WO2019167227A1 - 光電変換素子および光電変換モジュール - Google Patents

光電変換素子および光電変換モジュール Download PDF

Info

Publication number
WO2019167227A1
WO2019167227A1 PCT/JP2018/007779 JP2018007779W WO2019167227A1 WO 2019167227 A1 WO2019167227 A1 WO 2019167227A1 JP 2018007779 W JP2018007779 W JP 2018007779W WO 2019167227 A1 WO2019167227 A1 WO 2019167227A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
conversion layer
conversion element
transparent electrode
Prior art date
Application number
PCT/JP2018/007779
Other languages
English (en)
French (fr)
Inventor
保聡 屋敷
時岡 秀忠
誠 小長井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/007779 priority Critical patent/WO2019167227A1/ja
Priority to JP2018534989A priority patent/JPWO2019167227A1/ja
Publication of WO2019167227A1 publication Critical patent/WO2019167227A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a thin-film stacked photoelectric conversion element in which a plurality of photoelectric conversion layers are stacked and a photoelectric conversion module including the photoelectric conversion element, and particularly to a photoelectric conversion element capable of receiving light on both sides facing each other and a photoelectric conversion element including the photoelectric conversion element. Concerning the conversion module.
  • a thin film stacked photoelectric conversion element in which two or more photoelectric conversion layers are stacked has been devised as one method for improving conversion efficiency. ing.
  • a photoelectric conversion layer having a large band gap is provided on the light incident side, and the photoelectric conversion has a band gap that gradually decreases from the photoelectric conversion layer toward the side opposite to the light incident side.
  • Patent Document 1 it is assumed that light is incident from one direction, and there is a problem that light such as room lighting incident from various directions cannot be incident on the photoelectric conversion element.
  • Patent Document 2 shows a module structure in which light can be incident from both sides.
  • the back electrode of a thin film stacked photoelectric conversion element as in Patent Document 1 is translucent in this module structure. Even if it changes and arrange
  • the present invention has been made to solve such problems, and provides a photoelectric conversion element capable of efficiently photoelectrically converting incident light and a photoelectric conversion module including the photoelectric conversion element. Objective.
  • a photoelectric conversion element includes a transparent substrate, a first transparent electrode formed on the transparent substrate, and at least three photoelectric layers formed on the first transparent electrode.
  • a conversion layer and a second transparent electrode formed on the uppermost photoelectric conversion layer among the photoelectric conversion layers, each photoelectric conversion layer having a light absorption layer, the first transparent electrode and the second transparent electrode.
  • the light absorption layer of the photoelectric conversion layer not in contact with the electrode has a smaller band gap than the light absorption layer of the photoelectric conversion layer in contact with the first transparent electrode and the light absorption layer of the photoelectric conversion layer in contact with the second transparent electrode.
  • a photoelectric conversion element includes a transparent substrate, a first transparent electrode formed on the transparent substrate, at least three photoelectric conversion layers formed on the first transparent electrode, and each photoelectric conversion element. And a second transparent electrode formed on the uppermost photoelectric conversion layer of the conversion layer, and each photoelectric conversion layer has a light absorption layer and does not contact the first transparent electrode and the second transparent electrode.
  • the light absorption layer of the layer has a smaller band gap than the light absorption layer of the photoelectric conversion layer in contact with the first transparent electrode and the light absorption layer of the photoelectric conversion layer in contact with the second transparent electrode. It becomes possible to convert.
  • FIG. 21 is a cross-sectional view showing an example of the configuration of the photoelectric conversion element 40 according to the base technology.
  • a first transparent electrode 42 is formed on a transparent substrate 41.
  • the 1st transparent electrode 42 On the 1st transparent electrode 42, the 1st photoelectric converting layer 43, the 2nd photoelectric converting layer 44, and the 3rd photoelectric converting layer 45 are laminated
  • a second transparent electrode 46 is formed on the third photoelectric conversion layer 45.
  • FIG. 22 is a diagram showing an example of the energy band structure of each of the photoelectric conversion layers 43, 44, and 45 according to the base technology.
  • FIG. 22 shows an example in which the structure of Patent Document 1 is applied to the photoelectric conversion element 40 shown in FIG.
  • the photoelectric conversion element 40 having the energy band structure shown in FIG. 22 receives light incident from one direction.
  • Eg1 indicates the band gap of the first photoelectric conversion layer 43
  • Eg2 indicates the band gap of the second photoelectric conversion layer 44
  • Eg3 indicates the band gap of the third photoelectric conversion layer 45.
  • EL indicates the light energy of the incident light.
  • the first photoelectric conversion layer 43, the second photoelectric conversion layer 44, and the third photoelectric conversion layer 45 are formed so that the band gap becomes smaller in order from the transparent substrate 41 side that is the light incident side. Yes. That is, the relationship of Eg1> Eg2> Eg3 is established.
  • the photoelectric conversion element having the energy band structure shown in FIG. 22 can efficiently perform photoelectric conversion over a wide wavelength range of incident light.
  • the photoelectric conversion element having the energy band structure shown in FIG. 22 is based on the assumption that light enters from one direction. However, for example, when using a photoelectric conversion element in a house, office, factory, etc., it is assumed that light is incident from indoor lighting installed in various places, unlike outdoors such as a solar power plant. However, the photoelectric conversion element having the energy band structure shown in FIG. 22 has a problem in that light such as room illumination incident from various directions cannot be efficiently photoelectrically converted.
  • FIG. 23 is a diagram illustrating an example of the energy band structure of each of the photoelectric conversion layers 43, 44, and 45 according to the base technology.
  • FIG. 23 shows an example in which the structure of Patent Document 2 is applied to the photoelectric conversion element 40 shown in FIG.
  • the photoelectric conversion element 40 having the energy band structure shown in FIG. 23 light is incident on both opposing surfaces.
  • Eg1 represents the band gap of the first photoelectric conversion layer 43
  • Eg2 represents the band gap of the second photoelectric conversion layer 44
  • Eg3 represents the band gap of the third photoelectric conversion layer 45.
  • ELR indicates the light energy of the back incident light.
  • the back surface incident light refers to light incident from the second transparent electrode 46 side.
  • the relationship between the energy gaps of the photoelectric conversion layers 43, 44, and 45 is the same as that in FIG. Although not shown, light also enters from the transparent substrate 41 side.
  • the photoelectric conversion element having the energy band structure shown in FIG. 23 can efficiently photoelectrically convert incident light incident from the transparent substrate 41 side, but efficiently converts backside incident light. Can not do it. Considering the characteristics of LED (Light Emitting Diode) light sources, which have been increasingly adopted due to recent demands for energy saving, it is considered that the influence of the loss increases.
  • LED Light Emitting Diode
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the photoelectric conversion element 1 according to Embodiment 1 of the present invention.
  • the 1st transparent electrode 3 is formed on the transparent substrate 2 which is a support substrate.
  • the 1st transparent electrode 3 On the 1st transparent electrode 3, the 1st photoelectric converting layer 7, the 2nd photoelectric converting layer 8, and the 3rd photoelectric converting layer 9 are laminated
  • the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 constitute the photoelectric conversion region 4.
  • a second transparent electrode 5 is formed on the third photoelectric conversion layer 9.
  • a sealant 6 is formed on the second transparent electrode 5.
  • the transparent substrate 2 is made of a material that can withstand the process of forming the photoelectric conversion layer at about 100 ° C. to 300 ° C. such as glass, plastic, or resin sheet.
  • the first transparent electrode 3 and the second transparent electrode 5 are made of metal oxides such as tin oxide, titanium oxide, indium tin oxide, magnesium oxide, and zinc oxide, and are formed by sputtering, metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition). : MOCVD) method, vapor deposition method or the like.
  • the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 are formed by using a material capable of photoelectric conversion.
  • a material capable of photoelectric conversion for example, in addition to amorphous silicon-based materials that can control the band gap by changing the composition ratio, polycrystalline silicon-based materials or microcrystalline silicon-based materials can be used for sputtering, plasma chemical vapor deposition (Chemical It is desirable to form the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 by a Vapor Deposition (CVD) method.
  • the amorphous silicon-based material include amorphous silicon, amorphous silicon oxide, amorphous silicon carbide, amorphous silicon nitride, and amorphous germanium.
  • the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer are formed using an organic molecular material such as fullerene or a ⁇ -conjugated polymer that can control the wavelength band absorbed by the molecular structure. 9 may be formed.
  • the sealant 6 is made of a resin material such as ethylene vinyl acetate copolymer (EVA) in order to protect the photoelectric conversion element 1 from moisture intrusion, outside air intrusion, or physical damage.
  • EVA ethylene vinyl acetate copolymer
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the photoelectric conversion layer 10.
  • the photoelectric conversion layer 10 represents the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 shown in FIG. That is, each of the 1st photoelectric converting layer 7, the 2nd photoelectric converting layer 8, and the 3rd photoelectric converting layer 9 is the same structure as the photoelectric converting layer 10 shown in FIG.
  • the photoelectric conversion layer 10 includes a P-type semiconductor layer 11, a light absorption layer 12 made of an intrinsic semiconductor, and an N-type semiconductor layer 13.
  • a light absorption layer 12 is formed on the P-type semiconductor layer 11, and an N-type semiconductor layer 13 is formed on the light absorption layer 12.
  • FIG. 3 is a diagram illustrating an example of the energy band structure of the photoelectric conversion layer 10.
  • the electron-hole pairs generated by the incident light being absorbed in the light absorption layer 12 are generated by the electric field generated in the light absorption layer 12 due to the potential difference between the P-type semiconductor layer 11 and the N-type semiconductor layer 13. Separated and taken out.
  • the electrons that have received the light energy of the EL are once excited to a higher energy level, and then the energy.
  • Energy of EL-Eg corresponding to the difference between the level and the band gap Eg is released as heat. The energy released at this time becomes a loss during photoelectric conversion.
  • FIG. 4 is a diagram illustrating an example of a wavelength spectrum of light of a white LED used as room lighting.
  • Sunlight includes light with a wide energy range of about 300 nm to 1200 nm.
  • the white LED includes only light having a short wavelength with a relatively high energy having a wavelength of about 400 nm to 700 nm. Therefore, when a photoelectric conversion layer having a small band gap is provided on the light incident side, it is considered that the influence of the loss of photoelectric conversion due to the photoelectric conversion layer is much greater than when used outdoors.
  • FIG. 5 is a diagram showing an example of the energy band structure in each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 according to the first embodiment.
  • the second photoelectric conversion layer 8 having the smallest band gap Eg2 includes the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the first photoelectric conversion layer 8. It is formed at the center of the three photoelectric conversion layers 9. That is, the photoelectric conversion layer having the smallest band gap is formed at the center in the stacking direction among the plurality of formed photoelectric conversion layers.
  • the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 having the largest band gaps Eg1 and Eg3 are formed so as to be adjacent to the first transparent electrode 3, and the third photoelectric conversion layer 7 is formed.
  • the conversion layer 9 is formed so as to be adjacent to the second transparent electrode 5.
  • the thickness of the photoelectric conversion region 4 varies depending on the materials used for the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9, but the first photoelectric conversion layer 7, Since the photocurrent generated by each of the second photoelectric conversion layer 8 and the third photoelectric conversion layer 9 needs to match, the absorption coefficient of the material used and the wavelength spectrum characteristic of incident light as shown in FIG. It is possible to calculate based on.
  • the light absorption layer 12 needs to have a certain thickness.
  • the region where the light does not reach becomes high resistance and the efficiency of photoelectric conversion Will fall. Therefore, it is necessary to calculate the film thickness tmax that allows the light absorption layer 12 of the second photoelectric conversion layer 8 to absorb incident light almost completely, and to prevent the film thickness of the second photoelectric conversion layer 8 from exceeding the film thickness tmax.
  • the thickest film thickness condition is that the incident light incident from both sides is completely absorbed by the second photoelectric conversion layer 8 and does not enter the subsequent stage. Therefore, since the film thickness condition is applied to each of the both surface sides when viewed from the second photoelectric conversion layer 8, it is desirable to design twice the film thickness tmax as the upper limit of the thickness of the photoelectric conversion region 4. .
  • the limit film thickness tmax that can absorb all light of the target wavelength can be calculated.
