WO2019166507A1 - Matériaux silicones - Google Patents

Matériaux silicones Download PDF

Info

Publication number
WO2019166507A1
WO2019166507A1 PCT/EP2019/054893 EP2019054893W WO2019166507A1 WO 2019166507 A1 WO2019166507 A1 WO 2019166507A1 EP 2019054893 W EP2019054893 W EP 2019054893W WO 2019166507 A1 WO2019166507 A1 WO 2019166507A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
material according
carbon atoms
organopolysiloxane
group
Prior art date
Application number
PCT/EP2019/054893
Other languages
English (en)
Inventor
François GANACHAUD
Daniel PORTINHA DE ALMEIDA
Etienne Fleury
Gabriel Duaux
Aymeric GENEST
Emmanuel POUGET
Original Assignee
Elkem Silicones France Sas
Institut National Des Sciences Appliquées Lyon
Université Claude Bernard Lyon 1
Centre National De La Recherche Scientifique
Universite Jean Monnet Saint Etienne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Silicones France Sas, Institut National Des Sciences Appliquées Lyon, Université Claude Bernard Lyon 1, Centre National De La Recherche Scientifique, Universite Jean Monnet Saint Etienne filed Critical Elkem Silicones France Sas
Priority to US16/971,059 priority Critical patent/US11945965B2/en
Priority to CN201980016093.8A priority patent/CN111819255B/zh
Priority to JP2020545719A priority patent/JP6991350B2/ja
Priority to KR1020207024986A priority patent/KR102482180B1/ko
Priority to EP19706704.4A priority patent/EP3759186A1/fr
Publication of WO2019166507A1 publication Critical patent/WO2019166507A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups

