41, the drain flows to the outlet 51b side and is discharged to the outside from the drain line L13, so that the retention of the drain in the storage tank 41 can be suppressed.
  • the outlet 51b is disposed so as to be positioned higher than the inlet 51a of the tank body 51 constituting the storage tank 41, and the inlet You may connect the drain line L13 to the part 51a side. Even in this configuration, when the drain is generated in the storage tank 41, the drain flows to the inlet 51a side and is discharged to the outside from the drain line L13, so that the retention of the drain in the storage tank 41 is suppressed. be able to.
  • the gas pipeline L10 is connected to the gas turbine 11 via the fuel gas supply line L3, and the auxiliary fuel gas supply line L11 is connected to the flow rate adjusting valve 42, the compressor 43, and the temperature.
  • the regulator 44 is bypassed and connected to the fuel gas supply line L3. Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 is supplied from the auxiliary fuel gas supply line L11 regardless of the operation of the recirculation flow control valve 42, the compressor 43, and the temperature controller 44.
  • the gas turbine 11 can be supplied.
  • the auxiliary fuel gas supply line L11 also serves as at least a part of the circulation line L12. Accordingly, the length of the piping constituting the auxiliary fuel gas supply line L11 and the circulation line L12 can be shortened, the structure can be simplified, and an increase in equipment cost can be suppressed.
  • the gas pipeline L10 is connected to the gas turbine 11 via the fuel gas supply line L3, and the auxiliary fuel gas supply line L11 is connected from the storage tank 41 to the fuel gas supply line. You may connect with L3. With this configuration, since the auxiliary fuel gas supply line L11 is directly connected from the storage tank 41 to the fuel gas supply line L3, reliability can be improved.
  • the step of circulating the fuel gas stored in the storage tank 41 to the outside and returning it to the storage tank 41, and the fuel gas during the circulation of the fuel gas And adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range, and when the gas pipeline L10 is abnormal, the circulation of the fuel gas is stopped and stored in the storage tank 41. And reducing the pressure of the fuel gas and supplying it to the gas turbine 11.
  • the fuel gas stored in the storage tank 41 is depressurized and supplied from the auxiliary fuel gas supply line L11 to the gas turbine 11, so the temperature of the fuel gas decreases. Since the temperature of the fuel gas is maintained within the target storage temperature region during the circulation of the fuel gas, the fuel gas having an appropriate temperature can be supplied to the gas turbine 11. As a result, when the gas pipeline L10 to the gas turbine 11 is abnormal, equipment on the downstream side of the storage tank 41 for heating the fuel gas stored in the storage tank 41 becomes unnecessary, and an increase in equipment cost and operation cost is suppressed. In addition, the fuel gas having the pressure and temperature necessary for the gas turbine 11 can be quickly supplied.
  • FIG. 5 is a schematic configuration diagram illustrating a fuel gas storage system of a gas turbine according to the second embodiment.
  • symbol is attached
  • the gas pipeline L10 is connected to the gas turbine 11 (combustor 22) via the fuel gas supply line L3.
  • the fuel gas supply line L3 is provided with a compressor 31, an on-off valve 32, a pressure sensor 33, and a temperature sensor 34.
  • the fuel gas storage system 40A of the gas turbine 11 can supply stored fuel gas from the auxiliary fuel gas supply line L21 to the gas turbine 11, and includes a storage tank 41, a circulation line L12, and a circulation flow rate adjustment valve 42. And a compressor 43, a temperature controller 44, and a control device 45.
  • the auxiliary fuel gas supply line L21 also serves as at least a part of the circulation line L12, and is connected to the fuel gas supply line L3, bypassing the circulation flow rate adjustment valve 42, the compressor 43, and the temperature regulator 44. That is, the auxiliary fuel gas supply line L21 is provided with a circulation line L12 that bypasses the pressure reducing valve 57, and a circulation flow rate adjustment valve 42 is provided in the circulation line L12.
  • the control device 45 controls the temperature regulator 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained within a preset target storage temperature region.
  • the lower limit temperature in the target storage temperature region is a temperature obtained by adding the lowering temperature of the fuel gas supplied to the gas turbine 11 to the lowering temperature at which the fuel gas drops when passing through the pressure reducing valve 57.
  • control device 45 various controls by the control device 45 are substantially the same as those in the first embodiment, and thus description thereof is omitted.
  • the auxiliary fuel gas supply line L21 is provided with the circulation line L12 that bypasses the pressure reducing valve 57, and the circulation flow rate adjustment valve 42 is provided in the circulation line L12. Provided.
  • auxiliary fuel gas supply line L21 and the circulation line L12 can be rationalized, the structure can be simplified, and an increase in equipment cost can be suppressed.
  • the heater 53 and the cooler 54 are provided as the temperature controller 44, and the bypass line L14 and the open / close valve 55 are provided.
  • the heater 53 may be omitted.
  • the bypass line L14 and the on-off valve may be omitted, and an air-cooled cooler with variable output may be provided as the temperature regulator 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Provided are a fuel gas storage system for a gas turbine and a method for supplying fuel gas to the gas turbine, wherein the system comprises: a storage tank (41) that stores fuel gas; a flow line (L12) through which the fuel gas stored in the storage tank (41) is caused to flow to the outside; a flow amount adjustment valve (42) provided to the flow line (L12); a compressor (43) provided to the flow line (L12) in order to boost the flow of the fuel gas; a temperature controller (44) provided to the flow line (L12) in order to adjust the temperature of the fuel gas; and a control device (45) that controls the temperature controller (44) such that the temperature of the fuel gas stored in the storage tank (41) is maintained within a preset target storage temperature range.

Description

ガスタービンの燃料ガス貯蔵システム及びガスタービンへの燃料ガス供給方法Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine
 本発明は、ガスタービンを備える発電プラントにおいて、非常時にガスタービンへ燃料ガスを供給するガスタービンの燃料ガス貯蔵システム及びガスタービンへの燃料ガス供給方法に関するものである。 The present invention relates to a fuel gas storage system of a gas turbine that supplies fuel gas to the gas turbine in an emergency in a power plant equipped with the gas turbine, and a fuel gas supply method to the gas turbine.
 ガスタービンを備えるプラントの一つに、ガスタービンコンバインドサイクル発電プラント(GTCC)があり、このプラントは、燃料ガスなどを燃料としてガスタービンを駆動して発電を行い、次に、排熱回収ボイラがガスタービンの排ガスを回収して蒸気を生成し、この蒸気により蒸気タービンを駆動して発電を行うものである。 One of the plants equipped with a gas turbine is a gas turbine combined cycle power plant (GTCC), which generates power by driving a gas turbine using fuel gas or the like as fuel, and then an exhaust heat recovery boiler is installed. The exhaust gas from the gas turbine is collected to generate steam, and the steam turbine is driven by the steam to generate power.
 このガスタービンコンバインドサイクル発電プラントにおいて、ガスタービンは、ガス供給ラインから燃料ガス(例えば、天然ガス)が燃焼器に供給され、圧縮機で圧縮した高圧空気にこの燃料ガスを混合して燃焼し、発生した燃焼ガスによりタービンを回転させる。ところで、故障などによりガス供給ラインからガスタービンに供給される燃料ガスの圧力が低下した場合、ガスタービンを継続して定常運転することが困難となる。そのため、ガスタービンコンバインドサイクル発電プラントは、ガスタービンの運転を継続するための燃料ガスを所定量だけ貯蔵して必要時に供給する燃料ガス貯蔵システムを備える場合がある。このようなガスタービンの燃料ガス貯蔵システムとして、例えば、下記特許文献1に記載されたものがある。 In this gas turbine combined cycle power plant, a gas turbine is supplied with fuel gas (for example, natural gas) from a gas supply line to a combustor, and the fuel gas is mixed with high-pressure air compressed by a compressor and burned. The turbine is rotated by the generated combustion gas. By the way, when the pressure of the fuel gas supplied from the gas supply line to the gas turbine is reduced due to a failure or the like, it is difficult to continuously operate the gas turbine continuously. Therefore, the gas turbine combined cycle power plant may include a fuel gas storage system that stores a predetermined amount of fuel gas for continuing operation of the gas turbine and supplies the fuel gas when necessary. As such a fuel gas storage system for a gas turbine, for example, there is one described in Patent Document 1 below.
特開2015-151912号公報Japanese Patent Laying-Open No. 2015-151912
 本発明は、特に、ガスタービンコンバインドサイクル発電プラントへ燃料ガスを供給している燃料ガス供給ラインの圧力が事故等によって低下した場合に、ガスタービンを非常停止させることなく燃料油焚き運転へ切り替えられるように、貯蔵システムに貯めておいた燃料ガスを放出して燃料ガス供給ラインの圧力低下を許容範囲内に抑え、ガスタービン運転を継続させるための貯蔵システムに焦点を当てる。 そのようなガスタービンの燃料ガス貯蔵システムは、ガスタービンに対して所定圧力の燃料ガスを供給する必要があることから、貯蔵タンクにガスタービンで使用する所定圧力以上の燃料ガスを貯蔵し、必要時に貯蔵タンクの燃料ガスを減圧してガスタービンに供給する。 In particular, when the pressure of the fuel gas supply line that supplies fuel gas to the gas turbine combined cycle power plant decreases due to an accident or the like, the present invention can be switched to the fuel oil-fired operation without causing the gas turbine to stop emergencyly. As described above, the fuel gas stored in the storage system is discharged, the pressure drop in the fuel gas supply line is suppressed within an allowable range, and the storage system for continuing the gas turbine operation is focused. Such a fuel gas storage system for a gas turbine needs to supply a fuel gas at a predetermined pressure to the gas turbine. Sometimes the fuel gas in the storage tank is depressurized and supplied to the gas turbine.