  • a value twice the film thickness tmax obtained by Expression (1) is the upper limit of the thickness of the photoelectric conversion region 4.
  • the light absorption layer 12 of the second photoelectric conversion layer 8 is formed of amorphous silicon
  • the light absorption layer of the second photoelectric conversion layer 8 is calculated by calculating the above equation (1) using the absorption coefficient ⁇ of amorphous silicon. If the film thickness of 12 is about 4000 nm, the light entering the subsequent stage of the light absorption layer 12 of the second photoelectric conversion layer 8 is 10% or less.
  • the film thickness is desirably 1000 nm or less.
  • the photocurrent generated in each photoelectric conversion layer It is important to design so that. Since the photoelectric conversion layers are connected in series, the voltage of the entire photoelectric conversion element 1 is the sum of the voltages generated in the photoelectric conversion layers. On the other hand, the current of the entire photoelectric conversion element 1 is limited to the value of the photoelectric conversion layer having the smallest current value among the photoelectric conversion layers. A current mismatch, which is a difference in photocurrent generated between the photoelectric conversion layers, is recombined inside the photoelectric conversion element without being taken out of the photoelectric conversion element, resulting in heat loss.
  • each photoelectric photoelectric layer is formed from the photoelectric conversion layer located at the center of the plurality of photoelectric conversion layers toward the transparent electrodes formed on both surfaces.
  • the band gap of the conversion layer becomes symmetrically large, it is not necessary to individually design each photoelectric conversion layer on each of both surfaces on which light is incident, and each photoelectric layer on one surface on which light is incident.
  • the structure in which the conversion layer is optimally designed can be applied to the other surface as it is.
  • the photoelectric conversion layer located at the center of the plurality of photoelectric conversion layers the light having the longest wavelength, that is, the light having the smallest light energy is incident from both sides on which light is incident. It is necessary to design in consideration of the fact that the incident energy is doubled when light is incident only on the surface.
  • the incident light is It is necessary to consider how to divide. Assuming a light source of a white LED as shown in FIG. 4, the total number of photons of light incident from one surface is about 1.7 ⁇ 10 15 cm ⁇ 2 . It is necessary to divide this in each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 to obtain current matching. In the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9, it is only necessary to use 2/3 photons out of the total number of photons incident from one surface.
  • the photon of 1/3 of the total photon numbers of the light which injects from one surface should just be utilized.
  • the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 use light having a wavelength shorter than 600 nm
  • the second photoelectric conversion layer 8 uses light having a wavelength longer than 600 nm.
  • the current values obtained from each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 coincide with each other. Therefore, the band gap of the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 is desirably 2.05 eV or less.
  • the current obtained from the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 is reduced, and the current That is, the difference from the current obtained in the second photoelectric conversion layer 8 is a loss.
  • the above calculation of the divided use of photons can be applied as it is, and a material having a band gap of 1.7 eV to 2.05 eV is used for the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9. desirable.
  • the above band gap condition can be easily satisfied by adjusting the carbon or oxygen content of amorphous silicon carbide or amorphous silicon oxide.
  • FIG. 7 is a diagram showing an example of a result of simulating the output characteristics of the photoelectric conversion element when the light absorption layer 12 is formed of amorphous silicon carbide. Specifically, the output of the photoelectric conversion element when monochromatic light having a wavelength of 600 nm is incident on the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 having the light absorption layer 12 having a band gap of 2.05 eV. An example of simulation results of characteristics is shown. In FIG. 7, each value is normalized by the maximum value.
  • the current increases as the thickness of the light absorption layer 12 increases.
  • the thickness of the light absorption layer 12 exceeds 400 nm. It goes down.
  • the fill factor decreases as the thickness of the light absorption layer 12 increases. Therefore, it can be seen that the photoelectric conversion efficiency increases when the film thickness of the light absorption layer 12 is between 100 nm and 400 nm, more desirably between 100 nm and 300 nm.
  • Table 1 shows that the first photoelectric conversion layer 7 and the second photoelectric conversion layer 8 in the case where the total film thickness of the photoelectric conversion region 4 is set to 500 nm or 750 nm under the condition where the light of the white LED having the same intensity is incident on both sides.
  • the result of having calculated the film thickness of each said light absorption layer 12 from which the photocurrent obtained from each light absorption layer 12 of 3rd and 3rd photoelectric converting layer 9 becomes equal is shown.
  • total film thickness indicates the total film thickness of the photoelectric conversion region 4
  • first photoelectric conversion layer 7 indicates the film thickness of the light absorption layer 12 of the first photoelectric conversion layer 7
  • second “Photoelectric conversion layer 8” indicates the film thickness of the light absorption layer 12 of the second photoelectric conversion layer 8
  • hird photoelectric conversion layer 9 indicates the film thickness of the light absorption layer 12 of the third photoelectric conversion layer 9.
  • the first transparent electrode 3 zinc oxide, which is the material of the first transparent electrode 3, is formed on the alkali-free glass, which is the transparent substrate 2, so as to have a film thickness of 500 nm to 700 nm. Thereby, the first transparent electrode 3 is formed.
  • the film thickness of the first transparent electrode 3 can be appropriately changed based on the conductivity, transmittance, and light scattering characteristics of the first transparent electrode 3, but the photoelectric conversion region made of amorphous silicon to be formed later Depending on the film thickness of 4, if there is a steep concavo-convex shape in the photoelectric conversion region 4, defects are likely to occur inside, which causes a leak current. Therefore, in the first embodiment, the first transparent electrode 3 is formed to have a thin film thickness so that the surface of the first transparent electrode 3 is flat.
  • Table 2 shows the growth conditions of the light absorption layer 12 of each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9.
  • “second photoelectric conversion layer 8” indicates the light absorption layer 12 of the second photoelectric conversion layer 8
  • “first and third photoelectric conversion layers 7, 9” indicate the first photoelectric conversion layer 7 and the third photoelectric conversion layer 7.
  • Each light absorption layer 12 of the photoelectric conversion layer 9 is shown.
  • a light absorption layer made of amorphous silicon is obtained by using silane (SiH 4 ) as a silicon source gas and diluting the source gas with hydrogen (H 2 ). 12 is formed.
  • silane (SiH 4 ) is used as a raw material gas of silicon, and the raw material gas is used as compared with the formation of the light absorption layer 12 of the second photoelectric conversion layer 8.
  • a light absorption layer 12 made of is formed.
  • the band gap of amorphous silicon carbide obtained under the growth conditions shown in Table 2 is about 0.2 eV larger than the band gap of amorphous silicon.
  • the band gap of amorphous silicon carbide constituting the light absorption layer 12 of each of the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 is the band gap of amorphous silicon constituting the light absorption layer 12 of the second photoelectric conversion layer 8. Since it is 1.9 eV which is 0.2 eV higher than the above, it is within the optimum value of the band gap of the first photoelectric conversion layer 7 and the third photoelectric conversion layer 9 described above.
  • the P-type semiconductor layer 11 and the N-type semiconductor layer 13 in each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 are formed under common conditions.
  • the P-type semiconductor layer 11 is formed of wide band gap amorphous silicon carbide.
  • the N-type semiconductor layer 13 is formed of microcrystalline silicon with high conductivity.
  • zinc oxide which is the material of the second transparent electrode 5
  • metal organic vapor phase epitaxy so that the film thickness becomes 500 nm to 700 nm.
  • FIG. 8 is a diagram showing an example of incident light intensity dependency of the open-circuit voltage and the short-circuit current of the photoelectric conversion element 1 according to Embodiment 1 of the present invention.
  • the short-circuit current strongly depends on the incident light intensity, but the open circuit voltage is maintained at about 2 V even when the incident light intensity is low.
  • 0.78V which is an open voltage of a general amorphous silicon solar cell.
  • a voltage higher than 0.6V to 0.7V is obtained. That is, the effect by forming the 1st photoelectric converting layer 7 and the 3rd photoelectric converting layer 9 with a large band gap in each of the both surface sides of the 2nd photoelectric converting layer 8 with a small band gap is acquired.
  • the plurality of first photoelectric conversion layers 7, second photoelectric conversion layers 8, and third photoelectric conversion layers 9 are provided.
  • the band gap of the light absorption layer 12 of the second photoelectric conversion layer 8 positioned in the center is formed by laminating the light absorption layer 12 of the first photoelectric conversion layer 7 in contact with the first transparent electrode 3, and the second The band gap of the light absorption layer 12 of the third photoelectric conversion layer 9 in contact with the transparent electrode 5 is smaller. Therefore, it is possible to efficiently photoelectrically convert light incident from a plurality of light sources.
  • FIG. 9 is a cross-sectional view showing an example of the configuration of the photoelectric conversion element 14 according to Embodiment 2 of the present invention.
  • the photoelectric conversion element 14 includes a fourth photoelectric conversion layer 15 between the first photoelectric conversion layer 7 and the second photoelectric conversion layer 8, and the second photoelectric conversion layer 8 and the third photoelectric conversion layer.
  • a fifth photoelectric conversion layer 16 is provided between the layer 9 and the layer 9. Since other configurations are the same as those of the photoelectric conversion element 1 according to Embodiment 1, detailed description thereof is omitted here.
  • the fourth photoelectric conversion layer 15 includes a plurality of fourth photoelectric conversion layers 151 to 15x.
  • Each of the fourth photoelectric conversion layer 151 to the fourth photoelectric conversion layer 15x has the same configuration as the photoelectric conversion layer 10 shown in FIG.
  • Each band gap of the fourth photoelectric conversion layer 151 to the fourth photoelectric conversion layer 15 x is formed so as to increase from the second photoelectric conversion layer 8 toward the first photoelectric conversion layer 7. That is, the relationship of the band gap of the second photoelectric conversion layer 8 ⁇ the band gap of the fourth photoelectric conversion layer 151 ⁇ ... ⁇ The band gap of the fourth photoelectric conversion layer 15x ⁇ the first photoelectric conversion layer 7 is established.
  • the fifth photoelectric conversion layer 16 includes a plurality of fifth photoelectric conversion layers 161 to 5x photoelectric conversion layers 16x.
  • Each of the fifth photoelectric conversion layer 161 to the fifth photoelectric conversion layer 16x has the same configuration as the photoelectric conversion layer 10 shown in FIG.
  • Each band gap of the fifth photoelectric conversion layer 161 to the fifth photoelectric conversion layer 16x is formed so as to increase from the second photoelectric conversion layer 8 toward the third photoelectric conversion layer 9. That is, the relationship of the band gap of the second photoelectric conversion layer 8 ⁇ the band gap of the fifth photoelectric conversion layer 161 ⁇ ... ⁇ The band gap of the fifth photoelectric conversion layer 16x ⁇ the third photoelectric conversion layer 9 is established.
  • Table 3 shows that the first photoelectric conversion layer 7 and the second photoelectric conversion layer 8 in the case where the total film thickness of the photoelectric conversion region 4 is set to 500 nm or 750 nm under the condition where the light of the white LED having the same intensity is incident on both sides.
  • total film thickness indicates the total film thickness of the photoelectric conversion region 4
  • first photoelectric conversion layer 7 indicates the film thickness of the light absorption layer 12 of the first photoelectric conversion layer 7
  • fourth photoelectric conversion layer 15 indicates the film thickness of the light absorption layer 12 of the fourth photoelectric conversion layer 15
  • Second photoelectric conversion layer 8 indicates the film thickness of the light absorption layer 12 of the second photoelectric conversion layer 8
  • Fifth photoelectric conversion layer 16 indicates the film thickness of the light absorption layer 12 of the fifth photoelectric conversion layer 16
  • “Third photoelectric conversion layer 9” indicates the film thickness of the light absorption layer 12 of the third photoelectric conversion layer 9.
  • the fourth photoelectric conversion layer 15 is formed between the first photoelectric conversion layer 7 and the second photoelectric conversion layer 8, and the second photoelectric conversion layer 8 and the third photoelectric conversion layer 8 are formed. Since the fifth photoelectric conversion layer 16 is formed between the photoelectric conversion layer 9, the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, the third photoelectric conversion layer 9, the fourth photoelectric conversion layer 15, and The energy loss in each of the fifth photoelectric conversion layers 16 can be reduced as compared with the first embodiment.
  • the energy loss is expressed by EL-Eg, where EL is the light energy of incident light and Eg is the band gap of the photoelectric conversion layer.
  • the size of the energy gap, the film thickness, and the number of photoelectric conversion layers of each of the fourth photoelectric conversion layer 15 and the fifth photoelectric conversion layer 16 are the second photoelectric conversion.