Definitions

  • the present invention relates to silicone materials, their method of preparation and their uses.
  • a first route consists in using a polyorganosiloxane comprising amino groups with an unsaturated acid compound (WO2016102498).
  • the material obtained has good elastic properties but a low tensile strength.
  • a second route (Feng et al., Journal of Polymer Science, part A: polymer chemistry 2017, 55, 903-91 1) consists in bringing into contact a polyorganosiloxane carrying amino groups with a multifunctional acid.
  • the material obtained is hard but brittle and has neither elastic properties nor mechanical properties.
  • An object of the present invention is therefore to provide a silicone material having good elastic and mechanical properties.
  • Another object of the present invention is to provide such a material having healing properties.
  • Yet another object of the present invention is to provide such a material which can be recycled by simple and inexpensive methods.
  • Another object of the invention is also to provide a process for preparing such a material.
  • E represents a divalent aliphatic, cycloaliphatic or aromatic hydrocarbon radical comprising from 1 to 30 carbon atoms; preferably aliphatic containing from 1 to 10 carbon atoms;
  • Z 1 represents a monovalent hydrocarbon radical having from 1 to 30 carbon atoms and optionally comprising one or more unsaturations and / or one or more fluorine atoms or a hydroxyl group, preferably Z 1 represents a monovalent hydrocarbon group selected from the group consisting of alkyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 6 carbon atoms and aryl groups having 6 to 12 carbon atoms optionally comprising one or more fluorine atoms, and still more preferably Z 1 is selected from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, vinyl, xylyl, tolyl and phenyl;
  • Z 2 represents a monovalent hydrocarbon radical having 1 to 30 carbon atoms and optionally comprising one or more unsaturations and / or one or more fluorine atoms, a hydroxyl group, or a radical -OR 1 with R 1 which represents a hydrocarbon radical -C linear 10 or branched, and preferably Z 2 is a monovalent hydrocarbon group selected from the group consisting of alkyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 6 carbon carbon and aryl groups having 6 to 12 carbon atoms optionally comprising one or more fluorine atoms, or a radical -OR 1 with R 1 which represents a linear or branched C1-C10 hydrocarbon radical, and even more preferably Z 2 is selected from the group consisting of methyl, ethyl, propyl, 3,3,3-trifluoropropyl, vinyl, ethoxyl, methoxyl, xylyl, tolyl and phenyl;
  • organopolysiloxane A comprising, per molecule:
  • At least two terminal units M chosen from the group consisting of the siloxyl units Y 3 SiO 1/2 , YZ 1 2 Si 0 1/2 , Y 2 Z 1 Si 0 1/2 and Z 2 3 Si 0 1/2 and
  • At least one organic compound B bearing at least two carboxylic acid groups and not comprising any unsaturation bearing at least two carboxylic acid groups and not comprising any unsaturation.
  • the reaction is carried out at a temperature between 30 and 200 ° C, preferably between 50 and 150 ° C, preferably between 40 and 100 ° C, more preferably between 50 and 70 ° C.
  • the duration of the reaction at temperature depends on the nature of the reagents and the temperature. Those skilled in the art will be able to adjust the conditions of temperature and heating time to obtain materials having good mechanical and self-healing properties. As an indication, the reaction time at temperature can vary between a few hours at 100 ° C and a few days at 70 ° C.
  • the term "unsaturation in a compound” means a double or triple bond between two carbon atoms.
  • Such compounds are also called saturated compounds.
  • compound B is a saturated organic compound comprising at least two carboxylic acid functions.
  • the silicone material is a supramolecular silicone material and is advantageously in the form of a supramolecular ion network.
  • the reaction between the amine functions of organopolysiloxane A and the carboxylic acid functions of compound B is an acid-base reaction involving ionic interactions.
  • This supramolecular silicone material or supramolecular ionic network may for example be an elastomer.
  • the molar mass is an average molar mass (Mn). The Mn value can be determined by 29 Si NMR or by steric exclusion analysis.
  • the organopolysiloxanes A may have a linear or branched structure with M, D, T Q units used in the silicone nomenclature and corresponding to:
  • R groups identical or different, are monovalent hydrocarbon groups having from 1 to 30 carbon atoms.
  • these essentially consist of D siloxyl units, especially chosen from the group consisting of the siloxyl units Y 2 SiO 2/2 , YZ 1 SiO 2/2 and Z 2 2 SiO 2/2 and terminal siloxy M units, especially selected from the group consisting of Y 3 SiOi / 2 siloxyl units, YZ 1 2 SiOi / 2 , Y 2 Z 1 SiOi / 2 and Z 2 3 SiOi / 2 , Y Z 1 and Z 2 being as defined above.
  • the organopolysiloxanes A are chosen from linear organopolysiloxanes comprising siloxyl units (1.1) and (I.2) of the following formulas:
  • Y and Z 1 and Z 2 have the definitions given above;
  • the organopolysiloxanes A are chosen from linear organopolysiloxanes comprising units (1.1) chosen from the group consisting of YZ 1 SiO 2/2 and YZ 1 2 SiO 1/2 and units (I.2) chosen from the group consisting of Z 2 2 Si0 2/2 and Z 2 3 Si0 1/2 , the Y, Z 1 and Z 2 being as defined above.
  • the organopolysiloxanes A comprise, per molecule, at least one siloxyl unit (1.1) bearing at least one functional group of formula (I.3) and two units (I.2) for which one and only one of the Z 2 represents a radical -OR 1
  • the organopolysiloxanes A comprise per molecule at least one siloxyl unit (1.1) bearing at least one functional group of formula (I.3) and two units (I.2) for each of which one and only one of Z 2 represents a radical -OR 1 .
  • the organopolysiloxane A comprises two terminal units M of formula Z 2 3 Si0 1/2 in each of which one, and only one, of Z 2 represents a radical -OR 1 .
  • the organopolysiloxanes A of the invention comprise at least two units (1.1) each carrying at least one group (I.3), preferably each carrying a single unit (I.3).
  • the organopolysiloxanes A of the invention comprise:
  • the organopolysiloxanes A of the invention comprise:
  • the organopolysiloxanes A of the invention comprise:
  • the organopolysiloxanes A according to the invention comprise only two radicals -OR 1 which are preferably borne by terminal units M.
  • the organopolysiloxanes A comprise a number of siloxyl units (1.1) of between 1 and 60, preferably between 1 and 20, preferably between 1 and 10.
  • the organopolysiloxanes A comprise a number of siloxyl units (I.2) of between 50 and 950, preferably between 50 and 500, more preferably between 100 and 375.
  • the organopolysiloxanes A comprise a quantity of NH bond expressed in mol per gram of between 1.10 5 and 10.10 2 mol / g, preferably 5 ⁇ 10 5 and 5 ⁇ 10 2 mol / g, more preferably from 1 ⁇ 10 4 to 5 ⁇ 10 3 mol. / g.
  • amine function is meant primary or secondary amines. It must therefore be understood that one mole of primary amine function contains two moles of NH bonds and one mole of secondary amine function contains one mole of NH bonds.
  • the compounds A of the invention are in particular chosen from the following compounds:
  • n or p 50 to 950, preferably 50 to 500, preferably 100 to 375 and
  • the compound B may be chosen from the group consisting of the following acids: citric acid, malic acid, acid succinic acid, oxalic acid, malonic acid, succinic acid, tartaric acid, glutaric acid, adipic acid, acid pimelic, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, pentadecanedioic acid, thapsic acid, phthalic acid, isophthalic acid, terephthalic acid, dipicolinic acid, trimesic acid, isocitric acode, oxalosuccinic acid, tricarballylic acid, homocitric acid, hydroxycitric acid and pamoic acid.
  • compound B is selected from the group consisting of the following acids: citric acid, malic acid and succinic acid. According to a preferred embodiment, compound B is citric acid.
  • ratio J representing the ratio between the number of moles of acid functions of compound B and the number of moles of amine functions of organopolysiloxane A.
  • the ratio J corresponds to the following relationship: number of moles of compound ( 5) x number of acid functions of the compound (B)
  • the ratio J is between 0.5 and 1.5, preferably between 0.8 and 1.2, more preferably between 0.85 and 1.
  • the organopolysiloxane A has a dynamic viscosity measured at 25 ° C. with an imposed stress rheometer, in particular TA-DHRII, of less than 30000 mPa.s, preferably of between 1 and 15000 mPa.s, more preferably between 1 and 10,000 mPa.s and even more preferably between 1 and 8000 mPa.s.
  • the silicone material according to the invention has good mechanical properties while maintaining good hardness, even in the absence of fillers generally used in this type of compounds to enhance the mechanical properties.
  • the supramolecular silicone material according to the invention may have an elongation greater than 100% and a modulus greater than 0.25 MPa.
  • the silicone material according to the invention may comprise fillers, especially reinforcing or non-reinforcing fillers.
  • the reinforcing fillers will allow advantageously to improve the mechanical properties of the silicone materials of the invention.
  • the fillers are preferably mineral. They can be especially siliceous.
  • the reinforcing siliceous fillers are chosen from precipitated or pyrogenic silicas, or mixtures thereof. These powders have an average particle size generally less than 0.1 ⁇ m (microns) and a BET specific surface area greater than 30 m 2 / g, preferably between 30 and 500 m 2 / g.
  • Semi-reinforcing siliceous fillers such as diatomaceous earth or ground quartz can also be used. In the case of non-siliceous minerals, they may be used as semi-reinforcing mineral filler or stuffing.
  • non-siliceous fillers examples include carbon black, titanium dioxide, aluminum oxide, hydrated alumina or aluminum trihydroxide, expanded vermiculite, unexpanded vermiculite, calcium carbonate optionally surface-treated with fatty acids, zinc oxide, mica, talc, iron oxide, kaolin, barium sulphate and slaked lime.
  • These fillers have a particle size generally of between 0.001 and 300 ⁇ m (micrometers) and a BET surface area of less than 100 m 2 / g.
  • the fillers used may be a mixture of quartz and silica. Charges can be processed by any suitable product.
  • the material according to the invention comprises fillers chosen from a quartz, a silica, in particular precipitated or pyrogenic silica and a calcium carbonate, alone or as a mixture.