 また、ガスタービンの燃料ガス貯蔵システムは、ガスタービンに対して所定温度以上の燃料ガスを供給する必要があるが、従来システムでは、貯蔵タンクが所定圧力まで加圧された後は閉塞保管され、その間に貯蔵タンク内の燃料ガス温度は周囲(大気)温度と概ね同等となっているため、貯蔵タンクから燃料ガスを放出する際には、減圧することによって温度低下した燃料ガスを昇温してガスタービンに供給する。その場合、燃料ガスを所定温度まで昇温する昇温設備が別途必要となり、従来はそのような昇温設備として、貯蔵タンク内のガスを燃料ガス供給ラインへと放出する系統上に設置(貯蔵タンクの下流側)され、燃料ガス供給ラインから分岐させて供給される燃料ガスによって温水を作る設備と、その温水によって貯蔵タンクから燃料ガス供給ラインへと放出する燃料ガスを加熱する熱交換器とで構成される設備が適用されており、それら設備コストが増加してしまうという課題がある。また、燃料ガスの放出時に、燃料ガスを昇温設備により迅速に昇温してガスタービンに供給する必要から、通常は、前記した温水による昇温設備を常時運転した状態としており、運転コストが増加してしまうという課題がある。 In addition, the fuel gas storage system of the gas turbine needs to supply fuel gas at a predetermined temperature or more to the gas turbine, but in the conventional system, after the storage tank is pressurized to a predetermined pressure, it is stored closed. During that time, the temperature of the fuel gas in the storage tank is approximately the same as the ambient (atmosphere) temperature. Therefore, when releasing the fuel gas from the storage tank, the temperature of the fuel gas that has decreased in temperature is increased by reducing the pressure. Supply to gas turbine. In that case, a temperature raising equipment for raising the temperature of the fuel gas to a predetermined temperature is required. Conventionally, such temperature raising equipment is installed (stored) on a system for releasing the gas in the storage tank to the fuel gas supply line. A facility for producing hot water by the fuel gas supplied downstream from the fuel gas supply line, and a heat exchanger for heating the fuel gas discharged from the storage tank to the fuel gas supply line by the hot water; There is a problem that the equipment cost is increased. In addition, when the fuel gas is released, it is necessary to quickly raise the temperature of the fuel gas with the temperature raising equipment and supply it to the gas turbine. There is a problem of increasing.
 本発明は上述した課題を解決するものであり、設備コストや運転コストの増加を抑制すると共にガスタービンに必要な圧力と温度の燃料ガスを迅速に供給可能とするガスタービンの燃料ガス貯蔵システム及びガスタービンへの燃料ガス供給方法を提供することを目的とする。 The present invention solves the above-described problems, and suppresses an increase in equipment cost and operation cost, and at the same time, can quickly supply a fuel gas having a pressure and temperature necessary for the gas turbine, and a fuel gas storage system for a gas turbine. An object of the present invention is to provide a method for supplying fuel gas to a gas turbine.
 上記の目的を達成するための本発明のガスタービンの燃料ガス貯蔵システムは、貯蔵された燃料ガスを補助燃料ガス供給ラインからガスタービンに供給するガスタービンの燃料ガス貯蔵システムにおいて、燃料ガスを貯蔵する貯蔵タンクと、前記貯蔵タンクに貯蔵された燃料ガスを外部へ回流させる回流ラインと、前記回流ラインに設けられる回流量調節弁と、前記回流ラインに設けられて燃料ガスを昇圧するコンプレッサと、前記回流ラインに設けられて前記コンプレッサにより昇圧されたことにより高温となった燃料ガスの温度を調節する温度調節器と、前記貯蔵タンクに貯蔵される燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように前記温度調節器を制御する制御装置と、を備えることを特徴とするものである。 In order to achieve the above object, a fuel gas storage system for a gas turbine according to the present invention stores fuel gas in the fuel gas storage system for a gas turbine that supplies stored fuel gas from an auxiliary fuel gas supply line to the gas turbine. A storage tank, a circulation line for circulating the fuel gas stored in the storage tank to the outside, a circulation flow rate adjusting valve provided in the circulation line, a compressor provided in the circulation line for boosting the fuel gas, A temperature controller for adjusting a temperature of the fuel gas which is provided in the circulation line and is heated by being pressurized by the compressor; and a target storage temperature in which a temperature of the fuel gas stored in the storage tank is set in advance. And a controller for controlling the temperature regulator so as to be maintained in the region.
 従って、ガスタービンへの主燃料ガス供給系統の平常時に、必要に応じて(例えば、貯蔵ガス温度が目標貯蔵温度領域を下回る場合)回流量調節弁を開放すると共にコンプレッサを駆動することで、貯蔵タンクに貯蔵された燃料ガスを回流ラインにより外部へ回流させて再び貯蔵タンクに戻すが、このとき、制御装置は、貯蔵タンクに貯蔵される燃料ガスの温度が目標貯蔵温度領域内に維持されるように温度調節器を制御する。そのため、ガスタービンへの主燃料ガス供給系統の異常時に、貯蔵タンクに貯蔵されて目標貯蔵温度領域内に維持された燃料ガスを所定圧力まで減圧するだけで補助燃料ガス供給ラインからガスタービンに供給することができる。その結果、ガスタービンへの主燃料ガス供給系統の異常時に、貯蔵タンクに貯蔵された燃料ガスを加熱するための貯蔵タンク下流側に設置される加温設備が不要となり、設備コストや運転コストの増加を抑制することができると共に、ガスタービンに必要な圧力と温度の燃料ガスを迅速に供給することができる。 Therefore, during normal operation of the main fuel gas supply system to the gas turbine, storage is performed by opening the flow adjustment valve and driving the compressor as necessary (for example, when the storage gas temperature falls below the target storage temperature range). The fuel gas stored in the tank is circulated to the outside by a circulation line and returned to the storage tank again. At this time, the control device maintains the temperature of the fuel gas stored in the storage tank within the target storage temperature range. To control the temperature regulator. Therefore, when an abnormality occurs in the main fuel gas supply system to the gas turbine, the fuel gas stored in the storage tank and maintained in the target storage temperature region is supplied to the gas turbine from the auxiliary fuel gas supply line simply by reducing the pressure to a predetermined pressure. can do. As a result, when the main fuel gas supply system to the gas turbine is abnormal, the heating equipment installed downstream of the storage tank for heating the fuel gas stored in the storage tank becomes unnecessary, and the equipment cost and operation cost are reduced. The increase can be suppressed, and the fuel gas having the pressure and temperature required for the gas turbine can be quickly supplied.
 本発明のガスタービンの燃料ガス貯蔵システムでは、前記補助燃料ガス供給ラインに減圧弁が設けられ、前記目標貯蔵温度領域における下限温度は、前記ガスタービンに供給する燃料ガスの供給下限温度に、燃料ガスが前記減圧弁の通過時に降下する降下温度を加算した温度以上であることを特徴としている。 In the fuel gas storage system for a gas turbine of the present invention, a pressure reducing valve is provided in the auxiliary fuel gas supply line, and a lower limit temperature in the target storage temperature region is a fuel supply lower limit temperature supplied to the gas turbine. It is characterized in that the temperature is equal to or higher than a temperature obtained by adding a temperature drop that falls when the gas passes through the pressure reducing valve.
 従って、ガスタービンへの主燃料ガス供給系統の異常時に、貯蔵タンクに貯蔵された燃料ガスを減圧弁により減圧して補助燃料ガス供給ラインからガスタービンに供給するため、燃料ガスの温度が低下するが、目標貯蔵温度領域における下限温度を目標供給温度に降下温度を加算した温度とすることから、適正温度の燃料ガスをガスタービンに供給することができる。 Therefore, when the main fuel gas supply system to the gas turbine is abnormal, the fuel gas stored in the storage tank is depressurized by the pressure reducing valve and supplied from the auxiliary fuel gas supply line to the gas turbine, so the temperature of the fuel gas decreases. However, since the lower limit temperature in the target storage temperature region is set to a temperature obtained by adding the drop temperature to the target supply temperature, the fuel gas at an appropriate temperature can be supplied to the gas turbine.
 本発明のガスタービンの燃料ガス貯蔵システムでは、前記貯蔵タンクは、所定長さを有する中空長尺管であり、前記回流ラインは、一端部が前記貯蔵タンクにおける長手方向の一方側の入口部に連結され、他端部が前記貯蔵タンクにおける長手方向の他方側の出口部に連結されることを特徴としている。 In the fuel gas storage system for a gas turbine of the present invention, the storage tank is a hollow long tube having a predetermined length, and the circulation line has one end at an inlet portion on one side in the longitudinal direction of the storage tank. It is connected, The other end part is connected with the exit part of the other side of the longitudinal direction in the said storage tank, It is characterized by the above-mentioned.
 従って、貯蔵タンクを中空長尺管とし、回流ラインの一端部を貯蔵タンクの入口部に連結し、他端部を貯蔵タンクの出口部に連結することから、燃料ガスは、貯蔵タンクと回流ラインにより構成される循環ラインを循環することとなり、貯蔵タンク内のガス性状の安定化及び一様な加熱を図り、ドレンの発生を抑制することができる。 Therefore, the storage tank is a hollow long tube, one end of the circulation line is connected to the inlet of the storage tank, and the other end is connected to the outlet of the storage tank. It circulates through the circulation line comprised by this, stabilization of the gas property in a storage tank and uniform heating can be aimed at, and generation | occurrence | production of drain can be suppressed.
 本発明のガスタービンの燃料ガス貯蔵システムでは、前記貯蔵タンクは、前記入口部の位置より前記出口部の位置が低く位置するように傾斜して配置され、前記出口部側にドレンラインが連結されることを特徴としている。 In the fuel gas storage system for a gas turbine of the present invention, the storage tank is disposed so as to be inclined such that the position of the outlet portion is lower than the position of the inlet portion, and a drain line is connected to the outlet portion side. It is characterized by that.
 従って、貯蔵タンクが傾斜して配置され、出口部側にドレンラインが連結されることから、貯蔵タンク内にドレンが発生しても、ドレンが出口部側に流れてドレンラインから外部に排出されるため、貯蔵タンク内のドレンの停留を抑制することができる。 Accordingly, since the storage tank is inclined and the drain line is connected to the outlet side, even if drain is generated in the storage tank, the drain flows to the outlet side and is discharged to the outside from the drain line. Therefore, the retention of the drain in the storage tank can be suppressed.
 本発明のガスタービンの燃料ガス貯蔵システムでは、前記貯蔵タンクは、前記入口部の位置より前記出口部の位置が高く位置するように傾斜して配置され、前記入口部側にドレンラインが連結されることを特徴としている。 In the fuel gas storage system for a gas turbine of the present invention, the storage tank is disposed so as to be inclined such that the position of the outlet portion is higher than the position of the inlet portion, and a drain line is connected to the inlet portion side. It is characterized by that.
 従って、貯蔵タンクが傾斜して配置され、入口部側にドレンラインが連結されることから、貯蔵タンク内にドレンが発生しても、ドレンが入に流れてドレンラインから外部に排出されるため、貯蔵タンク内のドレンの停留を抑制することができる。 Accordingly, the storage tank is inclined and the drain line is connected to the inlet side, so even if drain is generated in the storage tank, the drain flows into the inlet and is discharged from the drain line to the outside. In addition, the retention of drain in the storage tank can be suppressed.