  • the present invention is not limited to this.
  • only one of the fourth photoelectric conversion layer 15 and the fifth photoelectric conversion layer 16 may be formed.
  • the number of photoelectric conversion layers included in each of the fourth photoelectric conversion layer 15 and the fifth photoelectric conversion layer 16 is not necessarily the same.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of the photoelectric conversion element 17 according to Embodiment 3 of the present invention.
  • the photoelectric conversion element 17 is characterized by including a bonding layer 18 between the second photoelectric conversion layer 8 and the third photoelectric conversion layer 9. Since other configurations are the same as those of the photoelectric conversion element 1 according to Embodiment 1, detailed description thereof is omitted here.
  • FIG. 11 illustrates the behavior of electrons and holes in each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9 of the photoelectric conversion element 1 according to Embodiment 1. It is a figure for doing.
  • the photoelectric conversion element 1 according to Embodiment 1 does not include the bonding layer 18.
  • the energy level of the valence band in the N-type semiconductor layer 13 of the second photoelectric conversion layer 8 is higher than the energy level of the valence band in the P-type semiconductor layer 11 of the third photoelectric conversion layer 9. May exist on the high energy side.
  • the stacked photoelectric conversion element ideally, electrons existing in the N-type semiconductor layer 13 of the second photoelectric conversion layer 8 and the first photoelectric conversion layer 8 at the end portions of the second photoelectric conversion layer 8 and the third photoelectric conversion layer 9, It is considered that electrical continuity is maintained by recombination of holes existing in the P-type semiconductor layer 11 of the photoelectric conversion layer 9 adjacent to the two photoelectric conversion layers 8 in a one-to-one relationship.
  • the P-type of the third photoelectric conversion layer 9 is used.
  • the holes existing in the semiconductor layer 11 do not recombine with the electrons existing in the N-type semiconductor layer 13 of the second photoelectric conversion layer 8, and some holes remain at the interface of the second photoelectric conversion layer 8.
  • the other party does not exist, which may cause recombination loss.
  • the photoelectric conversion element 17 has an electron and a positive electrode between the second photoelectric conversion layer 8 and the third photoelectric conversion layer 9 as shown in FIG. A bonding layer 18 that assists recombination with the holes is formed. As shown in FIG. 12, the electrons of the second photoelectric conversion layer 8 and the holes of the third photoelectric conversion layer 9 are recombined at the trap level of the bonding layer 18.
  • the bonding layer 18 uses a P-type or N-type wide bandgap semiconductor material having a valence band energy structure that prevents the movement of holes, or a material that includes a large number of recombination levels inside the bandgap. Is formed.
  • the bonding layer 18 includes an amorphous silicon-based material in which at least one of phosphorus and boron is doped, a microcrystalline silicon-based material in which a small silicon-based crystal component is doped in an amorphous silicon-based material, or a metal An oxide is used to form the film by plasma chemical vapor deposition, sputtering, vapor deposition, or the like.
  • amorphous silicon material examples include amorphous silicon, amorphous silicon oxide, and amorphous silicon carbide.
  • metal oxide include titanium oxide, tin oxide, zinc oxide, manganese oxide, and copper oxide.
  • the bonding layer 18 may be a stack of metal oxides.
  • the deposition rate of the bonding layer 18 is about several liters / second.
  • the film thickness of the bonding layer 18 is required to be 1 nm or more in order to capture and recombine carriers. If the thickness of the bonding layer 18 is too large, an increase in series resistance and a light absorption loss occur in the bonding layer 18. Therefore, the thickness of the bonding layer 18 is approximately the same as that of the P-type semiconductor layer 11 and the N-type semiconductor layer 13 in each of the first photoelectric conversion layer 7, the second photoelectric conversion layer 8, and the third photoelectric conversion layer 9. It is desirable that it is 40 nm or less.
  • the bonding layer 18 is formed between the second photoelectric conversion layer 8 and the third photoelectric conversion layer 9, the third photoelectric conversion layer having a large band gap. It is possible to prevent 9 holes from remaining excessively in the second photoelectric conversion layer 8 having a small band gap, and to reduce recombination loss.
  • FIG. 13 is a cross-sectional view showing an example of the configuration of the photoelectric conversion module 19 according to Embodiment 4 of the present invention.
  • the photoelectric conversion module 19 includes a photoelectric conversion element 20, a support material 21, and a cover 22.
  • the photoelectric conversion element 20 corresponds to any of the photoelectric conversion elements described in Embodiments 1 to 3.
  • the support material 21 supports the photoelectric conversion element 20 in a direction perpendicular to the ground plane.
  • the support material 21 should just have the intensity
  • the reflective material 23 can be composed of a metal plate, white plastic, reflective coating, white paint, or the like.
  • the cover 22 is provided so as to cover the photoelectric conversion element 20 and the entire support material 21 in order to protect the photoelectric conversion element 20 and the support material 21.
  • the cover 22 is made of a translucent material such as glass or plastic.
  • the shape of the cover 22 is a box shape, but may be an arbitrary shape depending on the design and ease of handling of the photoelectric conversion module.
  • the shape of the cover 22 may be a semicircular dome shape, a conical shape, a triangular pyramid shape, a quadrangular pyramid shape, or a spherical shape.
  • the inside of the cover 22 may be hollow, but is not limited thereto.
  • the strength and durability of the photoelectric conversion module can be improved by filling the inside of the cover 22 with a polymer that is used as a sealant for the photoelectric conversion element.
  • the photoelectric conversion module 19 may be provided with a via hole or the like in the support material 21 and an extraction electrode 24 connected to the photoelectric conversion element 20 through the via hole.
  • the electric power obtained by photoelectric conversion by the photoelectric conversion element 20 is extracted to the outside through the extraction electrode 24.
  • FIG. 15 is a top view of FIG.
  • illustration of the support material 21 is abbreviate
  • electric power can be extracted from the side surface of the photoelectric conversion module 19 by providing the extraction electrode 24 along the surface on which the light of the photoelectric conversion element 20 is incident.
  • Various sensors, an IC (Integrated Circuit) for signal processing, or a power storage element can be provided in the photoelectric conversion module 19, for example, on the support material 21.
  • the photoelectric conversion element 20 is provided in the direction perpendicular to the ground plane. This is because when the photoelectric conversion element 20 is provided in a direction perpendicular to the ground plane, the photoelectric conversion element 20 is bilaterally symmetric, so that the incident light intensity on both sides can be easily designed. It is also possible to provide the photoelectric conversion element 20 in an oblique direction with respect to the ground plane.
  • FIG. 16 is a cross-sectional view showing an example of the configuration of the photoelectric conversion module 25 according to Embodiment 5 of the present invention.
  • the photoelectric conversion module 25 includes a plurality of photoelectric conversion elements 26 and 27. Since other configurations are the same as those of the fourth embodiment, detailed description thereof is omitted here.
  • the photoelectric conversion elements 26 and 27 correspond to any of the photoelectric conversion elements described in the first to third embodiments.
  • the support member 21 supports the photoelectric conversion elements 26 and 27 in a direction perpendicular to the ground plane.
  • Each of the photoelectric conversion elements 26 and 27 needs to be provided at a sufficient interval so that the light from the external light source does not shade each other. Thereby, the output electric power with respect to the installation area of the photoelectric conversion elements 26 and 27 can be increased.
  • the photoelectric conversion elements 26 and 27 are provided at both ends of the support member 21, but the present invention is not limited to this.
  • the photoelectric conversion elements 26 and 27 may be provided at any position as long as they do not shadow each other.
  • the photoelectric conversion module 25 may include three or more photoelectric conversion elements. Also in this case, it may be provided in any position as long as it does not become a shadow.
  • the plurality of photoelectric conversion elements 26 and 27 are supported in the direction perpendicular to the ground plane, it is possible to make light incident on both sides of the photoelectric conversion element 20. It becomes possible. In addition, it is possible to change the electrical output characteristics of the photoelectric conversion module 25 by connecting the plurality of photoelectric conversion elements 26 and 27 in series or in parallel.
  • FIG. 17 is a cross-sectional view showing an example of the configuration of the photoelectric conversion module 28 according to Embodiment 6 of the present invention.
  • the photoelectric conversion module 28 includes a photoelectric conversion element 29, a case 30, an installation substrate 31, and a reflector 23.
  • the photoelectric conversion element 29 corresponds to any of the photoelectric conversion elements described in Embodiments 1 to 3.
  • the reflective material 23 corresponds to the reflective material 23 described in the fourth embodiment.
  • the photoelectric conversion element 29 is provided in the case 30 so as to be parallel to the reflector 23 with a space therebetween.
  • the photoelectric conversion element 29 is provided in parallel with the reflective material 23, but is not limited thereto.
  • the photoelectric conversion element 29 may be provided so as not to be parallel to the reflector 23, that is, tilted. Thereby, the light intensity which injects into both surfaces of the photoelectric conversion element 29 can be made the same.
  • the photoelectric conversion element 29 is directly provided in the case 30, but is not limited thereto.
  • the photoelectric conversion element 33 may be fixed by a support 34 inside the case 30.
  • FIG. 19 is a cross-sectional view taken along line A1-A2 of FIG. 18, and is a view of FIG. 18 viewed from below.
  • the photoelectric conversion element 33 is supported by support members 34 at four corners. Note that the number and shape of the supports 34 can be changed as appropriate according to the size and shape of the photoelectric conversion element 33.
  • the photoelectric conversion element 33 since the photoelectric conversion element 33 is provided in parallel with the reflective material 23 with a space therebetween, the photoelectric conversion element 33 has a surface opposite to the reflective material 23. Light from the light source is incident, and light reflected by the reflecting material 23 is incident on the surface of the photoelectric conversion element 33 on the reflecting material 23 side. Thereby, light can be incident on both surfaces of the photoelectric conversion element 33.
  • FIG. 20 is a cross-sectional view showing an example of the configuration of the photoelectric conversion module 35 according to Embodiment 7 of the present invention.
  • the photoelectric conversion module 35 is characterized by the shape of the reflective material 39 and the relationship between the photoelectric conversion element 36 and the reflective material 39. Since other configurations are the same as those of the sixth embodiment, detailed description thereof is omitted here.
  • the photoelectric conversion element 36 corresponds to any of the photoelectric conversion elements described in Embodiments 1 to 3.
  • the reflective material 23 corresponds to the reflective material 23 described in the fourth embodiment.
  • the reflective material 23 is concavely curved with respect to the photoelectric conversion element 36, and the light reflected by the reflective material 23 can be condensed on the photoelectric conversion element 36. Further, the area of the photoelectric conversion element 36 is smaller than the area of the reflector 39. Specifically, when the photoelectric conversion module 35 is viewed from above, the area Spv of the photoelectric conversion element 36 and the area Sref-Spv obtained by subtracting the area Spv of the photoelectric conversion element 36 from the area Sref of the reflector 39 are almost equal. Design to be the same.
  • the reflecting material 23 is concavely curved with respect to the photoelectric conversion element 36, and the area of the photoelectric conversion element 36 is smaller than that of the reflecting material 39.
  • the photoelectric conversion module 35 is installed in a place where straight-ahead light is dominant, such as in an environment where pseudo-parallel light is incident on or an environment where a point light source such as a spotlight having only one light source is incident. Even in this case, it is possible to make light having the same light intensity incident on both surfaces.
  • photoelectric conversion element 2 transparent substrate, 3rd transparent electrode, 4 photoelectric conversion region, 5 second transparent electrode, 6 sealant, 7 first photoelectric conversion layer, 8 second photoelectric conversion layer, 9 third photoelectric conversion Layer, 10 photoelectric conversion layer, 11 P-type semiconductor layer, 12 light absorption layer, 13 N-type semiconductor layer, 14 photoelectric conversion element, 15 4th photoelectric conversion layer, 16 5th photoelectric conversion layer, 17 photoelectric conversion element, 18 junction Layer, 19 photoelectric conversion module, 20 photoelectric conversion element, 21 support material, 22 cover, 23 reflective material, 24 extraction electrode, 25 photoelectric conversion module, 26, 27 photoelectric conversion element, 28 photoelectric conversion module, 29 photoelectric conversion element, 30 Case, 31 installation substrate, 32 photoelectric conversion module, 33 photoelectric conversion element, 34 support, 35 photoelectric conversion module, 36 photoelectric conversion Element, 37 case, 38 installation substrate, 39 reflector, 40 photoelectric conversion element, 41 transparent substrate, 42 first transparent electrode, 43 first photoelectric conversion layer, 44 second photoelectric conversion layer, 45 third photoelectric conversion layer, 46 Second transparent electrode.