  • the material of the present invention may comprise from 0.5 to 70% by weight of fillers, preferably from 1 to 60% by weight of filler, based on the weight of organopolysiloxane A.
  • the amount of filler in the material according to the invention may vary depending on the nature of the load. Those skilled in the art will be able to adapt the amount of charge depending on the nature of the charge and the desired properties.
  • the silicone material according to the invention can comprise: from 0.5 to 20%, preferably 1 to 15%, by weight of silica, in particular precipitated silica or fumed silica, relative to the weight of organopolysiloxane A, and / or
  • the silicone material according to the invention may further comprise:
  • organopolysiloxanes or branched (resins) chosen from nonfunctionalised organopolysiloxanes such as, for example, polydimethylsiloxanes and functionalized organopolysiloxanes such as, for example, polydimethylsiloxanes comprising hydroxyl, alkoxyl, alkenyl or piperidinyl groups; sterically hindered as described in EP 1758541.
  • crosslinking agent which is, for example, an organosilane or an organopolysiloxane having, by molecule, three hydrolyzable groups bonded to silicon,
  • a polycondensation catalyst selected from metal compounds based on tin, zinc, chromium, cobalt, nickel, titanium, aluminum, gallium, germanium or zirconium or organic compounds such as carbenes, amines, aminidines or guanidines .
  • one or more functional additives chosen in particular from:
  • Adhesion promoters or modulators are Adhesion promoters or modulators
  • the silicone material according to the invention are dynamic materials, that is to say that they have self-healing properties.
  • the self-healing of the materials according to the invention can be done by heating the material at a temperature between 50 and 130 ° C for 1 to 10 hours. For example by heating the material at 70 ° C for 48 hours.
  • the supramolecular silicone material according to the invention can also be recycled. Indeed, the inventors have shown that the materials according to the invention lose their mechanical properties when immersed. in hot water, especially at a temperature between 70 and 100 ° C for a long time, including 24 h to 167 h.
  • the supramolecular silicone material according to the invention is obtained by reaction between at least one organopolysiloxane A and at least one compound B.
  • the process for preparing the supramolecular silicone material preferably comprises the following steps:
  • the duration of the reaction at temperature depends on the nature of the reagents and the temperature. Those skilled in the art will be able to adjust the conditions of temperature and heating time to obtain materials having good mechanical and self-healing properties. As an indication, the reaction time at temperature can vary between a few hours at 100 ° C and a few days at 70 ° C.
  • step c) After step c) it is possible to put the resulting composition into shape in different ways, for example thin layer, in a mold or directly in a container. Step d) will come to create the ion network and generate the silicone material according to the invention.
  • the organic solvent S may especially be chosen from polar organic solvents, in particular alcohols, for example ethanol, or ethers, for example ethyl acetate or a mixture of these solvents.
  • the amount of organic solvent S used is low.
  • the amount of organic solvent S used in the process according to the invention is less than 30% by weight relative to the total weight of the mixture A + B + S, preferably less than 20%, and even more preferably less at 10%.
  • the silicone material of the invention comprises fillers
  • these may be introduced either directly in admixture with the organopolysiloxane A or in the reaction medium after mixing of the organopolysiloxane A and of the compound B.
  • the organopolysiloxane A according to the invention can be used pure (because of its molar mass of less than 70000 g / mol), in solution an organic solvent, for example S, or in emulsion.
  • the process of the invention is an emulsion process in which the organopolysiloxane A is emulsified in water.
  • the emulsion also comprises one or more surfactants or stabilizers, and the compound B is solubilized in water.
  • This emulsion may also contain other agents such as biocides, anti-gel additives, and / or anti-foam agents.
  • the present invention also relates to silicone materials as described above and comprising less than 50% by weight of organic solvent S, preferably less than 40% by weight, more preferably less than 30% by weight, in particular less than 20% by weight, preferably less than 10% by weight, for example less than 5% by weight, relative to the total weight of the silicone material.
  • Transparent and unstained materials or those with very low color are preferred.
  • the silicone materials according to the invention can in particular be used in the coating of flexible supports.
  • the flexible supports are chosen in particular from textiles, paper and polymer films.
  • the uses in textile coating relate for example to the production of airbag, conveyor belts, etc.
  • the uses in paper coating and polymer film relate to the production of anti-adhesive coatings.
  • Another application using the coating of polymer or textile films relates to the manufacture of dressings.
  • the invention therefore also covers a process for coating flexible supports comprising the use of the material according to the invention.
  • the silicone materials according to the invention can also be used for 3D printing.
  • the present invention also relates to the use of the silicone materials according to the invention, for the preparation of silicone elastomer articles by additive manufacturing processes also known as “3D printing” processes.
  • 3D printing processes also known as "3D printing” processes.
  • a "3D printer” is defined as “a machine used for 3D printing”
  • 3D printing is defined as "the manufacture of objects through the deposition of a material by means of a print head, a nozzle or other printer technology ".
  • additive manufacturing is defined as a process of joining materials to make objects from 3D model data, usually layer-by-layer, as opposed to subtractive manufacturing methods.
  • the synonyms associated with 3D printing and encompassed by 3D printing include additive manufacturing, additive processes, additive techniques and layer manufacturing.
  • Additive manufacturing (AM) can also be called rapid prototyping (RP).
  • RP rapid prototyping
  • additive manufacturing is interchangeable with “additive manufacturing” and vice versa.
  • the silicone materials according to the invention can be used for 3D printing processes involving the extrusion of material or the deposition of material.
  • Material extrusion is an additive manufacturing process in which a filament of material is extruded and selectively distributed through a nozzle.
  • the flow rate of extruded material can be controlled inter alia via the pressure exerted on the nozzle or the temperature.
  • Material deposition is an additive manufacturing process in which fine droplets of a material are selectively deposited by print heads similar to those of paper printers. This process is also known as inkjet or ink jet.
  • the present invention therefore also covers a 3D printing process comprising the implementation of a compound according to the invention.
  • the silicone materials according to the invention can also be used for water repellency of wood, concrete or stone.
  • the present invention thus also covers a method of water repellency of wood, concrete or stone comprising the implementation of a compound according to the invention.
  • the dynamic viscosity of the products was measured using an imposed stress rheometer (TA-DHRII). The measurements were performed in flow mode with a cone / plane geometry 40 mm in diameter and having a truncation of 52 ⁇ m. The viscosity was recorded as a function of shear rate (0.01 to 100 s 1) at 25 ° C.
  • the rheological analyzes were carried out using an imposed constraint rheometer
  • the tensile tests to determine the 100% deformation modulus, the tensile stress and the elongation at break were performed with a MTS 2 / M (10KN) uniaxial tensile machine.
  • the force cell has a maximum load of 100N.
  • a self-tightening jaw was used for the lower part and a pneumatic jaw for the upper part.
  • the specimens are of type H3.
  • An extensometer is used to measure elongation. The initial spacing is 10 mm.
  • the Shore 00 hardness and the Shore A hardness are measured with durometers over a thickness of 6.5 mm silicone material.
  • PDMS A21-A22-A23 Organic polysiloxane A according to the invention
  • a comparative example is also prepared from a PDMS A31 (Comparative Organopolysiloxane A):
  • organopolysiloxanes of general formula (V) below comprising methoxydimethylsiloxy end units, and D and T units, some of which comprise an aminoethylaminopropyl amino moiety.
  • This organopolysiloxane comprises more than two alkoxy functions.
  • the acid is solubilized in a mixture of 60% ethanol and 40% ethyl acetate.
  • the acid is concentrated in the solvent to about 1.5 mol / l.
  • the organopolysiloxane amine is introduced and cooled to about -20 ° C.
  • the acid solubilized in the solvent mixture is added so as to obtain the function ratio J described in the table.
  • reaction mixture is homogenized using a planetary mixer for about one minute at 2500 rpm.
  • reaction mixture After homogenization, the reaction mixture is poured into a petri dish or onto a tefloned plate and placed in an oven at 70 ° C. for 6 days.
  • the supramolecular material obtained is converted into a 1 mm thick film under pressure between 50 and 70 ° C. for 4 to 48 hours.
  • the materials of the invention have good mechanical properties. Comparison between materials according to the invention and materials obtained with oraanopolysiloxanes comprising more than two alkoxy units, the acid being citric acid.
  • organopolysiloxane A used is A23 and the acid B is citric acid.
  • healing is provided by the temperature (heating at 70 ° C. for 48 hours). In the two examples below, it is shown that after healing, a major part of the mechanical properties is recovered.
  • the materials according to the invention lose their mechanical properties when immersed in water at 70 ° C for 7 days. This experiment shows that the material can be recycled via this aqueous route.
  • Comparative Example 6 Organicpolysiloxane comprising more than two alkoxy units
  • Comparative Example 6 Organicpolysiloxane comprising more than two alkoxy units