 本発明のガスタービンの燃料ガス貯蔵システムでは、燃料ガス源が主燃料ガス供給ラインを介して前記ガスタービンに連結され、前記補助燃料ガス供給ラインは、前記貯蔵タンクから前記回流量調節弁と前記コンプレッサと前記温度調節器を迂回して主燃料ガス供給ラインに連結されることを特徴としている。 In the fuel gas storage system for a gas turbine of the present invention, a fuel gas source is connected to the gas turbine via a main fuel gas supply line, and the auxiliary fuel gas supply line is connected from the storage tank to the circulation control valve and the The compressor and the temperature controller are bypassed and connected to the main fuel gas supply line.
 従って、ガスタービンへの主燃料ガス供給系統の異常時に、回流量調節弁やコンプレッサや温度調節器の動作に関係なく、貯蔵タンクに貯蔵された燃料ガスを補助燃料ガス供給ラインからガスタービンに供給することができる。 Therefore, when the main fuel gas supply system to the gas turbine is abnormal, the fuel gas stored in the storage tank is supplied from the auxiliary fuel gas supply line to the gas turbine regardless of the operation of the flow rate control valve, compressor and temperature controller. can do.
 本発明のガスタービンの燃料ガス貯蔵システムでは、前記補助燃料ガス供給ラインは、前記回流ラインの少なくとも一部を兼ねることを特徴としている。 In the fuel gas storage system for a gas turbine according to the present invention, the auxiliary fuel gas supply line also serves as at least a part of the circulation line.
 従って、補助燃料ガス供給ラインや回流ラインを構成する配管長さを短縮することができ、構造を簡素化することができると共に、設備コストの増加を抑制することができる。 Therefore, it is possible to reduce the length of the pipes constituting the auxiliary fuel gas supply line and the circulation line, to simplify the structure, and to suppress an increase in equipment cost.
 本発明のガスタービンの燃料ガス貯蔵システムでは、燃料ガス源が主燃料ガス供給ラインを介して前記ガスタービンに連結され、前記補助燃料ガス供給ラインは、前記貯蔵タンクから主燃料ガス供給ラインに連結されることを特徴としている。 In the gas turbine fuel gas storage system of the present invention, a fuel gas source is connected to the gas turbine via a main fuel gas supply line, and the auxiliary fuel gas supply line is connected from the storage tank to the main fuel gas supply line. It is characterized by being.
 従って、補助燃料ガス供給ラインを貯蔵タンクから主燃料ガス供給ラインに直接連結することから、信頼性を向上することができる。 Therefore, since the auxiliary fuel gas supply line is directly connected from the storage tank to the main fuel gas supply line, the reliability can be improved.
 また、本発明のガスタービンへの燃料ガス供給方法は、貯蔵された燃料ガスをガスタービンに供給するガスタービンへの燃料ガス供給方法において、貯蔵タンクに貯蔵された燃料ガスを外部へ回流させる工程と、燃料ガスの回流時に燃料ガスを昇圧それによって昇温すると共に燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節する工程と、前記ガスタービンへの主燃料ガス供給系統の異常時に燃料ガスの回流を停止して前記貯蔵タンクに貯蔵された燃料ガスを減圧して補助供給ラインにより前記ガスタービンへ供給する工程と、を有することを特徴とするものである。 Further, the fuel gas supply method to the gas turbine of the present invention is a method of circulating the fuel gas stored in the storage tank to the outside in the fuel gas supply method to the gas turbine for supplying the stored fuel gas to the gas turbine. Boosting the fuel gas when the fuel gas circulates and adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range; and the main fuel to the gas turbine And a step of stopping the circulation of the fuel gas when the gas supply system is abnormal and depressurizing the fuel gas stored in the storage tank and supplying it to the gas turbine through an auxiliary supply line. .
 従って、ガスタービンへの主燃料ガス供給系統の異常時に、貯蔵タンクに貯蔵された燃料ガスを減圧して補助燃料ガス供給ラインからガスタービンに供給するため、燃料ガスの温度が低下するが、燃料ガスの回流によって燃料ガスの温度が目標貯蔵温度領域内に維持されているため、適正温度の燃料ガスをガスタービンに供給することができる。その結果、ガスタービンへの主燃料ガス供給系統の異常時に、貯蔵タンクに貯蔵された燃料ガスを加熱するための設備を補助供給ラインに配置することが不要となり、設備コストや運転コストの増加を抑制することができると共に、ガスタービンに必要な圧力と温度の燃料ガスを迅速に供給することができる。 Therefore, when the main fuel gas supply system to the gas turbine is abnormal, the fuel gas stored in the storage tank is depressurized and supplied from the auxiliary fuel gas supply line to the gas turbine. Since the temperature of the fuel gas is maintained in the target storage temperature region by the gas circulation, the fuel gas having an appropriate temperature can be supplied to the gas turbine. As a result, when the main fuel gas supply system to the gas turbine is abnormal, it is not necessary to install equipment for heating the fuel gas stored in the storage tank in the auxiliary supply line, which increases equipment costs and operating costs. In addition to being able to suppress, the fuel gas having the pressure and temperature required for the gas turbine can be rapidly supplied.
 本発明のガスタービンの燃料ガス貯蔵システム及びガスタービンへの燃料ガス供給方法によれば、設備コストや運転コストの増加を抑制することができると共に、ガスタービンに必要な圧力と温度の燃料ガスを迅速に供給することができる。 According to the fuel gas storage system for a gas turbine and the fuel gas supply method to the gas turbine of the present invention, it is possible to suppress an increase in equipment cost and operation cost, and to reduce the fuel gas having the pressure and temperature required for the gas turbine. It can be supplied quickly.
図1は、第1実施形態のガスタービンの燃料ガス貯蔵システムを表す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a fuel gas storage system of a gas turbine according to a first embodiment. 図2は、燃料ガス供給系統の正常時におけるガスタービンの燃料ガス貯蔵システムの作動を表す概略図である。FIG. 2 is a schematic diagram showing the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is normal. 図3は、燃料ガス供給系統の異常時におけるガスタービンの燃料ガス貯蔵システムの作動を表す概略図である。FIG. 3 is a schematic diagram showing the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is abnormal. 図4は、ガスタービンコンバインドサイクル発電プラントを表す概略構成図である。FIG. 4 is a schematic configuration diagram illustrating a gas turbine combined cycle power plant. 図5は、第2実施形態のガスタービンの燃料ガス貯蔵システムを表す概略構成図である。FIG. 5 is a schematic configuration diagram illustrating a fuel gas storage system of a gas turbine according to the second embodiment.
 以下に添付図面を参照して、本発明のガスタービンの燃料ガス貯蔵システム及びガスタービンへの燃料ガス供給方法の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 DETAILED DESCRIPTION Exemplary embodiments of a fuel gas storage system for a gas turbine and a method for supplying fuel gas to a gas turbine according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.
[第1実施形態]
 図4は、ガスタービンコンバインドサイクル発電プラントを表す概略構成図である。
[First Embodiment]
FIG. 4 is a schematic configuration diagram illustrating a gas turbine combined cycle power plant.
 第1実施形態において、図4に示すように、ガスタービンコンバインドサイクル発電プラント10は、ガスタービン11と、排熱回収ボイラ(HRSG)12と、蒸気タービン13と、発電機14とを備えている。 In the first embodiment, as shown in FIG. 4, the gas turbine combined cycle power plant 10 includes a gas turbine 11, an exhaust heat recovery boiler (HRSG) 12, a steam turbine 13, and a generator 14. .
 ガスタービン11は、圧縮機21と、燃焼器22と、タービン23とを有しており、圧縮機21とタービン23は、回転軸(ロータ)24により一体回転可能に連結されている。圧縮機21は、空気取り込みラインL1から取り込んだ空気を圧縮する。燃焼器22は、圧縮機21から圧縮空気供給ラインL2を通して供給された圧縮空気と、燃料ガス供給ラインL3から供給された燃料ガスとを混合して燃焼する。タービン23は、燃焼器22から燃焼ガス供給ラインL4を通して供給された燃焼ガスにより回転駆動する。 The gas turbine 11 includes a compressor 21, a combustor 22, and a turbine 23, and the compressor 21 and the turbine 23 are coupled to each other by a rotating shaft (rotor) 24 so as to be integrally rotatable. The compressor 21 compresses the air taken in from the air intake line L1. The combustor 22 mixes and combusts the compressed air supplied from the compressor 21 through the compressed air supply line L2 and the fuel gas supplied from the fuel gas supply line L3. The turbine 23 is rotationally driven by the combustion gas supplied from the combustor 22 through the combustion gas supply line L4.
 排熱回収ボイラ12は、ガスタービン11(タービン23)から排ガス排出ラインL5を介して排出された排ガスの排熱によって蒸気を発生させるものである。排熱回収ボイラ12は、図示しないが、熱交換器として、過熱器と蒸発器と節炭器とを有している。排熱回収ボイラ12は、ガスタービン11からの排ガスが内部を通過することで、過熱器、蒸発器、節炭器の順に熱回収を行うことで蒸気を生成する。そして、排熱回収ボイラ12は、蒸気を生成した使用済の排ガスを排出する排ガス排出ラインL6を介して煙突(図示略)が連結されている。 The exhaust heat recovery boiler 12 generates steam by exhaust heat of exhaust gas discharged from the gas turbine 11 (turbine 23) through the exhaust gas discharge line L5. Although not shown, the exhaust heat recovery boiler 12 includes a superheater, an evaporator, and a economizer as a heat exchanger. The exhaust heat recovery boiler 12 generates steam by performing heat recovery in the order of the superheater, the evaporator, and the economizer when the exhaust gas from the gas turbine 11 passes through the inside. The exhaust heat recovery boiler 12 is connected to a chimney (not shown) via an exhaust gas exhaust line L6 that exhausts used exhaust gas that has generated steam.
 蒸気タービン13は、排熱回収ボイラ12により生成された過熱蒸気により駆動するものである。蒸気タービン13は、タービン25を有しており、回転軸26がガスタービン11の回転軸24と一直線状をなして連結されている。そして、排熱回収ボイラ12の過熱器の過熱蒸気をタービン25に供給する蒸気供給ラインL7が設けられると共に、タービン25を駆動した使用済の蒸気は、復水器27で、冷却水(例えば、海水)で冷却されて復水となり、復水・給水ラインL8を経て排熱回収ボイラ12に供給される。 The steam turbine 13 is driven by superheated steam generated by the exhaust heat recovery boiler 12. The steam turbine 13 has a turbine 25, and the rotation shaft 26 is connected to the rotation shaft 24 of the gas turbine 11 in a straight line. A steam supply line L7 for supplying superheated steam from the superheater of the exhaust heat recovery boiler 12 to the turbine 25 is provided, and used steam that has driven the turbine 25 is cooled by a condenser 27 (for example, It is cooled by seawater) to become condensate, and is supplied to the exhaust heat recovery boiler 12 via the condensate / water supply line L8.