Abstract

本発明は、入射した光を効率良く光電変換することが可能な光電変換素子および当該光電変換素子を備える光電変換モジュールを提供することを目的とする。本発明による光電変換素子は、透明基板(2)と、透明基板(2)上に形成された第1透明電極(3)と、第1透明電極(3)上に積層して形成された少なくとも3つの光電変換層(7,8,9)と、各光電変換層(7,8,9)のうちの最上の光電変換層(9)上に形成された第2透明電極(5)とを備え、各光電変換層(7,8,9)は、光吸収層(12)を有し、第1透明電極(3)および第2透明電極(5)に接しない光電変換層(8)の光吸収層(12)は、第1透明電極(3)に接する光電変換層(7)の光吸収層(12)、および第2透明電極(5)に接する光電変換層(9)の光吸収層(12)よりもバンドギャップが小さい。

Description

光電変換素子および光電変換モジュール
 本発明は、複数の光電変換層を積層した薄膜積層型の光電変換素子および当該光電変換素子を備える光電変換モジュールに関し、特に対向する両面で受光可能な光電変換素子および当該光電変換素子を備える光電変換モジュールに関する。
 近年、太陽光発電所の導入が積極的に進められている。太陽電池は、重要な分散電源の1つとして需要が見込まれており、また、住宅発電用途にも需要が見込まれている。さらに、様々な情報を多数のセンサを用いて収集し、収集したデータをビッグデータとして解析して利用するIoT(Internet of Things)においても、太陽電池は、多数のセンサの動作電源を確保する必要があるとの観点から、配線コストがかからない環境発電素子として注目されている。
 住宅の室内、事務所、または工場などで太陽電池を環境発電素子として利用する場合、太陽光発電所のような屋外とは異なり、微弱な室内照明の光で発電する必要がある。この場合、屋外で一般的に利用されている結晶シリコン系太陽電池では、入射光量が低下した時の光電変換の変換損失が大きいという問題がある。従って、微弱な入射光でも変換効率が低下しにくいアモルファスシリコンまたは有機薄膜を光電変換層に用いた薄膜系太陽電池が利用されている。
 アモルファスシリコンを用いた太陽電池に代表される薄膜シリコン系光電変換素子では、変換効率を向上させる方法の1つとして、2つ以上の光電変換層を積層した薄膜積層型の光電変換素子が考案されている。薄膜積層型の光電変換素子では、光入射側に大きなバンドギャップを有する光電変換層を設け、当該光電変換層から光入射側とは反対側に向かって順に小さくなるようなバンドギャップを有する光電変換層を設けることによって、入射光の広い波長範囲に渡って効率良く光電変換することを可能にしている(例えば、特許文献1参照)。
 また、太陽電池モジュールの出力を増加させるために、正面からの入射光だけでなく、周辺環境による反射などで裏面に入射する光も内部に取り込む構造である両面受光型を採用した太陽電池モジュールが考案されている(例えば、特許文献2参照)。
特開2002-237608号公報 特開2000-243989号公報
 従来、変換効率が高い薄膜積層型の光電変換素子に対して、屋内のような複数の光源から入射する光を最大限内部に取り込むために対向する両面で受光可能な構造を適用しても、裏面側から入射する光に対して最適なバンドギャップ配置とはならず、光電変換の変換効率が低くなるという問題があった。
 特許文献1では、光が一方向から入射することを前提としており、様々な方向から入射する室内照明などの光を光電変換素子に入射させることができないという問題がある。また、特許文献2では、両面から光を入射させることができるモジュール構造が示されているが、このモジュール構造内に特許文献1のような薄膜積層型の光電変換素子の裏面電極を透光性材料に変更して配置しても、裏面側から入射した光を効率良く光電変換することができないという問題がある。このように、従来では、光電変換の効率の向上に改善の余地があった。
 本発明は、このような問題を解決するためになされたものであり、入射した光を効率良く光電変換することが可能な光電変換素子および当該光電変換素子を備える光電変換モジュールを提供することを目的とする。
 上記の課題を解決するために、本発明による光電変換素子は、透明基板と、透明基板上に形成された第1透明電極と、第1透明電極上に積層して形成された少なくとも3つの光電変換層と、各光電変換層のうちの最上の光電変換層上に形成された第2透明電極とを備え、各光電変換層は、光吸収層を有し、第1透明電極および第2透明電極に接しない光電変換層の光吸収層は、第1透明電極に接する光電変換層の光吸収層、および第2透明電極に接する光電変換層の光吸収層よりもバンドギャップが小さい。
 本発明によれば、光電変換素子は、透明基板と、透明基板上に形成された第1透明電極と、第1透明電極上に積層して形成された少なくとも3つの光電変換層と、各光電変換層のうちの最上の光電変換層上に形成された第2透明電極とを備え、各光電変換層は、光吸収層を有し、第1透明電極および第2透明電極に接しない光電変換層の光吸収層は、第1透明電極に接する光電変換層の光吸収層、および第2透明電極に接する光電変換層の光吸収層よりもバンドギャップが小さいため、入射した光を効率良く光電変換することが可能となる。
 本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1による光電変換素子の構成の一例を示す断面図である。 本発明の実施の形態1による光電変換層の構成の一例を示す断面図である。 本発明の実施の形態1による光電変換層のエネルギーバンド構造の一例を示す図である。 白色LEDの光の波長スペクトルの一例を示す図である。 本発明の実施の形態1による各光電変換層のエネルギーバンド構造の一例を示す図である。 白色LEDの光の波長スペクトルの一例を示す図である。 アモルファス炭化シリコンを光吸収層とした場合における光電変換素子の出力特性をシミュレーションした結果の一例を示す図である。 本発明の実施の形態1による光電変換素子の開放電圧および短絡電流の入射光強度依存性の一例を示す図である。 本発明の実施の形態2による光電変換素子の構成の一例を示す断面図である。 本発明の実施の形態3による光電変換素子の構成の一例を示す断面図である。 本発明の実施の形態1による各光電変換層における電子および正孔の挙動を説明するための図である。 本発明の実施の形態3による各光電変換層における電子および正孔の挙動を説明するための図である。 本発明の実施の形態4による光電変換モジュールの構成の一例を示す断面図である。 本発明の実施の形態4による光電変換モジュールの構成の一例を示す断面図である。 本発明の実施の形態4による光電変換モジュールの構成の一例を示す上面図である。 本発明の実施の形態5による光電変換モジュールの構成の一例を示す断面図である。 本発明の実施の形態6による光電変換モジュールの構成の一例を示す断面図である。 本発明の実施の形態6による光電変換モジュールの構成の一例を示す断面図である。 図18のA1-A2断面図である。 本発明の実施の形態7による光電変換モジュールの構成の一例を示す断面図である。 前提技術による光電変換素子の構成の一例を示す断面図である。 前提技術による各光電変換層のエネルギーバンド構造の一例を示す図である。 前提技術による各光電変換層のエネルギーバンド構造の一例を示す図である。
 本発明の実施の形態について、図面に基づいて以下に説明する。
 <前提技術>
 本発明の実施の形態の前提技術について説明する。
 図21は、前提技術による光電変換素子40の構成の一例を示す断面図である。
 図21に示すように、透明基板41上に第1透明電極42が形成されている。第1透明電極42上に第1光電変換層43、第2光電変換層44、および第3光電変換層45が順に積層して形成されている。第3光電変換層45上に第2透明電極46が形成されている。
 図22は、前提技術による各光電変換層43,44,45のエネルギーバンド構造の一例を示す図である。なお、図22は、図21に示す光電変換素子40に特許文献1の構造を適用した場合の一例を示している。図22に示すエネルギーバンド構造を有する光電変換素子40は、一方向から入射する光を受光する。
 図22において、Eg1は第1光電変換層43のバンドギャップを示し、Eg2は第2光電変換層44のバンドギャップを示し、Eg3は第3光電変換層45のバンドギャップを示している。また、ELは入射光の光エネルギーを示している。図22に示すように、光入射側である透明基板41側から順にバンドギャップが小さくなるように第1光電変換層43、第2光電変換層44、および第3光電変換層45が形成されている。すなわち、Eg1>Eg2>Eg3の関係が成り立っている。
 このような構成において、入射光のうちの高い光エネルギーを有する光は、最も大きなバンドギャップEg1を有する第1光電変換層43で吸収されて光電変換が行われる。また、入射光のうちの小さな光エネルギーを有する光は、第1光電変換層43よりもバンドギャップが小さい第2光電変換層44および第3光電変換層45で吸収されて光電変換が行われる。このように、図22に示すエネルギーバンド構造を有する光電変換素子は、入射光の広い波長範囲に渡って効率良く光電変換することが可能である。
 図22に示すエネルギーバンド構造を有する光電変換素子は、光が一方向から入射することを前提としている。しかし、例えば、住宅の室内、事務所、または工場などで光電変換素子を利用する場合、太陽光発電所のような屋外とは異なり、様々な場所に設置された室内照明から入射する光を想定しなければならないが、図22に示すエネルギーバンド構造を有する光電変換素子では、様々な方向から入射する室内照明などの光を効率良く光電変換することができないという問題がある。
 図23は、前提技術による各光電変換層43,44,45のエネルギーバンド構造の一例を示す図である。なお、図23は、図21に示す光電変換素子40に特許文献2の構造を適用した場合の一例を示している。図23に示すエネルギーバンド構造を有する光電変換素子40は、対向する両面に光が入射する。
 図23において、Eg1は第1光電変換層43のバンドギャップを示し、Eg2は第2光電変換層44のバンドギャップを示し、Eg3は第3光電変換層45のバンドギャップを示している。また、ELRは裏面入射光の光エネルギーを示している。ここで、裏面入射光とは、第2透明電極46側から入射する光のことをいう。各光電変換層43,44,45のエネルギーギャップの関係は、図22と同様である。なお、図示していないが、透明基板41側からも光が入射する。
 図23に示す構成において、裏面入射光は、最も小さなバンドギャップEg3を有する第3光電変換層45で吸収されて光電変換が行われる。このとき、ELR-Eg3分のエネルギーが損失となってしまう。このように、図23に示すエネルギーバンド構造を有する光電変換素子は、透明基板41側から入射する入射光については効率良く光電変換することが可能であるが、裏面入射光については効率良く光電変換することができない。また、近年の省エネ化の要求によって採用が多くなっているLED(Light Emitting Diode)光源の特性を考慮すると、上記損失の影響は大きくなると考えられる。
 本発明の実施の形態では、このような問題を解決するためになされたものであり、以下に詳細に説明する。
 <実施の形態1>
 <構成>
 図1は、本発明の実施の形態1による光電変換素子1の構成の一例を示す断面図である。