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

Matériau silicone obtenu par réaction entre : - au moins un organopolysiloxane (A) de masse molaire inférieure à 70000 g/mol, de préférence inférieure à 50000 g/mol, comprenant des motifs siloxyles I.1 et I.2 - au moins un composé (B) organique porteur d'au moins deux groupes acide carboxylique et ne comprenant pas d'insaturation.

Description

Matériaux silicones
La présente invention concerne des matériaux silicones, leur procédé de préparation et leurs utilisations.
Plusieurs voies ont été décrites pour la formation de matériaux silicones supramoléculaires basés sur des interactions ioniques. Une première voie consiste à mettre en oeuvre un polyorganosiloxane comportant des groupements aminés avec un composé acide insaturé (WO2016102498). Le matériau obtenu présente de bonnes propriétés élastiques mais une faible contrainte à la rupture. Une seconde voie (Feng et al. Journal of polymer science, part A : polymer chemistry 2017, 55, 903-91 1 ) consiste à mettre en contact un polyorganosiloxane portant des groupements aminés avec un acide multifonctionnel. Le matériau obtenu est dur mais cassant et ne présente ni propriétés élastiques ni propriétés mécaniques.
Il y a donc un intérêt à fournir un matériau silicone présentant à la fois de bonnes propriétés mécaniques et élastiques. Un tel matériau pourrait avoir des utilisations variées. Il existe aussi un intérêt à fournir un tel matériau qui soit auto-cicatrisant et qui puisse être recyclé par des méthodes simples et peu coûteuses.
Un objectif de la présente invention est donc de fournir un matériau silicone présentant de bonnes propriétés élastiques et mécaniques.
Un autre objectif de la présente invention est de fournir un tel matériau ayant des propriétés de cicatrisation.
Un autre objectif encore de la présente invention est de fournir un tel matériau qui puisse être recyclé par des méthodes simples et peu coûteuses.
Un autre objectif de l’invention est également de fournir un procédé de préparation d’un tel matériau.
D’autres objectifs encore apparaîtront à la lecture de l’invention qui suit.
Ces objectifs sont atteints par la présente invention qui concerne un matériau silicone obtenu par réaction entre :
- au moins un organopolysiloxane A de masse molaire inférieure à 70000 g/mol, de préférence inférieure à 50000 g/mol, comprenant des motifs siloxyles (1.1 ) et (I.2) Ya¾SiQ -(
Figure imgf000003_0001
dans lesquelles :
a= 1 ou 2,
b= 0, 1 ou 2
a+b= 1 , 2 ou 3
c = 0,1 , 2 ou 3
les symboles Y, identiques ou différents, représentent un groupe fonctionnel de formule (1.3) :
-E-(NH-G)h-(NH2)i (I.3)
dans laquelle :
h = 0 ou 1 ;
i = 0 ou 1 ;
h+i = 1 ou 2
E représente un radical hydrocarboné divalent aliphatique, cycloaliphatique ou aromatique comprenant de 1 à 30 atomes de carbone ; de préférence aliphatique contenant de 1 à 10 atomes de carbone ;
lorsqu’il est présent, G représente un radical hydrocarboné aliphatique comprenant de 1 à 10 atomes de carbone, monovalent lorsque i=0 ou divalent lorsque i=1 ;
Z1 , identique ou différent, représente un radical hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et comprenant éventuellement une ou plusieurs insaturations et/ou un ou plusieurs atomes de fluor ou un groupe hydroxyle, de préférence Z1 représente un groupe hydrocarboné monovalent choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone, les groupes alcényles ayant de 2 à 6 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone comprenant éventuellement un ou plusieurs atomes de fluor, et encore plus préférentiellement Z1 est choisi parmi le groupe constitué par un groupe méthyle, éthyle, propyle, 3,3,3- trifluoropropyle, vinyle, xylyle, tolyle et phényle ;
Z2, identique ou différent, représente un radical hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et comprenant éventuellement une ou plusieurs insaturations et/ou un ou plusieurs atomes de fluor, un groupe hydroxyle, ou un radical -OR1 avec R1 qui représente un radical hydrocarboné en CrC10 linéaire ou ramifié, et de préférence Z2 représente un groupe hydrocarboné monovalent choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone, les groupes alcényles ayant de 2 à 6 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone comprenant éventuellement un ou plusieurs atomes de fluor, ou un radical -OR1 avec R1 qui représente un radical hydrocarboné en C1-C1 0 linéaire ou ramifié, et encore plus préférentiellement Z2 est choisi parmi le groupe constitué par un groupe méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, vinyle, éthoxyle, méthoxyle, xylyle, tolyle et phényle ;
ledit organopolysiloxane A comprenant, par molécule :
- au moins un motif siloxyle (1.1 ) porteur d’au moins un groupe fonctionnel de formule (I.3),
- deux motifs (I.2) pour lesquels un Z2 représente un radical -OR1 et
- au moins deux motifs terminaux M choisis parmi le groupe constitué par les motifs siloxyles Y3Si01/2, YZ1 2Si01/2, Y2Z1Si01/2 et Z2 3Si01/2 et
- au moins un composé B organique porteur d’au moins deux groupes acide carboxylique et ne comprenant pas d’insaturation.
De préférence, la réaction est menée à une température comprise entre 30 et 200°C, de préférence entre 50 et 150°C, de préférence entre 40 et 100°C, plus préférentiellement entre 50 et 70°C. La durée de la réaction à température dépend de la nature des réactifs et de la température. L’homme du métier saura ajuster les conditions de température et de temps de chauffage pour obtenir des matériaux présentant de bonnes propriétés mécaniques et auto-cicatrisantes. A titre indicatif, la durée de réaction à température peut varier entre quelques heures à 100°C et quelques jours à 70°C..
Dans le cadre de la présente invention, on entend par insaturation dans un composé, une double ou triple liaison entre deux atomes de carbone. Les composés ne comprenant pas d’insaturation, c’est-à-dire ne comprenant pas de double ou triple liaisons C-C, ne comportent donc que des liaisons carbone-carbone simple. De tels composés sont également appelés composés saturés. Ainsi, le composé B est un composé organique saturé comprenant au moins deux fonctions acide carboxylique.
Dans le cadre de la présente invention, le matériau silicone, est un matériau silicone supramoléculaire et est avantageusement sous la forme d’un réseau ionique supramoléculaire. La réaction entre les fonctions amine de l’organopolysiloxane A et les fonctions acide carboxylique du composé B est une réaction acido-basique mettant en jeu des interactions ioniques. Ce matériau silicone supramoléculaire ou réseau ionique supramoléculaire peut être par exemple un élastomère. Dans le cadre de la présente demande, la masse molaire est une masse molaire moyenne (Mn). La valeur Mn peut être déterminée par RMN 29Si ou par analyse d’exclusion stérique.
De préférence, les organopolysiloxanes A peuvent présenter une structure linéaire ou ramifiée avec des motifs M, D, T Q utilisés dans la nomenclature silicones et correspondant à :
- M = motif siloxyle de formule (R)3Si01/2
- D = motif siloxyle de formule (R)2Si02/2
- T= motif siloxyle de formule (R)Si03/2 et
- Q = motif siloxyle de formule Si04/2
où les groupements R, identiques ou différents, sont des groupes hydrocarbonés monovalents ayant de 1 à 30 atomes de carbone.
Lorsqu’il s’agit d’organopolysiloxanes linéaires, ceux-ci sont essentiellement constitués de motifs siloxyles D, notamment choisis parmi le groupe constitué par les motifs siloxyles Y2Si02/2, YZ1Si02/2 et Z2 2Si02/2 et de motifs siloxyles terminaux M, notamment choisis parmi le groupe constitué par les motifs siloxyles Y3SiOi/2, YZ1 2SiOi/2, Y2Z1SiOi/2 et Z2 3SiOi/2, les Y, Z1 et Z2 étant tels que définis ci-dessus.
Dans un mode de réalisation particulièrement préféré, les organopolysiloxanes A sont choisis parmi les organopolysiloxanes linéaires comprenant des motifs siloxyles (1.1 ) et (I.2) de formules suivantes:
Figure imgf000005_0001
dans lesquelles :
- Y et Z1 et Z2 ont les définitions données ci-dessus ;
- a= 1 ou 2, b= 0, 1 ou 2 et a+b= 2 ou 3
- c = 2 ou 3.
De manière particulièrement préférée, les organopolysiloxanes A sont choisis parmi les organopolysiloxanes linéaires comprenant des motifs (1.1 ) choisis dans le groupe constitué par YZ1Si02/2 et YZ1 2Si01/2 et des motifs (I.2) choisis dans le groupe constitué par Z2 2Si02/2 et Z2 3Si01/2, les Y, Z1 et Z2 étant tels que définis ci-dessus. De préférence, les organopolysiloxanes A comprennent par molécule au moins un motif siloxyle (1.1 ) porteur d’au moins un groupe fonctionnel de formule (I.3) et deux motifs (I.2) pour lesquels un et un seul des Z2 représente un radical -OR1 De préférence il doit être compris que les organopolysiloxanes A comprennent par molécule au moins un motif siloxyle (1.1 ) porteur d’au moins un groupe fonctionnel de formule (I.3) et deux motifs (I.2) pour chacun desquels un et un seul des Z2 représente un radical -OR1.
Selon un mode de réalisation particulier, l’organopolysiloxane A comprend deux motifs terminaux M de formule Z2 3Si01/2 dans chacun desquels un, et un seul, des Z2 représente un radical -OR1.
De préférence, dans la formule (1.1 ) de l’invention a=1 et b=1 ou 2.
De préférence, les organopolysiloxanes A de l’invention comprennent au moins deux motifs (1.1 ) porteurs chacun d’au moins un groupe (I.3), de préférence porteurs chacun d’un seul motif (I.3).
De préférence, les organopolysiloxanes A de l’invention comprennent :
- au moins deux motifs (1.1 ) porteurs chacun d’au moins un groupe (I.3), de préférence porteurs chacun d’un seul motif (I.3) et
- deux motifs (I.2) pour lequels un Z2 représente un radical -OR1
De préférence, les organopolysiloxanes A de l’invention comprennent :
- au moins deux motifs (1.1 ) porteurs chacun d’au moins un groupe (I.3), de préférence porteurs chacun d’un seul motif (I.3) et
- deux motifs (I.2) dans chacun desquels un, et un seul Z2 représente un radical -OR1
De préférence, les organopolysiloxanes A de l’invention comprennent :
- au moins deux motifs (1.1 ) porteurs chacun d’au moins un groupe (I.3), de préférence porteurs chacun d’un seul motif (I.3) et
- deux motifs terminaux M de formule Z2 3Si01/2 dans chacun desquels un, et un seul, des Z2 représente un radical -OR1.
De préférence, il doit être compris que les organopolysiloxanes A selon l’invention comprennent uniquement deux radicaux -OR1 qui sont de préférence portés par des motifs terminaux M. De préférence, les organopolysiloxanes A comprennent un nombre de motif siloxyle (1.1 ) compris entre 1 et 60, de préférence entre 1 et 20, préférentiellement entre 1 et 10.
De préférence, les organopolysiloxanes A comprennent un nombre de motif siloxyle (I.2) compris entre 50 et 950, de préférence entre 50 et 500, plus préférentiellement entre 100 et 375.
De préférence, les organopolysiloxanes A comprennent une quantité de liaison NH exprimée en mol par gramme comprise entre 1.105 et 10.102 mol/g, de préférence 5.105 et 5.102 mol/g, plus préférentiellement de 1 .104 à 5.103 mol/g. Par fonction amine, on entend désigner les amines primaires ou secondaires. Il doit donc être compris qu’une mole de fonction amine primaire contient deux moles de liaisons N-H et qu’une mole de fonction amine secondaire contient une mole de liaisons N-H.
Les composés A de l’invention sont notamment choisis parmi les composés suivants :
Figure imgf000007_0001
avec n ou p =50 à 950, de préférence 50 à 500, de préférence 100 à 375 et