 発電機14は、回転軸26の端部に設けられている。ガスタービン11の回転軸24と蒸気タービン13の回転軸26は、一体に設けられていてもよい。この発電機14は、ガスタービン11及び蒸気タービン13が駆動し、回転軸24,26が回転することで、伝達される回転力により発電する。なお、ガスタービン11の回転軸24と蒸気タービン13の回転軸26は、別体とし、それぞれに発電機が接続される、いわゆる多軸型であってもよい。 The generator 14 is provided at the end of the rotating shaft 26. The rotating shaft 24 of the gas turbine 11 and the rotating shaft 26 of the steam turbine 13 may be provided integrally. The generator 14 generates power by the transmitted rotational force when the gas turbine 11 and the steam turbine 13 are driven and the rotating shafts 24 and 26 are rotated. Note that the rotary shaft 24 of the gas turbine 11 and the rotary shaft 26 of the steam turbine 13 may be separate, and may be a so-called multi-shaft type in which a generator is connected to each.
 そのため、ガスタービンコンバインドサイクル発電プラント10の運転時、ガスタービン11にて、圧縮機21は空気を圧縮し、燃焼器22は供給された圧縮空気と燃料ガスとを混合して燃焼する。タービン23は燃焼器22から供給された燃焼ガスにより回転駆動する。また、ガスタービン11(タービン23)から排出された排ガスは、排熱回収ボイラ12に送られ、排熱回収ボイラ12は蒸気を生成し、過熱蒸気が蒸気タービン13に送られる。タービン25は、この過熱蒸気により回転駆動する。発電機14は、ガスタービン11及び蒸気タービン13により回転軸24,26が駆動回転することで発電を行う。 Therefore, during operation of the gas turbine combined cycle power plant 10, the compressor 21 compresses air in the gas turbine 11, and the combustor 22 mixes and supplies the supplied compressed air and fuel gas for combustion. The turbine 23 is rotationally driven by the combustion gas supplied from the combustor 22. Further, the exhaust gas discharged from the gas turbine 11 (turbine 23) is sent to the exhaust heat recovery boiler 12, the exhaust heat recovery boiler 12 generates steam, and the superheated steam is sent to the steam turbine 13. The turbine 25 is rotationally driven by this superheated steam. The generator 14 generates power when the rotary shafts 24 and 26 are driven and rotated by the gas turbine 11 and the steam turbine 13.
 上述したガスタービンコンバインドサイクル発電プラント10は、主燃料ガス供給系統からガスタービン11の燃焼器22に燃料ガスが供給されている。ところが、この主燃料ガス供給系統が故障すると、ガスタービン11の燃焼器22に供給される燃料ガスの圧力が低下し、ガスタービンを継続して定常運転することが困難となる。そのため、ガスタービンコンバインドサイクル発電プラント10は、燃料ガス貯蔵システムを備える場合がある。 In the gas turbine combined cycle power plant 10 described above, the fuel gas is supplied from the main fuel gas supply system to the combustor 22 of the gas turbine 11. However, when the main fuel gas supply system fails, the pressure of the fuel gas supplied to the combustor 22 of the gas turbine 11 decreases, and it becomes difficult to continuously operate the gas turbine continuously. Therefore, the gas turbine combined cycle power plant 10 may include a fuel gas storage system.
 図1は、第1実施形態のガスタービンの燃料ガス貯蔵システムを表す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a fuel gas storage system of a gas turbine according to a first embodiment.
 第1実施形態において、図1に示すように、燃料ガス源としてのガスパイプラインL10は、主燃料ガス供給ラインとしての燃料ガス供給ラインL3を介してガスタービン11(燃焼器22)に連結されている。燃料ガス供給ラインL3は、必要に応じてコンプレッサ31と、開閉弁32と、圧力センサ33と、温度センサ34が設けられている。 In the first embodiment, as shown in FIG. 1, a gas pipeline L10 as a fuel gas source is connected to a gas turbine 11 (combustor 22) via a fuel gas supply line L3 as a main fuel gas supply line. Yes. The fuel gas supply line L3 is provided with a compressor 31, an on-off valve 32, a pressure sensor 33, and a temperature sensor 34 as necessary.
 ガスタービン11の燃料ガス貯蔵システム40は、貯蔵された燃料ガスを補助燃料ガス供給ラインL11からガスタービン11に供給可能なものであり、貯蔵タンク41と、回流ラインL12と、回流量調節弁42と、コンプレッサ43と、温度調節器44と、制御装置45とを備えている。 The fuel gas storage system 40 of the gas turbine 11 can supply the stored fuel gas from the auxiliary fuel gas supply line L11 to the gas turbine 11, and includes a storage tank 41, a circulation line L12, and a circulation flow rate adjustment valve 42. And a compressor 43, a temperature controller 44, and a control device 45.
 貯蔵タンク41は、ガスタービン11の燃料ガスを貯蔵するものであり、複数のタンク本体51により構成されている。この複数のタンク本体51は、所定長さを有する中空長尺管であり、所定間隔を空けて並設されている。回流ラインL12は、貯蔵タンク41に貯蔵された燃料ガスを外部で回流させて貯蔵タンク41のガスを連続的に入れ替えるものである。回流ラインL12は、一端部が貯蔵タンク41を構成する複数のタンク本体51における長手方向の一方側の入口部51aに連結され、他端部が複数のタンク本体51における長手方向の他方側の出口部51bに連結されている。ここで、回流ラインL12は、燃料ガス供給ラインL3の一部と補助燃料ガス供給ラインL11の一部を兼用している。 The storage tank 41 stores the fuel gas of the gas turbine 11 and includes a plurality of tank main bodies 51. The plurality of tank bodies 51 are hollow long tubes having a predetermined length, and are arranged in parallel at predetermined intervals. The circulation line L12 is used to continuously exchange the gas in the storage tank 41 by circulating the fuel gas stored in the storage tank 41 outside. The circulation line L12 is connected at one end to an inlet 51a on one side in the longitudinal direction of the plurality of tank main bodies 51 constituting the storage tank 41, and at the other end thereof is an outlet on the other side in the longitudinal direction of the plurality of tank main bodies 51. It is connected to the part 51b. Here, the circulation line L12 serves as a part of the fuel gas supply line L3 and a part of the auxiliary fuel gas supply line L11.
 複数のタンク本体51は、入口部51aの位置より出口部51bの位置が低く位置するように傾斜して配置されている。そして、複数のタンク本体51は、出口部51bにドレンラインL13が連結され、ドレンラインL13にドレン弁52が設けられている。 The plurality of tank main bodies 51 are arranged so as to be inclined such that the position of the outlet 51b is lower than the position of the inlet 51a. In the plurality of tank main bodies 51, the drain line L13 is connected to the outlet 51b, and the drain valve 52 is provided in the drain line L13.
 回流ラインL12は、コンプレッサ43と温度調節器44と回流量調節弁42が燃料ガスの回流方向に沿って順に配置されている。回流量調節弁42は、開度を調整することで、回流ラインL12を流れる燃料ガスの回流量を調整することができる。コンプレッサ43は、回流ラインL12を流れる燃料ガスを昇圧することができる。温度調節器44は、回流ラインL12を流れる燃料ガスの温度を調節することができる。温度調節器44は、加熱器53あるいは冷却器54あるいはその両方を有することができ、回流ラインL12を流れる燃料ガスを加熱器53により加熱したり、冷却器54により冷却したりすることで、燃料ガスの温度を調節することができる。 In the circulation line L12, the compressor 43, the temperature controller 44, and the circulation flow rate adjustment valve 42 are arranged in order along the circulation direction of the fuel gas. The recirculation flow rate adjustment valve 42 can adjust the recirculation flow rate of the fuel gas flowing through the recirculation line L12 by adjusting the opening degree. The compressor 43 can increase the pressure of the fuel gas flowing through the circulation line L12. The temperature adjuster 44 can adjust the temperature of the fuel gas flowing through the circulation line L12. The temperature controller 44 can include a heater 53 and / or a cooler 54, and the fuel gas flowing through the circulation line L <b> 12 is heated by the heater 53 or cooled by the cooler 54. The temperature of the gas can be adjusted.
 また、回流ラインL12は、温度調節器44を迂回する迂回ラインL14が設けられる場合があり、その場合、迂回ラインL14には開閉弁55が設けられる。燃料ガスの温度調節が必要であるとき、開閉弁55を閉止して燃料ガスの全部を温度調節器44に流すと、燃料ガスの温度調節を行うことができる。一方、燃料ガスの温度調節が不要であるとき、開閉弁55を開放して燃料ガスの全部を迂回ラインL14に流すと、燃料ガスの温度調節が行われずそのままの温度となる。なお、開閉弁55の開度を調節することで、燃料ガスの一部を迂回ラインL14に流し、残りの燃料ガスを温度調節器44で加熱または冷却し、燃料ガスの温度調節を行ってもよい。 In addition, the bypass line L12 may be provided with a bypass line L14 that bypasses the temperature controller 44. In that case, the bypass line L14 is provided with an opening / closing valve 55. When it is necessary to adjust the temperature of the fuel gas, the temperature of the fuel gas can be adjusted by closing the on-off valve 55 and flowing the entire fuel gas to the temperature controller 44. On the other hand, when it is not necessary to adjust the temperature of the fuel gas, if the on-off valve 55 is opened and all of the fuel gas flows through the bypass line L14, the temperature of the fuel gas is not adjusted and the temperature remains unchanged. It should be noted that by adjusting the opening degree of the on-off valve 55, a part of the fuel gas is allowed to flow to the bypass line L14, and the remaining fuel gas is heated or cooled by the temperature controller 44 to adjust the temperature of the fuel gas. Good.
 回流ラインL12は、温度調節器44及び迂回ラインL14より下流側に開閉弁56が設けられる。補助燃料ガス供給ラインL11は、基端部が回流ラインL12における開閉弁56と各タンク本体51の入口部51aとの間に連結され、先端部が燃料ガス供給ラインL3における圧力センサ33と温度センサ34の上流側に連結される。この場合、補助燃料ガス供給ラインL11は、回流ラインL12の少なくとも一部を兼ねており、且つ、回流量調節弁42とコンプレッサ43と温度調節器44を迂回して燃料ガス供給ラインL3に連結されている。そして、補助燃料ガス供給ラインL11は、回流量調節弁42とコンプレッサ43と温度調節器44に並列に減圧弁57が設けられる。 In the circulation line L12, an on-off valve 56 is provided on the downstream side of the temperature controller 44 and the bypass line L14. The auxiliary fuel gas supply line L11 has a proximal end portion connected between the on-off valve 56 in the circulation line L12 and the inlet portion 51a of each tank body 51, and a distal end portion of the pressure sensor 33 and temperature sensor in the fuel gas supply line L3. 34 is connected to the upstream side. In this case, the auxiliary fuel gas supply line L11 also serves as at least a part of the circulation line L12, and is connected to the fuel gas supply line L3, bypassing the circulation flow rate adjustment valve 42, the compressor 43, and the temperature regulator 44. ing. The auxiliary fuel gas supply line L11 is provided with a pressure reducing valve 57 in parallel with the recirculation flow rate control valve 42, the compressor 43, and the temperature controller 44.