 図1に示すように、支持基板である透明基板2上に第1透明電極3が形成されている。第1透明電極3上に第1光電変換層7、第2光電変換層8、および第3光電変換層9が順に積層して形成されている。第1光電変換層7、第2光電変換層8、および第3光電変換層9は、光電変換領域4を構成している。第3光電変換層9上に第2透明電極5が形成されている。第2透明電極5上に封止剤6が形成されている。
 透明基板2は、ガラス、プラスチック、または樹脂シートなど、100℃~300℃程度の光電変換層の形成プロセスに耐え得る素材を使用する。
 第1透明電極3および第2透明電極5は、酸化錫、酸化チタン、酸化インジウム錫、酸化マグネシウム、酸化亜鉛などの金属酸化物からなり、スパッタ法、有機金属気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法、または蒸着法などを用いて形成される。
 第1光電変換層7、第2光電変換層8、および第3光電変換層9は、光電変換可能な材料を用いることにより形成される。例えば、組成比を変えることによってバンドギャップを制御することが可能なアモルファスシリコン系材料の他、多結晶シリコン系材料、または微結晶シリコン系材料を用いて、スパッタ法、プラズマ化学気相成長(Chemical Vapor Deposition:CVD)法によって第1光電変換層7、第2光電変換層8、および第3光電変換層9を形成することが望ましい。アモルファスシリコン系材料としては、例えばアモルファスシリコン、アモルファス酸化シリコン、アモルファス炭化シリコン、アモルファス窒化シリコン、またはアモルファスゲルマニウムなどが挙げられる。また、分子構造により吸収する波長帯を制御することができるフラーレンまたはπ共役系高分子などの有機分子材料を用いて第1光電変換層7、第2光電変換層8、および第3光電変換層9を形成してもよい。
 封止剤6は、湿気の侵入、外気の侵入、または物理的な損傷から光電変換素子1を保護するために、エチレン酢酸ビニル共重合体(EVA)などの樹脂材料からなる。
 図2は、光電変換層10の構成の一例を示す断面図である。光電変換層10は、図1に示す第1光電変換層7、第2光電変換層8、および第3光電変換層9を代表したものである。すなわち、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々は、図2に示す光電変換層10と同じ構成である。
 図2に示すように、光電変換層10は、P型半導体層11、真性半導体からなる光吸収層12、およびN型半導体層13を有している。P型半導体層11上に光吸収層12が形成され、光吸収層12上にN型半導体層13が形成されている。
 図3は、光電変換層10のエネルギーバンド構造の一例を示す図である。
 図3に示すように、光吸収層12において入射光が吸収されて発生した電子-正孔対は、P型半導体層11とN型半導体層13との電位差によって光吸収層12で生じる電界によって分離され、外部に取り出される。このとき、入射光の光エネルギーELと、光吸収層12のバンドギャップEgとのエネルギー差がある場合、ELの光エネルギーを受け取った電子は一旦より高いエネルギー準位に励起された後、当該エネルギー準位とバンドギャップEgとの差分に相当するEL-Eg分のエネルギーを熱として放出する。このとき放出されるエネルギーが、光電変換時の損失となる。
 図4は、室内照明として利用されている白色LEDの光の波長スペクトルの一例を示す図である。
 太陽光は、波長が約300nm~1200nmの幅広いエネルギーの光を含んでいる。一方、白色LEDは、波長が約400nm~700nmのエネルギーが比較的高い短波長の光しか含まれていない。従って、小さなバンドギャップを有する光電変換層を光の入射側に設けると、それによる光電変換の損失の影響は、屋外での利用時に比べてはるかに大きいと考えられる。
 図5は、本実施の形態1による第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々におけるエネルギーバンド構造の一例を示す図である。
 図5に示すように、本実施の形態1による光電変換素子1では、最も小さなバンドギャップEg2を有する第2光電変換層8は、第1光電変換層7、第2光電変換層8、および第3光電変換層9のうちの中心に形成されている。すなわち、最も小さなバンドギャップを有する光電変換層は、複数形成された光電変換層のうちの積層方向の中心に形成されている。
 また、最も大きなバンドギャップEg1,Eg3を有する第1光電変換層7および第3光電変換層9については、第1光電変換層7は第1透明電極3に隣接するように形成され、第3光電変換層9は第2透明電極5に隣接するように形成されている。このような構成とすることによって、光エネルギーELの入射光が入射する側には、第1光電変換層7と、第1光電変換層7よりもバンドギャップが小さい第2光電変換層8とが順に形成されているため、光電変換時の損失を低減することができる。また、光エネルギーELRの入射光が入射する側には、第3光電変換層9と、第3光電変換層9よりもバンドギャップが小さい第2光電変換層8とが順に形成されているため、光電変換時の損失を低減することができる。
 <本実施の形態1による光電変換素子の詳細な検討>
 発明者らが本実施の形態1による光電変換素子を詳細に検討した結果について説明する。
 屋内での利用を想定して、図6に示すような波長スペクトルを有する白色LEDを光源とした場合における光電変換素子の構造のシミュレーションを行った。現在市販されている白色LEDの多くは、図6に示すように、波長が450nmおよび570nm辺りを中心とする2つのピークが重なったような特性を有している。
 光電変換領域4の厚さは、第1光電変換層7、第2光電変換層8、および第3光電変換層9がどのような材料を使用するのかによって異なるが、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々によって生成される光電流が一致する必要があるため、使用する材料の吸収係数と、図6に示すような入射光の波長スペクトル特性とに基づいて算出することが可能である。
 入射光を全て吸収して光電変換に利用することを考慮すると、光吸収層12にはある程度の厚さが必要となる。一方、特に最もバンドギャップが小さい第2光電変換層8の光吸収層12では、当該光吸収層12の全域に光が到達しない場合は、その光が到達しない領域が高抵抗となり光電変換の効率が低下してしまう。従って、第2光電変換層8の光吸収層12によって入射光をほぼ完全に吸収し得る膜厚tmaxを算出し、第2光電変換層8の膜厚は膜厚tmaxを超えないようにする必要がある。
 また、両面から入射した入射光の各々が第2光電変換層8で全て吸収されて後段には進入しない状況が最も厚い膜厚条件であると考えられる。従って、第2光電変換層8から見て両面側の各々に対して当該膜厚条件が適用されるため、膜厚tmaxの2倍を光電変換領域4の厚さの上限として設計することが望ましい。透過率Tを表す下記の式(1)に吸収係数αおよび膜厚tを代入することによって、対象とする波長の光を全て吸収し得る限界の膜厚tmaxを算出することができる。式(1)によって得られた膜厚tmaxの2倍の値が、光電変換領域4の厚さの上限となる。
   T=e-αt ・・・(1)
 例えば、アモルファスシリコンで第2光電変換層8の光吸収層12を形成した場合、アモルファスシリコンの吸収係数αを用いて上記の式(1)を計算すると、第2光電変換層8の光吸収層12の膜厚が約4000nmあれば、第2光電変換層8の光吸収層12の後段に進入する光は10%以下となる。ただし、アモルファスシリコン系材料を用いて形成された光電変換素子の場合、膜厚の増加に伴って内蔵電界の減少が生じやすく、電圧および曲線因子が低下することを考慮すると、光電変換領域4の膜厚は1000nm以下にすることが望ましい。
 また、本実施の形態1による光電変換素子1のように、複数の光電変換層が電気的に直列に接続されている積層型の光電変換素子の場合、各光電変換層で生成される光電流が等しくなるように設計することが重要である。光電変換素子1全体の電圧は、各光電変換層が直列に接続されているため、各光電変換層で生成される電圧の和となる。一方、光電変換素子1全体の電流は、各光電変換層のうちの最も電流値が小さい光電変換層の値に制限されてしまう。各光電変換層間で生じた光電流の差分である電流ミスマッチは、光電変換素子の外部に取り出されることなく光電変換素子の内部で再結合して熱損失となってしまう。
 積層型の光電変換素子の構造を決定する際には、電流ミスマッチによる損失を低減するために、各光電変換層で生成される光電流が一致するように設計する必要があるが、両面から光が入射しかつ複数の光電変換層を積層して形成した構造では、当該設計が困難となる。
 これに対して、本実施の形態1による光電変換素子1のように、複数の光電変換層のうちの中心に位置する光電変換層から両面の各々に形成されている透明電極に向かって各光電変換層のバンドギャップが対称的に大きくなるような構造とすることによって、光が入射する両面の各々において個別に各光電変換層を設計する必要がなく、光が入射する一方の面について各光電変換層を最適に設計した構造を、そのまま他方の面について適用することができる。ただし、複数の光電変換層のうちの中心に位置する光電変換層については、光が入射する両面から最も波長が長い光、すなわち最も光エネルギーが小さい光が入射するため、割り当てられる入射エネルギーが片側のみに光が入射する場合における入射エネルギーの倍になることを考慮して設計する必要がある。
 本実施の形態1による光電変換素子1のように、第1光電変換層7、第2光電変換層8、および第3光電変換層9の3つの光電変換層を用いる場合は、入射した光をどのように分割するのかを考慮する必要がある。図4に示すような白色LEDの光源を想定した場合、一方の面から入射する光の総フォトン数は約1.7×1015cm-2である。これを第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々で分割して電流マッチングをとる必要がある。第1光電変換層7および第3光電変換層9では、一方の面から入射する光の総フォトン数のうちの2/3のフォトンを利用することができればよい。第2光電変換層8では、両面から光が入射してくるため、一方の面から入射する光の総フォトン数のうちの1/3のフォトンを利用することができればよい。これを光の波長に当てはめると、第1光電変換層7および第3光電変換層9では波長600nmよりも短波長の光を利用し、第2光電変換層8では波長600nmよりも長波長の光を利用することによって、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々から得られる電流値が一致する。従って、第1光電変換層7および第3光電変換層9のバンドギャップは、2.05eV以下が望ましい。第1光電変換層7および第3光電変換層9に2.05eVよりも高いバンドギャップの材料を用いると、第1光電変換層7および第3光電変換層9から得られる電流が少なくなり、電流が少なくなった分、すなわち第2光電変換層8で得られる電流との差分が損失となる。
 第2光電変換層8にバンドギャップが約1.7eVのアモルファスシリコンを用いた場合、白色LEDから出射された光はほぼ全て第2光電変換層8で吸収することができる。従って、上記のフォトンの分割利用の計算をそのまま適用することができ、第1光電変換層7および第3光電変換層9には、バンドギャップが1.7eV~2.05eVの材料を用いることが望ましい。例えば、アモルファス炭化シリコンまたはアモルファス酸化シリコンの炭素または酸素の含有量を調整することによって、容易に上記のバンドギャップの条件を満足することができる。