m ou q =1 à 60, de préférence 1 à 20, de préférence 1 à 10. Dans le cadre de l’invention, le composé B peut être choisi dans le groupe constitué par les acides suivants : acide citrique, acide malique, acide succinique, acide oxalique, acide malonique, acide succinique, acide tartrique, acide glutarique, acide adipique, acide pimélique, acide subérique, acide azélaïque, acide sébacique, acide undécanedioïque, acide dodécanedioïque, acide brassylique, acide tétradécanedioïque, acide pentadécanedioïque, acide thapsique, acide phtalique, acide isophtalique, acide téréphtalique, acide dipicolinique, acide trimésique, acode isocitrique, acide oxalosuccinique, acide tricarballylique, acide homocitrique, acide hydroxycitrique et acide pamoïque.
De préférence, le composé B est choisi dans le groupe constitué par les acides suivants : acide citrique, acide malique et acide succinique. Selon un mode de réalisation préférentiel le composé B est l’acide citrique.
On peut également définir le rapport J représentant le rapport entre le nombre de mole de fonctions acide du composé B et le nombre de mole de fonctions amine de l’organopolysiloxane A. Le rapport J correspond à la relation suivante : nombre de mole du composé (5) x nombre de fonctions acide du composé ( B )
J = nombre de mole du composé G4) x nombre de fonctions amine du composé (.4)
De préférence, le rapport J est compris entre 0,5 et 1 ,5, de préférence entre 0,8 et 1 ,2, plus préférentiellement entre 0,85 et 1 .
De préférence, l’organopolysiloxane A présente une viscosité dynamique mesurée à 25°C avec un rhéomètre à contrainte imposée, notamment TA-DHRII, inférieure à 30000 mPa.s, de préférence comprise entre 1 et 15000 mPa.s, plus préférentiellement comprise entre 1 et 10000 mPa.s et encore plus préférentiellement comprise entre 1 et 8000 mPa.s.
Selon un mode de réalisation particulier, le matériau silicone selon l’invention présente de bonnes propriétés mécaniques tout en conservant une bonne dureté et ce même en l’absence de charges généralement utilisées dans ce type de composés pour renforcer les propriétés mécaniques. En effet, en l’absence de charges, le matériau silicone supramoléculaire selon l’invention peut présenter une élongation supérieure à 100% et un module supérieur à 0,25 MPa.
Le matériau silicone selon l’invention peut comprendre des charges, notamment des charges renforçantes ou non renforçantes. Les charges renforçantes vont permettre avantageusement d’améliorer les propriétés mécaniques des matériaux silicones de l’invention.
Dans le cadre de la présente invention, les charges sont de préférence minérales. Elles peuvent être notamment siliceuses. Les charges siliceuses renforçantes sont choisies parmi les silices précipitées ou pyrogénées, ou leurs mélanges. Ces poudres présentent une taille moyenne de particule généralement inférieure à 0,1 pm (micromètres) et une surface spécifique BET supérieure à 30 m2/g, de préférence comprise entre 30 et 500 m2/g. Les charges siliceuses semi-renforçantes telles que des terres de diatomées ou du quartz broyé, peuvent être également employées. En ce qui concerne les matières minérales non siliceuses, elles peuvent intervenir comme charge minérale semi- renforçante ou de bourrage. Des exemples de ces charges non siliceuses utilisables seules ou en mélange sont le noir de carbone, le dioxyde de titane, l’oxyde d’aluminium, l’alumine hydratée ou trihydroxyde d’aluminium, la vermiculite expansée, la vermiculite non expansée, le carbonate de calcium éventuellement traité en surface par des acides gras, l’oxyde de zinc, le mica, le talc, l’oxyde de fer, le kaolin, le sulfate de baryum et la chaux éteinte. Ces charges ont une granulométrie généralement comprise entre 0,001 et 300 pm (micromètres) et une surface BET inférieure à 100 m2/g. De façon pratique mais non limitative, les charges employées peuvent être un mélange de quartz et de silice. Les charges peuvent être traitées par tout produit approprié.
De préférence, le matériau selon l’invention comprend des charges choisies parmi un quartz, une silice, notamment silice précipitée ou pyrogénée et un carbonate de calcium, seules ou en mélange.
De manière particulièrement avantageuse, notamment du fait de la faible viscosité des organopolysiloxanes A, il est possible d’introduire dans le matériau selon l’invention jusqu’à au moins 60% en poids de charges et cela sans altérer la structuration du réseau ionique. L’ajout de ces charges permet notamment d’améliorer la dureté et la contrainte à la rupture des matériaux de l’invention.
Ainsi, le matériau de la présente invention peut comprendre de 0,5 à 70% en poids de charges, de préférence de 1 à 60% en poids de charge, par rapport au poids d’organopolysiloxane A. La quantité de charge dans le matériau selon l’invention peut varier en fonction de la nature de la charge. L’Homme du métier saura adapter la quantité de charge en fonction de la nature de la charge et des propriétés souhaitées.
Ainsi, le matériau silicone selon l’invention peut comprendre : - de 0,5 à 20%, de préférence 1 à 15%, en poids de silice, notamment silice précipitée ou silice pyrogénée, par rapport au poids d’organopolysiloxane A, et/ou
- de 0,5 à 60%, par exemple de 3 à 60%, en poids de quartz par rapport au poids d’organopolysiloxane A, et/ou
- de 0,5 à 50%, par exemple de 3 à 50%, en poids de carbonate de calcium, par rapport au poids d’organopolysiloxane A.
Le matériau silicone selon l’invention peut en outre comprendre :
- un ou plusieurs autres organopolysiloxanes linéaires (huiles) ou branchés (résines) choisis parmi les organopolysiloxanes non fonctionnalisés tels que par exemple les polydiméthylsiloxanes et les organopolysiloxanes fonctionnalisés tels que par exemple les polydiméthylsiloxanes comprenant portant des groupes hydroxyle, alkoxyle, alcényle ou des groupements pipéridinyles stériquement encombrées tels que décrits dans la demande EP 1758541 .
- un agent de réticulation qui est par exemple un organosilane ou un organopolysiloxane ayant par molécule trois groupes hydrolysables liés au silicium,
- un catalyseur de polycondensation choisi parmi les composés métalliques à base d’étain, zinc, chrome, cobalt, nickel, titane, aluminium, gallium, germanium ou zirconium ou les composés organiques tels que les carbènes, les amines, les aminidines ou les guanidines.
- un ou plusieurs additifs fonctionnels notamment choisis parmi :
• les promoteurs ou modulateurs d’adhérence ;
• les additifs pour augmenter la consistance ;
• les pigments ;
• les additifs de tenue thermique, de tenue aux huiles, de tenue au feu ;ou
- un mélange de deux ou plus de ces éléments.
De manière particulièrement avantageuse, le matériau silicone selon l’invention sont des matériaux dynamiques, c’est-à-dire qu’ils présentent des propriétés auto-cicatrisantes. L’auto-cicatrisation des matériaux selon l’invention peut se faire par chauffage du matériau à une température comprise entre 50 et 130°C pendant 1 à 10 h. Par exemple par chauffage du matériau à 70°C pendant 48 heures.
De manière particulièrement avantageuse, le matériau silicone supramoléculaire selon l’invention peut également être recyclé. En effet, les inventeurs ont montré que les matériaux selon l’invention perdent leurs propriétés mécaniques lorsqu’ils sont plongés dans de l’eau chaude, notamment à une température comprise entre 70 et 100 °C pendant une longue période, notamment de 24 h à 167 h.
Le matériau silicone supramoléculaire selon l’invention est obtenu par réaction entre au moins un organopolysiloxane A et au moins un composé B. Le procédé de préparation du matériau silicone supramoléculaire comprend de préférence les étapes suivantes :
a) introduire l’organopolysiloxane A dans un récipient ;
b) si le composé B est sous forme solide, le dissoudre dans un solvant organique S;
c) mélanger les composés A et B ou A et B et S ;
d) chauffer le mélange obtenu, de préférence à une température comprise entre 30 et 200°C, de préférence entre 50 et 150°C, de préférence entre 40 et 100°C, plus préférentiellement entre 50 et 70°C.
La durée de la réaction à température dépend de la nature des réactifs et de la température. L’homme du métier saura ajuster les conditions de température et de temps de chauffage pour obtenir des matériaux présentant de bonnes propriétés mécaniques et auto-cicatrisantes. A titre indicatif, la durée de réaction à température peut varier entre quelques heures à 100°C et quelques jours à 70°C.
Après l’étape c) il est possible de mettre la composition obtenue en forme de différente manière, par exemple en couche mince, dans un moule ou directement dans un récipient. L’étape d) va venir créer le réseau ionique et générer le matériau silicone selon l’invention.
Selon un premier mode de réalisation, le solvant organique S peut notamment être choisi parmi les solvants organiques polaires, notamment les alcools, par exemple éthanol, ou les éthers, par exemple acétate d’éthyle ou un mélange de ces solvants
La quantité de solvant organique S mise en œuvre est faible. De préférence la quantité de solvant organique S mise en œuvre dans le procédé selon l’invention est inférieure à 30% en poids par rapport au poids total du mélange A+B+S, de préférence inférieure à 20%, et encore plus préférentiellement inférieure à 10%.
Dans le cas où le matériau silicone de l’invention comporte des charges, celles-ci peuvent être introduites soit directement en mélange avec l’organopolysiloxane A soit dans le milieu réactionnel après mélange de l’organopolysiloxane A et du composé B. L’organopolysiloxane A selon l’invention peut être utilisé pur (du fait de sa masse molaire inférieure à 70000g/mol), en solution un solvant organique par exemple S, ou en émulsion.
Selon un autre mode de réalisation, le procédé de l’invention est un procédé en émulsion dans lequel l’organopolysiloxane A est en émulsion dans l’eau. Dans ce cas, l’émulsion comprend également un ou des tensioactifs ou stabilisants, et le composé B est solubilisé dans l’eau. Cette émulsion peut également contenir d’autres agents tels que des biocides, des additifs anti-gels, et/ou des agents anti-mousse.
Ainsi, la présente invention concerne également des matériaux silicones tels que décrits ci-dessus et comprenant moins de 50% en poids de solvant organique S, de préférence moins de 40% en poids, plus préférentiellement moins de 30% en poids, notamment moins de 20% en poids, de préférence moins de 10% en poids, par exemple moins de 5% en poids, par rapport au poids total du matériau silicone.
On préfère les matériaux transparents et non colorés ou présentant une très faible coloration.
Les matériaux silicone selon l’invention peuvent notamment être utilisés dans l’enduction de supports souples. Les supports souples sont notamment choisis parmi les textiles, le papier et les films polymère. Les utilisations en enduction textile concernent par exemple la réalisation d’airbag, de bandes transporteuses, etc. Les utilisations en enduction papier et film polymère concernent la réalisation de revêtements antiadhérents. Une autre application utilisant l’enduction de films polymère ou de textile concerne la fabrication de pansements. L’invention couvre donc également un procédé d’enduction de supports souples comprenant la mise en oeuvre du matériau selon l’invention.
Les matériaux silicone selon l’invention peuvent également être utilisés pour l’impression 3D. La présente invention concerne également l’utilisation des matériaux silicones selon l’invention, pour la préparation d’articles en élastomère silicone par des procédés de fabrication additive aussi connus comme des procédés d’ « impression 3D ». Conformément à la norme ASTM F2792-12a, «Terminologie standard pour les technologies de fabrication additive », une «imprimante 3D» est définie comme «une machine utilisée pour l'impression en 3D» et «impression 3D» est définie comme «la fabrication d'objets à travers le dépôt d'un matériau à l'aide d'une tête d'impression, d'une buse ou d'une autre technologie d'imprimante».