 制御装置45は、貯蔵タンク41に貯蔵される燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節器44を制御する。ここで、目標貯蔵温度領域における下限温度は、ガスタービン11に供給する燃料ガスの目標供給温度に、燃料ガスが減圧弁57の通過時に降下する降下温度を加算した温度である。 The control device 45 controls the temperature regulator 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained within a preset target storage temperature region. Here, the lower limit temperature in the target storage temperature range is a temperature obtained by adding a temperature drop at which the fuel gas drops when passing through the pressure reducing valve 57 to the target supply temperature of the fuel gas supplied to the gas turbine 11.
 即ち、ガスタービン11に供給する燃料ガスは、目標供給圧力P0と供給下限温度T0が設定されている。圧力センサ33と温度センサ34は、燃料ガス供給ラインL3を流れる燃料ガスの圧力と温度を計測し、計測結果を制御装置45に出力する。制御装置45は、燃料ガス供給ラインL3を流れる燃料ガスの圧力と温度が目標供給圧力P0と供給下限温度T0以上になっていることを監視する。 That is, the target supply pressure P0 and the supply lower limit temperature T0 are set for the fuel gas supplied to the gas turbine 11. The pressure sensor 33 and the temperature sensor 34 measure the pressure and temperature of the fuel gas flowing through the fuel gas supply line L <b> 3, and output the measurement result to the control device 45. The control device 45 monitors that the pressure and temperature of the fuel gas flowing through the fuel gas supply line L3 are equal to or higher than the target supply pressure P0 and the supply lower limit temperature T0.
 また、燃料ガス貯蔵システム40は、ガスパイプラインL10の正常時に、貯蔵タンク41に貯蔵されている燃料ガスを回流ラインL12により外部に回流することで、温度低下を抑制している。つまり、回流量調節弁42を開放し、コンプレッサ43を駆動し、温度調節器44を必要に応じて作動する。そして、燃料ガス貯蔵システム40は、ガスパイプラインL10の異常時に、貯蔵タンク41に貯蔵されている燃料ガスを補助燃料ガス供給ラインL11からガスタービン11に供給する。このとき、燃料ガスは、減圧弁57により減圧されてガスタービン11に供給されることから温度が低下する。 Further, the fuel gas storage system 40 suppresses the temperature drop by circulating the fuel gas stored in the storage tank 41 to the outside through the circulation line L12 when the gas pipeline L10 is normal. That is, the recirculation flow rate adjustment valve 42 is opened, the compressor 43 is driven, and the temperature adjuster 44 is operated as necessary. The fuel gas storage system 40 supplies the fuel gas stored in the storage tank 41 to the gas turbine 11 from the auxiliary fuel gas supply line L11 when the gas pipeline L10 is abnormal. At this time, the fuel gas is depressurized by the pressure reducing valve 57 and supplied to the gas turbine 11, so that the temperature decreases.
 制御装置45は、ガスパイプラインL10の異常時であっても、補助燃料ガス供給ラインL11から燃料ガス供給ラインL3を流れる燃料ガスの圧力と温度が目標供給圧力P0と供給下限温度T0以上になるように燃料ガスの温度を調節する必要がある。そのため、制御装置45は、燃料ガスが減圧弁57の通過時に降下する降下温度を加味して、貯蔵タンク41に貯蔵される燃料ガスの温度を調節する。 Even when the gas pipeline L10 is abnormal, the controller 45 causes the pressure and temperature of the fuel gas flowing from the auxiliary fuel gas supply line L11 to the fuel gas supply line L3 to be equal to or higher than the target supply pressure P0 and the supply lower limit temperature T0. It is necessary to adjust the temperature of the fuel gas. Therefore, the control device 45 adjusts the temperature of the fuel gas stored in the storage tank 41 in consideration of the temperature drop at which the fuel gas drops when passing through the pressure reducing valve 57.
 貯蔵タンク41は、貯蔵される燃料ガスの圧力と温度を検出する圧力センサ61及び温度センサ62が設けられている。また、回流ラインL12は、開閉弁56と補助燃料ガス供給ラインL11の連結部との間に温度センサ63が設けられている。ここで、貯蔵タンク41に貯蔵される燃料ガスの目標貯蔵圧力領域と目標貯蔵温度領域が設定されており、目標貯蔵温度領域の下限温度をT1とし、燃料ガスが減圧弁57の通過時に降下する降下温度をΔTとすると、目標貯蔵温度領域の下限温度T1が下記のように設定される。
  T1=T0+ΔT
 また、目標貯蔵温度領域の上限温度T2は、例えば、回流ラインL12などを構成する配管の耐久温度T3に依存することから、目標貯蔵温度領域T1~T2は、下記のように設定される。
  T0+ΔT≦T1~T2<T3
The storage tank 41 is provided with a pressure sensor 61 and a temperature sensor 62 for detecting the pressure and temperature of the stored fuel gas. Further, in the circulation line L12, a temperature sensor 63 is provided between the on-off valve 56 and the connecting portion of the auxiliary fuel gas supply line L11. Here, the target storage pressure region and the target storage temperature region of the fuel gas stored in the storage tank 41 are set, the lower limit temperature of the target storage temperature region is T1, and the fuel gas falls when passing through the pressure reducing valve 57. Assuming that the temperature drop is ΔT, the lower limit temperature T1 of the target storage temperature region is set as follows.
T1 = T0 + ΔT
Further, since the upper limit temperature T2 of the target storage temperature region depends on, for example, the endurance temperature T3 of the pipe constituting the circulation line L12, the target storage temperature region T1 to T2 is set as follows.
T0 + ΔT ≦ T1 to T2 <T3
 制御装置45は、温度センサ62,63の計測結果に基づいて貯蔵タンク41に貯蔵される燃料ガスの温度、回流ラインL12を回流する燃料ガスの温度が目標貯蔵温度領域T1~T2内に維持されるように温度調節器44と開閉弁55を制御する。なお、制御装置45は、圧力センサ61の計測結果に基づいて貯蔵タンク41に貯蔵される燃料ガスの圧力が目標貯蔵圧力領域内に維持されるようにコンプレッサ43を制御している。 The control device 45 maintains the temperature of the fuel gas stored in the storage tank 41 and the temperature of the fuel gas circulating in the circulation line L12 based on the measurement results of the temperature sensors 62 and 63 within the target storage temperature region T1 to T2. Thus, the temperature controller 44 and the on-off valve 55 are controlled. The control device 45 controls the compressor 43 based on the measurement result of the pressure sensor 61 so that the pressure of the fuel gas stored in the storage tank 41 is maintained in the target storage pressure region.
 ここで、上述したガスタービンの燃料ガス貯蔵システム40の作動について説明する。図2は、燃料ガス供給系統の正常時におけるガスタービンの燃料ガス貯蔵システムの作動を表す概略図、図3は、燃料ガス供給系統の異常時におけるガスタービンの燃料ガス貯蔵システムの作動を表す概略図である。 Here, the operation of the fuel gas storage system 40 of the above-described gas turbine will be described. FIG. 2 is a schematic diagram illustrating the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is normal, and FIG. 3 is a schematic diagram illustrating the operation of the fuel gas storage system of the gas turbine when the fuel gas supply system is abnormal. FIG.
 第1実施形態のガスタービン11への燃料ガス供給方法は、貯蔵タンク41に貯蔵された燃料ガスを外部で回流させて貯蔵タンク41に戻す工程と、燃料ガスの回流時に燃料ガスを昇圧すると共に燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節する工程と、ガスパイプラインL10の異常時に燃料ガスの回流を停止して貯蔵タンク41に貯蔵された燃料ガスを減圧してガスタービン11へ供給する工程とを有する。 The fuel gas supply method to the gas turbine 11 according to the first embodiment includes a step of circulating the fuel gas stored in the storage tank 41 outside and returning the fuel gas to the storage tank 41, and boosting the fuel gas during the circulation of the fuel gas. Adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range, and stopping the circulation of the fuel gas when the gas pipeline L10 is abnormal, and storing the fuel gas stored in the storage tank 41 And a step of supplying the gas turbine 11 with a reduced pressure.
 以下に、具体的に説明する。図2に示すように、ガスパイプラインL10の平常時、開閉弁32を開放することで、ガスパイプラインL10の燃料ガスが燃料ガス供給ラインL3を介してガスタービン11(燃焼器22)に供給される。また、ガスパイプラインL10の燃料ガスが回流ラインL12に供給される。そして、コンプレッサ43を駆動すると共に、開閉弁55,56を開放することで、回流ラインL12に供給された燃料ガスを加圧して貯蔵タンク41の各タンク本体51に貯蔵する。 The details will be described below. As shown in FIG. 2, by opening the on-off valve 32 during normal operation of the gas pipeline L10, the fuel gas in the gas pipeline L10 is supplied to the gas turbine 11 (combustor 22) via the fuel gas supply line L3. . Further, the fuel gas in the gas pipeline L10 is supplied to the circulation line L12. And while driving the compressor 43 and opening the on-off valves 55 and 56, the fuel gas supplied to the circulation line L12 is pressurized and stored in each tank body 51 of the storage tank 41.
 貯蔵タンク41の各タンク本体51に燃料ガスが貯蔵されると、回流量調節弁42を開放することで、回流ラインL12及び各タンク本体51に所定量の燃料ガスを回流させる。このとき、制御装置45は、温度センサ62,63の計測結果に基づいて貯蔵タンク41に貯蔵される燃料ガスの温度が目標貯蔵温度領域T1~T2内に維持されるように温度調節器44や開閉弁55を制御する。 When fuel gas is stored in each tank body 51 of the storage tank 41, a predetermined amount of fuel gas is circulated through the circulation line L12 and each tank body 51 by opening the circulation flow rate adjustment valve 42. At this time, the controller 45 controls the temperature regulator 44 and the temperature controller 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained in the target storage temperature region T1 to T2 based on the measurement results of the temperature sensors 62 and 63. The on-off valve 55 is controlled.