 図7は、光吸収層12をアモルファス炭化シリコンで形成した場合における光電変換素子の出力特性をシミュレーションした結果の一例を示す図である。具体的には、波長が600nmの単色光を、バンドギャップが2.05eVの光吸収層12を有する第1光電変換層7および第3光電変換層9に入射させた場合における光電変換素子の出力特性をシミュレーションした結果の一例を示している。図7において、各値は最大値で規格化している。
 図7に示すように、電流は、光吸収層12の膜厚の増加に従って増加するが、光吸収層12の内部で再結合が増加するため、光吸収層12の膜厚が400nmを超えると低下していく。また、曲線因子は、光吸収層12の膜厚の増加に従って低下していく。従って、光電変換効率は、光吸収層12の膜厚が100nm~400nmの間、より望ましくは100nm~300nmの間で高くなることが分かる。表1は、等しい強度の白色LEDの光が両面に入射する条件下で、光電変換領域4の総膜厚を500nmまたは750nmとした場合における、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々の光吸収層12から得られる光電流が等しくなる当該各光吸収層12の膜厚を算出した結果を示している。表1において、「総膜厚」は光電変換領域4の総膜厚を示し、「第1光電変換層7」は第1光電変換層7の光吸収層12の膜厚を示し、「第2光電変換層8」は第2光電変換層8の光吸収層12の膜厚を示し、「第3光電変換層9」は第3光電変換層9の光吸収層12の膜厚を示している。
Figure JPOXMLDOC01-appb-T000001
 <製造方法>
 本実施の形態1による光電変換素子1の製造方法について説明する。
 まず、透明基板2である無アルカリガラス上に、第1透明電極3の材料である酸化亜鉛を膜厚が500nm~700nmとなるように有機金属気相成長法によって形成する。これにより、第1透明電極3が形成される。第1透明電極3の膜厚は、第1透明電極3の導電率、透過率、光の散乱特性を元に適宜に変更することが可能であるが、後に形成するアモルファスシリコンからなる光電変換領域4の膜厚によっては、当該光電変換領域4に急峻な凹凸形状が存在すると内部に欠陥が発生しやすくなり、リーク電流の原因となってしまう。従って、本実施の形態1では、第1透明電極3の膜厚を薄めに設定し、第1透明電極3の表面が平坦になるように形成している。
 次に、第1透明電極3上に、光電変換領域4の総膜厚が750nmとなるように、第1光電変換層7、第2光電変換層8、および第3光電変換層9をプラズマ化学気相成長法によって順に積層して形成する。表2は、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々の光吸収層12の成長条件を示している。表2において、「第2光電変換層8」は第2光電変換層8の光吸収層12を示し、「第1、第3光電変換層7,9」は第1光電変換層7および第3光電変換層9の各々の光吸収層12を示している。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第2光電変換層8については、シラン(SiH)をシリコンの原料ガスとし、当該原料ガスを水素(H)で希釈することによって、アモルファスシリコンからなる光吸収層12を形成する。また、第1光電変換層7および第3光電変換層9については、シラン(SiH)をシリコンの原料ガスとし、当該原料ガスを第2光電変換層8の光吸収層12の形成時よりも多くの水素(H)で希釈するとともに、基板温度を上昇させて二酸化炭素(CO)を導入することによって、第2光電変換層8の光吸収層12よりもバンドギャップの大きなアモルファス炭化シリコンからなる光吸収層12を形成する。
 表2に示す成長条件で得られるアモルファス炭化シリコンのバンドギャップは、アモルファスシリコンのバンドギャップよりも約0.2eV大きい値である。第1光電変換層7および第3光電変換層9の各々の光吸収層12を構成するアモルファス炭化シリコンのバンドギャップは、第2光電変換層8の光吸収層12を構成するアモルファスシリコンのバンドギャップよりも0.2eV高い1.9eVであるため、上述した第1光電変換層7および第3光電変換層9のバンドギャップの最適値内に収まっている。
 第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々におけるP型半導体層11およびN型半導体層13は、共通の条件で形成する。P型半導体層11は、ワイドバンドギャップのアモルファス炭化シリコンで形成する。N型半導体層13は、導電率が高い微結晶シリコンで形成する。
 次に、第3光電変換層9上に、第2透明電極5の材料である酸化亜鉛を膜厚が500nm~700nmとなるように有機金属気相成長法によって形成する。
 図8は、本発明の実施の形態1による光電変換素子1の開放電圧および短絡電流の入射光強度依存性の一例を示す図である。
 図8に示すように、短絡電流は入射光強度に強く依存しているが、開放電圧は入射光強度が低いときでも2V程度を保っている。これを第1光電変換層7、第2光電変換層8、および第3光電変換層9のうちの1つの層当たりの値に換算すると0.78Vとなり、一般的なアモルファスシリコン太陽電池の開放電圧である0.6V~0.7Vよりも高い電圧が得られている。すなわち、バンドギャップが大きい第1光電変換層7および第3光電変換層9を、バンドギャップが小さい第2光電変換層8の両面側の各々に形成することによる効果が得られている。また、バンドギャップが小さい第2光電変換層8を、バンドギャップが大きい第1光電変換層7および第3光電変換層9の各々で挟むことによる光電変換素子1の特性低下は、本作製条件においてはみられてはいない。
 以上のことから、本実施の形態1によれば、対向する両面で受光可能な光電変換素子において、複数の第1光電変換層7、第2光電変換層8、および第3光電変換層9が積層して形成されており、中心に位置する第2光電変換層8の光吸収層12のバンドギャップは、第1透明電極3に接する第1光電変換層7の光吸収層12、および第2透明電極5に接する第3光電変換層9の光吸収層12のバンドギャップよりも小さい。従って、複数の光源から入射する光を効率良く光電変換することが可能となる。
 <実施の形態2>
 図9は、本発明の実施の形態2による光電変換素子14の構成の一例を示す断面図である。
 図9に示すように、光電変換素子14は、第1光電変換層7と第2光電変換層8との間に第4光電変換層15を備え、第2光電変換層8と第3光電変換層9との間に第5光電変換層16を備えることを特徴としている。その他の構成は、実施の形態1による光電変換素子1と同様であるため、ここでは詳細な説明を省略する。
 第4光電変換層15は、複数の第4光電変換層151~第4光電変換層15xを含んでいる。各第4光電変換層151~第4光電変換層15xは、図2に示す光電変換層10と同じ構成である。第4光電変換層151~第4光電変換層15xの各々のバンドギャップは、第2光電変換層8から第1光電変換層7に向かって大きくなるように形成されている。すなわち、第2光電変換層8のバンドギャップ<第4光電変換層151のバンドギャップ<・・・<第4光電変換層15xのバンドギャップ<第1光電変換層7の関係が成り立つ。
 第5光電変換層16は、複数の第5光電変換層161~第5光電変換層16xを含んでいる。各第5光電変換層161~第5光電変換層16xは、図2に示す光電変換層10と同じ構成である。第5光電変換層161~第5光電変換層16xの各々のバンドギャップは、第2光電変換層8から第3光電変換層9に向かって大きくなるように形成されている。すなわち、第2光電変換層8のバンドギャップ<第5光電変換層161のバンドギャップ<・・・<第5光電変換層16xのバンドギャップ<第3光電変換層9の関係が成り立つ。
 表3は、等しい強度の白色LEDの光が両面に入射する条件下で、光電変換領域4の総膜厚を500nmまたは750nmとした場合における、第1光電変換層7、第2光電変換層8、第3光電変換層9、第4光電変換層15、および第5光電変換層16の各々の光吸収層12から得られる光電流が等しくなる当該各光吸収層12の膜厚を算出した結果を示している。
 表3において、「総膜厚」は光電変換領域4の総膜厚を示し、「第1光電変換層7」は第1光電変換層7の光吸収層12の膜厚を示し、「第4光電変換層15」は第4光電変換層15の光吸収層12の膜厚を示し、「第2光電変換層8」は第2光電変換層8の光吸収層12の膜厚を示し、「第5光電変換層16」は第5光電変換層16の光吸収層12の膜厚を示し、「第3光電変換層9」は第3光電変換層9の光吸収層12の膜厚を示している。
Figure JPOXMLDOC01-appb-T000003
 以上のことから、本実施の形態2によれば、第1光電変換層7と第2光電変換層8との間に第4光電変換層15を形成し、第2光電変換層8と第3光電変換層9との間に第5光電変換層16を形成しているため、第1光電変換層7、第2光電変換層8、第3光電変換層9、第4光電変換層15、および第5光電変換層16の各々におけるエネルギー損失を実施の形態1よりも低減することができる。ここで、エネルギー損失は、入射光の光エネルギーをEL、光電変換層のバンドギャップをEgとした場合、EL-Egで表される。
 なお、上記では、計算の単純化のために、第4光電変換層15および第5光電変換層16の各々のエネルギーギャップの大きさ、膜厚、および光電変換層の数が、第2光電変換層8を中心として対称となる場合について説明したが、これに限るものではない。例えば、第4光電変換層15および第5光電変換層16のうちのいずれか一方のみを形成してもよい。また、第4光電変換層15および第5光電変換層16の各々に含まれる光電変換層の数は必ずしも同じである必要はない。
 <実施の形態3>
 図10は、本発明の実施の形態3による光電変換素子17の構成の一例を示す断面図である。
 図10に示すように、光電変換素子17は、第2光電変換層8と第3光電変換層9との間に接合層18を備えることを特徴としている。その他の構成は、実施の形態1による光電変換素子1と同様であるため、ここでは詳細な説明を省略する。
 図11は、実施の形態1による光電変換素子1の第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々の光電変換層における電子および正孔の挙動を説明するための図である。実施の形態1による光電変換素子1は、接合層18を備えていない。
 図11に示すように、第2光電変換層8のN型半導体層13における価電子帯のエネルギー準位が、第3光電変換層9のP型半導体層11における価電子帯のエネルギー準位よりも高エネルギー側に存在する場合がある。積層型の光電変換素子では、理想的には、第2光電変換層8および第3光電変換層9の端部において、第2光電変換層8のN型半導体層13に存在する電子と、第2光電変換層8に隣接する光電変換層9のP型半導体層11に存在する正孔とが一対一で再結合することによって電気的な連続性を保つと考えられている。
 しかし、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々のエネルギー準位が図11に示すような関係である場合、第3光電変換層9のP型半導体層11に存在する正孔が第2光電変換層8のN型半導体層13に存在する電子と再結合せずに、一部の正孔が第2光電変換層8の界面に留まる。このような状態になると、第2光電変換層8のP型半導体層11において正孔の再結合の相手が存在せず、また第2光電変換層8のN型半導体層13において電子の再結合の相手が存在せず、これらが要因となって再結合損失が生じる可能性がある。