La fabrication d'additive «AM» est définie comme un processus de jointure de matériaux pour fabriquer des objets à partir de données de modèle 3D, généralement couche sur couche, par opposition aux méthodes de fabrication soustractives. Les synonymes associés à l'impression 3D et englobés par l'impression 3D comprennent la fabrication additive, les processus additifs, les techniques additives et la fabrication de couches . La fabrication d'additive (AM) peut également être appelée prototypage rapide (RP). Tel qu'utilisé ici, "impression 3D" est interchangeable avec "fabrication additive" et vice versa.
Avantageusement, les matériaux silicones selon l’invention peuvent être utilisés pour les procédés d’impression 3D mettant en œuvre l’extrusion de matériau ou le dépôt de matériau. L’extrusion de matériaux est un procédé de fabrication additive, dans lequel un filament de matériau est extrudé et distribué sélectivement à travers une buse. Le débit de matériau extrudé peut être contrôlé entre autres via la pression exercée sur la buse ou la température.
Le dépôt de matériau est un procédé de fabrication additive selon lequel de fines gouttelettes d'un matériau sont déposées sélectivement par des têtes d’impression semblables à celles d’imprimantes à papier. Ce procédé est aussi connu comme jet d’encre ou ink jet.
La présente invention couvre donc également un procédé d’impression 3D comprenant la mise en œuvre d’un composé selon l’invention.
Les matériaux silicone selon l’invention peuvent également être utilisés pour l’hydrofugation du bois, du béton ou de la pierre. La présente invention couvre donc également un procédé d’hydrofugation du bois, du béton ou de la pierre comprenant la mise en œuvre d’un composé selon l’invention.
Dans les exemples ci-dessous, donnés à titre illustratif, il est fait référence aux définitions suivantes :
Viscosité dynamique :
La viscosité dynamique des produits a été mesurée à l’aide d’un rhéomètre à contrainte imposée (TA-DHRII). Les mesures ont été réalisées en mode écoulement avec une géométrie cône/plan de diamètre 40 mm et présentant une troncature de 52 pm. La viscosité a été enregistrée en fonction du taux de cisaillement (0,01 - 100 s 1) à 25°C.
Rhéoloaie :
Les analyses rhéologiques ont été réalisées à l’aide d’un rhéomètre à contrainte imposée
(TA-DHRII) à 25°C en utilisant une géométrie plan/plan (diamètre de 40 mm). Les balayages en fréquence ont été enregistrés dans le domaine viscoélastique linéaire des produits entre 100 et 0,01 Hz.
Essais de traction
Les essais de traction pour déterminer le module à 100% de déformation, la contrainte à la rupture et l’allongement à la rupture ont été réalisés avec une machine de traction uniaxiale MTS 2/M (10KN). La cellule de force possède une charge maximale de 100N. Un mors auto-serrant a été utilisé pour la partie inférieure et un mors pneumatique pour la partie supérieure. Les éprouvettes sont de type H3. Un extensomètre est utilisé pour mesurer l’élongation. L’écartement initial est de 10 mm.
La dureté Shore 00 et la dureté Shore A sont mesurées avec des duromètres sur une épaisseur de matériau silicone de 6,5 mm.
Les composés organopolysiloxane A mis en oeuvre dans les exemples et détaillés dans le tableau ci-après répondent à l’une des formules suivantes :
PDMS A01 (comparatif)
Organopolysiloxanes linéaires avec des motifs terminaux 3-aminopropyl-dimethylsilyloxy et des motifs D dimethylsilyloxy de formule (I) ci-dessous :
Figure imgf000014_0001
PDMS A11-A12-A13 (comparatif)
Organopolysiloxanes linéaires avec des motifs terminaux triméthylsiloxy des motifs D diméthylsiloxy et des motifs D comprenant un substituant méthyle et un motif aminé aminopropyle ou aminoéthyl-aminopropyle correspondant aux formules (II) et (III) ci- dessous
Figure imgf000015_0001
PDMS A21-A22-A23 (Organopolysiloxane A selon l’invention)
Organopolysiloxanes linéaires avec des motifs terminaux méthoxydimethylsiloxy, des motifs diméthylsiloxy et des motifs D comprenant un substituant méthyle et un motif aminé aminoéthyl-aminopropyle correspondant à la formule (IV) ci-dessous :
Figure imgf000015_0002
Figure imgf000015_0003
D= dimethylsilyloxy unit
Un exemple comparatif est également préparé à partir d’un PDMS A31 (Organopolysiloxane A comparatif) :
PDMS A31 (Organopolysiloxane A comparatif)
Organopolysiloxanes branché de formule générale (V) ci-après comprenant des motifs terminaux méthoxydiméthylsiloxy, et des motifs D et T dont certains comprenant un motif aminé aminoéthyl-aminopropyle.
Figure imgf000016_0001
Cet organopolysiloxane comprend plus de deux fonctions alkoxy.
Figure imgf000016_0002
ableau 2
Procédé général de préparation des matériaux silicones
Dans les exemples qui suivent les matériaux sont préparés comme suit :
- l’acide est solubilisé dans un mélange 60% éthanol et 40% acétate d’éthyle.
L’acide étant concentré dans le solvant à environ 1 ,5 mol/l.
- Dans un récipient on introduit l’organopolysiloxane aminé et on le refroidit à environ -20°C. L’acide solubilisé dans le mélange de solvant est ajouté de façon à obtenir le rapport de fonctions J décrit dans le tableau.
- Le mélange réactionnel est homogénéisé à l’aide d’un mélangeur planétaire pendant une minute environ à 2500 rpm.
- Après homogénéisation le mélange réactionnel est versé dans une boîte de pétri ou sur une plaque téflonée et placé 6 jours dans une étuve à 70°C. Le matériau supramoléculaire obtenu est transformé sous forme de film de 1 mm d’épaisseur sous pression entre 50 et 70°C pendant 4 à 48h
- Des éprouvettes H3 sont préparées
Pour obtenir les matériaux selon l’invention on met en oeuvre une composition avec un rapport J=1 comprenant environ 93% en poids d’organopolysiloxane A, 2% en poids de composé B et 5% en poids de solvant.
Résultats des propriétés mécaniques des matériaux selon l’invention obtenus pour J=1
Figure imgf000017_0001
Tableau 3
Ce résultat montre que le matériau selon l’invention présente de bonnes propriétés mécaniques et une dureté élevée. De plus le matériau obtenu est lisse et transparent.
Comparaison avec des matériaux obtenus avec de l’acide acrylique
Le procédé de l’invention est mis en oeuvre de façon à avoir J=1 avec de l’acide citrique (matériau selon l’invention) et avec l’acide acrylique (matériau comparatif).
Figure imgf000017_0002
Tableau 4 Ces résultats montrent que les matériaux selon l’invention (acide citrique) présentent une contrainte à la rupture deux fois plus élevée que les matériaux obtenus avec l’acide acrylique. Comparaison entre des matériaux selon l’invention et des matériaux obtenus avec des oraanopolvsiloxanes ne comportant pas de motif alkoxy, l’acide étant l’acide citrique.
Figure imgf000018_0001
Ces résultats montrent qu’un matériau de viscosité moyenne sans fonction terminale alkoxy ne présente pas de propriétés mécaniques. Ce matériau se comporte comme un solide cassant, ou un gel collant. Par ailleurs, lorsque la viscosité diminue, le matériau se comporte comme un liquide visqueux lorsqu’il n’y a pas de fonctions terminales alkoxy.
Au contraire, les matériaux de l’invention présentent de bonnes propriétés mécaniques. Comparaison entre des matériaux selon l’invention et des matériaux obtenus avec des oraanopolvsiloxanes comportant plus de deux motifs alkoxy, l’acide étant l’acide citrique.
Figure imgf000018_0002
Tableau 6
La présence de plus de deux groupes alkoxy amène à la formation d’un matériau moins élastomérique. Evolution des propriétés mécaniques en fonction de J
Pour ces essais l’organopolysiloxane A mis en œuvre est le A23 et l’acide B est l’acide citrique.
Figure imgf000019_0001
Tableau 7
Ces résultats montrent que les propriétés mécaniques restent satisfaisantes pour différentes valeurs de J.
Effet de la nature des acides sur les propriétés mécaniques
Tous les essais ont été faits avec J=1.
Figure imgf000019_0002
Figure imgf000020_0001
En modifiant la structure du composé B, il est également possible de moduler les propriétés mécaniques du matériau ionique.
Comparaison entre des matériaux selon l’invention et des matériaux obtenus avec des oraanopolvsiloxanes comportant plus de deux motifs alkoxy, l’acide étant l’acide citrique.
Figure imgf000020_0002
La présence de plus de dux groupes alkoxy amène à la formation d’un matériau moins élastomérique présentant un allongement à la rupture plus faible.
Effet de l’addition de charges
Il est possible d’incorporer des charges dans les matériaux de l’invention.
Des essais ont été menés en incorporant des charges dans les matériaux de l’invention. L’incorporation de différentes charges (silice, quartz, carbonate de calcium) ne perturbe pas la structuration du réseau physique. Après incorporation, le matériau est un élastomère avec une dureté améliorée.
Par ailleurs, il est possible d’ajouter jusqu’à 60% massique de charges par rapport à l’organopolysiloxane A sans altérer la structuration du réseau ionique. L’ajout de charge améliore principalement la dureté et la contrainte à la rupture. Ajout de silice précipitée : Tixosil 365®
Les résultats sont présentés ci-dessous pour des matériaux obtenus pour des rapports J=1 .
Tableau 10
Ajout de quartz :
Les résultats sont présentés ci-dessous pour des matériaux obtenus par réaction entre l’organopolysiloxane A23 et l’acide citrique avec un rapport J=1.
Figure imgf000021_0002
Tableau 1 1 Ajout de carbonate de calcium CaCO^
Les résultats sont présentés ci-dessous pour des matériaux obtenus par réaction entre l’organopolysiloxane A23 et l’acide citrique avec un rapport J=1.
Figure imgf000022_0001
Tableau 12
L’ajout de charge permet d’obtenir des matériaux aux propriétés mécaniques renforcées à J=1 . L’ajout de charge permet donc d’avoir des matériaux présentant de bonnes propriétés mécaniques sans avoir à utiliser une quantité importante d’acide B.
Evaluation des propriétés de cicatrisation Après mélange des composés A et B, le produit est disposé sur une plaque surmontée d’une entretoise de 4 mm d’épaisseur et téflonnée puis soumis à une température de 70°C pendant 3 jours. Des éprouvettes sont découpées à l’aide d’un emporte-pièce et leur épaisseur mesurée est de 1 mm environ. Une partie de ces éprouvettes ont été coupées en biseau dans la section utile puis soumis à un cycle d’auto-cicatrisation dans lequel les deux morceaux de chacune des éprouvettes sont placés bout à bout et l’ensemble est soumis à une température de 70°C pendant 48h.
Les propriétés auto-cicatrisantes ont été testées sur des matériaux selon l’invention obtenus par réaction entre un organopolysiloxanes A23 ou A22 et de l’acide citrique avec un ratio J = 1 et en présence ou non de charge.
Dans le cadre de la présente invention, la cicatrisation est apportée par la température (chauffage à 70°C pendant 48 heures). Dans les deux exemples ci-dessous, il est démontré qu’après cicatrisation, une majeure partie des propriétés mécaniques est recouvrée.
Figure imgf000023_0001
Tableau 13
Des tests similaires ont été menés sur des matériaux obtenus avec l’acide citrique, l’organopolysiloxane A22, J=1 et 10% en poids de quartz par rapport au poids de A22. La cicatrisation a lieu également par chauffage à 70°C pendant 48 heures. La rupture a lieu en dehors de la coupure.
Recyclage
Les matériaux selon l’invention perdent leurs propriétés mécaniques lorsqu’ils sont plongés dans de l’eau à 70°C pendant 7 jours. Cette expérience montre donc que le matériau peut être recyclé via cette voie aqueuse.
Au contraire, le matériau de l’exemple comparatif 6 (Organopolysiloxane comprenant plus de deux motifs alkoxy), après 7 jours à 70°C conserve sa forme initiale. L’eau ne permet pas une perte considérable des propriétés physiques et mécaniques permettant un recyclage du matériau.