 そして、ガスパイプラインL10に異常が発生すると、燃料ガス供給ラインL3の燃料ガスの圧力が低下する。そのため、制御装置45は、圧力センサ33の計測結果から燃料ガス供給ラインL3における燃料ガスの圧力低下を検出し、補助燃料ガス供給ラインL11からのガスタービン11への燃料ガスの供給を開始する。即ち、開閉弁55,56と回流量調節弁42を閉止すると共に、コンプレッサ43と温度調節器44の駆動を停止し、減圧弁57を開放する。すると、回流ラインL12による燃料ガスの回流が停止し、貯蔵タンク41に貯蔵されている燃料ガスが補助燃料ガス供給ラインL11を通って燃料ガス供給ラインL3からガスタービン11へ供給される。このとき、貯蔵タンク41に貯蔵されている燃料ガスは、目標貯蔵温度領域T1~T2内に維持されていることから、減圧弁57による減圧時に温度が低下しても、供給下限温度T0を下回ることがない。 When an abnormality occurs in the gas pipeline L10, the pressure of the fuel gas in the fuel gas supply line L3 decreases. Therefore, the control device 45 detects a decrease in the pressure of the fuel gas in the fuel gas supply line L3 from the measurement result of the pressure sensor 33, and starts supplying the fuel gas from the auxiliary fuel gas supply line L11 to the gas turbine 11. That is, the on-off valves 55 and 56 and the flow rate adjusting valve 42 are closed, the driving of the compressor 43 and the temperature controller 44 is stopped, and the pressure reducing valve 57 is opened. Then, the circulation of the fuel gas through the circulation line L12 is stopped, and the fuel gas stored in the storage tank 41 is supplied from the fuel gas supply line L3 to the gas turbine 11 through the auxiliary fuel gas supply line L11. At this time, since the fuel gas stored in the storage tank 41 is maintained in the target storage temperature region T1 to T2, even if the temperature is reduced during the pressure reduction by the pressure reducing valve 57, it is below the supply lower limit temperature T0. There is nothing.
 なお、ガスタービン11の油燃料供給経路からガスタービン11へ油燃料を供給する準備が完了したら、減圧弁57を閉止して補助燃料ガス供給ラインL11からのガスタービン11への燃料ガスの供給を停止する。 When preparation for supplying oil fuel from the oil fuel supply path of the gas turbine 11 to the gas turbine 11 is completed, the pressure reducing valve 57 is closed to supply fuel gas to the gas turbine 11 from the auxiliary fuel gas supply line L11. Stop.
 このように第1実施形態のガスタービンの燃料ガス貯蔵システムにあっては、燃料ガスを貯蔵する貯蔵タンク41と、貯蔵タンク41に貯蔵された燃料ガスを外部へ回流させる回流ラインL12と、回流ラインL12に設けられる回流量調節弁42と、回流ラインL12に設けられて燃料ガスを昇圧するコンプレッサ43と、回流ラインL12に設けられて燃料ガスの温度を調節する温度調節器44と、貯蔵タンク41に貯蔵される燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節器44を制御する制御装置45とを設けている。 Thus, in the fuel gas storage system of the gas turbine of the first embodiment, the storage tank 41 that stores the fuel gas, the circulation line L12 that circulates the fuel gas stored in the storage tank 41 to the outside, A recirculation flow rate adjustment valve 42 provided in the line L12, a compressor 43 provided in the recirculation line L12 to boost the fuel gas, a temperature regulator 44 provided in the recirculation line L12 to adjust the temperature of the fuel gas, and a storage tank There is provided a control device 45 that controls the temperature regulator 44 so that the temperature of the fuel gas stored in 41 is maintained within a preset target storage temperature region.
 従って、ガスタービン11へのガスパイプラインL10の平常時に、回流量調節弁42を開放すると共にコンプレッサ43を駆動することで、貯蔵タンク41に貯蔵された燃料ガスを回流ラインL12により外部で回流させて貯蔵タンク41に戻し、このとき、制御装置45は、貯蔵タンク41に貯蔵される燃料ガスの温度が目標貯蔵温度領域内に維持されるように温度調節器44を制御する。そのため、ガスタービン11へのガスパイプラインL10の異常時に、貯蔵タンク41に貯蔵されて目標貯蔵温度領域内に維持された燃料ガスを補助燃料ガス供給ラインL11からガスタービン11に供給することができる。その結果、ガスタービン11へのガスパイプラインL10の異常時に、貯蔵タンク41に貯蔵された燃料ガスを貯蔵タンク41の下流側で加熱するための設備が不要となり、設備コストや運転コストの増加を抑制することができると共に、ガスタービン11に必要な圧力と温度の燃料ガスを迅速に供給することができる。 Therefore, the fuel gas stored in the storage tank 41 is circulated outside by the circulation line L12 by opening the circulation flow rate adjusting valve 42 and driving the compressor 43 during normal operation of the gas pipeline L10 to the gas turbine 11. Returning to the storage tank 41, at this time, the controller 45 controls the temperature regulator 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained within the target storage temperature region. Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 and maintained in the target storage temperature region can be supplied from the auxiliary fuel gas supply line L11 to the gas turbine 11. As a result, when the gas pipeline L10 to the gas turbine 11 is abnormal, equipment for heating the fuel gas stored in the storage tank 41 on the downstream side of the storage tank 41 becomes unnecessary, and the increase in equipment cost and operation cost is suppressed. In addition, the fuel gas having the pressure and temperature necessary for the gas turbine 11 can be quickly supplied.
 第1実施形態のガスタービンの燃料ガス貯蔵システムでは、補助燃料ガス供給ラインL11に減圧弁57を設け、目標貯蔵温度領域における下限温度を、ガスタービン11に供給する燃料ガスの供給下限温度に、燃料ガスが減圧弁57の通過時に降下する降下温度を加算した温度以上としている。従って、ガスタービン11へのガスパイプラインL10の異常時に、貯蔵タンク41に貯蔵された燃料ガスを減圧弁57により減圧して補助燃料ガス供給ラインL11からガスタービン11に供給するため、燃料ガスの温度が低下するが、目標貯蔵温度領域における下限温度を供給下限温度に降下温度を加算した温度以上とすることから、適正温度の燃料ガスをガスタービン11に供給することができる。 In the fuel gas storage system of the gas turbine of the first embodiment, the pressure reducing valve 57 is provided in the auxiliary fuel gas supply line L11, and the lower limit temperature in the target storage temperature region is set to the supply lower limit temperature of the fuel gas supplied to the gas turbine 11. The temperature is equal to or higher than the sum of the temperature drop when the fuel gas passes through the pressure reducing valve 57. Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 is decompressed by the pressure reducing valve 57 and supplied to the gas turbine 11 from the auxiliary fuel gas supply line L11. However, since the lower limit temperature in the target storage temperature region is set to be equal to or higher than the temperature obtained by adding the drop temperature to the supply lower limit temperature, the fuel gas at an appropriate temperature can be supplied to the gas turbine 11.
 第1実施形態のガスタービンの燃料ガス貯蔵システムでは、貯蔵タンク41を、所定長さを有する中空長尺管のタンク本体51とし、回流ラインL12の一端部をタンク本体51における長手方向の一方側の入口部51aに連結し、他端部をタンク本体51における長手方向の他方側の出口部51bに連結している。燃料ガスは、貯蔵タンク41と回流ラインL12により構成される循環ラインを循環することとなり、貯蔵タンク41内のガス性状の安定化及び一様な加熱を図り、ドレンの発生を抑制することができる。 In the fuel gas storage system for a gas turbine of the first embodiment, the storage tank 41 is a tank body 51 of a hollow long tube having a predetermined length, and one end of the circulation line L12 is one side in the longitudinal direction of the tank body 51. The other end of the tank main body 51 is connected to the other outlet 51b in the longitudinal direction. The fuel gas circulates through a circulation line constituted by the storage tank 41 and the circulation line L12, and the gas property in the storage tank 41 is stabilized and uniform heating can be achieved, thereby suppressing the generation of drain. .
 第1実施形態のガスタービンの燃料ガス貯蔵システムでは、貯蔵タンク41を構成するタンク本体51の入口部51aの位置より出口部51bの位置を低く位置するように傾斜して配置し、出口部51b側にドレンラインL13を連結している。従って、貯蔵タンク41内にドレンが発生しても、ドレンが出口部51b側に流れてドレンラインL13から外部に排出されるため、貯蔵タンク41内のドレンの停留を抑制することができる。 In the fuel gas storage system for a gas turbine of the first embodiment, the outlet 51b is disposed so as to be inclined so that the position of the outlet 51b is lower than the position of the inlet 51a of the tank body 51 constituting the storage tank 41. A drain line L13 is connected to the side. Accordingly, even if drain is generated in the storage tank 41, the drain flows to the outlet 51b side and is discharged to the outside from the drain line L13, so that the retention of the drain in the storage tank 41 can be suppressed.
 なお、第1実施形態のガスタービンの燃料ガス貯蔵システムでは、貯蔵タンク41を構成するタンク本体51の入口部51aの位置より出口部51bの位置を高く位置するように傾斜して配置し、入口部51a側にドレンラインL13を連結してもよい。この構成であっても、貯蔵タンク41内にドレンが発生してとき、ドレンが入口部51a側に流れてドレンラインL13から外部に排出されるため、貯蔵タンク41内のドレンの停留を抑制することができる。 In the fuel gas storage system for the gas turbine of the first embodiment, the outlet 51b is disposed so as to be positioned higher than the inlet 51a of the tank body 51 constituting the storage tank 41, and the inlet You may connect the drain line L13 to the part 51a side. Even in this configuration, when the drain is generated in the storage tank 41, the drain flows to the inlet 51a side and is discharged to the outside from the drain line L13, so that the retention of the drain in the storage tank 41 is suppressed. be able to.
 第1実施形態のガスタービンの燃料ガス貯蔵システムでは、ガスパイプラインL10が燃料ガス供給ラインL3を介してガスタービン11に連結され、補助燃料ガス供給ラインL11は回流量調節弁42とコンプレッサ43と温度調節器44を迂回して燃料ガス供給ラインL3に連結している。従って、ガスタービン11へのガスパイプラインL10の異常時に、回流量調節弁42やコンプレッサ43や温度調節器44の動作に関係なく、貯蔵タンク41に貯蔵された燃料ガスを補助燃料ガス供給ラインL11からガスタービン11に供給することができる。 In the fuel gas storage system of the gas turbine of the first embodiment, the gas pipeline L10 is connected to the gas turbine 11 via the fuel gas supply line L3, and the auxiliary fuel gas supply line L11 is connected to the flow rate adjusting valve 42, the compressor 43, and the temperature. The regulator 44 is bypassed and connected to the fuel gas supply line L3. Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 is supplied from the auxiliary fuel gas supply line L11 regardless of the operation of the recirculation flow control valve 42, the compressor 43, and the temperature controller 44. The gas turbine 11 can be supplied.