 このような問題を解決するために、本実施の形態3による光電変換素子17は、図12に示すように、第2光電変換層8と第3光電変換層9との間に、電子と正孔との再結合を補助する接合層18が形成されている。図12に示すように、第2光電変換層8の電子と、第3光電変換層9の正孔とは、接合層18のトラップ準位で再結合される。
 接合層18は、正孔の移動を妨げるような価電子帯のエネルギー構造を有するP型またはN型のワイドバンドギャップ半導体材料、またはバンドギャップ内部に多数の再結合準位を内包する材料を用いることにより形成される。具体的には、接合層18は、リンおよびボロンのうちの少なくとも1つがドーピングされたアモルファスシリコン系材料、アモルファスシリコン系材料に微小なシリコン系結晶成分がドーピングされた微結晶シリコン系材料、または金属酸化物を用いて、プラズマ化学気相成長法、スパッタ法、または蒸着法などによって形成される。アモルファスシリコン系材料としては、例えばアモルファスシリコン、アモルファス酸化シリコン、アモルファス炭化シリコンなどが挙げられる。金属酸化物としては、酸化チタン、酸化錫、酸化亜鉛、酸化マンガン、酸化銅などが挙げられる。接合層18は、金属酸化物の積層であってもよい。
 接合層18をプラズマ化学気相成長法、スパッタ法、または蒸着法によって形成する場合、接合層18の成膜レートは数Å/秒程度である。また、接合層18の膜厚は、キャリアを捕獲して再結合させるために1nm以上必要である。接合層18の膜厚が厚すぎると、直列抵抗の増加、および接合層18において光吸収損失が生じる。従って、接合層18の膜厚は、第1光電変換層7、第2光電変換層8、および第3光電変換層9の各々におけるP型半導体層11およびN型半導体層13と同程度の約40nm以下であることが望ましい。
 以上のことから、本実施の形態3によれば、第2光電変換層8と第3光電変換層9との間に接合層18を形成しているため、バンドギャップが大きい第3光電変換層9の正孔が、バンドギャップが小さい第2光電変換層8で過剰に留まることを防ぎ、再結合損失を低減することができる。
 <実施の形態4>
 図13は、本発明の実施の形態4による光電変換モジュール19の構成の一例を示す断面図である。
 図13に示すように、光電変換モジュール19は、光電変換素子20と、支持材21と、カバー22とを備えている。光電変換素子20は、実施の形態1~3で説明した光電変換素子のいずれかに相当する。
 支持材21は、光電変換素子20を接地面に対して垂直方向に支持する。支持材21は、光電変換素子20を支持し、かつ光電変換モジュール19を設置箇所に取り付けることが可能な強度を有していればよい。また、例えば図14に示すように、支持材21の光電変換素子20を支持している面上に反射材23を設けてもよい。反射材23は、金属板、白色プラスチック、反射コーティング、または白色塗料などで構成することができる。反射材23を設けることによって、反射材23に入射した光を反射材23で反射させて光電変換素子20に入射させることができる。すなわち、光電変換素子20に入射する光を増加させることができる。
 カバー22は、光電変換素子20および支持材21を保護するために、光電変換素子20および支持材21全体を覆うように設けられている。カバー22は、ガラスまたはプラスチックなどの透光性の材料で構成されている。なお、図13において、カバー22の形状は箱型であるが、光電変換モジュールのデザインおよび取扱いの容易さに応じて任意の形状にしてもよい。例えば、カバー22の形状は、半円形のドーム形状、円錐形状、三角錐形状、四角錐形状、または球体形状であってもよい。
 カバー22の内部は、中空であってもよいが、これに限るものではない。例えば、カバー22の内部を、光電変換素子の封止剤に用いるような高分子ポリマーで充填することによって、光電変換モジュールの強度および耐久性を向上させることができる。
 光電変換モジュール19は、例えば図14に示すように、支持材21にビアホールなど設け、当該ビアホールを通して光電変換素子20に接続する取り出し電極24を設けてもよい。光電変換素子20が光電変換して得られた電力は、取り出し電極24を介して外部に取り出される。
 図15は、図14の上面図である。なお、図15では、支持材21の図示を省略している。図15に示すように、光電変換素子20の光が入射される面に沿って取り出し電極24を設けることによって、光電変換モジュール19の側面から電力を取り出すことができる。また、光電変換モジュール19の内部、例えば支持材21上に各種センサ、信号処理のためのIC(Integrated Circuit)、または蓄電素子を設けることも可能である。
 以上のことから、本実施の形態4によれば、光電変換素子20を接地面に対して垂直方向に支持しているため、光電変換素子20の両面に光を入射させることが可能となる。
 なお、上記では、光電変換素子20を接地面に対して垂直方向に設ける場合について説明した。これは、光電変換素子20を接地面に対して垂直方向に設けた場合、光電変換素子20は左右対称となるため、両面への入射光強度が設計しやすいためである。光電変換素子20を接地面に対して斜め方向に設けることも可能である。
 <実施の形態5>
 図16は、本発明の実施の形態5による光電変換モジュール25の構成の一例を示す断面図である。
 図16に示すように、光電変換モジュール25は、複数の光電変換素子26,27を備えることを特徴としている。その他の構成は、実施の形態4と同様であるため、ここでは詳細な説明は省略する。
 光電変換素子26,27は、実施の形態1~3で説明した光電変換素子のいずれかに相当する。支持材21は、各光電変換素子26,27を接地面に対して垂直方向に支持する。
 光電変換素子26,27の各々は、外部の光源からの光に対して互いが影にならないように、十分な間隔を空けて設ける必要がある。これにより、光電変換素子26,27の設置面積に対する出力電力を大きくすることができる。なお、図16では、光電変換素子26,27を支持材21の両端に設けているが、これに限るものではない。光電変換素子26,27は、互いが影にならなければどのような位置に設けてもよい。また、光電変換モジュール25は、3つ以上の光電変換素子を備えてもよい。この場合も、互いが影にならなければどのような位置に設けてもよい。
 また、2つの光電変換素子26,27を直列に接続すると高電圧の出力を得ることができ、2つの光電変換素子26,27を並列に接続すれば高電流の出力を得ることができる。これにより、光電変換モジュール25の電気的な出力の特性を変更することができる。
 以上のことから、本実施の形態5によれば、複数の光電変換素子26,27を接地面に対して垂直方向に支持しているため、光電変換素子20の両面に光を入射させることが可能となる。また、複数の光電変換素子26,27を直列に接続する、または並列に接続することによって、光電変換モジュール25の電気的な出力の特性を変更することが可能となる。
 <実施の形態6>
 図17は、本発明の実施の形態6による光電変換モジュール28の構成の一例を示す断面図である。
 図17に示すように、光電変換モジュール28は、光電変換素子29と、ケース30と、設置基板31と、反射材23とを備えている。光電変換素子29は、実施の形態1~3で説明した光電変換素子のいずれかに相当する。反射材23は、実施の形態4で説明した反射材23に相当する。
 光電変換素子29は、反射材23と空間を隔てて平行になるようにケース30に設けられている。なお、図17では、光電変換素子29は反射材23と平行に設けられているが、これに限るものではない。例えば、特定の方向から入射する光が支配的な場合は、光電変換素子29を反射材23と平行にならないように、すなわち傾けて設けてもよい。これにより、光電変換素子29の両面に入射される光強度を同じにすることができる。
 図17では、光電変換素子29がケース30に直接設けられているが、これに限るものではない。例えば、図18に示すように、ケース30の内部において光電変換素子33を支持体34で固定する構成であってもよい。図19は、図18のA1-A2断面図であり、図18を下から見た図である。図19に示すように、光電変換素子33は、四隅を支持体34で支持されている。なお、支持体34の数および形状は、光電変換素子33の大きさおよび形状に応じて適宜に変更することができる。
 以上のことから、本実施の形態6によれば、光電変換素子33を反射材23と空間を隔てて平行に設けているため、光電変換素子33の反射材23とは反対側の面には光源からの光が入射され、光電変換素子33の反射材23側の面には反射材23で反射した光が入射される。これにより、光電変換素子33の両面に光を入射させることができる。
 <実施の形態7>
 図20は、本発明の実施の形態7による光電変換モジュール35の構成の一例を示す断面図である。
 図20に示すように、光電変換モジュール35は、反射材39の形状、および光電変換素子36と反射材39との関係に特徴を有している。その他の構成は、実施の形態6と同様であるため、ここでは詳細な説明を省略する。光電変換素子36は、実施の形態1~3で説明した光電変換素子のいずれかに相当する。反射材23は、実施の形態4で説明した反射材23に相当する。
 反射材23は、光電変換素子36に対して凹状に湾曲しており、反射材23で反射した光を光電変換素子36に集光することができる。また、光電変換素子36の面積は、反射材39の面積よりも小さい。具体的には、光電変換モジュール35を上から見たときに、光電変換素子36の面積Spvと、反射材39の面積Srefから光電変換素子36の面積Spvを引いた面積Sref-Spvとがほぼ同じになるように設計すればよい。
 以上のことから、本実施の形態7によれば、反射材23は光電変換素子36に対して凹状に湾曲し、光電変換素子36の面積は反射材39よりも小さいため、電灯の直下のように擬似的な平行光が入射する環境下、または光源が1つしかないスポットライトのような点光源の光が入射する環境下など、直進光が支配的な場所に光電変換モジュール35を設置した場合であっても両面に同等の光強度の光を入射させることが可能となる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 光電変換素子、2 透明基板、3 第1透明電極、4 光電変換領域、5 第2透明電極、6 封止剤、7 第1光電変換層、8 第2光電変換層、9 第3光電変換層、10 光電変換層、11 P型半導体層、12 光吸収層、13 N型半導体層、14 光電変換素子、15 第4光電変換層、16 第5光電変換層、17 光電変換素子、18 接合層、19 光電変換モジュール、20 光電変換素子、21 支持材、22 カバー、23 反射材、24 取り出し電極、25 光電変換モジュール、26,27 光電変換素子、28 光電変換モジュール、29 光電変換素子、30 ケース、31 設置基板、32 光電変換モジュール、33 光電変換素子、34 支持体、35 光電変換モジュール、36 光電変換素子、37 ケース、38 設置基板、39 反射材、40 光電変換素子、41 透明基板、42 第1透明電極、43 第1光電変換層、44 第2光電変換層、45 第3光電変換層、46 第2透明電極。