Claims

REVENDICATIONS
1.- Matériau silicone obtenu par réaction entre :
- au moins un organopolysiloxane A de masse molaire inférieure à 70000 g/mol, de préférence inférieure à 50000 g/mol, comprenant des motifs siloxyles (1.1 ) et (I.2)
Figure imgf000024_0001
dans lesquelles :
a= 1 ou 2,
b= 0, 1 ou 2
a+b= 1 , 2 ou 3
c = 0,1 , 2 ou 3
les symboles Y, identiques ou différents, représentent un groupe fonctionnel de formule (I.3) :
-E-(NH-G)h-(NH2)i (I.3)
dans laquelle :
h = 0 ou 1 ;
i = 0 ou 1 ;
h+i = 1 ou 2
E représente un radical hydrocarboné divalent aliphatique, cycloaliphatique ou aromatique comprenant de 1 à 30 atomes de carbone ; de préférence aliphatique contenant de 1 à 10 atomes de carbone ;
lorsqu’il est présent, G représente un radical hydrocarboné aliphatique comprenant de 1 à 10 atomes de carbone, monovalent lorsque i=0 ou divalent lorsque i=1 ;
Z1, identique ou différent, représente un radical hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et comprenant éventuellement une ou plusieurs insaturations et/ou un ou plusieurs atomes de fluor ou un groupe hydroxyle, de préférence Z1 représente un groupe hydrocarboné monovalent choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone, les groupes alcényles ayant de 2 à 6 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone comprenant éventuellement un ou plusieurs atomes de fluor, et encore plus préférentiellement Z1 est choisi parmi le groupe constitué par un groupe méthyle, éthyle, propyle, 3,3,3- trifluoropropyle, vinyle, xylyle, tolyle et phényle ;
Z2, identique ou différent, représente un radical hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et comprenant éventuellement une ou plusieurs insaturations et/ou un ou plusieurs atomes de fluor, un groupe hydroxyle, ou un radical -OR1 avec R1 qui représente un radical hydrocarboné en C1-C10 linéaire ou ramifié, et de préférence Z2 représente un groupe hydrocarboné monovalent choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone, les groupes alcényles ayant de 2 à 6 atomes de carbone et les groupes aryles ayant de 6 à 12 atomes de carbone comprenant éventuellement un ou plusieurs atomes de fluor, ou un radical -OR1 avec R1 qui représente un radical hydrocarboné en C1-C1 0 linéaire ou ramifié, et encore plus préférentiellement Z2 est choisi parmi le groupe constitué par un groupe méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, vinyle, éthoxyle, méthoxyle, xylyle, tolyle et phényle ;
ledit organopolysiloxane A comprenant, par molécule :
- au moins un motif siloxyle (1.1 ) porteur d’au moins un groupe fonctionnel de formule (I.3),
- deux motifs (I.2) pour lesquels un Z2 représente un radical -OR1 et
- au moins deux motifs terminaux M choisis parmi le groupe constitué par les motifs siloxyles Y3Si01/2, YZ1 2Si01/2, Y2Z1Si01/2 et Z2 3Si01/2 et
- au moins un composé B organique porteur d’au moins deux groupes acide carboxylique et ne comprenant pas d’insaturation.
2.- Matériau selon la revendication 1 , dans lequel les organopolysiloxanes A comprennent deux motifs (M) terminaux formule Z2 3SiOi/2 dans chacun desquels un, et un seul, des Z2 représente un radical -OR1.
3.- Matériau selon la revendication 1 ou 2, dans lequel les organopolysiloxanes A de l’invention comprennent au moins deux motifs (1.1 ) porteurs chacun d’au moins un groupe (I.3), de préférence porteurs chacun d’un seul motif (I.3).
4.- Matériau selon l’une quelconque des revendications 1 à 3, dans lequel le rapport J représentant le rapport entre le nombre de mole de fonctions acide du composé B et le nombre de mole de fonction amine de l’organopolysiloxane A
nombre de mole du composé B x nombre de fonctions acide du composé B
J = nombre de mole du composé A x nombre de fonctions amine du composé A est compris entre 0,5 et 1 ,5, de préférence entre 0,8 et 1 ,2, plus préférentiellement entre 0,85 et 1.
5.- Matériau selon l’une des revendications 1 à 4, dans lequel le composé B est choisi parmi acide citrique, acide malique, acide succinique, acide oxalique, acide malonique, acide succinique, acide tartrique, acide glutarique, acide adipique, acide pimélique, acide subérique, acide azélaïque, acide sébacique, acide undécanedioïque, acide dodécanedioïque, acide brassylique, acide tétradécanedioïque, acide pentadécanedioïque, acide thapsique, acide phtalique, acide isophtalique, acide téréphtalique, acide dipicolinique, acide trimésique, acode isocitrique, acide oxalosuccinique, acide tricarballylique, acide homocitrique, acide hydroxycitrique, acide pamoïque.
6.- Matériau selon l’une quelconque des revendications 1 à 5, dans lequel l’organopolysiloxane A présente une quantité de liaison NH exprimée en mol par gramme comprise entre 1 .105 et 10.102 mol/g, de préférence 5.105 et 5.102 mol/g, plus préférentiellement de 1.104 à 5.103 mol/g.
7.- Matériau selon l’une quelconque des revendications 1 à 6, comprenant en outre une charge notamment choisie parmi un quartz, une silice, notamment silice précipitée ou pyrogénée et un carbonate de calcium, seuls ou en mélange.
8.- Matériau selon la revendication 7 comprenant de 0,5 à 60% en poids de charge par rapport au poids de l’organopolysiloxane A.
9.- Matériau selon l’une quelconque des revendications 1 à 8, dans lequel la réaction est mise en œuvre en présence d’un solvant organique S, la quantité de solvant organique S est inférieure à 30% en poids par rapport au poids total du mélange A+B+S, de préférence inférieure à 20%, encore plus préférentiellement inférieure à 10%.
10.- Procédé de préparation d’un matériau selon l’une quelconque des revendications 1 à 9 comprenant les étapes de :
a) introduire l’organopolysiloxane A dans un récipient ;
b) si le composé B est sous forme solide, le dissoudre dans un solvant organique S;
c) mélanger les composés A et B ou A et B et S ;
d) chauffer le mélange obtenu, de préférence à une température comprise entre 30 et 200°C, de préférence entre 50 et 150°C, de préférence entre 40 et 100°C ; plus préférentiellement entre 50 et 70°C.
1 1.- Procédé selon la revendication 10 dans lequel l’organopolysiloxane A n’est pas solubilisé dans un solvant.
12.- Procédé selon l’une quelconque des revendications 10 ou 1 1 dans lequel la quantité de solvant S mise en oeuvre dans le procédé selon l’invention est inférieure à 30% en poids par rapport au poids total du mélange A+B+S, de préférence inférieure à 20%, encore plus préférentiellement inférieure à 10%.
13.- Utilisation du matériau selon l’une quelconque des revendications 1 à 9 pour l’enduction de supports souples notamment textiles, papier et films polymère notamment pour la réalisation d’airbag, de bandes transporteuses, de revêtements antibactériens, de pansements.
14.- Utilisation du matériau selon l’une quelconque des revendications 1 à 9 en impression 3D.
15.- Utilisation du matériau selon l’une quelconque des revendications 1 à 9 pour l’hydrofugation du bois, du béton ou de la pierre.
16.- Procédé d’enduction de supports souples notamment textiles, papier et films polymère notamment pour la réalisation d’airbag, de bandes transporteuses, de revêtements antibactériens, de pansements, comprenant la mise en oeuvre d’un matériau selon l’une quelconque des revendications 1 à 9.
17.- Procédé d’impression 3D comprenant la mise en oeuvre d’un matériau selon l’une quelconque des revendications 1 à 9.
18.- Procédé d’hydrofugation du bois, du béton ou de la pierre comprenant la mise en oeuvre d’un matériau selon l’une quelconque des revendications 1 à 9.
PCT/EP2019/054893 2018-02-28 2019-02-27 Matériaux silicones WO2019166507A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/971,059 US11945965B2 (en) 2018-02-28 2019-02-27 Silicone materials
CN201980016093.8A CN111819255B (zh) 2018-02-28 2019-02-27 有机硅材料
JP2020545719A JP6991350B2 (ja) 2018-02-28 2019-02-27 シリコーン材料
KR1020207024986A KR102482180B1 (ko) 2018-02-28 2019-02-27 실리콘 재료
EP19706704.4A EP3759186A1 (fr) 2018-02-28 2019-02-27 Matériaux silicones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851779 2018-02-28
FR1851779A FR3078335B1 (fr) 2018-02-28 2018-02-28 Materiaux silicones