 第1実施形態のガスタービンの燃料ガス貯蔵システムでは、補助燃料ガス供給ラインL11が回流ラインL12の少なくとも一部を兼ねている。従って、補助燃料ガス供給ラインL11や回流ラインL12を構成する配管長さを短縮することができ、構造を簡素化することができると共に、設備コストの増加を抑制することができる。 In the fuel gas storage system of the gas turbine of the first embodiment, the auxiliary fuel gas supply line L11 also serves as at least a part of the circulation line L12. Accordingly, the length of the piping constituting the auxiliary fuel gas supply line L11 and the circulation line L12 can be shortened, the structure can be simplified, and an increase in equipment cost can be suppressed.
 なお、第1実施形態のガスタービンの燃料ガス貯蔵システムでは、ガスパイプラインL10が燃料ガス供給ラインL3を介してガスタービン11に連結され、補助燃料ガス供給ラインL11を貯蔵タンク41から燃料ガス供給ラインL3に連結してもよい。この構成であると、補助燃料ガス供給ラインL11を貯蔵タンク41から燃料ガス供給ラインL3に直接連結することから、信頼性を向上することができる。 In the gas turbine fuel gas storage system of the first embodiment, the gas pipeline L10 is connected to the gas turbine 11 via the fuel gas supply line L3, and the auxiliary fuel gas supply line L11 is connected from the storage tank 41 to the fuel gas supply line. You may connect with L3. With this configuration, since the auxiliary fuel gas supply line L11 is directly connected from the storage tank 41 to the fuel gas supply line L3, reliability can be improved.
 また、第1実施形態のガスタービンへの燃料ガス供給方法にあっては、貯蔵タンク41に貯蔵された燃料ガスを外部で回流させて貯蔵タンク41に戻す工程と、燃料ガスの回流時に燃料ガスを昇圧すると共に燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節する工程と、ガスパイプラインL10の異常時に燃料ガスの回流を停止して貯蔵タンク41に貯蔵された燃料ガスを減圧してガスタービン11へ供給する工程とを有する。 Further, in the fuel gas supply method to the gas turbine of the first embodiment, the step of circulating the fuel gas stored in the storage tank 41 to the outside and returning it to the storage tank 41, and the fuel gas during the circulation of the fuel gas And adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range, and when the gas pipeline L10 is abnormal, the circulation of the fuel gas is stopped and stored in the storage tank 41. And reducing the pressure of the fuel gas and supplying it to the gas turbine 11.
 従って、ガスタービン11へのガスパイプラインL10の異常時に、貯蔵タンク41に貯蔵された燃料ガスを減圧して補助燃料ガス供給ラインL11からガスタービン11に供給するため、燃料ガスの温度が低下するが、燃料ガスの回流時に燃料ガスの温度が目標貯蔵温度領域内に維持されているため、適正温度の燃料ガスをガスタービン11に供給することができる。その結果、ガスタービン11へのガスパイプラインL10の異常時に、貯蔵タンク41に貯蔵された燃料ガスを加熱するための貯蔵タンク41の下流側の設備が不要となり、設備コストや運転コストの増加を抑制することができると共に、ガスタービン11に必要な圧力と温度の燃料ガスを迅速に供給することができる。 Therefore, when the gas pipeline L10 to the gas turbine 11 is abnormal, the fuel gas stored in the storage tank 41 is depressurized and supplied from the auxiliary fuel gas supply line L11 to the gas turbine 11, so the temperature of the fuel gas decreases. Since the temperature of the fuel gas is maintained within the target storage temperature region during the circulation of the fuel gas, the fuel gas having an appropriate temperature can be supplied to the gas turbine 11. As a result, when the gas pipeline L10 to the gas turbine 11 is abnormal, equipment on the downstream side of the storage tank 41 for heating the fuel gas stored in the storage tank 41 becomes unnecessary, and an increase in equipment cost and operation cost is suppressed. In addition, the fuel gas having the pressure and temperature necessary for the gas turbine 11 can be quickly supplied.
[第2実施形態]
 図5は、第2実施形態のガスタービンの燃料ガス貯蔵システムを表す概略構成図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 5 is a schematic configuration diagram illustrating a fuel gas storage system of a gas turbine according to the second embodiment. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第2実施形態において、図5に示すように、ガスパイプラインL10は、燃料ガス供給ラインL3を介してガスタービン11(燃焼器22)に連結されている。燃料ガス供給ラインL3は、コンプレッサ31と、開閉弁32と、圧力センサ33と、温度センサ34が設けられている。 In the second embodiment, as shown in FIG. 5, the gas pipeline L10 is connected to the gas turbine 11 (combustor 22) via the fuel gas supply line L3. The fuel gas supply line L3 is provided with a compressor 31, an on-off valve 32, a pressure sensor 33, and a temperature sensor 34.
 ガスタービン11の燃料ガス貯蔵システム40Aは、貯蔵された燃料ガスを補助燃料ガス供給ラインL21からガスタービン11に供給可能なものであり、貯蔵タンク41と、回流ラインL12と、回流量調節弁42と、コンプレッサ43と、温度調節器44と、制御装置45とを備えている。 The fuel gas storage system 40A of the gas turbine 11 can supply stored fuel gas from the auxiliary fuel gas supply line L21 to the gas turbine 11, and includes a storage tank 41, a circulation line L12, and a circulation flow rate adjustment valve 42. And a compressor 43, a temperature controller 44, and a control device 45.
 回流ラインL12は、コンプレッサ43と温度調節器44と回流量調節弁42が燃料ガスの回流方向に沿って順に配置されている。補助燃料ガス供給ラインL21は、回流ラインL12の少なくとも一部を兼ねており、且つ、回流量調節弁42とコンプレッサ43と温度調節器44を迂回して燃料ガス供給ラインL3に連結されている。即ち、補助燃料ガス供給ラインL21は、減圧弁57を迂回する回流ラインL12が設けられ、回流ラインL12に回流量調節弁42が設けられている。 In the circulation line L12, the compressor 43, the temperature controller 44, and the circulation flow rate adjustment valve 42 are arranged in order along the circulation direction of the fuel gas. The auxiliary fuel gas supply line L21 also serves as at least a part of the circulation line L12, and is connected to the fuel gas supply line L3, bypassing the circulation flow rate adjustment valve 42, the compressor 43, and the temperature regulator 44. That is, the auxiliary fuel gas supply line L21 is provided with a circulation line L12 that bypasses the pressure reducing valve 57, and a circulation flow rate adjustment valve 42 is provided in the circulation line L12.
 制御装置45は、貯蔵タンク41に貯蔵される燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節器44を制御する。ここで、目標貯蔵温度領域における下限温度は、ガスタービン11に供給する燃料ガスの供給下限温度に、燃料ガスが減圧弁57の通過時に降下する降下温度を加算した温度である。 The control device 45 controls the temperature regulator 44 so that the temperature of the fuel gas stored in the storage tank 41 is maintained within a preset target storage temperature region. Here, the lower limit temperature in the target storage temperature region is a temperature obtained by adding the lowering temperature of the fuel gas supplied to the gas turbine 11 to the lowering temperature at which the fuel gas drops when passing through the pressure reducing valve 57.
 なお、制御装置45による各種制御は、第1実施形態とほぼ同様であることから、説明は省略する。 Note that various controls by the control device 45 are substantially the same as those in the first embodiment, and thus description thereof is omitted.
 このように第2実施形態のガスタービンの燃料ガス貯蔵システムにあっては、補助燃料ガス供給ラインL21として、減圧弁57を迂回する回流ラインL12を設け、回流ラインL12に回流量調節弁42を設けている。 Thus, in the fuel gas storage system of the gas turbine of the second embodiment, the auxiliary fuel gas supply line L21 is provided with the circulation line L12 that bypasses the pressure reducing valve 57, and the circulation flow rate adjustment valve 42 is provided in the circulation line L12. Provided.
 従って、補助燃料ガス供給ラインL21と回流ラインL12を合理化し、構造を簡素化することができると共に、設備コストの増加を抑制することができる。 Therefore, the auxiliary fuel gas supply line L21 and the circulation line L12 can be rationalized, the structure can be simplified, and an increase in equipment cost can be suppressed.
 なお、上述した実施形態では、温度調節器44として、加熱器53と冷却器54を設け、また、迂回ラインL14と開閉弁55を設けて構成したが、加熱器53は省略してもよい。また、迂回ラインL14と開閉弁を省略して、温度調節器44として出力可変の空冷式冷却器を設けてもよい。 In the above-described embodiment, the heater 53 and the cooler 54 are provided as the temperature controller 44, and the bypass line L14 and the open / close valve 55 are provided. However, the heater 53 may be omitted. The bypass line L14 and the on-off valve may be omitted, and an air-cooled cooler with variable output may be provided as the temperature regulator 44.