Claims (12)

  1.  透明基板(2)と、
     前記透明基板(2)上に形成された第1透明電極(3)と、
     前記第1透明電極(3)上に積層して形成された少なくとも3つの光電変換層(7,8,9)と、
     各前記光電変換層(7,8,9)のうちの最上の前記光電変換層(9)上に形成された第2透明電極(5)と、
    を備え、
     各前記光電変換層(7,8,9)は、光吸収層(12)を有し、
     前記第1透明電極(3)および前記第2透明電極(5)に接しない前記光電変換層(8)の前記光吸収層(12)は、前記第1透明電極(3)に接する前記光電変換層(7)の前記光吸収層(12)、および前記第2透明電極(5)に接する前記光電変換層(9)の前記光吸収層(12)よりもバンドギャップが小さいことを特徴とする、光電変換素子。
  2.  各前記光電変換層(7,8,9)の積層方向の中心に位置する前記光電変換層(8)の前記光吸収層(12)は、各前記光電変換層(7,8,9)の前記光吸収層(12)のうちで最もバンドギャップが小さく、
     各前記光電変換層(7,8,9)の前記光吸収層(12)のバンドギャップは、各前記光電変換層(7,8,9)の積層方向の中心に位置する前記光電変換層(8)から、前記第1透明電極(3)に接する前記光電変換層(7)、および前記第2透明電極(5)に接する前記光電変換層(9)の各々に向かって対称的に大きくなっていることを特徴とする、請求項1に記載の光電変換素子。
  3.  各前記光電変換層(7,8,9)は、P型半導体層(11)と、前記P型半導体層(11)上に形成された前記光吸収層(12)と、前記光吸収層(12)上に形成されたN型半導体層(13)とを有し、
     隣り合う2つの前記光電変換層(8,9)間であって、前記光吸収層(12)のバンドギャップが小さい方の前記光電変換層(8)の前記N型半導体層(13)と、前記光吸収層(12)の前記バンドギャップが大きい方の前記光電変換層(9)の前記P型半導体層(11)との間に接合層(18)をさらに備えることを特徴とする、請求項1または2に記載の光電変換素子。
  4.  前記接合層(18)は、リンおよびボロンのうちの少なくとも1つがドーピングされたアモルファスシリコン系材料、アモルファスシリコン系材料に微小なシリコン系結晶成分がドーピングされた微結晶シリコン系材料、酸化チタン、酸化錫、酸化亜鉛、酸化マンガン、および酸化銅のうちのいずれか1つからなることを特徴とする、請求項3に記載の光電変換素子。
  5.  前記接合層(18)の膜厚は、1nm以上40nm以下であることを特徴とする、請求項3または4に記載の光電変換素子。
  6.  各前記光電変換層(7,8,9)は、アモルファスシリコン、アモルファス酸化シリコン、アモルファス炭化シリコン、アモルファス窒化シリコン、アモルファスゲルマニウム、多結晶シリコン、および微結晶シリコンのうちのいずれか1つからなることを特徴とする、請求項1から5のいずれか1項に記載の光電変換素子。
  7.  前記第1透明電極(3)および前記第2透明電極(5)に接しない前記光電変換層(8)の前記光吸収層(12)は、アモルファスシリコンからなり、
     前記第1透明電極(3)に接する前記光電変換層(7)の前記光吸収層(12)、および前記第2透明電極(5)に接する前記光電変換層(9)の前記光吸収層(12)は、バンドギャップが1.7eV~2.05eVであるアモルファスシリコン系材料からなることを特徴とする、請求項1から5のいずれか1項に記載の光電変換素子。
  8.  前記第1透明電極(3)および前記第2透明電極(5)に接しない前記光電変換層(8)の前記光吸収層(12)は、アモルファスシリコンからなり、
     前記第1透明電極(3)に接する前記光電変換層(7)の前記光吸収層(12)、および前記第2透明電極(5)に接する前記光電変換層(9)の前記光吸収層(12)は、膜厚が100nm~400nmであるアモルファス炭化シリコンまたはアモルファス酸化シリコンからなることを特徴とする、請求項1から5のいずれか1項に記載の光電変換素子。
  9.  請求項1から8のいずれか1項に記載の光電変換素子(20)と、
     前記光電変換素子を接地面に対して垂直方向に支持する支持材(21)と、
    を備える、光電変換モジュール。
  10.  前記光電変換素子(26,27)は複数あり、
     前記支持材(21)は、各光電変換素子(26,27)を接地面に対して垂直方向に支持することを特徴とする、請求項9に記載の光電変換モジュール。
  11.  請求項1から8のいずれか1項に記載の光電変換素子(29)と、
     前記光電変換素子(29)と空間を隔てて平行に設けられた反射材(23)と、
    を備える、光電変換モジュール。
  12.  前記反射材(39)は、前記光電変換素子(36)に対して凹状に湾曲し、
     前記光電変換素子(36)の面積は、前記反射材(39)の面積よりも小さいことを特徴とする、請求項11に記載の光電変換モジュール。
PCT/JP2018/007779 2018-03-01 2018-03-01 光電変換素子および光電変換モジュール WO2019167227A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/007779 WO2019167227A1 (ja) 2018-03-01 2018-03-01 光電変換素子および光電変換モジュール
JP2018534989A JPWO2019167227A1 (ja) 2018-03-01 2018-03-01 光電変換素子および光電変換モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007779 WO2019167227A1 (ja) 2018-03-01 2018-03-01 光電変換素子および光電変換モジュール

Publications (1)

Publication Number Publication Date
WO2019167227A1 true WO2019167227A1 (ja) 2019-09-06

Family

ID=67805238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007779 WO2019167227A1 (ja) 2018-03-01 2018-03-01 光電変換素子および光電変換モジュール

Country Status (2)

Country Link
JP (1) JPWO2019167227A1 (ja)
WO (1) WO2019167227A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234575A (ja) * 1985-04-10 1986-10-18 Mitsubishi Electric Corp アモルフアス太陽電池
JPH04132269A (ja) * 1990-09-21 1992-05-06 Matsushita Electric Works Ltd 光電変換装置
JP2008016595A (ja) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd 太陽光発電装置
US20100059108A1 (en) * 2008-09-08 2010-03-11 Mcdonald Mark Optical system for bifacial solar cell
JP2010062186A (ja) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp 光電変換装置およびその製造方法
JP2010525578A (ja) * 2007-04-17 2010-07-22 テラ サン ホログラフィカ エスパーニャ,エス.エル. ホログラフィック改良型太陽光発電(hepv)ソーラー・モジュール
JP2013008866A (ja) * 2011-06-24 2013-01-10 Kaneka Corp 薄膜光電変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234575A (ja) * 1985-04-10 1986-10-18 Mitsubishi Electric Corp アモルフアス太陽電池
JPH04132269A (ja) * 1990-09-21 1992-05-06 Matsushita Electric Works Ltd 光電変換装置
JP2008016595A (ja) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd 太陽光発電装置
JP2010525578A (ja) * 2007-04-17 2010-07-22 テラ サン ホログラフィカ エスパーニャ,エス.エル. ホログラフィック改良型太陽光発電(hepv)ソーラー・モジュール
JP2010062186A (ja) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp 光電変換装置およびその製造方法
US20100059108A1 (en) * 2008-09-08 2010-03-11 Mcdonald Mark Optical system for bifacial solar cell
JP2013008866A (ja) * 2011-06-24 2013-01-10 Kaneka Corp 薄膜光電変換装置

Also Published As

Publication number Publication date
JPWO2019167227A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
US9590133B1 (en) Thin film solar cells on flexible substrates and methods of constructing the same
US20120176077A1 (en) Solar cell module having white back sheet
WO2017206394A1 (zh) 一种轻型光伏组件
US20180309077A1 (en) Solar Cell Comprising an Oxide-Nanoparticle Buffer Layer and Method of Fabrication
US8779281B2 (en) Solar cell
KR101895025B1 (ko) 태양 전지 모듈 및 그의 제조 방법
TW201338185A (zh) 具有光伏打之多功能玻璃窗及用於建築物或汽車之照明
KR20120087946A (ko) 분극 저항성 태양 전지
US20100101627A1 (en) Flexible solar panel module
US20110023959A1 (en) Photovoltaic Cell Substrate And Method Of Manufacturing The Same
JP5420109B2 (ja) Pn接合およびショットキー接合を有する多重太陽電池およびその製造方法
KR20130016848A (ko) Hit 태양전지
US20180033905A1 (en) Flexible silicon infrared emitter
JP2015159154A (ja) 集光型光電変換装置及びその製造方法
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
JP2009253269A (ja) 半導体ナノ素材を利用した光電変換装置およびその製造方法{photoelectricconversiondeviceusingsemiconductornanomaterialsandmethodofmanufacturingthesame}
JP3239104U (ja) 園芸用ハウスに設けたタンデム型cvdダイヤモンド有機系半導体薄膜太陽電池装置。
JP3236533U (ja) 風力発電併用のタンデム型ダイヤモンド薄膜太陽電池装置。
WO2019167227A1 (ja) 光電変換素子および光電変換モジュール
TWI408821B (ja)
JP6397703B2 (ja) 太陽電池モジュール及び壁面形成部材
US20160064503A1 (en) Electronic devices and method of fabricating the same
KR101765987B1 (ko) 태양 전지 및 그 제조 방법
KR20120127910A (ko) 이종접합 태양 전지 및 그 제조 방법
JP3234179U (ja) Cvdダイヤモンド半導体薄膜の多接合薄膜太陽電池装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534989

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907995

Country of ref document: EP

Kind code of ref document: A1