Publications (1)

Publication Number Publication Date
WO2019166507A1 true WO2019166507A1 (fr) 2019-09-06

Family

ID=62683328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/054893 WO2019166507A1 (fr) 2018-02-28 2019-02-27 Matériaux silicones

Country Status (7)

Country Link
US (1) US11945965B2 (fr)
EP (1) EP3759186A1 (fr)
JP (1) JP6991350B2 (fr)
KR (1) KR102482180B1 (fr)
CN (1) CN111819255B (fr)
FR (1) FR3078335B1 (fr)
WO (1) WO2019166507A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022503618A (ja) * 2018-10-19 2022-01-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリシロキサン組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3078335B1 (fr) 2018-02-28 2020-12-25 Elkem Silicones France Sas Materiaux silicones
KR20220040925A (ko) 2020-09-24 2022-03-31 삼성전자주식회사 힌지 구조물 및 이를 포함하는 전자 장치
CN116987278A (zh) * 2023-08-04 2023-11-03 浙江永通新材料股份有限公司 一种低温可自愈合聚硅氧烷超分子弹性体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915938A (en) * 1987-11-13 1990-04-10 Zawadzki Mary E Hair treating composition
EP1758541A2 (fr) 2004-06-23 2007-03-07 Rhodia Chimie Comp0sition cosmetique comprenant un polyorganosiloxane et ses utilisations
WO2016102498A1 (fr) 2014-12-22 2016-06-30 Bluestar Silicones France Sas Organopolysiloxanes et leur procédé de préparation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246423A (en) * 1979-10-22 1981-01-20 Sws Silicones Corporation Silicone polyether copolymers
JPH03254571A (ja) 1990-03-05 1991-11-13 Ricoh Co Ltd 画像形成装置
US6124490A (en) 1999-10-26 2000-09-26 Mona Industries, Inc. Zwitterionic siloxane polymers and ionically cross-linked polymers formed therefrom
US8013094B2 (en) * 2005-06-21 2011-09-06 Dow Corning Toray Company, Ltd. Gelling agents and gelatinous compositions
US9982223B2 (en) * 2015-01-28 2018-05-29 The Procter & Gamble Company Amino silicone nanoemulsion
CN105111470B (zh) 2015-08-13 2017-12-01 四川大学 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
FR3052784A1 (fr) * 2016-06-21 2017-12-22 Bluestar Silicones France Procede de lutte contre l'apparition de brouillard dans un dispositif a cylindres lors de l'enduction de supports flexibles avec une composition silicone liquide reticulable
FR3078335B1 (fr) 2018-02-28 2020-12-25 Elkem Silicones France Sas Materiaux silicones

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915938A (en) * 1987-11-13 1990-04-10 Zawadzki Mary E Hair treating composition
EP1758541A2 (fr) 2004-06-23 2007-03-07 Rhodia Chimie Comp0sition cosmetique comprenant un polyorganosiloxane et ses utilisations
WO2016102498A1 (fr) 2014-12-22 2016-06-30 Bluestar Silicones France Sas Organopolysiloxanes et leur procédé de préparation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Silicones", 15 April 2003, ENCYCLOPEDIA OF POLYMER SCIENCE AND TECHNO, WILEY, US, PAGE(S) 765 - 841, XP007918236 *
FENG ET AL., JOURNAL OF POLYMER SCIENCE, PART A : POLYMER CHEMISTRY, vol. 55, 2017, pages 903 - 911
HANG LU ET AL: "Supramolecular Silicone Elastomers with Healable and Hydrophobic Properties Crosslinked by "Salt-Forming Vulcanization"", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 55, no. 5, 1 March 2017 (2017-03-01), pages 903 - 911, XP055518457, ISSN: 0887-624X, DOI: 10.1002/pola.28450 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022503618A (ja) * 2018-10-19 2022-01-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリシロキサン組成物

Also Published As

Publication number Publication date
CN111819255A (zh) 2020-10-23
FR3078335A1 (fr) 2019-08-30
CN111819255B (zh) 2022-01-11
KR20200124239A (ko) 2020-11-02
US20210071033A1 (en) 2021-03-11
EP3759186A1 (fr) 2021-01-06
JP2021517918A (ja) 2021-07-29
JP6991350B2 (ja) 2022-01-14
US11945965B2 (en) 2024-04-02
KR102482180B1 (ko) 2022-12-28
FR3078335B1 (fr) 2020-12-25

Similar Documents

Publication Publication Date Title
EP3759186A1 (fr) Matériaux silicones
EP2310458B1 (fr) Composition silicone d'enduction d'un support flexible destine a former un revetement reticule ayant un accrochage, une resistance mecanique et une reactivite accrus
CA2240311C (fr) Melanges de caoutchouc de silicone rtv1 avec reticulation par le groupe alcoxy
CA2006036C (fr) Dispersion aqueuse de silicone a base d'aminosilane et/ou d'amidosilane reticulant en un elastomere par elimination de l'eau
EP1263843B1 (fr) Utilisation de (co)polymeres hydrophiles dans les emulsions silicone aqueuses, reticulables
CA2266389C (fr) Dispersion silicone aqueuse
CA2315913C (fr) Emulsion silicone aqueuse, utile comme base de preparation de revetement hydrofuge et antiadherent pour papier, procede de preparation d'une emulsion de ce type et de revetements antiadherents
EP0340120A1 (fr) Composition organopolysiloxane à fonction cétiminoxy durcissable en élastomère autoadhérent
FR2637605A1 (fr) Dispersion aqueuse de silicone a base de siliconate reticulant en un elastomere par elimination de l'eau
EP1299458B1 (fr) Dispersion aqueuse a base d'huiles silicones visqueuses reticulables par condensation en un elastomere adherent utilisables notamment comme mastics ou peintures, procede de preparation
FR2840617A1 (fr) Procede de production de materiaux silicone poreux
EP0364375A1 (fr) Dispersion aqueuse de silicone à base d'alcenyloxysilane réticulant en un élastomère par élimination de l'eau
JPS61293259A (ja) 水性シリコ−ンパテ
EP0340121A1 (fr) Composition organopolysiloxane à fonction acyloxy durcissable en élastomère autoadhérent
EP0781305B1 (fr) Dispersion silicone aqueuse, reticulable en un elastomere adherent, selon un mecanisme reactionnel de condensation
FR2463163A1 (fr) Emulsions de silicones d'une haute teneur en matieres solides, leur preparation et elastomeres de silicones obtenus a partir de ces emulsions
EP0686679B1 (fr) Composition silicone réticulable ou réticulée antiadhérente et imprimable
US10150842B2 (en) Method of preparing condensation cross-linked particles
EP1448674B1 (fr) RETICULANT POUR UNE COMPOSITION SILICONE RETICULABLE A BASSE TEMPERATURE A BASE D'UNE HUILE SILICONE HYDROGENEE COMPRENANT DES MOTIFS Si-H EN BOUT DE CHAINE ET DANS LA CHAINE
CA2020101A1 (fr) Composition organopolysiloxane monocomposante a stabilite au stockage amelioree
EP1034209B1 (fr) Dispersions silicones aqueuses, formulations notamment de peintures les comprenant et l'un de leur procede de preparation
EP1967551A1 (fr) Appareil pour minimiser la contamination de toner dans un élément de formation d'images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19706704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019706704

Country of ref document: EP

Effective date: 20200928