 10 ガスタービンコンバインドサイクル発電プラント
 11 ガスタービン
 12 排熱回収ボイラ
 13 蒸気タービン
 14 発電機
 21 圧縮機
 22 燃焼器
 23 タービン
 31 コンプレッサ
 32 開閉弁
 33 圧力センサ
 34 温度センサ
 40,40A 燃料ガス貯蔵システム
 41 貯蔵タンク
 42 回流量調節弁
 43 コンプレッサ
 44 温度調節器
 45 制御装置
 51 タンク本体
 52 ドレン弁
 53 加熱器
 54 冷却器
 55,56 開閉弁
 57 減圧弁
 61 圧力センサ
 62,63 温度センサ
 L3 燃料ガス供給ライン(主燃料ガス供給ライン)
 L10 ガスパイプライン(燃料ガス源)
 L11,L21 補助燃料ガス供給ライン
 L12 回流ライン
 L13 ドレンライン
 L14 迂回ライン
DESCRIPTION OF SYMBOLS 10 Gas turbine combined cycle power plant 11 Gas turbine 12 Waste heat recovery boiler 13 Steam turbine 14 Generator 21 Compressor 22 Combustor 23 Turbine 31 Compressor 32 On-off valve 33 Pressure sensor 34 Temperature sensor 40, 40A Fuel gas storage system 41 Storage tank 42 Flow Control Valve 43 Compressor 44 Temperature Controller 45 Controller 51 Tank Body 52 Drain Valve 53 Heater 54 Cooler 55, 56 On-off Valve 57 Pressure Reducing Valve 61 Pressure Sensor 62, 63 Temperature Sensor L3 Fuel Gas Supply Line (Main Fuel) Gas supply line)
L10 Gas pipeline (fuel gas source)
L11, L21 Auxiliary fuel gas supply line L12 Circulation line L13 Drain line L14 Detour line

Claims (9)

  1.  貯蔵された燃料ガスを補助燃料ガス供給ラインからガスタービンに供給するガスタービンの燃料ガス貯蔵システムにおいて、
     燃料ガスを貯蔵する貯蔵タンクと、
     前記貯蔵タンクに貯蔵された燃料ガスを外部へ回流させる回流ラインと、
     前記回流ラインに設けられる回流量調節弁と、
     前記回流ラインに設けられて燃料ガスを昇圧するコンプレッサと、
     前記回流ラインに設けられて前記コンプレッサにより昇圧されたことにより高温となった燃料ガスの温度を調節する温度調節器と、
     前記貯蔵タンクに貯蔵される燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように前記温度調節器を制御する制御装置と、
     を備えることを特徴とするガスタービンの燃料ガス貯蔵システム。
    In a fuel gas storage system of a gas turbine that supplies stored fuel gas to a gas turbine from an auxiliary fuel gas supply line,
    A storage tank for storing fuel gas;
    A circulation line for circulating the fuel gas stored in the storage tank to the outside;
    A recirculation flow control valve provided in the recirculation line;
    A compressor provided in the circulation line for boosting the fuel gas;
    A temperature controller that adjusts the temperature of the fuel gas that is provided in the circulation line and is heated by being pressurized by the compressor;
    A control device for controlling the temperature regulator so that the temperature of the fuel gas stored in the storage tank is maintained within a preset target storage temperature range;
    A fuel gas storage system for a gas turbine, comprising:
  2.  前記補助燃料ガス供給ラインに減圧弁が設けられ、前記目標貯蔵温度領域における下限温度は、前記ガスタービンに供給する燃料ガスの供給下限温度に、燃料ガスが前記減圧弁の通過時に降下する降下温度を加算した温度以上であることを特徴とする請求項1に記載のガスタービンの燃料ガス貯蔵システム。 A pressure reducing valve is provided in the auxiliary fuel gas supply line, and a lower limit temperature in the target storage temperature region is a lower supply temperature of fuel gas supplied to the gas turbine, and a lowering temperature at which the fuel gas drops when passing through the pressure reducing valve The fuel gas storage system for a gas turbine according to claim 1, wherein the temperature is equal to or higher than a temperature obtained by adding the two.
  3.  前記貯蔵タンクは、所定長さを有する中空長尺管であり、前記回流ラインは、一端部が前記貯蔵タンクにおける長手方向の一方側の入口部に連結され、他端部が前記貯蔵タンクにおける長手方向の他方側の出口部に連結されることを特徴とする請求項1または請求項2に記載のガスタービンの燃料ガス貯蔵システム。 The storage tank is a hollow long tube having a predetermined length, and the circulation line has one end connected to an inlet portion on one side in the longitudinal direction of the storage tank and the other end is a longitudinal length in the storage tank. The fuel gas storage system for a gas turbine according to claim 1, wherein the fuel gas storage system is connected to an outlet portion on the other side in the direction.
  4.  前記貯蔵タンクは、前記入口部の位置より前記出口部の位置が低く位置するように傾斜して配置され、前記出口部側にドレンラインが連結されることを特徴とする請求項3に記載のガスタービンの燃料ガス貯蔵システム。 The storage tank according to claim 3, wherein the storage tank is disposed so as to be inclined such that a position of the outlet portion is lower than a position of the inlet portion, and a drain line is connected to the outlet portion side. Gas turbine fuel gas storage system.
  5.  前記貯蔵タンクは、前記入口部の位置より前記出口部の位置が高く位置するように傾斜して配置され、前記入口部側にドレンラインが連結されることを特徴とする請求項3に記載のガスタービンの燃料ガス貯蔵システム。 The storage tank according to claim 3, wherein the storage tank is disposed to be inclined such that the position of the outlet portion is higher than the position of the inlet portion, and a drain line is connected to the inlet portion side. Gas turbine fuel gas storage system.
  6.  燃料ガス源が主燃料ガス供給ラインを介して前記ガスタービンに連結され、前記補助燃料ガス供給ラインは、前記貯蔵タンクから前記回流量調節弁と前記コンプレッサと前記温度調節器を迂回して主燃料ガス供給ラインに連結されることを特徴とする請求項1から請求項5のいずれか一項に記載のガスタービンの燃料ガス貯蔵システム。 A fuel gas source is connected to the gas turbine via a main fuel gas supply line, and the auxiliary fuel gas supply line bypasses the flow control valve, the compressor, and the temperature regulator from the storage tank. The fuel gas storage system for a gas turbine according to any one of claims 1 to 5, wherein the fuel gas storage system is connected to a gas supply line.
  7.  前記補助燃料ガス供給ラインは、前記回流ラインが少なくとも一部を兼ねることを特徴とする請求項1から請求項6のいずれか一項に記載のガスタービンの燃料ガス貯蔵システム。 The fuel gas storage system for a gas turbine according to any one of claims 1 to 6, wherein the auxiliary fuel gas supply line also serves as at least a part of the circulation line.
  8.  燃料ガス源が主燃料ガス供給ラインを介して前記ガスタービンに連結され、前記補助燃料ガス供給ラインは、前記貯蔵タンクから主燃料ガス供給ラインに連結されることを特徴とする請求項1から請求項7のいずれか一項に記載のガスタービンの燃料ガス貯蔵システム。 The fuel gas source is connected to the gas turbine via a main fuel gas supply line, and the auxiliary fuel gas supply line is connected from the storage tank to the main fuel gas supply line. Item 8. The fuel gas storage system for a gas turbine according to any one of Items 7 to 9.
  9.  貯蔵された燃料ガスをガスタービンに供給するガスタービンへの燃料ガス供給方法において、
     貯蔵タンクに貯蔵された燃料ガスを外部へ回流させる工程と、
     燃料ガスの回流時に燃料ガスを昇圧それによって昇温すると共に燃料ガスの温度が予め設定された目標貯蔵温度領域内に維持されるように温度調節する工程と、
     前記ガスタービンへの主燃料ガス供給系統の異常時に燃料ガスの回流を停止して前記貯蔵タンクに貯蔵された燃料ガスを減圧して補助供給ラインにより前記ガスタービンへ供給する工程と、
     を有することを特徴とするガスタービンへの燃料ガス供給方法。
    In a fuel gas supply method to a gas turbine for supplying a stored fuel gas to a gas turbine,
    A step of circulating the fuel gas stored in the storage tank to the outside;
    A step of increasing the temperature of the fuel gas at the time of the circulation of the fuel gas and adjusting the temperature so that the temperature of the fuel gas is maintained within a preset target storage temperature range;
    Stopping the circulation of the fuel gas when the main fuel gas supply system to the gas turbine is abnormal, depressurizing the fuel gas stored in the storage tank, and supplying it to the gas turbine through an auxiliary supply line;
    A method for supplying fuel gas to a gas turbine, comprising:
PCT/JP2018/008130 2018-03-02 2018-03-02 Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine WO2019167276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008130 WO2019167276A1 (en) 2018-03-02 2018-03-02 Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008130 WO2019167276A1 (en) 2018-03-02 2018-03-02 Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine

Publications (1)

Publication Number Publication Date
WO2019167276A1 true WO2019167276A1 (en) 2019-09-06

Family

ID=67805279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008130 WO2019167276A1 (en) 2018-03-02 2018-03-02 Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine

Country Status (1)

Country Link
WO (1) WO2019167276A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774522A (en) * 1980-10-27 1982-05-10 Ishikawajima Harima Heavy Ind Co Ltd Combustion for gas turbine
JPS6113100A (en) * 1984-06-20 1986-01-21 シーメンス、アクチエンゲゼルシヤフト Pure-gas penetrating intermediate storage facility
JP2000038929A (en) * 1998-07-23 2000-02-08 Hitachi Ltd Fuel gas pressure reduction and heating equipment for gas turbine
JP2004185943A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Fuel cell system
CA2651619A1 (en) * 2009-01-22 2010-07-22 Bart Toporowski Fuel line antifreeze system
JP2011033029A (en) * 2009-07-30 2011-02-17 General Electric Co <Ge> System and method for supplying fuel to gas turbine
EP2399973A1 (en) * 2010-06-25 2011-12-28 Siemens Aktiengesellschaft A biomass gasification system and a method for biomass gasification
US20130283811A1 (en) * 2011-01-06 2013-10-31 Snecma Fuel circuit for an aviation turbine engine, the circuit having a fuel pressure regulator valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774522A (en) * 1980-10-27 1982-05-10 Ishikawajima Harima Heavy Ind Co Ltd Combustion for gas turbine
JPS6113100A (en) * 1984-06-20 1986-01-21 シーメンス、アクチエンゲゼルシヤフト Pure-gas penetrating intermediate storage facility
JP2000038929A (en) * 1998-07-23 2000-02-08 Hitachi Ltd Fuel gas pressure reduction and heating equipment for gas turbine
JP2004185943A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Fuel cell system
CA2651619A1 (en) * 2009-01-22 2010-07-22 Bart Toporowski Fuel line antifreeze system
JP2011033029A (en) * 2009-07-30 2011-02-17 General Electric Co <Ge> System and method for supplying fuel to gas turbine
EP2399973A1 (en) * 2010-06-25 2011-12-28 Siemens Aktiengesellschaft A biomass gasification system and a method for biomass gasification
US20130283811A1 (en) * 2011-01-06 2013-10-31 Snecma Fuel circuit for an aviation turbine engine, the circuit having a fuel pressure regulator valve

Similar Documents

Publication Publication Date Title
US7107774B2 (en) Method and apparatus for combined cycle power plant operation
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
US7509794B2 (en) Waste heat steam generator
KR101984438B1 (en) A water supply method, a water supply system that executes this method, and a steam generation facility having a water supply system
US11300011B1 (en) Gas turbine heat recovery system and method
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP2023160930A (en) Gas turbine, control method therefor, and combined cycle plant
JP5822487B2 (en) Gas turbine plant and control method thereof
JP7185507B2 (en) Steam turbine equipment, method for starting steam turbine equipment, and combined cycle plant
WO2019167276A1 (en) Fuel gas storage system for gas turbine and method for supplying fuel gas to gas turbine
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP5693281B2 (en) Reheat boiler
JP2002021508A (en) Condensate supply system
JPH11200889A (en) Gas turbine combined power generation system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
US11661867B2 (en) Gas turbine exhaust heat recovery plant
US10619519B2 (en) Bypass conduits for reducing thermal fatigue and stress in heat recovery steam generators of combined cycle power plant systems
JP6590650B2 (en) Combined cycle plant, control device therefor, and operation method
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPH07167401A (en) Double pressure type waste heat recovery boiler water supplying apparatus
JPS5845566B2 (en) combined cycle power plant
JP2004346945A (en) Steam temperature control method and device of combined cycle plant
JPS63138104A (en) Complex power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP